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Abstract 

XML - the extensible Markup Language - is rapidly becoming a new standard 

for data representation and exchange on the Internet. When viewing XML from 

a database point of view, it is possible to manage the content of the XML doc-

ument using databases. Most of the work has been concentrated on building a 

semistructured database system based on the semistructured-characteristics of 

XML. Besides adopting such a new and immature technique, using a traditional 

relational database system seems to be another option. As a result, we try to 

explore the possibility of storing XML data into a relational database instead 

of a semistructured database. Since XML data and relational data are vastly 

different in nature, we try to optimize the use of an relational database to store 

XML data by proposing a relational schema extraction algorithm. The general 

idea of our algorithm is to first extract the schema prototypes from the DTD 

(DTD is essentially a grammar for XML) of the XML documents, then apply 

an existing functional dependency discovery technique, TANE, on the prototype 

relations. With the found dependencies in the XML data, the schema prototypes 

can be further decomposed into better relational schema following the traditional 

relational database design theory. To reduce the cost of our algorithm due to the 

exponential complexity in the number of attributes during the dependency dis-

covery, we further propose several approaches to extract possible characteristics 
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in the XML data according to the DTD (DTD splitting) before going to the step 

of dependency. For smaller size DTD, the DTD-splitting appoarches perform 

well even without the step of dependency discovery. In order to further improve 

the design of the relational schema, we propose a new algorithm based on the 

idea of partition refinement for finding possible multivalued dependencies in the 

XML data, thus providing more useful information for producing the relational 

schema. To reduce the search space of the multivalued dependency discovery 

algorithm, several effective pruning techniques are introduced. Experiments are 

carried out to show the effectiveness of all of our proposed algorithms. 
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論文題目：從X M L到關係數據庫 

作者：般民軒 

學校：香港中文大學 

學系：計算機科學及工程學系 

修讀學位：哲學碩士 

摘要’• 

XML -可擴展標記語言(Extensible Markup Language) -正迅速地成為互聯網 

(Internet)上數據代表及交換的新標準。從數據庫(Database)的觀點來看XML， 

用數據庫來管理X M L數據乃可能的傲法 0大部分的研究皆專注於利用X M L 

半結構化(semistmctured)的特徵來建立半結構化數據庫系統°除了採用如此新 

而不成熟的技術，利用傳統的關係數據庫系統似乎是另一個選擇°因此，我們 

嘗試用關係數據庫(relational database)替代半結構化數據庫來儲存XML數據， 

並探索其中的可能性。由於XML數據與關係數據本質上有非常大的差異，因 

此我們提出抽取關係模式(extracting relational schema)的演算法，來試著優化使 

用關係數據庫儲存X M L數據的做法。我們的演算法大致的概念為：首先從 

X M L文件的D T D (DTD本質上乃XML的語法）中抽取出模式原型 ( schema 

prototype)，然後應用現存的發現函數依賴(functional dependency)技術-TAKE 

於原型關係上。利用從XML數據所找出的依賴，我們可依循傳統的關係數據 

庫設計理論’進一步將模式原型分解成較佳的關係模式。我們的演算法在發現 

依賴時，在屬性(attribute)數量上存在著指數複雜性(exponential complexity)�為 

了減少這種指數代價，我們提出數種方法從而在進行發現函數依賴的步驟之 

前，預先在DTD裡抽取出XML數據中可能擁有的特質°為了再進一步改良關 

係模式的設計，我們根據分區求精(partition refinement)的概念，提出另一新演 

算法來於XML數據中找出多值依賴(multivalued dependency)，從而提供更多有 

利於生產關係模式的資訊。為了減少此演算法的搜索空間’我們引入數種有效 

的剪枝(pruning)技術。我們並用實驗結果顯示所有建議的演算法的效能° 
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Chapter 1 

Introduction 

The Extensible Markup Language (XML) is the universal format for structured 

documents and data on the Web [15]. It is derived from SGML [3] and it is 

expected to rapidly become a new standard for data representation and exchange 

on the Internet. Because XML was defined as a textual language rather than data 

model, a XML document has implicit order. Although an XML document can 

have no restrictions on tags, attribute names, or nesting patterns, it is expected 

that most XML documents will be accompanied by Document Type Definitions 

(DTDs) [15, 21]. DTD is essentially a grammar for restricting the tags and 

structure of a document. The Internet community expects most of the XML 

documents on the web will conform to DTDs in order to make the XML data 

fully functional [12, 13 . 

It is clear that the fast emerging XML will soon become a dominant standard 

for representing data in the World Wide Web. When compared to HTML, it is 

obvious that XML encoding provides information in a far more convenient and 

usable format from a data management perspective. Being a document markup 

language (in some sense a meta language), XML is mainly used for representing 

data in the form of documents. However, in the database point of view, XML 

data stored in the document will have only limited usage unless the data is stored 
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and managed in a database system. 

1.1 Storing XML in Database Systems 

Due to the nature of information on the Web and the inherent flexibility of XML, 

data encoded in XML may be semistructured [16]. Work from the database com-

munity in the area of semistructured data corresponds closely to XML [4，17 • 

As a result, storing the XML data into a semistructured database system seems 

to be a straightforward solution, and there have been considerable activities in 

the semistructured community focussed upon developing these kind of semistruc-

tured database systems [43, 24, 27 . 

In theory, semistructured system would clearly work and it should work best 

with the tailored features for handling XML data. However, is it the only ap-

proach to take? It is still unclear if the approach of using such systems is going to 

find widespread acceptance in the near future. The techniques in semistructured 

database are still new and under exploration, and it may take a long time for 

semistructured database systems to be as well developed as relational database 

system (RDBMS) is. As a result, we consider using an RDBMS to store XML 

data to be another possible approach. Using RDBMS to store XML data not 

only can let us apply well-developed relational techniques on XML data, but 

also can let existing traditional data coexist with the XML data which makes it 

possible to build applications that involve both kinds of data with little extra 

effort. 

Since XML data and relational data are vastly different in nature (semistruc-

tured vs. structured), we have to explore new methods in order to optimize the 

use of an RDBMS to store XML. The main concern in this problem is how to 

produce the relational schema from the XML data. Recently, several approaches 
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Chapter 1 Introduction 3 

have been proposed. One strategy is to infer from the DTDs of the XML docu-

ments how the XML elements should be mapped into tables [49]. Another option 

is to analyze the pattern of the XML data and then extract the schema from it 

22]. Yet another option is to use simple ad-hoc schemes based on the widely 

accepted graph model for semistructured data [25, 26]. The three approaches 

presented above have one thing in common: they try to produce the relation 

schema solely based on the structure (or pattern) in the XML data. We propose 

a new approach which also takes the characteristics of the XML data into con-

sideration except examining the structure of data. To do so, we introduce the 

traditional relational concepts like functional dependency [20] and multivalued 

dependency [53]. Our algorithm can thus produces relation schema that is better 

refined with and the produced tables should be more suitable for managing and 

querying. 

The general idea of our algorithm is to first extract the schema prototypes 

from the DTD of the XML documents, then apply existing functional depen-

dency discovery (inference) techniques like [29] on the prototype relations. With 

the found dependencies in the XML data, the schema prototypes can be further 

decomposed into better relational schema which follows the traditional relational 

database design theory. To reduce the cost of our algorithm due to the expo-

nential complexity in the number of attribute during the dependency discovery, 

we propose several approaches to extract possible characteristics in the XML 

data according to the DTD before going to the step of performing dependency 

discovery. The new algorithms are presented in Chapter 3. In order to fur-

ther improve the design of the relational schema, we propose a new algorithm 

for finding possible multivalued dependencies in the XML data, thus providing 

more useful information for producing the relational schema. The new algorithm 

is presented in Chapter 4. 
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1.2 Outline of the Thesis 

The thesis is orgranised as follows. 

In Chapter 2, We first give an overview of XML and also DTD, which is 

important in our proposed algorithms for producing relational schema of XML 

data. Then we review and compare the related work in storing XML data into 

database, including storing XML data using special-purpose database, relational 

database...etc. We focus more on work that uses relational database to store 

XML data. 

In Chapter 3 introduce our proposed algorithms for extracting relational 

schema from DTDs and the XML documents. First we introduce the general 

approach for producing relational schema for XML data proposed by us. Then 

we describe Global Extraction Algorithm and DTD-split Extraction Algorithm, 

both of which rely mainly on DTD together with dependency discovering tech-

nique. And finally we compare and analyze the experiment results of our algo-

rithms on real life XML data as well as sythetic XML data. 

In Chapter 4, we introduce the new algorithm for discovering multivalued 

dependencies from relational data. First we introduce the partition technique 

involved in our algorithm. Then we describe the searching and pruning strategy 

used in our algorithm. And finally we provide the performance of our algorithm 

on benchmark databases together with the scalability test result on our algo-

rithm. We also illustrate how the multivalued dependencies found in the XML 

data help refining the relational schema design. 

We give a conclusion on our current work and discuss about our future work 

in Chapter 5. 
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Chapter 2 

Related Work 

2.1 Overview of XML 

In this section, we give a brief overview of XML and DTD. (Note: only the 

concepts that are related to this paper will be introduced; for the formal speci-

fications, see [15, 21]) 

2.1.1 Extensible Markup Language (XML) 

Extensible Markup Language (XML) is simple, easily parsed and self-describing 

data format for representing and exchanging data on the web. At its most basic 

level, XML is a document markup language permitting tagged text (elements), 

element nesting, and element reference. Each tagged element has a sequence of 

zero or more attribute/value pairs, and a sequence of zero or more subelements. 

Suppose there is an XML representation of catalog information for a book as 

shown in Figure 2.1. 

Text delimited by angle brackets (< . . . >) is markup, while the rest is charac-

ter data. Elements may contain a mix of character data and other elements; e.g. 

5 
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〈 b o o k〉 

<title>Fables of the Green Forest</title> 

〈 a u t h o r〉 

<f irstname>Henry G. </f irstname> 

< lastname〉Ge orge < lastname〉 

</author> 

<author> 

<f i:rst:iiame〉HaLf iie:r</f irstname〉 

<lastname>Pacman</lastname> 

</author> 

〈price currency = "HKD">149. 9</price〉 

〈bestseller autliori1:y="Times"/〉 

</book> 

Figure 2.1: An XML representation example 

the book element contains the elements such as title and price. The element 

named title contains character data denoting the book title, and similarly, the 

element price contains character data denoting the book's price. This element 

also has an attribute named currency with the value HKD, represented using the 

syntax attribute-name:，，attribute-ydue，，within the elements' start-tag. 

In general, element names are unique; e.g., the book element in the example 

contains two author elements. However, attributes names are unique within an 

element; e.g., the price element cannot have another attribute named currency. 

The syntax also permits an empty element〈bestseller〉〈/bestseller〉to 

be represented more concisely as〈bestseller/〉. XML documents are called 

well-formed if they satisfy simple syntactic constrains, such as proper delimiting 

of elements names and attributes and proper nesting of start and end tags. 

2.1.2 Data Type Definition (DTD) 

XML provides a simple and general markup facility, which is useful for data inter-

change. The simple tag-delimited structure of well-formed XML makes parsing 
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extremely simple. However, applications that operate on XML data often need 

additional guarantees on the structure and content of such data. For example, a 

program that calculates the tax on the sale of a book may need to assume that 

each book element in its XML input includes a price subelement with a currency 

attribute and numeric content. Such constraints on document structure can be 

expressed using a Document Type Definition (DTD). A DTD defines a class 

of XML documents using a language that is essentially a context-free grammar 

with several restrictions. 

Using the book example in Figure 2.1, one may use the following DTD dec-

laration in Figure 2.2 to constrain XML documents in our example. 

<！ELEMENT book (title, author+, price, bestseller?)> 

<!ELEMENT title (#PCDATA)> 

<！ELEMENT author (#PCDATA|lastname丨firstnameIfullname)*〉 

<！ELEMENT price (#PCDATA)〉 

〈！ATTLIST price currency CDATA "USD" 

source (list I regular I sale) list 

taxed CDATA #FIXED "yes"〉 

<!ELEMENT bestseller EMPTY〉 

<!ATTLIST bestseller authority CDATA #REQUIRED〉 

Figure 2.2: An Document Type Definition (DTD) example 

The first line of this declaration is an element type declaration that constrains 

the contents of the book element. Following common convention, the declaration 

syntax uses commas for sequencing, parentheses for grouping. Special operators 

like ？ , * and + are used to denote different type of occurrences of the preceding 

construct as shown in Table 2.3 

The second line of this DTD declares the type for the title element to be 

parsed character data (indicated by #PCDATA and implying an XML processor will 

parse the contents looking for markup). The declaration also indicates that the 

7 
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-< ！ ELEMENT...〉| element type declaration 

<!ATTLIST. . .> attribute type declaration 

< ！ ENTITY...〉 entity type declaration 

#PCDATA parsed character data 

CDATA character data 

？ zero or one 

* zero or more 

+ one or more 

I or 

Figure 2.3: Common declarations and operators used in an DTD 

price element may have attributes currency, of type character data (indicated 

by CDATA) and default value USD; source, with one of the three values shown (an 

enumeration type) and default value list; and taxed, with the fixed (indicated 

by #FIXED) value yes. The fixed attribute type is a special case of the default 

attribute type; it mandates that the specified default value not be changed by 

and X M L document conforming to the D T D . Our example D T D thus specifies 

that the book in our X M L example in Figure 2.1 must be taxed. Note that the 

use of some element names without a corresponding declaration in the D T D is 

not an error. D T D is not a must for any X M L document and such elements are 

simply not constrained by the D T D . However, it is expected that most of the 

practical XML documents on the web will conform to DTDs in order to make 

the XML data fully functional. For instance, any web application or a mobile 

agent encountering an XML file can interpret the file by consulting the DTDs to 

which the document conforms. 

An XML document that satisfies the constraints of a DTD is said to be 

valid with respect to that DTD. The DTD associated with an XML document 

may be specified by the inclusion of document type declaration, e.g. < ！ DOCTYPE 

BOOKCATALOG SYSTEM "http://www.haha.com/ bookcatalog.dtd">, in a spe-
cial section at the beginning of a document that called its prolog. The declara-

/ 
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tion above indicates that the XML document claims validity with respect to the 

BOOKCATALOG DTD which may be found at the indicated location. 

Apart from element type and attribute type declaration, there are indeed 

some other types of declaration. For instance, entity type declarations are used 

for declaring entities as an abbreviation: users can define an abbreviation with 

its corresponding full term, and then use this abbreviation in the XML document 

(or DTD). For more details about the DTD, please refer to [15, 21]. The data 

modelling provided by DTDs may not be sufficient for some applications and the 

XML Schema [2] proposal defines facilities that address the needs that cannot be 

provided by DTD. XML schema was accepted recently (2001-05-02) as a W3C 

1] Recommendation. Still, DTD is more commonly used right now and the work 

on the XML Schema is still undergoing. 

2.1.3 ID, IDREF and IDREFS 

ID, IDREF and IDREFS are special attributes which are need for referencing 

element/elements from another element. The attribute ID can occur once for 

each element. ID uniquely identifies an element within a XML document and 

can be referenced through an IDREF field in another element. IDREFS is used 

when more than one IDREF field are referenced by the element. Consider the 

following example in Figure 2.4 with its DTD at Figure 2.5. 

〈Person Id=，Pl，Naine='Ham' Friend='P2' /> 
〈Person Id=，P2， Name=，Roy， Friend=，Pl， /> 

<Course Title=‘Introduction to Computing' Tutor='Pl P2' /> 

Figure 2.4: An example XML document fragment 

From the DTD in Figure 2.5, it is clear that the attribute Id is of type ID, 

/ 
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<!ELEMENT Person EMPTY〉 

<!ATTLIST Person Id ID #REQUIRED Name CDATA #REQUIRED 

Friend IDREF #IMPLIED〉 

<!ELEMENT Course EMPTY〉 

〈！ATTLIST Course Title CDATA #REQUIRED 

Tutor IDREFS #IMPLIED> 

Figure 2.5: DTD for Figure 2.4 

Friend is of type IDREF and Tutor is of type IDREFS. Thus attributes Friend 

and Tutor serve as references to Person elements. 

2.2 Using Special-Purpose Database to Store 

XML Data 

Most of the work on storing XML data uses semistructured database system. For 

such a special-purpose database system such like Lore [43, 27] or Strudel [24], it 

is particularly tailored to store and retrieve XML data, using specially designed 

structures and indices [45], query languages [5, 48，34，18] and particular query 

optimization techniques [44]. However, it is still unclear if the approach of using 

special-purpose system is going to find widespread acceptance. Despite that the 

special-purpose should work best, it is going to take a long time before such 

systems are mature and scale well for large amount of data. On the other hand, 

relational database systems are mature and scale very well, and they have the 

additional advantage that in a relational database XML data and traditional 

(structured) data can co-exist making it possible to build applications that in-

volve both kinds of data with little extra effort. As a result our approach in this 

thesis is to explore the use of an RDBMS to manage the XML data. 

/ 
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2.3 Using Relational Databases to Store XML 

Data 

In the approach of using an RDBMS to store and query XML data, XML data 

is mapped into relational tables and queried by SQL. As the requirements of 

processing XML data are very different from requirement to process traditional 

(structured) data, recent work has concentrated on models and algorithms to 

convert XML documents to relational tuples, and the main concern is how to 

produce the relational schemas from the XML data. We state some of the recent 

work in below. 

2.3.1 Extracting Schemas with STORED 

Deutisch et al. proposed STORED [22] approach which use a combination of 

semistructured and relational techniques. First all the XML data are mapped 

into semistructured model which is similar to the graph model used in special-

purpose databases. Then [22] uses frequently pattern discovery to produce 

the relational schemas. The most frequently-appeared patterns found in the 

semistructured model of XML are used to produce relational schemas while the 

least frequently-appeared patterns are stored into overflow graphs. 

can be stored into RDBMS entirely under STORED. [22] claims that under 

reasonable assumptions, the generated schemes can cover a large percentage of 

the XML data (at approximately 90 %) while the remaining data have to be 

managed separately by overflow graph, making the data hard to be managed 

and queried. 
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2.3.2 Using Simple Schemes Based on Labeled Graph 

Florescu and Kossmann proposed simple ad-hoc schemes based on the widely 

accepted graph model for semistructured data [25, 26]. In the labeled graph 

model, each XML element is represented by a node in the graph; the node is 

labeled with the oid of the XML object. Element-sub element relationships are 

represented by edges in the graph and labeled by the name of the subelement. 

The order of subelements of an element is represented by ordering every outgoing 

edges of a node in the graph. Values of an XML document are represented as 

leaves in the graph. Various ways to store the edges of the graph, as well as ways 

to store the leaves of the graph, are proposed. 

The approach used in [25, 26] focused much at preserving of the order and 

structure of the original XML data and has to create a lot of extra data . With 

only a small portion of the attributes in the table storing the actual XML data, 

the produced tables are apparently much larger in size than the original XML 

documents, making the approach least attractive. This approach is not suitable 

for direct queries on the data as well since too many attributes are unknown the 

the users. 

2.3.3 Generating Schemas from DTDs 

The most related work will be from Shanmugasundaram et al. who proposed cre-

ating relational schemas according to the DTDs the XML document conforming 

to [49]. XML data is not involved in the process at all. The produced table can 

then be used for semistructured-queries-like SQL queries. First, DTD graphs are 

created from the DTDs of the XML data. A DTD graph represents the structure 

of a DTD. Its nodes are elements, attributes and operators in the DTD. Each 

element appears exactly once in the graph, while attributes and operators appear 

as many times as they appear in the DTD. Relational Schema then can be gen-

/ 
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erated from the DTD graph by inlining the elements and attributes following a 

set of rules. Several schema conversion techniques are proposed and discussed in 

49]. Some of the recent research on XML and relational database [33，31, 42, 52 

also adopt the technique proposed in [49] for generating the relational schema. 

Just like [25, 26], the resulting relation schemas are specifically designed that 

having many of it's attributes unrelated to the actual XML data but serving for 

the special purpose only, e.g. attributes are added for joining the tables only. 

In one of our proposed algorithm introduced in Chapter 3, we enhanced [49]，s 

approach based on relational database theory. 

The three approaches presented above have one thing in common: they try 

to produce the relation schema solely based on the structure (or pattern) in the 

XML data without considering the characteristics of the data and the possible 

dependencies in the data. In our proposed work, we try to produce the rela-

tional schemas of XML based on both the structure of the XML data, and the 

characteristics of the XML data. 

2.3.4 Commercial Approaches 

Database companies are working to figure out how XML data can fit into their 

systems. For example, commercial product like Oracle 8i or 9i [51] or IBM DB2 

XML Extender [30] provides a primitive solution which is to ask the user or a 

system administrator in order to decide how XML elements and attributes are 

stored in relational tables. It requires the user to have enough knowledge on the 

XML data and the user has to define the relational mappings of the XML data 

based on the special definition languages provided in the database system. Our 

proposed approaches are automatic. 

/ 



Chapter 2 Related Work ^ 

2.4 Discovering Functional Dependencies 

2.4.1 Functional Dependency 

A functional dependency over a relation schema R is an expression X Y, 

where X C R and Y e R. The dependency holds or is valid in a given relation 

r over R if for all pairs of tuples t,u e r we have: if t[A] — u[A] fro all A e X, 

then t[Y] 二 u[Y], i.e. t and u agree on X and Y. A functional dependency 

X ^Y is minimal (in r) if A is not functionally dependent on any proper subet 

of X , i.e. if Z ^ Y does not hold in r for any Z C X. The dependency 

X ^ Y is trivial HY e X. Functional dependency is originally defined in [20 . 

The axioms for functional dependencies are introduced in [8]. The theory of 

functional dependencies is discussed in [36]. Functional dependency is one of the 

most important constraints in relational database design and analysis. 

2.4.2 Finding Functional Dependencies 

In our proposed algorithms, one of the important steps would be using the exist-

ing functional dependency inference technique to find out the functional depen-

dencies inside the XML data. Much work has been done on discovering functional 

depedencies from relations in the past years [39, 32, 47, 35, 29]. It is called func-

tional dependency inference problem: Given a relation r, find a set of functional 

dependencies that is equivalent with the set of all functional dependencies holding 

in r. As the problem can have a probabilistic nature, some of the recent works 

have been focused on approximate functional dependency inference [32，47]. In 

order to improve the efficiency of the dependency inference, some of the recent 

works have been focused on using parallel approaches [47, 35]. Recently a new 

algorithm called TANE for discovering functional and approximate dependencies 

was proposed [29], which has improved the efficiency of dependency inference by 

/ 
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several orders of magnitude over the previous work. We find that it is also pos-

sible to apply this existing techniques in finding the functional dependencies for 

our relational schema prototypes for XML data. Moreover, a new algorithm for 

finding multivalued dependencies proposed by us is based on the idea of partition 

refinement used in TANE. 

2.4.3 TANE and Partition Refinement 

TANE finds functional dependencies based on the concept of partition refine-

ment. 

For a relation schema R, given a relation (or table) r, two rows (or tuples) t 

and u are equivalent with respect to a given set X C R if attributes t[A] = u[A 

for all A G X. Any attribute set X partitions the tuples of the relation into 

equivalence classes. W e denote the equivalence class of a tuple t G r with 

respect to a given set X C R by [t]x, i.e. [t]x = {u e r \ t[A] = u[A] for all 

A G X}. The set TTX = {[t]x | t G r} of equivalence classes is a partition of 

r under X. That means TTX is a collection of disjoint sets (equivalence classes) 

of tuples, such that each set has a unique value for the attribute set X , and the 

union of the sets equals the relation r. 

"Tuple ID I A I B I C I D 
1 ~1 r 2 3一 

2 ~ 1 2 i T 
3 " 1 2 2 Y 
4 1 i ~ ~ 1 ~ ~ T 
5 i i ~ ~ 2 T 
6 "1 ~ ~ 2 2 ^ 
7 ~ 2 3 I ^ 

8 I 2 I 3 I 2 I 丁 

Table 2.1: An example relation 
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For example, consider the relation in Table 2.1. Attribute A has value 1 

for tuples 1 to tuples 6，so they form an equivalence class {1,2,3,4,5,6} (here 

we use tuple identifiers to denote tuples). Attribute A has value 2 in tuple 7 

and tuple 8, so they form another equivalence class {7,8}. The whole partition 

with respect to A is tt^A} = {{1，2, 3，4, 5, 6}，{7，8}}. The partitions for other 

attributes are 7r{B} = {{1,4, 5}, {2, 3, 6}, {7, 8}} , and the partition with respect 

to {CD} is TT^cD} = {{1, 6}, {2,4}, {3, 5}，{7}, {8 } } . 

A partition TT is a refinement of another partition TT' if every equivalence 

class in TT is a subset of some equivalence class of TT'. 

Let ti be the tuple with Tuple ID = i. TT^CD} refines TTĵ } since each equivalence 

class in TT^CD} is totally contained by some equivalence class in On the other 

hand, TT{CD] dose not refine TT̂ Î since some equivalence classes in TTjcD} are not 

contained in any equivalence class in ^ {̂b]- For instance, \ti]{cD] = {1,6} in 

Ti{CD] is not contained in any equivalence class in 

It is easy to see that the partitions can be computed as a product of two pre-

viously computed partitions. As shown in TANE, the product of two previously 

computed partitions TT' and TT", denoted by TT' • TT", is the least refined partition 

TT that refines both TT' and TT": For all X, Y C R^TTX - TTY = Tr^^uy}-

According to TANE, a functional dependency X Y holds if and only 

if Tlx refines vry. Thus the concept of partition refinement gives almost direct 

functional dependencies, i.e. we can determine if a functional dependency X A 

holds by simply checking if | 兀义 | 二 | 7rxu{A}. 

To find all minimal non-trivial functional dependencies. TANE starts the 

search from singleton sets of attributes and works its way to larger attribute 

sets through the set containment lattice level by level. When the algorithm is 

processing a set X, it tests dependencies of the form X/{A} A, where A e X. 

This guarantees that only non-trivial dependencies are considered while pruning 
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the search space effectively, as shown in Figure 2.6. 

0 

A X C D 

AB AC AD BC BD CD 

ABC ABD ACD BCD 

ABCD 

Figure 2.6: A pruned set containment lattice for {A, B, C, D}. Due to the 
deletion of B, only the bold parts are accessed by the levelwise algorithm 

TANE also adopted levelwise strategy [40]to discover the functional depen-

dencies level by level while pruning much of the search space. As a result, the 

algorithm can outperform the previous algorithms by several orders of magni-

tude. For more details please refer to [29 . 

2.5 Multivalued Dependencies 

Multivalued dependency was first discussed in [53]. A set of axioms are given 

in [9] for multivalued dependency where the axioms are proved to be sound 

and complete. The notion of fourth normal form (4NF), which is based on 

multivalued dependency, was proposed in [23 . 

We assume the usual interpretation of a relation (or table) in the relational 

database model where no duplicate tuples are allowed. The definition of multi-

valued dependency is given below: 

Let Rhe 3i relation schema and let X = Xi, X 2 , X ^ be a subset of R , let 

! 
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Y = Fi, F2,..., Yn be a subset of i? and let Z = - F - X. The multivalued 

dependency X Y holds in R if, in any legal relation r(jR), for all pairs of 

tuples ti and t] in r such that ti[X] = t2[X], there exists tuples 力3 and U in r 

such that: 

ti X] — t2[X = = [X 

t^[Y]=ti[Y] 

hi^] = 

U[Y] = t2[Y 

Z — t\ Z 

Given a relation schema R, a multivalued dependency X > Y is said to be 

non-minimal if there exists a multivalued dependency X' )• Y where X' is 

a proper subset of X ; X —)—^ Y is said to be trivial liY C. X ox X{JY = R. It 

is obvious that in order to have a non-trivial multivalued dependency X > Y, 

all 义，Y and Z = — X - cannot be 0. 

2.5.1 Example of Multivalued Dependency 

Table 2.2 shows a simple example to demonstrate the occurrence of multivalued 

dependency. Consider a relation schema with three attributes namely Course， 

Teacher, and Text Book. Suppose that for a course MVDlllO taught in a 

certain semester, there are two teachers (A and B) sharing the teaching and the 

course requires three text books (Bookl, Book2 and Book3). There is no reason 

to associate a Teacher with one Text Book but not the others. As a result, 

the only way to express the fact that Teachers and Text Books of a Course 

are independent of each other is to have each Teacher associate with each Text 

/ 
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Book, and the tuples for the course MVDlllO are shown in Table 2.2. 

Course Teacher Text Book 
"MVPTTIQ" A B o o k l ~ ~ 
"MVDlllO A Book2 
MVDlllO A Books 

"IdVDmO B Bookl~~ 
~MVD111Q B ~~Book2 
""MVDlllO B Book3~~ 

Table 2.2: An multivalued dependency example 

It is obvious that redundancy exists in the table. However, there is no func-

tional dependency. The way to remove the redundancy is to consider multival-

ued dependency. With the definition of multivalued dependency we can see that 

Course > Teacher and Course Text Book hold in the example. For 

example, taking the first and the last tuple in our example table as ti and 力2 

respectively, the corresponding ts and in the table should be the third and the 

fourth tuple respectively such that: 

ti[ Course ]=力2[ Course ] — ts[ Course ] 二 力4[ Course ] = MVDlllO 

ts[ Teacher ] = ti[ Teacher ] = A 

ts[ Text Book ]=力2[ Text Book ] = BookS 

力4[ Teacher ]=亡2[ Teacher ] 二 B 

U[ Text Book ] = ti[ Text Book ] = Bookl 

/ 
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Using RDBMS to Store XML 
Data 

As mentioned before in section 1，XML data and relational data are vastly differ-

ent in nature (semistructured vs. structured) thus we directly store XML data 

into RDBMS. We have to come up with the suitable relation schemas and use 

them for mapping the data in the XML documents into the RDBMS accordingly. 

The general flow of generating the suitable relational schemas is shown in Figure 

3.1. 

After suitable DTD simplification, prototype schemas are extracted from the 

simplified DTD. The relational schemas are then further decomposed from the 

prototype schemas according to the functional dependencies discovered in the 

XML data. 

Based on this general flow, we propose several algorithms to create relational 

schemas from the XML data and the DTD those XML data conforming to. 

Although the algorithms we propose have different details, the global scheme is 

the same, as shown in Figure 3.2. 

20 

7 . 
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DTD for the — 
謂 L data • Simplification ^ ^ ^ simplified DTD 

^^^^^ ] 

5 
Relational Schema 

Prototype Derivation 

Y 

Relational 
XML data Dependency Discovery Schema 

^ & Prototypes 
Schema Normalization 

^ — — - j - — — 

Y 

Resulting 
Relational 
Schemas 

Figure 3.1: General flow of generating relational schemas from XML 

Algorithm GENERAL_SCHEMA_EXTRACTION_ALGORITHM 
1 INPUT: 
2 > Set of XML documents conforming to the same DTD 
3 > DTD used by the set of XML documents 
4 OUTPUT: 
5 > Set of relational schemas for the set of XML documents 
6 METHOD: 
7 Simplify DTD 
8 Construct schema prototype trees 
9 Generate relational schema prototypes 
10 Detect possible functional dependencies and candidate keys 
11 Normalize the relational schema prototypes 

Figure 3.2: Algorithm for extracting relational schemas from XML 

J 
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3-1 Global Schema Extraction Algorithm 

The first algorithm we propose is called the Global Schema Extraction algorithm. 

3.1.1 Step 1: Simplify DTD 

First, we need to simplify the DTD for the set of XML documents. Being the 

schema of XML, DTD can be very high in complexity just like their counterpart 

for semistructured data [10]. Even we expect that DTDs designed for real-

life applications would not have extremely complicated structures, an ordinary 

nested DTD consist of entity type declarations still possesses high complexity. 

Attempts for constructing schema prototype trees (which will be described in 

Step 2) of a DTD would likely be a hard job. However, it is possible to simplify 

the DTD and without affecting the way we extract the relational schemas. After 

all, we just want to take the DTD as a reference for generating required relational 

schemas that can be used for storing the data in the XML documents into an 

RDBMS. 

To simplify the DTDs, we need to get rid of entity declarations first. They 

do not affect on the structure of the DTD. Rather, they are practical features 

for abbreviating frequently appeared DTD components, defining or referring to 

external or non-XML data...etc. For entity type declarations which are used to 

abbreviate DTD components, they are removed and all the declarations referring 

to them are replaced with the DTD components they are representing to. An 

example has been shown in Figure 3.3. 

Besides removing entity type declarations, we need to deal with the possible 

complex element type declarations. In fact, we expect most of the complexity of 

DTDs should come from the complex structure of the element type declarations. 

For example, we could have an element p as < ！ ELEMENT p (#PCDATA I (a+, (b* 

7 . 
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Original XML segment: 

< ! ENTITY '/otext "#PCDATA" > 

< ！ENTITY '/otext .includes "a I em" > 

< ！ ELEMENT p C/otext ； I ̂ text. includes;) * > 

XML segment after removing entities and reference: 

<!ELEMENT p (#PCDATA I a I em )* > 

Figure 3.3: An example of removing entities declarations and references 

I (c , (b, d ? ) * ) ) * ) ) � w h e r e a, b, c and d are p's subelements. The parenthe-

sis indicate that element p would be highly nested. The binary operators ,，+，，， 

“*"，，，I，，and，，？" on any subelements increase the uncertainty on the occurrence 

of each subelements. However, what we concern in this global schema extraction 

algorithm about DTDs would be the presence of possible kind of subelements 

within the element only. 

As a result, we propose a set of transformations which can convert the ele-

ment type declarations into the required simplified forms. Part of our proposed 

transformations is similar to those presented in [49] and [22]. However, other 

than flattening the nested representation of DTDs as proposed by [49] and [22], 

our transformations also eliminate the binary operators in DTDs. Every ele-

ment type declarations can be converted to the required form by performing the 

following transformations shown in Figure 3.4 repeatedly (here p, ...denote 

subelements within a given element type declaration). 

/ 
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P* • p p|p' • P/ P' 

P+ • P (P, P') • P, pi 

P? • p ..., p,..., p, ... • P 

Figure 3.4: DTD transformations 

After the transformation our example would now be: < ！ ELEMENT p (#PCDATA 

I a ,b , c ,d )> . The transformation would only preserve the element-suhelement(s) 

relation in the element type declaration. 

Moreover, anything in the DTD that is not related to the structure of the 

DTD is removed. We only preserve the information that is useful in constructing 

schema prototype trees later. For instance, inside any attribute type declaration, 

the value types (e.g. #IMPLIED， #FIXED...etc) for the character data (CDATA) 

are removed from the DTD. Also. Special attribute like ID or IDREF is regarded 

as normal character data as well since their possible characteristics (e.g. ID type 

data can be a key in the relational table), if there are any, can be discovered in 

the later step of finding functional dependency anyway. 

Figure 3.5 and Figure 3.6 show the example of converting a DTD into a 

simplified DTD. 

Figure 3.8 shows the example of converting a DTD in Figure 3.7, which is a 

modification of [46], into a simplified DTD. 

3.1.2 Step 2: Construct Schema Prototype Trees 

With the simplified DTD, we then construct the schema prototype trees which 

represents the structure of the simplified DTD. The nodes can be elements or 

attributes specified in the DTD. Schema prototype trees will be used for gener-

ating schema prototypes in the next step (Step 3). Schema prototype trees are 
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<! ENTITY y„txt “#PCDATA" > 

<! ENTITY o/opage "initPage?，endPage?" > 

<！ELEMENT SigmodRecord (issue)* > 

<！ELEMENT issue (volume，number，articles) > 

< ！ ELEMENT volume ("/otxt ；) > 

< ！ ELEMENT number C/otxt ；) > 
<！ELEMENT articles (article)+ > 

<! ELEMENT article (title//opage; , authors) > 

< ! ELEMENT title C/otxt ；) > 

<! ELEMENT initPage C/otxt ；) > 
< ！ ELEMENT endPage C/otxt ；) > 

<！ELEMENT authors (author)+ > 

<!ELEMENT author (y.txt;)> 

〈！ATTLIST author position CDATA #IMPLIED〉 

Figure 3.5: An example DTD before simplification 

<！ELEMENT SigmodRecord (issue) > 
< ！ELEMENT issue (volume，number，articles) > 
<!ELEMENT volume (#PCDATA)〉 
<!ELEMENT number (#PCDATA)〉 
<！ELEMENT articles (article) > 

<！ELEMENT article (title, initPage, endPage, authors) > 

<!ELEMENT title (#PCDATA)〉 
<!ELEMENT initPage (#PCDATA)〉 

<!ELEMENT endPage (#PCDATA)〉 
<！ELEMENT authors (author) > 
<！ELEMENT author (#PCDATA)〉 
<!ATTLIST author position CDATA > 

Figure 3.6: The simplified DTD converted from the DTD in Figure 3.5 

/ 
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<!ENTITY %txt "(#PCDATA)"> 
〈！ELEMENT book(booktitle,price?, 

author,authority*) > 
<!ELEMENT authority (authname, country) > 
〈！ELEMENT authname %txt> 
<!ELEMENT country %txt> 
<!ELEMENT booktitle %txt> 
<!ELEMENT price %txt> 
< [ELEMENT monograph (title, author, editor) > 
<!ELEMENT editor (monograph+)> 
〈！ATTLIST editor name CDATA #REQUIRED� 

<!ELEMENT author (name, address) > 
<!ATTLIST author id I D � 

<!ELEMENT name (firstname, lastname)� 

<!ELEMENT firstname %txt> 
< [ELEMENT lastname %txt> 
<!ELEMENT address %txt> 

Figure 3.7: An DTD before simplification 

<!ELEMENT book(booktitle,price, 
author,authority) > 

〈！ELEMENT authority (authname, country) > 
〈！ELEMENT authname (#PCDATA)> 
<!ELEMENT country (#PCDATA)> 
<!ELEMENT booktitle (#PCDATA)> 
<!ELEMENT price (#PCDATA) > 
<!ELEMENT monograph (title, author, editor) > 
<!ELEMENT editor (monograph) > 
〈！ATTLIST editor name CDATA > 
<!ELEMENT author (name, address) > 
<!ATTLIST author id ID > 
〈！ELEMENT name (firstname, lastname) > 
<!ELEMENT firstname (#PCDATA)> 
<!ELEMENT lastname (#PCDATA)> 
<!ELEMENT address (#PCDATA)> 

Figure 3.8: The simplified DTD converted from the DTD in Figure 3.7 

/ 
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constructed as follows. 

First, we have to determine the root(s) of the trees from the DTD. There are 

several rules we have to follow when deciding the root: 

Rule 1 Only element can become a root 

In XML, attributes cannot exist without following it's corresponding ele-

ment. We thus can regard element-attribute(s) relations as the same as element-

suhelement(s). As a result, all attributes declared in the DTD can only be leaf 

nodes in the schema prototype trees. We can thus consider only elements but 

not attributes when deciding the roots. 

Rule 2 For an element which do not appear in any other element declaration in 

the DTD, it becomes the root for a schema prototype tree 

This rule is quite straightforward. An element would not appear in any other 

element declaration if and only if it is not a subelement of any other element, 

and it is the actual meaning of "root". 

Rule 3 If there is no element in the DTD satisfying rule 2, one of the ele-

ment is selected as the root 

When all elements in the DTD are the subelement of some other elements, 

we can be sure that recursion occurs in the DTD. Thus we have to arbitrarily 

break the loop in order to construct the schema prototype tree 

For all selected roots in the DTD, their schema prototype trees are con-

structed as follows: 

Starting from the subelement(s) of the root, we try to scan the DTD in a 

depth-first style. For a first-time visited subelement which do not appear in 

the schema prototype tree, we create a new node bearing the same name in the 

/ 
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SigmodRecord 

issue 

volume articles number 

article 

/ / title 
authors . ^ 

initPage endPage 

author # 

position 

Figure 3.9: The schema prototype tree of the simplified DTD in Figure 3.6 

schema prototype tree. Moreover, an edge is created from the parent node of 

the newly created node to the newly created node. Apart from subelements, 

we need to take care of possible parsed character data (#PCDATA) and the 

attribute declarations for an element we are visiting. Any attributes declared for 

an element in the DTD is treated the same way as a subelement of the element. 

It is easy to see that the leaf nodes of the schema prototype tree are either 

element declared as containing #PCDATA only, or attributes for their parent 

elements. If an element has declared as containing #PCDATA together with 

other subelement, we would mark the corresponding node with a ”#，，in the 

schema prototype tree. The marking would be useful in the following step. 

The schema prototype tree corresponding to the above example is shown in 

Figure 3.9. Note that as SigmodRecord is the only element that is not referred 

by any other element, the schema prototype tree for SigmodRecord is the only 

tree that is constructed from our example DTD. 

We also need to handle the possible situation where recursion occurs while 
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constructing the schema prototype tree. Consider a case when we visit an element 

which has already had a corresponding node X created in the schema prototype 

tree, we would create a leaf node with label X.A which indicates a foreign key 

to its ancestor. The key can be discovered or arbitrarily assigned in Step 4 

later. Then we would stop traveling down the subelement of that element to 

prevent an infinite recursion. Using Figure 3.8 as an example, consider when 

the tree construction has come to the element declaration < ！ ELEMENT editor 
(monograph) > where element monograph has already appeared in the tree. We 

would create a new node monograph.A. An edge pointing from editor to it is 

created as well. 

The example schema prototype tree for the modified DTD would look like 

the one shown in Figure 3.10. 

b ^ k monograph 

authority booktitle price author editor title author 

州,ntrx, \ address id name \ address id country \ name name \ name 
authname monograph.A ^ ^ ^ ^ ^ ^ ^ ^ ^ 

firstname lastname firstname lastname 

Figure 3.10: The schema prototype tree constructed from the example DTD in 
Figure 3.8 

3.1.3 Step 3: Generate Relational Schema Prototype 

Given a schema prototype tree, the corresponding relational schema prototype 

is generated as follows. The basic idea is to regard all the necessary attributes 

and elements in the simplified DTD as the “ attributes" in an ER-Model. The 

schema prototype is thus generated by inlining all the necessary descendants of 

the schema prototype tree starting from the root. The necessary descendants 

refer to all the leaf nodes in the schema prototype tree, and the nodes marked 

/ 
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with a “ # ” . The reason for doing this is because not all the elements in an XML 

document contain real data. We want to prevent creating unused fields for these 

elements in the relational schema prototype. Using Figure 3.9 as an example, 

the element issue is not declared to contain any #PCDATA in DTD. Thus we 

can be sure that for any XML document conforming to that DTD, there is no 

parsed character data exists between any pairs o f � i s s u e � a n d � / i s s u e � t a g 

(which are used to represent element issue in XML). As a result, we do not 

have to provide a filed for the element issue in the relational schema prototype. 

The relational schema prototype generated from the schema prototype tree 

presented in Figure 3.10 is shown in Figure 3.11. In order to uniquely specify the 

name for each attribute in the relational prototype schema, all attributes fields 

are named by the path from the root node of the tree. 

table:book ( table:monograph ( 
book.booktitle, (A) monograph.title, (A) 
book.price, (B) monograph.author.id, (B) 
book.author.id, (C) monograph.author.name.firstname, (C) 
book.author.name.firstname, (D) monograph.author.name.lastname, (D) 
book.author.name.lastname, (E) monograph.author.address, (E) 
book.author.address, (F) monograph.editor.name, (F) 
book.authority.authname, (G) monograph.editor.monograph.A (G) 
book.authority.country (H) ) 
) 

Figure 3.11: The relational schema prototypes generated from the tree in Figure 
3.10 
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3.1.4 Step 4: Discover Functional Dependencies and Can-

didate Keys 

With the generated schema prototypes, we can now apply traditional techniques 

of relational database to produce the suitable relational schemas for the XML 

data. 

In order to reduce the data redundancy and inconsistency in the set of rela-

tional schemas for the XML data, we have to discover a set of functional depen-

dencies and the candidate keys by analyzing the XML data. Those constraints 

discovered from the XML data would be vital for us to normalize the relational 

schema prototype in an appropriate normal form. 

We adopted a recently proposed technique for discovering functional depen-

dencies, which is called TANE [29], in our algorithm. Before TANE, previous 

algorithms have invariably based on either repeatedly sorting the tuples of the 

relation or comparing every tuple to all other tuples which makes them inefficient 

for large relations. However, with respect to number of tuples, TANE,s, com-

plexity is claimed to be linear, it formulated the dependency discovery task in 

terms of equivalence classes and partitions, together with efficient search space 

pruning techniques. We found that TANE is very suitable for the functional 

dependency discovering step in our algorithms. 

Let's assume we have found the minimal set of functional dependencies of 

Figure 3.11 using TANE: 

table:book 

FD(s): A — BC, DEF ^ C and C DEF 

table:monograph 

FD(s): CDE, and CDE B 

We can then easily obtain the candidate keys from the minimal set of func-
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tional dependencies. A set of attribute {Ai,A2...An} in a relation r is a candidate 

key for the relation r iff the closure for that set of attributes, {Ai, , 

contains all the attributes in r. As a result, we can find {AGH} being the pos-

sible candidate key for the relational schema prototype talbe table:book, and 

{A} being the possible candidate key for table: monograph presented in Figure 

3.11. 

Since monograpli.title is identified as the key, we can assign the ".A" 

attribute as monograph. editor. monograph . t i t l e , a foreign key pointing to 

monograph . t i t l e . If we cannot find suitable keys (e.g. they are too lengthy), 

we would assign an artificial ID to the relation and the “ .A" attribute would 

point to that ID. 

3.1.5 Step 5: Normalize the Relational Schema Proto-

types 

With the functional dependencies and candidate keys, we can simply normalize 

the relational schema prototype to a set of new relations. We use 3NF de-

composition [14] as an example. 3NF decomposition algorithm is presented in 

appendix for readers' reference. The data in the XML document can then be 

stored to the RDBMS according to the schema shown in Figure 3.12. Note that 

since table :book-3 and table :monograph-3 are the same after comparing the 

attributes in them, they can be merged as one. 

3.1.6 Discussion 

We have proposed the global schema extraction algorithm in the above. We call 

it the global schema extraction algorithm because in the algorithm we try to form 

relational schema prototypes which include as much elements in the DTD as pos-
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table:book-1 ( tableimonograph-1 ( 
book.booktitle, (A) monograph.title, (A) 
book.price, (B) monograph.author.id, (B) 
book.author.id (C) monograph.editor.name (F) 
) ) 
table:book-2 ( table:monograph- 2( 
book.booktitle, (A) monograph.editor.name，(F) 
book.authority.authname, (G) monograph.editor.monograph.title (G) 
book.authority.country(H) ) 
) table:monograph-3 ( 
table:book-3 ( monograph.author.id，(B) 
book.author.id, (C) monograph.author.name.firstname, (C) 
book.author.name.firstname, (D) monograph.author.name.lastname, (D) 
book.author.name.lastname, (E) monograph.author.address (E) 
book.author.address (F) ) 
) 

Figure 3.12: Relations decomposed from schema prototype for the XML data 

sible, then we extract all the necessary information from the raw data in order to 

decompose the schema prototypes into the suitable relational schemas. As a re-

sult, the step of functional dependency inference together with the characteristic 

of the actual XML data play a heavy role in this algorithm. Since the relational 

schemas are created by using many traditional relational database methods in 

this algorithm, we can be sure that the schemas can make the XML data suit well 

into the relational database. Moreover, unlike the proposed schemas extraction 

algorithm by [25, 26], we do not have to introduce any extra data fields at all. 

However, one of the potential problem in the above proposed algorithm is that 

the cost of discovering functional dependencies can be high since the number of 

minimal dependencies must be exponential in the number of attributes [37, 38 

while a schema prototype could includes as many attributes as the total number 

of leaf nodes in the schema prototype trees created from the DTD (Consider the 

case when only one schema prototype tree is constructed from the DTD). As a 

result, when the structure of the XML is relatively large (having a large number 
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of different element and attribute types), it might be better if we can reduce the 

size, i.e. the number of attributes, of the schema prototypes before the step of 

finding functional dependencies. Another consideration for the Global algorithm 

is that when the characteristics of the XML data changed vastly, e.g. having a 

large scale update, the change might affect the resulting schema produced. If 

such kind of large scale change is predicted, it might be better to analyse more 

on the declared structure, i.e. the DTD, of the XML and produce relational 

schema that is more flexible to changes within the constraint of the DTD. 

3.2 DTD-splitting Schema Extraction Algorithm 

In section 3.1，the proposed algorithm emphasizes more on FDs and keys dis-

covery from prototype schemas. In this section, we propose another schema 

algorithm - DTD-splitting Schema Extraction Algorithm. This algorithm also 

follows the steps in Figure 3.2. However, unlike the previous algorithm, this 

DTD-splitting algorithm relies more on the first 3 steps. In other words, instead 

of finding out all characteristics on the actual XML data, we have to determine 

some of them without referring to the XML data. In our second algorithm, we try 

to predict some characteristics of the XML data from the DTD, hence perform 

a certain level of schema decomposition (DTD split) before the step for finding 

functional dependencies and keys. In this case, the size of schema prototypes 

should be smaller than those in section 3.1, thus alleviating the possible cost in 

the functional dependency discovery steps. 

Just like us, [33] shows interests in predicting some characteristics from the 

DTD. [33] tries to find out semantic constraints in DTD but those constraints 

are not for generating relational schemas - [33] just adopts the schema generating 

algorithm from [49]. Rather, they are just used to ensure the semantics for the 

relational schema generated from [49]. Also, in [33] actual XML data for the 

/ 
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p|p' • P, P' 

P+ • P* (P, P') • P, P' 

P? • P (P, P丨）* • P * , P'* 

• • • / P / • • • / P / • • • ^ P 
• • • F / • • • / / • • • 

Figure 3.13: DTD transformations 

DTD is not taking into consideration. Moreover, most of those constraints are 

based on the behaviour of attribute declaration only. When there are no rich 

attribute declarations in the DTD, those constraints cannot be determined by 

33] at all. 

3.2.1 Step 1: Simplify DTD 

Just like the previous algorithm, we need to simplify the DTD for the set of 

XML data. We have to first remove all the entity declarations so as to review 

the actual structure of the DTD, as shown in the Figure 3.3. Then, we have to 

reduce the possible highly complicated structures of the DTD. In the previous 

algorithm, we consider only the possible kinds of element-subelement relations 

but not the binary operators，，+，，，” *，，,，，|，，and，，？，，on the subelements. However, 

in this algorithm we preserve some of the binary operators so as to preserve 

some subelement occurrence information. Every element type declarations can 

be converted to the required form by performing the following transformations 

shown in Figure 3.13. 

In the transformations, we simplify the occurrences of each subelement to 

either one or more than one. It is important to note that: the original meaning 

for "*" is zero or more than one but we convert it to more than one in our 

/ . 
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<！ELEMENT SigmodRecord (issue*) > 

<！ELEMENT issue (volume,number,articles) > 

<!ELEMENT volume (#PCDATA)〉 

<!ELEMENT number (#PCDATA)〉 

<！ELEMENT articles (article氺)> 

<！ELEMENT article (title, initPage， endPage, authors) > 

<!ELEMENT title (#PCDATA)> 

<!ELEMENT initPage (#PCDATA)〉 

<！ELEMENT endPage (#PCDATA)〉 

<！ELEMENT authors (author*) > 

<!ELEMENT author (#PCDATA)> 

<!ATTLIST author position CDATA > 

Figure 3.14: The simplified DTD converted from the DTD in Figure 3.5 

transformation. For the case of，，+，，{one or more than one), we regard it as 

"*" {more than one) since there is a chance for the subelement to occur more 

than one times. For the case of，，？，，{zero or more than one), we simply remove 

the，’？，，since there is a chance for the subelement to occur once. Just like the 

corresponding step in the previous algorithm, special attribute type like ID or 

IDREF is treated as normal character data. However, since we have preserve the 

occurrence information this time, IDREFS type attribute is converted to normal 

character data with a * since IDREFS represents more than one IDREFs. 

Figure 3.14 shows the example of converting a DTD in Figure 3.5 into a 

simplified DTD. 

3.2.2 Step 2: Construct Schema Prototype Trees 

With the simplified DTD, we then construct the schema prototype trees which 

represents the structure of the simplified DTD. As mentioned before, the nodes 

can be elements or attributes specified in the DTD. Schema prototype trees will 

7 — 
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be used for generating schema prototypes in the next step (Step 3). However, the 

rules for determine the roots and the tree construction sequence is not the same 

as the one mentioned in section 3.1. Schema prototype trees are constructed as 

follows. 

Root Determination 

Again, we have to determine the roots of the trees from the DTD. There are 

several rules we have to follow when deciding the root: 

Rule 1 and rule 2 are similar to those stated in Section 3.1. 

Rule 3 For an non-#PCDATA element which appears in more than one other 

element declarations, it becomes a root for a schema prototype tree 

The rule is only applicable to non-.PCDATA elements because a .PCDATk 

element is definitely a leaf node in the schema prototype tree, as we saw in the 

previous algorithm. If we let a # PCD AT A element become a root, the only 

element that is contained in its schema prototype tree would be the root itself. 

We do not want to create such kind of unnecessary schema prototype tree. 

Let us first assume an element C being the subelement of both element A and 

B in the DTD. We would make element C a root for a schema prototype tree and 

the schema tree constructed from it would become a separate schema later in 

the following step. We can use traditional relational database theory to explain 

why we separate C. 

There are four kinds of mapping cardinalities [50]: one-to-one (1:1), one-to-

many (1:M)’ many-to-one (M:l) and many-to-many (N:M). We can view element 

A and all its possible ancestor(s), form a relation A, while B and all its ancestor(s) 

form another relation B. For element C and all its possible subelement(s), we 

regard them as another relation C. We let the key of relation A be K^, the key 
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of B be K^ and the key of C be Kc- As element C is referred by both element 

A and B in the simplified DTD, we can eliminate the possible chances for 1:1 

and 1:M because each element A and B can only have one subelement C. So the 

possible mapping cardinality we have to consider for the relation A— * —B would 

be M:1 and M:N. 

The relationship among A, B, C indicates some tendency for multiple ele-

ments of A and B to map to element of C. For example, both ai in A and hi 

in B are mapped to Ci in C. Taking C as a root can reduce the redundancy of 

repeating the attributes of ci with both ai and hi. If at most one element of 

C can be mapped to an element of either A or B，we have many-to-one {M:l) 

mapping from A or B to C. 

For the case of many-to-many relationship {M:N), we can also decompose 

the relations into a relation containing A，a relation containing B, a relation 

containing C, a relation containing K^UKQ and a relation containing KI^UKQ, 

where Kp̂ , Kg, KQ are the keys of A, B, C respectively. As a result, C can be 

separated as a root for another schema prototype tree. 

Thus we would make element C a root for a schema prototype tree and the 

schema tree constructed from it would become a separate schema later in the 

following step. 

Rule 4 For an non- #P CD A TA element B which ONLY appear in another non-

root element declaration A in the DTD with a ”*,,，it becomes the root for a 

schema prototype tree if it is NOT the only subelement of A 

The rule is only applicable to non-#P CD ATA elements and we the reason is 

the same as the one for rule 3. If the element B appears in more than one element 

declarations, it would fulfill rule 3 and must be separated as a root. Thus we 

do not have to consider the nature of its ancestor - element A. Otherwise, when 

/ 
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B only appears in declaration of element A, we have to make sure B is not the 

ONLY subelement A before separate B as a root. If not, the separation would 

make the schema prototype tree of A contains A itself. We do now want to create 

such kind of unnecessary schema prototype tree. 

We again use traditional relational database theory to explain why we sepa-

rate elements with a “ *，，into another schema prototype tree: 

For an element declaration < ！ ELEMENT A (B*) > inside the D T D , where the 

relation between A and B is A— * —B, we can view element A and all its possible 

ancestor(s), form a relation A. For element B and all its possible subelement(s), 

we regard them as another relation B. Again, we let the key of relation A be Kp̂  

and the key of B be K-Q. When we have a relation A— * —B in the DTD, as A is 

set to have more than one B subelements in the simplified DTD, we can eliminate 

the possible chances for 1:1 and M:1 relationship from relation A to B . So the 

possible mapping cardinality we have to consider for the relation A— * —B would 

be 1:M and N:M. 

Here the “*，，has some indication of the tendency of a 1:M relationship from 

A to B. For this 1:M case, each value of K-Q is associated with at most one 

value of K^. It nearly directly come to the idea that K^ should functionally 

determine K^. Since the FD K^^Kp^ holds, B can be separated from A. In 

terms of relational database theory, we can decompose them into two relations: 

A and BUKp̂ . 

For the case M:N, it is evident that we can always decompose the relation 

into a relation containing A, a relation containing B and a relation containing 

Kp̂ UK-Q. As a result, we are sure that B can be separated as a root for another 

schema prototype tree. 

Thus, we would make element B a root for a schema prototype tree. The 

schema tree constructed from it would become a separate schema later in the 

/ 
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following step. 

Both rule 3 and rule 4 are similar to what suggested in [49]. In [49], if 

there is a relation A—氺—B where B is A's subelement, they create a new rela-

tion for B as they think B might correspond to the set-valued child of A; if a 

element B is more than one element's subelement, they create a new relation 

for b as they think B can be shared by relations. While [49] just simply make 

them as heuristics, we explain the reasons to set such rules in our algorithm 

based on relational database theory. Moreover, our rules can prevent creating 

unnecessary schema prototypes in the following step. The desirable schemas de-

pending on the 1:M, M:L, M:N relationships will be discovered in the later steps. 

Rule 5 If recursion occurs in the DTD, one of the element in the recursion 

is selected as the root 

Just like the previous algorithm, we have to arbitrarily break the loop in 

order to construct the schema prototype tree when recursion occurs. 

Tree Construction 

For all selected roots in the DTD, we propose three different methods to con-

struct the trees. The different methods might lead to slightly different resulting 

schemas. At later stage, when the different relational schemas are used to store 

the XML data, they might give different effects on join operation in actual data 

queries. 

Generally, the tree construction method is more or less the same as the one 

in section 3.1. Starting from the subelement(s) of each root, we scan the DTD 

in a depth-first style and add all first-time visited subelement as a node into the 

tree. We mark all non-leaf node which has #PCDATA with ” #，，and handle the 

recursion the same way as in section 3.1. However, during the scan, we won't 
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travel down to any element which is determined as a root. For different kinds of 

roots which are determined by different rules above, their tree construction pro-

cesses might not be the same, and there are some variations in their construction 

processes in each methods below: 

Top-down Construction Method 

In the top-down approach, for all kinds of roots (either determined by rule 2, 

3，4 or 5), their tree construction processes are the same as the one in section 3.1. 

However, during the tree construction if we visit an element declaration of a root 

element, we would create a new node for the newly visited root element. For the 

case of recursion, if we visit an element declaration which has been visited before, 

we would create a new node correspond to the visited element and stop traverse 

down to prevent infinite looping. To illustrate the idea, we use an example shown 

in Figure 3.15, which is simplified from Figure 3.7，to constructed the trees. The 

trees constructed by this method is shown in Figure 3.16. 

Note that leaf nodes with bold names are the roots to other trees. Trees 

will form relations and the keys of relations (trees) can be discovered or arbi-

trarily assigned in Step 4 later. By joining the schema prototype trees through 

those keys in a top-down fashion, we could actually reconstruct larger schema 

trees, which are similar to those created using the algorithm stated in Section 3.1. 

Bottom-up Construction Method 

In the bottom-up approach, for roots determined by rule 2, their tree con-

struction processes are the same as the one in section 3.1. For roots determined 

by rule 3 or 4, we have to find out all of their ancestors in the DTD, and 

add corresponding nodes as the leaf nodes of the roots in the schema prototype 

trees. For the case of recursion, if we revisit the element declaration of the root, 

we will find out the direct ancestor of the root inside the looping, and add the 
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<！ELEMENT book(booktitle, price, author, authority*) > 

<！ELEMENT authority (authname, country) > 

<!ELEMENT authname (#PCDATA) > 

<！ELEMENT country (#PCDATA) > 

<!ELEMENT booktitle (#PCDATA) > 

<!ELEMENT price (#PCDATA) > 

<！ELEMENT monograph (title, author, editor)> 

<！ELEMENT title (#PCDATA) > 

<！ELEMENT editor (monograph*) > 

<!ATTLIST editor name CDATA > 

<！ELEMENT author (name, address) > 

<!ATTLIST author id ID > 

<！ELEMENT name (firstname， lastname)> 

<!ELEMENT firstname (#PCDATA)〉 

<!ELEMENT lastname (#PCDATA)〉 

<！ELEMENT address (#PCDATA)〉 

Figure 3.15: Another simplified DTD example 

monograph author 
book ^ 

authority 

/ \ \ / \ title author Z \ 
au thor iV \ author / \ address id 

/ \ / \ editor name 
/ \ country authname 

booktitle price ^ ^ 

name monograph f irstname lastname 

Figure 3.16: Schema prototype trees construction from Figure 3.15 using top-
down construction method 

/ . 
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corresponding node as a leaf node of the root. We then stop traverse down to 

prevent infinite looping. The schema prototype trees constructed by this method 

is shown in Figure 3.17. 

author 

/ monograph 
book.A / \ Id / j \ 

b ， h / mono>raph.A / \ ^ u t - t y 
/ \ add � m e / title X T X 

. \ / \ / editor / \ 
booktitle price / \ , , / \ 

Z \ monograph.A | X authname 
firstname lastname name DOOR.M 

Figure 3.17: Schema prototype trees construction from Figure 3.15 using 
bottom-up construction method 

Note that bold leaf nodes with a ".A" after each of their names is used to 

indicate the foreign keys to other relations. The keys can be discovered or arbi-

trarily assigned in Step 4 later. By joining the schema prototype trees through 

those foreign keys in a bottom-up fashion, we could actually reconstruct larger 

schema trees, which are similar to those created using the algorithm stated in 

section 3.1. The concept of bottom-up construction method is similar to the 

algorithm proposed in [49]. In other words, the technique used in [49] is the 

subset of the three methods stated by us. 

Hybrid Construction Method 

Hybrid construction method combines the techniques of handling roots while 

constructing tree from both top-down and bottom-up construction methods. We 

propose hybrid method by analysing the relation between DTD structure and 

the possible characteristics in the XML data. Based on the relational database 

theory, hybrid method should produce relational schema having least redundancy 

of data. For roots determined by rule 2, 3 or 5, their tree construction processes 
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book monograph author 

^ authority t i t ^ ^ ^ ^ ^ h o r 
booktitle author address id 

^ ^ ^ editor name 
book.A authname 

price \ 
country " a m e m o n o g r a p h . A lastname 

Figure 3.18: Schema prototype trees construction from Figure 3.15 using hybrid 
construction method 

are the same as the one in section 3.1. However, during the tree construction if 

we visit an element declaration of a root element which is determined by rule 3, 

we would create a new node for that newly visited root element. This is because 

we expect a tendency of M:1 relationship from the parent of the element to the 

root element. For example probably many books may be written by the same 

author, so it is likely to include the key of author as part of the relation for the 

book. On the other hand, if we visit an element declaration of a root element 

which is determined by rule 4，we will not perform any node addition to the 

schema prototype tree. For roots determined by rule 4，we have to find out 

their only ancestor in the DTD, and add the corresponding nodes as the leaf 

nodes of the roots in the schema prototype trees. This is because we expect a 

tendency of 1:M relationship from the parent of the element to the root element. 

For example we expect one book will likely be related to multiple authorities. 

Therefore it is likely to include a key of book as an attribute in the relation for 

authority. The schema prototype trees constructed by this method is shown in 

Figure 3.18. 

Note that both node of keys and nodes of foreign keys can be in the trees. 

Those keys can be discovered or arbitrarily assigned in Step 4 later. 

/ 
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table:book(booktitle, price) 

table:authority(country, authname) 

table:author(address, id, firstname， lastname) 

table:monograph(title， name) 

Figure 3.19: The relational schema prototypes generated from the trees in 
Figure 3.16 

3.2.3 Step 3: Generate Relational Schema Prototype 

Just as section 3.1，we generate schema prototype by inlining all the necessary 

descendants of the schema prototype tree, including leaf nodes and the node 

marked with a，，#，，，starting from the root. However, we will not inline those 

key nodes or foreign key nodes (depending on what tree construction method we 

have used in the previous step) in this step. We will decide how to add them 

(using found candidate keys or assigning a key attribute) into the relational 

schema after we discover all the functional dependencies and keys in Step 4. For 

all schema trees created from 3 different methods, their relational schemas are 

thus the same. The relational schema prototypes generated from the schema 

prototype trees presented in the previous step, regardless which construction 

method has been used, are shown in Figure 3.19. 

Note that we can be sure that there not be two nodes having the same name 

inside the same tree. So we do no have to use the naming scheme used in section 

3.1. 
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3.2.4 Step 4: Discover Functional Dependencies and Can-

didate Keys 

With the generated schema prototypes, we follow exactly the process in section 

3.1，s Step 4. However, the main difference between the algorithm in section 3.1 

and the algorithm proposed here is that: in the new algorithm during Step 2 and 

Step 3, we have actually pre-decompose the DTD into smaller schema prototypes. 

As a result, in this algorithm the cost of discovering functional dependencies 

and candidate keys, which is exponential to the number of attributes, would 

be smaller since the number of attributes in each schema prototypes is smaller 

compared with those more global schema prototypes in section 3.1. 

As mentioned in Step 3, we have to determine the candidate keys for the 

schema prototypes in this step so as to refine the schema prototypes. However, 

if a candidate key turns out to contain many attributes or is very lengthy, then 

we may also assign a new artificial ID field to serve as the key, unique ID's will 

be generated by the system for such a key. This method of an artificial ID is 

heavily used in other methods where functional dependencies are not utilized. 

We only adopted the method when an artificial key is really needed since we 

want to prevent adding attributes that are unrelated to the actual XML data as 

much as possible. This technique can also be used in the algorithm in Section 

3.1. The procedure is shown in Figure 3.20. 

Let us assume that the maximum number of attributes allowed for a key is 

1 {numAUr = 1). and all the candidate keys found for each schema prototype 

are listed as below: 

table:book - {booktitle} 

table:authority - {country, authname} 

table:monograph - {title} 

/ 
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Procedure REFINING_SCHEMA_PROTOTYPES 
1 Set numAttr as maximum size of our required candidate key; 
2 for each schema prototype S 
3 FD_DISC0VERY_AND_CANDIDATE_KEY_DISC0VERY(5'); 
4 if no key found that has size < numAttr 
5 then begin 
6 Arbitrarily assigns an ID field in S as the candidate key; 
7 end 
8 else begin 
9 Assigns the one with minimum number of attributes as the candidate key 

of 5; 
10 end 
11 for each other schema prototype S' which's schema prototype tree has a 

key/foreign key nodes of S 
12 Adds the attributes(s) of the candidate key into S'] 
13 end for 
14 end for 

Figure 3.20: Procedure for deciding the candidate keys for the schema proto-
types 

table: author - {id},{lastname, address} 

According to the procedure we stated in Figure 3.20, we use booktitle as 

the key for table:book. We assign an assignlD field to table:authority, 

t i t l e is used as table:monograph's key while id is chosen as the key for 

table: author. All the keys or foreign keys to other relations are added in 

the format table_naine . table_key. 

The relational schema prototypes generated by the three construction meth-

ods are shown in Figure 3.21, 3.22 and 3.23 respectively. 

3.2.5 Step 5: Normalize the Relational Schema Proto-

types 

With the functional dependencies, candidate keys and the set of refined schema 

prototypes, we can simply normalize the relational schema prototype to a set of 

/ 
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table: book (bo o/ct-i tie, price, authority. ass ignID, author. id) 

table:authority(country, authname, assignID) 
table:author(address, id, firstname, lastname) 

table:monograph{title, name, author.id, monograph.title) 

Figure 3.21: The relational schema prototypes generated from the trees in 
Figure 3.16 

table'.hookihooktitle, price) 

table:authority(country, authname, assignID, book.booktitle) 

table:author(address,id, firstname, lastname, 
monograph.title, book.booktitle) 

table:monograph(tit Ie, name, monograph.title) 

Figure 3.22: The relational schema prototypes generated from the trees in 
Figure 3.17 

table:hook(booktitie, price, author.id) 

table:authority(country, authname, assignID, book.booktitle) 
table:author(address, id, firstname, lastname) 
table: monograph {title y name, eorthor.id, monograpli. title) 

Figure 3.23: The relational schema prototypes generated from the trees in 
Figure 3.18 

/ 
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new relations, if the refined schema prototypes can be further decomposed. This 

step is similar to the corresponding step in section 3.1. After normalization, we 

can then produce the relational schemas for the XML and use them to map the 

XML data into relational database. 

3.2.6 Discussion 

In this section, we have proposed another schema algorithm DTD-splitting Schema 

Extraction Algorithm. Unlike the previous algorithm, this DTD-splitting algo-

rithm relies more on the first 3 steps. Based on the relational database theory, 

we try to predict some characteristics of the XML data from the DTD, hence 

perform a certain level of schema decomposition (DTD split) before the step 

for finding FDs and keys. As a result, the size of schema prototypes can be be 

smaller than those in section 3.1, thus alleviating the possible cost in the FD 

discovery steps, as mentioned before. 

In this algorithm, we also proposed three different tree construction methods. 

Different tree construction methods {Top-down, Bottom-up and Hybrid) might 

lead to different relational schemas later. We think that Hybrid method should be 

the preferable methods as it combines the possible 1:M handling from Top-down 

method, together with the possible M:1 handling from Bottom-up method, 

Even though Hybrid method is capable of handling both possible 1:M and 

M:1 mapping cardinalities in the relations, our algorithm is still unable to handle 

the case for M:N relation. Due to the fact that there will be a bigger chance for 

multivalued dependencies to hold inside a M:N relation, we proposed to discover 

if there is any multivalued dependencies inside the relation as well. The proposed 

algorithm is described in the following chapter. 

/ 
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3.3 Experimental Results 

XML has become more popular in recent years. However, we found that most 

of the XML dataset available publicly are still document-centric while we have 

proposed algorithms to apply on data-centric XML. By document-centric we 

mean that XML is mainly used as a sophisticated version of HTML (e.g. for doing 

web document styling) while by data-centric we mean that XML is mainly used to 

describe data (e.g. for being the format of Electronic Data Interchange (EDI) or 

E-commerce Application). Readers can find a more detailed discussion about the 

difference between these two types of XML documents in Chapeter 5. We predict 

that more and more data-centric XML should be available on the WWW in the 

coming future. Right now, we illustrate the effects of our algorithms by applying 

them on a set of real-life XML data from ACM SIGMOD Record: XML Version, 

which is available at [46], and a set of synthetic XML data, which is generated 

according to the example DTD used in Figure 3.15. We implement each step 

of our algorithms in Perl except the step of discovering functional dependencies 

and candidate keys. For the step of discovering functional dependencies and 

candidate keys, we modify and use an implementation of TANE [29] written in 

C and compiled with a GNU C compiler. The original implementation of TANE 

is available at [28]. All the experiments were run in an isolated SUN Sparc Ultra! 

workstation with SunOS 5.6. 

3.3.1 Real Life XML Data: SIGMOD Record XML 

In [46], there is a large XML document, sigmodrecord.xml, together with its 

DTD, sigmodrecord.dtd. sigmodrecord.xml contains information of more 

than 60 past issues of the magazine SIGMOD Record including information 

of about 1300 articles and information of more than 3000 authors. It is one 

of the largest data-centric XML document available on the WWW now. The 

/ 
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<！ELEMENT SigmodRecord (issue*) > 
<！ELEMENT issue (volume，number，articles) > 
<!ELEMENT volume (#PCDATA)� 

<!ELEMENT number (PCDATA)� 

<！ELEMENT art i c les (art i c le* ) > 
<！ELEMENT ar t i c l e ( t i t l e , initPage, endPage, authors) > 
< ！ELEMENT t i t l e (#PCDATA)� 

<!ELEMENT initPage (#PCDATA)� 

<！ELEMENT endPage (#PCDATA)� 

<！ELEMENT authors (author*) > 
<!ELEMENT author (#PCDATA)� 

<！ATTLIST author posit ion CDATA > 

Figure 3.24: sigmodrecord.dtd 

sigmodrecord. dtd is shown in Figure 3.24, while a fraction of sigmodrecord. xml 

is shown in Figure 3.47. 

The experimental results based on sigmodrecord. dtd and sigmodrecord. xml 

for both of our algorithms are presented in the following sections. 

Experimental Result for Global Schema Extraction Algorithm 

After the first three steps, the resulting schema prototypes are shown in Figure 

3.25. 

We then map the data in sigmodrecord.xml to produce a prototype table 

according to this schema prototype. Figure 3.26 shows a fraction of the mapped 

data in the prototype table. 

The prototype table is then used in discovering the functional dependencies 

and candidate keys. The result is shown in Figure 3.27. It is interesting to 

note that the set of resulting functional dependencies is not exactly the same as 
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table( 

SigmodRecord. issue.artic les .artic le .authors.author.posit ion, (1) 
SigmodRecord.issue.articles.article.authors.author， （2) 
SigmodRecord. issue.art ic les .art ic le . t i t le， (3) 
SigmodHecord.issue.articles. article. initPage， (4) 
SigmodRecord.issue.articles.article.endPage， (5) 
SigmodRecord.issue.volume, (6) 
SigmodRecord.issue.number (7) 
) 

Figure 3.25: The relational schema prototype for sigmodrecord.xml, which is 
generated by using Global Schema Extraction Algorithm 

00,Catriel Beeri,A Note on Decompositions of Relational Databases.,33,37,12,1 

01,Moshe Y. Vardi,A Note on Decompositions of Relational Databases.,33,37,12,1 

00,Peter B. Miller,BUSINESS - An End-User Oriented Application Development Language.,38,69,12,1 

01,Sergey Tetelbaum,BUS工NESS - An End-User Oriented Application Development Language.,38,69,12,1 

02,Kincade N. Webb,BUSINESS - An End-User Oriented Application Development Language.,38,69,12,1 

00,Antonio L. Furtado,Horizontal Decomposition to Improve a Non-BCNF Scheme.,26,32,12,1 

00,Kn. I. Kilov,Meta-Database Architecture for Relational DBMS.,18,2 5,12,1 

01,1. A. Popova,Meta-Database Architecture for Relational DBMS.,18,2 5,12,1 

00,James H. Burrows,Actual Conversion Experiences.,20,33,12,2 

00,James P. Fry,Conversion Technology. An Assessment.,39,61,12,2 

00,John L. Berg,Data Base Directions 11: The Conversion Problem - Editorial.,3,3,12,2 

00,Richard L. Nolan,Establishing Management Objectives.,9,19,12,2 

00,Mayford L. Roark,Evolution in Computer Systems.,4,8,12,2 

00,Milt Bryce,Standards.,34,38,12,2 

00,Henry M. Walker,Administering a Distributed Data Base Management System.,86,99,12,3 

00,Haran Boral,Database Research Activities at the University of Wisconsin.,19,26,12,3 

01,David J. DeWitt,Database Research Activities at the University of Wisconsin.,19,26,12,3 

02,Randy H. Katz,Database Research Activities at the University of Wisconsin.,19,2 6,12,3 

03/Anthony C. Klug,Database Research Activities at the University of Wisconsin.,19,2 6,12,3 

Figure 3.26: Fraction of the mapped data from sigmodrecord.xml, which is 

then used in functional dependency discovery step (Global algorithm) 
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Tablel 

No. of tuples: 3133 

No. of attributes: 7 

FDs found: Keys found: 

2 3 -> 1 3 6 7 -> 4 5 {2 3 7} 

3 5 -> 4 5 6 7 -> 3 4 {2 4 5 6} 

3 5 7 -> 6 1 2 4 6 -> 3 {2 4 5 6} 

3 5 6 -> 7 1 2 5 7 -> 4 {2 4 6 7} 

3 4 7 - > 5 6 1 2 4 7 -> 5 

4 6 7 -> 3 5 

Figure 3.27: Functional dependencies and candidate keys found from the pro-
totype table in Figure 3.26 

what we have predicted before the experiment. For example, we expect that in 

sigmodrecord.xml, t i t l e (3) can at least determine initPage (4) and endPage 

(5) since we think that there should not be two research articles with exactly 

the same title. However, the functional dependency 3 4 5 is not in the set 

of found dependencies. The reason is that for each different issue of SIGMOD 

Record magazine, there must be an article titled "Editor's Notes" at the begin-

ning, thus breaking the functional dependency predicted by us. If we want to take 

those nearly-formed functional dependencies in the XML data into consideration, 

TANE can discover those nearly-formed ones using the concept of approximate 

dependency in [32]. Using 3NF decomposition as an example, one of the possible 

resulting relation schema for sigmodrecord.xml is shown in Figure 3.28 

Note that Figure 3.28 is just one of the possible designs for the relational 

schema. With the functional dependencies found in the XML data, the user can 

decompose the schema prototypes into other good relational database designs 

for the XML data. 

/ 
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I 

tablel{ 

SigmodRecord,issue.articles.article.title , (3) 

SigmodRecord.issue.articles.article.initPage, (4) 

SigmodRecord.issue.articles.article.endPage, (5) 

SigmodRecord.issue.volume, (6) 

SigmodRecord.issue.number (7) 
} 

table2{ 

SigmodRecord.issue.articles.article.authors.author, (2) 

SigmodRecord.issue.articles.article.title , (3) 

SigmodRecord.issue.number (7) 
} 

tables{ 

SigmodRecord.issue.articles.article.authors.author.position, (1) 

SigmodRecord.issue.articles.article.authors.author, (2) 

SigmodRecord.issue.articles.article.initPage, (4) 

SigmodRecord.issue.articles.article.endPage, (5) 

SigmodRecord.issue.number (7) 
} 

table4{ 

SigmodRecord.issue.articles.article.authors.author.position, (1) 

SigmodRecord.issue.articles.article.authors.author, (2) 

SigmodRecord.issue.articles.article.title , (3) 

SigmodRecord.issue.articles.article.initPage, (4) 

SigmodRecord.issue.volume, (6) 
} 

I 
Figure 3.28: Relational schemas produced for sigmodrecord.xml based on 
3NF decomposition 
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Experimental Result for DTD-splitting Schema Extraction Algorithm 

After the first three steps, the resulting schema prototypes are shown in Figure 

3.29. Note that even after step 2, the tree structures of each construction methods 

should have slightly difference, the schema prototypes produced are the same. 

table:issue( table:article( table:author( 
volume, (1) title, (1) position, (1) 
number, (2) initPage, (2) author, (2) 
) endPage, (3) ) 

) 

Figure 3.29: The relational schema prototype for sigmodrecord.xml, which is 
generated by using DTD-splitting Schema Extraction Algorithm 

We then map the data in sigmodrecord.xml to produce a prototype table 

according to this schema prototype. Figure 3.30 shows a fraction of the mapped 

data in the prototype table. 

The prototype tables are then used in discovering the functional dependencies 

and candidate keys. The results for each prototype tables are shown in Figure 

3.31. For the procedure shown in Figure 3.20, we set numAttr as 1 only as we 

observe that the number of attributes in each schema prototypes are relatively 

small. The resulting relation schemas for sigmodrecord.xml are then produced. 

The schemas produced from Top-down method is shown in Figure 3.32. For 

sigmodrecord.xml, the relational schemas for both Bottom-up and Hybrid method 

are the same, as shown in Figure 3.33. 

The three construction methods proposed in our DTD-splitting Schema Ex-

traction Algorithm provide more flexibilities in producing the relational schema. 

With the support of the relational database concept, it is quite obvious that 

Hybrid methods should lead to a better relational schema design and have less 

redundancy of data in the resulting table. To better illustrate this, we run an-

other experiment using a set of synthetic XML data. 

/ 
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00,Catriel Beeri 12,1 
01,Moshe Y. Vardi 12,2 
00,Peter B. Miller 12,3 
01,Sergey Tetelbaum 12,4 
02,Kincade N. Webb 13,1 
00,Antonio L. Furtado 13,2 
00,Kn. I. Kilov 12,3 
01,1. A. Popova ,4 
0 0,James H. Burrows 14,1 
0 0,James P. Fry '2 
00,John L. Berg '3 
0 0,Richard L. Nolan 
00,Mayford L. Roark 15,1 
00,Milt Bryce 15,2 
0 0,Henry M. Walker 15,3 
00,Haran Boral 15,4 
01,David J. DeWitt 
02,Randy H. Katz '2 
03,Anthony C. Klug '3 

. table:author • table:issue 

A Note on Decompositions of Relational Databases.,33,37 

BUSINESS - An End-User Oriented Application Development Language.,38,69 
Horizontal Decomposition to Improve a Non-BCNF Scheme.,26,32 
Meta-Database Architecture for Relational DBMS.,18,25 
Actual Conversion Experiences.,20,33 
Conversion Technology. An Assessment.,39,61 
Data Base Directions II: The Conversion Problem - Editorial3,3 
Establishing Management Objectives.,9,19 
Evolution in Computer Systems.,4,8 
Standards.,34,38 
Administering a Distributed Data Base Management System.,86,99 
Database Research Activities at the University of Wisconsin.,19,26 
Distributed Processing of Data Dynamics.,67,85 
Implementation of a Time Expert in a Data Base System.,51,60 

• table:article 

Figure 3.30: Fraction of the mapped table prototypes from sigmodrecord. xml, 
which is then used in functional dependency discovery step {DTD-splitting algo-
rithm) 
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table：author 

No. of tuples: 3113 

No. of attributes: 2 

FDs found: Keys found: 

{1 2} 

table：article 

No. of tuples： 1248 

No. of attributes: 3 

FDs found: Keys found: 

1 3 -> 2 {13} 

table:issue 

No. of tuples: 63 

No. of attributes： 2 

FDs found： Keys found： 

{1 2} 

Figure 3.31: Functional dependencies and candidate keys found from the pro-
totype tables in Figure 3.30 

table：issue( 

volume, (1) 

number, (2) 

assignID , (3) 

table:article.asslgnID (4) 

) 

table：article( 

title, (1) 

initPage, (2) 

endPage, (3) 

assignID , (4) 

table:author.assignID (5) 

) 

table：author( 

position, (1) 

author, (2) 

assignID , (3) 

) 

Figure 3.32: The relational schemas for sigmodrecord. xml by using Top-down 
method 

/ 
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table：issue( 

volume, (1) 

number, (2) 

assignID (3) 

) 

table：article( 

title, (1) 

initPage, (2) 

endPage, (3) 

assignID, (4) 

table:Issue.asslgnID (5) 

) 

table：author( 

position, (1) 

author, (2) 

assignID, (3) 

table:article.assignID (4) 

) 

Figure 3.33: The relational schemas for sigmodrecord.xml by using Bottom-up 
method or Hybrid method 

3.3.2 Synthetic XML Data 

In our second experiment, we generate a set of XML data according to the 

example DTD used in Figure 3.15. To give reasonable characteristics to the 

XML data, we make some assumptions when generating the XML data: 

(1)No two books or two monographs have the same title. 

(2)No two authors, which have the same name, share the same address. 

(3)Author has one address only. 

(4)Author can appear in more than one books and/or monographs. 

(5)Authority can appear in more than one books. 

(6) Multiple subelement occurrences of authority and monograph range between 

0 to 5. 

In total, XML data for more than 200 books and monographs are generated 

according to the assumption stated. A fraction of our synthetic XML data set is 

shown in Figure 3.48. 
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table:book ( table:monograph ( 
book.booktitle, (1) monograph.title, (1) 
book.price, (2) monograph.author.id, (2) 
book.author.id，(3) monograph.author.name.firstname, (3) 
book.author.name.firstname, (4) monograph.author.name.lastname, (4) 
book.author.name.lastname, (5) monograph.author.address, (5) 
book.author.address, (6) monograph.editor.name, (6) 
book.authority.authname, (7) monograph.editor.monograph.title (7) 
book.authority.country (8) ) 

J 

Figure 3.34: The relational schema prototype for synthetic XML data, which 
is generated by using Global Schema Extraction Algorithm 

Experimental Result for Global Schema Extraction Algorithm 

After the first three steps, the resulting schema prototypes for the set of synthetic 

XML data are shown in Figure 3.34. 

We then map the synthetic XML data to produce a prototype table according 

to this schema prototype. Figure 3.35 shows a fraction of the mapped data in 

the prototype table. 

The prototype table is then used in discovering the functional dependencies 

and candidate keys. The result is shown in Figure 3.36. 

Using 3NF decomposition as an example, one of the possible resulting re-

lation schema for the synthetic XML data is shown in Figure 3.37. Note that 

since table :book-3 and table :monograph-4 are the same after comparing the 

attributes in them, they are replaced by a common table table: author. 

Experimental Result for DTD-splitting Schema Extraction Algorithm 

After the first three steps, the resulting schema prototypes are shown in Figure 

3.19. Note that even after step 2, the tree structures of each construction methods 

should have slightly difference, the schema prototypes produced are the same. 

/ 
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XML book, 19.9, 1, Men-Hin, Yan, "Hung Horn, Hong Kong", NY Times, US 
XML book, 19.9, 1, Men-Hin, Yan, "Hung Horn, Hong Kong", PC Home, HK 
XML book, 19.9,1, Men-Hin, Yan, "Hung Horn, Hong Kong", PC Weekly, HK 
XML in a nutshell, 99.9’ 2’ Ham, Wong, "CUHK, Hong Kong", Tokyo Times, JAP 
XML in a nutshell, 99.9, 2, Ham, Wong, "CUHK, Hong Kong", PC Magazine, HK 
XML in a nutshell, 99.9, 2, Ham, Wong, "CUHK, Hong Kong", DC Times, US 
XML cook book, 99.9, 3，Roy, Chan, "CUHK, Hong Kong", PC Times, HK 
XML cook book, 99.9，3’ Roy, Chan, "CUHK, Hong Kong", DC Times, US 
XML cook book, 99.9, 3, Roy, Chan, "CUHK, Hong Kong", PC Zone, HK 

table:book 

XML monograph, 2’ Ham, Wong, "CUHK, Hong Kong", Roy Chan, XML monograph 
XML monograph, 2，Ham, Wong, "CUHK, Hong Kong", Roy Chan, DTD monograph 
XML monograph, 2, Ham, Wong, "CUHK, Hong Kong", Roy Chan, mono XML 
XSL monograph, 2, Ham, Wong, "CUHK, Hong Kong", Willis Chan, SGML monograph 
XSL monograph, 2, Ham, Wong, "CUHK, Hong Kong", Willis Chan, XSL monograph 
DTD monograph, 4, Brenda, Chan, "Choi Hung, Hong Kong", Roy Chan, XML monograph 
DTD monograph, 4, Brenda, Chan, "Choi Hung, Hong Kong", Roy Chan, DTD monograph 
DTD monograph, 4, Brenda, Chan, "Choi Hung, Hong Kong", Roy Chan, mono XML 
monograph XSLT, 4, Brenda, Chan, "Choi Hung, Hong Kong", Henry Hui, SGML monograph 

_. table:monograph 

Figure 3.35: Fraction of the mapped data from synthetic XML data, which is 
then used in functional dependency discovery step {Global algorithm) 

table：book 

No. of tuples： 507 

No. of attributes: 8 

FDs found: Keys found: 

1 -> 2 3 4 5 6 -> 3 {17 8} 

3 -> 4 5 6 

table：monograph 

No. of tuples: 487 

No. of attributes: 7 

FDs found: Keys found: 

1 -> 2 6 7 -> 6 {17} 

2 - > 3 4 5 3 4 5 -> 2 

Figure 3.36: Functional dependencies and candidate keys found from the pro-
totype table in Figure 3.35 
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table:book-1 ( table:monograph-1 ( 
book.booktitle, (1) monograph.title, (1) 
book.price, (2) monograph.author.id, (2) 
book.author.id (3) monograph.editor.name (6) 
) ) 
table:book-2 ( table:monograph2-2 ( 
book.booktitle, (1) monograph.title, (1) 
book.authority.authname, (7) monograph.editor.monograph.title (7) 
book.authority.country(8) ) 
) table:monograph-3 ( 
table:book-3 ( monograph.editor.name, (6) 
book.author.id, (3) monograph.editor.monograph.title (7) 
book.author.name.firstname, (4) ) 
book.author.name.lastname, (5) table:monograph-4 ( 
book.author.address (6) monograph.author.id, (2) 
) ^ ^ monograph.author.name.firstname, (3) 

monograph.author.name.lastname, (4) 
^ ^ monograph.author.address (5) 

table:author ( 
author.id, • 
author.name.firstname, 
author.name.lastname, 
author, address 
) 

Figure 3.37: Relational schemas produced for the synthetic XML data based 

on 3NF decomposition 

/ 
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^ M L book, 19.9 I XML monograph, Roy Chan 
二。 i n a_n:;tsM，99.9 ^SL monograph, Willis Chan 

二 - ？CO DTD monograph. Roy Chan 
XML b ack book, 49.9 u v o i 4 u � 
_ _ _ . … monogrpah XSLT, Henry Chan 
DTD book, 39.9 
DTD in a nutshell, 29.9 ！ 

DTD cook book, 49.9 table:monograph 
DTD black book, 19.9 
. US, NY Times 

HK, PC Home 
• tabie:book HK, PC Weekly 

JAP, Tokyo Times 
"Hung Horn, Hong Kong", 1, Men-Hin, Yan HK, PC Magazine 
"CUHK, Hong Kong", 3，Roy, Chan US: DC Times 
"CUHK, Hong Kong", 2，Ham, Wong HK, PC Times 
"Choi Hung, Hong Kong", 4，Brenda, Chan HK, PC Zone 
"HKU, Hong Kong", 5, Willis,Chan u s ! PC Weekly 
"HKU, Hong Kong", 6，Ham, Tang JAP, PC Weekly 

table:author table:authority 

Figure 3.38: Fraction of the mapped table prototypes from the sythetic XML 
data, which is then used in functional dependency discovery step {DTD-splitting 
algorithm) 

We then map the data to produce a prototype table according to this schema 

prototype. Figure 3.38 shows a fraction of the mapped data in the prototype 

table. 

The prototype tables are then used in discovering the functional dependencies 

and candidate keys. The results for each prototype tables are shown in Figure 

3.39. For the procedure shown in Figure 3.20, we set numAttr as 1 only as we 

observe that the number of attributes in each schema prototypes are relatively 

small. The resulting relation schemas for the synthetic XML data are then 

produced. The relation schemas for Top-down, Bottom-up and Hybrid methods 

are shown in Figure 3.40. 

As we mentioned before, just like our DTD-splitting algorithm, the methods 

proposed in [49] also based on constructing schema from the characteristics in the 

DTD. And the shared inlining method and hybrid inlining method introduced in 

/ 
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table:book 

No. of tuples: 117 

No. of attributes: 2 

FDs found: Keys found: 

{1} 

table:authority 

No. of tuples: 312 

No. of attributes: 2 

FDs found: Keys found: 

{1 2} 

table:author 

No. of tuples: 156 

No. of attributes: 4 

FDs found: Keys found: 

1 4 -> 2 3 ⑵ 

table:monograph 

No. of tuples: 132 

No. of attributes： 2 

FDs found: Keys found: 

{1} 

Figure 3.39: Functional dependencies and candidate keys found from the pro-
totype table in Figure 3.38 
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table:book ( table:author ( table:authority { table:monograph ( 
booktitle (1), address (1), country (1), title (1), 
price (2), id (2), authname (2), name (2), 
authority.assignID (3)， firstname (3), assignID (3) monograph.title (3), 
author.id (4) lastname (4) ) author.id (4) 
) ) ) 

Top-down Method 

tableibook ( table:author { table:authority ( table:monograph ( 
booktitle (1), address (1), country (1), title (1), 
price (2)， id (2), authname (2), name (2), 
) firstname (3), assignID (3) monograph.title (3) 

lastname (4), book.booktitle (4) ) 
monograph.title (5)， ) 
book.booktitle (6) 

[) 
Bottom-up Method 

tableibook ( table:author ( table:authority ( table:monograph ( 
booktitle (1), address (1), country (1), title (1), 
price (2)， id (2), authname (2), name (2), 
author.id (3) firstname (3), assignID (3) monograph.title (3)， 

) lastname (4), book.booktitle (4) author.id (4) 
) ) ) 

Hybrid Method 

Figure 3.40: Relational schemas of the synthetic XML data produced by DTD-
splitting algorithm 

/ 
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table:authority 

assigned. ID country authname 

1 US NY Times 

2 HK PC Home table:author 

3 HK PC Weekly address ^ _ firstname lastname 

4 JAP Tokyo Times Hung Horn, Hong Kong 1 Men-Hin Yan 

5 HK PC Magazine CUHK, Hong Kong 3 Roy Chan 

6 US DC Times CUHK, Hong Kong 2 Ham Wong 

7 HK PC Times Choi Hung, Hong Kong 4 Brenda Chan 

8 HK PC Zone ^ ^ 

tableibook '" 卜 . '“‘ table:monograph 

booktitle price authority.assignedID author.id ^ name monograph.title author.id 

XML book 19 9 1 1 XML monograph Roy Chan XML monograph 2 

XML book 19.9 2 1 XML monograph Roy Chan DTD monograph 2 

XML book 19.9 3 1 XML monograph Roy Chan mono XML 2 

XML in a nutshell 99.9 4 2 XSL monograph Willis Chan SGML monograph 2 

XML in a nutshell 99.9 5 2 XSL monograph Willis Chan XSL monograph 2 

XML in a nutshell 99.9 6 2 DTD monograph Roy Chan XML monograph 4 

XML cook book 99.9 7 3 DTD monograph Roy Chan DTD monograph 4 

XML cook book 99.9 6 3 DTD monograph Roy Chan mono XML 4 

XML cook book 99.9 8 3 Monograph XSLT Henry Hui monograph XSLT 4 
• • • •••••• • • • • • • • • • •丨• • •‘ 

Figure 3.41: Tables for top-down method 

49] are adopted in many current research projects like [33, 31，42, 52]. To show 

how our proposed methods in DTD-splitting algorithm outperform the methods 

introduced in [49] in terms of minimizing data redundancy, we apply them on 

the synthetic XML data and present fraction of the relational tables for the three 

tree construction methods proposed by us, as well as those for the shared inlining 

method and hybrid inlining method in [49 . 

The tables produced from Top-down method is shown in Figure 3.41. The 

tables produced from Bottom-up method is shown in Figure 3.42. The schemas 

produced from Hybrid method is shown in Figure 3.43. 

The relational schema extracted by shared inlining method and hybrid inlin-

ing method are shown in Figure 3.44. The tables produced from shared inlining 

method are shown in Figure 3.45. The tables produced from hybrid inlining 
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table:authority 
I table:monograph 

assigned.ID country authname book.booktitle 773 t生 name monograph.title 
1 US NY Times XML book “ 

XML monograph Roy Chan XML monograph 
2 HK PC Home XML book … ^ 

XML monograph Roy Chan DTD monograph 
3 HK PC Weekly XML book … 

‘ XML monograph Roy Chan mono XML 
4 JAP Tokyo Times XML in a nutshell “ “ 

^ XSL monograph Willis Chan SGML monograph 
4 JAP Tokyo Times XML cook book , 

^ XSL monograph Willis Chan XSL monograph 
5 HK PC Magazine XML in a nutshell ^ 

DTD monograph Roy Chan XML monograph 
6 US DC Times XML in a nutshell " 

DTD monograph Roy Chan DTD monograph 
7 HK PC Times XML cook book 

DTD monograph Roy Chan mono XML 
8 JAP PC Zone XML cook book 

monograph XSLT Henry Hui monograph XSLT 
• • • • • • • • • • • • 

table:author 

address id firstname lastname monograph.title book.booktitle I . , . “ 
^~^ table:book 

Hung Horn, Hong Kong 1 Men-Hin Yan ； XML book booktitle price 
CUHK, Hong Kong 3 Roy Chan - XML cookbook , “ 

XML book 19.9 
CUHK, Hong Kong 2 Ham Wong XML monograph XML in a nutshell ~~~~~ ~ ~ ~ ~~~ ’• 2 ^ 2 XML in a nutshell 99.9 
CUHK, Hong Kong 2 Ham Wong XSL monograph XML in a nutshell ~ " “ “ 

‘ ® ® ^ ^ XML cook book 99.9 
Choi Hung, Hong Kong 4 Brenda Chan DTD monograph ； 

Figure 3.42: Tables for bottom-up method 

table:author \table:book 

address id firstname lastname booktitle price author.id 

Hung Horn, Hong Kong 1 Men-Hin Yan XML book 1 9 . 9 1 

CUHK, Hong Kong 3 Roy Chan XML in a nutshell 99.9 2 

CUHK, Hong Kong 2 Ham Wong XML cook book 99.9 3 

Choi Hung, Hong Kong 4 Brenda Chan . . . 

table:authority table:monograph 

country assigned.ID authname book.booktitle title name monograph.title author.id 

US 1 NY Times XML book XML monograph Roy Chan XML monograph 2 

HK 2 PC Home XML book XML monograph Roy Chan DTD monograph 2 

HK 3 PC Weekly XML book XML monograph Roy Chan mono XML 2 

JAP 4 Tokyo Times XML in a nutshell XSL monograph Willis Chan SGML monograph 2 

JAP 4 Tokyo Times XML cook book XSL monograph Willis Chan XSL monograph 2 

HK 5 PC Magazine XML in a nutshell DTD monograph Roy Chan XML monograph 4 

6 DC Times XML in a nutshell DTD monograph Roy Chan DTD monograph 4 

HK 7 PC Times XML cook book DTD monograph Roy Chan mono XML 4 

JAP 8 PC Zone XML cook book monograph XSLT Henry Hui monograph XSLT 4 

Figure 3.43: Tables for hybrid method 
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method are shown in Figure 3.46. 

We use the tables constructed by our hybrid method, as shown in Figure 3.43 

to compare with those generated by [49]，s methods. 

When compared with shared inlining method in Figure 3.45, it is obvious 

that the relational schemas constructed by our algorithm use less attributes. 

The main reason is that we prevent excessive use of artificial IDs for each table. 

Moreover, the tables produced by our algorithm has less data redundancy. For 

example, in the table table : author, all the data for author is repeated in shared 

inlining method for each different book and monograph foreign keys (parent ID + 

parentCODE). While in our algorithm, we use key of table : author (author. id) 

in table : book and table : monograph, instead of using using foreign keys of 

table:book and table -.monograph in table: author. As a result, redundancy 

of data can be prevented. 

When compared with hybrid inlining method in Figure 3.46，it is obvious 

that relational schemas constructed by our algorithm use much less attributes. 

Based on the rule in hybrid inlining method, author's attributes have to inlined 

all into table:book and table:monograph. The reason for [49] to propose that 

is to reduce the number of table joins in query. However, as shown in Figure 

3.46，the method would create much redundancy among tables when the number 

of attributes for the extra inlining is large. 

It is clear that our algorithm produces more efficient relational schema de-

sign than [49] does. Since the DTD of our synthetic XML data is not large, the 

number of attributes in each table is relatively small. As a result, the step of 

dependency discovery is not really significant in this case as no important func-

tional dependencies are found. However, more reasonable and effective schemas 

can still be produced by our algorithm. This show that even without the step 

the dependency discovery, our algorithm still outperform the methods proposed 

/ 
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table:book ( table:author ( table:authority ( tableimonograph ( 
assignedID, id, assignedID, assignedID, 
booktitle, parentID, parentID, parentID, 
price parentCODE, parentCODE, parentCODE, 
) address, authname, title, 

firstname, country editor.name 
lastname ) ) 

L) L 
Shared Inlining Method 

table:book ( table:monograph { table:authority ( 
assignedID, assignedID, assignedID, 
booktitle, parentID, parentID, 
price, parentCODE, parentCODE, 
author.id, title, authname, 
author.address, editor.name, country 
author, lastname, author.id, ) 
author.firstname author.address, 
) author.lastname, 

author.firstname 
I i 

Hybrid Inlining Method 

Figure 3.44: Relational schema for the methods proposed in [49 

by [49:. 

3.3.3 Discussion 

The experiments on sigmodrecord.xml and our synthetic XML dataset illus-

trates the schema extraction effects for both of our schema extraction algorithms. 

From the relational schemas extracted, we would discuss some interesting obser-

vations below. 

It is obvious that the relational schemas produced by global schema extrac-

tion algorithm (or Global algorithm) may not the same as those produced by 

DTD-splitting schema extraction algorithm (or DTD-splitting algorithm). The 

reason for their difference is what we have mentioned before: Global algorithm 

relies more on discovering dependencies in the XML data while DTD-splitting 

algorithm relies more on pre-decomposition of schema prototypes. With such a 
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table:author 

id parentID parentCODE address firstname lastname 

table:book 1 1 table:book Hung Home, Hong Kong Men-Hin Yan 

assignID booktitle price 3 3 table:book CUHK, Hong Kong Roy Chan 

1 XML book 1 9 ^ 2 2 table:book CUHK, Hong Kong Ham Wong 

2 XML in a nutshell 99.9 2 1 table:monograph CUHK, Hong Kong Ham Wong 

3 XML cook book 99.9 2 2 table: monograph CUHK, Hong Kong Ham Wong 

. . . ^ ^ _ 4 3 table:monograph Choi Hung, Hong Kong Brenda Chan 

table:authority table:monograph 

assigned.ID parentID parentCODE authname country assignedID parentID parentCODE title editor.name 

] ] _ toble:book_ NY Times 1 1 table:monograph XML monograph Roy Chan 

2 ] table:book_ PC Home HK—— 1 3 table:monograph XML monograph Roy Chan 

3 ] table:book_ PC W e e k l y _ HK 1 9 table:monograph XML monograph Roy Chan 

4 2 _ table:book_ Tokyo Times ^ _ 2 2 table:monograph XSL monograph Willis Chan 

1 3 _ table:book_ Tokyo Times ^ _ 2 8 table:monograph XSL monograph Willis Chan 

5 2 _ table:book_ PC Magazine HK—— 3 1 table:monograph DTD monograph Roy Chan 

6 2 table:book DC Times US 3 3 table:monograph DTD monograph Roy Chan 

7 3 table:book PC Times HK 3 9 table:monograph DTD monograph Roy Chan 

8 3 table:book PC Zone JAP 4 4 table:monograph monograph XSLT Henry Hui 

• • • • • • ‘ • • j j j ^jj ... ... ... ... •••• 

Figure 3.45: Tables for [49]，s shared inlining method 

/ 



Chapter 3 Using RDBMS to Store XML Data 86_ 

table:authority 

assigned.ID parentID parentCODE authname country 

1 1 table:book NY Times US 

2 1 table:book PC Home HK 

3 1 table:book PC Weekly HK 

4 2 table:book Tokyo Times JAP 

4 3 table:book Tokyo Times JAP 

5 2 table:book PC Magazine HK 

6 2 table:book DC Times US 

7 3 table:book PC Times HK 

8 3 tableibook PC Zone JAP 
table:book 

assignID booktitle price author.id address firstname lastname 

1 XML book 19.9 1 Hung Horn, Hong Kong Men-Hin Yan 

2 XML in a nutshell 99.9 2 CUHK, Hong Kong Ham Wong 

3 XML cook book 99.9 3 CUHK, Hong Kong Roy Chan 

table:monograph 卜” 卜•. 卜"卜•• 卜•• 卜” 卜 • • — — 
assignedID parentID parentCODE title editor, name author.id address firstname lastname 

1 1 table:monograph XML monograph Roy Chan 2 CUHK, Hong Kong Ham Wong 

1 3 table:monograph XML monograph Roy Chan 2 CUHK, Hong Kong Ham Wong 

1 9 table:monograph XML monograph Roy Chan 2 CUHK, Hong Kong Ham Wong 

2 2 table:monograph XSL monograph Willis Chan 2 CUHK, Hong Kong Ham Wong 

2 8 table:monograph XSL monograph Willis Chan 2 CUHK, Hong Kong Ham Wong 

3 1 tableimonograph DTD monograph Roy C han 4 Choi Hung, Hong Kong Brenda Chan 

3 3 table:monograph DTD monograph Roy Chan 4 Choi Hung, Hong Kong Brenda Chan 

3 9 table:monograph DTD monograph Roy Chan 4 Choi Hung, Hong Kong Brenda Chan 

4 4 table:monograph monograph XSLT Henry Hui 4 Choi Hung, Hong Kong Brenda Chan 

• • • ••• • • • • • • • • • B • • • •霧•• 

Figure 3.46: Tables for [49]，s hybrid inlining method 
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difference, both algorithms have their own trade offs: 

Schemas created by Global algorithm are fully based on the real characteris-

tics extracted from the XML data itself, thus ensuring all schema decompositions 

made in the algorithm are reasonably done based on relational database theory, 

Unlike the proposed schemas extraction by [25, 26], which need many extra data 

other than those in the XML file to maintain the schemas, it is possible for us 

to map all the data in the XML file into relational database without introducing 

any extra fields and data. However, since the schemas are decomposed totally 

based on discovered functional dependencies, the schemas might have to be up-

dated when there is new XML data. The reason is that with any new additional 

XML data, some of the current functional dependencies might not hold anymore. 

Thus the schemas decomposed based on the old set of functional dependencies 

might be slightly different to the new set of functional dependencies found in the 

updated XML data, and we have to update the schemas again. 

Schemas created by DTD-splitting algorithm are based more on the charac-

teristics extracted from the DTD correspond to the XML data than the actual 

XML data. Because of the pre-decomposition of the schema prototypes, the cost 

of finding functional dependencies and keys are reduced. For XML data with 

relatively smaller DTD like the one of our synthetic XML data, even without the 

dependency discovery step, we still can produce reasonable relational schema 

design. Since the relational schemas depend more on DTD than the XML data, 

the relational schemas are less likely to be altered upon new addition of XML 

data. However, as the schemas are not produced based all on the functional 

dependencies and keys found inside the data, we might have to add an artificial 

key attribute into the schema. As a result, the resulting tables might contain 

fields that are unknown to users, and database users might not be able to use the 

tables directly. However, we do try to minimize the use of artificial keys as much 

as possible in our algorithm. Most likely those arbitrarily-added fields have to 

/ 



Chapter 3 Using RDBMS to Store XML Data 72_ 

be handled by the database system upon queries and updates. 

Due to the exponential complexity in the number of attributes for functional 

dependency discovery, we suggest to use Global algorithm when the number of 

element and attribute declarations in DTD is not too large so that the number 

of attributes in the schema prototype is relatively smaller. When the DTD has 

a large number of element and attribute declarations, DTD-splitting algorithm 

should be used instead. 

In the experiment of synthetic XML data, we observe that some of the re-

lational schema generated by DTD-splitting algorithm could be further decom-

posed after the key/foreign key fields are added in them, i.e. we can undergo 

second round of functional dependency discovery process after the step of adding 

key/foreign key fields so as to further refine the schema design. On the other 

hand, Global algorithm ensures completed decomposition in one round of func-

tional dependency discovery. Apart from further refine the schema design by 

another round of functional dependency discovery, we can also achieve that by 

finding multivalued dependencies in the XML data. We illustrate the use of mul-

tivalued dependencies in the experiments which are shown in the next chapter. 



Chapter 3 Using RDBMS to Store XML Data 7J_ 

<SigmodRecord> 
<issue> 

<volume>12</volume> 
<number>1 </number> 
<articles> 

<article> 
<title>A Note on Decompositions of Relational Databases.</title> 
<initPage>33</initPage> 
<endPage>37</endPage> 
<authors> 

<author position="00">Catriel Beeri</author> 
ou tho r position="01 ">Moshe Y. Vardi</author> 

</authors> 
</article> 
<article> 

<title>BUSINESS - An End-User Oriented Application Development Language.</title> 
<initPage>38</initPage> 
<endPage>69</endPage> 
<authors> 

�author position="00">Peter B. Miller</author> 
ou tho r position="01 ">Sergey Tetelbaum</author> 
ou tho r position="02">Kincade N. Webb</author> 

� / a u t h o r s � 

</article> 

<article> 
<title>Horizontal Decomposition to Improve a Non-BCNF Scheme.</title> 
<initPage>26</initPage> 
<endPage>32</enclPage> 
<authors> 

ou thor position="00">Antonio L. Furtado</author> 
</authors> 

</article> 
</issue> 
<issue> 

</issue> 
</SigmodRecorcl> 

Figure 3.47: Fraction of sigmodrecord.xml 
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<book> 
<booktitle>XML book</booktitle> <monograph> 
<price>19.9</price> <title>XML monograph</t.tle> 
〈author id="1"> <authorid="2"> 

<name> <n3m6> 
<firstname>Men-hin</firstname> <firstname>Ham</f.rstname> 
<lastname>Yan</lastname> <lastname>Wong</lastname> 

</name> 
<address>Hung Horn, Hong Kong</address> <address>CUHK, Hong Kong</address> 

</author> </author> 
<authority> < 6 耐 name="Roy Chan"> 

<authname>NY Times</authname> <monograph> 
<country>US</country> <t,tle>XML monograph</t.tle> 

</authority> </monograph> 
〈authority〉 <monograph> 

<authname>PC Home</authname> <title>DTD monograph</title> 
<country>HK</country> </monograph> 

</authority> <monograph> 
〈authority〉 <title>mono XML</title> 

<authname>PC Weekly</authname> </monograph> 
<country>HK</country> </editoi> 

</authority> </monograoph> 
</book> <monograph> 
<book> <title>XSL monograph</title> 

<booktitle>XML in a nutshell</booktitle> <author ici="2"> 
<price>99.9</price> <nam6> 
cauthor id="5,'> <firstname>Ham</firstname> 

<name> <lastname>Wong</lastname> 
<firstname>Willis</firstname> </name> 
<lastname>Chan</lastname> , <address>CUHK, Hong Kong</address> 

</name> </author> 
<address>CUHK. Hong Kong</address> <editor name="Willis Chan"> 

</author> <monograph> 
<authority> <title>SGML monograph</title> 

<authname>Tokyo Times</authname> </monograph> 
<country>JAP</country> <monograph> 

</authority> <title>XSL monograph</title> 
〈authority〉 </monograph> 

<authname>PC Magazine</authname> ® o > 
<country>HK</country> </monograoph> 

</authority> <monograph> 
〈authority〉 <title>DTD monograph</title> 

<authname>DC Times</authname> <author id="4"> 
<country>US</country> <name> 

</authority> <firstname>Brenda</firstname> 
^。。k> <lastname>Chan</lastname> 
<book> 於 

<booktitle>XML cook book</booktitle> , f ddress>Choi Hung, Hong Kong</address> 
<price>99.9</price> </autho「> 
〈author id="3"> <®ditor name="Roy Chan"> 

<name> <monograph> 
<firstname>Roy</firstname> <title>XML monograph</title> 
<lastname>Chan</lastname> </monograph> 

</name> <monograph> 
<address>CUHK, Hong Kong</address> <title>DTD monograph</title> 

</author> </monograph> 
〈authority〉 </editor> 

<authname>PC Times</authname> </monograph> 
<country>HK</country> <monograph> 

</authority> <title>monograph XSLT</title> 
〈authority〉 <author id="4"> 

<authname>Tokyo Times</authname> <name> 
<country>JAP</country> <firstname>Brenda</firstname> 

</authority> <lastname>Chan</lastname> 
<authority> </name> 

<authname>PC Zone</authname> <address>Choi Hung, Hong Kong</address> 
<country>HK</country> </author> 

</authority> <®ditor name="Henry Hui"> 
</book> <monograph> 
<book> <title>monograph XSLT</title> 

<booktitle>DTD book</booktitle> </monograph> 
<price>39.9</price> </editor> 

/ Figure 3.48: Fraction of synthetic xml 



Chapter 4 

Finding Multivalued 
Dependencies 

Apart from functional dependency, multivalued dependency is another important 

consideration in database design and analysis. We can detect multivalued de-

pendencies to improve the database design by decomposition it to fourth normal 

form. As a result, apart from using functional dependencies, we consider using 

multivalued dependencies to improve the schema prototypes produced by our 

algorithms. As we mentioned in the Section 3.2.6 of Chapter 3,the motivation 

for using multivalued dependencies is that when we mapped the XML data ac-

cording to the schema prototypes, it is possible to have M:N mapping situation 

as an element might allow more than one subelements to have multiple occur-

rences in it. Since it is possible for multivalued dependencies to hold inside M:N, 

for given XML data sets following the schema prototypes, we are also interested 

in discovering multivalued dependencies which might be useful for us to further 

refine the schema prototypes. 

While extracting functional dependencies has received considerable attention 

39, 32, 47, 29, 35, 37, 38] relatively less research effort has been put in find-

ing multivalued dependencies. Based on the existing techniques of discovering 

75 
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functional dependencies, especially [29], we propose a new algorithm for finding 

multivalued dependencies from a given dataset. This new approach not only can 

be used in our schema extraction algorithm. It is also applicable to any large 

relational database. 

The algorithm is based on partitioning the set of tuples with respect to their 

attribute values. The use of partitions makes the validation of multivalued de-

pendency simple and efficient. We propose several effective pruning methods 

based on the properties of multivalued dependency which greatly reduce the 

search space. Results show that our algorithm can correctly identify minimal 

non-trivial multivalued dependencies, providing useful dependency information 

to help us refining the schema prototypes. Moreover, the algorithm is also effi-

cient for many existing benchmark databases, and has good scalability over the 

size of the dataset. 

A new method for determining if a functional dependency holds or not was 

proposed by [29]. The method is based on representing attribute sets by equiva-

lent class partitions of the set of tuples. We find that with suitable modification, 

the representation is also useful in discovering multivalued dependencies. 

For reader's reference, here are some of the notations that we use in the 

following sections: 

R A given relation schema 
r A given relation over R 

t[A] The value of attribute A in tuple t 
[t]x Equivalence class of tuple t with respect to X C i?； a set of tuples whose 

X-values equals to the X-value of t 
TTx Partition of r under X under X 
X j jth equivalence class in TT̂  

0{Y, Xj) Number of different Y-value in equivalence class Xj 

The relation in Table 4.1 is used for all the following examples concerning 
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-Tuple ID I A I B I C I D -
1 ~ i i 2 ~ ~ ^ 
2 “ 1 2 " 1 F 
3 " 1 Y 2 
4 " l r 1 T " 
5 ' 1 1 飞 Y 
6 “ 1 2 ~ 2 ^ 

7 1 3 i ^ 
8 I 2 I 3 I 2 I I " 

Table 4.1: An example relation 

about validating multivalued dependencies with the use of partitions. For ex-

ample, T T � 二 { {1, 2, 3,4, 5, 6}, {7，8}}. The partitions for other attributes are 

7r{B} = {{1，4, 5}, {2,3,6}，{7,8}}，^{c} = {{1,3, 5, 6，8}, {2,4, 7 } } and 兀 p } = 

{ {1 ,6 ,7} , {2,4,8} , {3 ,5 } } respectively. The partition with respect to {CD} is 

啊 } = {{1,6}, {2, 4}, {3, 5}, {7}, {8}}. 

4.1 Validation of Multivalued Dependencies 

According to [29], a functional dependency X ^ Y holds if and only if ttx re-

fines TTy. Thus the concept of partition refinement gives almost direct functional 

dependencies. We find that we can also make use of the idea of partition re-

finement to find multivalued dependencies. With the concept of partition, each 

X-value actually forms an equivalence class. Thus we can see the validation of 

multivalued dependency in the way below: 

Assume there is no duplicated tuples in the relation over the schema R with 

attribute sets X，Y, and Z (Z represents attributes in R other than X and 

y , and Z / 0). Arrange the equivalence classes in a partition by the smallest 

tuple ID in each equivalence class in ascending order. E.g. 7r{AS} is sorted as 

{{1,4,5}，{2,3,6}, {7, 8}} . We use Xj to represent the jth equivalence class in 
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TTx. E.g. for = [ti]{AB] = {1,4,5}, {AB}2 = [h]{AB} = {2,3,6}， 

while {AB}s = [tj]{AB} = {7,S}. 

Lemma 1 Given a relation schema R with attributes X, Y and Z = R — X — 

Y. The multivalued dependency X —Y holds in R iff for any valid relation r, 

for every equivalence class Xj in ttx, the number of different Y-values, Xj), 

times the number of different Z-values, 0{Z, Xj), equals to the size of Xj, | Xj 

i.e. 

e(Y,Xj)*0(Z,Xj) =1 Xj 

Proof: First we assume X Y holds (thus X Z holds, by the 

complementation rule [9]). In the relation r, for a fixed value of X , say Xi, let 

the number of different F-values be n and the number of different Z-values be 

m. We want to show that the number of tuples with the value of X in r equals 

m * n. This means that all combinations of the F-values and Z values exist in 

the tuples having the given X-value. 

Assume on the contrary that not all of these n * m combinations of (F-value, 

Z-value) pairs exist. Let (Fi, Zi) be the missing pair, i.e. the tuple (Xi, Fi, Zi) 

does not exist in the relation. Note that Yi exists with another Z value and Xi, 

Zi appears with another Y value and Xi. Then according to the definition of 

Multivalued Dependency, given two tuples ti = (Xi, Yi, Z ) and 力2 = (Xi, F2, ̂ 1) 

which exist in the relation, there should exist another two tuples ts and 力4 that 

fulfill the conditions stated in Section 2.5. t^[Y] should be equal to ti[Y] = Yi 

and h[Z] should be equal to t2[Z] = Zi. Thus 力3 should be {Xi, Yi, Zi), which is 

exactly the tuple that dose not exist in the relation, a contradiction. As a result, 

X —> Y implies that all n * m combinations of (F-value, Z-value) pairs exist 

in the tuples for the fixed X-value. 

Next consider the converse. Suppose that all the above mentioned n * m 

/ 
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combinations of (y-value, Z-value) pairs exist. We want to show that X Y 

holds (thus X Z holds). That is, we want to show that the condition 

stated in Section 2.5 holds. Assume on the contrary that the condition does not 

hold. Then there exist 2 tuples ix = (A"i, Yi, Zi), and t] = (Xi, 1̂ 2, ^2), where 

Xi.Yi, Zi are values of X, Y, Z, respectively. And there does not exist 2 tuples 

艺3 = (Xi, Yi, Z2) and 力4 = (Xi, I2, ^i)- However, since all combinations of Y and 

Z values for given Xi are found,力3 and 力4 must exist, a contradiction. I 

6{Y, Xj) for each equivalence class Xj in nx can be computed by comparing 

Tlx and TTxY. By checking how many equivalence classes in ttxy refine (are the 

subsets of) Xj, we can obtain the 9{Y, Xj) for Xj. 9{Z, Xj) can be computed in 

the same way. 

Example 

Consider the relation schema R in Table 4.1 again. To test if A > B holds in 

R above, we need to compute 7r{A}，'̂ {ab} and ^^[acd] (i.e. t^{A{j{r-b-a)])-

With the computed 兀 { B } , 兀 { C } and we can thus compute 

and 'n[ACD}- According to Table 4.1, ti{ab] — {{1, 4, 5}, {2, 3, 6}, {7, 8 } } and 

'K[acd] — {{1, 6}, {2,4}, {3, 5}, {7}, {8} } . For the first equivalence class = 

ti]{A} — {1,2,3,4,5,6} in 7r{A}, it is refined by equivalence classes {AB}i = 

{1,4,5} and {AB}2 = {2,3,6} in tt^ab}- Thus we know that 0{{B},{A}i) is 

2 because {A} i is refined by 2 equivalence classes in tt^ab}- For the second 

equivalence class {A}2 =[力7]{a} = {7, 8} in ttia}, it is refined by class {AB}2 = 

{7,8} in Thus 巧 {B} , {A}?) is 1. 

Similarly, {A} i is refined by equivalence classes {ACD}i = {1, 6}，{ACD}2 = 

{2,4} and {ACD}^, = {3,5} in h^acd]- Thus we know that e{{CD},{A]i) for 

{A}i is 3 because {A} i is refined by 3 equivalence classes in tt^acd}- For {A}2, 

it is refined by class {ACD}^ = {7} and {ACD}s = {8}. Thus 0{{CD}, {^>2) 
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is 2. 

We can now check if the size of each equivalence class in 兀⑷ equals to the 

product of its number of different {E}-values and its number of different {CD}-

values, i.e. we check whether | {A}j |= 9{{B}, {A]j) * 0{{CD}, {A}j) for all 

{ A } j in 7r{A}. For {A}i, e{{B},{A}i) is 2 and 0{{CD},{A}i) is 3. | {A}i | is 

6. As I 1= 6{{B}, {A}i) * e{{CD}, {A}i) (6 = 2* 3)，{A}i can fulfill the 

requirement. 

For {A}2, e { {B} , {A}2 ) is 1 and 0{ {CD} , {A}2) is 2. | {A}? | is 2. As 

I {A}i 1= e{{B},{A}i) * e{{CD},{A}i) (2 = 1* 2), {A}2 can also fulfill the 

requirement. 

Since all equivalence classes in t t � ( { A } i and {A}2) can fulfill the require-

ment, we show that A B holds in the relation. 

4.2 Search Strategy and Pruning 

The general search strategy for our algorithm is as follows. The search starts 

from singleton sets of right-hand side candidates for a multivalued dependency, 

and works its way to larger attribute sets of right-hand side candidates. For 

each right-hand side candidate, it is first validated with singleton sets of left-

hand side candidates, and works its way to larger attribute sets of left-hand side 

candidates. 

Similar to previous work in discovering functional dependencies, our focus is 

also to find only the minimal non-trivial multivalued dependencies by pruning 

the search space as much as possible. We find that there is some similarity 

between the properties of left-hand sides of functional dependency and those of 

multivalued dependency. Due to this similarity, we found that the small-to-large 

searching concept in previous functional dependency discovery algorithm can be 

/ 
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applied in discovering multivalued dependencies as well. 

However, there is a crucial difference between the properties of left-hand 

sides of functional dependency and multivalued dependency which results in the 

increase of the search space for finding multivalued dependencies. We try to 

reduce the search space based on a unique property of multivalued dependency. 

The search strategies for both left-hand and right-hand sides candidates are 

discussed in the following sections. 

4.2.1 Search Strategy for Left-hand Sides Candidates 

For functional dependency, if X — F holds then XZ — F is also valid where 

Z represents some attributes in R other than X and Y. The dependency like 

XZ Y above is not the minimal dependency found in the relation. Existing 

algorithms for finding functional dependencies tried to avoid considering those 

non-minimal left-hand side candidates, and we considered the possibility to do 

that in our algorithm for finding multivalued dependencies as well. 

For multiple dependency if X Y holds, XZ Y would also be valid 

where Z represents some attributes in R other than X and Y. For a simple proof 

of this minimality rule, please refer to appendix. This minimality rule is a special 

case for multivalued augmentation rule [9]. The rule states that if a — f i holds 

and J C R and (5 C 7, then ja —— 6f5 holds. When substituting 6 with 0, we 

can get the rule we just stated. 

With this property, we can prune the search space of left-hand side candidate 

as follows. 

Rule 1 Once we find a valid multivalued dependency X ->—)• Y, we do not 

have to further validate any left-hand side which is a superset of X for a candidate 

multivalued dependency with Y as the right-hand side. 
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4.2.2 Search Strategy for Right-hand Sides Candidates 

For functional dependency, given X ^ A and X ^ ^ are valid dependencies, we 

can be sure that X —> AB holds. Given X AB, we can be sure that X ^ A 

and X ^ B hold as well. The dependency like X — AB above is also called a 

non-minimal dependency, since obviously it can be easily deduced from X ^ A 

and X ^ B. Existing algorithms for finding functional dependencies tried to 

avoid those non-minimal candidates by just considering the singleton sets as the 

possible right-hand side candidates. 

Unfortunately, the above property for functional dependency is not always 

true for multivalued dependency, i.e. if X AB holds, it may not be true that 

X A and X B hold as well. For instance, in the relation of Table 4.1, 

we can see that A —>-> CD holds but neither A C nor A D holds. In 

this case, A CD is actually a minimal non-trivial multivalued dependency. 

As a result, other than singleton sets, we have to also consider larger attribute 

sets as the possible right-hand side candidates. 

Let us go back to the idea about validating multivalued dependencies intro-

duced in Section 4.1. When we consider a possible dependency X Y, our 

validation must involve Z (Z equals R — Y — X). It is obvious that in order 

to have a valid non-trivial multivalued dependency X — Y , all X, V and Z 

cannot be 0. For R with k attributes, the right-hand side candidates Y would be 

the largest when X and Z are singleton sets. Thus the largest Y would be the 

(k — 2)-attribute sets, and the search space is expected to contain from singleton 

sets to all sets with k — 2 attributes. Using Figure 4.1 as an example, where level 

refers to the number of attributes in an attribute set, we have to consider all 

the sets in level 1 and 2 (indicated by larger fonts) as right-hand side candidates 

only. 

However, by applying the complementation rule [9] of multivalued depen-

/ 
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0 

A B C D level 1 

A B A C A D B C B D C D level 2 

ABC ABD ACD 已 C D level 3 

ABCD leve丨 4 

Figure 4.1: A set containment lattice for R = {A, B, C, D} 

dency, we can actually reduce the search space to less than half. The complemen-

tation rule states that if X Y holds, then X Z (Z equals R — Y — X) 

also holds. From this rule, it is obvious that X Z holds iff X Y holds. 

Thus while we are validating X > y , we are actually validating X —— Z at 

the same time. The size of Z is the largest when that of X is the smallest, i.e. 

when X is a singleton set. As a result, we do not have to consider any attribute 

set as a possible Y (right-hand side candidate) if that attribute set has already 

acted as a Z before. We apply the above idea to our search strategy as follows. 

Rule 2 A multivalued dependency candidate X —)•—> Y will not be validated 

if the level (size) of Y is greater than that ofZ = R — X — Y. 

Using Figure 4.1 as an example where the number of attributes k = 4. First 

we consider a singleton set {A} , which is at level 1, as the F-candidate. We 

consider the X = {B}. As a result, the corresponding Z is {CD}, which is 

in level 2. Since the level of the y-candidate, is smaller than that of 

the corresponding Z, {CD}, the validation of the dependency B — A is 

performed. By the complementation rule, it is clear that we have also validated 

the dependency B CD at the same time. Later the validation will come to 

take {CD} as the F-candidate, {B} as X and {^1} as the corresponding Z. Since 

/ 
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the level of the F-candidate, {CD}, is larger than that of the corresponding Z, 

{B}, the validation of the dependency B CD will not be performed. 

For the case of having candidate Y and the corresponding Z in the same 

level, we apply a similar strategy to avoid redundant validation. 

Rule 3 Assume a total order on the attributes (e.g. alphabetical order). 

Consider a multivalued dependency candidate X —Y where Y at the same 

level (has the same size) asZ = R — X — Y. The dependency candidate will be 

validated iff the smallest attribute (in alphabetical order) of Y is smaller than 

that of Z. 

Using Figure 4.1 as an example again. We consider a singleton set {A}, 

which is in level 1，as the F-candidate. And we consider the X as {BC}. Thus 

the corresponding Z is {D}, which is in level 1 as well. Both {A} and {D} 

are in level 1. The smallest attribute in {A} is A (since {A} is a singleton set, 

the smallest attribute must be A) while that in {D} is D. Since A is smaller 

than D in alphabetical order, the validation of the dependency BC — A is 

performed. By the complementation rule, it is clear that we have also validated 

the dependency BC D at the same time. Later the validation come to 

taking {D} as F-candidate, {BC} as X and {A } as the corresponding Z. Since D 

is larger than A in alphabetical order, the validation of the dependency BC 

D will not be performed. 

By applying the above strategy, we can greatly reduce the number of candi-

dates while still ensuring a complete search space. In other words, if R has k 

attributes, we can reduce the necessary right-hand side candidates from k — 2 

levels to only� ( /c — 2)/2] levels. This is because from level�(A; — 2)/2] + 1 to 

{k — 2), all the sets in them must have been a Z candidate for F-candidate sets 

in level 1 to level \{k — 2)/2], hence will not be validated according to our search 

rules. Using Figure 4.1 as an example again, A; = 4. The necessary right-hand 

/ 
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side candidate(s) is/are from level 1 to level�(4 - 2)/2] = 1 thus the only level 

we have to consider is level 1. The level (s) that we do no have to consider here 

should be from level� (4 - 2)/2] + 1 = 2 to level 4 — 2 = 2 so it is just level 2. 

4.2.3 Other Pruning 

Apart from the search space pruning proposed above, we also propose several 

other pruning rules based on the relation between multivalued dependency with 

key and functional dependency, as well as the characteristic of multivalued de-

pendency in terms of partitions. 

Left-hand Side Key pruning 

It is well-known that a functional dependency holds whenever the left-hand side 

of the dependency is a key. By the replication rule [9] which states that if 

X ^ Y holds then X Y also holds, obviously multivalued dependency 

holds under the same condition. With the above properties, we can produce 

the multivalued dependencies involving key or the superset of the key at the 

left-hand side without performing multivalued dependency validation at all. As 

mentioned in [29], an attribute set X is a key or a superset of a key if partition 

Tlx consists of singleton equivalence classes only. The identification for keys is 

very simple and straightforward. As a result, we have the rule below: 

Rule 4 During validation, if the left-hand side candidate is identified as a 

key or superset of a key, we do not have to further verify it with our multivalued 

dependency validation. 

/ 
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Functional Dependency Pruning 

As introduced in [29], with the use of partition refinement concept, validating a 

functional dependency X Y is simply checking if | ttx | = | ^xuy I or not. While 

validating a functional dependency involves single comparison, the validation 

for a multivalued dependency is more complicated as it includes comparisons 

between the sizes of equivalence classes for all ttx, ttxuy and ttxuz- AS a result, 

for each multivalued dependency candidate X Y, we first perform the 

simple validation for X Y and see if it holds. By the replication rule if the 

functional dependency holds then the corresponding multivalued dependency 

must hold as well. In this case, we do not have to further perform the more 

complicated multivalued dependency validation process. 

With Rule 2 and Rule 3, given a relation of schema R we avoid validating 

any X —>—Z li X Y has been validated before where Z = R — Y — X. 

However, in functional dependency pruning we should also consider if X —)• Z 

is identified as a functional dependency or not. Consider that for a candidate 

X — y , it's corresponding functional dependency X does not hold while 

X ^ Z holds. By replication rule, X — Z should hold when X ^ Z holds. 

And by complementation rule, when X Z holds, X Y should hold as 

well. Thus in such a case, we still can avoid further verifying X > Y even 

X —> y is not a functional dependency. 

Rule 5 Given a relation of schema R and a multivalued dependency candi-

date X Y and Z = R-Y-X. if either X ^ Y or X ^ Z is identified as 

a functional dependency, we do not have to further verify candidate X Y 

with our multivalued dependency validation. 

/ 
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Right-hand Side Key pruning 

We discovered that when a dependency candidate has a key or a superset of a 

key as its right-hand side, it possesses a certain kind of property as well. We can 

use the property to increase the possibility of pruning more search space during 

validation. 

Lemma 2 Given a relation of schema R with attribute sets X, Y, and Z 

(Z 二 R — Y — X). When Y is a key, if ttxz is not equal to i^x, then multivalued 

dependency X Y cannot be valid. 

Proof: If y is a key, the value of Y is unique for each tuple in R. In other 

words, for every equivalence class Xi in TT̂ , the number of different F-values, 

6{Y, Xi), must be the same as | Xj In this case, in order to fulfill the equality 

6{Y, Xi) * 0{Z, Xi) =1 Xi I，6{Z, Xi) have to be 1 for each equivalence class Xi in 

Tlx, i.e. TTxz have to be equal to TTX- • 

By applying the above property, we can save the validation process for certain 

candidates: 

Rule 6 Given a multivalued dependency candidate X —^^ Y and Z = 

R — Y — X. When Y is a key or superset of a key, if the number of equivalence 

classes of ttx is not equal to that of ttxz, i.e. | ttx ITH 爪xz |； then we do not 

have to perform dependency validation. 

4.3 Computing with Partitions 

In [29], in order to reduce the time and space requirement of working with parti-

tions, several techniques are introduced. We find that we can apply some of the 
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techniques when dealing with the partitions in our proposed work as well. 

Similar to [29], we use 'stripped partitions' to replace the original partitions. 

A stripped partition is a partition with equivalence classes of size one removed. 

We can see stripped partitions as a more compact representation for the original 

partitions. For example, in Table 4.1 tt^cd} is {{1, 6}, {2,4} , {3, 5}, {7}, {8 } } . 

The stripped version for 7T{cd} is only {{1，6}, {2, 4}, {3，5}}. 

In [29], full partitions are still needed for computation of next level partitions 

as well as validating functional dependencies. However, in our algorithm we 

even apply stripped partitions for validating multivalued dependencies since our 

validation can be carried out without examining singleton equivalence classes. 

As stated in Section 4.1 before, to check if a multivalued dependency X 

Y holds, we need TTX, t^xy and TT̂ Z, and we have to obtain Xi) and 6{Z, Xi) 

for each Xi. Using 0{Y, Xi) as an example, if we use full versions of ttx and ttxy, 

we can obtain 6{Y, Xi) by checking how many equivalence classes in ttxy refine 

Xi. However, if we use stripped version of TT̂  and ttxy, the computation will 

become counting the number of equivalence classes in ttxy which refine Xi + the 

number of the remaining tuples in Xi that are not referred by any equivalence 

class in ttxy- Since the Y-value and Z-value for a singleton equivalence class Xj 

must be 1, it must fulfill the equality e{Y,Xj) * 0{Z,Xj) =| X). | (1 * 1 = 1). As 

a result, it is okay for us to just perform checking on stripped partition and omit 

all the singleton equivalence classes without affecting the results. 

4.3.1 Computing Partitions 

In [29], only partitions for the singleton attribute sets are computed by scanning 

the database. For partitions in higher levels, they are computed as a prod-

uct of two previously computed partitions in lower levels. We used exactly 

the same method introduced by [29] to compute the partitions so that for all 
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X,Y C R^ttx ' tty = TTxuY starting from the second level partitions. Using Fig-

ure 4.1，7r{c} = {{1，3，5, 6,8}, {2,4, 7 } } and i^^d] = {{1, 6, 7}, {2，4,8}, {3，5}} 

respectively. tt{cd] can be computed just from 7r{c} and ^ {̂d]- Only tuples that 

are in the same equivalence class in both TT̂ C} and ti{d] forms a new equiva-

lence class in ^{cd] together. Other tuples forms singleton classes only. So the 

partition with respect to {CD} is 7T{cd] 二 { {1 ,6} , {2,4}, {3, 5}, {7}, {8 } } . 

4.4 Algorithm 

We try to find all minimal non-trivial multivalued dependencies level by level. 

For each candidate V in the level, we try to find all valid minimal left-hand 

side candidates X so that X —— Y holds. To ensure that we find only the 

minimal non-trivial candidates, we adopted the search strategies we described 

in Section 4.2 to avoid generating duplicated next-level candidates for both left-

hand side candidates X and the right-hand side candidate Y. 

The main algorithm for generating multivalued dependencies of the form 

X —Y is given in Figure 4.2. In the algorithm, RHS{1) stores all right-

hand side candidates for level 1. Using Figure 4.1 as example, RHS{1) for R = 

{A, B, C, D} stores four right-hand side candidates {A}, { B } , {C} and {D}. For 

a right-hand side candidate (F-candidate) under validation, LHS{k) stores all 

left-hand side candidates (X-candidates)to be verified where k is the level for 

right-hand side candidates. LHSFAIL{k) stores all candidates that failed the 

validation. LHSMVD{k) stores all successful candidates. 

As shown in Figure 4.2, the input of the algorithm is all the tuples in r 

over the relation schema R. Step 5 to Step 23 are repeated for each attribute 

Y G RHS{1), and all valid dependencies for Y are recorded. In the algorithm, any 

left-hand side candidates to be verified are stored in LHS{k). Failed candidates 

/ 
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Algorithm MVD_DISCOVERY(r, R) 
1 N = number of attributes in R 
2 I = 1 
3 RHS{1) 二 { {Y } I Y e •R} 
4 while I <� ( iV -2 ) /2 l 
5 for each attribute Y G RHS{1) 
6 k = 1 
7 put all X G RIY into LHS{k) 
8 while LHS{k) is not empty 
9 for each X in LHS{k) 
10 if VERIFY_MVD(X, Y) 二 = FALSE % X —— Y dose 

not hold 
11 enter X into LHSFAIL(k) % Rule 1 
12 else % X ^^ Y 

holds 
13 output X Y 
14 enter X into LHSMVD{k) 
15 end for 
16 Empty LHS{k) 
17 if LHSFAIL{k) contains more than one element 
18 LHS{k + 1) = GENERATE_NEXT_LEVEL_L(A:, LHSFAIL{k)) 
19 Empty LHSFAIL{k) 
20 k = k + 1 
21 end while 
22 Empty LHSMVD{k) 
23 end for 
24 RHS{1 + 1) 二 GENERATE_NEXT_LEVEL_R(/, RHS{1)) 
25 丨=丨+ 1 
26 end while 

Figure 4.2: Algorithm for discovering multivalued dependencies 

in the current level are put into LHSFAIL{k) for generating candidates for 

next level. The validation for a left-hand side candidate Y is completed when 

no more candidate is found in LHS{k). The process is repeated for candidate 

set RHS{1) of each level I until I reaches {N — 2)/2 where N is the number of 

attributes in R. The reason for stopping at no more than level {N — 2)/2 is 

stated in Section 4.2.2 before. Just like [29], we have implemented the attributes 

as bit vectors of words. All the left-hand and right-hand side candidates are 

represented as 32-bit bit vectors in our algorithm. All LHSFAIL{k), LHS{k)^ 

/ 
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LHSMVD{k) and RHS{1) are arrays storing the bit vectors representation of 

the candidates. 

Figure 4.3 is the procedure for verifying if a multivalued dependency holds 

or not. 

Procedure VERIFY_MVD(X, Y) 
1 Z=R-X-Y 
2 pruned 二 PRUNE(X, F, Z) 
3 if pruned • CONTINUE 
4 return pruned 
5 Get TTxY 
6 Get TTxz 
7 for each Xi E TTX 
8 Compute 0{Y,Xi) using tvxy 
9 Compute 6{Z,Xi) using nxz 
10 if I Xi e(Y, Xi) * 6{Z, Xi) %Lemma 1 
11 return FALASE 
12 end for 
13 return TRUE 

Figure 4.3: Procedure for verifying a multivalued dependency 

Procedure VERIFY_MVD takes in attribute set X and attribute Y and check 

if X Y holds as shown in Figure 4.3. The details for computing each values 

in this procedure can be found in Section 4.1 and Section 4.1. Note that the 

validation would only be performed if the candidate can pass the procedure 

PRUNE. 

The pruning procedure for our algorithm is given in Figure 4.4. In the pro-

cedure PRUNE, we implemented four pruning rules described in the previous 

sections: Rule 2 and Rule 3 for search space pruning described in Section 4.2.2, 

and Rule 4 to 6 described in Section 4.2.3. We order the rules in this procedure 

according to the cost of computation involved in them in ascending order. In 

Figure 4.4, Y > Z if either | F |>| Z" | or the smallest attribute in Y is greater 

than the smallest attribute in Z. 
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Procedure PRUNE(X,y,Z) 
1 if y > Z %Rule 2, Rule 3 
2 return FALSE 
3 if X is a (super)key %Rule 4 
4 return TRUE 
5 if (ttx == TTxy) %Rule 5 
6 return TRUE 
7 if {ttx == ttxz) %Rule 5 
8 return TRUE 
9 if y is a (super)key and nx + t^xz %Rule 6 
10 return FALSE 
11 return CONTINUE 

Figure 4.4: Procedure for pruning a candidate set 

4.4.1 Generating Next Level Candidates 

The procedure of generating next level candidates is used for generating both 

next level left-hand side candidates (as in Step 18), as well as right-hand side 

candidates (as in Step 24). Figure 4.5 shows GENERATE_NEXT_LEVEL_L, 

which is the procedure for left-hand side candidates. 

Procedure GENERATEJMEXT_LEVEL_L(/c, INQUEUE) 
12 if A: = 1 
2 for each pair {U, V} G INQUEUE where U <V 
3 W = U[JV 
4 put into OUTQUEUE 
5 end for 
6 else 
7 for each K e FKEF1X.BL0CK{INQUEUE) 
8 for each pair {[/, V} e K where U <V 
9 W = UUV 
10 ifW^E where E E LHSMVD[k) %Rule 1 
11 put W into OUTQUEUE 
12 end for 
13 end for 
14 return OUTQUEUE 

Figure 4.5: Procedure for generating next level candidates for a set of input 
candidates 
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For generating left-hand side candidates, this procedure takes in the failed 

candidates of level k, LHSFAIL{k), and use them to generate candidates for 

level k + 1, LHS{k-{-l). The candidates of level k + 1 are the supersets of size k-\-l 

of the failed candidates in level k. The procedure PREFIX—BLOCK partitions 

candidates in LHSFAIL{k) into blocks so that the level k candidates in each 

block have same prefix of length k — 1. To avoid generating duplicated k 1 

candidates, only k candidates in the same prefix blocks are used to produce level 

k-\-l candidates. By doing so we can ensure it generates a minimal but complete 

search space. Detailed information about PREFIX-BLOCK can be found in [7 

and [41]. Consider the relation schema R in Table 4.1 again, the example search 

tree generated for finding valid left-hand side candidates for attribute A is shown 

in Figure 4.6. 

For generating right-hand side candidates, it takes in the whole candidate 

sets, RHS{1), in level I and use them to generate candidate set RHS{1 + 1). 

The procedure is triggered in Figure 4.2 Line 24, and the name of the procedure 

is GENERATE-NEXT丄EVEL_R. This procedure is used for generating right-

hand side candidates. GENERATE—NEXT丄EVEL_R is the same as GENER-

ATE_NEXT丄EVEL_L (Figure 4.5) except that it neglects Line 10 in Figure 4.5. 

B C D 

z\ \ 
BC BD CD 

/ 
BCD 

Figure 4.6: Search tree for attribute A in relation R = {A, B, C, D} 

4.4.2 Computing Partitions 

We did not have detailed description on how we generate the partitions in our 

algorithm in the sections above. We talk about it in this section. 
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In [29], validation of a functional dependency only involves two levels of par-

tition candidates. However, in a multivalued dependency validation, we have 

to use partitions from different levels. E.g. for R — {A, B, C, D, E, F, G}, val-

idating if {A} {B} would require 7r{A} (level 1 partition), t:{abc} (level 3 

partition) as well as ti{adefg] (level 5 partition). As a result, unlike the strategy 

used in [29], which is computing new partitions during dependency validation, 

our algorithm computes all the partitions before validation. 

The partitions in our algorithm are computed in a similar way to that in [29]: 

partitions for singleton attribute sets are computed from the relation, then the 

singleton equivalence classes are stripped off and forming the stripped version for 

those first-level partitions. For easy validation, we follow [29] to replace all orig-

inal values in the database with integers while keeping the original equivalence 

relations in the database, i.e. same values are replaced by same integer values. 

We use a hash table to map the original data values to integers in incremental 

fashion (starting from 1). For partitions in higher levels, they are computed as 

a product of two previously computed partitions in lower levels. Thus starting 

from second-level candidate, we do no have to scan through the actual database 

anymore. For more detailed information, please refer to [29 . 

4.5 Experimental Results 

We run experiments with our algorithm for discovering multivalued dependen-

cies. We implemented our algorithm in C language and compiled our programs 

with GCC compiler under Unix environment. We implemented two versions for 

our algorithm: One works completely in main memory while the other stores all 

partitions on disk. With the two implementations, we carried out our experi-

ments on Sun Ultra 5 workstations with 704 MB main memory. To illustrate 

the difference between memory and disk based approaches, we also used a Sun 
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Sparc 20 workstation with 128 MB main memory. 

We tried our algorithm on a number of real life databases. The databases we 

used are available on the UCI Machine Learning Repository [11]. The datasets 

and the corresponding descriptions can be found in the url stated in [11]. We 

did not make any changes to any of the dataset except that we removed all 

duplicated tuples in the datasets. Table 4.2 shows the results of our algorithm 

on the example in Table 4.1 and 15 real life databases. Table 4.3 shows the 

pruning results of our algorithm on those benchmark databases. 

4.5.1 Results of the Algorithm 

The name of the database, the number of tuples in the database (| r |), the 

number of attributes of the database (| R |) are shown in the first 3 columns 

in Table 4.2. In the fourth column, we have the number of pure multivalued 

dependencies found. Here a pure multivalued dependency means that the found 

multivalued dependency is minimal nontrivial and not derived from functional 

dependencies or keys at all. 

For Table 4.3, in the first column we have the number of multivalued de-

pendency candidates that we have to verified, and the second column shows the 

number of candidates that we really have to verify by our multivalued depen-

dency validation after pruning. Note that the second column actually indicates 

the number of candidates we have to consider after applying pruning rule Rule 

1. From the third column to the last column we have the number of multivalued 

dependency candidates that is pruned by our proposed pruning rules Rule 2 to 

Rule 6. 

The first row of Table 4.2 and Table 4.3 shows the results for the example 

used in Table 4.1 used in this paper. The following 15 rows shows the results for 

all the real life databases picked from [11 . 
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Databse Name | r | | | | | Pure MVP 
example 8 4 ^ 
servo 167 5 ^ 
hayes-roth 132 6 ^ 
shuttle-landing 15 7 22 
bupa_data 341 7 0 
post-operative 80 9 14 
pima-indians-diabetes 768 9 0 
yeast “ 1462 10 ^ 
breast-cancer -Wisconsin 691 11 84 
glass 214 11 ^ 
bridges “ 108 13 ¥ 
flarel “ 187 13 
flare2 365 13 1 0 ^ 

echodiogram 132 13 0 
wine - 178 14 � 

housing I 506 I 14 I 0 

Table 4.2: Results of our algorithm on benchmark databases 

4.5.2 Evaluation on the Results 

In our experiment, we selected 15 real life databases, which are all from [11. 

From the results shown in Table 4.2, among those 15 databases we used in 

our experiments, 6 of them consist of pure multivalued dependencies. The re-

sults indicates that multivalued dependency do exist in a portion of the real 

life databases, and our algorithm should be able to provide useful multivalued 

dependency information. 

For each benchmark database, the number of pure multivalued dependencies 

found by our algorithm is actually exactly half of the values shown in Table 4.2. 

It is because that Rule 2 and 3 prevent our algorithm from validating multivalued 

dependencies which's F-candidates are Z-candidates before. However, when the 

multivalued dependency X Y holds it's counterpart X Z must hold 

as well. Thus we double the values of MVD found to obtain 'Pure MVD，. 
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M V D MVP- Pruned by — 

Database Name candidates validated Rule 2 fc 3 I Rule 4 " Rule 5 by Rule 6 
example 22 i T 8 0 ~ 2 
servo 144 75 69 “ 0 0~ 0— 
hayes-roth 26^ 100 71 15 0~ 80— 
shuttle 
-landing 1464 789 ^ ^ ^ 0_ 
bupa-data 1515~ 810 666 27 9 3_ 
post-
operative 16056 9075 6981 0_ 0 0_ 
pima-indians-
diabetes 13566 6539 5996 553 36 442 
yeast 2864^ 10294 10018 “ 255 65 8Q14~ 
breast-cancer-
wisconsin 147609 82056 65352 6 183 
glass 7332T 20076 34600 511 2674 15462" 
bridges 809209 221460 372061 4434 536" 210718 
flarel 1416667" 784628 632028 0 I F Q~ 
flare2 一 1412446 780540 631893 ~~ 0 13" 0 
echodiogranT" 874058" 275570 426972 26763 550 _ 144203 
wine 892293" 13113 469544 "153873 ^ 255718" 
housing 1484093 248471 635597 41375 1658 556992" 

Table 4.3: Pruning results of our algorithm on benchmark databases 

From Table 4.3, we observe that Rules 2 and 3 have significant effects on most 

of the databases in our experiments. On the other hand, the effects of pruning 

Rules 4 to 6 depend much on the characteristics of the databases. When there 

is key or superkey in the relation Rule 4 and 6 (especially Rule 6), provide good 

pruning effects. In some of the benchmark databases, Rule 6 provides pruning 

effects comparable to that from Rule 2 and 3. Overall speaking, our pruning 

rules have satisfactory effects on most of the databases in our experiments. 

/ 
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4.5.3 Scalability of the Algorithm 

We evaluate the performances of our algorithm by the real time elapsed, instead 

of CPU time. The time is recorded by a Perl script. The reason for recording 

real time instead of CPU time is to have a clearer illustration on the cost of 

memory usage and the cost of I/O processing. 

From the results in Table 4.2, it is obvious that the the search space increases 

enormously when the number of attribute increases. In fact, just like functional 

dependency, the search space for multivalued dependency is exponential in the 

number of attribute [37, 38]. Thus, similar to all algorithms for finding func-

tional dependencies do, our algorithm for finding multivalued dependencies has 

exponential time and space scalabilities in the number of attributes. However, 

typically the number of attribute of a real life database is not really large, and 

our algorithm performs well. In our experiment, results for all 15 databases are 

obtained in a few minutes at most. For some of the smaller databases which 

have fewer attributes, the required time is just a few seconds. 

Since the complexity for our algorithm is inevitably exponential in the num-

ber of attribute, we are interested in evaluating how the number of tuples affects 

the performance of our algorithm. To do that, we use a real life database, Wis-

consin breast cancer database, obtained from UCI Machine Learning Repository 

11]. Result of this database can be found in its corresponding rows in Table 4.2. 

Originally the data set consists of 699 tuples but we removed 8 duplicated tu-

ples. To see how our algorithm scales over the number of tuples, we adopt the 

method used in [29] to enlarge the database for experimenting scalability. We 

duplicate the breast cancer data set multiple times and then merge them to-

gether to provide larger datasets. During data duplication, a new different set of 

attribute values is used so that we increase the database size but keep the same 

multivalued dependencies. We first run the experiment using memory version of 

/ 
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our algorithm. The result is illustrated in Figure 4.7. 

7 0 0 0 “ ~ 
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1000 ^ ^ 
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0 2 0 0 0 0 4 0 0 0 0 6 0 0 0 0 8 0 0 0 0 100000 120000 
Number of Tup les 

Figure 4.7: Scalability of our algorithm over large dataset 

Our algorithm performs linearly in the number of tuples. The disk version 

of our algorithm performs also linearly except that the time required for disk 

version is longer than that for memory version. The difference between memory 

version and disk version is shown in Figure 4.8. MVD(MEM) represents the 

memory version while MVD(DISK) represents the disk version. The extra time 

required by disk version is caused by the disk access time for writing and reading 

partition files. 
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2000 
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Figure 4.8: Scalability of our algorithm 

To evaluate the situation when we run out of main memory while handling 

a very large datasets, we run both versions of our algorithm on a Sun Sparc 20 
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workstation which have poorer hardware specification when compared with a Sun 

Ultra Sparc workstation, including the size of memory. The Sparc 20 workstation 

we use for experiment has 128 MB main memory. The result is illustrated in 

Figure 4.9. 
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0 20000 40000 60000 80000 100000120000 
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Figure 4.9: Scalability of our algorithm: with limited main memory 

The performance of the memory version drops significantly when memory 

is running out. When the main memory runs out, the machine starts to use 

the reserved swap memory together with main memory. When the size of swap 

space increases, the performance for the main memory version drops. Memory 

swapping causes a sharp increase in running time, which is shown in the curve 

for the memory version. On the other hand, the disk version of our algorithm 

still performs nearly linearly as it relies much less on main memory while requires 

more temporary disk space. The memory / disk space usage for both versions of 

our algorithm is shown in Figure 4.10. The memory / disk space usage for our 

algorithm also has nearly linear scalability. 
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Figure 4.10: Memory and disk space usage of our algorithm 

4.5.4 Using Multivalued Dependencies in Schema Extrac-

tion Algorithms 

As we discussed in the previous chapter, we would like to introduce multivalued 

dependency discovery into our schema extraction algorithms to refine the rela-

tional schema of the XML data. As a result, the global scheme for our schema 

extraction algorithm should become: 

(1) Simplify DTD 

(2) Construct schema prototype trees 

(3) Generate relational schema prototypes 

(4) Detect possible functional and multivalued dependencies and 

candidate keys 

(5) Normalize the relational schema prototypes 

To illustrate how multivalued dependencies inside the XML data can help 

refining the relational schema, we repeat the experiment on the SIGMOD Record 

XML dataset and the synthetic XML dataset as we do in Chapter 3 Section 3.3. 

This time we apply our multivalued dependency discovery algorithm in Step 4 

/ 
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of our schema extraction algorithm as well. 

Real Life XML Data: SIGMOD Record XML 

In our previous experiment of using DTD-splitting Schema Extraction Algorithm 

on SIGMOD Record XML dataset, the schema prototype produced is relatively 

small in size (only 2 to 3 attributes per table). The need for further decomposition 

is rather small. As a result, we use schema prototype produced in Global Schema 

Extraction Algorithm to illustrate the effect to show that how we can improve the 

relational schema generated by our algorithms with the addition of multivalued 

dependency discovery. 

After applying our multivalued dependency discovery algorithm, the result 

for the schema prototype of sigmodrecord.xml is shown in Table 4.4. The 

multivalued dependencies found are shown in Figure 4.11. 

Pure M V D MVD- pruned by 

I r I I R I M V D Candidates validated Rule 2 3 | Rule 4 Rule 5 Rul"^ 

3113 7 I 8 I 1495 796 664 9 | 25 | 1— 

Table 4.4: Results of multivalued discovery algorithm on SIGMOD Record 
XML data (in Global Extaction Algorithm) 

With the multivalued dependencies, we can further normalize the relational 

schema produced in Figure 3.28 using 4NF decomposition [23]. 4NF decompo-

sition algorithm is presented in appendix for readers' reference. The relational 

schema produced is shown in Figure 4.12. 

Note that Figure 4.12 is just one of the possible designs for the relational 

schema. With the functional and multivalued dependencies found in the XML 

data, the user can decompose the schema prototypes into other good relational 

database designs for the XML data. 

/ 
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Tablel 
No. of tuples: 3133 
No. of attributes： 7 
MVDs found： 

1 3 5 ->-> 2 1 3 5 ->-> 2 4 
1 3 5 ->-> 4 6 7 1 3 5 ->-> 6 7 
3 5 ->-> 1 2 3 5 ->-> 6 7 
3 5 ->-> 4 6 7 3 5 ->-> 1 2 4 

— I I — — 

Figure 4.11: Multivalued dependencies found from the prototype table in Figure 
3.26 

Table Pure M V D MVD- pruned by 

Name | r \ \ R \ M V D Candidates validated Rule 2 & 3 | Rule 4 Rule 5 R u l i 

"book 507 ~ 8 ~ 0 3074 1924 1051 0 ^ 11 
monograph 487 7 2 938 397 329 14 54 43 

Table 4.5: Results of multivalued discovery algorithm on synthetic XML data 
(in Global Extaction Algorithm) 

Synthetic XML Data 

The result of applying multivalued dependency discovery algorithm on the tables 

produced by the Global Schema Extraction Algorithm is shown in Table 4.5, 

and the multivalued dependencies found are shown in Figure 4.13. However 

when applying 4NF decomposition on the schema prototypes, the multivalued 

dependencies found do not result in a more refined relatoinal schema in this 

experiment. 

For applying multivalued dependency discovery algorithm on the tables pro-

duced by the DTD-splitting Schema Extraction Algorithm, since the schema 

prototype produced is relatively small in size (only 2 to 4 attributes per table). 

No multivalued dependencies are found in the mapped data for the schema pro-
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tablel-l{ 

SigmodRecord.issue.articles•article.title, (3) 

SigmodRecord.issue.articles.article•initPage, (4) 
SigmodRecord.issue.articles.article.endPage (5) 
} 

tablel-2{ 

SigmodRecord.issue.articles.article.title, (3) 

SigmodRecord.issue.articles•article•endPage (5) 

SigmodRecord.issue.volume, (6) 

SigmodRecord.issue•number (7) 
} 

table2{ 

SigmodRecord.issue.articles.article.authors.author, (2) 

SigmodRecord.issue.articles.article.title, (3) 

SigmodRecord.issue.number (7) 
} 

tables{ 

SigmodRecord•issue.articles.article.authors.author.position' (1) 

SigmodRecord.issue.articles.article.authors•author, (2) 

SigmodRecord.issue.articles.article.initPage, (4) 

SigmodRecord.issue.articles.article.endPage (5) 

SigmodRecord.issue.number (7) 
} 

table4{ 

SigmodRecord.issue.articles.article.authors.author.position, (1) 

SigmodRecord.issue.articles.article.authors.author, (2) 

SigmodRecord.issue.articles.article.title, (3) 

SigmodRecord.issue.articles.article.initPage, (4) 

SigmodRecord.issue.volume, (6) 
} 

Figure 4.12: Relational schemas produced for sigmodrecord.xml based on 
4NF decomposition 
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table：book 

No. of tuples: 507 

No. of attributes： 8 

MVDs found: 

table:monograph 

No. of tuples: 487 

No . of attributes： 7 

MVDs found: 

6 ->-> 7 
6 —>-> 1 2 3 4 5 

Figure 4.13: Multivalued dependencies found from the synthetic XML data (in 
Global Extraction Algorithm) 

Pure M V D MVD- pruned by 

I r I I i? I M V D Candidates validated Rule 2 & 3 | Rule 4 Rule 5 Rule 6 

" W 4 ¥ 16! 9! l| l| 5| 0 

Table 4.6: Results of multivalued discovery algorithm on synthetic XML data 
(in DTD-splitting Extaction Algorithm) 

totype. However, as we mentioned in Chapter 3 Section 3.3.3, for the schema 

generated by DTD-splitting Schema Extraction Algorithm we might be able to 

further refine the design by undergoing another round of dependency discovery. 

As a result, we try to discover multivalued dependencies in the resulting schema. 

Using the schema from Hybrid method as an example, we do find multivalued 

dependencies in the table table: monograph. The result is shown in Table 4.6 

and the multivalued dependencies found are shown in Figure 4.14. The refined 

design of table: monograph and a fraction of the refined tables based on 4NF 

decomposition is shown in Figure 4.15 and Figure 4.16. 
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table:monograph 

No. of tuples: 487 

No. of attributes: 4 

MVDs found： 

2 ->-> 3 2 ->-> 1 4 

Figure 4.14: Multivalued dependencies found from table: monograph 

table:monograph ( 
title (1), 
name (2)， 

monograph .title (3)， 

author.id (4) 
) 

table:monograph-1 ( table:monograph-2 ( 
name (2)， title (1), 
monograph.title (3), name (2)， 

) author.id (4) 
) 

Figure 4.15: Refined design for table:monograph of synthetic XML data, which 
is produced by hybrid method, based on 4NF decomposition 
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table:monograph -1 

name monograph.title 

Roy Chan XML monograph 

Roy Chan DTD monograph 

Roy Chan mono XML 

Willis Chan SGML monograph table:monograph -2 

Willis Chan XSL monograph tlM author.id 

Roy Chan XML monograph XML m o n o g r a p h _ Roy Chan 2 _ 

Roy Chan DTD monograph XSL m o n o g r a p h _ Willis Chan 2 _ 

Roy Chan mono XML DTD m o n o g r a p h _ Roy Chan 4 _ 

Henry Hui monograph XSLT monograph XSLT Henry Hui 4 _ 

Figure 4.16: Tables of the refined table :monograph 
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Conclusion 

5.1 Discussion 

It is clear that the fast emerging XML is becoming a dominant standard for 

representing data in the World Wide Web. When compared to HTML, it is 

obvious that XML encoding provides information in a far more convenient and 

usable format from a data management perspective. When viewing XML from a 

database point of view, it is possible to query the content of the XML documents. 

But what is the best way to provide this query capability over XML documents? 

The answer should depend on how we store the XML document into a database 

system. With XML documents having the characteristics of semistructured data, 

it seems that the recent research on storing and querying semistructured data 

can be easily applied to XML documents. And in fact, there has been great 

deal of activities exploiting new semistructured models and query languages for 

this purpose. A good example would be the Lore system which uses OEM (Ob-

ject Exchange Model) [43] to store XML data, and use a semistructured query 

language Lorel for querying the XML data. 

In theory, a semistructured system would clearly work and it should work 

best with the tailored features for handling XML data. However, is it the 
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only approach to take? Numerous researches in the past years on relational 

database have made today's RDBMS mature and well developed. The tech-

niques in semistructured database are still in their early stage. It may take 

quite a while for semistructured database systems to be as well developed as 

RDBMS is. Before semistructured database system could be well prepared for 

XML data and while RDBMS is still the most dominant database system in the 

industry, we think it is quite reasonable to explore the possibility of leveraging 

relational database techniques to provide store and query capability over XML 

data. Before the development of semistructured database system is matured 

enough, relational database should be a very good alternative solution. 

In this thesis, first we propose a Global schema extraction algorithm that 

relies on the functional and multivalued dependencies in the XML data. Unlike 

other previous work which only relies on the structure or the structure declaration 

(DTD)of the XML data, schemas created by Global algorithm are based on the 

real characteristics extracted from the XML data itself, thus ensuring all schema 

decompositions made in the algorithm are reasonably done based on relational 

database theory. In order to deal with the possible high exponential cost for 

finding dependencies when the structure of the XML is relatively large, as well 

as the change of the data characteristics when large scale update is performed 

which might affect the schema produced, we propose a DTD-splitting schema 

extraction algorithm that decompose the DTD of the XML data before schema 

extraction based on the relational database theory. Schemas created by DTD-

splitting algorithm are based more on the characteristics extracted from the DTD 

correspond to the XML data than that of the actual XML data. Three different 

schema prototype construction methods are proposed with Hybrid method being 

the best one among them based on the studies using relational database concepts. 

In order to further enhance the design of the relational schema generated by our 

algorithms, a new algorithm for finding multivalued dependencies is proposed. 

/ 
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The algorithm shows nearly linear scalability in the number of tuples of the 

dataset and is very suitable for applying on a large set of data. Better relational 

schema for XML data can be produced with the information of multivalued 

dependencies in the XML data. With the extracted relational schema, the data in 

the XML document can be mapped into an RDBMS where relational techniques 

could be used to manage the XML data. 

The astute reader may notice that some information about the XML docu-

ment might be lost under our algorithms. This is indeed true: The relative order 

of each element is lost while constructing the schema prototype trees. However, 

we expect that this would not be a problem for storing XML documents in the 

field of e-commerce and EDI. The XML used in e-commerce and EDI fields are 

basically data-centric XML documents which have highly regular structure of 

text and low concern for the total order of elements. For document-centric XML 

documents which possesses less limit in the size of text and high concern in to-

tal order of elements, a content management system would be more suitable for 

maintaining the documents than RDBMS. 

5.2 Future Work 

We have some suggestion for the future direction of our research. 

5.2.1 Translate Semistructured Queries to SQL 

With our proposed algorithm, direct SQL queries are highly possible. When no 

artificial key is needed during the schema extraction process, all the data in the 

resulting tables should be from the original XML data thus direct SQL queries 

is possible. Users do not have to make queries using some artificial fields in the 

table that have no actual meaning to them. On the other hand, it is possible 
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for the users to use semistructured query language to make queries according to 

the actual structure of the XML data. In this case, The semistructured queries 

should be first translated to SQL statements, then queries are performed on the 

relational tables for the XML data. Many semistructured query languages are 

proposed for querying XML as a semistructured model [6，19, 5, 48, 34, 18. 

The main concept in these semistructured query language is the use of path 

expression which provides more flexibilities in querying than SQL. Based on the 

relational schema produced by our algorithms, it is possible to develop a set 

of query translation between semistructured queries and SQL queries for our 

relational tables of the XML data. We illustrate a possible translation by using 

the SIGMOD Record XML as example. Using the hybrid method relation schema 

in Figure 3.33 as the example relational schema here, if we have a semistructured 

query like the one shown in Figure 5.1，we can simply translate it into the SQL 

shown in Figure 5.2. 

WHERE <article> 
<title> From XML to Relational Database </title> 
<authors> 

<author>$a</author> 
</authors> 

</article> 
CONSTRUCT ALL <result>$a<result> 

Figure 5.1: Example semistructured query 

SELECT X.author 
FROM table:author X，table:article Y 
WHERE X.Y.assignedID = Y.assignedID 
AND Y.title="From XML to Relational Database" 

Figure 5.2: SQL translated from example semistructured query 

However, as mentioned in [49], when the path expression is more compli-

cated, e.g. with more operators in the path expression while having wild cards 
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loosening the constraints in the path expression, the translation would not be so 

straight-forward. As stated in [42], relatively less research efforts have been put 

on translating from XML queries to SQL queries. [42] proposed some general 

methods for it. We think that translating and optimizing the path expression 

into SQL for the relational schema generated by our algorithm would be an 

interesting topic to work on. 

5.2.2 Improve the Multivalued Dependency Discovery Al-

gorithm 

We propose our algorithm for finding multivalued dependencies based on the 

concept of partition. Right now we have to generate partitions for all levels of 

candidates before validation for multivalued dependency candidates. The reason 

is that in a multivalued dependency validation, we have to use partitions from 

different levels. E.g. for R = {A, B,C, D, E, F,G}, validating if {A} 

{B} would require 71{a} (level 1 partition), tt^abc} (level 3 partition) as well 

as 7T{adefg} (level 5 partition). As a result, unlike the strategy used in [29], 

which is computing new partitions during dependency validation, our algorithm 

computes all the partitions before validation. We are interested to find out if 

there are other searching strategies which can reduce the level of partitions we 

have to used in each iteration of the validation process. 

Moreover, for the disk version of our algorithm, we can further optimize the 

disk usage by introducing data compression techniques on the partition file. The 

trade-offs between disk compression and the disk access time will be studied. 



5.2.3 Incremental Update of Resulting Schema 

In our proposed algorithms, we produce the relational schema based on the 

characteristics, especially functional dependencies and multivalued dependencies, 

of the XML data. When the XML data is updated, it is possible that the set of 

dependencies in the XML data is changed too. As a result, the relational schema 

of the XML data may have to be updated as well. In Global algorithm, it is 

highly necessary to perform schema update since the schema is totally based on 

the dependencies in the XML data. In DTD-splitting algorithm, if the resulting 

schema depends more on the characteristics in the DTD, it is possible to avoid 

schema update even the XML data is updated. However, when the number of 

element and attributes declared in the DTD is large, it is still inevitable that the 

resulting schema depends on the dependencies in the XML data. Thus we have 

to propose some incremental update method for the resulting schema and try to 

reduce the cost of updating schema as much as possible. 

One possible direction for the incremental update method is to try to min-

imize the number of tables in the resulting schema we have to update. The 

reason is that we expect that upon the update of XML data, usually only part 

of the dependencies discovered in the XML data would be updated. Thus just 

few resulting tables in the resulting schema might be affected and we should 

try to minimize the number in the update method. Another possible direction 

is to try to minimize the need for schema update. Here we can introduce the 

concept of approximate functional dependency [32] and use it to replace the role 

of functional dependency. The basic idea of approximate functional dependency 

is to define the error e{X Y) for an functional dependency X ^Y. Upon the 

update of XML data, if e[X Y) is still smaller than the threshold we set, we 

would still treat X ^ F to be a valid dependency. Update of resulting schema 

is needed only when one of the approximate dependencies in XML data cannot 

hold, i.e. the error is larger than the threshold we set. 
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Appendix A 

Simple Proof for Minimality in 
Multivalued Dependencies 

Assume that X, Y, Z, W partition the attributes in the relation R. W e assume that the 

multivalued dependency X Y hold for R. 

To see if XZ Y holds, we have to find out the tuple pairs having the same 
attribute values in X and Z, and see if their corresponding tuples are in R too. So if 

(1) {x,y,z,w) and 

(2) M , z , u / ) 

are tuples of R, by the definition of multivalued dependency, if XZ Y holds we 
expect R contains corresponding tuples 

(3) {x^y^z^w') and 

(4) [x,y',z,w). 

Since X Y holds, when there is tuple (1) and tuple (2), there exist tuples 

(5) (:r,y',z,w) and 

(6) (x,y,z,w') 

in R too. 

120 

/ 



As tuple (3) = tuple (5) and tuple (4) 二 tuple (5) so R contains the corresponding 

tuples we expected as well. 

Since all the expected tuples are contained by R, we prove that for a relation R if 
X Y holds, XZ -)—> Y also holds in R where Z represents attributes in R other 
than X and Y. Actually it is a special case for multivalued augmentation rule. The 
rule states that if a /3 holds and j C R and (5 C 7, then ja ->-> S/3 holds. When 
substituting S with 0, we can get the minimality rule we just proved. 
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Appendix B 

Third and Fourth Normal Form 
Decompositions 

In our proposed algorithms, we decompose the schema prototypes into the relational 
schemas based on the functional dependencies or even the multivalued dependencies 
found in the XML data. In our examples and experiments, we normalized the schema 
prototypes based on Third Normal Form(3NF) and Fourth Normal Form(4NF) respec-
tively. The decomposition algorithm for 3NF and 4NF are shown below. 
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B.l 3NF Decomposition Algorithm 

Algorithm 3NF_DECOMPOSITION 

1 Fc is the canonical cover of the set of functional dependencies; 
2 i := 0; 

3 for each functional dependency X ^ Y in Fc do 

4 if none of the schemes Rj, I < j <i contains XY 

5 then begin 
6 i := i 1] 

7 Ri := XY] 

8 end 

9 if none of the schemes Rj, 1 < j < i contains a candidate key for R 

10 then begin 
11 i \= i 

12 Ri := any candidate key for R; 

13 end 

14 Return {Ri, R2,Ri) 
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B.2 4NF Decomposition Algorithm 

Algorithm 4NF_DECOMPOSITION 

1 result {i?}; 

2 done := false; 

3 compute is the closure of the set of functional dependencies 

4 while (not done) do 

5 if there is a scheme Rj in result that is not in 4NF 

6 then begin 

7 let X —)•—)• y be a nontrivial multivalued dependency that 

8 holds on Rj such that X — Rj is not in F+, and X 门 7 = 0 

9 result := {result - Rj) U (Rj - Y) U (X, Y); 

10 end 

11 else done true; 

12 then begin 
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