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Abstract 

The problem of 3D Euclidean reconstruction of a building in a city environment is tackled in 
this ^esis. As images have to be captured by a handheld camera with variable parameters，self-
calibration is needed to estimate the parameters. The following two self-calibration methods are 
used to get the basic model of a building and their results are compared. The basic model is 
then refined using a model based stereo technique [7]. 

The first method is based on the algorithms proposed by Faugeras et al [5] for camera self-
calibration by restricting the camera to planar motions. A tripod mounted camera with variable 
focal length was used to capture the images of a building at different distances and angles 
dictated by environment for reconstruction. A new planar motion detection algorithm was 
proposed. The second method is based on the linear algorithm proposed by Newsam et al [6]. 
This self-calibration method assumes that the principal point is known, the camera has square 
pixels and has no skew. It allows 3D shapes to be reconstructed from two images while giving 
the camera the freedom to vary its focal length. 

The model based stereo technique of Debevec et al [7] is extended to refine the basic model 
obtained by one of the above two methods. Good results on capturing small fluctuation in 
depths of the building surfaces are obtained. 



論文摘要 

本論文硏究了城市建築物的歐幾裏德(Euclidean)重建問題。由於 

建築物圖像是利用內參數可變的手持攝像機拍攝而成，爲獲得建築物 

的三維資訊，必須進行攝像機自標定。因此，本論文中分別硏究了兩 

種不同的攝像機自標定方法在城市建築物重建問題中的具體應用。 

第一種方法基於Faugeras等人所提出的攝像機自標定方法，但必 

須限制攝像機在同一平面上移動。可變焦攝像機放在三腳架上，在不 

同的高度，距離和視點去拍攝建築物的不同影像，以求重建出其三維 

幾何模型。除此之外，我們還提出了一種新的平面移動檢測方法。 

第二種方法基於Newsam等人所提出的攝像機自標定方法。本方 

法假設攝像機主點已知，攝像機圖像各圖元點是正方形，即攝像機的 

圖元傾斜因數爲零。利用本方法，可以從兩個可變焦攝像機所拍攝得 

到的圖像中重建出所拍攝物體的三維幾何模型。 

最後，我們拓展了 Debevec等人所提出的基於模型的立體視 

覺技術，對利用上述兩種方法所獲得的建築物三維幾何模型進行 

精化處理，使之視覺效果更爲逼真。 
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Chapter 1 ： Introduction 

Chapter 1 

Introduction 

1.1 The Goal: Euclidean Reconstruction 

The capture of an image by a camera is equivalent to a projection from the three dimensional 

world onto a two dimensional image. A large amount of information is lost in the process. As 

a result, the reverse projection from a two-dimensional image sequence back to a three-

dimensional structure is a difficult and ill posed problem. The lost information has to be 

recovered using two or more images. 

The reasons for requiring a three-dimensional reconstruction from images are many. These 

includes the understanding of the environment by a robot[l], the grasping of objects by 

robotic arms [2]，object or scene visualization, the recognition or modeling of three-

dimensional objects [3] etc. The advent of virtual reality and virtual worlds dramatically 

increases the need for 3D scene reconstruction from recorded images for modeling in a 

virtual world. 

A popular traditional method of computing 3D Euclidean reconstruction is by stereo vision. 

Camera calibration for the intrinsic and extrinsic parameters have to be performed. It is done 

off-line using a known 3D calibration block before any vision task is commenced. When a 

stereo pair is calibrated, it can only work if the target is within a certain range of the location 

of the calibration block. It will not work if there is any change of the camera parameters or 

the geometry of the stereo pair. It is very inflexible and inconvenient. Because of these, 

stereo vision does not work for many applications. If the input is a pre-recorded image 

sequence, the parameters of the camera are usually unknown. Also, the camera parameters 

could change during normal operations. These include the change of focal length due to 

zooming, undergoing significant changes in operation conditions (e.g., the temperature 

changes of a camera on a satellite), and misalignment due to a collision etc. In this thesis we 

focus on the 3D reconstruction of buildings. This problem cannot be handled by the 
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Chapter 1 ： Introduction 

traditional stereo vision approach as the images have to be captured at different ranges and 

angles. A new approach based on camera self-calibration has to be adopted 

1.2 Self-calibration and 3D reconstruction using uncalibrated 

cameras 

In 1992，Faugeras, Luong, and Maybank [4] showed that it is possible to perform camera 

calibration using only corresponding features in the image sequence. This is known as self-

calibration. 

Since then, 3D reconstruction using un-calibrated cameras has become a hot topic. Many 

self-calibration schemes have been proposed by various authors. Faugeras et al and Loung et 

al [4] proposed using the absolute conic for self calibration. Unfortunately, their methods is 

quite complex and the robust solution of the Kruppa equations may be a problem in many 

cases. Hartley [25] proposed a method of self calibration with at least three images taken 

from the same point in space with different orientations of the camera. The method is 

relatively simple in theory, but difficult to implement in reality. One has to determine the lens 

center of the camera by calibration and rotate the camera about this center to capture the 

images. Images captured by rotating a camera about its optical axis is a degenerated case 

which will not work. Marc Pollefeys et al [40] proposed a stratified approach to metric self 

calibration. Bill Triggs had also proposed a self-calibration method using absolute 

quadric[31]. The computation of these methods is quite complicated. A reasonably robust 

and easily implemented method may be a better choice in practice. 

1.3 Scope of the thesis 
In this research, we study the problem of 3D reconstruction of building. Two different self-

calibration methods had been used. One by Faugeras et al[5] and the other by Newsam et al 

[6]. We compare the robustness of their methods with those of other self-calibration methods. 
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Chapter 1 ： Introduction 

Further, the model based stereo technique of Debevec et al [7] is extended to refine a basic 

model obtained by 3D reconstruction using one of the two self calibration methods. 

There are two major contributions of this thesis. First, a method for 3D reconstruction of 

buildings using two alternative techniques [5,6] for camera self-calibration is proposed. 

Second, the model-based technique of Debevec[7] is extended and applied to detect small 

fluctuations in depths on the surface of the reconstructed model above. 

1.4 Thesis Outline 

The following two chapters( 2 and 3) of this thesis will introduce some of the basic concepts 

of 3D reconstruction and review the relevant literature. Chapter 2 examines the general idea 

of reconstructing a scene from images taken by a standard camera. The geometry of the 

perspective camera and the traditional camera calibration method to get the camera intrinsic 

and extrinsic parameters will be introduced. 3D reconstruction by stereo vision will be 

discussed. Chapter 3 reviews the methods of calibrating a camera. The idea of self-

calibration is introduced. A number of self-calibration methods will be reviewed. Two of 

these methods will be adapted to our task of 3D reconstruction of buildings. Chapter 4 

introduces a self-calibration technique under restricted (planar) motions with our new planar 

motion detection scheme [8,5]. This method required the camera to take at least 3 images in 

the same plane to get the camera intrinsic parameters by the ID trifocal tensor. The method 

was verified in real experiments on 3D reconstruction of a building and a flower. Texture 

mapping was used to improve efficiency with some loss in accuracy. An error analysis will 

given. Source of errors of selected methods in the literature will be discussed. Chapter 5 

introduces a linear camera self-calibration method. This method is an adaptation of the theory 

proposed in [6] to 3D building reconstruction in collaboration with Du from Murdoch 

University. Chapter 6 proposes a method to improve the reconstruction by the model-based 

epipolar geometry. This is an extension of the method in [7] for our 3D reconstruction job. A 

conclusion is given in Chapter 7. 
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Chapter 2 

An introduction to stereo vision and 3D shape 

reconstruction 

Overview 

This chapter reviews some of the basic ideas of computer vision in the area of computing a 

3D Euclidean reconstruction using images of a scene taken by standard cameras. The 

pinhole camera model is explained, and its limitations are discussed. The fiindamental of 

stereo matching is also introduced in this chapter. 

2.1 Homosenerous Coordinates 

Projective geometry [14] is used as a theoretical framework for camera calibration and the 

representation of structure. It is an extension of Euclidean geometry in which points, lines 

or planes at infinity are treated no differently from those in finite space. This results in 

simpler formulae, and removes the problem of exceptions resulting from infinity (i.e., two 

lines always intersect in projective space, even if they are parallel in Euclidean space). 

In n dimensional projective space P", a point may be represented by an n+1 vector (Xi, 

X2,....., Xn+i)T For 3-space the homogeneous vector representing a point Xp=(Xi, X2, 

丁 3 T 
X3, X4) is related to the corresponding point in Euclidean 3-space R , Xe=(X，Y,Z) by 

X=Xi/X4, Y= X2/X4, Z= X3/X4. 
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Chapter 2 ： Introduction to Stereo Vision 

Xp is only defined up to a non-zero scaling, such that for a non-zero then 人Xp defined the 

same points as Xe, but conventionally it is chosen that X4=l. Points at infinity can now be 

treated in the same way as finite points, except that X4=0. 

2.2 Camera Models 

A pinhole camera model is assumed in this thesis. It is the most commonly used camera 

models in computer vision [15,16,17]. In section 2.2.1 the calibration of a pinhole camera is 

explained. 

2.2.1 Pinhole Camera Model 

Figure 2.1 show a pinhole camera model. Consider a focal plane F at a fixed distance / i n 

front of an image plane I. The image plane is also called the retinal plane. An ideal pinhole 

Co is in the focal plane Fp. Assume that an enclosure is provided so that only light emitted 

or reflected by a object pass through the pinhole and form an inverted image of that object 

on the image plane. Each point in the object, its corresponding image point and the pinhole 

constitute a straight line. This kind of projection from 3D space to a plane is called 

perspective projection. 

^\ij[nage plane 
foqalDlane 

object pinhole ( Q “ 

Figure 2.1 : The pinhole camera model 
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The geometry model of a pinhole camera thus consists of an image plane I and a point Co on 

the focal plane Fp. The point Co is called the optical center, or the focus. The plane Fp going 

through Co and parallel to I is called the focal plane. The distance between the optical center 

and the image plane is the focal length of the optical system. The line going through the 

optical center C � a n d perpendicular to the image plane I is called the optical axis, and its 

intersects I at a point C�ca l led the principal point. It is clear that the focal plane is also 

perpendicular to the optical axis. Experiences have shown that such a simple system can 

accurately model the geometry and optics of most of the modern Vidicon and CCD 

cameras. 

Now let us derive the equations for the perspective projection. The coordinate system (c，x,y) 

for the image plane is defined such that the origin is at the point c (intersection of the optical 

axis with the image plane) and that the axes are determined by the camera scanning and 

sampling system. We choose the coordinate system (C, X, Y，Z) for the three-dimensional 

space as indicated in Figure 2.1, where the origin is at the optical center and the Z-axis 

coincides the optical axis of the camera. The X- and Y- axes are parallel, but opposite the 

direction, to the image x- and y-axes. The coordinates system (C, X, Y, Z) is called the 

standard coordinate system of the camera, or simply camera coordinate system. From the 

above definition of the camera and image coordinate system, it is clear that the relationship 

between 2D image coordinates and 3D space coordinates can be written as 

丄 丄 (2.1) 
X Y Z 
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If the principal point is located on the image center (xo, y。)，then the equation (2.1) will 

=少一少 0 二 / (2.2) 

Z Y Z 

become as equation (2.2). 

where (xo, y。）is the coordinate in the center of the image. 

It should be noted that, from the geometry viewpoint, there is no difference to replace the 

image plane by a virtual image plane located on the other side of the focal plane (Figure 

2.2). Actually this new system is what people usually use. In the new coordinate system, an 

image point (x, y) has 3D coordinates (x, y , / ) , if the scale of the image coordinate system 

is the same as that of the 3D coordinate system. 

M X 

Figure 2.2 : The pinhole camera model with a virtual image plane 

The ideal pinhole camera is a perspective projective from the world to the image plane, 

which does not model any non-linear distortion introduced by the camera. The mapping is a 

perspective projective from 3D projective space P^ to the 2D image plane P^ with the 

position of the world and image points expressed in homogeneous coordinates (see section 

2.1). 
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The relationship between 3D coordinates and image coordinates, equation (2.1), can be 

rewritten linearly as 

� / 0 X� 

厂 = 0 / 少 0 0 之 

5 0 0 1 0 
L J L 1 

Where x=U/S, and y=V/S if̂ '̂ ^O. 

Where/ is the focal length of the camera measured in pixel units and assume the aspect 

ratio is unity (1). (Xo,yo)is the principal point of the camera, which is the intersection of the 

optical axis and the image plane, and is measured in pixels. 

7 0 u : 
K = 0 / V� 

0 0 1 

Let K be the 3 x 3 matrix 

Which is called the camera perspective projective matrix. 

Given a 3D point M= [X,Y, Z,1]t and its image m-[U,V, S f , the equation (2.2) can be 

written in matrix form as 

sm=KM, 

where s=S is an arbitrary nonzero scalar. 

So far, we assume that 3D points are expressed in the camera coordinate system. They can 

also be expressed in any 3D coordinate system, such as the world coordinate system, as 

shown in Figure 2.3. 
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camera coordinate 
system (wg 

M X 

World coordinate 
system ^ ^ 

Zw ( M J 

Figure 2.3 : World coordinate system and camera extrinsic parameters 

We go from the old coordinate system centered at the optical center Co (camera coordinate 

system) to the new coordinate system centered at point O (world coordinate system) by a 

rotation R followed by a translation t=CoO. Then for a given point, its coordinates 

expressed in the camera coordinate system, Mc, and those expressed in the world 

coordinate system, Mw, are related by 

Mc = RMw + t (2.3) 

Or more compactly 

Mc=DMw (2.4) 

Where D is a Euclidean transform of the three-dimensional space : 

� R t1 
D = 

0 1 

where the matrix R and the vector t describe the orientation and position of the camera with 

respect to the new world coordinate system. They are called the extrinsic parameters of the 

camera. 
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From equation(2.3) and equation(2.4), we have 

M = K M c = K D M w , 

The new perspective projective matrix is given by 

P = K D (2.5) 

This tell us how the perspective projection matrix P changes when we change coordinate 

system in the three-dimensional space : We simply multiply it on the right by the 

corresponding Euclidean transformation. 

Expanding matrix P defined in (2.5) gives 

~fRu + ^0^31 fl^n + ^0^32 Mu + ^0^33 fix + Ô̂ z ‘ 

— ^ 3 1 ^ 3 1 及 31 tz _ 

Where t=(tx ty tz) and R-ij is the ij-̂ ^ elememt of rotation matrix R 

The 12 elements of matrix P : 

尸11 P\2 Pu 尸 14 

P = Al P22 P73 户24 

_户31 Pyi 户33 尸34 _ 

Where the P is determined only up to a scale. So there are in fact only 11 unknowns. 
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2.3 Camera Calibration 

Despite all the approximation and problems with lenses, it must be emphasized that 

perspective projection is an extremely useful and convenient model for the geometry of 

image formation by a lens. We must, however, always bear in mind that that's just what 

perspective projection is : it is a model. 

To derive three-dimensional geometric information from an image, it is necessary to 

determine the parameters that relate the position of a scene point to the position of its image. 

This determination is known as camera calibration, or, more accurate，as geometric camera 

calibration. Let us assume that the perspective-projection model is valid. Let us further 

assume a global coordinate frame for the scene, and an independent two-dimensional frame 

from the image. We need to relate the spatial positions and orientations of these two frames, 

and to determine the position of the center of projection. In addition，to account for the 

transformation undergone by an image between its capture on the image plane and its 

display, we need to determine two independent scale factors, one for each image coordinate 

axis. 

As perspective projection and image scaling along any direction in these operations, and 

therefore, the complete mapping from a scene position to its image position, can be 

expressed as a matrix in homogeneous coordinates. Given the image positions and scene 

coordinates of six points, it is straightforward to derive a closed-form solution to this matrix; 

more points offer greater robustness. Ganapathy has shown that this matrix, in turn, 

provides closed-form solutions to the six extrinsic camera parameters and to the four 

intrinsic camera parameters. Of the six extrinsic camera parameters, three are for the 
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position of the center of projection, and three are for the orientation of the image-plane 

coordinate frame. Of the four intrinsic camera parameters, two are for the position of origin 

of the image coordinate frame, and two are for the scale factors of the axes of this frame. 

Although the distance of the image plane from the center of projection cannot be modeled 

independently of the scale factors of the axes of the image, as indicated in our discussion of 

lenses，this distance is often well approximated by the focal length of the lens. On the other 

hand, if the scale factors of the image axes are known a priori, this distance too may be 

calibrated. 

Typically, camera calibration is pursued using a known calibration object whose images 

exhibit a large number of distinct points that can be identified easily and located accurately 

in the image. Clearly, it is desirable that the calibration object is easy to generate and to 

measure accurately, and that the shape of the object be conducive to simplifying the 

calibration computations. One object that meets these criteria comprises either one or 

multiple planar rectilinear grid [10]. 

Camera calibration is a process to recover the 11 unknown elements of the projective 

matrix P. Depending on the type of applications, we may need to extract from matrix P the 

parameters /-focal length, (xo , y� ) - principal point, the parameters from the rotation 

matrix-R, and translation vector-t. This traditional calibration method is need to know a 

number of 3D scene points (at least 6) and their image projection points as shown in the 

figure (2.4) 
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Calibrationj^et I frame world coordinate 

逾 彻 / i 
\ r 0 image plane 

Camera 

Figure 2.4 : Setup to calibrating a camera 

Now, we have PM = 5m, i.e. 

� ] X , N 
户11 P\2 户 13 户 14 y ^ 
？ 2 1 户 2 2 户 2 3 户 2 4 ^ ^ 

—户31 3̂2 As A 4 �1 � l y 
V i J 

Expanding the equation gives 

+ P,, = sy 

It become as following, 

P u X + P u Y + 户 13Z + P u - + P 3 2 Y + A 3 Z + p , , ) X = 0 

A i ^ + + P23Z + P24 - ^ P, J ^ P33Z + P3J3； = 0 
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This can be written as 

f巧1) 
"X 7 Z 1 0 0 0 0 -xX -xY -xZ - x 1 P,^ —�0� 

0 0 0 0 X r Z 1 -yX -yY -yZ -_y�i —I^O� 

The above matrix-vector multiplication is for one scene point only. If we have n scene 

points then we have the following equation, 

Zi 1 0 0 0 0 -XjX, - x / i -XjZj /p^ \ 
0 0 0 0 X, Y, Z, 1 -乂 - y j , -y, j J ^ � 0 ) 

• ” — 

1 0 0 0 d — ： [ o j 

0 0 0 0 Z , 1 人 - ; ； „ 】 � 

or B P = 0 

So the known vector P is the null-vector of the data matrix B. We can recover vector P from 

the singular value decomposition of B. However, we need to notice that the camera setting 

cannot be changed after the camera has been calibrated. 

2.4 Geometry of a binocular system 

To recover the 3D structure from 2D images, we need to use at least two images. Points m 

and m，are the projections of the same world point M; they are known as corresponding 

points, denoted as m m，as shown in the figure (2.5). 
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Figure (2.5) : Geometry of a binocular system 

For calibrating a binocular system, we need to use the same calibration target, calibrate the 

left camera and then the right camera individually. Then we can get a two projective 

matrices P and P，and this can now be used for shape reconstruction of any object of 

interest. However, the camera setting for both camera cannot be changed after the 

binocular system has been calibrated. 

2.5 Stereo matchins 

The establishment of correspondence requires that an entire image be searched for every 

point in the other image. Its meaning is given a point in one image (say, left image) , the 

objective of the stereo matching is to find the matching point in the other image (say, right 

image) as example shown in figure 2.6. 
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應 _ 
Figure 2.6 : Example pair of stereo image 

Fortunately, such a two-dimensional search is not necessary because of a simple but 

powerful constraint: the epipolar constraint. As illustrated in figure 2.7., given an image 

point, its corresponding point in the other image is constrained to lie on the straight line that 

is the projection of the line through the given image point and its center of 

projection-actually, it is constrained to lie on the projection of only that portion of this line 

that extends outward from the given image point, rather than on the projection of the whole 

line. It is useful to introduce some terminology here. Consider figure 2.7. The line 

connecting the two centers of projection is called the baseline. A plane through the baseline 

is termed an epipolar plane. Any such plane will, in general, intersect the two image planes 

along straight line-these straight lines are called epipolar lines. Clearly, any point on an 

epipolar line has its corresponding image, if any, on the corresponding epipolar line-this 

restriction is called the epipolar constraint. 
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j “ epipolar plane/ 

left image ^ - ^ i ^ t image 
plane plane 

Figure 2.7 : epipolar geometry (e-epipole.C.C'-optical center, 

m-image pointM-Obiect point) 

In general, the epipolar lines in each image converge toward the intersection of the image 

plane with the baseline; such an intersection is called an epipole. For computational 

convenience, the two image planes are often chosen to be coplanar and parallel to their 

baseline. Such an arrangement of image planes can be accomplished either physically, or, 

more conveniently, through analytic transformations. At any rate, when the stereo images 

are, in effect, coplanar and parallel to their baseline, the images are said to be rectified. 

2.5.1 Accuracy of corresvondim voint 

The accuracy of correspond point was affected by the distance between the two centers of 

projection. If the distance is increased, the angle between the corresponding projection rays 

through any given object point will also increase. For this reason, geometric stereo in which 

the distance between the two centers of projection (known as the baseline) is large is called 

wide-angle stereo, and geometric stereo in which the distance between the two centers of 
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projection is small is called narrow-angle stereo. From Figure 2.8a, any errors in the image 

can produce a large error in the reconstruction when the baseline is small. Wide-angle 

stereo provides more precise estimates for the three dimensional position of scene points 

than does narrow-angle stereo. However, wide-angle stereo is disadvantageous with 

respect to narrow-angle stereo in at least two respects : 

(1) It is more difficult to establish correspondence between image points when wide-angle 

stereo is used, (figure 2.8b) 

(2) In wide-angle stereo, there is likely to be less overlap between the two fields of view. 

4 | | X 
Figure (2.8a) Figure (2.8b) 

Figure 2.8 : The effect of baseline on scene reconstruction 

2.5.2 The stereo matchin2 avvroach 

We established in last section that correspondence search can be restricted to conjugate 

epipolar lines. Let us now consider how search along such lines may proceed. One set of 

techniques is based on matching image intensities，and the other is based on matching the 

features in the image. 
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15.11 Intensity-based stereo matchins 

A straightforward approach to establishing correspondence along conjugate epipolar lines 

is to match points on the basis of their image intensities. As several points along each 

epipolar line may have closely matching intensities, establishing correspondence by 

matching intensities on a point-by-point basis is clearly not feasible. We must instead 

minimize some measure of similarity between the intensity patterns exhibited by image 

regions. These regions could be small image windows, whole epipolar lines, or even 

complete images. Two conceivable measures of similarity are the sum of squared 

differences and the cross-correlation. If we represent the two images by lL(m，n) and lR(m，n), 

then the sum of squared differences between the two images over a region R can be defined 

as 

SSD�tm, \fL (j, j) - Ir 0 - A俯,j - A^)?, 
i,j Gi? 

where (Am, An) is disparity between the image locations of the two matched regions. The 

cross-correlation can be defined as 

CC(Am, [^LJ) - I r - A紙 j — A«)； 
i,J sR 

Variations of these definitions include computing weighted sums rather than just plain 

sums, and, in the case of the cross-correlation, normalizing the sum by the product of the 

root-mean-square intensities of each of the two matched regions. The advantage of the 

intensity based stereo matching method is that it attempts to match all pixels in the image 

and output result is more dense than other method. 
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2.5.2.2 Feature-based stereo matchin2 

Another stereo matching approach is detect prominent image features, such as comers, 

edges in the images. To establishing correspondence between image points by matching 

image-intensity patterns along conjugate epipolar lines is first to detect edges or corners, 

and then to seek matches between these edges' or comers' intersections with conjugate 

epipolar lines. This approach is, of course, not useful in image regions without features. It is 

also ineffective in the interior of features that lie along epipolar lines, Hence, feature based 

methods for correspondence establishment are often used in conjunction with 

intensity-based method. 

Due to occlusion, the corresponding feature may not exist in the right (or left) image. The 

disadvantage of the feature based stereo matching method is the output matching result is 

sparse. 

2.5.3 Matchim Constraints 

(1) Uniqueness constraint [18.191 

- A s show in figure (2.9), for each point m in the left image, there is at most one point 

m ’ in the right image that matches m. 

- F o r each point m，in the right image, there at most one point m that matches m，in 

the left image. 
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八 J 

Figure 2.9 : Uniqueness constraint and Continuity constraint 

(2) Continuity constraint�18,191 

The disparity changes smoothly across the image, as shown in figure (2.9), the disparity 

(d ) -x -x ' . 

(3) Compatibility constraint [20" 

The gray level of the dots in the corresponding image must match, where back dot 

match with black dots and whites dots match with the white dots. 

(4) Ordering constraint 

The ordering of matching features s preserved. That is if Xp < Xq (ie, Xp is on the left ofxq) 

then Xp’ <Xp' (ie. Xp' should also be on the left of Xq，） 

(5) Epipolar constraint 

Given a point m in the left image, the corresponding point m, in the right image must lie 

on the epipolar line of w. If given a point m, in the right image, the corresponding point 

p in the left image must lie on the epipolar line of m，. 

Page : 21 



Chapter 2 ： Introduction to Stereo Vision 

2.6 3D reconstruction 

Once the corresponding point has been established, we want to estimate the 3D coordinates 

of P relative to the global coordinate frame on the calibration target. Recall equation (2.6)， 

that the left camera is 

+ + + P,, - + + 尸33Z + = 0 
+ + + A4 -(户31 j + P32Y + 户33Z + 3̂4)少=0 

which can be rewritten as 

rx'] 
P\\ 户 12 -户32X 尸 13 -尸33X y - ^14 (2 7) 

-Ps^y P22 -P^iy 尸23-尸33少」7 — 少— A J • 

Similarly, for the right camera we have 

> „ - 广 3 1 文 ^ JP\,x-P\A ( 2 8 ) 
广 2 2 一 广 3 2 少 广 2 3 一 户 ' 3 3 少 」 7 L 广 3 4 少 一 广 2 4 」 ‘ 

Combine (2.7) and (2.8)，we have 

“Pu - Ps— Pu - P32X 1̂3-̂ 33̂  ( —户 14、 
Al - P s i y 户22 一尸32少 As - P33y V 二 户34少—̂ 24 (O ^ 

p’ _ p , V P' - P , V P, —P, V " P' X - P ' 
广 1 1 广 3 1 广 1 2 厂 3 2 又 厂 1 3 厂 3 3 人 厂 3 4 人 乂 1 4 
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From equation (2.9), we can solve for X, Y, Z using least-squares method. In the presence 

of image noise, need nonlinear optimization to avoid biased estimation. The example of 3D 

box reconstruction as shown in Figure 2.10. 

/ 

, / 
,• , • / 

0.1� • • • • • • y/-0.25 
» 0- • •• • ； 

(3 1 • •• • • • • / - 1 . 7 5 / -0.15 

• •• •• •• /-1.7 -1 八 / / - � . 1 卜 ‘ 

.0^-1.55 Z -1.6^^0.05 X 
X Z -1-55 

Figure 2.10 ： Example of 3D reconstruction (up-to scale) 
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2.7 Recent develovment on Self calibration 

The disadvantage of the standard calibration method [10] is always to use a calibration 
objects with regular pattern to get the camera parameters. This tedious calibration steps 
must redo if the camera focal length is changed. For this reason, many different researchers 
concentrate on the calibration without using standard calibration block 
3,4,5,6,11,16,21,26,29]. Where, the Euclidean reconstruction of the scene can be 

computed without knowledge of camera parameters, nor the scene coordinate. Only 
information about point and line matches and angular relations have been used. As the path 
to use priori information about the scene in figure 2.11. Once the mapping which bring 
points from projective to affine and Euclidean space have been computed, the projective 
matrices are updated so that image point correspondences are directly reconstructed in the 
Euclidean space. 

Moreover, Euclidean reconstruction can obtain without using prior information about the 
scene. As the path to use the priori information about the camera in figure 2.11. 

Estimate N perspective 
^ ^ projective matrices for N  

/ ^ t h u s e p r i o n X I selected image; j use p r i o i i X 
information ] ( information j 

Y about the scene/ ^.\about the camera^ 
� f E s t i m a t e N-1 ^ / 乂 
\ (fanda mental me trice ^ 

、 ： : 1 X 
‘EsWtethe plaii^at~^ f^Tl^'lLj^^E f 
infmitybyuse information 2 (N-1) Kmp^^^^taons 

about afiitie stiucture of � , 
^ the sceiifi J 、一 

From 2 (N-1) Kruppa 
equations, dual matrix K 

/CTT 7'- i-oT-.̂  can be determined Estimate the itietnc of 3D ^̂  ^ 
scene by\i5e infoimation 
aibout metric structuie of  

the scene J f CJameia intrinsic parameters 
can be derived via 

Cholesky decomposition 
fromK , V / 

V > Eiiclideaii geometry of < j 
the gceiue up to scale J 

Figure 2.11: Recovering the Euclidean structure of the scene from images 
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2.8 Summary of the Chapter 

The chapter introduced and reviewed several areas of computer vision concerned with the 

3D Euclidean reconstruction of a scene using images taken by a camera. It concluded that 

to obtained a Euclidean reconstruction of a scene using a image sequence, the camera 

calibration needs to be known. In this chapter, the traditional camera calibration method to 

get the camera parameters is introduced. Also, stereo matching is important step to get the 

corresponding point between the images. The brief introduction of recently development 

without using standard calibration and disadvantage of the standard calibration has 

described in the end of this chapter. For simplify the camera calibration step, the camera 

self-calibration methods can be obtained in several ways, and is the topic of the next 

chapter. 
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Chapter 3 

Camera Self-Calibration 

3.1 Introduction 

Traditionally, the camera calibration was obtained off-line using images of a special 

calibration object. High accuracy is obtainable. However, the method cannot cope with the 

cases when the parameters of the camera changes during the normal operation (i.e., zooming 

in or out)，or when trying to reconstruct a scene from a pre-recorded image sequence where 

the camera calibration are not known a prior. A major disadvantage is that a calibrated 

system can only work when the target object is within a limited range. For large objects like 

buildings, the traditional stereo vision would not work. 

Faugeras et al. [4,21] introduced the idea of self-calibration, where the camera calibration can 

be obtained from the image sequence itself, without requiring knowledge of the scene. This 

has allowed the possibility of reconstructing a scene from pre-recorded image sequences, or 

performing the camera calibration during the normal vision tasks. A lot of work has been 

done in this area, and section 3.3 review the self-calibration methods under general camera 

motion. Section 3.4 review the methods under specially designed motion sequences. 

The main advantage of camera self-calibration is it can provide an approach for 3D 

reconstruction that is flexible and convenient. Also the price is cheaper when compare with 

the traditional camera calibration. However it is a difficult problem. During image capture 

for 3D reconstruction, the focal length of the camera has to vary to keep the object in focus. 

Even if the camera's intrinsic parameters are kept unchanged, due to the high non-linearity of 

the problem, the self-calibration is not an easy job. The major drawback the existing 

techniques of self-calibration are poor in robustness. 
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3.2 Camera Self-calibration 

Faugeras, Luong, and Maybank [4,21] introduced the idea that a camera could be calibrated 

using only point matches between images, and termed the method self-calibration. This 

avoided the use of a calibration object (or known scene), or any knowledge of the camera 

motion. Since then several algorithms have been suggested, which differ in the permissible 

camera motions, and in the actual methods for finding the camera calibration. Some methods 

self-calibrate directly in one step, while others use a stratified approach are reviewed below 

and each method is explained in more details in the following sub-sections. 

3.3 Self-calibration under general camera motion 

The meaning of general camera motion is the camera involved rotation and translation 

between the corresponding images. Some preliminaries for the self-calibration is all self-

calibration techniques assume that the image correspondence was established beforehand， 

e.g., by point tracking. And the fundamental matrix F was assuming to be known, e.g., by 8-

point algorithm. Some specific methods which take advantage of general motion are 

discussed in the following paragraphs. 
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3.3.1 The absolute Conic Based Techniques 

The definition of the absolute conic in 3D projective space is : 

x2+y2+z2=0, t=0, or a二[x y z]t, a^a=0 

The absolute conic (0«) is invariant to rigid motion. However, more interestingly for self-

calibration, the image of the absolute conic {co) is also invariant for rigid motions, and is 

determined by and determines the camera calibration. Also, it is possible to find co and thence 

the camera calibration. 

Lemma 4.1 The image of the absolute conic O ) is invariant to rigid motions of the camera， 

determines, and is determined by the internal parameters of the camera. 

The image of the absolute conic also is a conic. This conic keeps unchanged when the 

camera undergoes a rigid motion. It depends only on camera's intrinsic parameters, more 

explicitly. 

Where, K is the camera's intrinsic parameter matrix, u = (u，v，k)T is the homogenous 

coordinates of an image point. This is because : 

Uo=K [I I 0] [a t]T, 

for the reference frame, and 

Ui=K [R I 0] [a t]T, 

for the arbitrary frame, where R i s a rotation matrix and t is a translation vector. 
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For a point lying on the absolute conic, t = 0，then 

u p K R a 

For a^a = 0 (by definition), we have : 

U i ^ K ' ^ R R ^ K ^ U i = Ui^K ^ K ^ U i - 0 = Ui^C^Ui 

Using the matrix equation for (Qoo) gives the definition of a conic in the image planes, which 

is independent of the rigid displacement (R, t) and only dependent on the camera calibration 

(K). This conic (C^) is (co), the image of the absolute conic, and the dual of the conic C 二 
丁 

KK . Hence, {co) determines and is determined by the camera calibration 

Once the image of the absolute conic C"̂  has been found. It is trivial to determine the camera 

calibration (K) by Choleski decomposition [22] of C. If there is significant noise on the 

image，it is possible that C will not be positive definite，which means that Choleski 

decomposition will give complex values for the calibration. 

Kruvva^s equations 

The camera matrix K can be determine via the Kruppa equations. The original method by 

Faugeras et al [4] involved the computation of the fundamental matrix F，which encodes 

epipolar geometry between two images [15,16,23]. Each fundamental matrix generates two 

quadratic constraints involving only the five elements of C (and not the 3D structure or 

camera motion). From three views a system of polynomial equations is constructed called 
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Kruppa's equations. Originally [4], homotopy continuation was used to solve the set of 

polynomial equations, but the method is computationally, expensive and requires extreme 

accuracy of computation. Addition views increase the complexity. Since then, Q-T Luong 

has used an iterative search technique to solve the set of polynomial equations, but results 

were limited by the choice of initial values and the complexity of the equations. 

Kruppa's equations are used are based on the relationship between the image of the absolute 

conic {co) and the epipolar transformation. If an epipolar line (1) is tangent to co^ then the 

corresponding epipolar line (1，) is also tangent to co (see [24] for proof]. 

Lemma 4.2 From a pair of images it is possible to obtain a set of polynomial equations, 

quadratic in elements of C, called Kruppa's equations. 

line at h d^ty 
image 1 ^ 

(1，⑶ 

epipole (e) ‘ 
y 二0 H � 

<vjmage 2 〜 / 碰 

/ homography 

(1 乂 0) 

epipole (e') N^ 
X 

Figure 4.1 : Parameterization of the epipolar transformation. 
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Proof: If the epipole is not at the infinity line, any epipolar line can be determined by a point 

0 ) lying on the line at infinity and the epipole e = (ei,e2,l)^. y can be expressed as j = (1， 

X，0)T This is because 

J={(ei,e2,l)八（qi，q2，l)} a ( 0 0 1 ) = (1,x, 0)^ 

(八 denotes cross product. q=(qi,q2,l) is an arbitrary point not lying on the line at infinity.) 

That is to say, y is the intersection point between line e Aq and line at infinity (0,0,1), see 

figure (4.1). 

A 3D conic two tangent planes containing the baseline are projected on corresponding 

epipolar lines tangent to the image conic. If an epipolar line (e 八少)in the left image is 

tangent to the image of the absolute conic, then (e 八:f) must go through the dual of the image 

of the absolute conic, then we have : 

(eAj ; f C(eAj;) = 0 (4.1) 

The corresponding epipolar line in the right image of the epipolar line (e 八 ĵ ) in the left 

image will be F (F is the fundamental matrix between left and right images)，then in the 

right image, we have : 
{FyyK{¥y) = 0 (4.2) 

Where (4.1) and (4.2) are quadratic polynomials in x. More specifically, from (4.1), we have : 
aix2 + a2x + a3 = 0 (4.3) 

from (4.2), we have : 

a’ix2 + a’2X + a,3 = 0 (4.4) 

ai a'i (i=l,2，3)，depend on F，e and C. From (4.3) and (4.4)，we obtain the following 3 

Kruppa equations from a pair of view : 

ai/a'i = a2/a,2 = as/a'3 (4.5) 
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Where C has 6 unknowns, From (4.5)，Each pair of views gives two quadratic equations 

containing the elements of C, and given three camera displacements (four independent pairs 

of views), they form an over-determined set of simultaneous polynomial equations. When 

there are only two displacements there are only four equations and five unknowns, and 

another constraint is required to solve for C. 

Summary of Algorithm 

一 Control camera to undergo a general motion, and take 3 images; 

- D e t e r m i n e the 3 fiindamental matrices of these 3 pairs of images; 

- F o r each pair of image, 2 independent Kruppa equations are obtained. From 3 pairs of 

images, 6 Kruppa equations are obtained; 

- F r o m these 6 equations, the dual matrix C can be determined; 

- C a m e r a intrinsic parameter matrix K can be derived via Cholesky decomposition from C. 

Unfortunately, their methods are quite complex and the robust solution of the Kruppa 

equations may be a problem in some cases. In addition, the Cholesky decomposition can 

solve positive definite matrices only. Otherwise the method needs to repeat all the necessary 

steps again to get a positive definite matrices. Other hand, this algorithms can provide a 

fundamental of the self-calibration. Because the above disadvantage, so we choose another 

self-calibration that is more easy to implement and to get a more robust result that is 

described in Chapter 4 and Chapter 5. 
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3.3.2 A stratified avvroach for self-calibration bv Pollefevs 

Its basic principle is using modulus constraint to determine the homographies of the plane at 

infinity ILoS, then determine the camera's intrinsic parameters via HooS. 

Its advantage is hierarchical approach. At first determine H^S, then K, At each stage, the 

number of the parameters to be determined is less than that of traditional bulk one. 

Modulus constraint 

If the projection matrix is P=(P3x3, Po), since Psxs = C(KRK^), then the modulus of the 3 

eigenvalues ofPsxs are equal, i.e., \Xi\ = |入2I = 1̂ 3 . 

Summary of the Algorithm 

1. Determination of a consistent set of projection matrices; 

2. Using the modulus constraint, determine the homographies HooS. of the plane at infinity; 

3. Similarly as Hartley's work, using the homographies of the plane at infinity to determine 

(KRT) (replacing Hij by ILo) 

4. Using Cholesky decomposition method to find out K 

The advantage of the method can let the camera to move freely，however，the calculation is 

too complex to solve many problem, then it cause the accuracy is limited. Additional, the 

points on the accuracy of homographies of the plane at infinity is difficult to find and 

Cholesky decomposition can solve the positive definite matrices. So we didn't choose to use 

this method to implement our practical experiment but use another method that is described 

in section 3.3.4 and section 3.4.3. 
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3.3.3 Pollefevs self-calibration with Absolute Ouadric 

In Euclidean space two entities are invariant -setwise, not pointwise- under rigid 

transformations. The first one is the plane at infinity ILo which allows to obtain afFine 

measurements. The second entity is the absolute conic Q which is embedded in the plane at 

infinity. If besides the plane at infinity Ilco the absolute conic Q. has also been localized, 

metric measurements are possible. 

When looking at a static scene from different viewpoints the relative position of the camera 

towards rioo and Q is invariant. If the motion is general enough, only one conic in one 

specific plane will satisfy this condition. The absolute conic can therefore be used as a virtual 

calibration pattern which is always present in the scene. 

They [29] introduce a practical way to encode both the absolute conic and the plane at 

infinity is through the use of the absolute dual quadric Q* [30] with the reference in 

computer vision [31]. 

Although the camera can be moved flexibly, however, the calculation is too complex to solve 

many non-linearity problem, then it cause the speed is slow and the accuracy is limited. 

Additional, the points on the image of the absolute conic is difficult to find. So we didn't 

choose to use this method to implement our practical experiment in this thesis. 

3.3.4 Newsam^s et al self-calibration with linear algorithm 

Newsam et al [6] introduced the idea of self-calibration method assumes that the principal 

point is known, the camera has square pixels and has no skew. It allows 3D shape to be 

reconstructed from two images while allowing the camera to vary its focal length. 

The method is assuming that the principal point is known (so the origin of the image 

coordinate system can be set at (uo, vo)) and the camera contains square pixels (so^=/v 三 J), 
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the camera matrices K and K，can be simplified to K = diag(/;/; 1) and K，= d i a g ( r ; / ; 1) 

where f and f are the unknown focal lengths for the two images in consideration. This 

diagonal form of K and K' allows the extrinsic parameters to be eliminated nicely from the 

3x3 matrix FF^ and leads to a linear self-calibration method for recovering two focal lengths. 

The advantage of the method is to get the focal length of the camera by the linear algorithm 

robustly. Although the principal point is difficult to fix when the focal length is change. 

However, we discover the accuracy of the principal point is less affect the accuracy of 3D 

reconstruction by experiment. Additional, it is not complex in calculation. So we choose to 

use this method with application that is described in chapter 5 in detail. 

3.4 Camera Self-calibration under sveciallv designed motion sequence 

Restricted motions can result in simpler algorithms; but, on the other hand, it is not always 

possible to retrieve all the calibration parameters from these motions. Some specific methods 

which take advantage of specially design motion are discussed in the following paragraphs. 

3,4.1 Hartley ,s self-calibration bv vure rotations 

Hartley [25] introduced the idea of self-calibration using a rotating camera. When there is no 

translation of the camera between views, there is an image-to-image projective mapping 

which can be calculated using point matches. This projective mapping gives linear 

constraints on C, the dual of ox Given three or more images, these constraints define C and 

hence camera calibration. 

If the camera is purely rotated about is optical center, the transformation between two images 

becomes a pure projective transformation. This method is : given a set of matched points Xi, 

compute the 2D projective transformation as equation (4.6). 

Xi =Hij xo (4.6) 
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Each projective transformation gives a constraint on C of the form 

CHij ^ = HijC (4.7) 
Two or more projective transformations give sufficient constraint to solve for C, and hence 

the calibration K. 

3.4.1.1 Summary of the Algorithm 

1. Rotating the camera about its optical center; 

2. Determine the projective transformation matrices, Hj , where i，j=l2,3 … 

3. Since the image of the absolute conic does not change when the camera is translated 

and/or rotated, it depends only on the camera's intrinsic parameters, then we can 

determine (KK^) as below: 

H J ( K K 卞 H i j 二 ( K K 卞 

(KK 卞 H ! : H „ i ( K K 卞 

4. Using Cholesky decomposition method to find out K 

Its disadvantage is impractical since the camera's optical center is not known in practice. The 

condition to get a unique solution from these two pairs of images is not provided. This 

method also cannot guarantee the obtained matrix C is a positive definite one, which is a 

prerequisite for Cholesky decomposition. 

3,4.2 Pollefeys self-calibration with variant focal lensth 

Pollefeys et al. have shown than even when the focal length changes it is still possible 

perform self-calibration. Several different algorithms have been suggested, including self-

calibration of a stereo head [26], and self-calibration from a monocular image sequence 

[27,28]. 
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The method uses an adaptation of the self-calibration from affine structure which can deal 

with a varying focal length. However, the adaptation requires that the position of the 

principal point is known. Hence, the calibration is found sequentially, with the principal point 

found first by zooming with a stationary camera, and then the varying focal length is found 

by zooming with a rotating camera. These deliberate motions can be achieved easily by 

taking an image sequence with a video camera. 

Summary of the Algorithm 

Assuming that the principal point is known and keeps unchanged. 

1. From the first two translational images, an affine reconstruction is done. 

If the camera undergoes only a translation, the epipole moves along a line going through 

the principal point. Based on this fact, an affine reconstruction is possible. 

2. Take a third image with a different orientation of the camera, the variant focal length can 

be obtained based on the modulus constraint. 

3. Eliminate the effect of variant focal length, then determine the camera's intrinsic 

parameters. 

Its main problem is it required the first two images are translational ones. In practical，it is 

difficult to ensure the achieve it. Additional, the modulus constraint is complex in calculation 

and its robust solution may be a problem in some cases. On the other hand, its computation 

speed is slow. So we choose another faster algorithm to implement our practical experiment 

as describe in Chapter 4 and Chapter 5. 
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3.4.3 Fauseras's et al self- calibration of a ID Projective Camera 

Faugeras et al [5] have introduced the concept of self-calibration of a ID projective camera 

from point correspondences. This method for uniquely determining the two internal 

parameters of a ID camera based on the trifocal tensor of three ID images. It requires the 

estimation of the trifocal tensor which can be achieved linearly with no approximation unlike 

the trifocal tensor of 2D images, and solving for the roots of a cubic polynomial in one 

variable. 

Summary of the Algorithm 

1. Setup a camera to take horizontal planar motions. Capture a subsequence of 3 images 

from 3 view points in general position on a plane. This is repeated for three horizontal 

planes. 

2. Estimate the fundamental matrices of the three images in the same subsequence. 

3. Verify whether the camera motion is planar for each subsequence. 

4. Transform the homogeneous 2D image points to the homogeneous ID image points. 

5. Estimate the linear ID trifocal tensor and get the three intrinsic parameters by self-

calibration. 

Although its method is restricted to take a image under planar motion is its disadvantage. 

However，it can get the intrinsic parameter robust and it is not complex in calculation is its 

advantage. For the application, if the target object is far away from the camera, then the 

planar motion is easily to achieve correspondingly. For this advantage，we choose and extend 

this self-calibration method with application that description in Chapter 4 in detail. 
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3.5 Summary of the Chapter 

This chapter has reviewed the different methods of camera calibration Section 3.3 and 3.4 

introduced the idea of self-calibration, where the camera calibration can be using only 

information contained in the images themselves, and explained the actual knowledge 

required for self-calibration. It reviewed the many methods that have been suggested for self-

calibration, derived many of the basic results. A problem for many of the methods is the 

algebraic and numerical complexity of self-calibration, and that the methods are slow and 

require extreme accuracy of computation. Also, increasing the number of views used greatly 

increases the complexity of the computation. This is not advantageou as increasing the 

number of images used in the computation should improve the accuracy obtainable. 

In the next two chapter, the detail to study and extend the two self-calibration method (one is 

proposed by Faugeras et al's. and another is proposed by Newman et al's) with experiment 

result analysis will be given. 
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Chapter 4 

3D reconstruction based on self-calibration under planar 
motions 
4.1 Introduction 
The ID trifocal tensor required can be estimated accurately using a linear method. If the 

camera motions are planar and horizontal, the above three parameters can be estimated 

robustly directly from the circular points and the trifocal line. On the other hand, if the 

camera moves in three different planes, 5 intrinsic parameters of the camera can be estimated. 

By fitting an complex ellipse to the images of six circular points, two from each planar 

motion, one can obtain the image of the absolute conic. The intrinsic parameter matrix can be 

obtained from the Cholesky decomposition of the C matrix representing the image of the 

absolute conic. In using these algorithms, we had proposed a new simple method for 

detecting planar motions. 

Once the self- calibration is done, we can do a partial 3D reconstruction of a building from at 

least 3 images on a subsequence from viewing angles which have a large overlap of the 

visible scene. The intrinsic parameters are fixed within a subsequence, but the focal length 

and thus the principal points may vary between subsequences covering very different 

viewing angles. We then scale and then transform all the partial 3D model into one reference 

frame and merge them into a single model. Finally, we perform texture mapping from the 

images to the 3D model to complete the job. 

We had verified our methods by simulation. We have done a 3D reconstruction of a building 

and obtained some good results. The reconstructed pairs of orthogonal walls are at an angle 

of about 88 degrees. The average ratio of equal length lines is about 0.98. We had also done a 

3D reconstruction of a real paper flower with satisfactory results. 
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4.2 ID Projective Camera self-calibration 

Faugeras et al proposed two self-calibration schemes using two different planar motion 

alternatives: camera moving in horizontal planes and camera moving in three different planes. 

A planar motion consists of a planar translation and a rotation about an axis perpendicular to 

the plane. For a full perspective 2D camera, self-calibration must be performed on at least 

three different planar motions to solve for the 5 intrinsic parameters. From each plane, two 

imaginary circular points can be obtained. All six of these distinct imaginary points from 

three planes must lie on the image w of the absolute conic. So we can fit an imaginary ellipse 

to these six points to obtain the conic matrix C of ox The resulting intrinsic parameter 

matrix K can be obtained by the Cholesky decomposition of C. However, The fitting 

problem of the absolute conic is very hard to be solved because the matrix C has to be 

positive definite for Cholesky decomposition. This is very hard to achieve. Further, the 

converting of a 2D image points to a ID image points for non-horizontal planar motion may 

bring some large errors on the estimation of the ID trifocal tensor. This will be described in 

details in section 4.2.2. 

If the skew of the camera can be ignored, and the sizes of the camera cells are known, then 

only three intrinsic parameters: coordinates of the principal point and the focal length are 

required to be obtained by self-calibration. In this case, horizontal camera motions are 

sufficient for the self-calibration. Fitting of an ellipse to complex points is not required and 

there is no need for Cholesky decomposition. Intrinsic parameters can be obtained directly 

from the imaginary points and the location of the trifocal line directly. This simpler method 

may lead to less computational errors. On the other hand, the horizontal motions may provide 

effective constraints for accurate estimation. In this paper, we shall compare the performance 

of self calibrations using only horizontal planar motion to that using three different planar 

motions. 

A tripod fitted with a wooden plane was used to mount a camera. The plane can be tilted at 

different angles so that different planar motions can be obtained by moving the tripod in a 
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horizontal plane and rotating the camera on the wooden plane. This set up is very convenient 

for taking a sequences of images under horizontal planar motion (by setting the tilt angle to 

zero) and other planar motions (by setting the tilt angle) as shown in figure 4.1 . A gradient 

meter was used to ensure the camera moving plane is parallel to the ground and the tripod 

kept the height between camera moving plane and the ground constant. 

Plane for Camera ； 
I �Bui ld ing 

/ \ \ 一 

f I � camera 1 
Ground Floor  

Figure 4.1 : Setup and the camera position in horizontal plane (Top view) 

Here we use several image subsequences captured at different view angles for 3D recovery of 

a building. The focal length is constant in the same subsequence. However, it can be changed 

in different subsequence which are captured at different distances and angles. The height of 

the moving plane of the camera can be change for different subsequences too. 

4,2.1 ID camera model 

This ID model is due to Faugeras [5]. Consider a 2D projective camera. It projects a 3D 
T T 

object point M=[X,Y, Z，l] in the projective space to a 2D image point m=[u，v，l] in the 

retina, the projection can be described by a 3 x 4 matrix P3x4, the projection Equation (4.1) 

can be written in matrix form as : 
遍=P3X4M (4.1) 

where s is an arbitrary nonzero scalar. 
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Consider a ID projective camera. It projects a 2D point m=[u,v,l]^ in the projective plane to 

a ID point u=[x,l]^ in the projective line. The projection can be described by a 2 x 3 

homogeneous matrix P2x3 the projection equation (4.2) can be written in matrix form as : 

Xu=P2x3m (4.2) 

where 义 is an arbitrary nonzero scalar. 

Assume a 3D coordinate system with x-axis and z-axis in the horizontal plane and the y-axis 

in the vertical plane. The corresponding points in 2D triplet of images are described as m<-> 

G m"，then the corresponding points of ID triplet of images are described as u ^ u' <-> 

u". The definition of the ID trifocal tensor Tyk is given in equation(4.3). 

Tijk uill'ju"k =0 (4.3) 
We can solve the tensor components linearly with at least 7 correspondence points. The 

complete ID projective camera model is shown in figure (4.2a). The 2D image point (m) is 

project to ID image point (u) in the projective line (trifocal line) perpendicular. All of the 

trifocal line，ID image points (u, u' and u〃）and optical center (C, C and C") is project on the 

same plane as shown in figure (4.2b). 

Projective 广 
space / M ) 

Projective / / V ^ ^ l ^ c / 

j / t ^Projective /  
C U Line 

( a ) ( b ) 

Figure 4.2 : (a) Complete ID projective camera model fb) Creating a ID images 

from a 2D images in the same plane 
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4.2.2 ID Projective Camera Self-calibration Algorithm 

The algorithm for self-calibration using three different planar motions is due to Faugeras et al 

[5]. He also proposed a simplified algorithm using only horizontal planar motions. A short 

review of this is given in section 4.2.4. The former algorithm is based on the fact that the 

determination of the image co of the absolute conic is equivalent to the determination of the 5 

intrinsic parameters of a 2D projective camera. The object space of a ID camera is a 

projective plane and any rigid motion will leave a pair of complex conjugate points, called 

circular points, at the plane of infinity invariant. The image of the circular points will also be 

invariant to camera motion too. Further, they are imaginary points on co. 

Since the camera intrinsic parameters are constant in the same subsequence, ID coordinates 

of the circular points are invariant in these three images. Let us consider a circular point, say 

I. This circular point is projected into i, i' and i � in the three views, we have 

入,V and 入〃 is arbitrary scalar and 

Because the triplet of corresponding points i=i-i" satisfies the trilinear constraints all 

corresponding points do, therefore, 

(4.4) 

i.e. equation (4.3). 
1 2 

This yield the following cubic equation in the unknown x = u /u : 

Tiiix'4- (T211+ Ti丨2+ Ti2i)x'4- (T212+ T221+ Ti22)X + T222=0 (4.5) 

where (Tijk，ij,k，=l，2) is ID trifocal tensor. 

The solutions of (4.5) will give a pair of complex points (circular points) and a real point. 

This is repeated for 3 different planar motions. Then we can fit a complex ellipse to the 6 

complex points obtained to get the image of the absolute conic using equation (4.6) below. 

x t C X = 0 (4.6) 
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where the conic matrix C is written as 

~a 0 d 
0 b e 
d e c 

when the skew is equal to zero. 

From Faugeras et al[5], we obtained the summary of this algorithm as following : 

1. Take three images of the scene from 3 viewing points in general positions on a plane. 

2. Estimate the three fiindamental matrices between the 3 pairs of images. 

3. Verify that the motion is planar (see section 4.2.3 below). If it is not planar, stop. 

4. Project the point correspondences in the retinal plane using either one of the two 

methods proposed by Faugeras et al[5]. 

5. Estimate linearly the trifocal tensor of the 3 corresponding ID images. See [5] for details. 

6. Solve for the 3 roots of equation (4.5). Two of the roots are complex conjugate number. 

They are 2 points on the image of the absolute conic. 

7. If the number of complex points on the absolute conic is less than the number of internal 

parameters, go to step 1. 

8. Fit a complex ellipse to the complex points to obtain C of equation(4.6). 

For camera under horizontal planar motion, the last two steps can be neglected. 

4,2.3 Planar motion detection 

Faugeras et al[5] has proposed a method to verify the planar motion, but it is a little 

complex and not easy to understand. Here we propose an alternative method which is more 

effective and simple. 

Once three images of the scene have been taken with the camera setup as the description in 
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section 4.2.1, we can estimate the fundamental matrices and epipole for each pair of images. 

Then: 

1. Get the equation of the trifocal line by the cross product of the two epipoles on each 

image. 

2. The equations of the trifocal lines in the same image subsequence must be equal up to 

scale if they are planar motions，as shown in Equation(4.7). Where Li = XL2= sLs are 

equations of trifocal line and A and s are arbitrary scale factors. 

Li = AJb: sL3 (4 .7) 

The equality can be tested by whether the cross product of any two trifocal line vectors is 

equal to zero or not as shown in Equation (4.8). 

Li X L2二 0 , Li X L3二 0 , L2 X L 3 = 0 ( 4 . 8 ) 

The above is easier to understand and implement than Faugeras' method [5], Once the 

images have been verified as being planar, one can convert the 2D image into a ID image 

using ID projective camera model [5]. 

4.2.4 Self-calibration under horizontal ylanar motions 

Since the camera is moving in horizontal planes, all the 2D image points in the same 

subsequence can be projected onto the same trifocal line which is parallel to the u-axis of the 

image, given by v = v^, i.e. 

{ u l v l l Y (4.9) 
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The equation(4.9) shows the image projection from 2D image points to ID image points on 

the trifocal line. This projection is shown in the CASE 1 of figure(4.3). For horizontal planar 

motion, this projection is very easy to be calculated. 

Then more than 7 homogeneous ID image points are used to estimate the ID trifocal tensor 

(Tijk , ij，k，=l,2) linearly by equation(4.3). As the intersection of the absolute conic and the 

trifocal line，the images of the circular points are given by z/o ± from the solutions of 

equation (4.5). It turns out that the focal length is Ou in horizontal pixels and u�is horizontal 

location of the principal point [35，5]. For horizontal planar motion, the vertical location of 

the trifocal line determined the vertical position of the principal point Vo. The three intrinsic 

parameter f , u � a n d v^ of the camera are estimated. Here we assumed that the skew is equal 

to zero and the ratio of pixel cells is known. 

4,2.5 Self -calibration under three different vlanar motions 

However, for a non-horizontal planar motion of the camera, the calculation of ID image 

points needs more work and is sensitive to 2D image noise. In the following, two important 

remarks are made on the process of converting 2D image points into ID image points for a 

non-horizontal planar motion. 
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Remark (IV. 

Given two image points (mi and m】）and a line (line 1) obtained by their cross product, the 

intersection (V7,V2,1) between line 1 and the trifocal line shown in figure(4.3) does not 

directly give the coordinate of the corresponding ID image point (x；,!) for the ID camera 

case. These intersection points (Vi/,V2/,1) i=l,2”..n must be represented in ID homogenous 

coordinates (x；,!) as described in Remark (2). 

^ CASE 1 Y CASE 2 
X + 
八 ml ^ ml 

, m i 

»c H  

Figure (4.3) : The projection from 2D image points to ID image points for the 

horizontal planar motion (CASE 1) and non-horizontal planar motion (CASE 2) 

Remark(2)： 

To convert the intersection points (Vj/,V2/,1) into ID homogeneous coordinates (xj,!), the 

origin of the ID camera image coordinate must be defined. Since the trifocal lines in the 

same subsequence are the same image line, here we can define any point on the trifocal line 

as the origin so long as all the origins have the same 2D image coordinates. In our 

experiments we took the intersection point (0, v^,!) between the trifocal line (i.e. t iu + t2V + 

ts 二 0)and the y-axis of the 2D image as the ID origin (0,1) in each image. Then the system 

can convert these intersection points (v"，V2/,l) into ID homogeneous coordinates (xj,l) by 

the following relations : 
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Relation � : 

Xi =M 1 ) 2 

i f F i / > 0 

Relation � : 

ifVjf<0 

For non-horizontal planar motion, the 2D image noise can influence this projection's 

direction (as line 1) and cause large error in the ID coordinates of these points. Thus the 

noise of the ID image coordinate is magnified by the 2D image noise. 

Then we can calculated their ID trifocal tensors and find the circular points on the trifocal 

lines by equation (4.5). When the image subsequences of the three different planar motion 

has been deal as above, then we can obtain C from 6 circular points as described in section 

4.2.2. 

4.2.6 Result analysis on self-calibration Experiments 
Assume the intrinsic parameter matrix as 

"1000 0 20" 

0 1100 30 
0 0 1 

The results of self-calibration using 3 different planar motions (T : not including any 

horizontal planar motion, Th : including one horizontal planar motion) or using only 

horizontal planar motions (H) are shown in table 4.1. It can been seen that the results of Th 

are better than T. However, the results by using only horizontal planar motions are the best 

The estimation of fu is very robust to noise for the cases H and TV 
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Noise 二 0 pixel Noise = 0.1 pixel Noise 二 0.3 pixel | 

“ T ~ ~ % “ “ H f ~ Th “ H T ~ Th ~ H ~ 

~ ^ ^ ^ ^ 1 0 0 0 1 0 0 0 1000 992.7 1000.9 1001 1038 998 .51003 .6 

~ 1 0 0 0 UW 1104.9 1098.8 1095.1 1120.6 

~ 20 244 176 W l 22.1 

~ 30 30 ^ ^ 31.8 28.55 34.7 42.9 25.976 

Noise = 0.5 pixel I Noise = 0.7 pixel Noise = 1.0 pixel 

~ ~ T ； ~ ~ H T I Th 丨 H T 丨 Th 丨 H 

~^^^^974.7 1009.4 1005.6 1046 984.4 1008.5 927.3 989.9 991.4 

~ 1 0 8 5 1 ̂ ^^1108.4 1032.3 1085.2 ° 1068.5 1161.9 

~ 44.7 ~ T 5 W l 3T2^^^31.2 1 6 8 . 2 2 9 . 2 

Vo 112.5 -13.7 33.7 -185.1 57.4 29.453 148.7 91.3 38.7 

^ “ Noise 二 1.2 pixel F ~ N o i s e =1.5 pixel Noise =1.8 pixel 

,T I Th 丨 H T Th I H T Th H 

~ 1385 984.2 996.94 1125.5 1025.9 1016.6^^^^755.7 1055.4 1015.6 

~ 1 5 1 4 . 6 1187 1262.8 1061.8 ^ — 1283.1 1355.3 

~ 61.7 24.3 2 5 l l o T l B s X ^ 1 1 . 2 7 n i l 6 0 . 1 18.8 

Vo -353.9 1 1 7 4 4 . 8 8 1 ^ - 7 . 0 53.8 464.6 -14.9 15.964 
I _ 1 1  

Table 4.1 : Relationship between intrinsic parameters and noise, (unit in pixels) 
(T : experiment not including any horizontal planar motion, Th : experiment including one 

horizontal planar motion, H : experiment using only horizontal planar motions) 
(fu，fv): focal length in horizontal and vertical direction, 

(uo, Vo) : coordinate of the principal point 
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4.3 Essential matrix and Triamulation 

Having recovered the focal lengths, the essential matrix E can be estimated easily using the 

formula E=K'"^FK\ Our current version of triangulation for 3D reconstruction still has 

room for optimization and is part of the on-going work of our project. Triangulation in the 

presence of image noise has been discussion by Weng et al [43] and recently by Hartley and 

Strum [34,16]. We will conduct fiarther investigation on this issue. 

4.4 Merse of Partial 3D Model 
Once different partial models have been built by the triangulation method [34], we can merge 

them together to form a complete 3D model as shown in figure (4.4). 

�V V I . � / ‘ 
Parttal moctel: A R^rfeJ model: e 

z 丨 
"iiiM y-J 

�“V' . 
^ I mn̂km 1 

k l / ] • I 

Figure 4.4 : Partial models generate from 2 difference sequence of images 

Hartley's method [16] is used to get the poses of the camera relative to a reference coordinate 

frame. However，different subsequences have different reference coordinate systems. Figure 

(4.4) shows that the relative rotation and translation between two images in subsequence A 

are Ra and ta. Frame ai is taken as the reference frame to get the partial model A. In a similar 

way, the relative rotation and translation between two images in subsequence B are Figure 
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(4.4) shows that the relative rotation and translation between two images in subsequence B 

are Rb and tb and frame bi is taken the reference frame to get the partial model B. 

To merge model A and model B, we must estimate the pose between the image ai and image 

bi as Rab and tab first using Hartley's method. Let frame ai be the reference frame of the 

whole sequence. Thus model B is transformed by Rab and tab to frame aj. Finally, two 

partial models are merged together as a complete 3D model as shown in figure (4.4) 

广 J ： ' … 

Figure 4.5 : Define a texture 
Once the complete wire frame of the reconstructed model has been built, we can use the 

standard texture mapping method to warp an area of texture to the corresponding planar areas. 

At the beginning, we extract the necessary texture from the image manually as shown in 

figure (4.5) • The 3D location of the texture area is calculated. The defined texture is then 

mapped onto the corresponding 3D location. 

Figure 4.6 : Texture mapping 
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4.5 Summary of the Reconstruction Algorithms 

The summary of the algorithm for 3D reconstruction system from camera setup to texture 

mapping is given as follows. 

1. Setup a camera to take horizontal planar motions. Capture a subsequence of 3 images 

from 3 viewing points in general position on a plane. This is repeated for three 

horizontal planes. 

2. Estimate the fundamental matrices of the three images in the same subsequence. 

3. Verify whether the camera motion is planar for each subsequence by our proposed 

method. 

4. Transform the homogeneous 2D image points to the homogeneous ID image points. 

5. Estimate the linear ID trifocal tensor and the get the three intrinsic parameters by self-

calibration[5:. 

6. Transform the image points by the inverse of intrinsic parameter matrices to get the 

essential matrices. 

7. Estimate a rotational matrix R and translation vector t by the method that is proposed by 

Hartley [16], 

8. Calculate the 3D coordinates from corresponding image points by the linear-eigen 

triangulation method[34]. If the 3D points are not in front of both cameras, go to step 7. 

9. Scale the 3D model by the ratio of the corresponding features in the real object and the 

reconstructed model. 
10. Verify the orthogonality to ensure the model is correct. 

11. Merge the partial 3D model reconstructed from each subsequence into a complete 3D 

model. 
12. Extract the texture from the images manually . 

13. Warp the extracted texture to the corresponding area in the reconstructed 3D model. 
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4.6 Experimental results 

Experiments were performed using simulation data and real images to verify our method. 

Error analyses are also done to assess the robustness of the scheme. 

4,6.1 Experiment 1: A simulated box 

We simulated a 3D box with three surfaces and each surface is represented with 49 regular 

points. Two subsequence of images are captured by a ideal pin hole camera under horizontal 

planar motion from the left side to the right side of the box respectively. The intrinsic 

parameter matrix (K) is given as : 

"250 0 256 
0 260 256 
0 0 1 

The reconstructed model is shown in figure (4.7). In this case，we did not add any noise to 

images. The 3D relative error and 2D RMS back projection error of this simulated box are 

extremely small. This verify the correctness of our scheme. 

‘ ‘ , ‘ ‘‘ 氏 ,‘ , '“‘‘ •.‘ 

讓 _ _ _ 聽 醒 _ _ 疼 资 : " ， _ _ 纏 _ _ _ _ 纖 難 … ， _ _ _ _ _ _ 議 籠 
_ _ _ 自竊_霸,激.... .. 竭锡縫 
_纖謹__爾_.... 卞• 酵霸麗 rnrn^mi^m^"-''" ..，鍾麗纖細 
寒輪萨“ •‘：私‘ ：‘竭?咖議I i H J f " ...与裙̂ iill 

‘ * , ‘‘ , - ；‘ ‘ ‘ 

… 人 ： • . ： ， ， … - ‘.、 
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Partial model for surface A and B Partial model for surface A and C 
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Complete 3D model 

Figure (4.1) : A reconstructed box model (simulation) 
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The accuracy of the reconstructed model is highly affected by the noise level in the 2D 

images. Two experiments were repeated on the simulated box with uniform noise added to 

observe the relationship between the reconstruction error and the noise level. With the 

reconstruction model, we calculate the average 3D relative error between the ideal model and 

the reconstructed model. The result is shown in figure(4.8). When the noise level is one pixel, 

the 3D error is 2.43%. When the noise level is two pixels, the 3D relative error increases to 

8.01%. 

In the reconstructed 3D model, the angle between the orthogonal planes is 87.16°. We also 

calculate the RMS 2D back projection error between the ideal model and the reconstructed 

model. The result is shown in figure(4.9). When the noise level is one pixel, the error is 2.32 

pixels in x-direction and 2.18 pixels in y-direction. When the noise level is two pixels, the 

error is 8.32 pixels in x-direction and 6.89 pixels in y-direction. 

It can be seen from the figure 4.8 and 4.9 that the 3D reconstruction error and the 2D back 

projection error will increase almost linearly with the noise level. 
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Figure 4.8 : 3D relative reconstruction error of a simulated box 
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Figure 4.9 : 2D RMS back projection error of a simulated box 
[Solid line - pixel error in x-axis direction] [Dash line - pixel error in y-axis direction] 
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4.6,2 Exveriment 2 : A real buildins 

Two image subsequences of a building captured by a camera under different horizontal 

planar motions is shown in figure(4.10). AFor-Tech CCD camera is used. The focal length is 

6mm, the image size is 500(H) x 582(V), and the cell size is $12.7|Lim(H) x 8.3^m(V). The 

reconstruction results with texture mapping is shown in figuer(4.10). The RMS 2D back 

projection error is 2.19 pixels in x-direction and 1.89 pixels in y-direction. The orthogonality 

of corner A is 88.12�and comer B is 87 .93� . The average ratio of equal-length lines is 

0.982. 

Sub-scqucncc of imago ll>r building niihl hand side 

^ ^ ^ ^ ^ 
—iillMI^^^^S 

Sub-:>eqiicncc of image for building lell hand side 
� ., ‘ ，.,“.,..；_〜•....，……,..,� ...w.�  

鶴 鐘 塵 麗 纖 

Cuiiiplele 3D reconstruction model 

Figure 4.10 : 3D Building reconstruction 
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4.6.3 Experiment 3 : A sun flower 

We use the same CCD camera to take two subsequence of images of a sun flower with the 

camera is under horizontal planar motion. In figure(4.11), the reconstructed 3D model of the 

sun flower is shown. The 2D RMS back projection error is 3.35 pixels in x-direction and 2.93 

pixels in y-direction. 
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Figure 4,11 ： 3D sun flower reconstruction 
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4.7 Conclusion 

Anew simpler algorithm for detecting planar motions was proposed. We have also compared 

the accuracy and robustness to noise for the two self-calibration methods: (1) camera moves 

only in horizontal planes and (2) camera moves in three different non-parallel planes. 

According to our experiments, the former method is much simpler and more robust to noise. 

Further, when the noise level is very low, the accuracy of the first method is the same as 

that of the second method. 

To obtain a 3D model of a building in city environment, we capture a subsequence of images 

from viewing points having large overlapping of the visible scene. Different subsequences 

cover quite different viewing angles. Focal length and other camera parameters are assumed 

fixed for each subsequence, but the focal length and thus the principal point can vary 

significantly between different subsequences to cater for the environmental restriction. A 

partial 3D model is constructed for each subsequence. These partial models are transformed 

to the same reference frame to form a single complete 3D model of the building. Finally, 

texture mapping from the real images to the 3D model is then performed to complete the job. 

Real experiments show that the method is quite efficient and the accuracy is quite good for 

visualization purpose. We also verify our method in a real experiment on the 3D 

reconstruction of a paper flower. 
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Chapter 5 

Building Reconstruction using a linear camera self-
calibration technique 

Overview 

Algorithms for camera self-calibration vary depending on the number of images used, the 

camera model assumed, and the number of intrinsic parameters that need to be recovered. 

In this chapter, we investigate the linear self-calibration method proposed by Newsam et 

al [6] for our project on 3D reconstruction of architectural buildings. This self-calibration 

method assumes that the principal point is known, the camera has square pixels and has 

no skew. It allows 3D shape to be reconstructed from two images while giving the camera 

the freedom to vary its focal length. Since the paper by Newsam et al reports only the 

theoretical work on camera self-calibration, in this chapter, we evaluate the focal lengths 

obtained from their method with those computed from Tsai's calibration method. Our 

experimental results show that the focal lengths from the two methods differed by less 

than 5% and the reconstructed 3D shape was very good in that angles were well preserved. 

Our future research will focus on the further improvement of optimal 3D reconstruction 

in the presence of image noise and further development of this method into a package for 

3D re-con stmction of buildings to be used by a layman. 

5.1 Introduction 

It is now widely known that given a number of corresponding points qi <->q i，，for l < i <n, 

the fundamental matrix F satisfies the epipolar equation: qi'^ F qrO, and can be 

recovered from corresponding points alone. The 7 degrees of freedom property of F 

allows only 7 camera parameters to be retrieved. Out of these 7 camera parameters, 5 of 

them are the parameters that describe the relative orientation between the two images (3 

rotation angles and 2 components of the translation vector). This leaves us with only 2 

unknown intrinsic parameters to be recovered from camera self-calibration. One approach 

to take from here is to consider more images (of a static scene) taken by a camera that 

undergoes motion and to restrict the camera from changing its intrinsic parameter setting 
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(i.e. fixed focal length, etc), such as the self-calibration problem tackled by Faugeras et al 

•4]. An alternative approach is to assume a more simple camera model and various 

assumptions on certain intrinsic parameters of the camera(s)，For example, the principal 

point is known and the camera has square pixels and has no skew [16, 6, 29]. Thus, the 

two unknown camera parameters to be recovered are the focal lengths. This latter 

approach can be taken to be camera self-calibration for a partially calibrated camera 

whose focal length is variable or camera self-calibration for two distinct partially-

calibrated cameras. 

The primary aim of our project is to reconstruct architectural buildings from partially 

calibrated images. The system to be built will be semi-automatic in that prominent image 

features will be automatically detected by a feature detector but a human operator will be 

involved to do some manual editing to the image correspondences, if necessary. More 

image feature correspondences will be automatically established, after the epipolar 

geometry is recovered, to achieve a dense reconstruction. 

From a pair of images taken by a partially calibrated camera to the final metric 

reconstruction, a number of steps are involved : 

(i) Partially calibrate the camera to estimate the principal point, 

(ii) Estimate the epipolar geometry by optimally computing the ftindamental matrix, 

(Hi) Retrieve the two unknown focal lengths of the images involved from the 

fundamental matrix, 

(iv) Compute the extrinsic parameters or relative orientation between the two images 

for triangulation, 

(v) Recover the 3D information of each pair of image corresponding points. 
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To ensure that the final reconstruction, is optimal, the computation in all the precedent 

step must be optimal. In this chapter, we will present our preliminary results on the study 

of some of the aforementioned steps. In particular, we will use the linear self-calibration 

method proposed by Newsam et al [6] and will focus more on step (Hi) above. We chose 

to work on this method because the original paper [6] is a theoretical paper without 

experimental evaluation. More importantly, their method has a number of advantages as 

described below. First, it allows general camera motion which makes it possible for using 

a hand-held camera for 3D reconstruction; second, as it is an essentially linear algorithm, 

and is computationally efficient; third, it allows the focal length to vary so the camera can 

freely zoom in and out of the scene and has no restriction on its viewing distance and 

angle to the object(s) of interest. We hope to further develop this method into a package 

for 3D reconstruction of buildings to be used by a layman. We will present our initial 3D 

reconstruction in the form of sparse 3D points at this stage. Development of a hybrid 

intensity-based and partial model-based stereo matching system is currently underway for 

dense 3D reconstruction. 

5.2 Metric reconstruction from vartiallv calibrated imases 

5.2,1 Partially calibrated camera 

To get an optimal estimate of the principal point is difficult. Most Vision researchers 

therefore simply use the image center (i.e. the center of the image) as the location of the 

principal point, e.g. [43]. In addition to the problem being ill-posed, some poorly 

manufactured CCD cameras can have their principal points some distance away from the 

image center. In order to verify whether the image center is a reasonable approximation 

of the principal point of our camera, we conducted a number of experiments using Tsai's 

method [10] to calibrate the principal point that is required by Newsam et al's method [6]. 

Fig. 5.1 shows the principal point coordinates estimated by Tsai's calibration method for 

our digital camera whose image buffer is 1800 x 1200 pixels. Discarding the two 

principal points (872.58，604.06) and (916.33 , 698.64) that are slightly off the image 

center, the average principal point was computed to be (896.33 , 598.64), which is very 

close to the center of the image buffer, (900 , 600). In these experiments, the focal lengths 

vary from 995.72 to 4681.52 pixels. We would like to note that the principal point can 
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move slightly when the focal length varies and when the camera undergoes motion. Also, 

the accuracy of the principal point may not be too important for 3D reconstruction. 
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Figure 5.1. The estimated principal point coordinate from Tsai，s calibration 
method. 

5.2.2 Optimal computation of F 

The essential element of a good 3D reconstruction is an optimally computed fundamental 

matrix for the recovery of the epipolar geometry. Hartley [36] reports estimating the 

fundamental matrix using SVD with the image coordinates normalized. Since this linear 

method only minimizes the algebraic error which has no meaningful geometric 

interpretation, nonlinear minimization with a proper objective function must be sought. 

Luong and Faugeras [23] examine two minimization criteria for the nonlinear method: (i) 

minimizing the sum of the distances of all the corresponding points to the epipolar lines, 

and (ii) minimizing the quantity : 

1-1 
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where C/ = q ' i^F qi and Wfis the weighting factor defined as the inverse of the first order 

approximation of the variance of Q. We use the fundamental matrix computation 

software with different minimization criteria provided by Zhang [11] on the web. We 

were able to examine the estimated fundamental matrices and the subsequent focal length 

estimation against those obtained from calibrated images via Tsai's method [10]. Our 

experimental results show that the criterion for minimizing the image re-projection error 

(i.e. criterion (i) of Luong and Faugeras above) gives the best focal length estimation. 

Experimental results of focal length estimation will be given in Section 5.3. 

5.2J Linearly recoverin2 two focal lemths from F 

Research in camera self-calibration is first investigated by Faugeras et al [4]. They 

demonstrated that the key to camera self-calibration is to recover the image of the 

absolute conic (lAC) which is known to be invariant under rigid transformation and 

contains only the cameras' intrinsic parameters. Thus, recovering the lAC is equivalent to 

recovering the camera's intrinsic parameters that are essential for metric reconstruction. 

Faugeras et al，s formulation to this self calibration problem assumes that the camera's 

intrinsic parameters are fixed in the stereo pairs of images and the number of unknown 

intrinsic parameters is 5: FU, fv, s, UQ ,and vo w h e r e a n d / v are focal length in horizontal 

and vertical pixel unit, s is the skew parameter, and {Uo, v。）is the principal point. 

By assuming that the principal point is known (so the origin of the image coordinate 

system can be set at (u�，v^)) and the camera contains square pixels (so/„ = /v 三 f ) , the 

camera matrices K and K，can be simplified to K = diag(/; / ; 1) and d iag( / ' / ; l ) 

w h e r e / a n d / are the unknown focal lengths for the two images under consideration. This 

diagonal form of K and K, allows the extrinsic parameters to be eliminated nicely from 

the 3x3 matrix FF^ and leads to a linear self-calibration method for recovering two focal 

lengths. The full algorithm of this linear method and the proof of two classes of 

degenerate stereo configurations for self-calibration are reported in [6]. For the 

completeness of this manuscript, we summarize the algorithm below. 
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Given that a rank-2 fundamental matrix F has been obtained, two focal l e n g t h s / a n d / 

can be retrieved as follows: 

3 

k=i 

1. Apply the Singular Value Decomposition (SVD) to F .That is, F = USV'^ 

where U and V are orthonormal matrices and S = diag(al, c2, 0) with a l . 

2. L e t/：, u V / be the /-th column of F , U ,and V respectively, is is the unit vector 

(0,0,1)T. Construct the following linear system of equations: 

0 = 0 4 / 3 / s )汲1 X^lhf )汲2 (51) 

Here, ct̂ i's are unknown, intermediate variables that contain the unknown focal lengths as 

given below: 

coi= - ( f " ' - l ) , o ) 2 = - ( f ' ' - l ) , � 3=入 

where X is an unknown scalar. 

3. Let w 二（CO 1; C02； CO3 f and , 0, and Q be the 3 x 3 data matrix on the 

right hand side of (5.1). Then (5.1) can be written as s = Q w. The 3-vector w can be 

recovered linearly from the above equation and, consequently, the two unknown focal 

lengths f and f，can be deduced. 

4. Two classes of degenerate stereo configurations that are discovered in [6] are the cases 

when Q is singular: 

Class 1: when the optical axes and the baseline are coplanar; 

Class 2: when the plane containing one optical axis and the baseline is orthogonal to the 

plane containing the other optical axis and the baseline. 
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Experiments reported in this chapter focus on focal length recovery using the linear self-

calibration method described above. We carefully set up the experiments such that the de-

generate stereo configurations (especially for class 1) mentioned above are avoided (e.g. 

by enforcing a (small) tilt angle between the two camera orientation). 

5.2.4 Essential matrix and trian2ulation 

Having recovered the focal lengths, the essential matrix E can be estimated easily using 

the formula E = J C \ Our current version of triangulation for 3D reconstruction 

still has room for optimization and is part of the on-going work of our project. 

Triangulation in the presence of image noise has been discussed by Weng et al [43] and 

recently by Hartley and Sturm [34]. We will conduct further investigation on this issue. 
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5.3 Exveriments and discussions 

Experiments on real images of indoor and outdoor scenes were conducted. Images of 

indoor scenes were folly calibrated with a calibration target and the application of Tsai's 

method [10]. The idea was to compare the estimated focal lengths from Newsam et al [6: 

with those from Tsai [10] where true 3D data were available. 

圓 
Figure 5.2. A pair of images of a calibration target. 

Fig. 5.2 shows a pair of images of a calibration target，with a number of corresponding 

points superimposed, in one of our indoor experiments. The calibration target has two 

orthogonal surfaces. The image on the left is frame 1 and the image on the right is frame 

30 from an image sequence. Feature points were detected and tracked by a comer detector 

with some manual editing as a post-process. Using the mean value of the estimated 

principal points reported in Section 5.2.1 as the principal point of the cameras for the 

linear algorithm [6], the estimated focal lengths for the two methods for nine different 

experiments are plotted in Fig. 5.3. 
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Figure 5.3. The estimated focal lengths from Newsam et al，s self-calibration 

method versus those from Tsai's calibration method for 9 image pairs. 

The best fitted line to the computed focal lengths is shown as a dashed line. Its slope was 

computed to be 0.95, which corresponds to an angle of inclination of 43.55°. The 

percentage error of angle of inclination from the 45° line (solid diagonal line) is 3.23%. 

The vertical intercept of the fitted line is -113.33 pixels. One may argue that as we move 

outside the focal length interval [1500, 5000] the two diagonal lines will be further apart 

(see Fig. 5.3). However, it is unlikely that the camera will have focal length significantly 

below 1500 or above 5000 pixels as neither can the focal length of a camera vanish nor 

can it, for a perspective camera model, be infinite. Moreover, it is simply meaningless to 

extrapolate the errors in an error analysis this way. The results shown in Fig. 5.3 

demonstrate that the linear algorithm[6] performs well in comparison with the calibrated 

results from Tsai's method for a wide range of focal lengths. Of course，getting a good 

estimation of each focal length at this stage depends on all the previous stages of camera 

self-calibration: a reasonable estimate of the principal point and a robust method for 

computing the fundamental matrix. The focal lengths estimated from the two methods for 
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the nine experiments are tabulated in Table 1, in which the columns for the percentage 

error were computed as (fn - frVfr , where f j and fk are the focal lengths from Tsai and 

Newsam et al respectively. The reconstruction of the sparse 3D points on the calibration 

target is shown in Fig 5.4. The angle between the two surfaces of the calibration target 

was estimated to be 88:10�，corresponding to an error of 2.11%. 

Fig. 5.5 shows a pair of images of a building which has a large curved surface whose 

shape is a section of a cylinder. Using the self-calibration method, the focal lengths of the 

left and right images were computed to be 1804.30 and 1841.90 pixels. The 3D 

reconstruction of a number of prominent corresponding points is displayed in Fig. 5.6. A 

good conic fitting program will be required to assess the reconstructed 3D shape in this 

experiment. 

Left image | Right image 
T ^ N e w s a m % error T ^ N e w s a m % error 

etal etal  
4679.38 4877.61 4.24 ~~|| 4708.14 4876.17 3.57 
4168.55 ~~^25 .65 3.77 4188.58 4310.44 2.91 

~ ^ 0 6 . 1 4 3632.60 ~ ~ - 1 . 9 8 " ~ ^ 1 2 . 1 8 3593.14 -3.21 
3375.03 3549.70 5.18 3544.41 — 3628.50 2.37 

~ ^ 2 0 1 . 2 3 ~ 3 3 2 3 . 7 3 — 3.83 3184.26 3307.75 3.88 
~T657.89 ~ 2 5 9 8 . 7 4 — - 2 . 2 3 2697.37 2581.35 -4.30 

2290.41 一2201.54 -3.88 “ 2287.37 2192.26 “ -4.16 
2025.87 “ 2097.49 — 3.54 — 2 0 3 8 . 4 9 2 0 9 3 . 1 5 2 . 6 8 

r730.10 1803.67 4.25 1732.42 1802.12 4.02 

Table 5.1 ： The computed focal lengths fin pixels) for the 9 image pairs 
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(a) Top View . (b) Perspective View 
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Figure 5.4. Metric reconstruction of the calibration target. 

Figure 5.5 A stereo pair of a building that has a large curved surface. 
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Figure 5.6 Metric reconstruction of the building. 

5.4 Conclusion 

The linear method of Newsam et al [6] for recovering focal lengths in self-calibration has 

a number of advantages as discussed in section 5.1 of this chapter. Our preliminary results 

show that the method is only reasonable in the accuracy for focal length estimate. We 

believe this accuracy can be fiirther improved by improving the estimation of the 

fundamental matrix and other steps of the algorithm. Even with this calibration results for 

the focal lengths, we have shown that we can do some useful 3D reconstruction with good 

enough accuracy for visualization. Further re-search is required to develop and enhance 

the method into an easy-to-use package for 3D reconstruction of buildings. 
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Chapter 6 

Refine the basic model with detail depth information by 
a Model-Based Stereo technique 

6.1 Introduction 

The modeling system described in chapter 2 allows the user to create a basic model of a 

scene, However the scene will in general have additional geometric detail (such as 

brickwork and curves) not captured in the model. This chapter presents a method to 

extend the basic model is generated by self-calibration as shown in chapter 4 and chapter 

5 to a detail geometric model by extending the method proposed by Debevec et al’s[7:. 

Model-based stereo differs from traditional stereo in that it measures amount of deviation 

of the structure of the scene from the approximate model, rather than to measure the 

structure of the scene without any prior information. The model serves to place the 

images into a common frame of reference that makes the stereo correspondence easier. 

As in traditional stereo, given two images (which we call key and offset image), model-

based stereo computes the associated depth map for the key image by determining 

corresponding points in the key and offset images. Like many stereo algorithms, Debevec 

et al's proposed method is correlation-based. It attempts to determine the corresponding 

point in the offset image by comparing small pixel neighborhoods around the points. As 

such, correlation-based stereo algorithms generally require the neighborhood of each 

point in the key image to resemble the neighborhood of its corresponding point in the 

offset image. 

The problem we face is that when the key and offset images are taken from relatively far 

apart, it is difficult to get the corresponding pixel with accuracy. In Fig 6.1 (a) and (c), 

pixel neighborhoods toward the right of the key-image are foreshortened horizontally by 

nearly a factor of four in the offset-image. 
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The key observation in model-based stereo is that even though two images of the same 

scene may appear very different, they appear similar after being projected onto an 

approximate model of the scene. If we project the offset image onto the model and view it 

from the position of the key image produces what we call the warped offset image that 

appears similar to the key image. The geometrically detailed scene in Figure 6.1 was 

modeled as two flat surfaces with our modeling program, which also determined the 

relative camera positions. As expected, the warped offset image (Fig.6.1b) exhibits the 

same pattern of foreshortening as the key image. 

_ _ _ 

(a) Key Image (b) Warped Offset Image (c) Offset Image 

Figure 6.1 : fa) and (6) Two image of the same building in 

The Chinese University of Hong Kong 

In model-based stereo, the neighborhoods are compared between the key and warped 

offset images rather than the key and offset images. When a correspondence is found, it is 

simple to convert its disparity to the corresponding disparity between the key and offset 

images and calculate the point's depth. The advantage of the Debevec's et al [7] proposed 

method is on simplifying stereo correspondence. The reduction of differences in 

foreshortening is just one of several ways that the warped offset image simplifies stereo 

correspondence. 

Since images taken from relatively far apart can be compared, so the depth estimates are 

far less sensitive to noise in image measurements. And the places where the model 

occludes itself relative to the key image can be detected and indicated in the warped 

offset image easily. On the other hand, the linear epipolar geometry (section 6.2.1) exists 

between the key and warped offset images, despite the warping. In fact, the epipolar lines 

of the warped offset image coincide with the epipolar lines of the key image. 
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6.2 Model-Based Evivolar Qeometry 

6.2.1 Overview 

In traditional stereo, the epipolar constraint (see [43]) is often used to constrain the 

search for corresponding points in the offset image to a linear search along an epipolar 

line. This reduction of the search space from two dimensions to one not only speeds up 

the algorithm, but it also greatly reduces the number of opportunities to select a false 

matches. This section shows that taking advantage of the epipolar constraint is no more 

difficult in the model-based stereo case, despite the fact that the offset image is a non-

uniformly warped version of the original offset image. 

Fig. 6.2 shows the epipolar geometry for model-based stereo. If we consider a point P in 

the scene, there is a unique epipolar plane which passes through P and the centers of the 

key and offset cameras. This epipolar plane intersects the key and offset image planes in 

epipolar lines e^ and Cq. If we consider the projection pk of P onto the key image plane, 

the epipolar constraint states that the corresponding point in the offset image must lie 

somewhere along the offset image's epipolar line. 

In model-based stereo, neighborhoods in the key image are compared to the warped offset 

image rather than the offset image. Thus, to make use of the epipolar constraint, it is 

necessary to determine where the pixels on the offset image's epipolar line project to in 

the warped offset image. 
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Figure 6.2 : The epipolar geometry for model-based stereo. This figure 
illustrates the formation of the warped offset image, and shows that points 
which lie on the model exhibit no disparity between the key and warped 
offset images. Furthermore, it shows that the epipolar line in the warped 
offset image of a particular point in the key image is simply that point's 
epipolar line in the key image. The text of this chapter provides a more 
detailed explanation of these properties. 

The warped offset image is formed by projecting the offset image onto the model, and 

then reprojecting the model onto the image plane of the key camera. Thus, the projection 

Po o f P in the offset image projects onto the model at g , and then re-projects to qu in the 

warped offset image. Since each of these projections occurs within the epipolar plane, any 

possible correspondence forpk in the key image must lie on the key image's epipolar line 

in the warped offset image. In the case where the actual structure and the model coincide 

at P,po is projected to P and then re-projected topk , yielding a correspondence with zero 

disparity. 
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6.2.2 Warved offset imase vrevaration 
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Figure 6.3 : Two images (a) Key image and (b) Offset image of the same 

building in The Chinese University of Hong Kong 

Assume we have image 1 (key) and image 2 (offset) as shown in the figure 6.3. The 

warped offset image project the regions (V1', V2', V3', V4') to (VI, V2, V3, V4). To 

get the warped offset image, we need to compute the "warping matrices" that maps 

regions (V1', V2，，V3', V4') to (VI，V2, V3, V4). 

Let H be the 3x3 matrices that represents this homography , then we have 

HVi’ = aiVi 6.1 

Where Vi Vi', a i is an unknown scalar that can be eliminated from the equation. 

- / / n 丑 12 丑 l ^ i V i . ' 
H , , H , , H , , V̂ ； = ( 6 . 2 ) 

丑 3 1 丑 3 2 丑 3 3 1 一 — » ^ ― — ^ ^ ^ _ 

From equation (6.1), we got the equation as following : 

Expending equation (6.2), we get the equations (6.3-6.5) as follows : 

HiiVix' + Hi2 Viy，+ Hb = oCiVix (6.3) 

H2iVix' + H22 Viy，+ H23 = oCiViy (6.4) 

HaiVix' + H32 Viy' + H33 = oci (6.5) 
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To eliminate a \ , we substitute (6.5) into (6.3) and (6.4) and got equations (6.6 - 6.7) as 

following : 

HiiVix, + Hi2 Viy，+ H13 - HsiVix' Vix - H32 Viy, Vix - H33 Vix = 0 (6.6) 

H 2 i V i x ' + H22 Viy' + H23 - H3iVix’ Viy + H32 Viy’ Viy - H 3 3 Viy = 0 (6.7) 

Thus, each corresponding point Vi o Vi' gives us 2 equations for solving for the 

elements Hij of the homography H. 

Rearranging the equations (6.6 and 6.7) into matrix-vector form as following : 

Hu 
� "I 丑 13 

K/ 1 0 00 -V义-v^'K -K I''「01 
0 0 0 v^^ v^ 1 -V, 22 -[oj � . J 

V. ‘ ^23 
9 x 2 � 

L 万 3 1 

H32 

To solve the vector [Hn.…..Hss]^ , we need at least 4 corresponding points (Each point 

gives 2 equations; so having 8 equations) to get a 8x9 matrix. Where the matrix have 

rank=8, the vector [Hn..…Hss]^ can be solved by using SVD[43]. 

W ^ 

• — J ^ S ' r i 
^ • • • • l l l l b l B W J M i H H I M i ^ 

Figure 6.4 : Warped Offset Image 
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After we have computed matrix H, we create a warped offset image as shown in figure 

(6.2). For every point P inside area (Vr,V2',V3',V4') in figure 6.1, we compute 

Py 二 H P； (6.9) 

1 P， V y J 

and [Px' Py' P z ' f is normalised to x'=[Px'/Pz'] and y'=[Py'/Pz']. 

The warped offset image can be formed by puting the intensity value at [Px Py] in the 

offset image to the pixel location [x, y'] in the warped offset image. At last the warped 

offset image as shown in figure 6.2. 

6.2.3 Epipolar Line Calculation 

From the figure 6.2, we observe the point p � a n d qk are in fact a pair of corresponding 

point. However, since we assume that the 3D surface is planar, we found pk as the 

corresponding point for p� . ie, po=Hqk as equation (6.9). 

To find a location ofpk, we can use Epipolar geometry to reduce the search area from 2D 

into ID and increase the searching efficiency. To find the accurate epipolar line equation, 

we use the optimization method to compute the fundamental matrices (F) as describe in 

chapter 5 (section 5.2.2). The following are the two different proposed method to find a 

epipolar line. 
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6.13J Method (1) - Epipolar line from evivole (e�and Ck) in fFis 6.2) 

Since the fundamental matrices F has been calculate before, so we have the epipolar 

equation as follow: 

x，TFX =0 (6.10) 

where x' is the corresponding pixel coordinate in key image and x is the coordinate in 

offset image. 

Then we have e �= null(F'^) and Cr = null(F), 

After that, we can get the epipolar line by join cr and qk in the Key image. 

6.23.2 Method (2) - Get Evivolar line bv Fundamental matrices(F) 

Use point p in offset image to compute the epipolar line(5) in the key image as following: 

Since x’t F x = 0, x，in the key image and x-point in the offset image, 

5 = Fp = [5x3y3z]T (6.11) 

Then the epipolar line equation in the key image is simply as the following : 

5xx + 5yy + 5z = 0 (6.12) 

After we got the epipolar line equation, we need to find the matching point (pk) along the 

computed epipolar line in the key image as describe in section 6.2.4. 
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6.14 The matching algorithm to findins a actual corresnondim point (Vk) 

Once the warped offset image and the epipolar line in the key image is formed, stereo 

matching proceeds in a straightforward manner between the key and warped offset 

images to find out the actual corresponding point (pk). The one complication is that the 

two images are not rectified in the sense of the epipolar lines being horizontal; instead, 

the epipolar lines which need to be searched along converge at a finite epipole. Since this 

epipole can be either within or outside of the borders of the key image, special care must 

be taken to ensure that the epipolar lines are visited in a reasonable fashion. The approach 

taken in this work is to traverse the pixels of the border of the key image in a clockwise 

manner, examining the corresponding epipolar line between the current border pixel and 

the epipole at each step. 

The matching window we used was a 7 x 7 pixel neighborhood, and the matching 

fiinction we used was the normalized correlation between the forty-nine pixel intensity 

values in the two regions. Normalized correlation makes a good stereo matching criterion 

because it is not sensitive to overall changes in brightness and contrast between the two 

images. 

6.15 Actual 3D mint venerated bv the Triamulation 

Once we get the actual corresponding point (pk) as shown in section 6.2.4，we can use 

triangulation to get the actual 3D point. Our current version of triangulation for 3D 

reconstruction still have room for optimization as describe in section 5.2.4. 
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6.3 Summary of the Alsorithm 
To get the actual corresponding point and the detail geometric model, the detail of the 

algorithm is described as follows : 

(1) Model the curve surface of a building using a cylindrical section. 

(2) Estimate four 3D points on the curve surface using stereo vision. 

(3) Estimate the other 3D points on or close to the surface using the model-based 

approach. 

(4) Prepare the key image and offset image for the same building. 

(5) Use four corresponding point in key image (V1,V2,V3,V4) and (Vl,, V2', V3,, V4') 

in the offset image to get the Homography (H). 

(6) Project all the point within the image area (Vl', V2', V3', V4') in the offset image 

into new image called "warped offset image". 

(7) Use the Fundamental matrices (F) that we found between the key image and the offset 

image to calculated the epipolar line equation in the key image by the method 1 

(Section 6.2.3.1) or method 2 (Section 6.2.3.2). 

(8) Since Debevec et al's [7] have suggested that the epipolar line is identical between 

the warped offset image and the key image. Then the epipolar line equation in the key 

image is identical to warped offset image. 

(9) Extract a point (P� ) from the offset image as shown in figure 6.5 in the coordinate (x,y) 

and transfer the color (gray level)of this point to warped offset image as point (P。，） 

with coordinate (x，，,y”). The color (gray level) of this point (P。,）is the reference point 

for the future stereo matching. 
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(10) The point (Po') in the warped offset image will have the same coordinate as the 

point (qk) in the key image. Then the coordinate (x”,y”) = (x,,y，). 

(11) The actual corresponding point (Pk) is found by the stereo matching (section 6.2.4) 

through the epipolar line in the key image. Where the actual corresponding point 

is (Pk) in the coordinate (xa,ya). 

(12) Use triangulation method to get the actual 3D reconstruction with texture by the 

actual corresponding point (Pk) and the point (P� ) with up to scale. 
Pk=(xa,ya) 
qk=(x' ,y') P o _ = ( x " y _ ) P�=(x，:y) 

key warped offset 
image offset image 

image 

Figure 6.5 : Actual Corresponding Point Finding 
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6.4 Experiments and discussions 

Experiment on real images of buildings with curve surfaces were conducted. The camera 

was calibrated for all parameters except the focal length. The focal length was estimated 

using the self-calibration method of Newsam et al[6:. 

Figure 6.3 shows a pair of images of a curve building which has a large curved surface 

which can be modeled by a section of a cylinder. Using the self-calibration method [9], 

the focal lengths of the camera for the key and offset images were computed to be 

1804.30 and 1841.90 pixels respectively. 

To verify our algorithm, we get the homography (H) between the 4 corresponding points 

(VI-V4) in the key image and ( V I V 4 ' ) in the offset image as shown in figure 6.3 . A 

new warped offset image is computed using this homography as shown in figure 6.4. 

From the algorithms that describe in section 6.3, we use the warped offset image and 

fundamental matrices(F) between the key image and the offset image to get the 3D 

reconstruction of a numbers of detail geometry of the cylindrical surface as shown in 

Figure 6.6. While we use stereo vision to get the 3D points V1-V4 and use model-based 

approach to get another 20 3D points lying approximately in a cylindrical surface. These 

points are labeled with the symbol ‘‘x，，and "o". It is noted that VI, V2, V3, V4 and these 

puts marked with “X” is one surface while these puts marked with "o" is another surface. 

This is particularly observes in fig 6.6 with shows the top view. 

The result is extremely important as it demonstrates that our method can detect small 

fluctuation in depths on the surface of a building. 
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N 響;^^^、：、 、 

(a) Original image _：：鬚 

(b) Perspective View 
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(c) Top View 
Figure 6.6 : 3D Reconstruction of the curve shape building 
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6.5 Conclusion 

To conclude, we have presented an efficient method to detect small depth changes on a 

surface. We used the model-based idea of Debevec et al,s[7] for this purpose. 

The advantage of this approach as follows. Our experiment show that the model-based 

idea can largely remove the error due to foreshortening. Second, the actual corresponding 

point (Pk) and the initial estimate of the corresponding point (qk) is close and on the same 

epipolar line. This can increase the search efficiency in the correspondence computation, 

matching process. On average, a pair of corresponding point can found within 0.05 

second on a SGI indigo 11. When compared with the results shown in Faugeras 

experiments[5], we found that our algorithm is more robust and efficient to get the detail 

geometry of a building. 
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Chapter 7 

Conclusions 

7.1 Conclusion and Discussion 

We have proposed a general frame work for 3D reconstruction of buildings in this thesis. An 

initial basic 3D model is obtained using either a ID self calibration technique proposed by 

Faugeras et al [5] or a linear method due to Newsam et al,s[6]. This initial 3D model is then 

refined by adding fine depth variations onto the initial 3D model by extending the model 

based stereo technique of [7]. Extensive real experiments are performed to verify our 

approach. Good results are obtained. 

The first method of building an initial model is based on the algorithms proposed by 

Faugeras et al[5] for camera self-calibration by restricting the camera to planar motions. A 

tripod mounted camera with variable focal length was used to capture the images of a 

building at different distances and viewing angles dictated by the environment. This set up 

allows the camera to move in many planes by rotating the tripod and tilting the camera. A 

new and simpler planar motion detection algorithm was proposed. We have also compared 

the accuracy and robustness to noise for the two versions of the self-calibration method: (1) 

the camera moves only in horizontal planes to compute three parameters (focal length and the 

image coordinates of the principal point) and (2) the camera moves in three different non-

parallel planes to compute five parameters (focal length in horizontal and vertical direction, 

image coordinates of the principal point and the skew). We found the estimated average 

camera parameters error is smaller (0.9%) if the camera is moving in one horizontal plane 

only. On the other hand，the average parameter error is large (7.5%) if the camera is moving 

in three different non-horizontal planes. The noise level is assumed to be less than 1.5 pixel. 

In real experiments, the average reconstruction error is 2.1% for a building. This compared 

favorably with the 2.3 % errors of the method by Pollefeys[29] and the 2.9% error for the 

method by Faugeras [5]. 
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The second method of building an initial model is based on a linear algorithm proposed by 

Newsam et al's[6] for self calibration. No experiment, simulation or real, was reported by 

their paper. We adopted their algorithms for our real experiments on the 3D reconstruction of 

a buildings. From our experiments, the reconstruction error is 2.2%. This method allows 3D 

shapes to be reconstructed from two images while giving the camera the freedom to vary its 

focal length. We believe this accuracy can be further improved by improving the estimation 

of the fundamental matrix and other steps of the algorithm. The accuracy of focal lengths 

estimation is not very high (4.73%). However, the 3D reconstruction eiTor(2.2%) is small 

enough for visualization. When compared with the non-linear self-calibration method using 

absolute conic this method is fast. However, it can only take care of the change in focal 

length. 

A model-based approach making use of an idea in Debevec et al's[7] is used to add fine 

depth variations on an initial model obtained above. Our experiments show that it is very 

effective in capturing the changes in depth on a model surface. 3D points on two different 

cylindrical surfaces in a building are found by the method as shown in figure 6.6. There are 

some other advantages of this approach. First, our experiment shows that the errors due to 

foreshortening can be largely removed. Second, we observe that the distance between the 

actual corresponding point (Pk) and its initial estimated point (qk) (in figure 6.2) are usually 

close to each other and are lying on the same epipolar line. Obviously, this will increase the 

search efficiency and accuracy in the correspondence computation. 

In conclusion，we have found that our simpler methods of self-calibration can produce 

similar results as the complex self-calibration methods of Faugeras [4] and Pollefeys [41] in 

our experiments on 3D reconstruction of a building. Fine depth details on a largely planar 

surface can be recovered using our approach. 
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7.2 Future Work 

Although the theory and algorithms presented here have been shown to perform successfully, 

there are still many areas which require further work. Uncertainty analysis which gives a 

measure of the confidence in the computed parameters is important. However, it is not well 

understood in the area of self-calibration and scene reconstruction. Some work could be done 

in the future in this direction. The accuracy of the reconstruction model is affected by the 

estimation of the essential matrix and the triangulation method. Our current version of 

triangulation for 3D reconstruction is not yet optimal. Triangulation in the presence of image 

noise has been discussed by Weng et al [43] and recently by Hartley and Sturm [34]. We will 

conduct further investigation on this issue. In addition, we shall conduct further experiments 

on buildings with different curve surfaces such as hemisphere, cone and the onion shape of 

the Moscow palace. 
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