
FROM X M L TO RELATIONAL DATABASE

B Y

Y A N , MEN-HIN

SUPERVISED B Y ：

P R O F . A D A WAI-CHEE F U

A THESIS SUBMITTED IN PARITAL FULFILMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

M A S T E R OF PHILOSOPHY

IN

COMPUTER SCIENCE & ENGINEERING

© T H E CHINESE UNIVERSITY OF HONG K O N G

JUNE 2 0 0 1

The Chinese University of Hong Kong holds the copyright of this thesis. Any

person(s) intending to use a part or whole of the materials in the thesis in a

proposed publication must seek copyright release from the Dean of the Graduate

School.

^ 1] M m ‘
一 •

N̂ VUBrlARY S “ .，

From XML to Relational Database

submitted by

YAN, Men-hin

for the degree of Master of Philosophy

at the Chinese University of Hong Kong

Abstract

XML - the extensible Markup Language - is rapidly becoming a new standard

for data representation and exchange on the Internet. When viewing XML from

a database point of view, it is possible to manage the content of the XML doc-

ument using databases. Most of the work has been concentrated on building a

semistructured database system based on the semistructured-characteristics of

XML. Besides adopting such a new and immature technique, using a traditional

relational database system seems to be another option. As a result, we try to

explore the possibility of storing XML data into a relational database instead

of a semistructured database. Since XML data and relational data are vastly

different in nature, we try to optimize the use of an relational database to store

XML data by proposing a relational schema extraction algorithm. The general

idea of our algorithm is to first extract the schema prototypes from the DTD

(DTD is essentially a grammar for XML) of the XML documents, then apply

an existing functional dependency discovery technique, TANE, on the prototype

relations. With the found dependencies in the XML data, the schema prototypes

can be further decomposed into better relational schema following the traditional

relational database design theory. To reduce the cost of our algorithm due to the

exponential complexity in the number of attributes during the dependency dis-

covery, we further propose several approaches to extract possible characteristics

ii

in the XML data according to the DTD (DTD splitting) before going to the step

of dependency. For smaller size DTD, the DTD-splitting appoarches perform

well even without the step of dependency discovery. In order to further improve

the design of the relational schema, we propose a new algorithm based on the

idea of partition refinement for finding possible multivalued dependencies in the

XML data, thus providing more useful information for producing the relational

schema. To reduce the search space of the multivalued dependency discovery

algorithm, several effective pruning techniques are introduced. Experiments are

carried out to show the effectiveness of all of our proposed algorithms.

iii

/

論文題目：從X M L到關係數據庫

作者：般民軒

學校：香港中文大學

學系：計算機科學及工程學系

修讀學位：哲學碩士

摘要’•

XML -可擴展標記語言(Extensible Markup Language) -正迅速地成為互聯網

(Internet)上數據代表及交換的新標準。從數據庫(Database)的觀點來看XML，

用數據庫來管理X M L數據乃可能的傲法 0大部分的研究皆專注於利用X M L

半結構化(semistmctured)的特徵來建立半結構化數據庫系統°除了採用如此新

而不成熟的技術，利用傳統的關係數據庫系統似乎是另一個選擇°因此，我們

嘗試用關係數據庫(relational database)替代半結構化數據庫來儲存XML數據，

並探索其中的可能性。由於XML數據與關係數據本質上有非常大的差異，因

此我們提出抽取關係模式(extracting relational schema)的演算法，來試著優化使

用關係數據庫儲存X M L數據的做法。我們的演算法大致的概念為：首先從

X M L文件的D T D (DTD本質上乃XML的語法）中抽取出模式原型 (schema

prototype)，然後應用現存的發現函數依賴(functional dependency)技術-TAKE

於原型關係上。利用從XML數據所找出的依賴，我們可依循傳統的關係數據

庫設計理論’進一步將模式原型分解成較佳的關係模式。我們的演算法在發現

依賴時，在屬性(attribute)數量上存在著指數複雜性(exponential complexity)�為

了減少這種指數代價，我們提出數種方法從而在進行發現函數依賴的步驟之

前，預先在DTD裡抽取出XML數據中可能擁有的特質°為了再進一步改良關

係模式的設計，我們根據分區求精(partition refinement)的概念，提出另一新演

算法來於XML數據中找出多值依賴(multivalued dependency)，從而提供更多有

利於生產關係模式的資訊。為了減少此演算法的搜索空間’我們引入數種有效

的剪枝(pruning)技術。我們並用實驗結果顯示所有建議的演算法的效能°

/

Acknowledgments

First of all, I would like to thank Prof. Ada Wai-Chee Fu, my supervisor, for her

guidance and patience. My research could not have been done reasonably with-

out her insightful advice. For the past two years, she gave me encouragement,

support, and guidance on my research and my thesis.

My great gratitude goes to Prof. Man-Hon Wong and Prof. Michael Lyu,

who marked my term paper and gave me valuable suggestions.

I would like to thank the Department of Computer Science k Engineering,

CUHK. It provides the best equipment and office environment required for high

quality research to our students.

Finally, I wish to express my thanks to my fellow colleagues, who helped

me in solving the all kind of problems during my research, and enlightened me

to new research ideas. They are (not in order) Willis Wai-To Chan, Yin Ling

Cheung, Ham Siu-Ham Wong and Roy Sheun-Ti Chan.

iv

Contents

Abstract ii

Acknowledgments iv

1 Introduction 1

1.1 Storing XML in Database Systems 2

1.2 Outline of the Thesis 4

2 Related Work 5

2.1 Overview of XML 5

2.1.1 Extensible Markup Language (XML) 5

2.1.2 Data Type Definition (DTD) 6

2.1.3 ID, IDREF and IDREFS 9

2.2 Using Special-Purpose Database to Store XML Data 10

2.3 Using Relational Databases to Store XML Data 11

2.3.1 Extracting Schemas with STORED . . . 11

2.3.2 Using Simple Schemes Based on Labeled Graph 12

V

/

2.3.3 Generating Schemas from DTDs 12

2.3.4 Commercial Approaches 13

2.4 Discovering Functional Dependencies 14

2.4.1 Functional Dependency 14

2.4.2 Finding Functional Dependencies 14

2.4.3 TANE and Partition Refinement 15

2.5 Multivalued Dependencies 17

2.5.1 Example of Multivalued Dependency 18

3 Using RDBMS to Store XML Data 20

3.1 Global Schema Extraction Algorithm 22

3.1.1 Step 1: Simplify DTD 22

3.1.2 Step 2: Construct Schema Prototype Trees 24

3.1.3 Step 3: Generate Relational Schema Prototype 29

3.1.4 Step 4: Discover Functional Dependencies and Candidate

Keys 31

3.1.5 Step 5: Normalize the Relational Schema Prototypes . . . 32

3.1.6 Discussion 32

3.2 DTD-splitting Schema Extraction Algorithm 34

3.2.1 Step 1: Simplify DTD 35

3.2.2 Step 2: Construct Schema Prototype Trees 36

3.2.3 Step 3: Generate Relational Schema Prototype 45

vi

3.2.4 Step 4: Discover Functional Dependencies and Candidate

Keys 46

3.2.5 Step 5: Normalize the Relational Schema Prototypes . . . 47

3.2.6 Discussion 49

3.3 Experimental Results 50

3.3.1 Real Life XML Data: SIGMOD Record XML 50

3.3.2 Synthetic XML Data 58

3.3.3 Discussion 68

4 Finding Multivalued Dependencies 75

4.1 Validation of Multivalued Dependencies 77

4.2 Search Strategy and Pruning 80

4.2.1 Search Strategy for Left-hand Sides Candidates 81

4.2.2 Search Strategy for Right-hand Sides Candidates 82

4.2.3 Other Pruning 85

4.3 Computing with Partitions 87

4.3.1 Computing Partitions 88

4.4 Algorithm 89

4.4.1 Generating Next Level Candidates 92

4.4.2 Computing Partitions 93

4.5 Experimental Results 94

4.5.1 Results of the Algorithm 95

vii

/

4.5.2 Evaluation on the Results 96

4.5.3 Scalability of the Algorithm 98

4.5.4 Using Multivalued Dependencies in Schema Extraction Al-

gorithms 101

5 Conclusion 108

5.1 Discussion 108

5.2 Future Work 110

5.2.1 Translate Semistructured Queries to SQL 110

5.2.2 Improve the Multivalued Dependency Discovery Algorithm 112

5.2.3 Incremental Update of Resulting Schema 113

Bibliography 113

Appendix 120

A Simple Proof for Minimality in Multivalued Dependencies 120

B Third and Fourth Normal Form Decompositions 122

B.l 3NF Decomposition Algorithm 123

B.2 4NF Decomposition Algorithm 124

viii

/

List of Tables

2.1 An example relation 15

2.2 An multivalued dependency example 19

4.1 An example relation 77

4.2 Results of our algorithm on benchmark databases 96

4.3 Pruning results of our algorithm on benchmark databases 97

4.4 Results of multivalued discovery algorithm on SIGMOD Record

XML data (in Global Extaction Algorithm) 102

4.5 Results of multivalued discovery algorithm on synthetic XML data

(in Global Extaction Algorithm) 103

4.6 Results of multivalued discovery algorithm on synthetic XML data

(in DTD-splitting Extaction Algorithm) 105

ix

/

List of Figures

2.1 An XML representation example 6

2.2 An Document Type Definition(DTD) example 7

2.3 Common declarations and operators used in an DTD 8

2.4 An example XML document fragment 9

2.5 DTD for Figure 2.4 10

2.6 A pruned set containment lattice for {A, B, C, D}. Due to the

deletion of B, only the bold parts are accessed by the level wise

algorithm 17

3.1 General flow of generating relational schemas from XML 21

3.2 Algorithm for extracting relational schemas from XML 21

3.3 An example of removing entities declarations and references . . . 23

3.4 DTD transformations 24

3.5 An example DTD before simplification 25

3.6 The simplified DTD converted from the DTD in Figure 3.5 25

3.7 An DTD before simplification 26

V

/

3.8 The simplified DTD converted from the DTD in Figure 3.7 26

3.9 The schema prototype tree of the simplified DTD in Figure 3.6 . . 28

3.10 The schema prototype tree constructed from the example DTD in

Figure 3.8 29

3.11 The relational schema prototypes generated from the tree in Fig-

ure 3.10 30

3.12 Relations decomposed from schema prototype for the XML data . 33

3.13 DTD transformations 35

3.14 The simplified DTD converted from the DTD in Figure 3.5 36

3.15 Another simplified DTD example 42

3.16 Schema prototype trees construction from Figure 3.15 using top-

down construction method 42

3.17 Schema prototype trees construction from Figure 3.15 using bottom-

up construction method 43

3.18 Schema prototype trees construction from Figure 3.15 using hy-

brid construction method 44

3.19 The relational schema prototypes generated from the trees in Fig-

ure 3.16 45

3.20 Procedure for deciding the candidate keys for the schema prototypes 47

3.21 The relational schema prototypes generated from the trees in Fig-

ure 3.16 48

3.22 The relational schema prototypes generated from the trees in Fig-

ure 3.17 48

xi

3.23 The relational schema prototypes generated from the trees in Fig-

ure 3.18 48

3.24 sigmodrecord. dtd 51

3.25 The relational schema prototype for sigmodrecord.xml, which is

generated by using Global Schema Extraction Algorithm 52

3.26 Fraction of the mapped data from sigmodrecord.xml, which is

then used in functional dependency discovery step {Global algo-

rithm) 52

3.27 Functional dependencies and candidate keys found from the pro-

totype table in Figure 3.26 53

3.28 Relational schemas produced for sigmodrecord. xml based on 3NF

decomposition 54

3.29 The relational schema prototype for sigmodrecord. xml, which is

generated by using DTD-splitting Schema Extraction Algorithm . 55

3.30 Fraction of the mapped table prototypes from sigmodrecord. xml,

which is then used in functional dependency discovery step {DTD-

splitting algorithm) 56

3.31 Functional dependencies and candidate keys found from the pro-

totype tables in Figure 3.30 57

3.32 The relational schemas for sigmodrecord. xml by using Top-down

method 57

3.33 The relational schemas for sigmodrecord. xml by using Bottom-

up method or Hybrid method 58

3.34 The relational schema prototype for synthetic XML data, which

is generated by using Global Schema Extraction Algorithm 59

xii

/

3.35 Fraction of the mapped data from synthetic XML data, which is

then used in functional dependency discovery step {Global algo-

rithm) 60

3.36 Functional dependencies and candidate keys found from the pro-

totype table in Figure 3.35 60

3.37 Relational schemas produced for the synthetic XML data based

on 3NF decomposition 61

3.38 Fraction of the mapped table prototypes from the sythetic XML

data, which is then used in functional dependency discovery step

[DTD-splitting algorithm) 62

3.39 Functional dependencies and candidate keys found from the pro-

totype table in Figure 3.38 63

3.40 Relational schemas of the synthetic XML data produced by DTD-

splitting algorithm 64

3.41 Tables for top-down method 65

3.42 Tables for bottom-up method 66

3.43 Tables for hybrid method 66

3.44 Relational schema for the methods proposed in [49] 68

3.45 Tables for [49]'s shared inlining method 69

3.46 Tables for [49]，s hybrid inlining method 70

3.47 Fraction of sigmodrecord. xml 73

3.48 Fraction of synthetic xml 74

4.1 A set containment lattice for R = {A, B, C, D} 83

xiii

/ .

4.2 Algorithm for discovering multivalued dependencies 90

4.3 Procedure for verifying a multivalued dependency 91

4.4 Procedure for pruning a candidate set 92

4.5 Procedure for generating next level candidates for a set of input

candidates 92

4.6 Search tree for attribute A in relation R = {A,B,C,D} 93

4.7 Scalability of our algorithm over large dataset 99

4.8 Scalability of our algorithm 99

4.9 Scalability of our algorithm: with limited main memory 100

4.10 Memory and disk space usage of our algorithm 101

4.11 Multivalued dependencies found from the prototype table in Fig-

ure 3.26 103

4.12 Relational schemas produced for sigmodrecord. xml based on 4NF

decomposition 104

4.13 Multivalued dependencies found from the synthetic XML data (in

Global Extraction Algorithm) 105

4.14 Multivalued dependencies found from table : monograph 106

4.15 Refined design for table:monograph of synthetic XML data, which

is produced by hybrid method, based on 4NF decomposition . . . 106

4.16 Tables of the refined table: monograph 107

5.1 Example semistructured query I l l

5.2 SQL translated from example semistructured query I l l

xiv

Chapter 1

Introduction

The Extensible Markup Language (XML) is the universal format for structured

documents and data on the Web [15]. It is derived from SGML [3] and it is

expected to rapidly become a new standard for data representation and exchange

on the Internet. Because XML was defined as a textual language rather than data

model, a XML document has implicit order. Although an XML document can

have no restrictions on tags, attribute names, or nesting patterns, it is expected

that most XML documents will be accompanied by Document Type Definitions

(DTDs) [15, 21]. DTD is essentially a grammar for restricting the tags and

structure of a document. The Internet community expects most of the XML

documents on the web will conform to DTDs in order to make the XML data

fully functional [12, 13 .

It is clear that the fast emerging XML will soon become a dominant standard

for representing data in the World Wide Web. When compared to HTML, it is

obvious that XML encoding provides information in a far more convenient and

usable format from a data management perspective. Being a document markup

language (in some sense a meta language), XML is mainly used for representing

data in the form of documents. However, in the database point of view, XML

data stored in the document will have only limited usage unless the data is stored

1

7

Chapter 1 Introduction ^

and managed in a database system.

1.1 Storing XML in Database Systems

Due to the nature of information on the Web and the inherent flexibility of XML,

data encoded in XML may be semistructured [16]. Work from the database com-

munity in the area of semistructured data corresponds closely to XML [4，17 •

As a result, storing the XML data into a semistructured database system seems

to be a straightforward solution, and there have been considerable activities in

the semistructured community focussed upon developing these kind of semistruc-

tured database systems [43, 24, 27 .

In theory, semistructured system would clearly work and it should work best

with the tailored features for handling XML data. However, is it the only ap-

proach to take? It is still unclear if the approach of using such systems is going to

find widespread acceptance in the near future. The techniques in semistructured

database are still new and under exploration, and it may take a long time for

semistructured database systems to be as well developed as relational database

system (RDBMS) is. As a result, we consider using an RDBMS to store XML

data to be another possible approach. Using RDBMS to store XML data not

only can let us apply well-developed relational techniques on XML data, but

also can let existing traditional data coexist with the XML data which makes it

possible to build applications that involve both kinds of data with little extra

effort.

Since XML data and relational data are vastly different in nature (semistruc-

tured vs. structured), we have to explore new methods in order to optimize the

use of an RDBMS to store XML. The main concern in this problem is how to

produce the relational schema from the XML data. Recently, several approaches

/

Chapter 1 Introduction 3

have been proposed. One strategy is to infer from the DTDs of the XML docu-

ments how the XML elements should be mapped into tables [49]. Another option

is to analyze the pattern of the XML data and then extract the schema from it

22]. Yet another option is to use simple ad-hoc schemes based on the widely

accepted graph model for semistructured data [25, 26]. The three approaches

presented above have one thing in common: they try to produce the relation

schema solely based on the structure (or pattern) in the XML data. We propose

a new approach which also takes the characteristics of the XML data into con-

sideration except examining the structure of data. To do so, we introduce the

traditional relational concepts like functional dependency [20] and multivalued

dependency [53]. Our algorithm can thus produces relation schema that is better

refined with and the produced tables should be more suitable for managing and

querying.

The general idea of our algorithm is to first extract the schema prototypes

from the DTD of the XML documents, then apply existing functional depen-

dency discovery (inference) techniques like [29] on the prototype relations. With

the found dependencies in the XML data, the schema prototypes can be further

decomposed into better relational schema which follows the traditional relational

database design theory. To reduce the cost of our algorithm due to the expo-

nential complexity in the number of attribute during the dependency discovery,

we propose several approaches to extract possible characteristics in the XML

data according to the DTD before going to the step of performing dependency

discovery. The new algorithms are presented in Chapter 3. In order to fur-

ther improve the design of the relational schema, we propose a new algorithm

for finding possible multivalued dependencies in the XML data, thus providing

more useful information for producing the relational schema. The new algorithm

is presented in Chapter 4.

/

Chapter 1 Introduction £

1.2 Outline of the Thesis

The thesis is orgranised as follows.

In Chapter 2, We first give an overview of XML and also DTD, which is

important in our proposed algorithms for producing relational schema of XML

data. Then we review and compare the related work in storing XML data into

database, including storing XML data using special-purpose database, relational

database...etc. We focus more on work that uses relational database to store

XML data.

In Chapter 3 introduce our proposed algorithms for extracting relational

schema from DTDs and the XML documents. First we introduce the general

approach for producing relational schema for XML data proposed by us. Then

we describe Global Extraction Algorithm and DTD-split Extraction Algorithm,

both of which rely mainly on DTD together with dependency discovering tech-

nique. And finally we compare and analyze the experiment results of our algo-

rithms on real life XML data as well as sythetic XML data.

In Chapter 4, we introduce the new algorithm for discovering multivalued

dependencies from relational data. First we introduce the partition technique

involved in our algorithm. Then we describe the searching and pruning strategy

used in our algorithm. And finally we provide the performance of our algorithm

on benchmark databases together with the scalability test result on our algo-

rithm. We also illustrate how the multivalued dependencies found in the XML

data help refining the relational schema design.

We give a conclusion on our current work and discuss about our future work

in Chapter 5.

/

Chapter 2

Related Work

2.1 Overview of XML

In this section, we give a brief overview of XML and DTD. (Note: only the

concepts that are related to this paper will be introduced; for the formal speci-

fications, see [15, 21])

2.1.1 Extensible Markup Language (XML)

Extensible Markup Language (XML) is simple, easily parsed and self-describing

data format for representing and exchanging data on the web. At its most basic

level, XML is a document markup language permitting tagged text (elements),

element nesting, and element reference. Each tagged element has a sequence of

zero or more attribute/value pairs, and a sequence of zero or more subelements.

Suppose there is an XML representation of catalog information for a book as

shown in Figure 2.1.

Text delimited by angle brackets (< . . . >) is markup, while the rest is charac-

ter data. Elements may contain a mix of character data and other elements; e.g.

5

7

Chapter 2 Related Work]7_

〈 b o o k〉

<title>Fables of the Green Forest</title>

〈 a u t h o r〉

<f irstname>Henry G. </f irstname>

< lastname〉Ge orge < lastname〉

</author>

<author>

<f i:rst:iiame〉HaLf iie:r</f irstname〉

<lastname>Pacman</lastname>

</author>

〈price currency = "HKD">149. 9</price〉

〈bestseller autliori1:y="Times"/〉

</book>

Figure 2.1: An XML representation example

the book element contains the elements such as title and price. The element

named title contains character data denoting the book title, and similarly, the

element price contains character data denoting the book's price. This element

also has an attribute named currency with the value HKD, represented using the

syntax attribute-name:，，attribute-ydue，，within the elements' start-tag.

In general, element names are unique; e.g., the book element in the example

contains two author elements. However, attributes names are unique within an

element; e.g., the price element cannot have another attribute named currency.

The syntax also permits an empty element〈bestseller〉〈/bestseller〉to

be represented more concisely as〈bestseller/〉. XML documents are called

well-formed if they satisfy simple syntactic constrains, such as proper delimiting

of elements names and attributes and proper nesting of start and end tags.

2.1.2 Data Type Definition (DTD)

XML provides a simple and general markup facility, which is useful for data inter-

change. The simple tag-delimited structure of well-formed XML makes parsing

Chapter 2 Related Work 7

extremely simple. However, applications that operate on XML data often need

additional guarantees on the structure and content of such data. For example, a

program that calculates the tax on the sale of a book may need to assume that

each book element in its XML input includes a price subelement with a currency

attribute and numeric content. Such constraints on document structure can be

expressed using a Document Type Definition (DTD). A DTD defines a class

of XML documents using a language that is essentially a context-free grammar

with several restrictions.

Using the book example in Figure 2.1, one may use the following DTD dec-

laration in Figure 2.2 to constrain XML documents in our example.

<！ELEMENT book (title, author+, price, bestseller?)>

<!ELEMENT title (#PCDATA)>

<！ELEMENT author (#PCDATA|lastname丨firstnameIfullname)*〉

<！ELEMENT price (#PCDATA)〉

〈！ATTLIST price currency CDATA "USD"

source (list I regular I sale) list

taxed CDATA #FIXED "yes"〉

<!ELEMENT bestseller EMPTY〉

<!ATTLIST bestseller authority CDATA #REQUIRED〉

Figure 2.2: An Document Type Definition (DTD) example

The first line of this declaration is an element type declaration that constrains

the contents of the book element. Following common convention, the declaration

syntax uses commas for sequencing, parentheses for grouping. Special operators

like ？ , * and + are used to denote different type of occurrences of the preceding

construct as shown in Table 2.3

The second line of this DTD declares the type for the title element to be

parsed character data (indicated by #PCDATA and implying an XML processor will

parse the contents looking for markup). The declaration also indicates that the

7

Chapter 2 Related Work ^

-< ！ ELEMENT...〉| element type declaration

<!ATTLIST. . .> attribute type declaration

< ！ ENTITY...〉 entity type declaration

#PCDATA parsed character data

CDATA character data

？ zero or one

* zero or more

+ one or more

I or

Figure 2.3: Common declarations and operators used in an DTD

price element may have attributes currency, of type character data (indicated

by CDATA) and default value USD; source, with one of the three values shown (an

enumeration type) and default value list; and taxed, with the fixed (indicated

by #FIXED) value yes. The fixed attribute type is a special case of the default

attribute type; it mandates that the specified default value not be changed by

and X M L document conforming to the D T D . Our example D T D thus specifies

that the book in our X M L example in Figure 2.1 must be taxed. Note that the

use of some element names without a corresponding declaration in the D T D is

not an error. D T D is not a must for any X M L document and such elements are

simply not constrained by the D T D . However, it is expected that most of the

practical XML documents on the web will conform to DTDs in order to make

the XML data fully functional. For instance, any web application or a mobile

agent encountering an XML file can interpret the file by consulting the DTDs to

which the document conforms.

An XML document that satisfies the constraints of a DTD is said to be

valid with respect to that DTD. The DTD associated with an XML document

may be specified by the inclusion of document type declaration, e.g. < ！ DOCTYPE

BOOKCATALOG SYSTEM "http://www.haha.com/ bookcatalog.dtd">, in a spe-
cial section at the beginning of a document that called its prolog. The declara-

/

http://www.haha.com/

Chapter 2 Related Work ^

tion above indicates that the XML document claims validity with respect to the

BOOKCATALOG DTD which may be found at the indicated location.

Apart from element type and attribute type declaration, there are indeed

some other types of declaration. For instance, entity type declarations are used

for declaring entities as an abbreviation: users can define an abbreviation with

its corresponding full term, and then use this abbreviation in the XML document

(or DTD). For more details about the DTD, please refer to [15, 21]. The data

modelling provided by DTDs may not be sufficient for some applications and the

XML Schema [2] proposal defines facilities that address the needs that cannot be

provided by DTD. XML schema was accepted recently (2001-05-02) as a W3C

1] Recommendation. Still, DTD is more commonly used right now and the work

on the XML Schema is still undergoing.

2.1.3 ID, IDREF and IDREFS

ID, IDREF and IDREFS are special attributes which are need for referencing

element/elements from another element. The attribute ID can occur once for

each element. ID uniquely identifies an element within a XML document and

can be referenced through an IDREF field in another element. IDREFS is used

when more than one IDREF field are referenced by the element. Consider the

following example in Figure 2.4 with its DTD at Figure 2.5.

〈Person Id=，Pl，Naine='Ham' Friend='P2' />
〈Person Id=，P2， Name=，Roy， Friend=，Pl， />

<Course Title=‘Introduction to Computing' Tutor='Pl P2' />

Figure 2.4: An example XML document fragment

From the DTD in Figure 2.5, it is clear that the attribute Id is of type ID,

/

Chapter 2 Related Work ^

<!ELEMENT Person EMPTY〉

<!ATTLIST Person Id ID #REQUIRED Name CDATA #REQUIRED

Friend IDREF #IMPLIED〉

<!ELEMENT Course EMPTY〉

〈！ATTLIST Course Title CDATA #REQUIRED

Tutor IDREFS #IMPLIED>

Figure 2.5: DTD for Figure 2.4

Friend is of type IDREF and Tutor is of type IDREFS. Thus attributes Friend

and Tutor serve as references to Person elements.

2.2 Using Special-Purpose Database to Store

XML Data

Most of the work on storing XML data uses semistructured database system. For

such a special-purpose database system such like Lore [43, 27] or Strudel [24], it

is particularly tailored to store and retrieve XML data, using specially designed

structures and indices [45], query languages [5, 48，34，18] and particular query

optimization techniques [44]. However, it is still unclear if the approach of using

special-purpose system is going to find widespread acceptance. Despite that the

special-purpose should work best, it is going to take a long time before such

systems are mature and scale well for large amount of data. On the other hand,

relational database systems are mature and scale very well, and they have the

additional advantage that in a relational database XML data and traditional

(structured) data can co-exist making it possible to build applications that in-

volve both kinds of data with little extra effort. As a result our approach in this

thesis is to explore the use of an RDBMS to manage the XML data.

/

Chapter 2 Related Work]]_

2.3 Using Relational Databases to Store XML

Data

In the approach of using an RDBMS to store and query XML data, XML data

is mapped into relational tables and queried by SQL. As the requirements of

processing XML data are very different from requirement to process traditional

(structured) data, recent work has concentrated on models and algorithms to

convert XML documents to relational tuples, and the main concern is how to

produce the relational schemas from the XML data. We state some of the recent

work in below.

2.3.1 Extracting Schemas with STORED

Deutisch et al. proposed STORED [22] approach which use a combination of

semistructured and relational techniques. First all the XML data are mapped

into semistructured model which is similar to the graph model used in special-

purpose databases. Then [22] uses frequently pattern discovery to produce

the relational schemas. The most frequently-appeared patterns found in the

semistructured model of XML are used to produce relational schemas while the

least frequently-appeared patterns are stored into overflow graphs.

can be stored into RDBMS entirely under STORED. [22] claims that under

reasonable assumptions, the generated schemes can cover a large percentage of

the XML data (at approximately 90 %) while the remaining data have to be

managed separately by overflow graph, making the data hard to be managed

and queried.

Chapter 2 Related Work

2.3.2 Using Simple Schemes Based on Labeled Graph

Florescu and Kossmann proposed simple ad-hoc schemes based on the widely

accepted graph model for semistructured data [25, 26]. In the labeled graph

model, each XML element is represented by a node in the graph; the node is

labeled with the oid of the XML object. Element-sub element relationships are

represented by edges in the graph and labeled by the name of the subelement.

The order of subelements of an element is represented by ordering every outgoing

edges of a node in the graph. Values of an XML document are represented as

leaves in the graph. Various ways to store the edges of the graph, as well as ways

to store the leaves of the graph, are proposed.

The approach used in [25, 26] focused much at preserving of the order and

structure of the original XML data and has to create a lot of extra data . With

only a small portion of the attributes in the table storing the actual XML data,

the produced tables are apparently much larger in size than the original XML

documents, making the approach least attractive. This approach is not suitable

for direct queries on the data as well since too many attributes are unknown the

the users.

2.3.3 Generating Schemas from DTDs

The most related work will be from Shanmugasundaram et al. who proposed cre-

ating relational schemas according to the DTDs the XML document conforming

to [49]. XML data is not involved in the process at all. The produced table can

then be used for semistructured-queries-like SQL queries. First, DTD graphs are

created from the DTDs of the XML data. A DTD graph represents the structure

of a DTD. Its nodes are elements, attributes and operators in the DTD. Each

element appears exactly once in the graph, while attributes and operators appear

as many times as they appear in the DTD. Relational Schema then can be gen-

/

Chapter 2 Related Work]7_

erated from the DTD graph by inlining the elements and attributes following a

set of rules. Several schema conversion techniques are proposed and discussed in

49]. Some of the recent research on XML and relational database [33，31, 42, 52

also adopt the technique proposed in [49] for generating the relational schema.

Just like [25, 26], the resulting relation schemas are specifically designed that

having many of it's attributes unrelated to the actual XML data but serving for

the special purpose only, e.g. attributes are added for joining the tables only.

In one of our proposed algorithm introduced in Chapter 3, we enhanced [49]，s

approach based on relational database theory.

The three approaches presented above have one thing in common: they try

to produce the relation schema solely based on the structure (or pattern) in the

XML data without considering the characteristics of the data and the possible

dependencies in the data. In our proposed work, we try to produce the rela-

tional schemas of XML based on both the structure of the XML data, and the

characteristics of the XML data.

2.3.4 Commercial Approaches

Database companies are working to figure out how XML data can fit into their

systems. For example, commercial product like Oracle 8i or 9i [51] or IBM DB2

XML Extender [30] provides a primitive solution which is to ask the user or a

system administrator in order to decide how XML elements and attributes are

stored in relational tables. It requires the user to have enough knowledge on the

XML data and the user has to define the relational mappings of the XML data

based on the special definition languages provided in the database system. Our

proposed approaches are automatic.

/

Chapter 2 Related Work ^

2.4 Discovering Functional Dependencies

2.4.1 Functional Dependency

A functional dependency over a relation schema R is an expression X Y,

where X C R and Y e R. The dependency holds or is valid in a given relation

r over R if for all pairs of tuples t,u e r we have: if t[A] — u[A] fro all A e X,

then t[Y] 二 u[Y], i.e. t and u agree on X and Y. A functional dependency

X ^Y is minimal (in r) if A is not functionally dependent on any proper subet

of X , i.e. if Z ^ Y does not hold in r for any Z C X. The dependency

X ^ Y is trivial HY e X. Functional dependency is originally defined in [20 .

The axioms for functional dependencies are introduced in [8]. The theory of

functional dependencies is discussed in [36]. Functional dependency is one of the

most important constraints in relational database design and analysis.

2.4.2 Finding Functional Dependencies

In our proposed algorithms, one of the important steps would be using the exist-

ing functional dependency inference technique to find out the functional depen-

dencies inside the XML data. Much work has been done on discovering functional

depedencies from relations in the past years [39, 32, 47, 35, 29]. It is called func-

tional dependency inference problem: Given a relation r, find a set of functional

dependencies that is equivalent with the set of all functional dependencies holding

in r. As the problem can have a probabilistic nature, some of the recent works

have been focused on approximate functional dependency inference [32，47]. In

order to improve the efficiency of the dependency inference, some of the recent

works have been focused on using parallel approaches [47, 35]. Recently a new

algorithm called TANE for discovering functional and approximate dependencies

was proposed [29], which has improved the efficiency of dependency inference by

/

Chapter 2 Related Work]7_

several orders of magnitude over the previous work. We find that it is also pos-

sible to apply this existing techniques in finding the functional dependencies for

our relational schema prototypes for XML data. Moreover, a new algorithm for

finding multivalued dependencies proposed by us is based on the idea of partition

refinement used in TANE.

2.4.3 TANE and Partition Refinement

TANE finds functional dependencies based on the concept of partition refine-

ment.

For a relation schema R, given a relation (or table) r, two rows (or tuples) t

and u are equivalent with respect to a given set X C R if attributes t[A] = u[A

for all A G X. Any attribute set X partitions the tuples of the relation into

equivalence classes. W e denote the equivalence class of a tuple t G r with

respect to a given set X C R by [t]x, i.e. [t]x = {u e r \ t[A] = u[A] for all

A G X}. The set TTX = {[t]x | t G r} of equivalence classes is a partition of

r under X. That means TTX is a collection of disjoint sets (equivalence classes)

of tuples, such that each set has a unique value for the attribute set X , and the

union of the sets equals the relation r.

"Tuple ID I A I B I C I D
1 ~1 r 2 3一

2 ~ 1 2 i T
3 " 1 2 2 Y
4 1 i ~ ~ 1 ~ ~ T
5 i i ~ ~ 2 T
6 "1 ~ ~ 2 2 ^
7 ~ 2 3 I ^

8 I 2 I 3 I 2 I 丁

Table 2.1: An example relation

Chapter 2 Related Work]7_

For example, consider the relation in Table 2.1. Attribute A has value 1

for tuples 1 to tuples 6，so they form an equivalence class {1,2,3,4,5,6} (here

we use tuple identifiers to denote tuples). Attribute A has value 2 in tuple 7

and tuple 8, so they form another equivalence class {7,8}. The whole partition

with respect to A is tt^A} = {{1，2, 3，4, 5, 6}，{7，8}}. The partitions for other

attributes are 7r{B} = {{1,4, 5}, {2, 3, 6}, {7, 8}} , and the partition with respect

to {CD} is TT^cD} = {{1, 6}, {2,4}, {3, 5}，{7}, {8 } } .

A partition TT is a refinement of another partition TT' if every equivalence

class in TT is a subset of some equivalence class of TT'.

Let ti be the tuple with Tuple ID = i. TT^CD} refines TTĵ } since each equivalence

class in TT^CD} is totally contained by some equivalence class in On the other

hand, TT{CD] dose not refine TT̂ Î since some equivalence classes in TTjcD} are not

contained in any equivalence class in ^ {̂b]- For instance, \ti]{cD] = {1,6} in

Ti{CD] is not contained in any equivalence class in

It is easy to see that the partitions can be computed as a product of two pre-

viously computed partitions. As shown in TANE, the product of two previously

computed partitions TT' and TT", denoted by TT' • TT", is the least refined partition

TT that refines both TT' and TT": For all X, Y C R^TTX - TTY = Tr^^uy}-

According to TANE, a functional dependency X Y holds if and only

if Tlx refines vry. Thus the concept of partition refinement gives almost direct

functional dependencies, i.e. we can determine if a functional dependency X A

holds by simply checking if | 兀义 | 二 | 7rxu{A}.

To find all minimal non-trivial functional dependencies. TANE starts the

search from singleton sets of attributes and works its way to larger attribute

sets through the set containment lattice level by level. When the algorithm is

processing a set X, it tests dependencies of the form X/{A} A, where A e X.

This guarantees that only non-trivial dependencies are considered while pruning

Chapter 2 Related Work]7_

the search space effectively, as shown in Figure 2.6.

0

A X C D

AB AC AD BC BD CD

ABC ABD ACD BCD

ABCD

Figure 2.6: A pruned set containment lattice for {A, B, C, D}. Due to the
deletion of B, only the bold parts are accessed by the levelwise algorithm

TANE also adopted levelwise strategy [40]to discover the functional depen-

dencies level by level while pruning much of the search space. As a result, the

algorithm can outperform the previous algorithms by several orders of magni-

tude. For more details please refer to [29 .

2.5 Multivalued Dependencies

Multivalued dependency was first discussed in [53]. A set of axioms are given

in [9] for multivalued dependency where the axioms are proved to be sound

and complete. The notion of fourth normal form (4NF), which is based on

multivalued dependency, was proposed in [23 .

We assume the usual interpretation of a relation (or table) in the relational

database model where no duplicate tuples are allowed. The definition of multi-

valued dependency is given below:

Let Rhe 3i relation schema and let X = Xi, X 2 , X ^ be a subset of R , let

!

Chapter 2 Related Work ^

Y = Fi, F2,..., Yn be a subset of i? and let Z = - F - X. The multivalued

dependency X Y holds in R if, in any legal relation r(jR), for all pairs of

tuples ti and t] in r such that ti[X] = t2[X], there exists tuples 力3 and U in r

such that:

ti X] — t2[X = = [X

t^[Y]=ti[Y]

hi^] =

U[Y] = t2[Y

Z — t\ Z

Given a relation schema R, a multivalued dependency X > Y is said to be

non-minimal if there exists a multivalued dependency X')• Y where X' is

a proper subset of X ; X —)—^ Y is said to be trivial liY C. X ox X{JY = R. It

is obvious that in order to have a non-trivial multivalued dependency X > Y,

all 义，Y and Z = — X - cannot be 0.

2.5.1 Example of Multivalued Dependency

Table 2.2 shows a simple example to demonstrate the occurrence of multivalued

dependency. Consider a relation schema with three attributes namely Course，

Teacher, and Text Book. Suppose that for a course MVDlllO taught in a

certain semester, there are two teachers (A and B) sharing the teaching and the

course requires three text books (Bookl, Book2 and Book3). There is no reason

to associate a Teacher with one Text Book but not the others. As a result,

the only way to express the fact that Teachers and Text Books of a Course

are independent of each other is to have each Teacher associate with each Text

/

Chapter 2 Related Work ^

Book, and the tuples for the course MVDlllO are shown in Table 2.2.

Course Teacher Text Book
"MVPTTIQ" A B o o k l ~ ~
"MVDlllO A Book2
MVDlllO A Books

"IdVDmO B Bookl~~
~MVD111Q B ~~Book2
""MVDlllO B Book3~~

Table 2.2: An multivalued dependency example

It is obvious that redundancy exists in the table. However, there is no func-

tional dependency. The way to remove the redundancy is to consider multival-

ued dependency. With the definition of multivalued dependency we can see that

Course > Teacher and Course Text Book hold in the example. For

example, taking the first and the last tuple in our example table as ti and 力2

respectively, the corresponding ts and in the table should be the third and the

fourth tuple respectively such that:

ti[Course]=力2[Course] — ts[Course] 二 力4[Course] = MVDlllO

ts[Teacher] = ti[Teacher] = A

ts[Text Book]=力2[Text Book] = BookS

力4[Teacher]=亡2[Teacher] 二 B

U[Text Book] = ti[Text Book] = Bookl

/

Chapter 3

Using RDBMS to Store XML
Data

As mentioned before in section 1，XML data and relational data are vastly differ-

ent in nature (semistructured vs. structured) thus we directly store XML data

into RDBMS. We have to come up with the suitable relation schemas and use

them for mapping the data in the XML documents into the RDBMS accordingly.

The general flow of generating the suitable relational schemas is shown in Figure

3.1.

After suitable DTD simplification, prototype schemas are extracted from the

simplified DTD. The relational schemas are then further decomposed from the

prototype schemas according to the functional dependencies discovered in the

XML data.

Based on this general flow, we propose several algorithms to create relational

schemas from the XML data and the DTD those XML data conforming to.

Although the algorithms we propose have different details, the global scheme is

the same, as shown in Figure 3.2.

20

7 .

Chapter 3 Using RDBMS to Store XML Data 37

DTD for the —
謂 L data • Simplification ^ ^ ^ simplified DTD

^^^^^]

5
Relational Schema

Prototype Derivation

Y

Relational
XML data Dependency Discovery Schema

^ & Prototypes
Schema Normalization

^ — — - j - — —

Y

Resulting
Relational
Schemas

Figure 3.1: General flow of generating relational schemas from XML

Algorithm GENERAL_SCHEMA_EXTRACTION_ALGORITHM
1 INPUT:
2 > Set of XML documents conforming to the same DTD
3 > DTD used by the set of XML documents
4 OUTPUT:
5 > Set of relational schemas for the set of XML documents
6 METHOD:
7 Simplify DTD
8 Construct schema prototype trees
9 Generate relational schema prototypes
10 Detect possible functional dependencies and candidate keys
11 Normalize the relational schema prototypes

Figure 3.2: Algorithm for extracting relational schemas from XML

J

Chapter 3 Using RDBMS to Store XML Data ^

3-1 Global Schema Extraction Algorithm

The first algorithm we propose is called the Global Schema Extraction algorithm.

3.1.1 Step 1: Simplify DTD

First, we need to simplify the DTD for the set of XML documents. Being the

schema of XML, DTD can be very high in complexity just like their counterpart

for semistructured data [10]. Even we expect that DTDs designed for real-

life applications would not have extremely complicated structures, an ordinary

nested DTD consist of entity type declarations still possesses high complexity.

Attempts for constructing schema prototype trees (which will be described in

Step 2) of a DTD would likely be a hard job. However, it is possible to simplify

the DTD and without affecting the way we extract the relational schemas. After

all, we just want to take the DTD as a reference for generating required relational

schemas that can be used for storing the data in the XML documents into an

RDBMS.

To simplify the DTDs, we need to get rid of entity declarations first. They

do not affect on the structure of the DTD. Rather, they are practical features

for abbreviating frequently appeared DTD components, defining or referring to

external or non-XML data...etc. For entity type declarations which are used to

abbreviate DTD components, they are removed and all the declarations referring

to them are replaced with the DTD components they are representing to. An

example has been shown in Figure 3.3.

Besides removing entity type declarations, we need to deal with the possible

complex element type declarations. In fact, we expect most of the complexity of

DTDs should come from the complex structure of the element type declarations.

For example, we could have an element p as < ！ ELEMENT p (#PCDATA I (a+, (b*

7 .

Chapter 3 Using RDBMS to Store XML Data ^

Original XML segment:

< ! ENTITY '/otext "#PCDATA" >

< ！ENTITY '/otext .includes "a I em" >

< ！ ELEMENT p C/otext ； I ̂ text. includes;) * >

XML segment after removing entities and reference:

<!ELEMENT p (#PCDATA I a I em)* >

Figure 3.3: An example of removing entities declarations and references

I (c , (b, d ?) *)) *)) � w h e r e a, b, c and d are p's subelements. The parenthe-

sis indicate that element p would be highly nested. The binary operators ,，+，，，

“*"，，，I，，and，，？" on any subelements increase the uncertainty on the occurrence

of each subelements. However, what we concern in this global schema extraction

algorithm about DTDs would be the presence of possible kind of subelements

within the element only.

As a result, we propose a set of transformations which can convert the ele-

ment type declarations into the required simplified forms. Part of our proposed

transformations is similar to those presented in [49] and [22]. However, other

than flattening the nested representation of DTDs as proposed by [49] and [22],

our transformations also eliminate the binary operators in DTDs. Every ele-

ment type declarations can be converted to the required form by performing the

following transformations shown in Figure 3.4 repeatedly (here p, ...denote

subelements within a given element type declaration).

/

Chapter 3 Using RDBMS to Store XML Data 40

P* • p p|p' • P/ P'

P+ • P (P, P') • P, pi

P? • p ..., p,..., p, ... • P

Figure 3.4: DTD transformations

After the transformation our example would now be: < ！ ELEMENT p (#PCDATA

I a ,b , c ,d)> . The transformation would only preserve the element-suhelement(s)

relation in the element type declaration.

Moreover, anything in the DTD that is not related to the structure of the

DTD is removed. We only preserve the information that is useful in constructing

schema prototype trees later. For instance, inside any attribute type declaration,

the value types (e.g. #IMPLIED， #FIXED...etc) for the character data (CDATA)

are removed from the DTD. Also. Special attribute like ID or IDREF is regarded

as normal character data as well since their possible characteristics (e.g. ID type

data can be a key in the relational table), if there are any, can be discovered in

the later step of finding functional dependency anyway.

Figure 3.5 and Figure 3.6 show the example of converting a DTD into a

simplified DTD.

Figure 3.8 shows the example of converting a DTD in Figure 3.7, which is a

modification of [46], into a simplified DTD.

3.1.2 Step 2: Construct Schema Prototype Trees

With the simplified DTD, we then construct the schema prototype trees which

represents the structure of the simplified DTD. The nodes can be elements or

attributes specified in the DTD. Schema prototype trees will be used for gener-

ating schema prototypes in the next step (Step 3). Schema prototype trees are

Chapter 3 Using RDBMS to Store XML Data 41

<! ENTITY y„txt “#PCDATA" >

<! ENTITY o/opage "initPage?，endPage?" >

<！ELEMENT SigmodRecord (issue)* >

<！ELEMENT issue (volume，number，articles) >

< ！ ELEMENT volume ("/otxt ；) >

< ！ ELEMENT number C/otxt ；) >
<！ELEMENT articles (article)+ >

<! ELEMENT article (title//opage; , authors) >

< ! ELEMENT title C/otxt ；) >

<! ELEMENT initPage C/otxt ；) >
< ！ ELEMENT endPage C/otxt ；) >

<！ELEMENT authors (author)+ >

<!ELEMENT author (y.txt;)>

〈！ATTLIST author position CDATA #IMPLIED〉

Figure 3.5: An example DTD before simplification

<！ELEMENT SigmodRecord (issue) >
< ！ELEMENT issue (volume，number，articles) >
<!ELEMENT volume (#PCDATA)〉
<!ELEMENT number (#PCDATA)〉
<！ELEMENT articles (article) >

<！ELEMENT article (title, initPage, endPage, authors) >

<!ELEMENT title (#PCDATA)〉
<!ELEMENT initPage (#PCDATA)〉

<!ELEMENT endPage (#PCDATA)〉
<！ELEMENT authors (author) >
<！ELEMENT author (#PCDATA)〉
<!ATTLIST author position CDATA >

Figure 3.6: The simplified DTD converted from the DTD in Figure 3.5

/

Chapter 3 Using RDBMS to Store XML Data 26

<!ENTITY %txt "(#PCDATA)">
〈！ELEMENT book(booktitle,price?,

author,authority*) >
<!ELEMENT authority (authname, country) >
〈！ELEMENT authname %txt>
<!ELEMENT country %txt>
<!ELEMENT booktitle %txt>
<!ELEMENT price %txt>
< [ELEMENT monograph (title, author, editor) >
<!ELEMENT editor (monograph+)>
〈！ATTLIST editor name CDATA #REQUIRED�

<!ELEMENT author (name, address) >
<!ATTLIST author id I D �

<!ELEMENT name (firstname, lastname)�

<!ELEMENT firstname %txt>
< [ELEMENT lastname %txt>
<!ELEMENT address %txt>

Figure 3.7: An DTD before simplification

<!ELEMENT book(booktitle,price,
author,authority) >

〈！ELEMENT authority (authname, country) >
〈！ELEMENT authname (#PCDATA)>
<!ELEMENT country (#PCDATA)>
<!ELEMENT booktitle (#PCDATA)>
<!ELEMENT price (#PCDATA) >
<!ELEMENT monograph (title, author, editor) >
<!ELEMENT editor (monograph) >
〈！ATTLIST editor name CDATA >
<!ELEMENT author (name, address) >
<!ATTLIST author id ID >
〈！ELEMENT name (firstname, lastname) >
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT address (#PCDATA)>

Figure 3.8: The simplified DTD converted from the DTD in Figure 3.7

/

Chapter 3 Using RDBMS to Store XML Data ^

constructed as follows.

First, we have to determine the root(s) of the trees from the DTD. There are

several rules we have to follow when deciding the root:

Rule 1 Only element can become a root

In XML, attributes cannot exist without following it's corresponding ele-

ment. We thus can regard element-attribute(s) relations as the same as element-

suhelement(s). As a result, all attributes declared in the DTD can only be leaf

nodes in the schema prototype trees. We can thus consider only elements but

not attributes when deciding the roots.

Rule 2 For an element which do not appear in any other element declaration in

the DTD, it becomes the root for a schema prototype tree

This rule is quite straightforward. An element would not appear in any other

element declaration if and only if it is not a subelement of any other element,

and it is the actual meaning of "root".

Rule 3 If there is no element in the DTD satisfying rule 2, one of the ele-

ment is selected as the root

When all elements in the DTD are the subelement of some other elements,

we can be sure that recursion occurs in the DTD. Thus we have to arbitrarily

break the loop in order to construct the schema prototype tree

For all selected roots in the DTD, their schema prototype trees are con-

structed as follows:

Starting from the subelement(s) of the root, we try to scan the DTD in a

depth-first style. For a first-time visited subelement which do not appear in

the schema prototype tree, we create a new node bearing the same name in the

/

Chapter 3 Using RDBMS to Store XML Data 44

SigmodRecord

issue

volume articles number

article

/ / title
authors . ^

initPage endPage

author #

position

Figure 3.9: The schema prototype tree of the simplified DTD in Figure 3.6

schema prototype tree. Moreover, an edge is created from the parent node of

the newly created node to the newly created node. Apart from subelements,

we need to take care of possible parsed character data (#PCDATA) and the

attribute declarations for an element we are visiting. Any attributes declared for

an element in the DTD is treated the same way as a subelement of the element.

It is easy to see that the leaf nodes of the schema prototype tree are either

element declared as containing #PCDATA only, or attributes for their parent

elements. If an element has declared as containing #PCDATA together with

other subelement, we would mark the corresponding node with a ”#，，in the

schema prototype tree. The marking would be useful in the following step.

The schema prototype tree corresponding to the above example is shown in

Figure 3.9. Note that as SigmodRecord is the only element that is not referred

by any other element, the schema prototype tree for SigmodRecord is the only

tree that is constructed from our example DTD.

We also need to handle the possible situation where recursion occurs while

Chapter 3 Using RDBMS to Store XML Data 45

constructing the schema prototype tree. Consider a case when we visit an element

which has already had a corresponding node X created in the schema prototype

tree, we would create a leaf node with label X.A which indicates a foreign key

to its ancestor. The key can be discovered or arbitrarily assigned in Step 4

later. Then we would stop traveling down the subelement of that element to

prevent an infinite recursion. Using Figure 3.8 as an example, consider when

the tree construction has come to the element declaration < ！ ELEMENT editor
(monograph) > where element monograph has already appeared in the tree. We

would create a new node monograph.A. An edge pointing from editor to it is

created as well.

The example schema prototype tree for the modified DTD would look like

the one shown in Figure 3.10.

b ^ k monograph

authority booktitle price author editor title author

州,ntrx, \ address id name \ address id country \ name name \ name
authname monograph.A ^ ^ ^ ^ ^ ^ ^ ^ ^

firstname lastname firstname lastname

Figure 3.10: The schema prototype tree constructed from the example DTD in
Figure 3.8

3.1.3 Step 3: Generate Relational Schema Prototype

Given a schema prototype tree, the corresponding relational schema prototype

is generated as follows. The basic idea is to regard all the necessary attributes

and elements in the simplified DTD as the “ attributes" in an ER-Model. The

schema prototype is thus generated by inlining all the necessary descendants of

the schema prototype tree starting from the root. The necessary descendants

refer to all the leaf nodes in the schema prototype tree, and the nodes marked

/

Chapter 3 Using RDBMS to Store XML Data ^

with a “ # ” . The reason for doing this is because not all the elements in an XML

document contain real data. We want to prevent creating unused fields for these

elements in the relational schema prototype. Using Figure 3.9 as an example,

the element issue is not declared to contain any #PCDATA in DTD. Thus we

can be sure that for any XML document conforming to that DTD, there is no

parsed character data exists between any pairs o f � i s s u e � a n d � / i s s u e � t a g

(which are used to represent element issue in XML). As a result, we do not

have to provide a filed for the element issue in the relational schema prototype.

The relational schema prototype generated from the schema prototype tree

presented in Figure 3.10 is shown in Figure 3.11. In order to uniquely specify the

name for each attribute in the relational prototype schema, all attributes fields

are named by the path from the root node of the tree.

table:book (table:monograph (
book.booktitle, (A) monograph.title, (A)
book.price, (B) monograph.author.id, (B)
book.author.id, (C) monograph.author.name.firstname, (C)
book.author.name.firstname, (D) monograph.author.name.lastname, (D)
book.author.name.lastname, (E) monograph.author.address, (E)
book.author.address, (F) monograph.editor.name, (F)
book.authority.authname, (G) monograph.editor.monograph.A (G)
book.authority.country (H))
)

Figure 3.11: The relational schema prototypes generated from the tree in Figure
3.10

/

Chapter 3 Using RDBMS to Store XML Data ^

3.1.4 Step 4: Discover Functional Dependencies and Can-

didate Keys

With the generated schema prototypes, we can now apply traditional techniques

of relational database to produce the suitable relational schemas for the XML

data.

In order to reduce the data redundancy and inconsistency in the set of rela-

tional schemas for the XML data, we have to discover a set of functional depen-

dencies and the candidate keys by analyzing the XML data. Those constraints

discovered from the XML data would be vital for us to normalize the relational

schema prototype in an appropriate normal form.

We adopted a recently proposed technique for discovering functional depen-

dencies, which is called TANE [29], in our algorithm. Before TANE, previous

algorithms have invariably based on either repeatedly sorting the tuples of the

relation or comparing every tuple to all other tuples which makes them inefficient

for large relations. However, with respect to number of tuples, TANE,s, com-

plexity is claimed to be linear, it formulated the dependency discovery task in

terms of equivalence classes and partitions, together with efficient search space

pruning techniques. We found that TANE is very suitable for the functional

dependency discovering step in our algorithms.

Let's assume we have found the minimal set of functional dependencies of

Figure 3.11 using TANE:

table:book

FD(s): A — BC, DEF ^ C and C DEF

table:monograph

FD(s): CDE, and CDE B

We can then easily obtain the candidate keys from the minimal set of func-

Chapter 3 Using RDBMS to Store XML Data 48

tional dependencies. A set of attribute {Ai,A2...An} in a relation r is a candidate

key for the relation r iff the closure for that set of attributes, {Ai, ,

contains all the attributes in r. As a result, we can find {AGH} being the pos-

sible candidate key for the relational schema prototype talbe table:book, and

{A} being the possible candidate key for table: monograph presented in Figure

3.11.

Since monograpli.title is identified as the key, we can assign the ".A"

attribute as monograph. editor. monograph . t i t l e , a foreign key pointing to

monograph . t i t l e . If we cannot find suitable keys (e.g. they are too lengthy),

we would assign an artificial ID to the relation and the “ .A" attribute would

point to that ID.

3.1.5 Step 5: Normalize the Relational Schema Proto-

types

With the functional dependencies and candidate keys, we can simply normalize

the relational schema prototype to a set of new relations. We use 3NF de-

composition [14] as an example. 3NF decomposition algorithm is presented in

appendix for readers' reference. The data in the XML document can then be

stored to the RDBMS according to the schema shown in Figure 3.12. Note that

since table :book-3 and table :monograph-3 are the same after comparing the

attributes in them, they can be merged as one.

3.1.6 Discussion

We have proposed the global schema extraction algorithm in the above. We call

it the global schema extraction algorithm because in the algorithm we try to form

relational schema prototypes which include as much elements in the DTD as pos-

Chapter 3 Using RDBMS to Store XML Data ^

table:book-1 (tableimonograph-1 (
book.booktitle, (A) monograph.title, (A)
book.price, (B) monograph.author.id, (B)
book.author.id (C) monograph.editor.name (F)
))
table:book-2 (table:monograph- 2(
book.booktitle, (A) monograph.editor.name，(F)
book.authority.authname, (G) monograph.editor.monograph.title (G)
book.authority.country(H))
) table:monograph-3 (
table:book-3 (monograph.author.id，(B)
book.author.id, (C) monograph.author.name.firstname, (C)
book.author.name.firstname, (D) monograph.author.name.lastname, (D)
book.author.name.lastname, (E) monograph.author.address (E)
book.author.address (F))
)

Figure 3.12: Relations decomposed from schema prototype for the XML data

sible, then we extract all the necessary information from the raw data in order to

decompose the schema prototypes into the suitable relational schemas. As a re-

sult, the step of functional dependency inference together with the characteristic

of the actual XML data play a heavy role in this algorithm. Since the relational

schemas are created by using many traditional relational database methods in

this algorithm, we can be sure that the schemas can make the XML data suit well

into the relational database. Moreover, unlike the proposed schemas extraction

algorithm by [25, 26], we do not have to introduce any extra data fields at all.

However, one of the potential problem in the above proposed algorithm is that

the cost of discovering functional dependencies can be high since the number of

minimal dependencies must be exponential in the number of attributes [37, 38

while a schema prototype could includes as many attributes as the total number

of leaf nodes in the schema prototype trees created from the DTD (Consider the

case when only one schema prototype tree is constructed from the DTD). As a

result, when the structure of the XML is relatively large (having a large number

/

Chapter 3 Using RDBMS to Store XML Data 50

of different element and attribute types), it might be better if we can reduce the

size, i.e. the number of attributes, of the schema prototypes before the step of

finding functional dependencies. Another consideration for the Global algorithm

is that when the characteristics of the XML data changed vastly, e.g. having a

large scale update, the change might affect the resulting schema produced. If

such kind of large scale change is predicted, it might be better to analyse more

on the declared structure, i.e. the DTD, of the XML and produce relational

schema that is more flexible to changes within the constraint of the DTD.

3.2 DTD-splitting Schema Extraction Algorithm

In section 3.1，the proposed algorithm emphasizes more on FDs and keys dis-

covery from prototype schemas. In this section, we propose another schema

algorithm - DTD-splitting Schema Extraction Algorithm. This algorithm also

follows the steps in Figure 3.2. However, unlike the previous algorithm, this

DTD-splitting algorithm relies more on the first 3 steps. In other words, instead

of finding out all characteristics on the actual XML data, we have to determine

some of them without referring to the XML data. In our second algorithm, we try

to predict some characteristics of the XML data from the DTD, hence perform

a certain level of schema decomposition (DTD split) before the step for finding

functional dependencies and keys. In this case, the size of schema prototypes

should be smaller than those in section 3.1, thus alleviating the possible cost in

the functional dependency discovery steps.

Just like us, [33] shows interests in predicting some characteristics from the

DTD. [33] tries to find out semantic constraints in DTD but those constraints

are not for generating relational schemas - [33] just adopts the schema generating

algorithm from [49]. Rather, they are just used to ensure the semantics for the

relational schema generated from [49]. Also, in [33] actual XML data for the

/

Chapter 3 Using RDBMS to Store XML Data 51

p|p' • P, P'

P+ • P* (P, P') • P, P'

P? • P (P, P丨）* • P * , P'*

• • • / P / • • • / P / • • • ^ P
• • • F / • • • / / • • •

Figure 3.13: DTD transformations

DTD is not taking into consideration. Moreover, most of those constraints are

based on the behaviour of attribute declaration only. When there are no rich

attribute declarations in the DTD, those constraints cannot be determined by

33] at all.

3.2.1 Step 1: Simplify DTD

Just like the previous algorithm, we need to simplify the DTD for the set of

XML data. We have to first remove all the entity declarations so as to review

the actual structure of the DTD, as shown in the Figure 3.3. Then, we have to

reduce the possible highly complicated structures of the DTD. In the previous

algorithm, we consider only the possible kinds of element-subelement relations

but not the binary operators，，+，，，” *，，,，，|，，and，，？，，on the subelements. However,

in this algorithm we preserve some of the binary operators so as to preserve

some subelement occurrence information. Every element type declarations can

be converted to the required form by performing the following transformations

shown in Figure 3.13.

In the transformations, we simplify the occurrences of each subelement to

either one or more than one. It is important to note that: the original meaning

for "*" is zero or more than one but we convert it to more than one in our

/ .

Chapter 3 Using RDBMS to Store XML Data ^

<！ELEMENT SigmodRecord (issue*) >

<！ELEMENT issue (volume,number,articles) >

<!ELEMENT volume (#PCDATA)〉

<!ELEMENT number (#PCDATA)〉

<！ELEMENT articles (article氺)>

<！ELEMENT article (title, initPage， endPage, authors) >

<!ELEMENT title (#PCDATA)>

<!ELEMENT initPage (#PCDATA)〉

<！ELEMENT endPage (#PCDATA)〉

<！ELEMENT authors (author*) >

<!ELEMENT author (#PCDATA)>

<!ATTLIST author position CDATA >

Figure 3.14: The simplified DTD converted from the DTD in Figure 3.5

transformation. For the case of，，+，，{one or more than one), we regard it as

"*" {more than one) since there is a chance for the subelement to occur more

than one times. For the case of，，？，，{zero or more than one), we simply remove

the，’？，，since there is a chance for the subelement to occur once. Just like the

corresponding step in the previous algorithm, special attribute type like ID or

IDREF is treated as normal character data. However, since we have preserve the

occurrence information this time, IDREFS type attribute is converted to normal

character data with a * since IDREFS represents more than one IDREFs.

Figure 3.14 shows the example of converting a DTD in Figure 3.5 into a

simplified DTD.

3.2.2 Step 2: Construct Schema Prototype Trees

With the simplified DTD, we then construct the schema prototype trees which

represents the structure of the simplified DTD. As mentioned before, the nodes

can be elements or attributes specified in the DTD. Schema prototype trees will

7 —

Chapter 3 Using RDBMS to Store XML Data 么]_

be used for generating schema prototypes in the next step (Step 3). However, the

rules for determine the roots and the tree construction sequence is not the same

as the one mentioned in section 3.1. Schema prototype trees are constructed as

follows.

Root Determination

Again, we have to determine the roots of the trees from the DTD. There are

several rules we have to follow when deciding the root:

Rule 1 and rule 2 are similar to those stated in Section 3.1.

Rule 3 For an non-#PCDATA element which appears in more than one other

element declarations, it becomes a root for a schema prototype tree

The rule is only applicable to non-.PCDATA elements because a .PCDATk

element is definitely a leaf node in the schema prototype tree, as we saw in the

previous algorithm. If we let a # PCD AT A element become a root, the only

element that is contained in its schema prototype tree would be the root itself.

We do not want to create such kind of unnecessary schema prototype tree.

Let us first assume an element C being the subelement of both element A and

B in the DTD. We would make element C a root for a schema prototype tree and

the schema tree constructed from it would become a separate schema later in

the following step. We can use traditional relational database theory to explain

why we separate C.

There are four kinds of mapping cardinalities [50]: one-to-one (1:1), one-to-

many (1:M)’ many-to-one (M:l) and many-to-many (N:M). We can view element

A and all its possible ancestor(s), form a relation A, while B and all its ancestor(s)

form another relation B. For element C and all its possible subelement(s), we

regard them as another relation C. We let the key of relation A be K^, the key

Chapter 3 Using RDBMS to Store XML Data ^

of B be K^ and the key of C be Kc- As element C is referred by both element

A and B in the simplified DTD, we can eliminate the possible chances for 1:1

and 1:M because each element A and B can only have one subelement C. So the

possible mapping cardinality we have to consider for the relation A— * —B would

be M:1 and M:N.

The relationship among A, B, C indicates some tendency for multiple ele-

ments of A and B to map to element of C. For example, both ai in A and hi

in B are mapped to Ci in C. Taking C as a root can reduce the redundancy of

repeating the attributes of ci with both ai and hi. If at most one element of

C can be mapped to an element of either A or B，we have many-to-one {M:l)

mapping from A or B to C.

For the case of many-to-many relationship {M:N), we can also decompose

the relations into a relation containing A，a relation containing B, a relation

containing C, a relation containing K^UKQ and a relation containing KI^UKQ,

where Kp̂ , Kg, KQ are the keys of A, B, C respectively. As a result, C can be

separated as a root for another schema prototype tree.

Thus we would make element C a root for a schema prototype tree and the

schema tree constructed from it would become a separate schema later in the

following step.

Rule 4 For an non- #P CD A TA element B which ONLY appear in another non-

root element declaration A in the DTD with a ”*,,，it becomes the root for a

schema prototype tree if it is NOT the only subelement of A

The rule is only applicable to non-#P CD ATA elements and we the reason is

the same as the one for rule 3. If the element B appears in more than one element

declarations, it would fulfill rule 3 and must be separated as a root. Thus we

do not have to consider the nature of its ancestor - element A. Otherwise, when

/

Chapter 3 Using RDBMS to Store XML Data ^

B only appears in declaration of element A, we have to make sure B is not the

ONLY subelement A before separate B as a root. If not, the separation would

make the schema prototype tree of A contains A itself. We do now want to create

such kind of unnecessary schema prototype tree.

We again use traditional relational database theory to explain why we sepa-

rate elements with a “ *，，into another schema prototype tree:

For an element declaration < ！ ELEMENT A (B*) > inside the D T D , where the

relation between A and B is A— * —B, we can view element A and all its possible

ancestor(s), form a relation A. For element B and all its possible subelement(s),

we regard them as another relation B. Again, we let the key of relation A be Kp̂

and the key of B be K-Q. When we have a relation A— * —B in the DTD, as A is

set to have more than one B subelements in the simplified DTD, we can eliminate

the possible chances for 1:1 and M:1 relationship from relation A to B . So the

possible mapping cardinality we have to consider for the relation A— * —B would

be 1:M and N:M.

Here the “*，，has some indication of the tendency of a 1:M relationship from

A to B. For this 1:M case, each value of K-Q is associated with at most one

value of K^. It nearly directly come to the idea that K^ should functionally

determine K^. Since the FD K^^Kp^ holds, B can be separated from A. In

terms of relational database theory, we can decompose them into two relations:

A and BUKp̂ .

For the case M:N, it is evident that we can always decompose the relation

into a relation containing A, a relation containing B and a relation containing

Kp̂ UK-Q. As a result, we are sure that B can be separated as a root for another

schema prototype tree.

Thus, we would make element B a root for a schema prototype tree. The

schema tree constructed from it would become a separate schema later in the

/

Chapter 3 Using RDBMS to Store XML Data 56

following step.

Both rule 3 and rule 4 are similar to what suggested in [49]. In [49], if

there is a relation A—氺—B where B is A's subelement, they create a new rela-

tion for B as they think B might correspond to the set-valued child of A; if a

element B is more than one element's subelement, they create a new relation

for b as they think B can be shared by relations. While [49] just simply make

them as heuristics, we explain the reasons to set such rules in our algorithm

based on relational database theory. Moreover, our rules can prevent creating

unnecessary schema prototypes in the following step. The desirable schemas de-

pending on the 1:M, M:L, M:N relationships will be discovered in the later steps.

Rule 5 If recursion occurs in the DTD, one of the element in the recursion

is selected as the root

Just like the previous algorithm, we have to arbitrarily break the loop in

order to construct the schema prototype tree when recursion occurs.

Tree Construction

For all selected roots in the DTD, we propose three different methods to con-

struct the trees. The different methods might lead to slightly different resulting

schemas. At later stage, when the different relational schemas are used to store

the XML data, they might give different effects on join operation in actual data

queries.

Generally, the tree construction method is more or less the same as the one

in section 3.1. Starting from the subelement(s) of each root, we scan the DTD

in a depth-first style and add all first-time visited subelement as a node into the

tree. We mark all non-leaf node which has #PCDATA with ” #，，and handle the

recursion the same way as in section 3.1. However, during the scan, we won't

Chapter 3 Using RDBMS to Store XML Data ^

travel down to any element which is determined as a root. For different kinds of

roots which are determined by different rules above, their tree construction pro-

cesses might not be the same, and there are some variations in their construction

processes in each methods below:

Top-down Construction Method

In the top-down approach, for all kinds of roots (either determined by rule 2,

3，4 or 5), their tree construction processes are the same as the one in section 3.1.

However, during the tree construction if we visit an element declaration of a root

element, we would create a new node for the newly visited root element. For the

case of recursion, if we visit an element declaration which has been visited before,

we would create a new node correspond to the visited element and stop traverse

down to prevent infinite looping. To illustrate the idea, we use an example shown

in Figure 3.15, which is simplified from Figure 3.7，to constructed the trees. The

trees constructed by this method is shown in Figure 3.16.

Note that leaf nodes with bold names are the roots to other trees. Trees

will form relations and the keys of relations (trees) can be discovered or arbi-

trarily assigned in Step 4 later. By joining the schema prototype trees through

those keys in a top-down fashion, we could actually reconstruct larger schema

trees, which are similar to those created using the algorithm stated in Section 3.1.

Bottom-up Construction Method

In the bottom-up approach, for roots determined by rule 2, their tree con-

struction processes are the same as the one in section 3.1. For roots determined

by rule 3 or 4, we have to find out all of their ancestors in the DTD, and

add corresponding nodes as the leaf nodes of the roots in the schema prototype

trees. For the case of recursion, if we revisit the element declaration of the root,

we will find out the direct ancestor of the root inside the looping, and add the

/

Chapter 3 Using RDBMS to Store XML Data 58

<！ELEMENT book(booktitle, price, author, authority*) >

<！ELEMENT authority (authname, country) >

<!ELEMENT authname (#PCDATA) >

<！ELEMENT country (#PCDATA) >

<!ELEMENT booktitle (#PCDATA) >

<!ELEMENT price (#PCDATA) >

<！ELEMENT monograph (title, author, editor)>

<！ELEMENT title (#PCDATA) >

<！ELEMENT editor (monograph*) >

<!ATTLIST editor name CDATA >

<！ELEMENT author (name, address) >

<!ATTLIST author id ID >

<！ELEMENT name (firstname， lastname)>

<!ELEMENT firstname (#PCDATA)〉

<!ELEMENT lastname (#PCDATA)〉

<！ELEMENT address (#PCDATA)〉

Figure 3.15: Another simplified DTD example

monograph author
book ^

authority

/ \ \ / \ title author Z \
au thor iV \ author / \ address id

/ \ / \ editor name
/ \ country authname

booktitle price ^ ^

name monograph f irstname lastname

Figure 3.16: Schema prototype trees construction from Figure 3.15 using top-
down construction method

/ .

Chapter 3 Using RDBMS to Store XML Data 59

corresponding node as a leaf node of the root. We then stop traverse down to

prevent infinite looping. The schema prototype trees constructed by this method

is shown in Figure 3.17.

author

/ monograph
book.A / \ Id / j \

b ， h / mono>raph.A / \ ^ u t - t y
/ \ add � m e / title X T X

. \ / \ / editor / \
booktitle price / \ , , / \

Z \ monograph.A | X authname
firstname lastname name DOOR.M

Figure 3.17: Schema prototype trees construction from Figure 3.15 using
bottom-up construction method

Note that bold leaf nodes with a ".A" after each of their names is used to

indicate the foreign keys to other relations. The keys can be discovered or arbi-

trarily assigned in Step 4 later. By joining the schema prototype trees through

those foreign keys in a bottom-up fashion, we could actually reconstruct larger

schema trees, which are similar to those created using the algorithm stated in

section 3.1. The concept of bottom-up construction method is similar to the

algorithm proposed in [49]. In other words, the technique used in [49] is the

subset of the three methods stated by us.

Hybrid Construction Method

Hybrid construction method combines the techniques of handling roots while

constructing tree from both top-down and bottom-up construction methods. We

propose hybrid method by analysing the relation between DTD structure and

the possible characteristics in the XML data. Based on the relational database

theory, hybrid method should produce relational schema having least redundancy

of data. For roots determined by rule 2, 3 or 5, their tree construction processes

Chapter 3 Using RDBMS to Store XML Data 60

book monograph author

^ authority t i t ^ ^ ^ ^ ^ h o r
booktitle author address id

^ ^ ^ editor name
book.A authname

price \
country " a m e m o n o g r a p h . A lastname

Figure 3.18: Schema prototype trees construction from Figure 3.15 using hybrid
construction method

are the same as the one in section 3.1. However, during the tree construction if

we visit an element declaration of a root element which is determined by rule 3,

we would create a new node for that newly visited root element. This is because

we expect a tendency of M:1 relationship from the parent of the element to the

root element. For example probably many books may be written by the same

author, so it is likely to include the key of author as part of the relation for the

book. On the other hand, if we visit an element declaration of a root element

which is determined by rule 4，we will not perform any node addition to the

schema prototype tree. For roots determined by rule 4，we have to find out

their only ancestor in the DTD, and add the corresponding nodes as the leaf

nodes of the roots in the schema prototype trees. This is because we expect a

tendency of 1:M relationship from the parent of the element to the root element.

For example we expect one book will likely be related to multiple authorities.

Therefore it is likely to include a key of book as an attribute in the relation for

authority. The schema prototype trees constructed by this method is shown in

Figure 3.18.

Note that both node of keys and nodes of foreign keys can be in the trees.

Those keys can be discovered or arbitrarily assigned in Step 4 later.

/

Chapter 3 Using RDBMS to Store XML Data 61

table:book(booktitle, price)

table:authority(country, authname)

table:author(address, id, firstname， lastname)

table:monograph(title， name)

Figure 3.19: The relational schema prototypes generated from the trees in
Figure 3.16

3.2.3 Step 3: Generate Relational Schema Prototype

Just as section 3.1，we generate schema prototype by inlining all the necessary

descendants of the schema prototype tree, including leaf nodes and the node

marked with a，，#，，，starting from the root. However, we will not inline those

key nodes or foreign key nodes (depending on what tree construction method we

have used in the previous step) in this step. We will decide how to add them

(using found candidate keys or assigning a key attribute) into the relational

schema after we discover all the functional dependencies and keys in Step 4. For

all schema trees created from 3 different methods, their relational schemas are

thus the same. The relational schema prototypes generated from the schema

prototype trees presented in the previous step, regardless which construction

method has been used, are shown in Figure 3.19.

Note that we can be sure that there not be two nodes having the same name

inside the same tree. So we do no have to use the naming scheme used in section

3.1.

Chapter 3 Using RDBMS to Store XML Data ^

3.2.4 Step 4: Discover Functional Dependencies and Can-

didate Keys

With the generated schema prototypes, we follow exactly the process in section

3.1，s Step 4. However, the main difference between the algorithm in section 3.1

and the algorithm proposed here is that: in the new algorithm during Step 2 and

Step 3, we have actually pre-decompose the DTD into smaller schema prototypes.

As a result, in this algorithm the cost of discovering functional dependencies

and candidate keys, which is exponential to the number of attributes, would

be smaller since the number of attributes in each schema prototypes is smaller

compared with those more global schema prototypes in section 3.1.

As mentioned in Step 3, we have to determine the candidate keys for the

schema prototypes in this step so as to refine the schema prototypes. However,

if a candidate key turns out to contain many attributes or is very lengthy, then

we may also assign a new artificial ID field to serve as the key, unique ID's will

be generated by the system for such a key. This method of an artificial ID is

heavily used in other methods where functional dependencies are not utilized.

We only adopted the method when an artificial key is really needed since we

want to prevent adding attributes that are unrelated to the actual XML data as

much as possible. This technique can also be used in the algorithm in Section

3.1. The procedure is shown in Figure 3.20.

Let us assume that the maximum number of attributes allowed for a key is

1 {numAUr = 1). and all the candidate keys found for each schema prototype

are listed as below:

table:book - {booktitle}

table:authority - {country, authname}

table:monograph - {title}

/

Chapter 3 Using RDBMS to Store XML Data 7J_

Procedure REFINING_SCHEMA_PROTOTYPES
1 Set numAttr as maximum size of our required candidate key;
2 for each schema prototype S
3 FD_DISC0VERY_AND_CANDIDATE_KEY_DISC0VERY(5');
4 if no key found that has size < numAttr
5 then begin
6 Arbitrarily assigns an ID field in S as the candidate key;
7 end
8 else begin
9 Assigns the one with minimum number of attributes as the candidate key

of 5;
10 end
11 for each other schema prototype S' which's schema prototype tree has a

key/foreign key nodes of S
12 Adds the attributes(s) of the candidate key into S']
13 end for
14 end for

Figure 3.20: Procedure for deciding the candidate keys for the schema proto-
types

table: author - {id},{lastname, address}

According to the procedure we stated in Figure 3.20, we use booktitle as

the key for table:book. We assign an assignlD field to table:authority,

t i t l e is used as table:monograph's key while id is chosen as the key for

table: author. All the keys or foreign keys to other relations are added in

the format table_naine . table_key.

The relational schema prototypes generated by the three construction meth-

ods are shown in Figure 3.21, 3.22 and 3.23 respectively.

3.2.5 Step 5: Normalize the Relational Schema Proto-

types

With the functional dependencies, candidate keys and the set of refined schema

prototypes, we can simply normalize the relational schema prototype to a set of

/

Chapter 3 Using RDBMS to Store XML Data 7J_

table: book (bo o/ct-i tie, price, authority. ass ignID, author. id)

table:authority(country, authname, assignID)
table:author(address, id, firstname, lastname)

table:monograph{title, name, author.id, monograph.title)

Figure 3.21: The relational schema prototypes generated from the trees in
Figure 3.16

table'.hookihooktitle, price)

table:authority(country, authname, assignID, book.booktitle)

table:author(address,id, firstname, lastname,
monograph.title, book.booktitle)

table:monograph(tit Ie, name, monograph.title)

Figure 3.22: The relational schema prototypes generated from the trees in
Figure 3.17

table:hook(booktitie, price, author.id)

table:authority(country, authname, assignID, book.booktitle)
table:author(address, id, firstname, lastname)
table: monograph {title y name, eorthor.id, monograpli. title)

Figure 3.23: The relational schema prototypes generated from the trees in
Figure 3.18

/

Chapter 3 Using RDBMS to Store XML Data 7J_

new relations, if the refined schema prototypes can be further decomposed. This

step is similar to the corresponding step in section 3.1. After normalization, we

can then produce the relational schemas for the XML and use them to map the

XML data into relational database.

3.2.6 Discussion

In this section, we have proposed another schema algorithm DTD-splitting Schema

Extraction Algorithm. Unlike the previous algorithm, this DTD-splitting algo-

rithm relies more on the first 3 steps. Based on the relational database theory,

we try to predict some characteristics of the XML data from the DTD, hence

perform a certain level of schema decomposition (DTD split) before the step

for finding FDs and keys. As a result, the size of schema prototypes can be be

smaller than those in section 3.1, thus alleviating the possible cost in the FD

discovery steps, as mentioned before.

In this algorithm, we also proposed three different tree construction methods.

Different tree construction methods {Top-down, Bottom-up and Hybrid) might

lead to different relational schemas later. We think that Hybrid method should be

the preferable methods as it combines the possible 1:M handling from Top-down

method, together with the possible M:1 handling from Bottom-up method,

Even though Hybrid method is capable of handling both possible 1:M and

M:1 mapping cardinalities in the relations, our algorithm is still unable to handle

the case for M:N relation. Due to the fact that there will be a bigger chance for

multivalued dependencies to hold inside a M:N relation, we proposed to discover

if there is any multivalued dependencies inside the relation as well. The proposed

algorithm is described in the following chapter.

/

Chapter 3 Using RDBMS to Store XML Data ^

3.3 Experimental Results

XML has become more popular in recent years. However, we found that most

of the XML dataset available publicly are still document-centric while we have

proposed algorithms to apply on data-centric XML. By document-centric we

mean that XML is mainly used as a sophisticated version of HTML (e.g. for doing

web document styling) while by data-centric we mean that XML is mainly used to

describe data (e.g. for being the format of Electronic Data Interchange (EDI) or

E-commerce Application). Readers can find a more detailed discussion about the

difference between these two types of XML documents in Chapeter 5. We predict

that more and more data-centric XML should be available on the WWW in the

coming future. Right now, we illustrate the effects of our algorithms by applying

them on a set of real-life XML data from ACM SIGMOD Record: XML Version,

which is available at [46], and a set of synthetic XML data, which is generated

according to the example DTD used in Figure 3.15. We implement each step

of our algorithms in Perl except the step of discovering functional dependencies

and candidate keys. For the step of discovering functional dependencies and

candidate keys, we modify and use an implementation of TANE [29] written in

C and compiled with a GNU C compiler. The original implementation of TANE

is available at [28]. All the experiments were run in an isolated SUN Sparc Ultra!

workstation with SunOS 5.6.

3.3.1 Real Life XML Data: SIGMOD Record XML

In [46], there is a large XML document, sigmodrecord.xml, together with its

DTD, sigmodrecord.dtd. sigmodrecord.xml contains information of more

than 60 past issues of the magazine SIGMOD Record including information

of about 1300 articles and information of more than 3000 authors. It is one

of the largest data-centric XML document available on the WWW now. The

/

Chapter 3 Using RDBMS to Store XML Data 67_

<！ELEMENT SigmodRecord (issue*) >
<！ELEMENT issue (volume，number，articles) >
<!ELEMENT volume (#PCDATA)�

<!ELEMENT number (PCDATA)�

<！ELEMENT art i c les (art i c le*) >
<！ELEMENT ar t i c l e (t i t l e , initPage, endPage, authors) >
< ！ELEMENT t i t l e (#PCDATA)�

<!ELEMENT initPage (#PCDATA)�

<！ELEMENT endPage (#PCDATA)�

<！ELEMENT authors (author*) >
<!ELEMENT author (#PCDATA)�

<！ATTLIST author posit ion CDATA >

Figure 3.24: sigmodrecord.dtd

sigmodrecord. dtd is shown in Figure 3.24, while a fraction of sigmodrecord. xml

is shown in Figure 3.47.

The experimental results based on sigmodrecord. dtd and sigmodrecord. xml

for both of our algorithms are presented in the following sections.

Experimental Result for Global Schema Extraction Algorithm

After the first three steps, the resulting schema prototypes are shown in Figure

3.25.

We then map the data in sigmodrecord.xml to produce a prototype table

according to this schema prototype. Figure 3.26 shows a fraction of the mapped

data in the prototype table.

The prototype table is then used in discovering the functional dependencies

and candidate keys. The result is shown in Figure 3.27. It is interesting to

note that the set of resulting functional dependencies is not exactly the same as

Chapter 3 Using RDBMS to Store XML Data 68_

table(

SigmodRecord. issue.artic les .artic le .authors.author.posit ion, (1)
SigmodRecord.issue.articles.article.authors.author， （2)
SigmodRecord. issue.art ic les .art ic le . t i t le， (3)
SigmodHecord.issue.articles. article. initPage， (4)
SigmodRecord.issue.articles.article.endPage， (5)
SigmodRecord.issue.volume, (6)
SigmodRecord.issue.number (7)
)

Figure 3.25: The relational schema prototype for sigmodrecord.xml, which is
generated by using Global Schema Extraction Algorithm

00,Catriel Beeri,A Note on Decompositions of Relational Databases.,33,37,12,1

01,Moshe Y. Vardi,A Note on Decompositions of Relational Databases.,33,37,12,1

00,Peter B. Miller,BUSINESS - An End-User Oriented Application Development Language.,38,69,12,1

01,Sergey Tetelbaum,BUS工NESS - An End-User Oriented Application Development Language.,38,69,12,1

02,Kincade N. Webb,BUSINESS - An End-User Oriented Application Development Language.,38,69,12,1

00,Antonio L. Furtado,Horizontal Decomposition to Improve a Non-BCNF Scheme.,26,32,12,1

00,Kn. I. Kilov,Meta-Database Architecture for Relational DBMS.,18,2 5,12,1

01,1. A. Popova,Meta-Database Architecture for Relational DBMS.,18,2 5,12,1

00,James H. Burrows,Actual Conversion Experiences.,20,33,12,2

00,James P. Fry,Conversion Technology. An Assessment.,39,61,12,2

00,John L. Berg,Data Base Directions 11: The Conversion Problem - Editorial.,3,3,12,2

00,Richard L. Nolan,Establishing Management Objectives.,9,19,12,2

00,Mayford L. Roark,Evolution in Computer Systems.,4,8,12,2

00,Milt Bryce,Standards.,34,38,12,2

00,Henry M. Walker,Administering a Distributed Data Base Management System.,86,99,12,3

00,Haran Boral,Database Research Activities at the University of Wisconsin.,19,26,12,3

01,David J. DeWitt,Database Research Activities at the University of Wisconsin.,19,26,12,3

02,Randy H. Katz,Database Research Activities at the University of Wisconsin.,19,2 6,12,3

03/Anthony C. Klug,Database Research Activities at the University of Wisconsin.,19,2 6,12,3

Figure 3.26: Fraction of the mapped data from sigmodrecord.xml, which is

then used in functional dependency discovery step (Global algorithm)

/

Chapter 3 Using RDBMS to Store XML Data 69_

Tablel

No. of tuples: 3133

No. of attributes: 7

FDs found: Keys found:

2 3 -> 1 3 6 7 -> 4 5 {2 3 7}

3 5 -> 4 5 6 7 -> 3 4 {2 4 5 6}

3 5 7 -> 6 1 2 4 6 -> 3 {2 4 5 6}

3 5 6 -> 7 1 2 5 7 -> 4 {2 4 6 7}

3 4 7 - > 5 6 1 2 4 7 -> 5

4 6 7 -> 3 5

Figure 3.27: Functional dependencies and candidate keys found from the pro-
totype table in Figure 3.26

what we have predicted before the experiment. For example, we expect that in

sigmodrecord.xml, t i t l e (3) can at least determine initPage (4) and endPage

(5) since we think that there should not be two research articles with exactly

the same title. However, the functional dependency 3 4 5 is not in the set

of found dependencies. The reason is that for each different issue of SIGMOD

Record magazine, there must be an article titled "Editor's Notes" at the begin-

ning, thus breaking the functional dependency predicted by us. If we want to take

those nearly-formed functional dependencies in the XML data into consideration,

TANE can discover those nearly-formed ones using the concept of approximate

dependency in [32]. Using 3NF decomposition as an example, one of the possible

resulting relation schema for sigmodrecord.xml is shown in Figure 3.28

Note that Figure 3.28 is just one of the possible designs for the relational

schema. With the functional dependencies found in the XML data, the user can

decompose the schema prototypes into other good relational database designs

for the XML data.

/

Chapter 3 Using RDBMS to Store XML Data 70_

I

tablel{

SigmodRecord,issue.articles.article.title , (3)

SigmodRecord.issue.articles.article.initPage, (4)

SigmodRecord.issue.articles.article.endPage, (5)

SigmodRecord.issue.volume, (6)

SigmodRecord.issue.number (7)
}

table2{

SigmodRecord.issue.articles.article.authors.author, (2)

SigmodRecord.issue.articles.article.title , (3)

SigmodRecord.issue.number (7)
}

tables{

SigmodRecord.issue.articles.article.authors.author.position, (1)

SigmodRecord.issue.articles.article.authors.author, (2)

SigmodRecord.issue.articles.article.initPage, (4)

SigmodRecord.issue.articles.article.endPage, (5)

SigmodRecord.issue.number (7)
}

table4{

SigmodRecord.issue.articles.article.authors.author.position, (1)

SigmodRecord.issue.articles.article.authors.author, (2)

SigmodRecord.issue.articles.article.title , (3)

SigmodRecord.issue.articles.article.initPage, (4)

SigmodRecord.issue.volume, (6)
}

I
Figure 3.28: Relational schemas produced for sigmodrecord.xml based on
3NF decomposition

Chapter 3 Using RDBMS to Store XML Data 7J_

Experimental Result for DTD-splitting Schema Extraction Algorithm

After the first three steps, the resulting schema prototypes are shown in Figure

3.29. Note that even after step 2, the tree structures of each construction methods

should have slightly difference, the schema prototypes produced are the same.

table:issue(table:article(table:author(
volume, (1) title, (1) position, (1)
number, (2) initPage, (2) author, (2)
) endPage, (3))

)

Figure 3.29: The relational schema prototype for sigmodrecord.xml, which is
generated by using DTD-splitting Schema Extraction Algorithm

We then map the data in sigmodrecord.xml to produce a prototype table

according to this schema prototype. Figure 3.30 shows a fraction of the mapped

data in the prototype table.

The prototype tables are then used in discovering the functional dependencies

and candidate keys. The results for each prototype tables are shown in Figure

3.31. For the procedure shown in Figure 3.20, we set numAttr as 1 only as we

observe that the number of attributes in each schema prototypes are relatively

small. The resulting relation schemas for sigmodrecord.xml are then produced.

The schemas produced from Top-down method is shown in Figure 3.32. For

sigmodrecord.xml, the relational schemas for both Bottom-up and Hybrid method

are the same, as shown in Figure 3.33.

The three construction methods proposed in our DTD-splitting Schema Ex-

traction Algorithm provide more flexibilities in producing the relational schema.

With the support of the relational database concept, it is quite obvious that

Hybrid methods should lead to a better relational schema design and have less

redundancy of data in the resulting table. To better illustrate this, we run an-

other experiment using a set of synthetic XML data.

/

Chapter 3 Using RDBMS to Store XML Data 72_

00,Catriel Beeri 12,1
01,Moshe Y. Vardi 12,2
00,Peter B. Miller 12,3
01,Sergey Tetelbaum 12,4
02,Kincade N. Webb 13,1
00,Antonio L. Furtado 13,2
00,Kn. I. Kilov 12,3
01,1. A. Popova ,4
0 0,James H. Burrows 14,1
0 0,James P. Fry '2
00,John L. Berg '3
0 0,Richard L. Nolan
00,Mayford L. Roark 15,1
00,Milt Bryce 15,2
0 0,Henry M. Walker 15,3
00,Haran Boral 15,4
01,David J. DeWitt
02,Randy H. Katz '2
03,Anthony C. Klug '3

. table:author • table:issue

A Note on Decompositions of Relational Databases.,33,37

BUSINESS - An End-User Oriented Application Development Language.,38,69
Horizontal Decomposition to Improve a Non-BCNF Scheme.,26,32
Meta-Database Architecture for Relational DBMS.,18,25
Actual Conversion Experiences.,20,33
Conversion Technology. An Assessment.,39,61
Data Base Directions II: The Conversion Problem - Editorial3,3
Establishing Management Objectives.,9,19
Evolution in Computer Systems.,4,8
Standards.,34,38
Administering a Distributed Data Base Management System.,86,99
Database Research Activities at the University of Wisconsin.,19,26
Distributed Processing of Data Dynamics.,67,85
Implementation of a Time Expert in a Data Base System.,51,60

• table:article

Figure 3.30: Fraction of the mapped table prototypes from sigmodrecord. xml,
which is then used in functional dependency discovery step {DTD-splitting algo-
rithm)

Chapter 3 Using RDBMS to Store XML Data 7J_

table：author

No. of tuples: 3113

No. of attributes: 2

FDs found: Keys found:

{1 2}

table：article

No. of tuples： 1248

No. of attributes: 3

FDs found: Keys found:

1 3 -> 2 {13}

table:issue

No. of tuples: 63

No. of attributes： 2

FDs found： Keys found：

{1 2}

Figure 3.31: Functional dependencies and candidate keys found from the pro-
totype tables in Figure 3.30

table：issue(

volume, (1)

number, (2)

assignID , (3)

table:article.asslgnID (4)

)

table：article(

title, (1)

initPage, (2)

endPage, (3)

assignID , (4)

table:author.assignID (5)

)

table：author(

position, (1)

author, (2)

assignID , (3)

)

Figure 3.32: The relational schemas for sigmodrecord. xml by using Top-down
method

/

Chapter 3 Using RDBMS to Store XML Data 74_

table：issue(

volume, (1)

number, (2)

assignID (3)

)

table：article(

title, (1)

initPage, (2)

endPage, (3)

assignID, (4)

table:Issue.asslgnID (5)

)

table：author(

position, (1)

author, (2)

assignID, (3)

table:article.assignID (4)

)

Figure 3.33: The relational schemas for sigmodrecord.xml by using Bottom-up
method or Hybrid method

3.3.2 Synthetic XML Data

In our second experiment, we generate a set of XML data according to the

example DTD used in Figure 3.15. To give reasonable characteristics to the

XML data, we make some assumptions when generating the XML data:

(1)No two books or two monographs have the same title.

(2)No two authors, which have the same name, share the same address.

(3)Author has one address only.

(4)Author can appear in more than one books and/or monographs.

(5)Authority can appear in more than one books.

(6) Multiple subelement occurrences of authority and monograph range between

0 to 5.

In total, XML data for more than 200 books and monographs are generated

according to the assumption stated. A fraction of our synthetic XML data set is

shown in Figure 3.48.

Chapter 3 Using RDBMS to Store XML Data 75_

table:book (table:monograph (
book.booktitle, (1) monograph.title, (1)
book.price, (2) monograph.author.id, (2)
book.author.id，(3) monograph.author.name.firstname, (3)
book.author.name.firstname, (4) monograph.author.name.lastname, (4)
book.author.name.lastname, (5) monograph.author.address, (5)
book.author.address, (6) monograph.editor.name, (6)
book.authority.authname, (7) monograph.editor.monograph.title (7)
book.authority.country (8))

J

Figure 3.34: The relational schema prototype for synthetic XML data, which
is generated by using Global Schema Extraction Algorithm

Experimental Result for Global Schema Extraction Algorithm

After the first three steps, the resulting schema prototypes for the set of synthetic

XML data are shown in Figure 3.34.

We then map the synthetic XML data to produce a prototype table according

to this schema prototype. Figure 3.35 shows a fraction of the mapped data in

the prototype table.

The prototype table is then used in discovering the functional dependencies

and candidate keys. The result is shown in Figure 3.36.

Using 3NF decomposition as an example, one of the possible resulting re-

lation schema for the synthetic XML data is shown in Figure 3.37. Note that

since table :book-3 and table :monograph-4 are the same after comparing the

attributes in them, they are replaced by a common table table: author.

Experimental Result for DTD-splitting Schema Extraction Algorithm

After the first three steps, the resulting schema prototypes are shown in Figure

3.19. Note that even after step 2, the tree structures of each construction methods

should have slightly difference, the schema prototypes produced are the same.

/

Chapter 3 Using RDBMS to Store XML Data 76_

XML book, 19.9, 1, Men-Hin, Yan, "Hung Horn, Hong Kong", NY Times, US
XML book, 19.9, 1, Men-Hin, Yan, "Hung Horn, Hong Kong", PC Home, HK
XML book, 19.9,1, Men-Hin, Yan, "Hung Horn, Hong Kong", PC Weekly, HK
XML in a nutshell, 99.9’ 2’ Ham, Wong, "CUHK, Hong Kong", Tokyo Times, JAP
XML in a nutshell, 99.9, 2, Ham, Wong, "CUHK, Hong Kong", PC Magazine, HK
XML in a nutshell, 99.9, 2, Ham, Wong, "CUHK, Hong Kong", DC Times, US
XML cook book, 99.9, 3，Roy, Chan, "CUHK, Hong Kong", PC Times, HK
XML cook book, 99.9，3’ Roy, Chan, "CUHK, Hong Kong", DC Times, US
XML cook book, 99.9, 3, Roy, Chan, "CUHK, Hong Kong", PC Zone, HK

table:book

XML monograph, 2’ Ham, Wong, "CUHK, Hong Kong", Roy Chan, XML monograph
XML monograph, 2，Ham, Wong, "CUHK, Hong Kong", Roy Chan, DTD monograph
XML monograph, 2, Ham, Wong, "CUHK, Hong Kong", Roy Chan, mono XML
XSL monograph, 2, Ham, Wong, "CUHK, Hong Kong", Willis Chan, SGML monograph
XSL monograph, 2, Ham, Wong, "CUHK, Hong Kong", Willis Chan, XSL monograph
DTD monograph, 4, Brenda, Chan, "Choi Hung, Hong Kong", Roy Chan, XML monograph
DTD monograph, 4, Brenda, Chan, "Choi Hung, Hong Kong", Roy Chan, DTD monograph
DTD monograph, 4, Brenda, Chan, "Choi Hung, Hong Kong", Roy Chan, mono XML
monograph XSLT, 4, Brenda, Chan, "Choi Hung, Hong Kong", Henry Hui, SGML monograph

_. table:monograph

Figure 3.35: Fraction of the mapped data from synthetic XML data, which is
then used in functional dependency discovery step {Global algorithm)

table：book

No. of tuples： 507

No. of attributes: 8

FDs found: Keys found:

1 -> 2 3 4 5 6 -> 3 {17 8}

3 -> 4 5 6

table：monograph

No. of tuples: 487

No. of attributes: 7

FDs found: Keys found:

1 -> 2 6 7 -> 6 {17}

2 - > 3 4 5 3 4 5 -> 2

Figure 3.36: Functional dependencies and candidate keys found from the pro-
totype table in Figure 3.35

Chapter 3 Using RDBMS to Store XML Data 77_

table:book-1 (table:monograph-1 (
book.booktitle, (1) monograph.title, (1)
book.price, (2) monograph.author.id, (2)
book.author.id (3) monograph.editor.name (6)
))
table:book-2 (table:monograph2-2 (
book.booktitle, (1) monograph.title, (1)
book.authority.authname, (7) monograph.editor.monograph.title (7)
book.authority.country(8))
) table:monograph-3 (
table:book-3 (monograph.editor.name, (6)
book.author.id, (3) monograph.editor.monograph.title (7)
book.author.name.firstname, (4))
book.author.name.lastname, (5) table:monograph-4 (
book.author.address (6) monograph.author.id, (2)
) ^ ^ monograph.author.name.firstname, (3)

monograph.author.name.lastname, (4)
^ ^ monograph.author.address (5)

table:author (
author.id, •
author.name.firstname,
author.name.lastname,
author, address
)

Figure 3.37: Relational schemas produced for the synthetic XML data based

on 3NF decomposition

/

Chapter 3 Using RDBMS to Store XML Data 7J_

^ M L book, 19.9 I XML monograph, Roy Chan
二。 i n a_n:;tsM，99.9 ^SL monograph, Willis Chan

二 - ？CO DTD monograph. Roy Chan
XML b ack book, 49.9 u v o i 4 u �
_ _ _ . … monogrpah XSLT, Henry Chan
DTD book, 39.9
DTD in a nutshell, 29.9 ！

DTD cook book, 49.9 table:monograph
DTD black book, 19.9
. US, NY Times

HK, PC Home
• tabie:book HK, PC Weekly

JAP, Tokyo Times
"Hung Horn, Hong Kong", 1, Men-Hin, Yan HK, PC Magazine
"CUHK, Hong Kong", 3，Roy, Chan US: DC Times
"CUHK, Hong Kong", 2，Ham, Wong HK, PC Times
"Choi Hung, Hong Kong", 4，Brenda, Chan HK, PC Zone
"HKU, Hong Kong", 5, Willis,Chan u s ! PC Weekly
"HKU, Hong Kong", 6，Ham, Tang JAP, PC Weekly

table:author table:authority

Figure 3.38: Fraction of the mapped table prototypes from the sythetic XML
data, which is then used in functional dependency discovery step {DTD-splitting
algorithm)

We then map the data to produce a prototype table according to this schema

prototype. Figure 3.38 shows a fraction of the mapped data in the prototype

table.

The prototype tables are then used in discovering the functional dependencies

and candidate keys. The results for each prototype tables are shown in Figure

3.39. For the procedure shown in Figure 3.20, we set numAttr as 1 only as we

observe that the number of attributes in each schema prototypes are relatively

small. The resulting relation schemas for the synthetic XML data are then

produced. The relation schemas for Top-down, Bottom-up and Hybrid methods

are shown in Figure 3.40.

As we mentioned before, just like our DTD-splitting algorithm, the methods

proposed in [49] also based on constructing schema from the characteristics in the

DTD. And the shared inlining method and hybrid inlining method introduced in

/

Chapter 3 Using RDBMS to Store XML Data 7J_

table:book

No. of tuples: 117

No. of attributes: 2

FDs found: Keys found:

{1}

table:authority

No. of tuples: 312

No. of attributes: 2

FDs found: Keys found:

{1 2}

table:author

No. of tuples: 156

No. of attributes: 4

FDs found: Keys found:

1 4 -> 2 3 ⑵

table:monograph

No. of tuples: 132

No. of attributes： 2

FDs found: Keys found:

{1}

Figure 3.39: Functional dependencies and candidate keys found from the pro-
totype table in Figure 3.38

/

Chapter 3 Using RDBMS to Store XML Data 7J_

table:book (table:author (table:authority { table:monograph (
booktitle (1), address (1), country (1), title (1),
price (2), id (2), authname (2), name (2),
authority.assignID (3)， firstname (3), assignID (3) monograph.title (3),
author.id (4) lastname (4)) author.id (4)
)))

Top-down Method

tableibook (table:author { table:authority (table:monograph (
booktitle (1), address (1), country (1), title (1),
price (2)， id (2), authname (2), name (2),
) firstname (3), assignID (3) monograph.title (3)

lastname (4), book.booktitle (4))
monograph.title (5)，)
book.booktitle (6)

[)
Bottom-up Method

tableibook (table:author (table:authority (table:monograph (
booktitle (1), address (1), country (1), title (1),
price (2)， id (2), authname (2), name (2),
author.id (3) firstname (3), assignID (3) monograph.title (3)，

) lastname (4), book.booktitle (4) author.id (4)
)))

Hybrid Method

Figure 3.40: Relational schemas of the synthetic XML data produced by DTD-
splitting algorithm

/

Chapter 3 Using RDBMS to Store XML Data 81_

table:authority

assigned. ID country authname

1 US NY Times

2 HK PC Home table:author

3 HK PC Weekly address ^ _ firstname lastname

4 JAP Tokyo Times Hung Horn, Hong Kong 1 Men-Hin Yan

5 HK PC Magazine CUHK, Hong Kong 3 Roy Chan

6 US DC Times CUHK, Hong Kong 2 Ham Wong

7 HK PC Times Choi Hung, Hong Kong 4 Brenda Chan

8 HK PC Zone ^ ^

tableibook '" 卜 . '“‘ table:monograph

booktitle price authority.assignedID author.id ^ name monograph.title author.id

XML book 19 9 1 1 XML monograph Roy Chan XML monograph 2

XML book 19.9 2 1 XML monograph Roy Chan DTD monograph 2

XML book 19.9 3 1 XML monograph Roy Chan mono XML 2

XML in a nutshell 99.9 4 2 XSL monograph Willis Chan SGML monograph 2

XML in a nutshell 99.9 5 2 XSL monograph Willis Chan XSL monograph 2

XML in a nutshell 99.9 6 2 DTD monograph Roy Chan XML monograph 4

XML cook book 99.9 7 3 DTD monograph Roy Chan DTD monograph 4

XML cook book 99.9 6 3 DTD monograph Roy Chan mono XML 4

XML cook book 99.9 8 3 Monograph XSLT Henry Hui monograph XSLT 4
• • • •••••• • • • • • • • • • •丨• • •‘

Figure 3.41: Tables for top-down method

49] are adopted in many current research projects like [33, 31，42, 52]. To show

how our proposed methods in DTD-splitting algorithm outperform the methods

introduced in [49] in terms of minimizing data redundancy, we apply them on

the synthetic XML data and present fraction of the relational tables for the three

tree construction methods proposed by us, as well as those for the shared inlining

method and hybrid inlining method in [49 .

The tables produced from Top-down method is shown in Figure 3.41. The

tables produced from Bottom-up method is shown in Figure 3.42. The schemas

produced from Hybrid method is shown in Figure 3.43.

The relational schema extracted by shared inlining method and hybrid inlin-

ing method are shown in Figure 3.44. The tables produced from shared inlining

method are shown in Figure 3.45. The tables produced from hybrid inlining

/

Chapter 3 Using RDBMS to Store XML Data 7J_

table:authority
I table:monograph

assigned.ID country authname book.booktitle 773 t生 name monograph.title
1 US NY Times XML book “

XML monograph Roy Chan XML monograph
2 HK PC Home XML book … ^

XML monograph Roy Chan DTD monograph
3 HK PC Weekly XML book …

‘ XML monograph Roy Chan mono XML
4 JAP Tokyo Times XML in a nutshell “ “

^ XSL monograph Willis Chan SGML monograph
4 JAP Tokyo Times XML cook book ,

^ XSL monograph Willis Chan XSL monograph
5 HK PC Magazine XML in a nutshell ^

DTD monograph Roy Chan XML monograph
6 US DC Times XML in a nutshell "

DTD monograph Roy Chan DTD monograph
7 HK PC Times XML cook book

DTD monograph Roy Chan mono XML
8 JAP PC Zone XML cook book

monograph XSLT Henry Hui monograph XSLT
• • • • • • • • • • • •

table:author

address id firstname lastname monograph.title book.booktitle I . , . “
^~^ table:book

Hung Horn, Hong Kong 1 Men-Hin Yan ； XML book booktitle price
CUHK, Hong Kong 3 Roy Chan - XML cookbook , “

XML book 19.9
CUHK, Hong Kong 2 Ham Wong XML monograph XML in a nutshell ~~~~~ ~ ~ ~ ~~~ ’• 2 ^ 2 XML in a nutshell 99.9
CUHK, Hong Kong 2 Ham Wong XSL monograph XML in a nutshell ~ " “ “

‘ ® ® ^ ^ XML cook book 99.9
Choi Hung, Hong Kong 4 Brenda Chan DTD monograph ；

Figure 3.42: Tables for bottom-up method

table:author \table:book

address id firstname lastname booktitle price author.id

Hung Horn, Hong Kong 1 Men-Hin Yan XML book 1 9 . 9 1

CUHK, Hong Kong 3 Roy Chan XML in a nutshell 99.9 2

CUHK, Hong Kong 2 Ham Wong XML cook book 99.9 3

Choi Hung, Hong Kong 4 Brenda Chan . . .

table:authority table:monograph

country assigned.ID authname book.booktitle title name monograph.title author.id

US 1 NY Times XML book XML monograph Roy Chan XML monograph 2

HK 2 PC Home XML book XML monograph Roy Chan DTD monograph 2

HK 3 PC Weekly XML book XML monograph Roy Chan mono XML 2

JAP 4 Tokyo Times XML in a nutshell XSL monograph Willis Chan SGML monograph 2

JAP 4 Tokyo Times XML cook book XSL monograph Willis Chan XSL monograph 2

HK 5 PC Magazine XML in a nutshell DTD monograph Roy Chan XML monograph 4

6 DC Times XML in a nutshell DTD monograph Roy Chan DTD monograph 4

HK 7 PC Times XML cook book DTD monograph Roy Chan mono XML 4

JAP 8 PC Zone XML cook book monograph XSLT Henry Hui monograph XSLT 4

Figure 3.43: Tables for hybrid method

/

Chapter 3 Using RDBMS to Store XML Data 7J_

method are shown in Figure 3.46.

We use the tables constructed by our hybrid method, as shown in Figure 3.43

to compare with those generated by [49]，s methods.

When compared with shared inlining method in Figure 3.45, it is obvious

that the relational schemas constructed by our algorithm use less attributes.

The main reason is that we prevent excessive use of artificial IDs for each table.

Moreover, the tables produced by our algorithm has less data redundancy. For

example, in the table table : author, all the data for author is repeated in shared

inlining method for each different book and monograph foreign keys (parent ID +

parentCODE). While in our algorithm, we use key of table : author (author. id)

in table : book and table : monograph, instead of using using foreign keys of

table:book and table -.monograph in table: author. As a result, redundancy

of data can be prevented.

When compared with hybrid inlining method in Figure 3.46，it is obvious

that relational schemas constructed by our algorithm use much less attributes.

Based on the rule in hybrid inlining method, author's attributes have to inlined

all into table:book and table:monograph. The reason for [49] to propose that

is to reduce the number of table joins in query. However, as shown in Figure

3.46，the method would create much redundancy among tables when the number

of attributes for the extra inlining is large.

It is clear that our algorithm produces more efficient relational schema de-

sign than [49] does. Since the DTD of our synthetic XML data is not large, the

number of attributes in each table is relatively small. As a result, the step of

dependency discovery is not really significant in this case as no important func-

tional dependencies are found. However, more reasonable and effective schemas

can still be produced by our algorithm. This show that even without the step

the dependency discovery, our algorithm still outperform the methods proposed

/

Chapter 3 Using RDBMS to Store XML Data 84_

table:book (table:author (table:authority (tableimonograph (
assignedID, id, assignedID, assignedID,
booktitle, parentID, parentID, parentID,
price parentCODE, parentCODE, parentCODE,
) address, authname, title,

firstname, country editor.name
lastname))

L) L
Shared Inlining Method

table:book (table:monograph { table:authority (
assignedID, assignedID, assignedID,
booktitle, parentID, parentID,
price, parentCODE, parentCODE,
author.id, title, authname,
author.address, editor.name, country
author, lastname, author.id,)
author.firstname author.address,
) author.lastname,

author.firstname
I i

Hybrid Inlining Method

Figure 3.44: Relational schema for the methods proposed in [49

by [49:.

3.3.3 Discussion

The experiments on sigmodrecord.xml and our synthetic XML dataset illus-

trates the schema extraction effects for both of our schema extraction algorithms.

From the relational schemas extracted, we would discuss some interesting obser-

vations below.

It is obvious that the relational schemas produced by global schema extrac-

tion algorithm (or Global algorithm) may not the same as those produced by

DTD-splitting schema extraction algorithm (or DTD-splitting algorithm). The

reason for their difference is what we have mentioned before: Global algorithm

relies more on discovering dependencies in the XML data while DTD-splitting

algorithm relies more on pre-decomposition of schema prototypes. With such a

Chapter 3 Using RDBMS to Store XML Data 85_

table:author

id parentID parentCODE address firstname lastname

table:book 1 1 table:book Hung Home, Hong Kong Men-Hin Yan

assignID booktitle price 3 3 table:book CUHK, Hong Kong Roy Chan

1 XML book 1 9 ^ 2 2 table:book CUHK, Hong Kong Ham Wong

2 XML in a nutshell 99.9 2 1 table:monograph CUHK, Hong Kong Ham Wong

3 XML cook book 99.9 2 2 table: monograph CUHK, Hong Kong Ham Wong

. . . ^ ^ _ 4 3 table:monograph Choi Hung, Hong Kong Brenda Chan

table:authority table:monograph

assigned.ID parentID parentCODE authname country assignedID parentID parentCODE title editor.name

]] _ toble:book_ NY Times 1 1 table:monograph XML monograph Roy Chan

2] table:book_ PC Home HK—— 1 3 table:monograph XML monograph Roy Chan

3] table:book_ PC W e e k l y _ HK 1 9 table:monograph XML monograph Roy Chan

4 2 _ table:book_ Tokyo Times ^ _ 2 2 table:monograph XSL monograph Willis Chan

1 3 _ table:book_ Tokyo Times ^ _ 2 8 table:monograph XSL monograph Willis Chan

5 2 _ table:book_ PC Magazine HK—— 3 1 table:monograph DTD monograph Roy Chan

6 2 table:book DC Times US 3 3 table:monograph DTD monograph Roy Chan

7 3 table:book PC Times HK 3 9 table:monograph DTD monograph Roy Chan

8 3 table:book PC Zone JAP 4 4 table:monograph monograph XSLT Henry Hui

• • • • • • ‘ • • j j j ^jj ••••

Figure 3.45: Tables for [49]，s shared inlining method

/

Chapter 3 Using RDBMS to Store XML Data 86_

table:authority

assigned.ID parentID parentCODE authname country

1 1 table:book NY Times US

2 1 table:book PC Home HK

3 1 table:book PC Weekly HK

4 2 table:book Tokyo Times JAP

4 3 table:book Tokyo Times JAP

5 2 table:book PC Magazine HK

6 2 table:book DC Times US

7 3 table:book PC Times HK

8 3 tableibook PC Zone JAP
table:book

assignID booktitle price author.id address firstname lastname

1 XML book 19.9 1 Hung Horn, Hong Kong Men-Hin Yan

2 XML in a nutshell 99.9 2 CUHK, Hong Kong Ham Wong

3 XML cook book 99.9 3 CUHK, Hong Kong Roy Chan

table:monograph 卜” 卜•. 卜"卜•• 卜•• 卜” 卜 • • — —
assignedID parentID parentCODE title editor, name author.id address firstname lastname

1 1 table:monograph XML monograph Roy Chan 2 CUHK, Hong Kong Ham Wong

1 3 table:monograph XML monograph Roy Chan 2 CUHK, Hong Kong Ham Wong

1 9 table:monograph XML monograph Roy Chan 2 CUHK, Hong Kong Ham Wong

2 2 table:monograph XSL monograph Willis Chan 2 CUHK, Hong Kong Ham Wong

2 8 table:monograph XSL monograph Willis Chan 2 CUHK, Hong Kong Ham Wong

3 1 tableimonograph DTD monograph Roy C han 4 Choi Hung, Hong Kong Brenda Chan

3 3 table:monograph DTD monograph Roy Chan 4 Choi Hung, Hong Kong Brenda Chan

3 9 table:monograph DTD monograph Roy Chan 4 Choi Hung, Hong Kong Brenda Chan

4 4 table:monograph monograph XSLT Henry Hui 4 Choi Hung, Hong Kong Brenda Chan

• • • ••• • • • • • • • • • B • • • •霧••

Figure 3.46: Tables for [49]，s hybrid inlining method

Chapter 3 Using RDBMS to Store XML Data 7J_

difference, both algorithms have their own trade offs:

Schemas created by Global algorithm are fully based on the real characteris-

tics extracted from the XML data itself, thus ensuring all schema decompositions

made in the algorithm are reasonably done based on relational database theory,

Unlike the proposed schemas extraction by [25, 26], which need many extra data

other than those in the XML file to maintain the schemas, it is possible for us

to map all the data in the XML file into relational database without introducing

any extra fields and data. However, since the schemas are decomposed totally

based on discovered functional dependencies, the schemas might have to be up-

dated when there is new XML data. The reason is that with any new additional

XML data, some of the current functional dependencies might not hold anymore.

Thus the schemas decomposed based on the old set of functional dependencies

might be slightly different to the new set of functional dependencies found in the

updated XML data, and we have to update the schemas again.

Schemas created by DTD-splitting algorithm are based more on the charac-

teristics extracted from the DTD correspond to the XML data than the actual

XML data. Because of the pre-decomposition of the schema prototypes, the cost

of finding functional dependencies and keys are reduced. For XML data with

relatively smaller DTD like the one of our synthetic XML data, even without the

dependency discovery step, we still can produce reasonable relational schema

design. Since the relational schemas depend more on DTD than the XML data,

the relational schemas are less likely to be altered upon new addition of XML

data. However, as the schemas are not produced based all on the functional

dependencies and keys found inside the data, we might have to add an artificial

key attribute into the schema. As a result, the resulting tables might contain

fields that are unknown to users, and database users might not be able to use the

tables directly. However, we do try to minimize the use of artificial keys as much

as possible in our algorithm. Most likely those arbitrarily-added fields have to

/

Chapter 3 Using RDBMS to Store XML Data 72_

be handled by the database system upon queries and updates.

Due to the exponential complexity in the number of attributes for functional

dependency discovery, we suggest to use Global algorithm when the number of

element and attribute declarations in DTD is not too large so that the number

of attributes in the schema prototype is relatively smaller. When the DTD has

a large number of element and attribute declarations, DTD-splitting algorithm

should be used instead.

In the experiment of synthetic XML data, we observe that some of the re-

lational schema generated by DTD-splitting algorithm could be further decom-

posed after the key/foreign key fields are added in them, i.e. we can undergo

second round of functional dependency discovery process after the step of adding

key/foreign key fields so as to further refine the schema design. On the other

hand, Global algorithm ensures completed decomposition in one round of func-

tional dependency discovery. Apart from further refine the schema design by

another round of functional dependency discovery, we can also achieve that by

finding multivalued dependencies in the XML data. We illustrate the use of mul-

tivalued dependencies in the experiments which are shown in the next chapter.

Chapter 3 Using RDBMS to Store XML Data 7J_

<SigmodRecord>
<issue>

<volume>12</volume>
<number>1 </number>
<articles>

<article>
<title>A Note on Decompositions of Relational Databases.</title>
<initPage>33</initPage>
<endPage>37</endPage>
<authors>

<author position="00">Catriel Beeri</author>
ou tho r position="01 ">Moshe Y. Vardi</author>

</authors>
</article>
<article>

<title>BUSINESS - An End-User Oriented Application Development Language.</title>
<initPage>38</initPage>
<endPage>69</endPage>
<authors>

�author position="00">Peter B. Miller</author>
ou tho r position="01 ">Sergey Tetelbaum</author>
ou tho r position="02">Kincade N. Webb</author>

� / a u t h o r s �

</article>

<article>
<title>Horizontal Decomposition to Improve a Non-BCNF Scheme.</title>
<initPage>26</initPage>
<endPage>32</enclPage>
<authors>

ou thor position="00">Antonio L. Furtado</author>
</authors>

</article>
</issue>
<issue>

</issue>
</SigmodRecorcl>

Figure 3.47: Fraction of sigmodrecord.xml

/

Chapter 3 Using RDBMS to Store XML Data 90_

<book>
<booktitle>XML book</booktitle> <monograph>
<price>19.9</price> <title>XML monograph</t.tle>
〈author id="1"> <authorid="2">

<name> <n3m6>
<firstname>Men-hin</firstname> <firstname>Ham</f.rstname>
<lastname>Yan</lastname> <lastname>Wong</lastname>

</name>
<address>Hung Horn, Hong Kong</address> <address>CUHK, Hong Kong</address>

</author> </author>
<authority> < 6 耐 name="Roy Chan">

<authname>NY Times</authname> <monograph>
<country>US</country> <t,tle>XML monograph</t.tle>

</authority> </monograph>
〈authority〉 <monograph>

<authname>PC Home</authname> <title>DTD monograph</title>
<country>HK</country> </monograph>

</authority> <monograph>
〈authority〉 <title>mono XML</title>

<authname>PC Weekly</authname> </monograph>
<country>HK</country> </editoi>

</authority> </monograoph>
</book> <monograph>
<book> <title>XSL monograph</title>

<booktitle>XML in a nutshell</booktitle> <author ici="2">
<price>99.9</price> <nam6>
cauthor id="5,'> <firstname>Ham</firstname>

<name> <lastname>Wong</lastname>
<firstname>Willis</firstname> </name>
<lastname>Chan</lastname> , <address>CUHK, Hong Kong</address>

</name> </author>
<address>CUHK. Hong Kong</address> <editor name="Willis Chan">

</author> <monograph>
<authority> <title>SGML monograph</title>

<authname>Tokyo Times</authname> </monograph>
<country>JAP</country> <monograph>

</authority> <title>XSL monograph</title>
〈authority〉 </monograph>

<authname>PC Magazine</authname> ® o >
<country>HK</country> </monograoph>

</authority> <monograph>
〈authority〉 <title>DTD monograph</title>

<authname>DC Times</authname> <author id="4">
<country>US</country> <name>

</authority> <firstname>Brenda</firstname>
^。。k> <lastname>Chan</lastname>
<book> 於

<booktitle>XML cook book</booktitle> , f ddress>Choi Hung, Hong Kong</address>
<price>99.9</price> </autho「>
〈author id="3"> <®ditor name="Roy Chan">

<name> <monograph>
<firstname>Roy</firstname> <title>XML monograph</title>
<lastname>Chan</lastname> </monograph>

</name> <monograph>
<address>CUHK, Hong Kong</address> <title>DTD monograph</title>

</author> </monograph>
〈authority〉 </editor>

<authname>PC Times</authname> </monograph>
<country>HK</country> <monograph>

</authority> <title>monograph XSLT</title>
〈authority〉 <author id="4">

<authname>Tokyo Times</authname> <name>
<country>JAP</country> <firstname>Brenda</firstname>

</authority> <lastname>Chan</lastname>
<authority> </name>

<authname>PC Zone</authname> <address>Choi Hung, Hong Kong</address>
<country>HK</country> </author>

</authority> <®ditor name="Henry Hui">
</book> <monograph>
<book> <title>monograph XSLT</title>

<booktitle>DTD book</booktitle> </monograph>
<price>39.9</price> </editor>

/ Figure 3.48: Fraction of synthetic xml

Chapter 4

Finding Multivalued
Dependencies

Apart from functional dependency, multivalued dependency is another important

consideration in database design and analysis. We can detect multivalued de-

pendencies to improve the database design by decomposition it to fourth normal

form. As a result, apart from using functional dependencies, we consider using

multivalued dependencies to improve the schema prototypes produced by our

algorithms. As we mentioned in the Section 3.2.6 of Chapter 3,the motivation

for using multivalued dependencies is that when we mapped the XML data ac-

cording to the schema prototypes, it is possible to have M:N mapping situation

as an element might allow more than one subelements to have multiple occur-

rences in it. Since it is possible for multivalued dependencies to hold inside M:N,

for given XML data sets following the schema prototypes, we are also interested

in discovering multivalued dependencies which might be useful for us to further

refine the schema prototypes.

While extracting functional dependencies has received considerable attention

39, 32, 47, 29, 35, 37, 38] relatively less research effort has been put in find-

ing multivalued dependencies. Based on the existing techniques of discovering

75

Chapter 4 Finding Multivalued Dependencies 76

functional dependencies, especially [29], we propose a new algorithm for finding

multivalued dependencies from a given dataset. This new approach not only can

be used in our schema extraction algorithm. It is also applicable to any large

relational database.

The algorithm is based on partitioning the set of tuples with respect to their

attribute values. The use of partitions makes the validation of multivalued de-

pendency simple and efficient. We propose several effective pruning methods

based on the properties of multivalued dependency which greatly reduce the

search space. Results show that our algorithm can correctly identify minimal

non-trivial multivalued dependencies, providing useful dependency information

to help us refining the schema prototypes. Moreover, the algorithm is also effi-

cient for many existing benchmark databases, and has good scalability over the

size of the dataset.

A new method for determining if a functional dependency holds or not was

proposed by [29]. The method is based on representing attribute sets by equiva-

lent class partitions of the set of tuples. We find that with suitable modification,

the representation is also useful in discovering multivalued dependencies.

For reader's reference, here are some of the notations that we use in the

following sections:

R A given relation schema
r A given relation over R

t[A] The value of attribute A in tuple t
[t]x Equivalence class of tuple t with respect to X C i?； a set of tuples whose

X-values equals to the X-value of t
TTx Partition of r under X under X
X j jth equivalence class in TT̂

0{Y, Xj) Number of different Y-value in equivalence class Xj

The relation in Table 4.1 is used for all the following examples concerning

Chapter 4 Finding Multivalued Dependencies 77

-Tuple ID I A I B I C I D -
1 ~ i i 2 ~ ~ ^
2 “ 1 2 " 1 F
3 " 1 Y 2
4 " l r 1 T "
5 ' 1 1 飞 Y
6 “ 1 2 ~ 2 ^

7 1 3 i ^
8 I 2 I 3 I 2 I I "

Table 4.1: An example relation

about validating multivalued dependencies with the use of partitions. For ex-

ample, T T � 二 { {1, 2, 3,4, 5, 6}, {7，8}}. The partitions for other attributes are

7r{B} = {{1，4, 5}, {2,3,6}，{7,8}}，^{c} = {{1,3, 5, 6，8}, {2,4, 7 } } and 兀 p } =

{ {1 ,6 ,7} , {2,4,8} , {3 ,5 } } respectively. The partition with respect to {CD} is

啊 } = {{1,6}, {2, 4}, {3, 5}, {7}, {8}}.

4.1 Validation of Multivalued Dependencies

According to [29], a functional dependency X ^ Y holds if and only if ttx re-

fines TTy. Thus the concept of partition refinement gives almost direct functional

dependencies. We find that we can also make use of the idea of partition re-

finement to find multivalued dependencies. With the concept of partition, each

X-value actually forms an equivalence class. Thus we can see the validation of

multivalued dependency in the way below:

Assume there is no duplicated tuples in the relation over the schema R with

attribute sets X，Y, and Z (Z represents attributes in R other than X and

y , and Z / 0). Arrange the equivalence classes in a partition by the smallest

tuple ID in each equivalence class in ascending order. E.g. 7r{AS} is sorted as

{{1,4,5}，{2,3,6}, {7, 8}} . We use Xj to represent the jth equivalence class in

Chapter 4 Finding Multivalued Dependencies 78

TTx. E.g. for = [ti]{AB] = {1,4,5}, {AB}2 = [h]{AB} = {2,3,6}，

while {AB}s = [tj]{AB} = {7,S}.

Lemma 1 Given a relation schema R with attributes X, Y and Z = R — X —

Y. The multivalued dependency X —Y holds in R iff for any valid relation r,

for every equivalence class Xj in ttx, the number of different Y-values, Xj),

times the number of different Z-values, 0{Z, Xj), equals to the size of Xj, | Xj

i.e.

e(Y,Xj)*0(Z,Xj) =1 Xj

Proof: First we assume X Y holds (thus X Z holds, by the

complementation rule [9]). In the relation r, for a fixed value of X , say Xi, let

the number of different F-values be n and the number of different Z-values be

m. We want to show that the number of tuples with the value of X in r equals

m * n. This means that all combinations of the F-values and Z values exist in

the tuples having the given X-value.

Assume on the contrary that not all of these n * m combinations of (F-value,

Z-value) pairs exist. Let (Fi, Zi) be the missing pair, i.e. the tuple (Xi, Fi, Zi)

does not exist in the relation. Note that Yi exists with another Z value and Xi,

Zi appears with another Y value and Xi. Then according to the definition of

Multivalued Dependency, given two tuples ti = (Xi, Yi, Z) and 力2 = (Xi, F2, ̂ 1)

which exist in the relation, there should exist another two tuples ts and 力4 that

fulfill the conditions stated in Section 2.5. t^[Y] should be equal to ti[Y] = Yi

and h[Z] should be equal to t2[Z] = Zi. Thus 力3 should be {Xi, Yi, Zi), which is

exactly the tuple that dose not exist in the relation, a contradiction. As a result,

X —> Y implies that all n * m combinations of (F-value, Z-value) pairs exist

in the tuples for the fixed X-value.

Next consider the converse. Suppose that all the above mentioned n * m

/

Chapter 4 Finding Multivalued Dependencies 79

combinations of (y-value, Z-value) pairs exist. We want to show that X Y

holds (thus X Z holds). That is, we want to show that the condition

stated in Section 2.5 holds. Assume on the contrary that the condition does not

hold. Then there exist 2 tuples ix = (A"i, Yi, Zi), and t] = (Xi, 1̂ 2, ^2), where

Xi.Yi, Zi are values of X, Y, Z, respectively. And there does not exist 2 tuples

艺3 = (Xi, Yi, Z2) and 力4 = (Xi, I2, ^i)- However, since all combinations of Y and

Z values for given Xi are found,力3 and 力4 must exist, a contradiction. I

6{Y, Xj) for each equivalence class Xj in nx can be computed by comparing

Tlx and TTxY. By checking how many equivalence classes in ttxy refine (are the

subsets of) Xj, we can obtain the 9{Y, Xj) for Xj. 9{Z, Xj) can be computed in

the same way.

Example

Consider the relation schema R in Table 4.1 again. To test if A > B holds in

R above, we need to compute 7r{A}，'̂ {ab} and ^^[acd] (i.e. t^{A{j{r-b-a)])-

With the computed 兀 { B } , 兀 { C } and we can thus compute

and 'n[ACD}- According to Table 4.1, ti{ab] — {{1, 4, 5}, {2, 3, 6}, {7, 8 } } and

'K[acd] — {{1, 6}, {2,4}, {3, 5}, {7}, {8} } . For the first equivalence class =

ti]{A} — {1,2,3,4,5,6} in 7r{A}, it is refined by equivalence classes {AB}i =

{1,4,5} and {AB}2 = {2,3,6} in tt^ab}- Thus we know that 0{{B},{A}i) is

2 because {A} i is refined by 2 equivalence classes in tt^ab}- For the second

equivalence class {A}2 =[力7]{a} = {7, 8} in ttia}, it is refined by class {AB}2 =

{7,8} in Thus 巧 {B} , {A}?) is 1.

Similarly, {A} i is refined by equivalence classes {ACD}i = {1, 6}，{ACD}2 =

{2,4} and {ACD}^, = {3,5} in h^acd]- Thus we know that e{{CD},{A]i) for

{A}i is 3 because {A} i is refined by 3 equivalence classes in tt^acd}- For {A}2,

it is refined by class {ACD}^ = {7} and {ACD}s = {8}. Thus 0{{CD}, {^>2)

Chapter 4 Finding Multivalued Dependencies 80

is 2.

We can now check if the size of each equivalence class in 兀⑷ equals to the

product of its number of different {E}-values and its number of different {CD}-

values, i.e. we check whether | {A}j |= 9{{B}, {A]j) * 0{{CD}, {A}j) for all

{ A } j in 7r{A}. For {A}i, e{{B},{A}i) is 2 and 0{{CD},{A}i) is 3. | {A}i | is

6. As I 1= 6{{B}, {A}i) * e{{CD}, {A}i) (6 = 2* 3)，{A}i can fulfill the

requirement.

For {A}2, e { {B} , {A}2) is 1 and 0{ {CD} , {A}2) is 2. | {A}? | is 2. As

I {A}i 1= e{{B},{A}i) * e{{CD},{A}i) (2 = 1* 2), {A}2 can also fulfill the

requirement.

Since all equivalence classes in t t � ({ A } i and {A}2) can fulfill the require-

ment, we show that A B holds in the relation.

4.2 Search Strategy and Pruning

The general search strategy for our algorithm is as follows. The search starts

from singleton sets of right-hand side candidates for a multivalued dependency,

and works its way to larger attribute sets of right-hand side candidates. For

each right-hand side candidate, it is first validated with singleton sets of left-

hand side candidates, and works its way to larger attribute sets of left-hand side

candidates.

Similar to previous work in discovering functional dependencies, our focus is

also to find only the minimal non-trivial multivalued dependencies by pruning

the search space as much as possible. We find that there is some similarity

between the properties of left-hand sides of functional dependency and those of

multivalued dependency. Due to this similarity, we found that the small-to-large

searching concept in previous functional dependency discovery algorithm can be

/

Chapter 4 Finding Multivalued Dependencies 81

applied in discovering multivalued dependencies as well.

However, there is a crucial difference between the properties of left-hand

sides of functional dependency and multivalued dependency which results in the

increase of the search space for finding multivalued dependencies. We try to

reduce the search space based on a unique property of multivalued dependency.

The search strategies for both left-hand and right-hand sides candidates are

discussed in the following sections.

4.2.1 Search Strategy for Left-hand Sides Candidates

For functional dependency, if X — F holds then XZ — F is also valid where

Z represents some attributes in R other than X and Y. The dependency like

XZ Y above is not the minimal dependency found in the relation. Existing

algorithms for finding functional dependencies tried to avoid considering those

non-minimal left-hand side candidates, and we considered the possibility to do

that in our algorithm for finding multivalued dependencies as well.

For multiple dependency if X Y holds, XZ Y would also be valid

where Z represents some attributes in R other than X and Y. For a simple proof

of this minimality rule, please refer to appendix. This minimality rule is a special

case for multivalued augmentation rule [9]. The rule states that if a — f i holds

and J C R and (5 C 7, then ja —— 6f5 holds. When substituting 6 with 0, we

can get the rule we just stated.

With this property, we can prune the search space of left-hand side candidate

as follows.

Rule 1 Once we find a valid multivalued dependency X ->—)• Y, we do not

have to further validate any left-hand side which is a superset of X for a candidate

multivalued dependency with Y as the right-hand side.

Chapter \ Finding Multivalued Dependencies 82

4.2.2 Search Strategy for Right-hand Sides Candidates

For functional dependency, given X ^ A and X ^ ^ are valid dependencies, we

can be sure that X —> AB holds. Given X AB, we can be sure that X ^ A

and X ^ B hold as well. The dependency like X — AB above is also called a

non-minimal dependency, since obviously it can be easily deduced from X ^ A

and X ^ B. Existing algorithms for finding functional dependencies tried to

avoid those non-minimal candidates by just considering the singleton sets as the

possible right-hand side candidates.

Unfortunately, the above property for functional dependency is not always

true for multivalued dependency, i.e. if X AB holds, it may not be true that

X A and X B hold as well. For instance, in the relation of Table 4.1,

we can see that A —>-> CD holds but neither A C nor A D holds. In

this case, A CD is actually a minimal non-trivial multivalued dependency.

As a result, other than singleton sets, we have to also consider larger attribute

sets as the possible right-hand side candidates.

Let us go back to the idea about validating multivalued dependencies intro-

duced in Section 4.1. When we consider a possible dependency X Y, our

validation must involve Z (Z equals R — Y — X). It is obvious that in order

to have a valid non-trivial multivalued dependency X — Y , all X, V and Z

cannot be 0. For R with k attributes, the right-hand side candidates Y would be

the largest when X and Z are singleton sets. Thus the largest Y would be the

(k — 2)-attribute sets, and the search space is expected to contain from singleton

sets to all sets with k — 2 attributes. Using Figure 4.1 as an example, where level

refers to the number of attributes in an attribute set, we have to consider all

the sets in level 1 and 2 (indicated by larger fonts) as right-hand side candidates

only.

However, by applying the complementation rule [9] of multivalued depen-

/

Chapter 4 Finding Multivalued Dependencies 83

0

A B C D level 1

A B A C A D B C B D C D level 2

ABC ABD ACD 已 C D level 3

ABCD leve丨 4

Figure 4.1: A set containment lattice for R = {A, B, C, D}

dency, we can actually reduce the search space to less than half. The complemen-

tation rule states that if X Y holds, then X Z (Z equals R — Y — X)

also holds. From this rule, it is obvious that X Z holds iff X Y holds.

Thus while we are validating X > y , we are actually validating X —— Z at

the same time. The size of Z is the largest when that of X is the smallest, i.e.

when X is a singleton set. As a result, we do not have to consider any attribute

set as a possible Y (right-hand side candidate) if that attribute set has already

acted as a Z before. We apply the above idea to our search strategy as follows.

Rule 2 A multivalued dependency candidate X —)•—> Y will not be validated

if the level (size) of Y is greater than that ofZ = R — X — Y.

Using Figure 4.1 as an example where the number of attributes k = 4. First

we consider a singleton set {A} , which is at level 1, as the F-candidate. We

consider the X = {B}. As a result, the corresponding Z is {CD}, which is

in level 2. Since the level of the y-candidate, is smaller than that of

the corresponding Z, {CD}, the validation of the dependency B — A is

performed. By the complementation rule, it is clear that we have also validated

the dependency B CD at the same time. Later the validation will come to

take {CD} as the F-candidate, {B} as X and {^1} as the corresponding Z. Since

/

Chapter 4 Finding Multivalued Dependencies ^

the level of the F-candidate, {CD}, is larger than that of the corresponding Z,

{B}, the validation of the dependency B CD will not be performed.

For the case of having candidate Y and the corresponding Z in the same

level, we apply a similar strategy to avoid redundant validation.

Rule 3 Assume a total order on the attributes (e.g. alphabetical order).

Consider a multivalued dependency candidate X —Y where Y at the same

level (has the same size) asZ = R — X — Y. The dependency candidate will be

validated iff the smallest attribute (in alphabetical order) of Y is smaller than

that of Z.

Using Figure 4.1 as an example again. We consider a singleton set {A},

which is in level 1，as the F-candidate. And we consider the X as {BC}. Thus

the corresponding Z is {D}, which is in level 1 as well. Both {A} and {D}

are in level 1. The smallest attribute in {A} is A (since {A} is a singleton set,

the smallest attribute must be A) while that in {D} is D. Since A is smaller

than D in alphabetical order, the validation of the dependency BC — A is

performed. By the complementation rule, it is clear that we have also validated

the dependency BC D at the same time. Later the validation come to

taking {D} as F-candidate, {BC} as X and {A } as the corresponding Z. Since D

is larger than A in alphabetical order, the validation of the dependency BC

D will not be performed.

By applying the above strategy, we can greatly reduce the number of candi-

dates while still ensuring a complete search space. In other words, if R has k

attributes, we can reduce the necessary right-hand side candidates from k — 2

levels to only� (/c — 2)/2] levels. This is because from level�(A; — 2)/2] + 1 to

{k — 2), all the sets in them must have been a Z candidate for F-candidate sets

in level 1 to level \{k — 2)/2], hence will not be validated according to our search

rules. Using Figure 4.1 as an example again, A; = 4. The necessary right-hand

/

Chapter 4 Finding Multivalued Dependencies 85

side candidate(s) is/are from level 1 to level�(4 - 2)/2] = 1 thus the only level

we have to consider is level 1. The level (s) that we do no have to consider here

should be from level� (4 - 2)/2] + 1 = 2 to level 4 — 2 = 2 so it is just level 2.

4.2.3 Other Pruning

Apart from the search space pruning proposed above, we also propose several

other pruning rules based on the relation between multivalued dependency with

key and functional dependency, as well as the characteristic of multivalued de-

pendency in terms of partitions.

Left-hand Side Key pruning

It is well-known that a functional dependency holds whenever the left-hand side

of the dependency is a key. By the replication rule [9] which states that if

X ^ Y holds then X Y also holds, obviously multivalued dependency

holds under the same condition. With the above properties, we can produce

the multivalued dependencies involving key or the superset of the key at the

left-hand side without performing multivalued dependency validation at all. As

mentioned in [29], an attribute set X is a key or a superset of a key if partition

Tlx consists of singleton equivalence classes only. The identification for keys is

very simple and straightforward. As a result, we have the rule below:

Rule 4 During validation, if the left-hand side candidate is identified as a

key or superset of a key, we do not have to further verify it with our multivalued

dependency validation.

/

Chapter 4 Finding Multivalued Dependencies 86

Functional Dependency Pruning

As introduced in [29], with the use of partition refinement concept, validating a

functional dependency X Y is simply checking if | ttx | = | ^xuy I or not. While

validating a functional dependency involves single comparison, the validation

for a multivalued dependency is more complicated as it includes comparisons

between the sizes of equivalence classes for all ttx, ttxuy and ttxuz- AS a result,

for each multivalued dependency candidate X Y, we first perform the

simple validation for X Y and see if it holds. By the replication rule if the

functional dependency holds then the corresponding multivalued dependency

must hold as well. In this case, we do not have to further perform the more

complicated multivalued dependency validation process.

With Rule 2 and Rule 3, given a relation of schema R we avoid validating

any X —>—Z li X Y has been validated before where Z = R — Y — X.

However, in functional dependency pruning we should also consider if X —)• Z

is identified as a functional dependency or not. Consider that for a candidate

X — y , it's corresponding functional dependency X does not hold while

X ^ Z holds. By replication rule, X — Z should hold when X ^ Z holds.

And by complementation rule, when X Z holds, X Y should hold as

well. Thus in such a case, we still can avoid further verifying X > Y even

X —> y is not a functional dependency.

Rule 5 Given a relation of schema R and a multivalued dependency candi-

date X Y and Z = R-Y-X. if either X ^ Y or X ^ Z is identified as

a functional dependency, we do not have to further verify candidate X Y

with our multivalued dependency validation.

/

Chapter 4 Finding Multivalued Dependencies 87

Right-hand Side Key pruning

We discovered that when a dependency candidate has a key or a superset of a

key as its right-hand side, it possesses a certain kind of property as well. We can

use the property to increase the possibility of pruning more search space during

validation.

Lemma 2 Given a relation of schema R with attribute sets X, Y, and Z

(Z 二 R — Y — X). When Y is a key, if ttxz is not equal to i^x, then multivalued

dependency X Y cannot be valid.

Proof: If y is a key, the value of Y is unique for each tuple in R. In other

words, for every equivalence class Xi in TT̂ , the number of different F-values,

6{Y, Xi), must be the same as | Xj In this case, in order to fulfill the equality

6{Y, Xi) * 0{Z, Xi) =1 Xi I，6{Z, Xi) have to be 1 for each equivalence class Xi in

Tlx, i.e. TTxz have to be equal to TTX- •

By applying the above property, we can save the validation process for certain

candidates:

Rule 6 Given a multivalued dependency candidate X —^^ Y and Z =

R — Y — X. When Y is a key or superset of a key, if the number of equivalence

classes of ttx is not equal to that of ttxz, i.e. | ttx ITH 爪xz |； then we do not

have to perform dependency validation.

4.3 Computing with Partitions

In [29], in order to reduce the time and space requirement of working with parti-

tions, several techniques are introduced. We find that we can apply some of the

Chapter 4 Finding Multivalued Dependencies 88

techniques when dealing with the partitions in our proposed work as well.

Similar to [29], we use 'stripped partitions' to replace the original partitions.

A stripped partition is a partition with equivalence classes of size one removed.

We can see stripped partitions as a more compact representation for the original

partitions. For example, in Table 4.1 tt^cd} is {{1, 6}, {2,4} , {3, 5}, {7}, {8 } } .

The stripped version for 7T{cd} is only {{1，6}, {2, 4}, {3，5}}.

In [29], full partitions are still needed for computation of next level partitions

as well as validating functional dependencies. However, in our algorithm we

even apply stripped partitions for validating multivalued dependencies since our

validation can be carried out without examining singleton equivalence classes.

As stated in Section 4.1 before, to check if a multivalued dependency X

Y holds, we need TTX, t^xy and TT̂ Z, and we have to obtain Xi) and 6{Z, Xi)

for each Xi. Using 0{Y, Xi) as an example, if we use full versions of ttx and ttxy,

we can obtain 6{Y, Xi) by checking how many equivalence classes in ttxy refine

Xi. However, if we use stripped version of TT̂ and ttxy, the computation will

become counting the number of equivalence classes in ttxy which refine Xi + the

number of the remaining tuples in Xi that are not referred by any equivalence

class in ttxy- Since the Y-value and Z-value for a singleton equivalence class Xj

must be 1, it must fulfill the equality e{Y,Xj) * 0{Z,Xj) =| X). | (1 * 1 = 1). As

a result, it is okay for us to just perform checking on stripped partition and omit

all the singleton equivalence classes without affecting the results.

4.3.1 Computing Partitions

In [29], only partitions for the singleton attribute sets are computed by scanning

the database. For partitions in higher levels, they are computed as a prod-

uct of two previously computed partitions in lower levels. We used exactly

the same method introduced by [29] to compute the partitions so that for all

Chapter 4 Finding Multivalued Dependencies 89

X,Y C R^ttx ' tty = TTxuY starting from the second level partitions. Using Fig-

ure 4.1，7r{c} = {{1，3，5, 6,8}, {2,4, 7 } } and i^^d] = {{1, 6, 7}, {2，4,8}, {3，5}}

respectively. tt{cd] can be computed just from 7r{c} and ^ {̂d]- Only tuples that

are in the same equivalence class in both TT̂ C} and ti{d] forms a new equiva-

lence class in ^{cd] together. Other tuples forms singleton classes only. So the

partition with respect to {CD} is 7T{cd] 二 { {1 ,6} , {2,4}, {3, 5}, {7}, {8 } } .

4.4 Algorithm

We try to find all minimal non-trivial multivalued dependencies level by level.

For each candidate V in the level, we try to find all valid minimal left-hand

side candidates X so that X —— Y holds. To ensure that we find only the

minimal non-trivial candidates, we adopted the search strategies we described

in Section 4.2 to avoid generating duplicated next-level candidates for both left-

hand side candidates X and the right-hand side candidate Y.

The main algorithm for generating multivalued dependencies of the form

X —Y is given in Figure 4.2. In the algorithm, RHS{1) stores all right-

hand side candidates for level 1. Using Figure 4.1 as example, RHS{1) for R =

{A, B, C, D} stores four right-hand side candidates {A}, { B } , {C} and {D}. For

a right-hand side candidate (F-candidate) under validation, LHS{k) stores all

left-hand side candidates (X-candidates)to be verified where k is the level for

right-hand side candidates. LHSFAIL{k) stores all candidates that failed the

validation. LHSMVD{k) stores all successful candidates.

As shown in Figure 4.2, the input of the algorithm is all the tuples in r

over the relation schema R. Step 5 to Step 23 are repeated for each attribute

Y G RHS{1), and all valid dependencies for Y are recorded. In the algorithm, any

left-hand side candidates to be verified are stored in LHS{k). Failed candidates

/

Chapter 4 Finding Multivalued Dependencies 90

Algorithm MVD_DISCOVERY(r, R)
1 N = number of attributes in R
2 I = 1
3 RHS{1) 二 { {Y } I Y e •R}
4 while I <� (iV -2) /2 l
5 for each attribute Y G RHS{1)
6 k = 1
7 put all X G RIY into LHS{k)
8 while LHS{k) is not empty
9 for each X in LHS{k)
10 if VERIFY_MVD(X, Y) 二 = FALSE % X —— Y dose

not hold
11 enter X into LHSFAIL(k) % Rule 1
12 else % X ^^ Y

holds
13 output X Y
14 enter X into LHSMVD{k)
15 end for
16 Empty LHS{k)
17 if LHSFAIL{k) contains more than one element
18 LHS{k + 1) = GENERATE_NEXT_LEVEL_L(A:, LHSFAIL{k))
19 Empty LHSFAIL{k)
20 k = k + 1
21 end while
22 Empty LHSMVD{k)
23 end for
24 RHS{1 + 1) 二 GENERATE_NEXT_LEVEL_R(/, RHS{1))
25 丨=丨+ 1
26 end while

Figure 4.2: Algorithm for discovering multivalued dependencies

in the current level are put into LHSFAIL{k) for generating candidates for

next level. The validation for a left-hand side candidate Y is completed when

no more candidate is found in LHS{k). The process is repeated for candidate

set RHS{1) of each level I until I reaches {N — 2)/2 where N is the number of

attributes in R. The reason for stopping at no more than level {N — 2)/2 is

stated in Section 4.2.2 before. Just like [29], we have implemented the attributes

as bit vectors of words. All the left-hand and right-hand side candidates are

represented as 32-bit bit vectors in our algorithm. All LHSFAIL{k), LHS{k)^

/

Chapter 4 Finding Multivalued Dependencies 91

LHSMVD{k) and RHS{1) are arrays storing the bit vectors representation of

the candidates.

Figure 4.3 is the procedure for verifying if a multivalued dependency holds

or not.

Procedure VERIFY_MVD(X, Y)
1 Z=R-X-Y
2 pruned 二 PRUNE(X, F, Z)
3 if pruned • CONTINUE
4 return pruned
5 Get TTxY
6 Get TTxz
7 for each Xi E TTX
8 Compute 0{Y,Xi) using tvxy
9 Compute 6{Z,Xi) using nxz
10 if I Xi e(Y, Xi) * 6{Z, Xi) %Lemma 1
11 return FALASE
12 end for
13 return TRUE

Figure 4.3: Procedure for verifying a multivalued dependency

Procedure VERIFY_MVD takes in attribute set X and attribute Y and check

if X Y holds as shown in Figure 4.3. The details for computing each values

in this procedure can be found in Section 4.1 and Section 4.1. Note that the

validation would only be performed if the candidate can pass the procedure

PRUNE.

The pruning procedure for our algorithm is given in Figure 4.4. In the pro-

cedure PRUNE, we implemented four pruning rules described in the previous

sections: Rule 2 and Rule 3 for search space pruning described in Section 4.2.2,

and Rule 4 to 6 described in Section 4.2.3. We order the rules in this procedure

according to the cost of computation involved in them in ascending order. In

Figure 4.4, Y > Z if either | F |>| Z" | or the smallest attribute in Y is greater

than the smallest attribute in Z.

Chapter 4 Finding Multivalued Dependencies 92

Procedure PRUNE(X,y,Z)
1 if y > Z %Rule 2, Rule 3
2 return FALSE
3 if X is a (super)key %Rule 4
4 return TRUE
5 if (ttx == TTxy) %Rule 5
6 return TRUE
7 if {ttx == ttxz) %Rule 5
8 return TRUE
9 if y is a (super)key and nx + t^xz %Rule 6
10 return FALSE
11 return CONTINUE

Figure 4.4: Procedure for pruning a candidate set

4.4.1 Generating Next Level Candidates

The procedure of generating next level candidates is used for generating both

next level left-hand side candidates (as in Step 18), as well as right-hand side

candidates (as in Step 24). Figure 4.5 shows GENERATE_NEXT_LEVEL_L,

which is the procedure for left-hand side candidates.

Procedure GENERATEJMEXT_LEVEL_L(/c, INQUEUE)
12 if A: = 1
2 for each pair {U, V} G INQUEUE where U <V
3 W = U[JV
4 put into OUTQUEUE
5 end for
6 else
7 for each K e FKEF1X.BL0CK{INQUEUE)
8 for each pair {[/, V} e K where U <V
9 W = UUV
10 ifW^E where E E LHSMVD[k) %Rule 1
11 put W into OUTQUEUE
12 end for
13 end for
14 return OUTQUEUE

Figure 4.5: Procedure for generating next level candidates for a set of input
candidates

/

Chapter 4 Finding Multivalued Dependencies 109

For generating left-hand side candidates, this procedure takes in the failed

candidates of level k, LHSFAIL{k), and use them to generate candidates for

level k + 1, LHS{k-{-l). The candidates of level k + 1 are the supersets of size k-\-l

of the failed candidates in level k. The procedure PREFIX—BLOCK partitions

candidates in LHSFAIL{k) into blocks so that the level k candidates in each

block have same prefix of length k — 1. To avoid generating duplicated k 1

candidates, only k candidates in the same prefix blocks are used to produce level

k-\-l candidates. By doing so we can ensure it generates a minimal but complete

search space. Detailed information about PREFIX-BLOCK can be found in [7

and [41]. Consider the relation schema R in Table 4.1 again, the example search

tree generated for finding valid left-hand side candidates for attribute A is shown

in Figure 4.6.

For generating right-hand side candidates, it takes in the whole candidate

sets, RHS{1), in level I and use them to generate candidate set RHS{1 + 1).

The procedure is triggered in Figure 4.2 Line 24, and the name of the procedure

is GENERATE-NEXT丄EVEL_R. This procedure is used for generating right-

hand side candidates. GENERATE—NEXT丄EVEL_R is the same as GENER-

ATE_NEXT丄EVEL_L (Figure 4.5) except that it neglects Line 10 in Figure 4.5.

B C D

z\ \
BC BD CD

/
BCD

Figure 4.6: Search tree for attribute A in relation R = {A, B, C, D}

4.4.2 Computing Partitions

We did not have detailed description on how we generate the partitions in our

algorithm in the sections above. We talk about it in this section.

Chapter 4 Finding Multivalued Dependencies ^

In [29], validation of a functional dependency only involves two levels of par-

tition candidates. However, in a multivalued dependency validation, we have

to use partitions from different levels. E.g. for R — {A, B, C, D, E, F, G}, val-

idating if {A} {B} would require 7r{A} (level 1 partition), t:{abc} (level 3

partition) as well as ti{adefg] (level 5 partition). As a result, unlike the strategy

used in [29], which is computing new partitions during dependency validation,

our algorithm computes all the partitions before validation.

The partitions in our algorithm are computed in a similar way to that in [29]:

partitions for singleton attribute sets are computed from the relation, then the

singleton equivalence classes are stripped off and forming the stripped version for

those first-level partitions. For easy validation, we follow [29] to replace all orig-

inal values in the database with integers while keeping the original equivalence

relations in the database, i.e. same values are replaced by same integer values.

We use a hash table to map the original data values to integers in incremental

fashion (starting from 1). For partitions in higher levels, they are computed as

a product of two previously computed partitions in lower levels. Thus starting

from second-level candidate, we do no have to scan through the actual database

anymore. For more detailed information, please refer to [29 .

4.5 Experimental Results

We run experiments with our algorithm for discovering multivalued dependen-

cies. We implemented our algorithm in C language and compiled our programs

with GCC compiler under Unix environment. We implemented two versions for

our algorithm: One works completely in main memory while the other stores all

partitions on disk. With the two implementations, we carried out our experi-

ments on Sun Ultra 5 workstations with 704 MB main memory. To illustrate

the difference between memory and disk based approaches, we also used a Sun

/

Chapter 4 Finding Multivalued Dependencies 95

Sparc 20 workstation with 128 MB main memory.

We tried our algorithm on a number of real life databases. The databases we

used are available on the UCI Machine Learning Repository [11]. The datasets

and the corresponding descriptions can be found in the url stated in [11]. We

did not make any changes to any of the dataset except that we removed all

duplicated tuples in the datasets. Table 4.2 shows the results of our algorithm

on the example in Table 4.1 and 15 real life databases. Table 4.3 shows the

pruning results of our algorithm on those benchmark databases.

4.5.1 Results of the Algorithm

The name of the database, the number of tuples in the database (| r |), the

number of attributes of the database (| R |) are shown in the first 3 columns

in Table 4.2. In the fourth column, we have the number of pure multivalued

dependencies found. Here a pure multivalued dependency means that the found

multivalued dependency is minimal nontrivial and not derived from functional

dependencies or keys at all.

For Table 4.3, in the first column we have the number of multivalued de-

pendency candidates that we have to verified, and the second column shows the

number of candidates that we really have to verify by our multivalued depen-

dency validation after pruning. Note that the second column actually indicates

the number of candidates we have to consider after applying pruning rule Rule

1. From the third column to the last column we have the number of multivalued

dependency candidates that is pruned by our proposed pruning rules Rule 2 to

Rule 6.

The first row of Table 4.2 and Table 4.3 shows the results for the example

used in Table 4.1 used in this paper. The following 15 rows shows the results for

all the real life databases picked from [11 .

/

Chapter 4 Finding Multivalued Dependencies 96

Databse Name | r | | | | | Pure MVP
example 8 4 ^
servo 167 5 ^
hayes-roth 132 6 ^
shuttle-landing 15 7 22
bupa_data 341 7 0
post-operative 80 9 14
pima-indians-diabetes 768 9 0
yeast “ 1462 10 ^
breast-cancer -Wisconsin 691 11 84
glass 214 11 ^
bridges “ 108 13 ¥
flarel “ 187 13
flare2 365 13 1 0 ^

echodiogram 132 13 0
wine - 178 14 �

housing I 506 I 14 I 0

Table 4.2: Results of our algorithm on benchmark databases

4.5.2 Evaluation on the Results

In our experiment, we selected 15 real life databases, which are all from [11.

From the results shown in Table 4.2, among those 15 databases we used in

our experiments, 6 of them consist of pure multivalued dependencies. The re-

sults indicates that multivalued dependency do exist in a portion of the real

life databases, and our algorithm should be able to provide useful multivalued

dependency information.

For each benchmark database, the number of pure multivalued dependencies

found by our algorithm is actually exactly half of the values shown in Table 4.2.

It is because that Rule 2 and 3 prevent our algorithm from validating multivalued

dependencies which's F-candidates are Z-candidates before. However, when the

multivalued dependency X Y holds it's counterpart X Z must hold

as well. Thus we double the values of MVD found to obtain 'Pure MVD，.

/

Chapter 4 Finding Multivalued Dependencies 113

M V D MVP- Pruned by —

Database Name candidates validated Rule 2 fc 3 I Rule 4 " Rule 5 by Rule 6
example 22 i T 8 0 ~ 2
servo 144 75 69 “ 0 0~ 0—
hayes-roth 26^ 100 71 15 0~ 80—
shuttle
-landing 1464 789 ^ ^ ^ 0_
bupa-data 1515~ 810 666 27 9 3_
post-
operative 16056 9075 6981 0_ 0 0_
pima-indians-
diabetes 13566 6539 5996 553 36 442
yeast 2864^ 10294 10018 “ 255 65 8Q14~
breast-cancer-
wisconsin 147609 82056 65352 6 183
glass 7332T 20076 34600 511 2674 15462"
bridges 809209 221460 372061 4434 536" 210718
flarel 1416667" 784628 632028 0 I F Q~
flare2 一 1412446 780540 631893 ~~ 0 13" 0
echodiogranT" 874058" 275570 426972 26763 550 _ 144203
wine 892293" 13113 469544 "153873 ^ 255718"
housing 1484093 248471 635597 41375 1658 556992"

Table 4.3: Pruning results of our algorithm on benchmark databases

From Table 4.3, we observe that Rules 2 and 3 have significant effects on most

of the databases in our experiments. On the other hand, the effects of pruning

Rules 4 to 6 depend much on the characteristics of the databases. When there

is key or superkey in the relation Rule 4 and 6 (especially Rule 6), provide good

pruning effects. In some of the benchmark databases, Rule 6 provides pruning

effects comparable to that from Rule 2 and 3. Overall speaking, our pruning

rules have satisfactory effects on most of the databases in our experiments.

/

Chapter ^ Finding Multivalued Dependencies 98

4.5.3 Scalability of the Algorithm

We evaluate the performances of our algorithm by the real time elapsed, instead

of CPU time. The time is recorded by a Perl script. The reason for recording

real time instead of CPU time is to have a clearer illustration on the cost of

memory usage and the cost of I/O processing.

From the results in Table 4.2, it is obvious that the the search space increases

enormously when the number of attribute increases. In fact, just like functional

dependency, the search space for multivalued dependency is exponential in the

number of attribute [37, 38]. Thus, similar to all algorithms for finding func-

tional dependencies do, our algorithm for finding multivalued dependencies has

exponential time and space scalabilities in the number of attributes. However,

typically the number of attribute of a real life database is not really large, and

our algorithm performs well. In our experiment, results for all 15 databases are

obtained in a few minutes at most. For some of the smaller databases which

have fewer attributes, the required time is just a few seconds.

Since the complexity for our algorithm is inevitably exponential in the num-

ber of attribute, we are interested in evaluating how the number of tuples affects

the performance of our algorithm. To do that, we use a real life database, Wis-

consin breast cancer database, obtained from UCI Machine Learning Repository

11]. Result of this database can be found in its corresponding rows in Table 4.2.

Originally the data set consists of 699 tuples but we removed 8 duplicated tu-

ples. To see how our algorithm scales over the number of tuples, we adopt the

method used in [29] to enlarge the database for experimenting scalability. We

duplicate the breast cancer data set multiple times and then merge them to-

gether to provide larger datasets. During data duplication, a new different set of

attribute values is used so that we increase the database size but keep the same

multivalued dependencies. We first run the experiment using memory version of

/

Chapter 4 Finding Multivalued Dependencies 115

our algorithm. The result is illustrated in Figure 4.7.

7 0 0 0 “ ~

6 0 0 0 ^ ^

_ 5 0 0 0

§ 4000 ^ nrz
E ^ ^ ~ ^ M V D (M E M)

•B 3 0 0 0 ^ ^

2 0 0 0 ^ ^

1000 ^ ^

0 ^ ‘ ‘ ‘ ‘ ‘

0 2 0 0 0 0 4 0 0 0 0 6 0 0 0 0 8 0 0 0 0 100000 120000
Number of Tup les

Figure 4.7: Scalability of our algorithm over large dataset

Our algorithm performs linearly in the number of tuples. The disk version

of our algorithm performs also linearly except that the time required for disk

version is longer than that for memory version. The difference between memory

version and disk version is shown in Figure 4.8. MVD(MEM) represents the

memory version while MVD(DISK) represents the disk version. The extra time

required by disk version is caused by the disk access time for writing and reading

partition files.

12000

10000

？ 8000 ^ n z
吕 6000 ———•——————————••；；;;：：^^—^^^^^^^^；；^^：：：；^^^^-^——、 ‘

2000
0 I , I I

0 20000 40000 60000 80000 100000 120000

Number of Tuples

Figure 4.8: Scalability of our algorithm

To evaluate the situation when we run out of main memory while handling

a very large datasets, we run both versions of our algorithm on a Sun Sparc 20

Chapter 4 Finding Multivalued Dependencies 100

workstation which have poorer hardware specification when compared with a Sun

Ultra Sparc workstation, including the size of memory. The Sparc 20 workstation

we use for experiment has 128 MB main memory. The result is illustrated in

Figure 4.9.

100000

80000

蕃 60000 """"""""^^ "•一 MVD(MEM)

； 40000 MVD(DISK)

20000 ^
Q I I

0 20000 40000 60000 80000 100000120000

Number of Tuples

Figure 4.9: Scalability of our algorithm: with limited main memory

The performance of the memory version drops significantly when memory

is running out. When the main memory runs out, the machine starts to use

the reserved swap memory together with main memory. When the size of swap

space increases, the performance for the main memory version drops. Memory

swapping causes a sharp increase in running time, which is shown in the curve

for the memory version. On the other hand, the disk version of our algorithm

still performs nearly linearly as it relies much less on main memory while requires

more temporary disk space. The memory / disk space usage for both versions of

our algorithm is shown in Figure 4.10. The memory / disk space usage for our

algorithm also has nearly linear scalability.

Chapter 4 Finding Multivalued Dependencies 皿

"oT o
圣 600 “

圣 500 ：： ; - - ^ - ^ M V D (M V D)
§) .zZ Main Memory
cc 400

2 300 - 二 丨 S K) w j Z Main Memory
S 200 -MVD(DISK)
^ 100 Disk Space
o 0 "， 严~

^ 0 20000 40000 60000 80000 100000120000

No. of Tuples

Figure 4.10: Memory and disk space usage of our algorithm

4.5.4 Using Multivalued Dependencies in Schema Extrac-

tion Algorithms

As we discussed in the previous chapter, we would like to introduce multivalued

dependency discovery into our schema extraction algorithms to refine the rela-

tional schema of the XML data. As a result, the global scheme for our schema

extraction algorithm should become:

(1) Simplify DTD

(2) Construct schema prototype trees

(3) Generate relational schema prototypes

(4) Detect possible functional and multivalued dependencies and

candidate keys

(5) Normalize the relational schema prototypes

To illustrate how multivalued dependencies inside the XML data can help

refining the relational schema, we repeat the experiment on the SIGMOD Record

XML dataset and the synthetic XML dataset as we do in Chapter 3 Section 3.3.

This time we apply our multivalued dependency discovery algorithm in Step 4

/

Chapter 4 Finding Multivalued Dependencies 102

of our schema extraction algorithm as well.

Real Life XML Data: SIGMOD Record XML

In our previous experiment of using DTD-splitting Schema Extraction Algorithm

on SIGMOD Record XML dataset, the schema prototype produced is relatively

small in size (only 2 to 3 attributes per table). The need for further decomposition

is rather small. As a result, we use schema prototype produced in Global Schema

Extraction Algorithm to illustrate the effect to show that how we can improve the

relational schema generated by our algorithms with the addition of multivalued

dependency discovery.

After applying our multivalued dependency discovery algorithm, the result

for the schema prototype of sigmodrecord.xml is shown in Table 4.4. The

multivalued dependencies found are shown in Figure 4.11.

Pure M V D MVD- pruned by

I r I I R I M V D Candidates validated Rule 2 3 | Rule 4 Rule 5 Rul"^

3113 7 I 8 I 1495 796 664 9 | 25 | 1—

Table 4.4: Results of multivalued discovery algorithm on SIGMOD Record
XML data (in Global Extaction Algorithm)

With the multivalued dependencies, we can further normalize the relational

schema produced in Figure 3.28 using 4NF decomposition [23]. 4NF decompo-

sition algorithm is presented in appendix for readers' reference. The relational

schema produced is shown in Figure 4.12.

Note that Figure 4.12 is just one of the possible designs for the relational

schema. With the functional and multivalued dependencies found in the XML

data, the user can decompose the schema prototypes into other good relational

database designs for the XML data.

/

Chapter 4 Finding Multivalued Dependencies 103

Tablel
No. of tuples: 3133
No. of attributes： 7
MVDs found：

1 3 5 ->-> 2 1 3 5 ->-> 2 4
1 3 5 ->-> 4 6 7 1 3 5 ->-> 6 7
3 5 ->-> 1 2 3 5 ->-> 6 7
3 5 ->-> 4 6 7 3 5 ->-> 1 2 4

— I I — —

Figure 4.11: Multivalued dependencies found from the prototype table in Figure
3.26

Table Pure M V D MVD- pruned by

Name | r \ \ R \ M V D Candidates validated Rule 2 & 3 | Rule 4 Rule 5 R u l i

"book 507 ~ 8 ~ 0 3074 1924 1051 0 ^ 11
monograph 487 7 2 938 397 329 14 54 43

Table 4.5: Results of multivalued discovery algorithm on synthetic XML data
(in Global Extaction Algorithm)

Synthetic XML Data

The result of applying multivalued dependency discovery algorithm on the tables

produced by the Global Schema Extraction Algorithm is shown in Table 4.5,

and the multivalued dependencies found are shown in Figure 4.13. However

when applying 4NF decomposition on the schema prototypes, the multivalued

dependencies found do not result in a more refined relatoinal schema in this

experiment.

For applying multivalued dependency discovery algorithm on the tables pro-

duced by the DTD-splitting Schema Extraction Algorithm, since the schema

prototype produced is relatively small in size (only 2 to 4 attributes per table).

No multivalued dependencies are found in the mapped data for the schema pro-

/

Chapter 4 Finding Multivalued Dependencies 104

tablel-l{

SigmodRecord.issue.articles•article.title, (3)

SigmodRecord.issue.articles.article•initPage, (4)
SigmodRecord.issue.articles.article.endPage (5)
}

tablel-2{

SigmodRecord.issue.articles.article.title, (3)

SigmodRecord.issue.articles•article•endPage (5)

SigmodRecord.issue.volume, (6)

SigmodRecord.issue•number (7)
}

table2{

SigmodRecord.issue.articles.article.authors.author, (2)

SigmodRecord.issue.articles.article.title, (3)

SigmodRecord.issue.number (7)
}

tables{

SigmodRecord•issue.articles.article.authors.author.position' (1)

SigmodRecord.issue.articles.article.authors•author, (2)

SigmodRecord.issue.articles.article.initPage, (4)

SigmodRecord.issue.articles.article.endPage (5)

SigmodRecord.issue.number (7)
}

table4{

SigmodRecord.issue.articles.article.authors.author.position, (1)

SigmodRecord.issue.articles.article.authors.author, (2)

SigmodRecord.issue.articles.article.title, (3)

SigmodRecord.issue.articles.article.initPage, (4)

SigmodRecord.issue.volume, (6)
}

Figure 4.12: Relational schemas produced for sigmodrecord.xml based on
4NF decomposition

/

Chapter 4 Finding Multivalued Dependencies 105

table：book

No. of tuples: 507

No. of attributes： 8

MVDs found:

table:monograph

No. of tuples: 487

No . of attributes： 7

MVDs found:

6 ->-> 7
6 —>-> 1 2 3 4 5

Figure 4.13: Multivalued dependencies found from the synthetic XML data (in
Global Extraction Algorithm)

Pure M V D MVD- pruned by

I r I I i? I M V D Candidates validated Rule 2 & 3 | Rule 4 Rule 5 Rule 6

" W 4 ¥ 16! 9! l| l| 5| 0

Table 4.6: Results of multivalued discovery algorithm on synthetic XML data
(in DTD-splitting Extaction Algorithm)

totype. However, as we mentioned in Chapter 3 Section 3.3.3, for the schema

generated by DTD-splitting Schema Extraction Algorithm we might be able to

further refine the design by undergoing another round of dependency discovery.

As a result, we try to discover multivalued dependencies in the resulting schema.

Using the schema from Hybrid method as an example, we do find multivalued

dependencies in the table table: monograph. The result is shown in Table 4.6

and the multivalued dependencies found are shown in Figure 4.14. The refined

design of table: monograph and a fraction of the refined tables based on 4NF

decomposition is shown in Figure 4.15 and Figure 4.16.

/

Chapter 4 Finding Multivalued Dependencies 122

table:monograph

No. of tuples: 487

No. of attributes: 4

MVDs found：

2 ->-> 3 2 ->-> 1 4

Figure 4.14: Multivalued dependencies found from table: monograph

table:monograph (
title (1),
name (2)，

monograph .title (3)，

author.id (4)
)

table:monograph-1 (table:monograph-2 (
name (2)， title (1),
monograph.title (3), name (2)，

) author.id (4)
)

Figure 4.15: Refined design for table:monograph of synthetic XML data, which
is produced by hybrid method, based on 4NF decomposition

/

Chapter 4 Finding Multivalued Dependencies 107

table:monograph -1

name monograph.title

Roy Chan XML monograph

Roy Chan DTD monograph

Roy Chan mono XML

Willis Chan SGML monograph table:monograph -2

Willis Chan XSL monograph tlM author.id

Roy Chan XML monograph XML m o n o g r a p h _ Roy Chan 2 _

Roy Chan DTD monograph XSL m o n o g r a p h _ Willis Chan 2 _

Roy Chan mono XML DTD m o n o g r a p h _ Roy Chan 4 _

Henry Hui monograph XSLT monograph XSLT Henry Hui 4 _

Figure 4.16: Tables of the refined table :monograph

/

Chapter 5

Conclusion

5.1 Discussion

It is clear that the fast emerging XML is becoming a dominant standard for

representing data in the World Wide Web. When compared to HTML, it is

obvious that XML encoding provides information in a far more convenient and

usable format from a data management perspective. When viewing XML from a

database point of view, it is possible to query the content of the XML documents.

But what is the best way to provide this query capability over XML documents?

The answer should depend on how we store the XML document into a database

system. With XML documents having the characteristics of semistructured data,

it seems that the recent research on storing and querying semistructured data

can be easily applied to XML documents. And in fact, there has been great

deal of activities exploiting new semistructured models and query languages for

this purpose. A good example would be the Lore system which uses OEM (Ob-

ject Exchange Model) [43] to store XML data, and use a semistructured query

language Lorel for querying the XML data.

In theory, a semistructured system would clearly work and it should work

best with the tailored features for handling XML data. However, is it the

108

Chapter 5 Conclusion 109

only approach to take? Numerous researches in the past years on relational

database have made today's RDBMS mature and well developed. The tech-

niques in semistructured database are still in their early stage. It may take

quite a while for semistructured database systems to be as well developed as

RDBMS is. Before semistructured database system could be well prepared for

XML data and while RDBMS is still the most dominant database system in the

industry, we think it is quite reasonable to explore the possibility of leveraging

relational database techniques to provide store and query capability over XML

data. Before the development of semistructured database system is matured

enough, relational database should be a very good alternative solution.

In this thesis, first we propose a Global schema extraction algorithm that

relies on the functional and multivalued dependencies in the XML data. Unlike

other previous work which only relies on the structure or the structure declaration

(DTD)of the XML data, schemas created by Global algorithm are based on the

real characteristics extracted from the XML data itself, thus ensuring all schema

decompositions made in the algorithm are reasonably done based on relational

database theory. In order to deal with the possible high exponential cost for

finding dependencies when the structure of the XML is relatively large, as well

as the change of the data characteristics when large scale update is performed

which might affect the schema produced, we propose a DTD-splitting schema

extraction algorithm that decompose the DTD of the XML data before schema

extraction based on the relational database theory. Schemas created by DTD-

splitting algorithm are based more on the characteristics extracted from the DTD

correspond to the XML data than that of the actual XML data. Three different

schema prototype construction methods are proposed with Hybrid method being

the best one among them based on the studies using relational database concepts.

In order to further enhance the design of the relational schema generated by our

algorithms, a new algorithm for finding multivalued dependencies is proposed.

/

Chapter 5 Conclusion HQ

The algorithm shows nearly linear scalability in the number of tuples of the

dataset and is very suitable for applying on a large set of data. Better relational

schema for XML data can be produced with the information of multivalued

dependencies in the XML data. With the extracted relational schema, the data in

the XML document can be mapped into an RDBMS where relational techniques

could be used to manage the XML data.

The astute reader may notice that some information about the XML docu-

ment might be lost under our algorithms. This is indeed true: The relative order

of each element is lost while constructing the schema prototype trees. However,

we expect that this would not be a problem for storing XML documents in the

field of e-commerce and EDI. The XML used in e-commerce and EDI fields are

basically data-centric XML documents which have highly regular structure of

text and low concern for the total order of elements. For document-centric XML

documents which possesses less limit in the size of text and high concern in to-

tal order of elements, a content management system would be more suitable for

maintaining the documents than RDBMS.

5.2 Future Work

We have some suggestion for the future direction of our research.

5.2.1 Translate Semistructured Queries to SQL

With our proposed algorithm, direct SQL queries are highly possible. When no

artificial key is needed during the schema extraction process, all the data in the

resulting tables should be from the original XML data thus direct SQL queries

is possible. Users do not have to make queries using some artificial fields in the

table that have no actual meaning to them. On the other hand, it is possible

Chapter 5 Conclusion 111

for the users to use semistructured query language to make queries according to

the actual structure of the XML data. In this case, The semistructured queries

should be first translated to SQL statements, then queries are performed on the

relational tables for the XML data. Many semistructured query languages are

proposed for querying XML as a semistructured model [6，19, 5, 48, 34, 18.

The main concept in these semistructured query language is the use of path

expression which provides more flexibilities in querying than SQL. Based on the

relational schema produced by our algorithms, it is possible to develop a set

of query translation between semistructured queries and SQL queries for our

relational tables of the XML data. We illustrate a possible translation by using

the SIGMOD Record XML as example. Using the hybrid method relation schema

in Figure 3.33 as the example relational schema here, if we have a semistructured

query like the one shown in Figure 5.1，we can simply translate it into the SQL

shown in Figure 5.2.

WHERE <article>
<title> From XML to Relational Database </title>
<authors>

<author>$a</author>
</authors>

</article>
CONSTRUCT ALL <result>$a<result>

Figure 5.1: Example semistructured query

SELECT X.author
FROM table:author X，table:article Y
WHERE X.Y.assignedID = Y.assignedID
AND Y.title="From XML to Relational Database"

Figure 5.2: SQL translated from example semistructured query

However, as mentioned in [49], when the path expression is more compli-

cated, e.g. with more operators in the path expression while having wild cards

/

Chapter 5 Conclusion 112

loosening the constraints in the path expression, the translation would not be so

straight-forward. As stated in [42], relatively less research efforts have been put

on translating from XML queries to SQL queries. [42] proposed some general

methods for it. We think that translating and optimizing the path expression

into SQL for the relational schema generated by our algorithm would be an

interesting topic to work on.

5.2.2 Improve the Multivalued Dependency Discovery Al-

gorithm

We propose our algorithm for finding multivalued dependencies based on the

concept of partition. Right now we have to generate partitions for all levels of

candidates before validation for multivalued dependency candidates. The reason

is that in a multivalued dependency validation, we have to use partitions from

different levels. E.g. for R = {A, B,C, D, E, F,G}, validating if {A}

{B} would require 71{a} (level 1 partition), tt^abc} (level 3 partition) as well

as 7T{adefg} (level 5 partition). As a result, unlike the strategy used in [29],

which is computing new partitions during dependency validation, our algorithm

computes all the partitions before validation. We are interested to find out if

there are other searching strategies which can reduce the level of partitions we

have to used in each iteration of the validation process.

Moreover, for the disk version of our algorithm, we can further optimize the

disk usage by introducing data compression techniques on the partition file. The

trade-offs between disk compression and the disk access time will be studied.

5.2.3 Incremental Update of Resulting Schema

In our proposed algorithms, we produce the relational schema based on the

characteristics, especially functional dependencies and multivalued dependencies,

of the XML data. When the XML data is updated, it is possible that the set of

dependencies in the XML data is changed too. As a result, the relational schema

of the XML data may have to be updated as well. In Global algorithm, it is

highly necessary to perform schema update since the schema is totally based on

the dependencies in the XML data. In DTD-splitting algorithm, if the resulting

schema depends more on the characteristics in the DTD, it is possible to avoid

schema update even the XML data is updated. However, when the number of

element and attributes declared in the DTD is large, it is still inevitable that the

resulting schema depends on the dependencies in the XML data. Thus we have

to propose some incremental update method for the resulting schema and try to

reduce the cost of updating schema as much as possible.

One possible direction for the incremental update method is to try to min-

imize the number of tables in the resulting schema we have to update. The

reason is that we expect that upon the update of XML data, usually only part

of the dependencies discovered in the XML data would be updated. Thus just

few resulting tables in the resulting schema might be affected and we should

try to minimize the number in the update method. Another possible direction

is to try to minimize the need for schema update. Here we can introduce the

concept of approximate functional dependency [32] and use it to replace the role

of functional dependency. The basic idea of approximate functional dependency

is to define the error e{X Y) for an functional dependency X ^Y. Upon the

update of XML data, if e[X Y) is still smaller than the threshold we set, we

would still treat X ^ F to be a valid dependency. Update of resulting schema

is needed only when one of the approximate dependencies in XML data cannot

hold, i.e. the error is larger than the threshold we set.

113

/

Bibliography

1] World Wide Web Consortium (W3C). http://www.w3c.org/.

2] D. Connolly and H. Thompson. XML Schema, http:// www.w3c.org/ XML/

Schema.

3] ISO 8879. 1986 Information processing -Text and office systems - Stan-

dard Generalized Markup Language (SGML), http:// www.iso.ch/ cate/

dl6378.html.

4] S. Abiteboul. Querying semistmctured data. In Proceedings of the Interna-

tional Conference on Database Theory, pages 1-18, Delphi, Greece, January

1997.

5] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The lorel

query language for semistmctured data. In Journal of Digital Libraries,

volume 1(1)，pages 68—88，April 1997.

6] S. Adler, A. Berglund, J. Caruso, S. Deach, P. Grosso, E. Gutentag,

A. Milowski, S. Parnell, J. Richman, and S. Zilles. Extensible Stylesheet

Language (XSL) Version 1.0. Working Draft 27 available at http://

www.w3.org/ TR/ xsl/, March 2000.

7] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. Verkamo. Fast

discovery of association rules. In Advances in Knowledge Discovery and

Data Mining, pages 307-328, 1996.

114

/

http://www.w3c.org/
http://www.w3c.org/
http://www.iso.ch/
http://www.w3.org/

8] W. Armstrong. Dependency structures of data base relationships. In Pro-

ceedings of the 1974 IFIP Congress, pages 580—583，1974.

9] C. Beeri, R. Fagin, and J. Howard. A complete axiomatization for func-

tional and multivalued dependencies. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, pages 47-61, 1977.

10] C. Beeri and T. Milo. Schemas for integration and translation of structured

and semi-structured data. In Proceedings of the International Conference

on Database Theory, 1999.

.11] C.L. Blake and C.J. Merz. UCI repository of machine learning databases,

1998. University of California, Irvine, Dept. of Information and Computer

Sciences.

12] Jon Bosak. Xml, Java, and the future of the web. http:// metalab.unc.edu/

pub/ sun-info/ standards/ xml/ why/ xmlapps.htm.

13] Jon Bosak and Tim Bray. Xml and the second-generation web. In Scientific

American, May 1999. Web edition available at: http:// www.sciam.com/

1999/ 0599issue/ 0599bosak.html.

14] K. Brathwaite. Relational theory: concepts and application. In Academic

Press, San Diego, 1991.

15] T. Bray, J. Paoli, and C. Sperberg-Mcqueen. W3C Recommendation:

Extensible Markup Language (XML) 1.0. http://www.w3c.org/TR/xml,

February 1998.

16] P. Buneman. Semistructured data. In Proceedings on the Principles of

Database System (PODS), pages 117-121, 1997.

•17] P. Buneman. Semisturctured data. In Proceedings of the Sixth ACM

SIGACT-SIGMOD-SIGART Symposium on Principle of Database Systems,

Tucson, Arizona, May 1997.

115

/

http://www.sciam.com/
http://www.w3c.org/TR/xml

18] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Oaraboschi, and L. Tanca.

XML-GL: a graphical language for querying and restructuring xml docu-

ments. In Proceedings of the international WWW Conference, 1999.

19] J. Clark. W3C Recommendation: XSL Transformations (XSLT) Version

1.0. http:// www.w3.org/ TR/ xslt, November 1999.

20] E. Codd. A relational model fro large shared data banks. In Communications

of the ACM, volume 13(6), pages 377—387，1970.

21] D. Connolly. Extensible Markup Language (XML), http:// www.w3c.org/

XML.

22] A. Deuntsch, M Fernandez, and D. Suciu. Storing semistructured data with

stored. In Proceedings of ACM SIGMOD Conference on Management of

Data, Philiadelphia, PA, 1999.

23] R. Fagin. Multivalued dependencies and a new normal form for relational

databases. In ACM Trasactions on Database Systems, volume 2(3), pages

262-278, 1977.

24] M. Fernadez, D. Florescu, J. Kang, A. Levy, and D. Suciu. Catching the

boat with Strudel: Experiences with a web-based management system. In

Proceedings of ACM SIGMOD Conference on Management of Data, Seattle,

WA, September 1997.

25] D. Florescu and D. Kossmann. A performance evaluation of alternative

mapping schemes for storing xml data in a relational database. Technical

report, INRIA, May 1999.

26] D. Florescu and D. Kossmann. Storing and querying xml data using an

rdbms. In Data Engineering Magazine of Bulletin of the IEEE Computer

Society Technical Committee on Data Engineering, pages 27-34, September

1999.

116

• /

http://www.w3.org/
http://www.w3c.org/

27] R. Goldman, J. McHugh, and J. Widom. From semistructured data to

xml: Migrating the lore data model and query language. In 1999 WehDB

Workshop, 1999.

28] Yka Huhtala, Juha Kakkainen, Pasi Porkka, and Hannu Toivonen. Tane

program, http:// www.cs.Helsinki.FI/ research/ fdk/ datamining/ tane/.

29] Yka Huhtala, Juha Kakkainen, Pasi Porkka, and Hannu Toivonen. Ef-

ficient discovery of functional and approximate dependencies using parti-

tions. In Proceedings of 14th International Conference on Data Engineering

(ICDE’98), pages 392-401, Cambridge, MA, 1998.

30] IBM. DB2 XML Extender, http:// www-4.ibm.com/ software/ data/ db2/

extenders/ xmlext/.

31] Gerti Kappel, Elisabeth Kapsammer, S. Rausch-Schott, and Werner Rets-

chitzegger. X-ray - towards integrating XML and relational database sys-

tems. In International Conference on Conceptual Modeling / the Entity

Relationship Approach, pages 339—353, 2000.

32] J Kivinen and H. Mannila. Approximate inference of functional dependen-

cies from relations. In Theoretical Computer Science, September 1995.

33] D. Lee and W. Chu. Constriants-preserving transformation from XML doc-

ument type definition to relational schema. In Proceeding of Proc. 19th

International Conference on Conceptual Modeling (ER)” 2000.

34] A. Levy, M. Fernadez, D. Florescu, J. Kang, and D. Suciu. XML-QL: a query

language for xml. In Proceedings of the International WWW Conference,

1999. Also available at http:// www.w3.org/ TR/ NOTE-xml-ql/.

35] Wie Ming Lim and John Harrison. Parallel approaches for discovering func-

tional dependencies from data for information system design recovery. In

117

/

http://www.cs.Helsinki.FI/
http://www.w3.org/

Proceedings of the 1997 International Symposium on Parallel Architectures,

Algorithms and Networks (ISPAN ,97), Taipei, Taiwan, 1997.

36] D. Maier. The theory of relational databases. In Computer Science Press,

1983.

37] H. Mannila and K. Raiha. The Design of Relational Database. Addison-

Wesley, Menlo Park, CA, 1992.

38] H. Mannila and K. Raiha. On the complexity of inferring functional de-

pendencies. In Discrete Applied Mathematics, volume 40, pages 237-243,

1992.

39] H. Mannila and K. Raiha. Algorithms for inferring functional dependencies.

In Data Knowledge Engineering, 1994.

40] H. Mannila and H. Toivonen. Levelwise search and borders of thories in

knowledge discovery. In Data Minging and Knowledge Discovery, pages

241-258, 1997.

41] H. Mannila, H. Toivonen, and A. Verkamo. Discovery of frequency episodes

in event sequences. In Data Minging and Knowledge Discovery, pages 259-

289, 1997.

42] 1. Manolescu, D. Florescu, and D. Kossmann. Pushing XML queries inside

relational databases. Technical report, INRIA，2001.

43] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A

database management system for semistructured data. In SIGMOD Record,

volume 26(3), pages 54-66, September 1997.

44] J. McHugh and J. Widom. Query optimization for semistructured data.

Technical report, Standford University, November 1997.

118

/

45] J. McHugh, J. Widom, S. Abiteboul, Q.Luo, and A.Rajaraman. Indexing

semistructured data. Technical report, Standford University, January 1988.

46] P. Merialdo. ACM SIGMOD Record: XML Version, http:// www.acm.org/

sigmod/ record/ xml/, December 1999.

47] S. Parikh, M Ganesh, and J. Srivastava. Parallel data mining for functional

dependencies. Technical report, University of Minnesota, 1996.

48] J. Robie, J. Lapp, and D. Scach. XML query language (XQL). http://

www.w3c.org/ TandS/ QL/ Q198/ pp/ xql.html, 1998.

49] J. Shanmugasundaram, Tufte K, G. He, C. Zhang, D. DeWitt, and

J. Naughton. Relational database for querying xml documents: limitations

and opportunities. In Proceedins of the 25th VLDB Conference, Edinburgh,

Scotland, 1999.

•50] A Silberschatz, H. Korth, and S. Sudarshan. Database System Concepts,

chapter 2. McGraw Hill, 1996.

.51] Oracle Corporation Steve Muench. Using xml and relational databases for

internet applications.

52] Igor Tatarinov, Zachary G. Ives, Alon Y. Halevy, and Daniel S. Weld. Up-

dating xml. In ACM SIGMOD Conference 2001, pages 413-424, 2001.

'53] C. Zaniolo. Analysis and Design of Relational Schemata for Database Sys-

tems. PhD thesis, University of California, Dept. of Computer Science,

1976.

119

/

http://www.acm.org/
http://www.w3c.org/

Appendix A

Simple Proof for Minimality in
Multivalued Dependencies

Assume that X, Y, Z, W partition the attributes in the relation R. W e assume that the

multivalued dependency X Y hold for R.

To see if XZ Y holds, we have to find out the tuple pairs having the same
attribute values in X and Z, and see if their corresponding tuples are in R too. So if

(1) {x,y,z,w) and

(2) M , z , u /)

are tuples of R, by the definition of multivalued dependency, if XZ Y holds we
expect R contains corresponding tuples

(3) {x^y^z^w') and

(4) [x,y',z,w).

Since X Y holds, when there is tuple (1) and tuple (2), there exist tuples

(5) (:r,y',z,w) and

(6) (x,y,z,w')

in R too.

120

/

As tuple (3) = tuple (5) and tuple (4) 二 tuple (5) so R contains the corresponding

tuples we expected as well.

Since all the expected tuples are contained by R, we prove that for a relation R if
X Y holds, XZ -)—> Y also holds in R where Z represents attributes in R other
than X and Y. Actually it is a special case for multivalued augmentation rule. The
rule states that if a /3 holds and j C R and (5 C 7, then ja ->-> S/3 holds. When
substituting S with 0, we can get the minimality rule we just proved.

121

/

Appendix B

Third and Fourth Normal Form
Decompositions

In our proposed algorithms, we decompose the schema prototypes into the relational
schemas based on the functional dependencies or even the multivalued dependencies
found in the XML data. In our examples and experiments, we normalized the schema
prototypes based on Third Normal Form(3NF) and Fourth Normal Form(4NF) respec-
tively. The decomposition algorithm for 3NF and 4NF are shown below.

122

/

B.l 3NF Decomposition Algorithm

Algorithm 3NF_DECOMPOSITION

1 Fc is the canonical cover of the set of functional dependencies;
2 i := 0;

3 for each functional dependency X ^ Y in Fc do

4 if none of the schemes Rj, I < j <i contains XY

5 then begin
6 i := i 1]

7 Ri := XY]

8 end

9 if none of the schemes Rj, 1 < j < i contains a candidate key for R

10 then begin
11 i \= i

12 Ri := any candidate key for R;

13 end

14 Return {Ri, R2,Ri)

123

• /

B.2 4NF Decomposition Algorithm

Algorithm 4NF_DECOMPOSITION

1 result {i?};

2 done := false;

3 compute is the closure of the set of functional dependencies

4 while (not done) do

5 if there is a scheme Rj in result that is not in 4NF

6 then begin

7 let X —)•—)• y be a nontrivial multivalued dependency that

8 holds on Rj such that X — Rj is not in F+, and X 门 7 = 0

9 result := {result - Rj) U (Rj - Y) U (X, Y);

10 end

11 else done true;

12 then begin

124

/

•:..、vV ：： ,、. . ： , I . 、 ‘

:.:: :.:.::•:...:.::;...:::..、/•::: ： ；, .:._,、_.: •：

.....••••.•：
, . . : • . . • , •

. _

�•..

r ‘

一 • • • • • — ‘
. , .

‘

. ‘ V . . I

• 1.‘. . • . . 1 . - . .:，:. . . � �

.., ’•.. . ‘ . . , .'. . ’ • .

.丨....•• ...
•::‘ •’’. ..••...:...............、：’

. - . 1 „ ； . .,.‘ - / . - . . : , ‘

CUHK L i b r a r i e s

l i
0D3fl7173^

