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Abstract 

As System-On-a-Chip (SOC) and mixed-signal technologies become in-

creasingly popular, realization of Bipolar Junction Transistors (BJTs) and 

Metal-Oxide-Semiconductor Field Effect Transistors ( M O S F E T s ) on the same 

chip has also increased in importance. This is because B J T s and M O S F E T s 

are well-known for their superior properties in implementing high speed ana-

log and low power digital circuits respectively. Since no additional processing 

steps are required, Compatible Lateral Bipolar Transistors (CLBTs), which are 

parasitic lateral B J T s formed in Complementary Metal-Oxide-Semiconductor 

( C M O S ) processes, provide an inexpensive means and alternative to B i C M O S 

processes. 

At the same time, deep submicron and low-power ICs put more stringent 

requirements on the matching properties of the devices, especially in analog 

circuits. Matching properties refer to the degree of similarity between electri-

cal parameters of two identically designed and used devices. M O S F E T s are 

notorious for their poor matching properties in subthreshold conduction and 

C L B T s are generally expected to have better matching properties. In this 

thesis, the matching properties of C L B T s and M O S F E T s fabricated using a 

typical digital IC process have been studied and compared systematically and 

quantitatively, in the hope of providing useful data for circuit designers. Test 
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chips containing arrays of pnp C L B T s and n M O S F E T s were fabricated using 

the A M I - A B N l.bfim n-well process. In an n-well process, only pnp C L B T s 

can be fabricated and their matching properties were compared with those of 

n M O S F E T s , which are optimized in such a process. The arrays were designed 

for a good balance between the number of devices, number of available pins 

and accuracy. Shift registers and transmission gates were used to select indi-

vidual devices for testing. To emulate a practical condition, the pnp C L B T s 

were cascoded with p M O S F E T s and surrounded with j9-type guard rings and 

designed to have similar layout area as that of the n M O S F E T s for fair com-

parisons. Each chip contained 144 pnp C L B T s and 225 n M O S F E T s , giving a 

total of 576 pnp C L B T s and 900 n M O S F E T s in 4 chips. 

Individual pnp C L B T s under the same biasing conditions were tested at 

nominal collector current levels from lOOnA down to InA. The drain currents 

at levels ranging from lOfxA down to InA of individual p M O S F E T s ( C L B T s 

operating in M O S mode) and n M O S F E T s were also measured. The matching 

properties of the devices at different current levels were then calculated. It was 

found that the matching properties of the n M O S F E T s were 3-4 times better 

than those of the pnp C L B T s and the latter were, in turn, about 3 times better 

than those of the p M O S F E T s . B y applying the Law of Area, it was estimated 

that ] ? M O S F E T s with similar layout area as that of the pnp C L B T s would 

show similar matching properties as the pnp CLBTs. The devices were also 

paired up as current mirrors and they showed similar matching results. 
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可相容側向雙極性電晶體(CLBT)之匹配特性及其應用 

作者：黃驍勇 

摘要 

隨著單晶片系統（SOC)和混合訊號（mixed-signal)技術的日益普及，將 

雙極性接面電晶體（BJT)和金氧半場效電晶體（MOSFET)實現於同一晶片上 

也變得更爲重要；蓋因BJT和MOSFET分別專長於構造高速度類比和低功率數 

位電路。由於可相容側向雙極性電晶體（Compatible Lateral Bipolar Transistor, 

CLBT)在互補式金氧半（CMOS)製程中自然而成，並不需要其他附加工序， 

它們也就成爲了便宜的BiCMOS替代品。 

與此同時，深次微米（deep submicron)和低功率集成電路對元件的匹配特 

性(matching properties )的要求也越來越高，在類比電路中尤其如此。所謂匹 

配特性是指兩等同設計和應用元件所表現的電路參數之相似度。由於MOSFET 

在次臨界區（subthreshold region)之匹配特性特別差，加上CLBT —般被認爲 

有較好的匹配特性，本論文希望通過對在標準CMOS製程中生成之MOSFET與 

CLBT進行系統和定量的比較和硏究，從而爲電路設計者提供有用的數據。本硏 

究採用AMI-ABN1.5//m "-well製程製作含有pnp C L B T和 " M O S F E T矩陣的晶 

片°由於/i-well製程只能生成pnp CLBT並且是爲"MOSFET而進行優化的，我 

們因此比較了這兩者的匹配特性。矩陣的設計應用移位暫存器和傳輸鬧選取其 

中的元件測試，以便在有限的針腳下 準確地測試 多元件。爲了模仿真實情 

況，pnp CLBT 都串疊(cascoded) 了 /^MOSFET ,由 p-型防護圈（guard ring) 

圍繞’並採用了和"MOSFET相當的佈置面積以便有較公平的比較。每一片晶片 



含有144個pnp CLBT和225個"MOSFET，在四片晶片中，總共就有576個pnp 

C L B T 和 900 個 n M O S F E T。 

本硏究測讀各個pnp CLBT在相同偏壓情況下的集電極電流，範圍由lOOnA 

到 I n A ’同時也測讀pMOSFET (把 C L B T操作在 M O S模式下）和 " M O S F E T 

的漏極電流，而範圍則由10M到InA，並由此計算它們的匹配特性。結果顯示， 

nMOSFET的匹配特性比pnp C L B T的要好上 3 - 4倍，而後者則比 p M O S F E T的 

要好3倍左右°用面積定律(Law of Area)可以計算出和pnp C L B T相當大小的 

p M O S F E T會跟 p n p CLBT有相近的匹配特性。 後，當把各元件配對成電流鏡 

的時候，它們的匹配特性也顯示出相似的結果° 
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Chapter 1 

Introduction 

1.1 Motivation and Objectives 

T h e two main types of transistors used in today's Integrated Circuits (ICs) are 

the Bipolar Junction Transistor (BJT) and the Metal-Oxide-Semiconductor 

Field Effect Transistor ( M O S F E T ) , or simply M O S transistor. Complemen-

tary M O S ( C M O S ) is the process and circuit technique of using two types of 

complementary M O S F E T s , namely ； ^ M O S F E T s and n M O S F E T s , which has 

the advantage of high speed and low power dissipation. With the advent of 

IC technology, digital circuits have become widespread and the C M O S process 

has been optimized for digital applications [IF94]. In spite of this, B J T s still 

retain m a n y advantages over those of C M O S for some critical analog applica-

tions such as bandgap voltage references [DLV085], photodetectors [ZCFK98], 

silicon cochlea [vSFV96], temperature sensors [BH96], and Digital-to-Analog 

Converters (DACs) [BBW90]. However, since C M O S and bipolar processes 

are incompatible, additional masking steps are required to combine both types 

of transistors on the same chip, which is the more expensive B i C M O S process. 

As System-on-a-Chip (SOC) becomes increasingly popular, the need for inte-

grating the analog peripherals and digital processing cores on the same chip 

is increasing [Chi98]. Under such a situation, the Compatible Lateral Bipolar 

Transistors (CLBTs) have received renewed interest. 

1 
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Substrate S Base B Emitter E „ „ Collector C 
Gate G 

^ n+ Emitter , n+ Collector 
I ^ V e- flow iiTTh^ • v 

C V B T \ \ r I / c V B T 
I \ p-weU (Base) / i 

\ M / \ 
n-substrate 

Figure 1.1: Cross-sectional view of C L B T . 

C L B T s are the parasitic B J T s formed in C M O S process by operating the 

M O S F E T s in bipolar m o d e (explained in detail in Section 4.2). T h e struc-

ture is shown in Figure 1.1. Therefore, B J T s and M O S F E T s can be realized 

on the same wafer without additional costs using a standard C M O S process. 

M O S F E T s can be used for implementing high density digital logic while the 

C L B T s can be used in the analog parts. 

Technology downward scaling continues to be a major trend in the IC 

industry. According to the projections of the Semiconductor Industry Asso-

ciation (SIA), the feature size of the IC process would reach 0.05//m by the 

year 2011 [Josed]. Deep submicron technology requires further lowering of the 

supply voltage; on one hand to prevent the increase in electric field w h e n de-

vice dimensions are decreasing with constant supply voltage, and, on the other 

hand, to reduce power consumption since the number of transistor per unit area 

is increasing in quadratic manner. In fact, the supply voltage and power per 

chip are predicted to be 0.5V and 174VF by 2011 respectively by SIA. Analog 

circuits operating under ultra-low power supply voltages require well-matched 

devices for proper operation. Matching properties refer to the similarities 

between the electrical properties of two identically designed and used compo-

nents after fabrication. However, M O S F E T s fail to meet such requirements 

especially in low current level operations. Since C L B T s have been shown to 
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have better matching properties than C M O S [Vit83, PA89, vSFV96, RHL97], 

a study of low voltage and low power circuits incorporating C L B T s becomes 

more meaningful. 

C L B T s have been gaining interest since 1969 [LHIK69]. C L B T s were an-

alyzed and incorporated in current mirrors and amplifiers, and were shown 

to have lower noise than those incorporating only M O S F E T s by Vittoz in 

1983 [Vit83]. In 1985, accurate C M O S voltage references incorporating C L B T s 

were realized [DLV085]. Arreguit then proposed a more complete model for 

C L B T s in 1989 in his P h D thesis [Arr89] and the C L B T was shown to have 

better matching properties than M O S F E T s since they push the flow of carriers 

away from the surface of the device. T h e matching of C L B T current mirrors 

also has been shown to be better than that of M O S F E T current mirrors, es-

pecially under low current levels [PA89]. Applications have used C L B T s for 

their improved matching properties over M O S F E T s , some examples being a 

Variable Gain Control ( V G C ) circuit [PA89], a silicon cochlea [vSFV96], and 

a logarithmic photoreceptor [RHL97 . 

Even though m a n y applications of C L B T s appear in the literature, to the 

best of our knowledge, the matching properties of C L B T s have not been in-

vestigated systematically and quantitatively hitherto. Matching properties, 

however, are very critical in the design of low power analog circuits. T h e main 

aim of this thesis is to study the matching properties of C L B T s and compare 

them with n M O S F E T s and j ^ M O S F E T s fabricated with a standard C M O S 

process in a systematic and quantitative fashion. Applications of C L B T s for 

improved circuits were also studied. 

1.2 Contributions 

Test chips containing arrays of cascoded pnp C L B T s with p-type guard rings 

and n M O S F E T s were fabricated using the standard A M I - A B N 1.5fim n-well 
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process. A n efficient parameter extraction array for bipolar devices was de-

signed. This design provides a good balance between the n u m b e r of devices to 

be tested, n u m b e r of pins and accuracy. 

T h e pnp C L B T s and n M O S F E T s were designed to have similar layout 

areas. There were in total 900 n M O S F E T s and 576 pnp C L B T s . A testing 

setup was developed to perform automatic extraction of transistor parameters. 

Using this setup, the matching properties of the pnp C L B T s and n M O S F E T s , 

as well as the pnp C L B T s operating as p M O S F E T s， w e r e measured. 

A preliminary study of the application of Floating-Gate C L B T s ( F G - C L B T s ) 

was also carried out. A n Operational Transconductance Amplifier ( O T A ) in-

corporating F G - C L B T s as the input differential pair was designed and fab-

ricated. T h e advantage of using C L B T s in O T A s is that they are expected 

to have lower noise. B y utilizing the residual gate effects of the C L B T s , w e 

showed that it was possible to trim the offset of the O T A by using hot electron 

injection and electron tunnelling in this standard l.bfim process. 

1.3 Organization of the Thesis 

A n introduction on the structures and representative fabrication technologies 

of C M O S , B J T , and B i C M O S circuits is presented in Chapter 2. In Chapter 3, 

matching properties are introduced. In Chapter 4, the structures, modeling, 

and main characteristics of C L B T s are discussed. Experimental results of 

the D C characteristics of the C L B T s and M O S F E T s fabricated using this 

process are also included in this chapter. Experimental results of the matching 

properties of C L B T s , n M O S F E T s and p M O S F E T s and the comparisons and 

analysis are given in Chapter 5. Conclusions are given in Chapter 6. Finally, a 

review of floating gate technologies is presented in Appendix A and the design, 

characteristics and experimental results of the trimmable F G O T A are given in 

Appendix B. Process parameters are given in Appendixes C and D. 



Chapter 2 

Devices and Fabrication 

Processes 

2.1 Introduction 

Since the invention of planar technology in the 1960's, the integration of 

large numbers of devices on a single silicon die became possible and effec-

tive. Bipolar, C M O S and B i C M O S Integrated Circuit (IC) processes were 

then developed in the 60,s, 70's, and 80’s respectively. This chapter presents 

the structures and models of the Bipolar Junction Transistors (BJTs) and 

Metal-Oxide-Semiconductor Field Effect Transistors ( M O S F E T s ) , which are 

the representative active elements in bipolar and C M O S processes respectively. 

Representative IC processes and the pros and cons of these technologies and 

devices are also discussed. All these serve as the basis for the understanding 

of the following chapters. 

22 
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2.2 BJTs 

2.2.1 Structure and Modeling of BJTs 

There are three terminals in a bipolar transistor, namely the collector C, base 

B, and emitter E (Figure 2.1). Bipolar technology is usually optimized for 

vertical npn B J T s [Arr89, G M 9 3 ] and Figure 2.1 shows the cross-sectional 

view of a vertical npn transistor. For an npn transistor in the forward active 

mode, the base-emitter junction would be forward biased with VBE > 0 and 

the base-collector junction would be reverse biased {VBC < 0). T h e electrons 

are injected into the base as minority carriers and collected in the collector. 

T h e collector current Ic, base current IB, and forward current gain PF can be 

expressed as [GM93]: 

IC = 洲 诺 exp 寄 (2.1) 

IB = + (2.2) 
2 n Lp ISD UT 

Ic 1 

'inDn Dn Lp ND 

where q is the electronic charge (1.6 x 10—19(7), A is the effective emitter area, 

D n is the electron diffusion constant, WB is the effective base width, Upo is 

the equilibrium electron concentration in the base, UT is the thermal voltage, 

Tb is the minority-carrier lifetime in the base, Dp is the diffusion constant for 

hole, Lp is the diffusion length for hole in emitter, rii is the intrinsic carrier 

concentration in silicon, NA is the acceptor concentration, and ND is the donor 

concentration. 

From the equations, the collector current depends on both process param-

eters and layout design. IC designers can only control Ic through the layout 

of different emitter areas and the emitter area is defined as the horizontal area 

of the base and emitter interface (Equation 2.1). 



Chapter 2 Devices and Fabrication Processes 7 

Emitter E BaseB Collector C BaseB ^ ^ e r E 

一 \ 

Collector C 

n+ EM. 
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iso \ \ J iso ColkctorC 
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_ ( n+ Buried Layer > Emitter E 

p Substrate npn 

Figure 2.1: Cross-sectional view of vertical npn bipolar transistor (left) and 

npn and pnp bipolar transistor symbols (right). 

2.2.2 Standard BJT Process and BJT Characteristics 

Standard bipolar integrated circuits using the bipolar process optimized for 

vertical npn B J T are usually fabricated on a lightly doped (lll)-oriented p-

type substrate (Figure 2.1) [HasOl]. (Ill) silicon crystal helps to prevent the 

formation of the parasitic p M O S F E T s between the base and the isolations. 

Then an n+-buried layer is formed, followed by the growth of an n-type epi-

taxial layer. Isolation diffusion, base implant and emitter diffusion then follow 

to form the isolations, base, and emitter and collector regions respectively. 

Other active and passive devices are formed based on these masks. T h e opti-

mization of the vertical npn B J T s poses limitation of the performance on pnp 

B J T s and in fact, only lateral and substrate pnp B J T s can be formed in such 

a process. 

T h e characteristics of bipolar processes optimized for vertical npn transis-

tors are summarized as follows [Arr89]: 

• A n+ buried layer is implemented to prevent undesirable injection of 

carriers into the />substrate and to decrease the collector series resistance 

(Figure 2.1). 
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• T h e base width, the vertical distance between the n+ emitter region 

and the n epitaxial collector region, is minimized to increase PF (Equa-

tion 2.3). 

• T h e emitter region is heavily doped to increase the ratio of emitter to 

base doping densities ND/NA to increase PF (Equation 2.3). 

• Early effect and avalanche multiplication effects are minimized by keep-

ing the collector doping as low as possible. T h e Early effect refers to 

the fact that the depletion width of base-collector junction will increase 

as VcB increases, thus lowering the effective base width. According to 

Equation 2.1, IC will increase even under constant VBE, thereby lowering 

the output resistance. 

Since most bipolar processes are optimized for vertical npn transistors, 

they have higher gain (100 to 200) than that of substrate (60 to 100) and 

lateral (30 to 50) pnp transistors [Arr89]. Compared with M O S F E T s , bipolar 

junction transistors (BJTs) have more driving power to overcome the speed 

bottleneck of driving large capacitive loads. However, they consume more 

power than M O S F E T s , so they are suitable for high speed but low transistor 

density design. 

2.3 MOSFETs and Complementary MOS (CMOS) 

2.3.1 Structure and Modeling of MOSFETs 

T h e polysilicon-gate C M O S process is optimized to form complementary p M O S -

F E T and r ^ M O S F E T transistors on a c o m m o n substrate. n M O S F E T s and 

p M O S F E T s use electrons and holes as majority carriers respectively. Unlike 

bipolar devices, they only use either holes or electrons as carriers, so, they 

are also known as unipolar devices. Figure 2.2 shows the cross-sectional view 
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Figure 2.2: Cross-sectional view of an n M O S F E T (left) and the symbols for 

n M O S F E T and p M O S F E T transistors (right). 

of an n M O S F E T and its symbol respectively. There are four terminals in an 

n M O S F E T , namely the source gate G, drain D, and body B. T h e gate is 

isolated from the well by a layer of thin gate oxide. T h e body refers to the 

well and is usually grounded to the lowest potential of the circuit in operation. 

During normal operations, the drain is connected to a higher potential with re-

spect to the source and body such that Yds > O V and Vsb = OV. A s a result, 

the n-type drain, p—type well, and n-type source form a pair of back-to-back 

diodes and would only conduct a small leakage current which is k n o w n as sub-

threshold conduction or weak inversion and obeys an exponential law. If the 

gate-source voltage VGS is larger than a certain voltage, namely the threshold 

voltage Vt, electrons would accumulate on the surface near to gate oxide to 

an extent such that the electron concentration is higher than the hole concen-

tration. A n 72-type region is then effectively formed on the surface and this 

phenomenon is called strong inversion and the channel is called the inversion 

layer. The n M O S F E T would then be able to conduct drain current ID, which 

depends on both VGS and VDS- The n M O S F E T is said to be in linear mode. 

W h e n YDS > Vfe — VP, ID will no longer depend on YDS and the n M O S F E T 

is in saturation mode. The I -V transfer characteristic of n M O S F E T can be 
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expressed as [EKV95]: 

W e a k inversion (V5 > Vp and VD > Vp)' 

ID = 2NPUL e x p ^ ( e x p - e x p (2.4) 

Linear m o d e under strong inversion (V5 < Vp and VD < Vp): 

ID = NF3{VP-^^^^){VD-VS) (2.5) 

Saturation m o d e under strong inversion (V5 < Vp and VD > Vp)： 

ID = "FIVP-VSY ( 2 . 6 ) 

where 

Vp - (2.7) 
n 

W 

P = J^f^nCo. (2.8) 

VTO = VFB + + (2.9) 

and Vp is the pinch-off voltage, Vro is the threshold voltage when the channel 

is in equilibrium and depends on the surface charge density, n is the slope 

factor, P is the current factor, Uj is the thermal voltage, W and L are the 

width and length of the gate respectively, jjn is the mobility of electron, Cox 

is the gate oxide capacitance per unit area, VFB is flat band voltage,少0 = 

+ several Uj where is the Fermi potential, and 7 is the body factor. 

Note that both V^o and 7 also depend on Cox and the doping of the bulk. 

p M O S F E T s have a similar structure to n M O S F E T s . T h e majority carriers 

of p M O S F E T s are holes. The source and drain regions of a p M O S F E T are 

/>type while the body is of "-type. It is possible to put n M O S F E T s and 

p M O S F E T on the same chip without adding m a n y process steps, and this is 

called C M O S technology. 
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2.3.2 Standard n-well CMOS Process and MOSFETs 

Characteristics 

There are three kinds of C M O S processes, n-well, p-well and twin-well. In 

Figure 2.3, the substrate is of p-type, so an n M O S F E T can be formed directly 

on it. In order to form a p M O S F E T , an n-type well has to be formed first as 

the body of the p M O S F E T . Then, the source and drain of the p M O S F E T are 

formed by creating j9-type regions in the n-well. This is k n o w n as an n-well 

C M O S process. It is also possible to have a p-well process with n M O S F E T s be-

ing built in the p-wells and p M O S F E T s built directly on an n-substrate (shown 

in Figure 2.2). In some processes, which are called the twin-well processes, both 

the p-well and n-well are formed simultaneously. Twin-well processes are usu-

ally found in deep submicron processes because in these processes, the bodies 

of the M O S F E T s have to be highly doped to reduce the chance of punch-

through. Counter doping becomes very unfavorable and highly doped n-wells 

and p-wells have to form separately. However, it should be noted that in a 

twin-well process, either one type of wells are still connected together to the 

substrate as the substrate must be either p or n-type. In this thesis, an n-well 

process was used and so, only the n-well processes will be discussed. 

For an n-well process, C M O S integrated circuits are usually fabricated on 

(lOO)-oriented p-type substrate, which is heavily doped with boron to mini-

mize the resistivity. T h e (100) silicon creates lower surface state density and 

improves the threshold voltage control [HasOl]. A n epitaxial layer of about 5 

to 10/./777 is then grown followed by 7i-well diffusion. A moat mask is then used 

to define the active areas where the M O S F E T s will form. After the formation 

of gate oxide, threshold adjust implantation is used to adjust the threshold 

voltage of the M O S F E T s to the range of O.TV to 0.91,. Polysilicon deposition 

and patterning and source/drain implantation then follow. T h e following can 

be observed for an 77-well C M O S process: 
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Figure 2.3: Cross-sectional view of an n-well C M O S process with latch-up 

circuit identified (left) and the extracted model of the latch-up circuit (right) 

(adapted from [KL99]). 

Firstly, the n-well has higher dopant concentration due to counter doping, 

so p M O S F E T s have poorer parameters than n M O S F E T s because the carrier 

mobility in p M O S F E T s degrades due to the counter doping [HasOl, L H C 8 6 . 

Secondly, as shown in Figure 2.3, it is possible for the n M O S F E T s and 

p M O S F E T s to form an unfavorable latch up circuit. Latch-up is defined as 

the generation of a low-impedance path in C M O S chips between the power 

supply rail and the ground rail due to interaction of parasitic pnp and npn 

transistors. Under normal conditions, there is only a high impedance path 

between the power rails as Ql and Q2 are off. A s shown in the model of latch 

up circuits, if there is an increase in the collector current of either parasitic 

bipolar transistors due to an external disturbance, the transistors will drive 

each other in positive feedback path. In the worst case, it would destroy the 

device by forming a too large current [KL99]. To prevent latch up, either the 

Rwell or Rsub has to be reduced, which could be achieved by increasing the 

doping level of the well or adding a guard ring to trap the injected minorities, 

or the gain of the bipolar transistors has to be reduced by increasing the 

separation distance between opposite type M O S F E T s . Usually, the minimal 

distance between opposite types of M O S F E T specified by the design rule of 
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a process is enough to prevent latch-up in a properly-biased digital circuit. 

However, w h e n the wells are biased differently as in Compatible Lateral Bipolar 

Transistors (CLBTs), guard rings have to be added (detailed in Section 4.8). 

Thirdly, unlike the bipolar processes, C M O S processes do not require a 

buried layer as M O S F E T s are surface devices, in which the carriers flow near to 

the Si — SiOi interface. However, w h e n the M O S F E T s are operated as lateral 

bipolar devices, considerable minorities injected from the source or drain into 

the body will travel vertically and be collected by the substrate in the absence 

of buried layers. T h e lateral gain will then be significantly decreased. 

2.4 BiCMOS Technology 

C M O S is currently the major technology used in integrated circuit designs. 

C M O S devices feature high input impedance, low offset switches, high pack-

ing density, low switching power consumption, and high scalability. Despite 

these advantages, C M O S still cannot completely replace bipolar devices not 

just in analog circuits but also the digital ones since bipolar devices retain some 

advantages over C M O S , a m o n g which are larger capability to drive capacitive 

loads, larger transconductance, lower 1/f noise, and better matching proper-

ties. B i C M O S technologies combine C M O S and bipolar technologies on the 

same chip so the advantages of both types of transistors can be used together. 

Then, the low-noise high speed parts could be achieved by bipolar circuits and 

the low-speed logic parts could be implemented with C M O S . Usually, a typi-

cal mixed-signal circuit contains 90 — 95% digital circuits and 5 — 10% analog 

circuits [HasOl . 

However, the B i C M O S process cannot just be a simple modification of B J T 

or C M O S process. Analog B i C M O S processes require at least fifteen masks 

(in contrast to the baseline of eight masks in B J T and nine masks in C M O S ) , 

which is m u c h more complicated. Additional processing steps such as buried 
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layers, deep sinkers, and base diffusions must be included in addition to 

the C M O S processes. Such complicated process means also higher wafer costs, 

longer manufacturing time, lower process yields, more difficult controls on 

the diffusions, and most importantly, more expensive products. Therefore, 

the inexpensive C L B T s in C M O S provide an attractive alternative to using 

B i C M O S . 

2.5 Summary 

In this chapter, modern IC technologies, namely the bipolar, C M O S and BiC-

M O S processes have been presented. T h e most c o m m o n l y used devices, B J T s 

and M O S F E T s were discussed in details, and their structures and modeling 

were presented. 



Chapter 3 

Matching Properties 

3.1 Introduction 

In this chapter, the background of matching properties of M O S F E T s and B J T s 

is presented. The importance and equations of mismatch measurements are 

discussed. Previous work on the matching properties of M O S F E T s and B J T s 

is summarized. This chapter provides a basis for the discussion of the matching 

properties of C L B T s . 

3.2 Importance of Matched Devices in IC De-

sign 

3.2.1 What is Matching? 

Matching deals with statistical device differences between pairs of identically 

designed and identically used active or passive elements such as transistors, 

resistors, and capacitors [PTV98]. Devices specifically constructed to obtain 

a known constant ratio are called matched devices [HasOl]. Mismatch is the 

process that causes time-independent random variations in physical quantities 

of such devices. Analog circuits place particularly stringent requirements on 

1 5 
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matching resistors, capacitors, and transistors because the vital circuit com-

ponents, such as operational amplifiers, Digital-to-Analog Converters (DACs), 

multiplexed analog systems, and reference sources d e m a n d highly matched 

current mirrors and differential pairs for high enough accuracy [Gre92]. Addi-

tionally, the trends described in the following subsections m a k e the study of 

better matching devices become even more important. 

3.2.2 Low-power Systems 

Matched components are becoming increasingly important since low-volt age 

circuits have become a major trend and will surely dominate the electronic 

industry in the future. In digital circuits, the supply voltage is expected to 

reach 0.5V ( m i n i m u m logic Vdd) by the year of 2011 [Josed]. Firstly, there are 

more needs for portable systems such as low-power hearing aids, cardiac pace-

makers, cellular phones, pagers, portable computers and telecommunications 

products. Moreover, as transistor density and operating frequency increase, 

heat dissipation becomes a more urgent problem to be solved, which requires 

the further lowering of supply voltage. A s System-On-a-Chip (SOC) becomes 

an effective means for realizing cost-effective products and more efficient elec-

tronic systems, analog circuits will be restricted to operating under such low 

power supplies. W h e n the voltage supply decreases, it becomes more difficult 

to keep the signal-to-offset, or signal-to-noise ratio large enough for accurate 

operation [IF94]. Analog circuits which work well under conventional voltage 

supplies m a y malfunction under low voltage supplies due to the increase in the 

significance of the mismatch. 

3.2.3 Device Size Downward Scaling 

The impact of matching also increases as the dimensions of the devices are 

being reduced. As predicted by the Semiconductor Industry Association (SIA), 
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the feature size of semiconductor devices would reach 50nm in 2011 [Josed]. 

A s a result, the mismatching caused by the limited resolution precision of 

lithographical process during IC fabrication would become more explicit as 

the relative error increases. 

3.2.4 Analog Circuits and Analog Computing 

Even though it has been predicted for years that analog circuits would fade 

out very soon, there are still strong needs for analog circuits in today's IC 

industry. For example, Analog-to-Digital Converters ( A D C s ) and Digital-to-

Analog Converters (DACs) are necessary for electronic equipment to interact 

with the analog physical world. High performance anti-aliasing filters and 

reconstruction filters are required to implement high speed front ends in com-

munication systems [JM97]. In these circuits, the associated current mirrors 

and differential pairs should have very good matching properties. 

At the same time, there has been an increase in interest in analog comput-

ing and neuromorphic engineering in recent years. Neuromorphic Engineering 

is a field based on the design and fabrication of artificial neural systems, such as 

vision systems, head-eye systems, and roving robots, whose architecture and 

design principles are based on those of biological nervous systems [Mea89 . 

In these two areas, both active and passive elements operate in analog cir-

cuits for precise computation. For example, translinear circuits use M O S F E T s 

operating in the subthreshold region for multiplication and logarithmic opera-

tions [Min99]. Well matched devices are thus required to realize such systems 

and the design of precise analog circuits requires a thorough understanding of 

the matching behavior of components available in any given technology. 
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3,3 Measurement of Mismatch 

D u e to the importance of matching properties, extensive studies have been 

carried out on the matching properties of capacitors [STK84，McC81], M O S -

F E T s [LHC86, P T V 9 8 , P D W 8 9 , W P M 9 7 , H H G 9 8 , B S R + 9 5 , L W M M 9 8 ] and 

bipolar transistors [CE96a, TI96]. Significant results have been achieved, es-

pecially for M O S F E T s . T h e followings summarize some of the related theories 

of matching properties and the important results of the matching properties 

of M O S F E T s and bipolar transistors. 

3.3.1 Definitions and Statistics of Mismatch 

Two commonly used equation sets 

There are different definitions of mismatch in literature [HasOl, Gre92, P G J + 9 5 . 

In [HasOl], the mismatch S between two devices is usually expressed as a de-

viation of the measured device ratio from the intended device ratio and is 

expressed by the following equation: 

£2. ^ 
(3.1) 

where the intended values are X i and X 2 and the measured values are Xi and 

X2 [HasOl]. For N samples, the m e a n of the mismatch m s is defined as: 

1 N 

爪s=】iyi (3.2) 
i=l 

and the standard deviation of the mismatches as is defined as: 

^ 1 ； 
T T T T I ] • 一 叫 ( 3 . 3 ) 

Another statistical approach for evaluating the stochastic mismatch be-

tween two identically designed elements on the same chip was proposed by 

Pergoot in 1995 [PGJ+95]. The mismatch between two identical parameters 
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P I and P2, measured on two different identically designed elements, is defined 

as the standard deviation of the normal distribution oi N [N�30) absolute 

differences Sa = A P 二（PI — P2、(e.g. for threshold voltage) or relative differ-

ences % 二 A P / P = (PI - + * 200[%] (e.g. for transconductance 

or resistance). T h e mismatch is thus defined in either of the following forms, 

1 N 

a ( A P ) = (3.4) 

� i=l 

1 N 
a ( A P / 巧 = - 爪 S r ? (3.5) 

� i=l 

where msa and msr are the means of Sa and Sr respectively. 

Formulae used in this thesis 

There are two main differences between the above two methods. Firstly, 

in [HasOl], the ratio between the two parameters is emphasized and the in-

tended ratio has to be known while the one in [PGJ+95] requires only the 

measured values. T h e first one is especially useful for measuring the mismatch 

of devices having ratio other than 1 : 1 , while the second one is simpler and 

no absolute intended parameter value is required and only the m e a n of the 

measured parameters is used for computation ((PI + P2)/2). Secondly, the 

first method defined the mismatch as the relative ratios and the second one 

defined it as the standard deviation of the relative ratios. However, this is not 

of great importance. 

In this thesis, the mismatches of currents in C L B T s and M O S F E T s in the 

arrays will be measured first. Then the adjacent transistors would be paired up 

as current mirror and their mismatch will be measured. W h e n measuring the 

mismatch of currents in the M O S F E T and C L B T array, the relative differences 

of the second method are used. Since arrays of independent transistors are used 

instead of transistor pairs, the m e a n of the measured current I will be used as 
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the reference. T h e equation for the mismatch of the measured currents asj of 

N transistors is shown as follows: 

1 N 

= \ Y^ri _ 爪 、 ( 3 - 6 ) 

where, 

知 , = 罕 (3.7) 

1 N 

爪 SI = J^YJLI (3.8) 

and li is the measured current of the ith transistor. 

In this work, Equations 3.1 to 3.3 will be used to calculate the mismatch 

of the transistor pairs. 

3.3.2 Types of Mismatches 

In general, there are two sources of parameter variations in integrated circuit 

fabrication processes. 

a. Systematic mismatches [STK84, Elz96] These types of mismatches would 

affect adjacent elements with identical geometries similarly. T h e main 

causes include [HasOl]: 

1. Process Biases - This refers to geometry shrinking or expanding 

during photolithography, etching, diffusion, and implantation. T h e 

process bias is the difference between the drawn width and the ac-

tual width of components. 

2. Variations in Etch Rate - This refers to the variations in etch rate 

of oxide by the etchant in different sizes of openings. Since large 

openings grant more access to the etch ant, the etch rate is faster. 

3. Stress Gradients - Silicon is piezoresistive, which means that its 

resistivity will change under different stresses. D u e to the tension 
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produced by the packaging, there is always a gradient of stress, and 

thus a change of resistivity across the die. 

4. Temperature Gradients - According to Equation 2.1, the collec-

tor current depends exponentially on the temperature of the de-

vice. This is also true for M O S F E T s in subthreshold region (Equa-

tion 2.4). This temperature effect becomes extremely important 

w h e n power transistors are built on the same chip as matched de-

vices. T h e best way to reduce the temperature effect is to put the 

matched devices in isotherms and far away from the power transis-

tors. 

Systematic mismatch will become more serious w h e n the transistors are 

unequally designed or asymmetrically placed. O n the other hand, it 

can be reduced by proper layout techniques. For example, variations in 

sheet resistance and junction depth of the implanted and diffused regions 

across the wafer resulting from non-uniform conditions during the pre-

deposition and diffusion of the impurities could be corrected by using a 

common-centroid geometry (Figure 3.1). 

Trl Tr 3 

c o 
.广 
O  
^   
» T-H 

X Tr 2 Tr 4 

x-direction 
Figure 3.1: Common-centroid layout constructed with 4 unit devices connected 

as Q U A D . Transistor Tl=Trl+Tr4, transistor T2=Tr2+Tr3. 
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b. Random (Stochastic) mismatches [STK84, Elz96] Such mismatches 

are caused by random statistical fluctuations and irregularities of the 

components [HasOl]. For example, the edges of the polysilicon exhibit 

microscopic irregularities, which resulted from the granularity of the 

polysilicon and imperfections in the photoresist. A s a result, the re-

sistors and capacitors, as well as transistors, formed by the polysilicons 

will vary through the chip. This type of mismatch differs from element 

to element, and cannot be corrected by layout techniques. T h e y are 

normally distributed with a m e a n of zero. Therefore, the only w a y to 

reduce the mismatch is to improve the fabrication process and increase 

the components areas. R a n d o m mismatches pose the ultimate limitation 

on the achievable accuracy for circuit designers. 

There are two kinds of fluctuations in this kind of mismatch, periph-

eral fluctuations (fluctuations that occur only along the edges of the 

device) and area fluctuations (fluctuations occur throughout the device). 

W h e n the area to edge length ratio is large enough, the area fluctuations 

will dominate and the peripheral effects can be neglected. For exam-

ple, the mismatch of a capacitor with capacitance C can be represented 

as [HasOl]: 

� =T d f ^ (3.9) 

where ka and kp are constants representing the contribution of area fluc-

tuations and peripheral fluctuations respectively. W h e n the area is large 

enough (with large C), the term containing kp can be neglected and the 

mismatch of the capacitors depends only on the area fluctuation. 
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3.3.3 Matching Properties of MOSFETs 

There have been three main types of studies on the matching properties of 

M O S F E T s . Only the first two are of interest in this thesis: 

a. Main mismatch sources and matching modeling 

Referring to the M O S F E T current equations (Equation 2.4 to 2.9), the 

mismatch of drain current can depend on the threshold voltage Vr, body 

factor 7 and current factor jS [PDW89]. However, due to the difficulty 

in controlling the diffusion process, surface charge formation and oxide 

thickness, the main source of error is the threshold voltage and the cur-

rent factor. T h e mismatch of drain current can thus be represented in 

terms of the mismatches of Vr and /3. Generally, M O S F E T s operate in 

the saturation region in analog circuits. In the saturation region, the 

mismatches of the drain interconnect paths would m a k e no significant 

contribution to the current mismatch [LHC86, BGS96]. In this thesis, 

w e only consider the mismatch model for M O S F E T s in the saturation 

region. 

In saturation, the variances of the threshold voltage cr‘ and the current 

factor a} [BSR+95, L W M M 9 8 , P D W 8 9 , LHC86] are represented as: 

A2 /12 A2 
A ^ V t ) = + (3.10) 

W.ffLefJ WeffLljj W^jjLeJJ 

— 糊 = 4 I 对 2 …n 
f^ — WefjLe"十 WeffLljj 十 ( ' . u ) 

where Vt and p are the threshold voltage and current factor of the M O S 

transistor under test, W^jj and L^jj are the effective gate width and 

channel length of the M O S F E T , and Awt, ^ W r ， 如 t , Aiv2, Al2 and 

A/32 are process related constants. 

The variance in the drain current can then be derived as: 

— (A/ ) = — ( A � , , 1 —⑷今） ... 
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where Vs is the Source voltage and Vp is the pinch off voltage. 

For large enough transistors (Le// > l.2fj,m) [BSR+95], the second and 

third term of Equations 3.10 and 3.11 can be neglected. T h e mismatches 

of the threshold voltage and current factor are then inversely proportional 

to the square root of the effective gate area (WejjLe/f), which is the well-

k n o w n L a w of Area. 

赛 ) = ( 3 . 1 3 ) 

华 = I 、 (3.14) 

where AWT and A沪 are restated as Ayro and A p respectively. Substi-

tuting these equations into (3.12), the mismatch of the drain current will 

also obey the L a w of Area: 

到 - 1 1 / f 丨 1 4 (3 15) 
I ~ V W ^ r ^ (Vp-Vsy (3.15) 

From the matching model given, the following conclusions can be drawn: 

• W h e n the gate length is larger than 1.2//m, the mismatches of the 

threshold voltage, current factor and drain current of M O S F E T s 

are inversely proportional to the effective gate area (3.13 to 3.15). 

This suggests that matching will become more and more critical as 

the technology is scaled down. 

• The second and third terms of (3.10) and (3.11) account for the 

short and narrow channel effects respectively due to edge rough-

ness [BSR+95]. The negative term in (3.10) indicates that the nar-

row channel effect makes a negative contribution to the mismatch 

of the threshold voltage. This is because, in contrast to the short 

channel effect which makes the depletion region controlled by the 

gate smaller (e.g. Drain-Induced-Barrier Lowering DIBL), the nar-

row channel effect increases it. 



Chapter 3 Matching Properties 25 

• T h e mismatch of the drain current depends on the overdrive volt-

age VP — VS. If the overdrive voltage is small {VGS < + 1.5V" 

w h e n the slope factor n ^ 1), the mismatch in threshold voltage 

(second term in (3.15)) dominates and the mismatch of the drain 

current is roughly proportional to 1/\/7d as Ap can be neglected 

and ID oc (Vp — V^)^- This value reaches a m a x i m u m and levels off 

in subthreshold region [ L W M M 9 8 , FW94；. 

T h e matching properties of M O S F E T s in the sub-threshold region have 

not been studied as extensively as that in the saturation region. H o w -

ever, as sub-threshold circuits have become more important in order to 

reduce power consumption, their matching properties have increased in 

importance. O n the other hand, the matching properties of M O S F E T s 

are simpler in the first order approximation because the mismatch is in-

dependent of the current level. T h e current equation of M O S F E T in 

sub-threshold region in simple form (Equation 2.4) is restated here for 

convenience: 

Id = 2n[3UT exp 盒 ( e x p - exp 

W h e n Vd is large enough (Vn > a few kT), such as w h e n the drain 

is connected to the power rail, and Vs is connected to the ground, the 

equation can be simplified as: 

o Vp Vr 
Id = 2nf3Ul exp — = h exp (3.16) 

Ut uUT 

where /。== exp B y differentiating the above equation with 

respect to /。，we have, 

Vb 
SID = exp{——)5Io 

nuT 

Rearranging the terms, 

ID - LO (3.17) 
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Therefore the mismatch of the drain current is independent of VGS^ which 

means that it is also independent of the current level. This explains w h y 

the mismatch of M O S F E T s levels off in the subthreshold region [ F W 9 4 . 

Previous research has also shown that n M O S F E T s have inherently bet-

ter matching properties than p M O S F E T s [LHC86]. This is because most 

of the C M O S fabrication processes are optimized for n M O S F E T s . A s a 

result, an extra ion implantation step is required to adjust the threshold 

voltage of p M O S F E T s to a suitable value. D u e to this additional thresh-

old adjust implant, there is larger variation in the surface concentration 

in p M O S F E T s . A s as result, the matching of the threshold voltage in 

p M O S F E T s is poorer than that in n M O S F E T s . Furthermore, there is 

larger mobility variation due to the counterdoping in p M O S F E T s . 

b. Reducing systemic mismatch 

T h e topography and transistor matching relationship have been studied 

and it was shown that the c o m m o n centroid and inter digitated waffle 

transistor layout structures (Figure 3.2) show almost no systematic mis-

match. However, under die stress, the finger style transistor pair shows 

significant systematic mismatch [BGS96]. Moreover, d u m m y devices (or 

Y 

Tr1 Tr2 Tri Tr2 

X 

Figure 3.2: Interdigitated finger layout of transistors Trl and Tr2. 
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etch guards) can be added to surround the array of devices to reduce the 

effect of variations in polysilicon etch rate. T h e d u m m y devices have the 

same spacing between the adjacent devices as that between the devices 

in the array. So, the boundary devices will not be over etched due to the 

larger spacing [HasOl . 

c. Modified M O S structures for reducing random mismatches 

Suggestions for changing the structure or fabrication process of standard 

M O S F E T s have also appeared in the literature, such as vertical M O S -

F E T s [RKHS95] or the deposition and etch-back technique [ H H G 9 8 . 

These techniques were not studied or applied in this thesis because only 

a standard fabrication process was available. 

3.3.4 Matching Properties of BJTs and CLBTs 

There have been few studies published on the matching properties of bipo-

lar devices [TI96, TP98, HasOl, CE96b], especially of C L B T s [Vit83, C H H 9 6 , 

PA89]. Most of the studies dealt with the vertical B J T s and they are s u m m a -

rized below. 

Firstly, random fluctuations in base doping, emitter junction area, the den-

sities of recombination center in the emitter base depletion region and Area-

to-Periphery ratio are significant sources accounting for the mismatches in 

B J T s [HasOl]. Referring to Equation 2.1, they all play important roles in 

determining the collector current. The base doping and densities of recombi-

nation center are process dependent, which will affect the gains and cannot be 

controlled by circuit designers. Similar to M O S F E T s , the larger the emitter 

area, the better will be the matching properties because effects of the random 

errors due to photolithography can be reduced. In vertical BJTs, minorities in 

base can also pass through the periphery of the base diffusion into the collector 

in addition to the vertical action (Figure 2.1), which will change the effective 
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resistance of the collector. Therefore, the Area-to-Periphery ratio should be 

maximized to reduce the side wall effects. T h e mismatch of the vertical B J T s 

due to the variations of emitter area can then be represented as [HasOl]: 

〜 = ^ f ^ (3.18) 

where Ae is the vertical emitter area, kr is a constant, and ka and kp are 

constants representing the contributions of area and peripheral fluctuations 

respectively. T h e equation can then be simplified to be the L a w of Area w h e n 

the Area-to-Periphery ratio is large enough [TI96, TP98]: 

〜 = 歷 E (3.19) 

Temperature gradient is another important source of mismatches in B J T s 

as mentioned in Section 3.3.2. Since the temperature coefficient of the base-

emitter voltage is about —2mV/°C, that of the collector current then will 

be equivalent to 80，000ppm/。C [HasOl]. Therefore, the location of the B J T s 

differential pairs should be carefully planned and placed far away from any 

power transistors. Temperature gradient will be a big problem for matching if 

the power consumption of the chip is high. 

For the C L B T s , the above results are still applicable. In addition, there 

are some important published results that motivated the systematic and quan-

titative study of matching properties of C L B T in this thesis. 

1. It has been shown that gated lateral bipolar action in weakly inverted 

M O S transistors can improve the matching properties. This shines a 

light that the matching properties of C L B T would be better than that of 

M O S [CHH96]. This is because, under the same bias conditions, C L B T s 

matching mainly depends on geometrical and processing factors (lateral 

and vertical emitter areas and doping concentration of the base) that are 

different from and better controlled than those of M O S F E T s (length and 

width of the channel, surface doping and oxide properties) [Arr89 . 
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2. T h e C L B T s have been used to implement highly accurate circuits such as 

a Gilbert gain cell (a two-quadrant analog multiplier) [PA89] and current 

sources in a silicon cochlea [vSFV96]. Both circuits have demonstrated 

that C L B T s have better matching properties than M O S F E T s . 

3. T h e L a w of Area can be applied in bipolar devices where W L is the 

effective lateral emitter area [TP98]. 

There have been several studies comparing the matching properties of 

C L B T s and M O S F E T s . In these studies, C L B T s are generally thought and 

shown to have better matching properties than M O S F E T s in these processes 

and were even used for replacing M O S F E T s in some critical matching circuits. 

However, most of the studies did not m a k e fair enough comparisons between 

the C L B T s and M O S F E T s . They are summarized in Table 3.1. 

Paper Comparisons Process C L B T M O S - Area  

F E T ratio 

[Vit83] Current Mirror p-well npn n-type C a s M 

[PA89] Current Mirror jo-well npn rz-type C a s M 

[CHC96] Current Mirror O.Sfim N M O S with n-type 1:1 

twin-well B J T action 

[vSFV96] Current Mirror — npn{1.5/j,m n-type{2/j,m 一 

p-well) n-well) 

[RHL97] Photoreceptor 2(j/m n-well pnp p-type 2:1 

Table 3.1: Previous results comparing the matching properties of M O S F E T s 

and C L B T s . 

The first four publications compared the mismatch of current mirrors and 

the last one compared the signal-to-offset of a photoreceptor. CasM means 

that the C L B T s were operated directly as M O S F E T s for comparison, which 

means the gate area is at least 10 times smaller than a normal M O S F E T 

with similar layout area as the C L B T . Therefore, the C L B T s were compared 

with M O S F E T s which had effectively smaller layout areas. It should also 
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be noted that in [vSFV96], different fabrication processes were used. T h e 

C L B T design was fabricated using E C P D 1 5 (a single-poly double-metal 1.5/um 

C M O S process) at E S 2 (Grenoble, France) [vSFV96] while the M O S F E T de-

sign used a standard double-poly double-metal 2/im C M O S technology at 

M O SIS [ W K L M 9 2 ] . Moreover, the publications also compared poorer match-

ing M O S F E T type in the corresponding process (e.g. n M O S F E T s in a p-

well process and p M O S F E T s in an n-well process) with C L B T s . However, 

as mentioned in Section 2.3, due to counter doping, the matching properties 

of the M O S F E T s formed in the well is poorer ( p M O S F E T s are poorer than 

n M O S F E T s in an n-well process and n M O S F E T s are poorer than p M O S F E T s 

in a p-well process) [LHC86]. This motivates the comparison between the 

matching properties of C L B T s with the better matching M O S F E T ( n M O S F E T 

in n-well process). 

3.4 Summary 

This chapter has summarized previous research results on the matching proper-

ties of C M O S and bipolar devices. Special emphasis was placed on C M O S and 

the importance of, equations for and factors affecting the mismatches in these 

devices. It was also pointed out that fairer comparison between M O S F E T s and 

C L B T s are needed because previous research mainly compared the mismatch 

of M O S F E T s of m u c h smaller area than that occupied by the C L B T s . 



Chapter 4 

CMOS Compatible Lateral 

Bipolar Transistors (CLBTs) 

4.1 Introduction 

Compatible Lateral Bipolar Transistors (CLBTs) and Compatible Vertical 

Bipolar Transistors ( C V B T s ) are both parasitic bipolar devices found in a 

C M O S process (Figure 4.1). Since C V B T s can only be used in c o m m o n -

collector configurations, they are of limited use to circuit designers and will 

not be discussed in detail in this thesis. 

In this chapter, the structure and operation of C L B T s are first introduced. 

Then the D C model proposed by Arreguit [Arr89] is presented. C L B T s are 

modeled as B J T s with some special characteristics including low current gain 

and low Early voltage. Moreover, the collector current actually depends on the 

gate voltage, which is called the residual gate effect. These characteristics are 

all discussed in detail. Following this, applications of C L B T s in the literature 

and the design and layout of C L B T s for practical use are presented. Finally, 

the gains of C L B T s , current-volt age (I - V) characteristics of pnp C L B T s , 

n M O S F E T s , and C L B T s operating as p M O S F E T s fabricated using the A M I -

A B N 1.5/im n-well process, and their measurement setup are given. 

3 1 
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4.2 Structure and Operation 

T h e structure of a C L B T is the same as that of a M O S F E T because it is a 

parasitic bipolar device in a C M O S process (Figure 4.1). A C L B T has five 

terminals, namely the emitter E, collector C, base B, substrate S, and gate 

G, which correspond to the drain D, source body (well) B, substrate Suh, 

and gate G terminals of a M O S F E T respectively [Vit83, Arr89]. In order to 

have the base of a C L B T biased at potentials other than the rails, C L B T s have 

to be formed in a well. Therefore, only pnp C L B T s and npn C L B T s could be 

formed in n-well and p-well processes respectively. It is impossible to realize 

pnp and npn C L B T s on the same chip using traditional C M O S processes even 

in twin-well processes because one type of the well must be connected together 

to the substrate at Gnd or Vdd (Section 2.3.2). Therefore, B i C M O S process 

must be used if both types of bipolar devices have to be realized at the same 

time. Nonetheless, usually only small numbers and only one type of bipolar 

device are required to implement mix-signal circuits. 

Under normal operation conditions, an n - M O S F E T formed in a p-well has 

the substrate and p-well connected to the highest and lowest potentials re-

Emitter E 

Nh Substrate S Base B Emitter E ^ ^ Collector C , GmeG 
GateG pnp / 

Base B 

^ n+ Emitter ^ ^ ^ m m ^ ^ Collector \ Collector C Substrate S 
I • z V ê flowî m̂  ̂、 

/ r^ / 
/ ^ CLBT V ^ ~ / Collector C Substrate S 

^ C V B T \ ， r I / c V B T 
\ V \ —(Base) / } I I 
、 \ \ / \ 贩 \ — GateG 

她 z | — BaseB 

Emitter E 

Figure 4.1: The cross-section of an npn C L B T with parasitic bipolar transistors 

identified (left) and symbols for npn and pnp C L B T s (right). 
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-0.2 V U、—  
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Figure 4.2: Transfer characteristics from source to drain of an n M O S F E T 

w h e n VB and Vb kept at Gnd and Vdd respectively (adapted from [Arr89]). 

spectively. T h e source is connected to a lower potential than the drain. If 

the gate-source voltage (Vg^) is larger than the threshold voltage {VT), strong 

inversion occurs and the losiyGs) transfer characteristics obey a square law as 

described in Section 2.3 (Equation 2.6). W h e n VGS is lower than the threshold 

voltage, it is in weak inversion. According to Equation 2.4, it will appear as a 

straight line w h e n the collector current is plotted against the gate voltage on 

a log scale (Figure 4.2). 

W h e n the gate to well voltage [VGB) becomes negative, there will be ac-

cumulation of holes at the interface between the SiO: insulating gate and the 

well. If now, the well is forward biased with respect to the source, electrons 

will be injected into the p-well and then diffuse toward the drain laterally. 

With a large enough negative gate voltage, the current will be independent of 

the gate voltage VQ (Figure 4.2). The device is now operating in pure bipolar 

m o d e and the source, drain, and well becomes the emitter, collector, and base 

respectively [Vit83, Arr89]. B y applying similar arguments, ； ) M O S F E T s can 

operate as pnp C L B T s if the gate to well voltage is large enough and they will 

have a transfer characteristic similar to that shown in Figure 4.2. 
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However, due to the lack of an buried layer in the C M O S process, the 

electrons injected from the emitter into the base (well) will also diffuse into 

the substrate. T h e substrate can be regarded as a second collector of a vertical 

npn transistor and, therefore, a C L B T is a 5-terminal device. 

4.3 DC Model of CLBTs 

D C and A C models of C L B T s were studied systematically in Arreguit's P h D 

thesis [Arr89]. However, since it is unnecessary to include the A C M o d e l for 

the understanding of the matching properties of C L B T s , it is not presented. 

T h e D C model of a C L B T in various operation regions can be described 

with a set of 6 parameters, 3 voltage dependent current sources, which link 

the 3 junctions of the C L B T two by two, and 3 current gains in a generalized 

Ebers-Moll model. T h e 3 junctions are the base-collector [BC), base-emitter 

(JBE), and base-substrate (BS) junctions. This model is suitable for hand 

calculations. T h e first order D C model of an npn C L B T is shown in Figure 4.3 

with the following equations: 

ICE = /G/o/(exp ^^ - exp (4.1) 
UT UT 

IsE = /ojexp - exp (4.2) 
Ut UT 

he = — exp (4.3) 

T fohi + lov f Vbe 1 � 

IBE - fe (exp — (4.4) 
r fohi + LOW. VBC 1、 ，，，、 
IBC = ( e x P T ^ —1) (4.5) 

lov + low / VBS 1、 

(4.7) 

where UT is the thermal voltage, /。/, /卯,and are constants related to 

the a-gains of CE, SE and SC respectively and 五，/3 c, and f3s are the 
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I3Q 

Ice ^ Ibe 0 丨SE 

Y 
Figure 4.3: First order Ebers-Moll model for npn C L B T . 

emitter, collector, and substrate forward current gains respectively, fo is the 

gate function and is multiplied to account for a non-flat band condition. 

Terminal capacitances and resistances could be included for A C and second 

order effects. A more complicated G u m m e l - P o o n model written in the circuit 

simulator E S A C A P was also implemented by Arreguit. In 1998, pnp C L B T s 

were modeled as a subcircuit of three parasitic bipolar transistors as shown 

in Figure 4.1 using the S P I C E G u m m e l - P o o n model which accounted for the 

substrate interaction. T h e model gave accurate fits between the measured 

{O.Gfxm C M O S n-substrate process) and simulated data in both the forward 

and reverse region of operation over a large bias range {IB = —O.lnA to 

- 0 . 1 m A ) [MMMM98；. 

4.4 Residual Gate Effect in Accumulation 

The collector current of a C L B T is supposed to be independent of the gate 

voltage VG when VQB is sufficiently low in npn C L B T s or sufficiently high in 

pnp C L B T s . However, by analyzing the M〇 S structure in accumulation mode, 
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it is found that the gate to well voltage actually has an effect on the lateral 

collector current. This is k n o w n as the residual gate effect [Arr89]. Actually, 

it was shown that the lateral collector current depended on the gate to base 

voltage of about 1 0 % over 5V for a typical low-volt age Si-gate S A C M O S Sfim 

process [Ash88]. 

In accumulation mode, the majority carriers in the substrate will accumu-

late under the Si — SiO: interface and the profile of the carriers decreases expo-

nentially away from the interface into the bulk. For example, in r z M O S F E T s , 

the density of holes in jo-substrate along the x-axis under the gate (Figure 4.1) 

can be represented as: 

p[x) = y V ^ e x p - ^ (4.8) 
UT 

or 

— ITT = _ 

where NA is the equilibrium hole concentration, • is the potential relative to 

neutral body and UT is the thermal voltage. B y plotting Equation 4.9 with 

normalized potential for different surface potentials as a function of normalized 

distance, one can obtain Figure 4.4 [Arr89]. From this graph, w e can see that 

the profile of the accumulated charge is limited to within 2 to 3 Debye lengths 

{LD). Since the junction depth of a C L B T is usually more than 10 Debye 

lengths, the gate only has small effect on the charge concentration and, thus, 

small effect on the lateral collector current. From the graph, one can also 

conclude that the larger the surface potential 么，the smaller is the residual 

gate effect, which is consistent with the previous argument that if the gate to 

body is biased sufficiently low for an npn C L B T , the gate voltage will not have 

an effect on the lateral collector current. 

T h e residual gate effect m a y degrade the matching properties of C L B T s 

because the lateral collector current now depends on the gate voltage. O n the 
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Figure 4.4: Electrostatic potential ^ as a function of normalized x to Debye 
length Ld. T h e surface potential if̂ s is —2, —4, —8 Ut respectively (adapted 

from [Arr89]). 

other hand, one can utilize such properties to circumvent the different errors 

inherent in a four-quadrant multiplier [Arr89] or trim an amplifier incorpo-

rating C L B T s . In this thesis, such a possibility was investigated and will be 

presented in Chapter B. 

4.5 Main Characteristics of CLBTs 

4.5.1 Low Early Voltage 

In standard B J T processes, the base region is highly doped with respect to 

the collector and contacts directly to the lightly doped epitaxial layer of the 

collector region (Section 2.2). Therefore, they have very high Early voltage. 

However, as C L B T s are fabricated in standard C M O S processes, the emitter 

and collector of a C L B T are both highly doped, and the base is lightly doped, 

this results in a low Early voltage and, thus, low output resistance. This is 

because when the reverse collector-base voltage increases, the depletion re-

gion will increase and occur mainly in the lowly doped base side, thus the 

effective base width decreases and the rate electrons get injected into collector 
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Figure 4.5: T h e current-voltage characteristics of a pnp C L B T fabricated using 

A M I - A B N l.bfim n-well C M O S process without cascode. T h e Early voltage 

is about 7V. 

increases (Section 2.2). Moreover, lower Early voltage also means that the 

drain current would depend more on the gate-collector voltage. A s a result, 

the matching properties would be affected by the applied gate voltage. O n e 

way to improve the output impedance is to use a cascode circuit (detailed in 

Section 4.6) [Arr89, vSFV96]. Figure 4.5 shows the current-voltage character-

istics of a. pnp C L B T fabricated with a standard 1.5"m process. It can be seen 

that the Early voltage is approximately 7V. 

4,5,2 Low Lateral Current Gain at High Current Levels 

T h e base width of the lateral transistor is approximately the distance between 

the source and drain, and is usually larger than that (0.1,/m for superbeta 

bipolar transistor) in a bipolar process [GM93]. Moreover, in the absence of 

the buried layer in C M O S processes, there will be vertical bipolar action in 
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addition to the lateral bipolar action. A considerable portion of the injected 

minorities in the base region will diffuse vertically and be collected by the 

substrate. Therefore, the lateral current gain Ic丨IB is generally smaller than 

the gains of the vertical bipolar transistors [LHIK69]. A t low current levels, 

the lateral component dominates, while at high current levels, the voltage drop 

across the lateral emitter resistance leads to a debiasing of the sidewall junction 

and reduces the lateral component. T h e vertical component then dominates 

and current-crowding is observed under the emitter contact [ M M M M 9 8 ] . That 

means the gain is low for C L B T at high current levels. 

However, due to downward technology scaling, the channel length of M O S -

F E T s will decrease and is expected to reach 0.05//m in 2011 [Josed]. This be-

comes comparable with the base width of superbeta bipolar transistors. More-

over, as low-power devices also dominate (detailed in Section 3.2.2), C L B T s 

would be operated under low current levels. These two points m a y m a k e 

C L B T s more versatile in low power applications. In fact, as shown in Fig-

ure 4.5, the gain at a InA base current level can reach about 300 in a 1.5/im 

C M O S process. 

4.5.3 Other Issues 

In a 0.6/im n-well process, it has been shown that the lateral ar = — 私 is 
J-E 

in the range from 0.6 to 0.8 and vertical a y = - y ^ in the range from 0.2 to 
^ Bj 

0.4 [ M M M M 9 8 ] . It is difficult to increase OLL because of the lack of a buried 

layer. 

Since the emitter area is the lateral one, layout area increases quadratically 

as the lateral emitter area increases. A s a result, the vertical bipolar action will 

increase faster than the lateral one. Therefore, without buried layers, a C L B T 

with m i n i m u m emitter layout area will give the m a x i m u m lateral current gain. 

To address the issue of the relationship between the lateral {Ai) and vertical 
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(A^) emitter areas, by assuming a square emitter with side length I, an Area-

to-Periphery (A/P) ratio is introduced and defined as, 

AlP ratio = ^ = j = l (4.10) 
t V 

Since the effective diffusion depth (d) of the emitter and collector of the C L B T 

can be regarded as a constant in the same fabrication process, the A / P ratio 

is thus proportional to the ratio of the vertical to lateral emitter area (Ay/Ai) 

because 

^v I 
Q ^ , 

Ai 4： X I X d 4 X d 

4.6 Enhanced CLBTs with Cascode Circuit 

To solve the problem of low Early voltage, cascode circuits [Arr89, vSFV96] can 

be used as shown in Figure 4.6. T h e pnp C L B T is cascoded with a p M O S F E T 

sharing the same n-well. Therefore, the bulk of the cascode transistor and the 

base of the C L B T will have the same voltage. Vcas is the applied gate voltage 

of the cascode transistor and should be chosen to ensure that the C L B T is 

never saturated and that the p M O S F E T transistor is in the saturation mode. 

Vdd B 
E p — 

, ^ i n g i i i 

^ c i n u 
• ^ f ^ B i E L 

: V c a s Ids G ' V c a s 
D I lZZI n-well • • poly-Si 

mm n+ diffusion [ = i p+ diffusion 

Figure 4.6: Structure (left) and layout (right) of cascoded pnp C L B T . 
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B y using an n M O S F E T in the same p-well, one can construct a cascoded npn 

C L B T . T h e resulting current-voltage characteristics of cascoded C L B T s will 

be presented in Section 4.9. 

4.7 Applications 

Various analog applications have incorporated C L B T s due to their good match-

ing properties and compatibility with the C M O S process. Applications include: 

Four-quadrant multiplier and precision compressor gain controller 

Arreguit has built four-quadrant multiplier and compressor gain con-

troller with C L B T s using 3fim C M O S process. T h e residual gate effect 

has been used to circumvent the different errors inherent in the multi-

plier [Arr89:. 

Exponential filters for silicon cochlea [vSFV96] C L B T s were used as cur-

rent mirrors in exponentially scaled filters for modeling silicon cochlea. 

T h e frequency responses of the silicon cochlea were shown to have higher 

regularities in the cut-off frequencies and gain by using C L B T s . It 

was because the current sources implemented with C L B T s had better 

matching properties than those implemented with M O S F E T s in the sub-

threshold region. 

Low-voltage CMOS bandgap reference [Vit83, DLV085] Bandgap volt-

age references are accurate voltage references which are almost indepen-

dent of temperature. They are better implemented with bipolar devices 

than M O S F E T s . Although simple voltage references can be implemented 

with substrate bipolar devices (vertical BJTs), C L B T s provide higher 

flexibilities. For example, they have been used for building low output 

impedance bandgap reference [DLV085]. Therefore, in C M O S processes, 

C L B T is a very good candidate for building bandgap voltage references. 
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Logarithmic photoreceptor [RHL97] C L B T s have been incorporated in 

a logarithmic photoreceptor for improving matching and dynamic range. 

Traditionally, p M O S F E T s are used as the load devices which would only 

exhibit a logarithmic response w h e n operating in the subthreshold region. 

C L B T s exhibit a logarithmic current-to-voltage relationship over a larger 

range of currents. A s a result, the dynamic range was increased to 7 to 

8 order of magnitudes instead of 4 to 5 in the case of a p M O S F E T load. 

Moreover, the matching properties of C L B T s are better than p M O S F E T 

and the Signal-to-OfFset (S/0) ratio of the receptor was shown to be 3 1 % 

to 137% better than that for p M O S F E T loads. 

High gain SOI photodetector [ZCFK98] T h e C L B T s were also incorpo-

rated on S O I substrate as a photodetector which could provide higher 

current amplification over conventional phototransistors due to the ver-

tical bending induced by an n+ gate. 

4.8 Design and Layout of CLBTs 

T h e C L B T s used in this thesis follow the same design shown in Figure 4.6, 

except that a p'̂  guard ring was added to surround each C L B T and the Magic 

layout of a pnp C L B T is shown in Figure 4.7. 

In the normal operations of a C L B T , the base-emitter junction is forward 

biased and, thus, there always will be minorities injecting from the emitter 

into the base, which is the well of a M O S F E T . Therefore, the chance of latch-

up will increase if there is a M O S F E T of an opposite type adjacent to the 

C L B T and the m i n i m u m spacing rules for designing the C M O S circuits then 

become insufficient for preventing latch-up (Section 2.3.2). So, C L B T s for 

densely packed chips must be surrounded with guard rings to minimize the 

latch-up probability [Ker, Arr89]. O n e method of constructing the guard rings 

is to surround the well with a majority collector. For instance, a diffusion 
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Figure 4.7: Magic layout (top) and the photomicrograph (bottom) of a pnp 

C L B T cell with cascoded circuit. T h e outermost ring is the guard ring con-

nected to Gnd. 

ring biased at Gnd surrounding a pnp C L B T will be effectively collecting the 

majority carriers, holes, drifted into the ；}-substrate from the n-well, and thus 

reducing the substrate resistance Rsub and the feedback effect of the latch-up 

circuit (Figure 2.3). In order to have a fair comparison, guard rings were added 

to the C L B T s in the C L B T matching properties test chips. 

T h e characteristics of the C L B T shown in Figure 4.7 are summarized as: 

• Th e collector surrounds the emitter to increase the lateral emitter area 
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without Guard Ring with Guard Ring 

W I I 35 X 40 = 1 4 0 0 A 2 [ 48 x 54 = 2592A
2 

cascoded | 43 x 44 二 1892A^ | 56 x 58 二 3248A^ 

Table 4.1: T h e areas of different structures of C L B T s (A^). In this thesis, 

A = Q.Sfim was used. Bare C L B T refers to C L B T not cascoded. 

and so, increase the lateral collector current with respect to the ver-

tical one. This is a c o m m o n approach used in circuit applications of 

C L B T s [Arr89, vSFV96；. 

• A ]9+-ring surrounds the well and is connected to ground. This will 

absorb holes injected from the n-well into the substrate to reduce the 

chance of latching up. 

• T h e structure is m a d e as compact as possible to improve large and small 

signal characteristics. 

• A cascode p M O S F E T is incorporated in the cell to reduce the Early 

effect. 

In some applications, C L B T s need not be cascoded. T h e C L B T s m a y also 

share the same guard rings. Table 4.1 summarized the areas of the variations 

of C L B T s . 

4.9 Experimental Results of Single pnp CLBT, 

nMOSFET and j^MOSFET 

Besides arrays of pnp C L B T s and n M O S F E T s (detailed in Chapter 5), there 

are also isolated devices in the test chips fabricated for extracting the I — 

V transfer characteristics. The A M I - A B N 1.5/im n-well process (detailed in 

Section 5.3) was used and two batches of test chips were fabricated and the 
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process parameters are listed in Appendixes C and D respectively. In the first 

batch, there are isolated cascoded pnp C L B T s with guard rings with vertical 

emitter area of 6 x 6 A^. T h e terminals of this C L B T s were connected directly to 

the I/O pins. In the second batch, there are isolated bare pnp C L B T s ( C L B T s 

without cascode p M O S F E T s ) with vertical emitter area of 6 x 6, 10 x 10, 

and 34 x 34A^ respectively, which means their Area-to-Periphery (A/P) ratios 

are 6，10 and 34A respectively. These C L B T s share the same terminals and 

are selected by the transmission gates. Therefore, 4-wire sense technique was 

required w h e n measuring these C L B T s . There is no isolated n M O S F E T s in 

both batches, one n M O S F E T in the M O S F E T array was selected for extracting 

the I — V characteristics in batch 2. 

T h e following data was measured and analyzed using the measurement 

system detailed in Section 5.7: 

1. T h e current gains at different base current level (from O.lnA to 1 m A ) of 

bare pnp C L B T s of different sizes were measured. (Figure 4.8). 

2. T h e I — V characteristics of the C L B T s from source to drain as a func-

tion of — Vb and Vb — Vg were measured and plotted (Figure 4.9 

and 4.10). These graphs were used to determine the gate voltage re-

quired for operating a M O S F E T in pure bipolar mode. 

3. T h e I — V characteristics of the cascoded and bare pnp C L B T s with 

nA-order base current level were measured and plotted (Figure 4.11 and 

4.12). 

4. The I — V characteristics of n M O S F E T s were measured and plotted 

(Figure 4.13). 

5. The transfer characteristics of cascoded and bare pnp C L B T s operating 

as p M O S F E T s were measured and plotted (Figure 4.15). 
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4.9.1 CLBT Gains 

T h e gains (/? 二 of the bare pnp C L B T s with different sizes were measured 

and plotted in Figure 4.8. T h e gain was measured by applying different base 

currents (IB) to the selected device, by fixing the emitter and collector volt-

ages at bV and Gnd respectively. It can be seen that the gain of the C L B T s 

increases as current level decreases. This is mainly due to the high level injec-

tion which was explained in Section 4.5.2. Although the current gain should be 

independent of the emitter area as predicted by Equation 2.3, the graph shows 

that the gain of C L B T with larger A / P ratio is lower. This can be explained 

by the fact that the lateral to vertical emitter area ratio decreases w h e n A / P 

ratio is increasing. Therefore, the lateral current gain decreases. T h e results 

450 I ‘ ‘ ‘ ‘ ‘ ‘ I I I ‘ IIr—r-| 1 1 1 1—i~i~i i | 1 1 1 1 1~i~r—r-

� A/P ratio=6 

-B- A/P ratio: 10 

400 - -e- A/P ratio=34 j 
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X 

300 - X ^ ^ -
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o' ‘——‘~~� I •…I . — — i ~ 1 ' ' I . . I I , ,__  
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Figure 4.8: Current gains of bare pnp C L B T s with different Area-to-Periphery 

(A/P) ratio. 
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confirm that the gain of the C L B T s without buried layer depends also on the 

A / P ratio. To obtain m a x i m u m lateral gain, the smallest A / P ratio should be 

used, which means the emitter should be a square if triangular layout is not 

possible. 

4.9.2 Gate Voltage Required for Pure Bipolar Action 

Figure 4.9 shows the transfer characteristics from source to drain of the bare 

pnp C L B T with m i n i m u m emitter area (A/P ratio of 6) under different gate 

voltages. T h e well (base) and the drain were biased at 5V and O V respectively 

and all the measurements were taken with respect to the base voltage. VSB 

was swept from —OAV to IV and the drain current was measured for different 

gate voltage VQ. For low VG {VG < 5^), the curve is a typical M O S F E T one, 

_ 

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

VS=VE 

Figure 4.9: Transfer Characteristics from source to drain as a function of Vs-

Vb. 
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beginning in the subthreshold region and enters the quadratic region as VSB 

increases. However, as the VG increases, the curves become indistinguishable, 

which m e a n s that the drain current no longer depend on the gate voltage. 

This m o d e is the pure bipolar mode. In pure bipolar mode, the curves were 

expected to be straight lines in the logarithmic plot. However, due to the high 

level injection, they level off w h e n Ic reaches several jj,A. F r o m the graph, the 

voltage required to enter bipolar m o d e is approximately 5.5V. However, in 

order to minimize the residual gate effect, the gate voltages were set at 6V to 

7V in the following experiments. 

Figure 4.10 shows the transfer characteristics from source to drain of the 

bare pnp C L B T as a function oi VB — VG with VB = 5V. This graph shows 

h o w the device changed from strong inversion to weak inversion and then to 

1 0 3 I I 1 1 1 1 1 1 1 � 

Strong I n v ^ r s b a ^ 

: : 丨 - ， — — ' ' T f n ' ' 

。 丨 / / / 鬥 ： 
： / / 二 ： 

1。， / / ^ ^ 
- / / Weak Inversion 

} J 1 
- * — * ~ « = * = ^ 

10-1。 1 1 1 1 1 i I_- I I  
- 2 . 5 - 2 - 1 . 5 - 1 - 0 . 5 0 0 . 5 1 1 . 5 2 2 . 5 

VB-VG 

Figure 4.10: Transfer Characteristics from source to drain as a function of 

Vb-Vg. 
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bipolar under different biases. This graph is consistent with Figure 4.2 and 

explained in detail in Section 4.2. 

4.9.3 I—V and Other Characteristics of Bare pnp CLBTs 

T h e bare pnp C L B T s with vertical emitter areas of 6 x 10 x lOA^, and 

34 X 34入2 were tested. T h e I — V characteristics of the pnp C L B T s with 

m i n i m u m emitter area are shown in Figure 4.11. T h e emitter and gate were 

biased at 6V and 6.51V respectively. Different base currents were then applied 

with the collector voltage sweeping from O V to 5V. T h e corresponding collector 

voltages and currents were then measured. It was found that the Early voltage 

was very low, approximately 7.7V. This suggests that a cascode circuit is 

required for practical use. Table 4.2 shows the gains and Early voltages at 

InA current levels of the isolated C L B T s for comparison. 

x10''  
12 j I I I I I I [ 1 1 

P ^ OnA 
-e- InA GPC-1850 I  

10- X^ni - 6.52^ — 

0(1—A——A~AA~A~A~A~A——A~A~A~A~AAAAA——A~A -

“ |2C 0 -
—21 • I I I I I • 1 _ I 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
VCE/V — 

Figure 4.11: Transfer characteristics of bare C L B T s (left) and the measure-

ment setup (right). 
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C L B T 1 C L B T 2 C L B T 3 

Vertical Emitter Area A^ 6 x 6 10 x 1 0 3 4 x 34 

Area to Periphery Ratio A 6 10 34 

Lateral Emitter Area Ratio 6 10 34 

Current Gain 270 194 88 

Early Voltage 7.7V 6.5V 4.1V 

Table 4.2: Characteristics of C L B T s of different sizes. 

4.9.4 Transfer Characteristics of a Cascoded pnp CLBT 

T h e transfer characteristics of a cascoded pnp C L B T with vertical emitter area 

of 6 X 6入2 and the measurement setup are shown in Figure 4.12. It can be 

seen that under the bipolar operating condition, the M O S F E T operates well 

as a bipolar device. T h e Vcas was set to 3V and Vgate to 6.51V\ T h e emitter 

voltage was fixed at with the collector voltage sweeping from OV to 5V at 

different value of IB. T h e gain at base current level of nA order is about 250 

which agrees with our previous measurement of the gain. Moreover, with the 

X 10-7 Transfer Characteristic of CLBTs with Vgs: 6.51V and Vcas = 3V 
121 1 1 1 1 1 1 1 1 1  

… v > 7 ~ 7 ^ 7 ’ v v ~ ^ v v v v 7 GPC-1850 I  
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e~ee~e~e~e~e~e~e~e~e~~e~e~eo -v. 5V 

_ 中 12。 

f 
A~A~A~AA~A~A~A~A~A~A~A~A~A~A~AA~A~A -

； r r ^ 6 5 1 7 0 (v)|^C 
(� - B - InA 

early voltage = 215V - 0 - 2nA -
- e - 3nA / - X \ ~ ~ 
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Figure 4.12: Transfer characteristics of cascoded C L B T s (left) and the mea-

surement setup (right). 
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cascode p M O S F E T , w e can achieve Early Voltage as large as 215V, making it 

suitable for m a n y applications. 

4.9.5 Transfer Characteristics of an nMOSFET 

T h e transfer characteristics of the n M O S F E T were found by fixing the gate 

voltage at different levels and sweeping Vjjs to measure the drain current 

(Figure 4.13). Since there were a large potential drop across the transmission 

gate of the selected device at high drain current levels, the YDS was sensed 

X 1 o"® VI transfer characteristic of NMOS (Vgs from OV to 4V) 
161 1 1 1 1 1 1 1 1 1  

14 - -

10 - ¥ -

0- \ \ \ \ \ \ \ \ \ \ \ 

一21 1 1 1 1 1 1 1 I I I 
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

, _ _ J 6 

c^F T 
W6517A 

Figure 4.13: Transfer Characteristics of 7 2 M O S F E T (top) and the measurement 

setup (bottom). 



Chapter 4 CMOS Compatible Lateral Bipolar Transistors (CLBTs) 52 

at the sense port for the plots. A s a result, the YDS could not reach S V at 

high current levels even though the P C board (described in Section 5.7) was 

programmed to apply YDS = SV. 

4.9.6 Transfer Characteristics of Cascoded and Bare CLBTs 

Operating as pMOSFETs 

T h e transfer characteristics of the bare and cascoded pnp C L B T s with vertical 

emitter area of 6 x operating as p M O S F E T s were also measured and the 

measured setup are shown in Figure 4.14 and 4.15. Like the case in measuring 

the I — V characteristics of n M O S F E T , a 4-wire sense technique was used 

for bare pnp C L B T s . However, since the cascoded pnp was isolated with the 

terminals connected directly to the pins of the chips, 4-wire sense technique 

was not required. Therefore the YDS were the same as the applied voltages. 
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Figure 4.14: Transfer characteristics of bare C L B T operating as ； ) M O S F E T at 

VGS from O V to 4V (left) and the measurement setup (right). 
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Figure 4.15: Transfer characteristics of cascoded C L B T operating as 

p M O S F E T at VGS from QV to AV (left) and the measurement setup (right). 

4.10 Summary 

This chapter presented the structure and principles of the operation of C L B T s . 

T h e D C model has been reviewed and the residual gate effect and main char-

acteristics were discussed. It was found that the Early voltage of a C L B T 

can be as low as 7V. However, C L B T s have better performance in low current 

level operations and in fact, its gain can be as high as 300 at InA base current. 

Cascoded C L B T s and guard rings were introduced to facilitate the operation 

of C L B T s in practical circuits. The measured I —V transfer characteristics of 

pnp C L B T s , n M O S F E T s and C L B T s operating as p M O S F E T s were presented 

and it was should that C L B T s exhibited higher gain {/Sj? = 300 at IB 二 InA) 

at low current levels. The cascoded C L B T has a measured Early voltage larger 

than 200V which is a large improvement over the bare C L B T with an Early 

voltage of IV. 



Chapter 5 

Experiments on Matching 

Properties 

5.1 Introduction 

In this chapter, the design of the matching properties test chip is first pre-

sented. In order to test large number of M O S F E T s and C L B T s on a chip 

with limited pins, the devices are organized in arrays and shift registers and 

transmission gates are used for selecting individual devices for testing. The 

structures of the test chip will be explained in detail. Then the setups and pro-

cedures for testing the mismatches of pnp CLBTs, n M O S F E T s , and C L B T s 

operating as j^MOSFETs, are given. The mismatches of each type of the 

devices in every chip at different current levels will be presented. A three di-

mensional plot of the distribution of the current in each device array at lOOnA 

level in a particular chip will be shown for qualitative analysis of the causes of 

mismatches in that device. Finally, devices are paired up as current mirrors 

and their mismatches are calculated and compared. 

5 4 
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5.2 Objectives 

T h e current matching properties of C L B T s and M O S F E T s fabricated with a 

standard C M O S process were compared. T h e process chosen was the A M I -

A B N l.5fim n-well process, in which only pnp C L B T s could be fabricated. 

Since n M O S F E T s are more c o m m o n in circuit design and show better match-

ing properties than p M O S F E T s , n M O S F E T s are tested and compared with 

pnp C L B T s [LHC86]. Of course, the n M O S F E T s need to be of similar size as 

the C L B T s for a fair comparison since matching properties depend heavily on 

the layout area. T h e pnp C L B T s were also operated as p M O S F E T s and their 

matching properties were tested. T h e L a w of Area was then applied to the 

p M O S F E T s so that the current matching properties between the n M O S F E T s , 

p M O S F E T s and pnp C L B T s could be compared. 

A s matching properties are stochastic processes, a large n u m b e r of identical 

device need to be fabricated to get statistically significant data. Figure 5.1 

shows the block diagram of the test chip. There are two 15 x 15 test arrays, 
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Figure 5.1: Top structure of the first batch matching properties test chips 

(array 1 was modified in the second batch). 
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Figure 5.2: T h e photomicrograph of the test arrays of the second batch. H S R 

and V S R are the horizontal and vertical shift registers respectively. 

giving a total of 225 Devices Under Test (DUTs) in each array. Array 1 is 

the array of cascoded pnp C L B T s with guard rings with m i n i m u m vertical 

emitter area of 36 (6x6) A^ (A = 0.8/xm). That means the Area-to-Periphery 

(A/P) ratio (Section 4.5.3) is 6. Array 2 contains n M O S F E T s with gate area 

of 1680 (35x48) A^, which results in similar overall cell layout area as that of 

the C L B T s . 

T h e arrays have their terminals connected to the pins of the chip indepen-

dently and, thus, other arrays would not be affected w h e n an array is under 

testing. There are transmission gate arrays on the boundaries of the test ar-

rays as shown. T h e input signals such as gate, source, drain, emitter, base 

voltages, etc. of an array are applied to all inputs of the transmission gate of 

that array. There are shift registers running horizontally and vertically. The 

shifting bits are used to control the transmission gate array, through which the 

input voltage and current could pass to the D U T s . At any time, only one hor-

izontal transmission gate and one vertical transmission gate would be enabled, 

so, only one D U T would be tested at any time with others being isolated. 
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5.3 Technology 

T h e technology chosen for the fabrication was the A M I - A B N 1.5/im feature 

size process. This was an n-well C M O S process with 2 metal layers, 2 poly 

layers and an N P N option. T h e design rules followed were S C M O S rules with 

A = 0.8/im. T h e chip designs were submitted to IC broker, M O S I S , two times 

for two batches of fabrication. In the second batch, the design of the C L B T 

array was modified (detailed in Section 5.4.2). T h e process parameters of 

the first and second batches are given in Appendix C and D respectively. In 

each batch, 5 Tiny-Chips with size of 2 . 2 m m x 2.2mm were fabricated. T h e 

substrate was started with P-Bulk/P-Epi type with a total of 14 m a s k levels. 

Lightly doped drains ( L D D ) was also included for improved reliability against 

hot carrier degradation [AMI]. A s suggested by M O S I S , the m i n i m u m channel 

width should not be 3A, as in other S C M O S rule sets, but rather 5A. This 

design rule has been followed throughout the design [The]. This technology 

was chosen because of its availability and reasonable cost. M A G I C 6.0 was 

used to layout out all the circuits. 

5.4 Design of Testing Arrays 

5.4.1 nMOSFET Array 

T h e testing structure of the r i M O S F E T array followed the same structure pro-

posed by L. Portmann [PLK98]. Testing array design is a balance between 

pin consumption and accuracy. The structure shown in Figure 5.3 is a testing 

matrix of n M O S F E T s . The drains of all the n M O S F E T s are connected to a 

c o m m o n drain terminal (Drains) of the matrix. The gates of the n M O S F E T s 

of the same column are connected together to the output of the transmission 

gate of that column. Then all the inputs of the column transmission gates are 

connected together to the c o m m o n gate input (Gates). SGN and S'GN are the 
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Figure 5.3: Simplified n M O S F E T test structure layout with 4 x 4 D U T s (left) 

and n M O S F E T test structure proposed by L. Portmann [PLK98 . 

outputs of the shift register controlling the transmission gate of column N . 

W h e n SGN is high, the corresponding transmission gate would be turned on 

and become low impedance. Then the input gate bias could be applied on all 

the gates of the n M O S F E T s in that column. T h e gates of other columns would 

be pulled to ground, and thus, are cut off. Since there is essentially no current 

flowing through the transmission gate, the voltages at the input and output 

of the turned-on transmission gate would be the same. A similar selection 

scheme is used for the source terminals with SSN and SSN as the output of the 

shift registers. There is essentially no current flowing through the unselected 

rows because the transmission gates on the unselected row would be cut off. 

However, as there would be current flowing through the selected device as well 

as the corresponding row transmission gate, the potential at the source of the 

n M O S F E T s would be different from the applied voltage due to a potential drop 

across the transmission gate. To address this problem, a 4-wire sense technique 
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was used. O n e pair of transmission gates are used to extract the transfer char-

acteristics of the devices. T h e Force terminal [Sources[Force)) is connected 

to current or voltage sources and an ammeter for measuring the drain current 

{IDS) and the Sense terminal [Sources[Sense) is connected to a voltmeter for 

measuring the voltage applied on the source of the n M O S F E T s . B y using the 

above scheme, the transfer characteristics of individual n M O S F E T s can be 

extracted. 

5.4.2 pnp CLBT Array 

Design 1 

A similar design to the n M O S F E T test array was also applied to the C L B T 

array as shown in Figure 5.4. A s discussed in the previous section, cascode 

circuits were included in the test array. For simplicity, the substrate connec-

tions of the p M O S F E T s are not shown. A s the body of the p M O S F E T is an 

n-well, it is connected as the base of the pnp C L B T . T h e substrates, i.e. the 

p-type epitaxial layer, of all the C L B T s were grounded. 

T h e D U T s in the array are selected in the same way as the n M O S F E T 

array with two main differences. First, unlike the gate terminal of M O S F E T 

which essentially conducts no current, Force and Sense terminals {Base Force 

and Base Sense) are required for the base input because the D U T would draw 

current when the transistor is selected and cause a potential drop across the 

transmission gate. Additional Sense terminals are used for the measurement 

of the base voltage. T h e other difference is that, to unselect other transistors, 

the base voltage has to be set to Vdd instead of Gnd. During testing, all the 

drains are connected to ground. For unselected rows, the emitters would be 

connected to ground. Hence, all the devices on those rows would be in cut-off 

m o d e as the base voltage is in the range of ground to Vdd and both base-emitter 

and base-collector junctions are reverse biased. For unselected columns, all the 
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Figure 5.4: T h e original C L B T test array circuit with 4 x 4 D U T s . 

base-collector and base-emitter junctions are reverse biased as the base voltage 

is at Vdd. Ideally, only the selected elements would contribute to the current 

flowing through the c o m m o n drain. 

Design 2 

T h e matching properties of the C L B T s in the first batch test chips were found 

to be worse than those of the M O S F E T s , which was opposite to expectation. It 

was suspected that it was due to the mismatch between the transmission gates. 

Theoretically, since the 4-wire sense measuring method was used, the base and 

emitter voltage could be adjusted while monitoring the voltage of the sensing 

terminals at the same time so that every C L B T could be applied with the same 

VBE and VCE- However, it was difficult to adjust the three ports at the same 

time during automatic parameter extraction. As a result, the collector and 
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Figure 5.5: T h e modified C L B T test structure layout with 4 x 4 D U T s (left) 

and schematic diagram of the new test structure (right). 

base inputs to the transmission gates were fixed to a certain voltage during 

testing and identical testing conditions for each C L B T could not be guaranteed. 

Moreover, this test structure could not be used for testing nano-order collector 

current levels because the s u m of the leakage currents of the 皿selected devices 

could exceed InA, A s suggested by Dr. van Schaik [vS], the C L B T array was 

modified so that it is easier to achieve the desired conditions. 

Figure 5.5 shows the modified testing structure. In the array, transmission 

gates to the base and the emitter were eliminated. During testing, the same 

base and emitter voltages are applied to all C L B T s . O n the other hand, 2 

transmission n M O S F E T s were added in cascode with the drain of the cascode 

p M O S F E T . T h e gates of the transmission gates are controlled by the output 

of a shift register. Obviously, a device will only contribute to the overall drain 

current when both the transmission gates are turned on. In this design, an 

n M O S F E T transmission gate was used instead of the complementary transmis-

sion gate because w e wanted to reduce the area occupied by the transmission 
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Figure 5.6: A typical analog I/O pad (left) and I/O pad for C L B T gate (right). 

gate. Even so, due to the increased layout area, the n u m b e r of D U T was re-

duced to 12 X 12 in this array. Again, a 4-wire sense measurement was used 

to eliminate the mismatch of the n M O S F E T transmission gates. 

5.5 Design of Input and Output Pads (I /O 

Pads) 

T h e I/O pads used are typical analog I/O pads. In order to prevent electro-

static hazards, the input of each pad is clamped with 2 diodes to Vdd and Gncl. 

So the voltage would not excess the Vdd or Gncl more then the forward volt-

age of the diodes (typically 0.7V,)(Figui,e 5.6). However, for the gate voltage 

input of the C L B T s , as the gate voltage must be higher than the Vdd, it was 

not protected with a clamping diode. To protect it, a long jx)!ysilicori resistor 

was added in series to reduce the chancc of being damaged l)y electrostatic 

discharge (ESD) (Figure 5.6). 

5.6 Shift Register 

To control the transmission gates, shift registers wen、used. Th(、shift register is 

a critical part in the control circuit of the chip. A si lift register proposer] by C. 

M e a d [MeaS9l was selected as It was compact and had been iisccl surressfiillv in 
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Figure 5.7: Schematic diagram of a shift register bit. 

previous IC designs (Figure 5.7). Buffers (inverters) are added to the outputs 

of the shift register bits to drive a large capacitive load. T h e shift register bit 

has two stages and uses a two phase non-overlapping clock scheme, meaning 

that clock signals and $2 would never be high at the same time. Each stage 

consists of a pair of cross-coupled inverters. It has two stable states as each 

inverter output feeds the input of the other. O n e is to store signal "1" on the 

top rail and a "0" on the bottom rail. The other is to store signal "0" on the 

top rail while ” 1” on the bottom rail. O n the rising edge of $2, the power 

to the second cross-coupled stage is cut off and the n M O S F E T transmission 

gate is turned on, so data could be passed from the previous stage to the next 

stage. W h e n $2 falls, the power is restored and the input cut off, so the value 

is kept. Similar transfer occurs to the first stage during 

5.7 Experimental Equipment 

There were 5 main pieces of test equipment used for the automatic extraction 

of the device parameters: 
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Keithley 2400 S o u r c e M e t e r ™ ^ This is a source meter able to source volt-

age from 5fiV to 210V and current from to 1.0574 with reading 

back feature. T h e available current range is from IfiA to lA with 

digit resolution [Gro96]. T h e smallest range is IfiA with resolution of 

50pA and the largest range is lA with resolution of 50/iA It has RS-232 

Interface for communication with Personal Computers (PCs). 

Keithley 6517A Electrometer This is an electrometer which can measure 

D C current in different ranges with 5|-digit resolution [Gro96]. T h e 

smallest range is 20pA with resolution of lOOa^ and the largest is 20mA 

with resolution of lOOnA. It also has RS-232 Interface for communication 

with Personal Computers (PCs). 

PC testing board This is a board developed by Dr. Philip Leong for testing 

analog V L S I chips. It was built with PC chips and has 16 x8-bit analog 

outputs, 16 X8-bit analog inputs and 16 digital I/O channels and could 

be interfaced with P C s through the parallel port. T h e resolution of the 

board is about 0.02V under power supply. T h e digital ports were 

used for generating clock signals for the shift registers and the analog 

outputs were used for biasing the D U T . 

G W GPC-1850 multi-source meter Another voltage source is required to 

provide 5V power supply for the operation of the PC board and the test 

chip. Another source, which can deliver higher voltage than the power 

supply is needed for biasing the gate {Vgate) for bipolar action. These 

were all provided by a G W CPC-1850 power supply. 

PC and Software T h e P C was used for controlling the Keithley equipment 

through the serial ports and the PC board through the parallel port. 

Visual C + + was used as programming tool for automatic data extractions 

and M A T L A B was used for data analysis and graph manipulations. 
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Figure 5.8: Photograph of the experimental setup. 

5.8 Experimental Setup for Matching Proper-

ties Measurements 

5.8.1 Setup for Measuring the Mismatches of the De-

vices 

T h e setup for automatically extracting the current matching properties of 

the transistors are shown in Figure 5.9. The matching properties of the 

n M O S F E T s and C L B T s operating as / ^ M O S F E T s with nominal drain cur-

rents of InA, lOnA, lOOnA, IfiA, and lOfiA were measured. For cascoded 

C L B T s , when the collector current is larger than IfiA, the gain becomes too 

low. This also suggest that there is a strong debiasing effect in the sidewall 
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Figure 5.9: Setup for automatically extracting the matching properties of cas-

coded C L B T s (top left), C L B T s operating as j o M O S F E T s (top right) and 

n M O S F E T s (bottom). 

junction (Section 4.5.2). Such m o d e of operation is not favorable in most cir-

cuits. So the matching properties of the C L B T at current levels larger than 

lOOnA were not tested. 

All the devices were assumed to work with a 5V Vdd power system. The 

emitter, source and drain of the CLBTs, ^ M O S F E T s and n M O S F E T s , re-

spectively, were connected to the power supply. Since a Keithley 2400 

can supply a very stable and accurate voltage source, it was used to bias the 

base and the gate of the C L B T s and M O S F E T s respectively because the cor-

responding collector current and drain current varies exponentially with it. 

Table 5.1 shows the voltage required for biasing the transistors at the current 
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Current Level 11 InA lOnA lOOnA IfiA lOfxA 

C L B T s i W 4 4 N A N T ~ 

N M O S s 0.4451/ 0.5381/ 0.651/ 0.8661/ 1.49V^ 

C L B T s as j o M O S F E T s || 4.347V 4.267V 4.18]/ 4 . ( W 3.8iy 

Table 5.1: Voltages applied to the base and gate of C L B T s and M O S F E T s for 

different current levels. 

levels used for testing. 

T h e Keithley 6517 was used to read the collector or drain currents. Addi-

tionally, several others points should be noted for the experiments and data: 

• For the measurement of the n M O S F E T s , the transistors were all in the 

saturation region. Moreover, for the given current levels, both by ex-

periments and simulations, it was found that the voltage dropped across 

the bypassing transistors were less than S O m V . Therefore, the mismatch 

between the bypassing transistors can be neglected. To simplify the data 

extraction setup with the available equipment, the Sense terminals were 

not used during testing. 

• For the measurement of the C L B T s , the cascode voltage Vcas was always 

biased to which gave a reasonable operating range and Early volt-

age. All the C L B T s were measured in the linear region. Similar to the 

n M O S F E T s , the Sense terminals were not used. 

• For the measurement of the ；)MOSFETs, the gates of the cascode p M O S F E T s 

and the gates of the C L B T s were connected as the gates of the new 

p M O S F E T s and the bases of the C L B T s were connected to Vdd. Simi-

lar to the n M O S F E T s , the Sense terminals were not used during testing. 
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5.8.2 Testing Procedures 

A s mentioned in Section 5.4.2, it was found that the original C L B T test ar-

rays were not feasible for measuring the matching properties with the available 

equipment, therefore only the test chips containing the second design of C L B T 

arrays were tested for the matching properties (Appendix D). There are totally 

5 chips fabricated in a lot. However, due to some u n k n o w n reasons (maybe 

due to oxide breakdown of the gate), one of them behaved abnormally (unrea-

sonably low C L B T current level w h e n compared with the other chips applied 

with the same voltages) and was not included in the testing. T h e four chips 

were labeled as Chipl, Chip2, Chip3 and ChipA. Firstly, the C L B T s were op-

erated as p M O S F E T s . T h e drain current of each p M O S F E T in the arrays were 

recorded for later processing. In order to reduce the thermal effects, the lowest 

current level (InA) was tested first by applying the corresponding voltage in 

Table 5.1. After the drain currents of all the devices in each of the four chips 

had been recorded, the next higher current level was then tested. T h e selection 

of the device for testing and setting of the current level were controlled by a 

P C which communicated with Keithley 2100 and also read data from Keithley 

6517. Then the n M O S F E T and the C L B T array were tested in a similar way. 

5.8.3 Data Analysis 

After all the data had been recorded, they were analyzed statistically and 

presented in the following sub-sections. Firstly, the mismatch of each devices 

in each chip were calculated by using Equations 3.6 to 3.8. 

Then, the devices would be paired up as current mirrors and, by using 

Equations 3.1 to 3.3, the standard deviations of the mismatches of the mirrors 

were then found. 



Chapter 5 Experiments on Matching Properties 69 

5.9 Matching Properties 

5.9.1 Matching Properties of nMOSFETs 

Figure 5.10 shows the drain currents of the n M O S F E T s in the array of chipl 

at lOOnA. T h e data was obtained by measuring the drain current in each 

D U T from column 1 to column 15 for each row, starting from row 1 to row 

15. C o l u m n 15 and row 15 is nearest to the center of the chip. T h e top figure 

shows these data in one dimensional view. It is obvious that there is a pattern 

repeated every 15 samples. T h e current level generally decreases from column 
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Figure 5.10: Matching properties of n M O S F E T under lOOnA current level in 

Chipl. The top figure shows the current values (in A) in one dimensional view 

and the bottom one shows the values in two dimensional view. 
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15 to column 1 and also from row 1 to row 15. This can be explained by oxide 

thickness and diffusion concentration gradients along the chip. This result is 

consistent with the notion that oxide variations are dominating factors for the 

mismatch of M O S F E T s . 

T h e mismatches of n M O S F E T s at different current levels show similar 

properties. Table 5.2 and Figure 5.11 summarize mismatches calculated using 

Equations 3.6 to 3.8: 

Current Level 11 InA IQnA lOOnA IfiA 10/iA 

chipl 2.71e+00 L70e+00 L03e+00 4.50e-011.76e-01 

chip2 9.03e-01 8.74e-01 6.12e-01 3.01e-01 1.38e-01 

chip3 9.34e-01 l.Ole+00 6.18e-01 2.90e-01 1.34e-01 

chip4 II l.Q4e+00 1.09e+00 7.64e-01 3.85e-Ql 1.81e-Ql 

Table 5.2: Average mismatch of n M O S F E T s (%). 
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Figure 5.11: Mismatch of the n M O S F E T s at different current levels. 
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5.9.2 Matching Properties of CLBTs 

Figure 5.12 shows the measured currents of the C L B T s in the array of chipl 

at the current level of lOOnA. Similar to n M O S F E T s , the C L B T s were tested 

from column 1 to column 12 for each row, starting from row 1 to row 12. 

T h e top figure shows the measured currents in one dimensional view and the 

bottom one shows the data in a two dimensional array. R o w 1 and column 

12 is the transistor nearest to the center of the chip. F r o m the graphs, it 

can be found that mismatch does not have a clear spatial tendency as for the 

n M O S F E T case. This is because the mismatch is no longer dominated by the 
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f 
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Figure 5.12: Matching properties of pnp C L B T s under lOOnA current level in 

Chipl. The top figure shows the current values (in A) in one dimensional view 

and the bottom one shows the values in two dimensional view. 
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thickness of the oxide and other systematic mismatches. 

Current Level || InA lOriyl lOOnyl 

chipl 3.52e+00 3.12e+00 2.75e+00 

chip2 4.19e+00 3.57e+00 3.08e+00 

chip3 4.57e+00 3.28e+00 2.79e+00 

chip4 I 3.61e+Q0 3.54e+0Q 3.Q4e+QQ 

Table 5.3: Average mismatch of C L B T s (%)• 
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Figure 5.13: Mismatch of the C L B T s at different current levels. 
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5.9.3 Matching Properties of j^MOSFETs 

Figure 5.14 shows the distribution of the the drain currents of the ； ) M O S F E T s 

at the lOOnA current level in the array of chipl. Since p M O S F E T s are just 

C L B T s operating in M O S F E T mode, they have the same locations as the 

C L B T s . Again, the data was obtained by sweeping from column 1 to 12 for 

each row, starting from row 1 to row 12. p M O S F E T at column 12 and row 1 

is nearest to the center of the chip. 

Table 5.4 and Figure 5.15 show the mismatches of p M O S F E T at different 

xlo-8 
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Figure 5.14: Matching properties of C L B T s operating as p M O S F E T s under 

lOOnA current level in Chipl. The top figure shows the current values (in A) in 

one dimensional view and the bottom one shows the values in two dimensional 

view. 
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Current Level 11 InA IQnA lOOnA 1/JA lO/^IA 

chipl l . l l e + 0 1 1 . 0 6 e + 0 1 8.95e+00 5.01e+00 1.37e+00 

chip2 1.09e+01 1.08e+01 9.02e+00 4.95e+00 1.35e+00 

chip3 1.08e+01 l.Ole+01 8.67e+00 4.64e+00 1.40e+00 

chip4 I 1.18e+01 1.15e+01 9.30e+00 4.82e+00 1.34e+00 

Table 5.4: Average mismatch of p M O S F E T (%). 
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where cr{5ismaii) and cr[Siiarge) are the mismatches of the p M O S F E T s with gate 

area of 166A^ and that with area of 1440A^ respectively. T h e data in Table 5.4 

was used for estimating the mismatch of p M O S F E T with comparable layout 

area with C L B T and n M O S F E T and are shown in Table 5.5 and Figure 5.16. 

Current Level 11 InA lOnA IQOnA IfiA l O / M 

chipl 3.78e+00 3.59e+00 3.04e+00 L 7 0 e + 0 0 4.64e-01 

chip2 3.71e+00 3.66e+00 3.06e+00 1.68e+00 4.57e-01 

chip3 3.56e+00 3.44e+00 2.94e+00 1.57e+00 4.75e-01 

chip4 II 4.Qle+Q0 3.91e+00 3.16e+0Q 1.64e+Q0 4.55e-01 

Table 5.5: Mismatch of the scaled p M O S F E T estimated using the L a w of Area 

(%). 
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Figure 5.16: T h e estimated mismatch of the scaled p M O S F E T s at different 

current levels. 
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5.9.4 Comments on the Matching Properties of CLBT, 

nMOSFET, and pMOSFET 

T h e mismatch of the n M O S F E T s is the smallest a m o n g the 3 types of de-

vices. It is less than 0.2% at 10//A current level and levels off to about 1 % 

in subthreshold. For the pnp C L B T s , their mismatch is about 3 to 4 times 

poorer than that of the n M O S F E T s and is about 3% and 4% at lOOnyl and 

\nA current levels respectively. T h e mismatch of pnp C L B T s operating as 

p M O S F E T s is the worst and is about 1.4% at 10//A and 1 1 % at InA. 

However, according to the L a w of Area, the p M O S F E T s would have the 

similar mismatch as the pnp C L B T s (both are about 4 % at InA current level) 

if they were designed to have the similar layout area as the C L B T s . This 

also suggests that, in some circuits where cascoded circuits are not required 

for C L B T s and the C L B T s are grouped together so that they can share the 

guard rings, pnp C L B T s would be preferred to p M O S F E T s because they will 

have the same matching properties while the area is greatly reduced (about 

20 — 5 0 % reduction if cascode circuits were not included as shown in Table 4.1). 

Fr om Figure 5.11 and 5.16, the mismatches of both the n M O S F E T s and 

p M O S F E T s level off w h e n the current levels are less than 10nv4. This is 

because they are operating in the subthreshold region, whereas for the C L B T s , 

the mismatch is still increasing at current levels < l O n A 

From the one dimensional views of the current distribution in the arrays, it 

is found that only the n M O S F E T s show very explicit periodic trends. T h e 

reason is that the matching properties of the M O S F E T s depend strongly 

on the oxide thickness and the doping concentration of the bodies. There-

fore, n M O S F E T array gives an explicit gradients of the current levels. For 

p M O S F E T s , although their matching properties should also depend on the 

thickness of the oxide and body doping concentration, due to counter doping 
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and also the irregular shape of the gate, these two factors become less signif-

icant. It is probably that the mismatch is n o w dominated by other random 

factors such as the fixed oxide charges and surface state charges. 

5.9.5 Mismatch in CLBT, nMOSFET, and pMOSFET 

Current Mirrors 

T h e matching of the transistors is extremely important in current mirror or 

differential pairs, in which the matched ratio is specified and the matching 

between the two transistors within the pairs (local mismatch) is of major con-

cern. T h e mismatches of the transistors calculated in the previous subsections 

reflect only the general mismatches of the transistors and the global mismatch 

is more important. In order to provide information about the matching prop-

erties of current mirrors implemented with the three types of transistors, the 

adjacent transistors were paired up as current mirrors and their mismatches 

were calculated using Equations 3.1 to 3.3. T h e equations are repeated here 

for convenience: 

X2 X2 

5 = ^ 

义1 
1 N 

叫 = 

i=l 

1 N 

〜 = 石 ( 而 - 爪 》 2 

Since the transistors are identically designed, they are expected to have 

the same current, i . e .舍 = 1 . The mismatches of all the transistor pairs were 

computed and shown in Table 5.6 and Figure 5.17. For n M O S F E T s , there 

were 4 x 7 x 15 = 420 pairs in total. For C L B T s and p M O S F E T s , there were 

4 X 6 X 12 = 288 pairs. 

T h e following observations can be made: 
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一 Current Level 11 InA IQnA lOOnA Ijj^A IQ/iA 

n M O S F E T 1.12e+00 L 0 8 e + 0 0 7 . 7 7 e - 0 1 3 . 7 0 e - 0 1 1 . 5 2 e - 0 1 

C L B T 5.18e+00 4.84e+00 4.17e+00 N A N A 

C L B T as p M O S F E T 1.49e+01 1.46e+01 1.20e+01 6.35e+00 1.70e+00 

Scaled p M O S F E T || 5.07e+QQ 4.95e+00 4.07e+00 2.16e+00 5.76e-01 

Table 5.6: T h e mismatches of the transistor pairs at different current levels 

(%). 

15* 1 1 I I 
-A- CLBT 

^ ^ -e- NMOS 
-*- CLBT as PMOS 

^ ^ � Scaled up PMOS 

广 \ -

i \ 
“ —— 
o' 1 ‘ — g 
1nA lOnA lOOnA l u A lOuA 

Current Level 

Figure 5.17: T h e mismatches of the transistor pairs at different current levels. 

• n M O S F E T s current pairs have the best matching properties. They are 

about 4 to 6 times better than the C L B T s . 

• Although C L B T s current pairs show better matching properties than 

C L B T s operating as p M O S F E T s (about 3 times), they should actually 

have similar mismatch if they were the same size. 

• The mismatch of the M O S F E T s levels off when they enter the subthresh-

old region, which agrees with the theory in Section 3.3.3. 
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5.10 Summary 

In this chapter, the structure and layouts of the matching properties test chip 

were presented. T h e measurement procedures for the matching properties of 

C L B T s and M O S F E T s were detailed and the measured matching properties of 

the devices were presented and analyzed. It was concluded that in the process 

used, the matching properties of the n M O S F E T s were approximately 4 times 

better than that of the pnp C L B T s and that of the p M O S F E T s were expected 

to be similar to that of the pnp C L B T s . Therefore, at least for this process, 

C L B T s might not be a good alternative to M O S F E T s for critical matching 

circuits unless cascoded circuits were not used and guard rings were shared. 



Chapter 6 

Conclusion 

This research was first motivated by the fact that there were several previous 

publications on the better matching properties of C M O S Compatible Lateral 

Bipolar Transistors (CLBTs) than the M O S F E T s . Most of them did not per-

form the comparisons in a fair enough fashion and quantitative figures were 

not given. Moreover, due to the compatibility of C L B T s with the C M O S pro-

cess, C L B T s provide an inexpensive alternative to the B i C M O S process under 

the trends of today's System-On-a-Chip (SOC) and mixed signal processing. 

Therefore, the matching properties of the C L B T s and M O S F E T s were intended 

to be studied systematically and quantitatively, in the hope of providing use-

ful data for circuit designers. In the literature, C L B T s have also been used 

for implementing critical circuits such as D A C s , silicon cochlea, and bandgap 

voltage references. In this thesis, their applications were further investigated, 

especially the possibility of utilizing the gate terminal of the C L B T s . 

Test chips containing arrays of pnp C L B T s and n M O S F E T s were fabricated 

with A M I - A B N l.bfim n-well process. The arrays were designed for a good 

balance between the number of devices, number of available pins and accuracy. 

The scheme is to use transmission gates and shift registers to select individual 

devices in the arrays. There are 225 n M O S F E T s in the M O S F E T array and 

144 pnp C L B T s in the C L B T array, giving a total of 900 n M O S F E T s and 576 

pnp C L B T s in the 4 working test chips. 

8 0 
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T h e drain and collector currents of the M O S F E T s and C L B T s were mea-

sured respectively ranging from lOfiA to InA for n M O S F E T s and 100nv4 d o w n 

to InA for pnp C L B T s . T h e mismatches of the current were then analyzed. 

T h e devices were also paired up as current pairs and their matching properties 

were calculated. It was found that the matching properties of the n M O S F E T 

were in fact 3-4 times better than those of the pnp C L B T s . W h e n the pnp 

C L B T s were operated as p M O S F E T s and their mismatches were computed, 

it was found that the mismatch of the p M O S F E T s was about 3 times poorer 

than that of the pnp C L B T s . B y applying the L a w of Area, mismatches of 

p M O S F E T s with layout area similar to that of the pnp C L B T s were almost as 

good as those of the pnp C L B T s . 

T h e mismatch results were consistent with those in the literature. However, 

previous studies compared C L B T s with larger overall layout area than the 

M O S F E T s . This study shows that C L B T s m a y not be a good alternative to 

M O S F E T s in some critical matching circuits, at least for the A M I - A B N 1.5/j/m 

process that was used. 



Appendix A 

Floating Gate Technology 

In this Appendix, floating gate technology will be presented. The structure 

of floating gate M O S F E T s and techniques for adjusting the floating charge, 

namely the electron tunnelling and hot electron injection, in standard C M O S 

technologies are presented. These would serve as the basis for the understand-

ing to the F G - C L B T s and their applications to be presented in Appendix B. 

A. l Floating Gate 

W h e n the polysilicon gate of an ordinary M O S F E T (poly 1) is completely 

surrounded by oxide (6TO2) without any external connection, the gate is said to 

be floating and known as the floating gate (FG). The charge on the polysilicon 

will then suffer less than 0.1% loss in 10 years under room temperature [Car89, 

TB91]. F G is thus a good analog m e m o r y for circuits operating below 300K. 

A n y device incorporated with floating gate is called the floating gate device. 

If now another polysilicon layer (poly2) lays on top of the floating gate, the 

top polysilicon can still function as a gate to the M O S F E T but the performance 

will be affected by the amount and type of charge stored in the floating gate. 

This is the floating gate transistors and the structure and symbols are shown 

in Figure A.l. 

Floating gate transistors have been widely studied since the 1970s [FB71, 

8 2 



Appendix A Floating Gate Technology 83 

VDD 
Vgate(poly2) Floating Gate Source S 

Z (poiyi) H j 

Gate Oxide / Body B ^ ~ I j 一 Gate G 
\ / Vd H | 

V �— — — — — — — — — — \ PMOS floating Drain D 
\ „ hole . \ gate transistor 

p+ Source p+ Dram ° 
K ) V ) J 

/ / Drain D 

/ / / 
G a t e G " ~ " B o d y B 

\ V 隱 / I NMOS floating 'h 
� � gate transistor i source S 

p-substrate 

Figure A.l: Cross-sectional view of P M O S floating gate transistor (left) and 

the symbols of N M O S and P M O S floating gate transistors (right). 

SS77b, SS77a, SK80, GieSO]. In digital circuits, they are used as non-volatile 

programmable devices such as Electrical Programmable Read Only Memories 

( E P R O M s ) , Electrical Erasable Programmable Read Only Memories (EEP-

R O M s ) and flash memories [Vee98]. T h e floating gates can store charges for 

a long time to represent bit information of I's or O's. They are important 

in modern electronic equipment as they are non-volatile and electrically pro-

grammable. 

Floating gate devices are also used in accurate analog computings and 

circuit trimming because the floating gate charge can be controlled almost 

as accurate as one electronic charge. Minch has used it for implementing 

translinear circuits [Min99]. Jin et. al. have used it for building non-volatile 

computation cell [JRL99]. Other applications include single-transistor silicon 

synapses [ D H M M 9 6 ] and D / A converters [ W K R 9 9 : 

A.2 Tunnelling 

Although silicon oxide is an excellent insulator, significant numbers of electrons 

can still leave the floating gate if the oxide is thin enough. According to 
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Figure A.2: Cross-sectional view showing h o w an n-well is used to remove 

electron from floating gate through tunnelling. 

quantum theory, the electron is actually a span of wave-function in space. 

W h e n an electron encounters an energy barrier which is larger than its total 

energy, there is still a finite probability for the electron to cross the barrier and 

the probability is inversely exponentially proportional to the thickness of the 

barrier [KasOO]. This is know as tunnelling. Standard C M O S process usually 

has the gate oxide above 30nm, which is too thick for observable tunnelling. 

However, when the electric field across the oxide is high enough, it will reduce 

the effective energy barrier width and, thus, increase the probability of the 

electron to penetrate the insulator. This process is called field emission (or 

Fowler-Nordheim Tunneling [LS69]). For a SiO: barrier with barrier height 

^ under an external electric field of E, the current density of the tunnelling 

current can be represented as: 

, - 4 ( 2 7 7 1 ) ( A . l ) 

where, h = h/'In with h being the Planck's constant, q is the electronic charge, 

and m is the free-electron mass. 

According to the tunnelling equation, to achieve a reasonable tunnelling 

current, the applied electric field must be high enough. This casts another 

problem, that to achieve high enough field, the gate oxide m a y have to be 
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biased near its breakdown voltage、乂 T G O m V / n m [Cha]). Fortunately, oxide 

breakdown can be avoided with special layout. Figure A.2 shows the structure 

of the tunnelling well that can be used in an n-well process, in which the edge 

of the polysilicon lays directly above the n-welL D u e to the irregularity of 

the boundaries of the oxide grown at the edges of the polysilicon, the electric 

field will be enhanced and highly concentrated there [TB91, Car89]. There-

fore, tunnelling electric field can be achieved with lower voltage, and oxide 

breakdown can be avoided. Such method has been successfully used in 2fim 

processes [TB91, Car89, HMD99；. 

To achieve tunnelling in an n-well C M O S process, one could just simply 

apply high voltage to an n-well. This method can then be used to remove 

electrons from the floating gate and thus reduce the potential of the floating 

gate. 

A.3 Hot Electron Effect 

W h e n a p M O S F E T is biased with high source to drain voltage, the energetic 

channel carriers, holes, will cause impact ionization w h e n colliding with the 

lattice and electrons will be created at the drain edge of the drain-to-channel 

depletion region due to the high electric field there [HMD99]. T h e electrons 

will then travel back to the channel, gaining more energy. S o m e electrons 

will become energetic enough to overcome the silicon barrier and enter the 

gate. This phenomenon is known as the hot electron effect (Figure A.3). The 

injection current is exponentially proportional to the injection voltage, Vinj. It 

can be used to increase the number of electrons, i.e. decrease the potential, in 

a floating gate. 
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Figure A.3: Cross-sectional view showing h o w hot electron injection is achieved 

in a p M O S F E T . 

A.4 Summary 

This Appendix introduced the basic theories of standard C M O S floating gate 

technologies. Electron tunnelling and hot electron injection were presented to 

be effective techniques for adjusting the n u m b e r of electrons in the floating 

gate fabricated with standard 2/im C M O S processes. 



Appendix B 

A Trimmable Transconductance 

Amplifier 

B.l Introduction 

Operational Transconductance Amplifiers (OTAs) incorporating C L B T s as in-

put pairs exhibit lower noise than those incorporating M O S F E T s [Vit83]. In 

this Appendix, an O T A incorporating with pnp C L B T s as input pair will be 

presented. It shows the possibility of trimming the O T A by using the residual 

gate effect of the C L B T s . A floating gate C L B T ( F G - C L B T ) was also designed 

and incorporated in an O T A . The floating gate is used to stored the charges 

required to trim the O T A . The experimental results are presented. 

B.2 Trimmable Transconductance Amplifier us-

ing Floating Gate Compatible Lateral Bipo-

lar Transistors (FG-CLBTs) 

D u e to the residual gate effect of the C L B T s (detailed in Section 4.4), the 

collector current is dependent on the gate voltage. This can be used to trim 

the offset of a differential amplifier if floating gate C L B T s (FG-CLBTs) are 

8 7 
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Figure B.l: Layout of F G O T A (left, current source Q4 not shown) and its 

schematic diagram (right). 

used as the differential input pairs. 

A 2-stage Operational Transconductance Amplifier ( O T A ) containing a 

differential input stage with F G - C L B T s as input pair was designed and fab-

ricated. Figure B.l shows the layout and schematic diagram of the Floating-

Gate O T A ( F G O T A ) and Figure B.2 shows its photomicrograph. T h e design 

is modified from Vittoz' design in [Vit83]. In Vittoz，design, all the bipolar 

transistors are normal npn C L B T s . In our design, w e used only normal pnp 

C L B T s for gi, Q2, Q3, and Q 4 while pnp F G - C L B T s were used as the differ-

ential inputs, FQl and FG2. The F G O T A was simulated in P S P I C E with all 

the C L B T s replaced by vertical pnp bipolar transistors with 3V power supply 

and ljj.A current source. T h e gain f3 and Early voltage VA of the bipolar tran-

sistors were set to be 100 and lOV respectively, which are the typical values of 

C L B T s under such collector current level (Chapter 4). T h e resulted D C gain is 

about bl.QdB with bandwidth w lOOOHz which shows the similar performance 
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Figure B.2: Photomicrograph of the F G O T A 

as that one reported by Vittoz. 

Another O T A with exactly the same design as the F G O T A except FQl 

and FQ2 are replaced by normal pnp C L B T s was also fabricated. They are 

used to verify the results of the F G O T A s . 

B.2.1 Residual Gate Effect and Collector Current Mod-

ulation 

A s mentioned in Section 4.4, there are residual gate effects in npn C L B T s . 

T h e same thing is also true for pnp C L B T s . W h e n the Gate-Source voltage 

Vg5 of a pnp C L B T is sufficiently high (> 1.2T/[Vit83, Arr89], Section 4.9.2), 

the collector current becomes independent of VGS and the transistor is in pure 

bipolar mode. C L B T s are used as pure bipolar devices in most of the literature 
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Figure B.3: Residual gate effects of a pnp C L B T . 

by fixing the gate terminal at a suitable voltage [Vit83, RHL97]. However, it 

should be recognized that, from strong inversion (VGS < Vrp), to weak inver-

sion (OV > VGS ̂  VTP)^ and then to pure bipolar m o d e {VGS》^p), there 

exist continuities. B y lowering VGS^ one can modulate the collector current by 

operating the transistor in the region between deep bipolar m o d e and weak 

inversion, which is the residual gate effect. The lateral collector current [Ic) 

will increase as the gate voltage decreases because the hole concentration near 

the Si I Si02 interface will increase. 

T h e dependence of collector current on VGS is process dependent. T h e 

residual gate effect of a single cascoded pnp C L B T with vertical emitter area 

of 6 X 6入2 has been measured under an environment that emulates the C L B T 

in the O T A (Appendix C). The emitter, base, and Vcas were biased at 21/, 

1.5V, and OV (all obtained by simulation), respectively. T h e emitter voltage 

was then adjusted such that the drain current was about 0.5/iA with gate 

voltage VG at 6V. Then VQ was swept from lOV to IV and the drain currents 
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were recorded. Figure B.3 shows the relation between the drain current and 

Vg. It is found that the residual gate effect results in about 1 0 % drain current 

variation for SV of Vqs variation at a Q.b/J,A current level in our process. 

Larger modulation can then be achieved by biasing the transistor in the weak 

inversion mode, which gives a hybrid of a weak inversion M O S F E T and a B J T . 

F r o m Figure B.3, there should be enough current modulation for most 

applications if the transistors is biased in the weak inversion region (Vg > 

1.5V). However, w h e n Ic is limited by a current source (which is not the 

case in our emulation testing), such as in a differential pair, the modulation of 

collector current in weak inversion region will be m u c h smaller than that shown 

in Figure B.3. It becomes necessary to operate the C L B T in moderate inversion 

or even strong inversion regions in order to sufficiently modulate Ic- T h e 

C L B T can then be qualitatively regarded as a B J T and a M O S F E T in parallel. 

D u e to the weaker current driving power of M O S F E T than that of B J T , with 

P S P I C E simulation, it was found that the M O S F E T must be biased in strong 

inversion region in order to have 10% — 2 0 % current modulation. Such current 

modulation can be used for compensating mismatches between C L B T s and 

has been demonstrated by trimming B i C M O S preamplifier offset by biasing 

the gate voltage of the input pair C L B T s at different voltages [Arr89]. T h e 

offset Vos of a C L B T differential pair with load resistance R can be represented 

as [Arr89: 

= UT log (1 一 6b)(1 - en)^ (B.l) 
JG-

where UT is the thermal voltage, ê g, CR are the C L B T and loading resistance 

mismatches respectively, and /g+, fo- are the floating gate functions of the 

input pair. 

Although the surface current will increase after modulation, 10% — 20% Ic 

changes usually will be enough for trimming an amplifier. Amplifiers that use 

C L B T s after trimming are still expected to have lower noise than M O S F E T 
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ones. 

B.2.2 Floating Gate CLBTs 

To obviate the need of voltage multiplication [Arr89] and to obtain an accurate 

and non-volatile gate voltage [SG88, Car89, TB91], a floating gate can be used 

as the gate terminal of a C L B T . In this process, the A M I - A B N 1.5/im double-

polysilicon n-well process, polyl is used as the floating gate (FG) and poly2 

is used as the control gate (CG) of the C L B T {FQl and FQ2 in Figure B.l). 

T h e layout of F G - C L B T is shown in Figure B.4. Since polyl is completely 

surrounded by SiOi, the charge inside will suffer less than 0.1% loss in 10 

years under room temperature [Car89, TB91]. F G is thus a good analog m e m -

ory for circuits operating below 300K. T h e structure of a F G - C L B T is the 

same as that of an ordinary C L B T besides that a floating gate (detailed in 

Appendix A) is added. T h e figure also shows the n-well used for electron tiin-
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Figure B.4: Layout of FG-CLBT (top left), the tunnelling 77-well (top middle), 

and injection pMOSFET (right top) and the schematic diagram (bottom). 
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nelling and p M O S F E T used for hot electron injection. Since the floating gate 

of the F G - C L B T is connected to the gate above the n-well and the p M O S F E T , 

the amount of charges in floating gate can be controlled through tunnelling and 

hot electron injection. 

A s the floating gate must be isolated to prevent the leakage of charge, 

the floating gate is connected to a follower, whose output is connected to an 

output pin. T h e potential of the floating gate will be modified by injection or 

tunnelling to trim the O T A so that the offset voltage is virtually zero. T h e 

potential of the floating gate can be read through the output of the follower. 

B.2.3 Electron Tunnelling 

T h e tunnelling structure is formed by laying the floating gate polysilicon over 

an n-well. A capacitor is formed with the gate oxide acting as an energy 

barrier preventing the electrons leaving the F G (Figure B.4). However, there 

is a finite probability for an electron to pass through a thin energy barrier even 

though the total energy of the electron is less than that of the barrier, which is 

k n o w n as tunnelling (Section A.2). According to Equation A.l, the tunnelling 

probability depends heavily on the oxide thickness t^x, temperature T, and 

the voltage across the oxide Vtun — Vfg, where Vtun and Vjg are the tunnelling 

voltage applied to the n-well and F G voltage respectively w h e n the following 

equation is substituted into Equation A.l: 

E = L _ Vfg (B.2) 

where E is the electric field strength across the oxide. Therefore, the tunnelling 

current I tun at constant temperature can be represented as [HMD99]: 

Itun OC exp{- t 〜 ) (B.3) 
Vtun — Vfg 

B y applying a high enough voltage to the well, the electrons confined in the 

floating gate can tunnel through the gate oxide into the n-well and, Vjg will 
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increase. Since the edges of the polysilicon are located at the middle of the n-

well, the electric field is concentrated there and the tunnelling voltage required 

is then reduced [Car89]. For the 31.6rzm thick gate oxide in our process, to have 

a reasonable rate of tunnelling (3mV7<s), Vtun — V/^ has to be at about 23乂. 

This is below the breakdown voltage of the oxide which is about 7 & ^ m V / n m x 

31.6nm = 24]/. 

B.2.4 Hot Electron Injection 

To reduce Vfg, a m i n i m u m size p M O S F E T with the source and body connected 

together and a F G as the gate terminal is used for hot-electron injection as 

shown in Figure B.4 (detailed in Section A.3). T h e source voltage {Vsrc) has 

to be raised above Vfg, or alternatively, Vjg can be pulled to be lower than 

Vsrc by reducing the C G voltage, so that the transistor can conduct current. 

W h e n the channel-drain voltage Vcd is high enough (achieved by lowering the 

injection voltage Knj)，holes entering the drain-to-channel depletion region will 

cause impact ionization generating electron-hole pairs under the high electric 

field [HMD99]. S o m e electrons will become energetic (hot) enough to inject 

into the F G and reduce Vjg. It was found that Vinj < —6.5^ will give signifi-

cant injection. 

B.2.5 Experimental Results of the OTA 

T h e O T A without F G - C L B T s was tested first. In this circuit, the gates of the 

C L B T were connected to pads which were controlled by an external voltage 

source. T h e gates of the C L B T s were biased at G V and the Vdd and Isrc were 

set to 3V and IfiA respectively. First, the offset of the O T A was measured to 

be about 5.79mV when VG+ = VG- = QV, where VG+ and VQ- are the gate 

voltages of the positive and negative differential inputs. T h e VG+ was then 

lowered to 1.7281/ at which the offset was found to be less than 20fiV. The 
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Figure B.5: V T C s of trimmed and untrimmed O T A (all the measurements 

were taking 1.5V as reference). 

Voltage Transfer Characteristic ( V T C ) is plotted in Figure B.5. Although the 

transfer curves of the O T A are not symmetric, which might be due to the high 

c o m m o n m o d e influence, it was found that the transfer characteristic was not 

changed after trimming. Since the fabricated O T A s all had an initial positive 

offset, in order to confirm the possibility of trimming negative offsets using 

residual gate effect, 11.5mV was applied to the negative input to emulate an 

operational amplifier with negative offset of about —S.GmV. Then the Vg+ 

was connected back to 6 V but with VFG- decreased to 1.746V" and it was 

found that it gave the similar result as the positive offset case. All the data 

are shown in Figure B.5. 
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B.2.6 Experimental Results of the FGOTA 

D u e to capacitive coupling effects, the C G s of FQl and FQ2 in Figure B.l 

must be tied to a fixed voltage so that the floating gate voltages (V^gi,怜G2 ) 

can be kept constant. Initially, VFGI and VFG2 were found to be greater than 

3 V with C G s tied to ground. T h e C G s were then connected together with the 

gates of Ql to QA at under which all the C L B T s and F G - C L B T s were 

sure to be in deep bipolar mode. T h e offset was measured to be 5.67mV. 

Hot-electron injection was used to bring d o w n Vfg2 until the offset became 

negative. This is equivalent to increasing the current in the positive input 

side, or adding a negative voltage source in series with Tunneling was 

then used to trim the offset by bringing up Vfg2 again. B y monitoring Vfg2 

and Vout^ was set such that Vtun-̂ - — Vi?G2 ~ 2 3 V for coarse trimming and 

22V for fine trimming when Vout became near to A C ground. D u e to oxide 

gP ^ -©- before trimming 

1 _ c) j f -A- immediately after trimming 

J j J t - B - 12 days after trimming 

0 • 2 months after trimming 

广 / / 
卜 H  

1 // 
-0.03 -0.02 -0.01 0 0.01 0.02 0.03 

Differential input (Vin+ - Vin-)A/ 

Figure B.6: V T C s of trimmed and untrimmed F G O T A (all the measurements 

were taking 1.5V' as reference). 
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relaxation [SG88, Car89] and the small coupling effect between the F G and 

the tunneling n-well, the offset has to be over-trimmed so that it will give 

m i n i m u m offset under normal operations. T h e V T C s of the amplifier before 

and after trimming are shown in Figure B.6. Again, although their V T C s are 

not symmetric, the V T C is unchanged after trimming. T h e trimmed offset was 

less than IQfiV and VFG2 : 0.90iy. T h e results were consistent with those of 

normal O T A s described in the previous section. 

B.3 Summary 

In this Appendix, a transconductance amplifier which used C L B T s for low 

noise and the residual gate effect for trimming the offset was described. Float-

ing gates were shown to be a good way for storing charges required for O T A 

trimming. A n F G O T A with initial offset of 5.67mV" fabricated using a 1.5/im 

n-well C M O S process was successfully trimmed to be less than lOfiV. 



Appendix C 

AMI-ABN 1.5/im n-well Process 

Parameters (First Batch) 

Provided by MOSIS: 

http://www.mosis.org/cgi—bin/cgiwrap/umosis/swp/params/ami-abn/tOSk-

params.txt 

T03K SPICE BSIM3 VERSION 3.1 PARAMETERS 

SPICE 3f5 Level 8, Star-HSPICE Level 49, UTMOST Level 8 

* DATE: May 24/00 

* LOT: t03k WAF: 05 

* Temperature_paxameters=Default 

.MODEL CMOSN NMOS ( LEVEL = 49 

+VERSION = 3.1 TNOM = 27 TOX = 3.12E-8 

+XJ = 3E-7 NCH = 7.5E16 VTHO = 0.5903183 

+K1 = 0.9587197 K2 = -0.0703124 K3 = 7.3462516 

+K3B = -1.8217143 WO = 3.580548E-7 NLX = lE-8 

+DVTOW = 0 DVTIW = 0 DVT2W = 0 

+DVTO = 0.7328029 DVTl = 0.2424502 DVT2 = -0.2050429 

+U0 = 689.3279051 UA = 2.357804E-9 UB = 2.06224E-19 

+UC = 4.812442E-11 VSAT = 1.482765E5 AO = 0.7369712 

9 8 

http://www.mosis.org/cgi%e2%80%94bin/cgiwrap/umosis/swp/params/ami-abn/tOSk-
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+AGS = 0.1133263 BO = 1.36088E-6 B1 = 5E-6 

+KETA = -3.845663E-3 A1 = 5.405407E-4 A2 = 0.4886241 

+RDSW = 2.926798E3 PRWG = -0.0596312 PRWB = -0.0518228 

+WR = 1 WINT = 6.944201E-7 LINT = 2.348738E-7 

+XL = 0 XW = 0 DWG = -2.170665E-8 

+DWB = 3.051225E-8 VOFF = -8.003683E-3 NFAGTOR = 0 

+CIT = 0 CDSC = 2.4E-4 CDSCD = 0 

+CDSCB = 0 ETAO = -0.016616 ETAB = -0.2751783 

+DSUB = 0.898894 PCLM = 1.6190873 PDIBLCl = 7.468765E-3 

+PDIBLC2 = 2.199057E-3 PDIBLCB = -0.0794461 DROUT = 0.062272 

+PSCBE1 = 1.488034E9 PSCBE2 = 5E-10 PVAG = 0.1061084 

+DELTA = 0 . 0 1 MOBMOD = 1 PRT = 0 

+UTE = -1.5 KTl = -0.11 KTIL = 0 

+KT2 = 0.022 UAl = 4.31E-9 UBl = -7.61E-18 

+UC1 = -5.6E-11 AT = 3.3E4 WL = 0 

+WLN = 1 WW = 0 WWN = 1 

+WWL = 0 LL = 0 LLN = 1 

+LW = 0 LWN = 1 LWL = 0 

+CAPMOD = 2 XPART = 0.4 CGDO = 1.67E-10 

+CGSO = 1.67E-10 CGBO = lE-11 CJ = 2.871391E-4 

+PB = 0.9650878 MJ = 0.5191048 CJSW = 1.287484E-10 

+PBSW = 0.99 MJSW = 0.1 CF = 0 ) 

* 

.MODEL CMOSP PMOS ( LEVEL = 49 

+VERSION = 3.1 TNOM = 27 TOX = 3.12E-8 

+XJ = 3E-7 NCH = 2.4E16 VTHO = -0.721901 

+K1 = 0.4504895 K2 = 7.44969E-7 K3 = 12.4287693 

+K3B = -2.0238234 WO = 2.667845E-7 NLX = 7.030273E-7 

+DVTOW = 0 DVTIW = 0 DVT2W = 0 
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+DVTO = 1.0333326 DVTl = 0.2741578 DVT2 = -0.0643206 

+U0 = 264.2496194 UA = 4.896349E-9 UB = 1.083086E-21 

+UC = -1.04926E-10 VSAT = 1.81286E5 AO =0.178225 

+AGS = 0.148856 BO = 4.310015E-6 B1 = 5E-6 

+KETA = -3.524955E-3 A1 = 0 A2 0.2159697 

+RDSW = 1.084351E3 PRWG = 3.028969E-3 PRWB = -0.2799616 

+WR = 1 WINT = 7.844628E-7 LINT = 8.142472E-8 

+XL = 0 XW = 0 DWG = -2.956928E-8 

+DWB = 3.181366E-8 VOFF = -0.0542035 NFACTOR = 0.2360326 

+CIT = 0 CDSC = 2.4E-4 CDSCD = 0 

+CDSCB = 0 ETAO = 0.02765 ETAB = -1.009098E-4 

+DSUB = 0.1573752 PCLM = 3.519463 PDIBLCl = 1.697242E-3 

+PDIBLC2 = 2.148623E-3 PDIBLCB = 1.18207E-3 DROUT = 0.0386639 

+PSCBE1 = 1.492954E9 PSCBE2 = 1.922198E-9 PVAG = 0.1553586 

+DELTA = 0.01 MOBMOD = 1 PRT = 0 

+UTE = -1.5 KTl = -0.11 KTIL = 0 

+KT2 = 0.022 UAl = 4.31E-9 UBl = -7.61E-18 

+UC1 = -5.6E-11 AT = 3.3E4 WL = 0 

+WLN = 1 WW = 0 WWN = 1 

+WWL = 0 LL = 0 LLN = 1 

+LW = 0 LWN = 1 LWL = 0 

+CAPMOD = 2 XPART = 0.4 CGDO = 2.21E-10 

+CGSO = 2.21E-10 CGBO = lE-11 CJ = 2.773731E-4 

+PB = 0.7430725 MJ = 0.4316544 CJSW = 1.803877E-10 

+PBSW = 0 . 9 9 MJSW = 0.1022318 CF = 0 ) 
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AMI-ABN 1.5fim n-well Process 

Parameters (Second Batch) 

Provided by MOSIS: 

http ://www.mosis . org/cgi—bin/cgiwrsLp/umosis/swp/params/ami—abii/t09z 

-params.txt 

T09Z SPICE BSIM3 VERSION 3.1 PARAMETERS 

SPICE 3f5 Level 8, Star-HSPICE Level 49， UTMOST Level 8 

* DATE: Nov 15/00 

* LOT: T09Z WAF: 03 

* Temperature_parameters=Default 

.MODEL CMOSN NMOS ( LEVEL = 49 

+VERSION = 3.1 TNOM = 27 TOX = 3.16E-8 

+XJ = 3E-7 NCH = 7.5E16 VTHO = 0.5513465 

+K1 = 0.9662553 K2 = -0.0739446 K3 = 13.1449046 

+K3B = -6.1796255 WO = lE-5 MLX = lE-8 

+DVTOW = 0 DVTIW = 0 DVT2W = 0 

+DVTO = 0.8445798 DVTl = 0.4222699 DVT2 = -0.3675825 

+U0 = 639.5850946 UA = 1.112728E-9 UB = 1.618549E-18 

+UC = 6.766521E-12 VSAT = 1.116886E5 AO = 0.6406476 

1 0 1 

http://www.mosis
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+AGS = 0.0835774 BO = 1.709473E-6 B1 = 5E-6 

+KETA = -3.466964E-3 Al = 0 A2 = 1 

+RDSW = 3E3 PRWG = -0.0317338 PRWB = -0.0366101 

+WR = 1 WINT = 6.256764E-7 LINT = 2.623417E-7 

+XL = 0 XW = 0 DWG = -6.480276E-9 

+DWB = 3.712087E-8 VOFF = -0.0213964 NFACTOR = 0.6290693 

+CIT = 0 CDSC = 0 CDSCD = 0 

+CDSCB = 5.240693E-5 ETAO = -1 ETAB = -0.08048 

+DSUB = 1 PCLM = 1.2188601 PDIBLCl = 7.898452E-3 

+PDIBLC2 = 1.931811E-3 PDIBLCB = -0.1 DROUT = 0.0568803 

+PSCBE1 = 5.876864E9 PSCBE2 = 2.082232E-9 PVAG = 0.1729939 

+DELTA = 0.01 RSH = 5 3 MOBMOD = 1 

+PRT = 0 UTE = -1.5 KTl = -0.11 

+KT1L = 0 KT2 0.022 UAl = 4.31E-9 

+UB1 = -7.61E-18 UCl = -5.6E-11 AT = 3.3E4 

+WL = 0 WLN = 1 WW = 0 

+WWN = 1 WWL = 0 LL = 0 

+LLN = 1 LW = 0 LWN = 1 

+LWL = 0 CAPMOD = 2 XPART = 0.4 

+CGDO = 1.79E-10 CGSO = 1.79E-10 CGBO = lE-9 

+CJ = 2.869797E-4 PB = 0.99 MJ = 0.5314948 

+CJSW = 1.553965E-10 PBSW = 0.99 MJSW = 0.1 

+CF = 0 ) 

* 

.MODEL CMOSP PMOS ( LEVEL = 49 

+VERSION = 3.1 TNOM = 27 TOX = 3.16E-8 

+XJ = 3E-7 NCH = 2.4E16 VTHO = -0.8002516 

+K1 = 0.4612185 K2 = -8.435342E-6 K3 = 14.0089935 

+K3B = -2.5658256 WO = 2.446962E-6 NLX = 7.841214E-7 
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+DVTOW = 0 DVTIW = 0 DVT2W = 0 

+DVTO = 1.2531383 DVTl = 0.3657227 DVT2 = -0.0648652 

+U0 = 246.45306 UA = 3.869902E-9 UB = lE-21 

+UC = -1.11744E-10 VSAT = 2E5 AO = 0.4772375 

+AGS = 0.1500772 BO = 3.862432E-6 B1 = 5E-6 

+KETA = -2.106339E-3 A1 = 0 A2 = 0 . 3 6 4 

+RDSW = 3E3 PRWG = 0.0770871 PRWB = -0.1344699 

+WR = 1 WINT = 7.336969E-7 LINT = 1.413122E-7 

+XL = 0 XW = 0 DWG = -2.439851E-8 

+DWB = 4.050848E-8 VOFF = -0.0518651 NFACTOR = 0.5350168 

+CIT = 0 CDSC = 0 CDSCD = 0 

+CDSCB = 1.054811E-4 ETAO = 0.06903 ETAB = 3.787991E-4 

+DSUB = 0.2873 PCLM = 5.2078859 PDIBLCl = 9.107209E-5 

+PDIBLC2 = lE-3 PDIBLCB = -lE-3 DROUT = 0.0556701 

+PSCBE1 = 3.308675E9 PSCBE2 = 6.843803E-8 PVAG = 9.5257414 

+DELTA = 0 . 0 1 RSH = 7 4 . 5 MOBMOD = 1 

+PRT = 0 UTE = -1.5 KTl = -0.11 

+KT1L = 0 KT2 0.022 UAl = 4.31E-9 

+UB1 = -7.61E-18 UCl = -5.6E-11 AT = 3.3E4 

+WL = 0 WLN = 1 WW = 0 

+WWN = 1 WWL = 0 LL = 0 

+LLN = 1 LW = 0 LWN = 1 

+LWL = 0 CAPMOD = 2 XPART = 0.4 

+CGDO = 2.33E-10 CGSO = 2.33E-10 CGBO = lE-9 

+CJ = 2.951059E-4 PB = 0.7404097 MJ = 0.426184 

+CJSW = 1.929182E-10 PBSW = 0.99 MJSW = 0.1569554 

+CF = 0 ) 



Bibliography 

•AMI] A M I Semiconductors. A B - 1.5/3.5 Micron Process Family, 

(http://www. amis, c o m / foundry / process 15n2. c f m # 1.5). 

'Arr89] X. Arreguit. Compatible Lateral Bipolar Transistors in CMOS 

Technology: Model and Applications, Thesis No. 817. P h D thesis, 

E P F L , Lausanne, 1989. 

'Ash88] P. Ashbum. Design and Realization of Bipolar Transistors. J. 

Wiley k Sons, 1988. 

B B W 9 0 ] P. Baginski, P. Brokaw, and S. Wurcer. A complete 18-bit audio 

D / A converter. In ISSCC, February 1990. 

BGS96] J. Bastos, M . Steyaert B. Graindourze, and W . Sansen. Matching 

of M O S transistors with different layout styles. In Proceedings of 

the 1996 IEEE International Conference on Microelectronic Test 

Structures, volume 9, pages 17-18, 1996. 

BH96] A. Bakker and J.H. Huijsing. Micropower C M O S temperature 

sensor with digital output. IEEE JSSC, 31(7):933-937, 1996. 

BSR+95] J. Bastos, M . Steyaert, R. Roovers, P. Kinget, W . Sansen, 

B. Graindourze, A. Pergoot, and Er. Janssens. Mismatch char-

acterization of small size M O S transistors. In Proceedings of 

1 0 4 

http://www


the 1995 IEEE International Conference on Microelectronic Test 

Structures^ volume 8, pages 271-276, 1995. 

'Car89] L.R. Car ley. Trimming analog circuits using floating-gate analog 

M O S memory. IEEE JSSC, SC-24:1569-1575，1989. 

CE96a] S.D. Conner and D. Evanson. Automated extraction of matching 

parameters for bipolar transistor technologies. In Proceedings of 

the 1996 IEEE International Conference on Microelectronic Test 

Structures, volume 9, pages 33-38, 1996. 

CE96b] S.D. Connor and D. Evanson. Automated extraction of matching 

parameters for bipolar transistor technologies. In Proceedings of 

the 1996 IEEE International Conference on Microelectronic Test 

Structures, volume 9, pages 33-38, 1996. 

Cha] C.F. Chan. Private email with Prof. Cheong-fat Chan. 

C H C 9 6 ] M.J. Chen, J.S. Ho, and D.Y. Chang. Optimizing the match in 

weakly inverted M O S F E T ' s by gated lateral bipolar action. IEEE 

Transactions on Electron Devices, 43(5):766-773, 1996. 

C H H 9 6 ] M.J. Chen, J.S. Ho, and T.H. Huang. Dependence of current 

match on back-gate bias in weakly inverted M O S transistors and 

its modeling. IEEE JSSC, 31(2):259-262, 1996. 

Chi98] D. Chin. Executing system on a chip: requirements for a success-

ful S O C implementation. In IEDM,98, 1998. 

: D H M M 9 6 ] C. Diorio, P. Easier, B.A. Minch, and C.A. Mead. A single-

transistor silicon synapse. IEEE Transaction on Electron Devices, 

43(11):1972-1980, 1996. 

1 0 5 



D L V 0 8 5 ] M.G.R. Dregrauwe, O.N. Leuthold, E.A. Vittoz, and H.J. Oguey. 

C M O S voltage references using lateral bipolar transistors. IEEE 

JSSC, SC-20(6):1151-1155, 1985. 

•EKV95] C.C. Enz，F. K m m m e n a c h e r , and E.A. Vittoz. An analytical 

MOS transistor model valid in all regions of Operation and ded-

icated to low-voltage and low-current applications. Kluwer Aca-

demic Publishers, 1995. 

'Elz96] H. Elzinga. O n the impact of spatial parametric variations on 

M O S transistor mismatch. In Proceedings of the 1996 IEEE In-

ternational Conference on Microelectronic Test Structures, vol-

u m e 9, pages 173-177, 1996. 

'FB71] D. Frohman-Bentchkowsky. M e m o r y behavior in a floating-gate 

avalandie-injection M O S ( F A M O S ) structure. Applied Physics 

Letters, 18(8):332-334, 1971. 

:FW94] F. Forti and M.E. Wright. Measurement of M O S current mis-

match in the weak inversion region. IEEE JSSC, 29(2): 138-142, 

1994. 

GieSO] B. Giebel. A n 8k E E P R O M using the S I M O S storage cell. IEEE 

JSSC, SC-15(3):311-315, 1980. 

G M 9 3 ] P.R. Gray and R.G. Meyer. Analysis and Design of Analog Inte-

grated Circuits. J. Wiley & Sons, 1993. 

Gre92] R . W . Gregor. O n the relationship between topography and tran-

sistor matching in an analog C M O S technology. IEEE Transac-

tion on Electron Devices, 39(2):275-282, 1992. 

Gro96] Test Instrumentation Group. Model 2400 SourceMeter^^: User's 

Manual Keithley Instruments, Inc., 1996. 

1 0 6 



HasOl] A. Hastings. The Art of Analog Layout Prentice-Hall, 2001. 

H H G 9 8 ] J.T. Horstmann, U. Hilleringmann, and K.F. Goser. Etching 

analysis of deposition defined 50-nm M O S F E T ' s . IEEE JSSC, 

45(l):299-306, 1998. 

H M D 9 9 ] P. Easier, B.A. Minch, and C. Diorio. Adaptive circuits using 

p F E T floating-gate devices. In Proceedings 20th Anniversary 

Conference on Advanced Research in VLSI, pages 215-229, 1999. 

'IF94] M . Ismail and T. Fiez. Analog VLSI: Signal and Information 

Processing. McGraw-Hill International Editions, 1994. 

JM97] D.A. Johns and K. Martin. Analog Integrated Circuit Design. J. 

Wiley k Sons, 1997. 

Josed] San Jose. The national technology roadmap for semiconductors. 

Technical report, Semiconductor Industry Ass., Calif, 1999(up-

dated). 

;jRL99] C.T. Jin, P.L. Rolandi, and P.H.W. Leong. Non-volatile 

programmable pulse computation cell. Electronics Letters, 

35(17):1413—1414, 1999. 

KasOO] S.O. Kasap. Principles of Electrical Engineering Materials and 

Devices. McGraw-Hill International, 2000. 

Ker] D. Kerns. Private email with Dr. Douglas A. Kerns. 

KL99] S.M. Kang and Y. Leblebici. CMOS Digital Integrated Circuits: 

Analysis Design. McGraw-Hill International, 1999. 

LHC86] K.R. Lakshmikumar, R.A. Hadaway, and M.A. Copeland. Char-

acterization and modeling of mismatch in M O S transistors for 

precision analog design. IEEE JSSC, SC-21(6):1057-1066, 1986. 

1 0 7 



LHIK69] H.C. Lin, J.C. Ho, R.R. Iyer, and K. Kwong. Complementary 

MOS-Bipolar transistor structure. IEEE Transactions on Elec-

tron Devices, ED-16(11):945-951, 1969. 

1869] M . Lenzlinger and E.H. Snow. Fowler-Nordheim tunneling into 

the thermally grown SiO】 structure. Journal of Applied Physics, 

40(l):278-283, 1969. 

: L W M M 9 8 ] S.J. Lovett, M . Welten, A. Mathewson, and B. Mason. Opti-

mizing M O S transistor mismatch. IEEE JSSC, 33(1):147-150, 

1998. 

'McC81] J.L. McCreary. Matching properties, and voltage and tempera-

ture dependence of M O S capacitors. IEEE JSSC, SC-16(5):608-

616, 1981. 

'Mea89] C. Mead. Analog VLSI and Neural Systems. Addison-Wesley 

Publishing Company, 1989. 

Min99] B.A. Minch. Translinear analog signal processing: a modular 

approach to large-scale analog computation with multiple-input 

translinear elements. In Proceedings 20th Anniversary Conference 

on Advanced Research in VLSI, pages 186-199, 1999. 

M M M M 9 8 ] D. MacSweeney, K.G. MacCarthy, A. Mathewson, and B. Mason. 

A S P I C E compatible subcircuit model for lateral bipolar transis-

tors in a C M O S process. IEEE Transaction on Electron Devices, 

45(9):1978-1984, 1998. 

PA89] T . W . Pan and A.A. Abidi. A 50-db variable gain amplifier using 

parasitic bipolar transistors in C M O S . IEEE JSSC, 24(4):951-

961, 1989. 

1 0 8 



P D W 8 9 ] M.J.M. Pelgrom, A.C.J. Duinmaijer, and A P.G. Welbers. Match-

ing properties of M O S transistors. IEEE JSSC, 24(5):1433-1440, 

1989. 

PGJ+95] A. Pergoot, B. Graindourze, Er. Janssens, J. Bastos, M . Steyaert, 

P. Kinget, R. Roovers, and W . Sansen. Statistics for matching. 

In Proceedings of the 1995 IEEE International Conference on Mi-

croelectronic Test Structures, volume 8, pages 193-197, 1995. 

PLK98] L. Portmann, C. Lallement, and F. Krummenacher. A high den-

sity integrated test matrix of M O S transistors for matching study. 

In Proceedings of the 1998 IEEE International Conference on Mi-

croelectronic Test Structures, volume 11, pages 19-24, 1998. 

"PTV98] M . Pelgrom, H. Tuinhout, and M . Vertregt. Transistor matching 

in analog C M O S applications. In Electron Devices Meeting, 1998. 

lEDM ,98 Technical Digest.，International, pages 915-918, 1998. 

RHL97] M . D . Rowley, J.G. Harris, and S.J. Lim. A logarithmic pho-

toreceptor incorporating lateral bipolar transistors for improved 

matching and dynamic range. In 1997 IEEE International Sym-

posium on Circuits and Systems, June 1997. 

R K H S 9 5 ] L. Risch, W . H . Krautschneider, F. Hofmann, and H. Schafer. 

Vertical M O S transistors with 70-nm channel length. In ESS-

DERC,95, pages 101-104, 1995. 

SG88] E. Sackinger and W . Guggenbwhl. A n analog trimming circuit 

based on a floating-gate device. IEEE JSSC, SC-23:1437-1440, 

1988. 

；SK80] A. Scheibe and W . Krauss. A two-transistor S I M O N E A R O M 

cell. IEEE JSSC, SC-15(3):353-357, 1980. 

1 0 9 



"SS77a] A. Scheibe and H. Schulte. Electrically erasable and repro-

grammable read-only m e m o r y using the n-channel S I M O N one-

transistor cell. IEEE Transaction on Electron Devices, E D -

24(5):606-610, 1977. 

'SS77b] A. Scheibe and H. Schulte. Technology of a new n-channel one-

transistor E A R O M cell called S I M O S . IEEE Transaction on Elec-

tron Devices, ED-24(5):600-606, 1977. 

STK84] J.B. Shyu, G.C. Temes, and F. Krummenacher. R a n d o m error 

effects in matched M O S capacitors and current sources. IEEE 

JSSC, SC-19(6):948-955, 1984. 

;TB91] a. T h o m s e n and M . A . Brooke. A floating-gate M O S F E T with 

tunneling injector fabricated using standard double-polysilicon 

C M O S process. IEEE Electron Device Letters, 12(3):111—113， 

1991. 

The] The M O S I S Service. A M I - A B N Process, 

(http://www.mosis.org/Technical/Processes/proc-ami-

abn.html). 

TI96] H.Y. To and M . Ismail. Mismatch modeling and characterization 

of bipolar transistors for statistical C A D . IEEE Transactions 

on Circuits and System I:Fundamental Theory and Applications, 

43(7):608-610, 1996. 

;TP98] H.P. Tuinhout and W . C . M . Peters. Measurement of lithographi-

cal proximity effects on matching of bipolar transistors. In Pro-

ceedings of the 1998 IEEE International Conference on Micro-

electronic Test Structures, volume 11, pages 7-12, 1998. 

1 1 0 

http://www.mosis.org/Technical/Processes/proc-ami-


Vee98] H. Veendrick. Deep-submicron CMOS ICs: From Basic to ASICs. 

Kluwer, Deventer, 1998. 

'Vit83] E. A. Vittoz. M O S transistors operated in the lateral bipolar m o d e 

and their application in C M O S technology. IEEE JSSC, SC-

18(3):273-179, 1983. 

vS] A. van Schaik. Private email and conversation with Dr. Andre 

van Schaik. 

vSFV96] A. van Schaik, E. Fragniere, and E. Vittoz. Improved silicon 

cochlea using compatible lateral bipolar transistors. In Advances 

in Neural Information Processing Systems 8, pages 671-677. M I T 

press, Cambridge M A , 1996. 

W K L M 9 2 ] L. Watts, D.A. Kerns, R.F. Lyon, and C.A. Mead. Improved 

implementation of the silicon cochlea. IEEE JSSC, 27(5):692-

700, 1992. 

:WKR99] L.S.Y. Wong, C.Y. Kwok, and G.A. Rigby. A 1-V C M O S D / A 

converter with multi-input floating-gate M O S F E T . IEEE JSSC, 

34:1386-1390, 1999. 

;WPM97] S.C. Wong, K.H. Pan, and D.J. M a . A C M O S mismatch and scal-

ing effects. IEEE Electron Device Letters, 18(6):261-263, 1997. 

;ZCFK98] W . Zhang, M . Chan, S.K.H. Fung, and P.K. Ko. Performance of 

a C M O S compatible lateral bipolar photodetector on SOI sub-

strate. IEEE Electron Device Letters, 19(ll):435-437, 1998. 

128 



I
l
i
l
i
i
i
l
i
l
f
i
 ̂-
f

 I
t
i
^
f
 t
^
i
^
J
 

.

今
 
\
 

..
 :

 

•3:t、,：.H.
 

,
 ,
 

-
 .

 :
.

 .
 

.
 .

 

i
德
 

.

 
—

 
•

 ̂
^
 

.
 
.

 ？广；̂
乂众：、；、-〜•：，

J
 

.

V
 •

 ;
•
•

 ̂

 

々
：
、
r
:
 

.....r.二
 

：
“
 
；

 r
 

•
 一.•..."
 

f
 



• I 
t 
i 'i 
i 

CUHK L i b r a r i e s 

圓 1111圓圓11111111 

0D3f l71733 


