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Abstract 

The efficiency of searching scaling-invariant and shifting-invariant shapes in a 

set of massive time series data can be improved if searching is performed on an 

approximated sequence which involves less data but contains all the significant 

features. However, commonly used smoothing techniques, such as moving av-

erages and best-fitting polylines, usually miss important peaks and troughs and 

deform the time series. In addition, these techniques are not robust, as they often 

require users to supply a set of smoothing parameters which have direct effect on 

the resultant approximation pattern. To address these problems, an algorithm to 

construct a lattice structure as an underlying framework for pattern matching is 

proposed in this dissertation. As inputs, the algorithm takes a time series and the 

required the level of details. The algorithm then identifies all the important peaks 

and troughs (known as control points) in the time series and classifies the points 

into appropriate layers of the lattice structure. The control points in each layer -

of the structure form an approximate pattern and yet preserve the overall shape 

of the original series with an approximation error lies within a certain bound. 

The lower the layer, the more precise the approximate pattern is. Putting in 
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another way, the algorithm takes different levels of data smoothing into account. 

Also, the lattice structure can be indexed to further improve the performance of 

pattern matching. 

The technique of finding patterns in time series using control points can also 

be applied to the findings of meaningful patterns in bar charts of stock data. 

Instead of containing one data point per time unit, two data points per time unit 

are used to represent a bar in bar charts. These two data points may represent 

the highest and the lowest stock price on a particular day or within a week. 

Identifying chart patterns is a form of technical analysis in the stock market. 

The formation of chart pattern is highly flexible as long as the overall shape is 

preserved. In this dissertation, a novel approach that automatically identifies a 

set of typical chart patterns using control points as the basis for constructing 

the upper and lower trendlines is proposed. Having trendlines partitioned into 

smaller trendline pairs, a progressive pattern classification is then carried out. 
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在時間序列數據中選取特徵及配對形狀 

作者溫寶敏 

香港中文大學二零零一年六月 

摘要 

在一個涉及龐大時間量的序列數據中，對其縮放變及移位變不變的形狀進 

行搜尋，搜尋的效率是可以改進的°如果搜尋是在一個牽涉較少數據但保留重 

要特徵的約略序列上進行的話，效率將能提升。日常用的平滑技術，例如移動 

平均線及最合適多線段，一般都忽略了重要的凹凸點而破壞時間序列之原有形 

狀°與此同時，平滑技術需要用者提供平滑参數，而這些參數對產生出來的約 

略形狀有直接影響°所以，這些技術並不穩健。本論文針對這些問題提出一種 

算法，爲形狀配對建立一個組合格子結構，作爲形狀配對的底層框架。用者需 

要输入一個時間序列與及所需要的細節程度，此算法根據這些输入辨認出這個 

時間序列所有重要的凹凸點（支配點）並把這些點歸類於組合格子結構的合適 

層。在這結構中，被歸類於同一層的支配點形成一個保留了原來序列的整體形 

狀，而其誤差少於某一個範圍的約略形狀°運用越低層的支配點，所形成的約 

略形狀就越準確°換句話説，此算法能將不同程度的數據平滑都處理安當。還 

有，這個組合格子結構可進行索引以提高形狀配對的性能。 

運用支配點去找尋時間序列中的形狀這種技術也能應用在股票棒形圖中， 

可以把其有意義的形狀找尋出來°在棒形圖中，每一個時間單位包含兩個數據 

點，與在時間序列中只包含一個數據點不同°此兩個數據點可以代表每日或每 . 

週的最高及最低股票價格°股票價格的變化通常形成有意義的形狀，從棒形圖 

中找尋這些有意義的形狀是股票市場的一種專業分析。同一個圖表形狀的形成 

是高度靈活的，只要它的大致形狀得以保持便行。這論文提出一個薪新的方 
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法，嘗試運用支配點去建立較高與較低走勢線的基礎，從而自動分辨圖表的形 

狀。將走勢線分拆成較小的走勢線對，如此一個漸進式的形狀歸類法便能夠進 

行。 
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Chapter 1 

Introduction 

1.1 Motivation and Aims 

Time series account for a significant portion of data stored in business, medical, 

engineering, and social science databases. A time series Q is a sequence of real 

numbers {qi ,q2, . . . An] collected regularly in time, each of which represents a 

value at a particular instance. For example, stock prices and weather quantities 

such as temperature and humidity can be in the form of sequences, so they are 

time series data. 

Studying patterns of time series has been an active research topic [AFS93, 

FRM94, RM97, KJF97, APWZ95, LW98, CW99, CLW98, CF99, YJC98b, YJC98a, 

KP99b, PWZPOO, PCYHOO, SZ96]. The most remarkable application of identi-

fying patterns in time series is stock analysis. It is believed that the uptrend and 

downtrend lines of a stock may indicate its future trend [Sch98]. As a time series 

database usually involves a large amount of data (such as historical stock data), 

brute force searching for certain shapes among those datasets is unrealistic. To 

speedup the searching process, a subsequence extracted by a sliding window can 
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be indexed using a multi-dimensional indexing structure such as R-iree [Gut84 • 

However, R-tree or other multi-dimensional indexing structures cannot efficiently 

handle high dimensional data (known as the dimensional curse), that is, when the 

subsequence is too lengthy [WSB98]. Some researchers proposed to reduce the di-

mension of a subsequence before indexing. Each subsequence is first transformed 

into a feature point, typically by the Fourier transform [AFS93, FRM94], the 

Wavelet transform [CF99], or the Singular Value Decomposition [KJF97]. The 

feature points are then indexed by a high dimensional indexing structure such 

as R*-tiee. However, the transformed sequence may not be applicable for shape 

matching, especially when scaling and shifting are considered. As an example, 

Figure 1.1 shows two sequences: A={10 , 12, 14，10, 6，7, 8’ 7} and B={5，7, 3，4} 

with equal interval between any two consecutive data values. Scaling up sequence 

B by a factor of 2 in both amplitude and time dimensions yields a sequence {10， 

12, 14’ 10, 6, 7, 8，7} which is identical to A. However, one cannot tell this 

particular shape similarity simply by inspecting the transformed coefficients. 

‘ ：^ 1 , , , 
•© Sequence A 

\ —I— Sequence B 
\ 

12 - 0 ‘ ‘ 
. z \ _ 

z .、. 
y \ 

& • \ 

\ 
\ 

• 八 \ Z ' 。 — . ' ： 

21 1 1 1 I I 
1 2 3 4 5 6 7 

Figure 1.1: Sequence B is similar to a subsequence of A. 
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Without data pre-processing, the efficiency of searching scaling-invariant and 

shifting-invariant shapes in a set of massive time series can be very low. Perfor-

mance can be improved if searching is performed on an approximated sequence 

which involves less data but contains all the significant features of the original se-

quence. However, the shape formed by a noisy sequence is subjective and depends 

on the number of data points used for approximation. Using American Online 

stock close price from 6/16/1999 to 12/14/1999, Figure 1.1 shows two different 

shapes of a time series formed by different number of turning points (the two 

sets of turning points are selected according to the algorithm proposed in this 

dissertation). Using fewer data points (as in Figure 1.1(a)) the shape formed by 

joining these points is coarser and the approximation error is greater. However 

it may be already informative enough for some applications. 

Original Time Series 
Shape Formed 

160| 飞 160, ^ 

140. / 140- % 

： w I 
60^ • ‘ 601 

0 50 100 150 0 50 100 150 
(a) Using 6 turning Points (b) Using 17 Turning Points 

Figure 1.2: Shape formed by different number of turning points. 

In this dissertation, a method for progressive sequence approximation through 

constructing a lattice structure is proposed. The lattice structure is built starting 

from the topmost layer which consists of data points forming the coarsest shape. 

Each layer is associated with a maximum approximation error which can also be 
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interpreted as the level of details that the chosen set of data points can represent 

the original time series. The lower the layer, the smaller the error as the generated 

shape will be continuously refined during the course of proceeding towards the 

lowest layer. Approximated sequences with a large approximation error may 

be informative enough while those with small approximation error may be too 

detailed and contain noises. Therefore, depending on the user's requirement, 

finding patterns of interest can be confined to a set of layers which are within an 

approximation error bound. To further enhance the searching performance, an 

integration of the lattice structure with the indexing structure r~ported by [CW99] 

is proposed. 

M uch research has been focused on finding similar patterns among a uni­

value time series data, that is, each time unit only contains one value. In an 

attempt to find meaningful chart patterns in stock data, the proposed patterns 

searching technique was applied to multi-value time series. Stock data, as a form 

of time series data, can be presented in different types of charts. Two commonly 

used charts are close-only charts and bar charts. They differ from the type and 

number of price values used in each time unit. Close-only charts are based on 

closing values and ignore high and low price information; bar charts use both 

high and low prices (or even closing price) at every time unit. The price series 

used in a close-only chart, such as the one previously shown in Figure 1.1, can be 

regarded as the simplest form of time series whilst bar chart can be considered 

as multi-value time series. Being considered as a special case of the basic time 

series, the general technique of finding patterns of interests in a basic time series 

can also be applied to pattern searching in a bar-chart. 

Thirteen prototype patterns commonly used in technical analysis can be found 

using the method proposed in this dissertation. Those patterns are Falling Wedge, 

Rising Wedge, Head and Shoulders Top, Head and Shoulders Bottom, Double 
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Top, Double Bottom, Triple Top, Triple Bottom, Ascending Triangle, Descend-

ing Triangle，Symmetrical Triangle, Pricing Channel, and Rectangle. The iden-

tification process first spots out a set of significant turning points upon which 

trendlines can be drawn. Then a progressive pattern classification based on the 

established trendlines is carried out. 

1.2 Organization of Thesis 

The dissertation is organized as follows. 

In Chapter 2, we will give a literature review on different approaches for time 

series searching and indexing methodologies. These approaches are classified 

into three categories namely dimensionality reduction, sequence similarity with 

transformation, and similarity based on sequence approximation. 

In Chapter 3, we will describe our approach to find similar sequences by means 

of turning points. First of all, a lattice structure, which is the data representa-

tion，is defined. Under this lattice structure, we then define subsequence scaling, 

translation and best matches, and an indexing scheme is proposed. Finally, ex-

perimental results using real-life stock data are given. 

In Chapter 4，we show how to utilize turning points to find typical chart 

patterns used in technical analysis. We first give an overview to common chart 

patterns found in a bar chart. Then, a strategy in building trendlines using turn-

ing points are given. A three-phase chart pattern classification is then presented. 

Finally, examples of different chart patterns found in real-life chart pattern are 
given. 

A conclusion will be given in Chapter 5. 



Chapter 2 

Literature Review 

In this chapter, three main research threads of sequence matching and the cor-

responding indexing methodologies are discussed. Firstly, several feature extrac-

tion methods on reducing the sequence's dimension for the ease of indexing are 

discussed. Secondly, different approaches on finding similar sequences invariant 

to some transformations are introduced. Finally, sequence matching approaches 

based on sequence approximations are discussed. 

2.1 Dimensionality Reduction 

2.1.1 Fourier Transformation 

Various approaches have been proposed for time series searching. An earlier 

approach uses the Discrete Fourier Transform (DFT) to map time sequences to 

the frequency domain [AFS93]. Given a time series x = ，：！：打―丄)，its 
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Fourier coefficients are given by: 

n - l 
Xf = l / V n ^ X t e x p ( - j 2 7 r f t / n ) / = 0，1,...，n - 1 

t=o 

where j is the imaginary unit ( j = v ^ ) . The original time series can be recov-

ered by the inverse transform: 

n - l 

工t = l/Vn^Xtexp(j2TTft/n)亡=0,1,... ’ n - 1 

t=0 

X f are complex numbers except J : 0 . Using Parseval's theorem, they observed 

that the Euclidean distance in the time domain is the same as that in frequency 

domain. Therefore, coupled with the conjecture that first few Fourier coefficients 

contain most of the energy, an effective index (so called F-index) with a low 

dimensionality can be built using i?*-trees. This method guarantees no false 

dismissals but it may cause false alarms. Therefore, a post-processing is needed 

to filter unqualified data sequences. 

F-index was further developed and an efficient indexing method to locate 

one dimensional subsequences was proposed in [FRM94]. They used a sliding 

window of size w over the data sequence and extracted its features by using the 

amplitudes of the first few coefficients of the ^i;-point DFT. This results in a 

trail in the feature space. Instead of storing individual points of the trail in an 

iT-tree，they proposed to divide the trail of a given data sequence into sub-trails 

and represent each of them with its minimum bounding (hyper)-rectangle (MBR). 

Such a sub-trail indexing structure is referred to as 'ST-index\ Therefore, only a 

few MBRs are needed instead of storing thousands of points of a given trail. As 

in [AFS93], false alarms are still possible. 

An enhancement of feature extraction and matching method was proposed 

in [LYC96]. They use the correlation coefficient as an alternative similarity mea-

sure between the target sequence and the stored sequence. An adaptive scan 
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on the extracted features of the stored sequences is performed based on the tar-

get sequence. The idea is to select first the subset of features with the largest 

filtering effect to perform the matching using correlation. Then the next most 

discriminating set of features is used for matching. This process is iterated until 

all of the features are exhausted. Although false hit is impossible, misses are 

possible when the correlation coefficient between low resolution versions of two 

sequences below the query threshold even if the correlation coefficient between 

the corresponding full sequences is above. Also, it is expensive to search through 

all features hierarchically especially when the sequences are long. 

Using the DFT, a first indexing method that can handle moving average and 

time warping was proposed in [RM97]. For each query, a transformation is given. 

A new index is built in real time by applying this transformation to all feature 

points extracted by the DFT. However, it is costly to build the index for each 

query and thus affect the query response time. 

2.1.2 Wavelet Transformation 

Besides the DFT, the Discrete Wavelet Transform (DWT) has also been proposed 

to reduce the dimensions of feature vectors in time series. The pioneered work 

by [CF991 used the Haar Wavelet Transform in which the first few coefficients 

are kept for similarity searching. Given a sequence x = • •. , the 

� p r o c e s s of the one-dimensional Haar Wavelet Transform begins with averaging 

the sequence data together pairwisely, in order to get a new sequence which is 

half of the size of the original sequence x. To recover the original sequence, some 

detail coefficients, which are the differences between the average values and the 

original values, are computed. The process continues until a a resolution of one 

is reached. Given a sequence x 二 (9,7,3,5) , the process of the Haar Wavelet 
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Transform is as follows: 

Resolution Averages Detail Coefficients 

4 (9 7 3 5) 

2 (8 4) (1 -1) 

1 (6) (2) 

They proposed to use the DWT because it has better pruning power and 

lower complexity compared with the DFT. Also, it can deal with vertical shifts 

of sequences into the similarity model easily. 

Making use of wavelet decomposition, a wavelet-based tree structure, termed 

TSA-tree, for multilevel trend and surprise (sudden changes) queries on time 

sequence data was proposed in [STZOOJ. A single-level one-dimensional wavelet 

decomposition is performed on a sequence to get the trend sequence and surprise 

sequence which are respectively the approximation coefficients vector and the 

detail coefficients vector of the wavelet decomposition. Thus, a TSA tree can 

be constructed by applying the decomposition repeatedly on the trend sequence 

obtained at each level. As the TSA-tree is large, they proposed two methods to 

optimize the tree structures by dropping nodes or coefficients. The drawbacks 

of these optimization is that surprises may lose and errors are induced during 

time-series reconstruction. 

In the view that the Haar transformation has a better performance, using this 

transformation to compact time sequences was also proposed in [KSOl]. Their 

emphasis is on creating a grid of trees using wavelet coefficients to handle variable 

length queries. In the grid, each row corresponds to the set of trees built using a 

window size ranging from 2« to 2办 where a < 6 and is the minimum possible -

length of a query. Each query having length is partitioned into separate pieces 

with sizes starting from 2“’2奸1，... such that the summation of all partitions 

equals to the length of the query. Although they can handle variable length 
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efficiently, the query size is restricted at the powers of two and a large storage 

space is needed for keeping a grid of trees. 

2.1.3 Singular Value Decomposition 

Besides the DFT and the DWT, another dimension reduction method is by the 

Singular Value Decomposition or Karhunen Loeve Transform. The use of the Sin-

gular Value Decomposition for querying time sequences was pioneered by [KJF97 • 

The idea is to reduce the dimensionality of the data set using projection. The data 

is projected into a sub-space and the problem is to find the best sub-space for pro-

jection. The data in a few condensed dimensions are then indexed to support fast 

retrieval for a given query. Suppose there are M sets of time series ,xm , 

each of which is of length n or in other words, xi,x2,... ,xm G R". The prob-

lem is to find m out of n orthonormal vectors UuU2,... such that the 

following expected mean square error T over M time series is the minimum 
n 

T = ^ ujE [(x - d ) { x - df] u, 
i=zm+l 

n 

= [ u f A u i 
iz=m+l 

where d is a displacement vector in IT. The minimization of T yields d = Elx 

and Aui = XiUi where m and \ are respectively the eigenvector of A and its 

corresponding eigenvalues. To handle dynamic database using the SVD, efficient 

methods of updating of the SVD-based index were discussed in [KAAS99 . 

Combining clustering with the SVD was proposed in [TCL98] to improve the 

efficiency in processing approximate nearest-neighbor queries. Their method was • 

motivated by the insight that subdividing heterogeneously distributed vectors 

into groups gives more efficient representation. This method first partitions the 

data set using a clustering technique and then SVD is applied to vectors in each 
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cluster to produce a vector space of transformed features with reduced dimen-

sional. Although it requires less dimensions than the SVD, there is an overhead 

in updating the clusters as well as the SVD dimensions for dynamic database. 

2.2 Searching Sequence Similarity with Trans-

formation 

2.2.1 Time Warping 

The technique of dynamic time warping is first used in the field of speech recog-

nition. Using dynamic programming as the basis for both isolated and connected 

word recognition was first presented in [RL90]. Later, [BC96] proposed a pattern 

detection algorithm in time series based on the dynamic time warping technique 

used in the voice recognition. The pattern recognition process involves searching a 

time series, S, for a template, T, where S = (Si, S2，... and T = (Zi,亡2,. ••力m). 

The sequences S and T can be arranged to form an n-by-m grid where each 

grip point (i,j�corresponds to an alignment between elements Si and tj. A time 

warping path, W = (wuw2,. ..Wp), aligns the elements of S and T, such that 

the distance between them is minimal. In other words, VF is a sequence of 2-D 

grid points as shown in Figure 2.1. 

Before defining the problem of dynamic time warping, a distance measure 

between two elements is needed. Two commonly used distance functions, 6, are 

the absolute difference and the squares of the difference: 

冲’力 = — 力 j 

S{hj) = {si - tjf 

Then, the dynamic time warping problem as a minimization over potential time 
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Figure 2.1: An example of the time warping path, 

warping paths based on the cumulative distance for each path can be defined 

- V ‘ 
DTW(S,T) = minw 

.k=l _ 

Out of concern for efficiency, it is important to reduce the space of possi-

ble warping paths, therefore the dynamic programming formulation is based on 

the following recurrence relation, T(i,j), which defines the cumulative distance 

between each pair of points as follows 

T(<，j) = 6 { i J ) + mm[T(z - l , i ) , T ( z - l,j 一 l ) , T ( z , i — 1)]. 

Computing the cumulative time warping distance in a sequential manner is • 

an expensive task, two methods to speed-up sequential scanning on time series is 

proposed in [YJC98b]. Based on FastMap, they make use of the given distance 

measures to map sequences into points in a k-d space followed by building an 
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indexing structure. Another technique is to determine a cheaply computed lower 

bound on the original distance function, which can be used as a filter to discard 

non-qualifying sequences quickly. As addressed in the paper, false dismissal is 

possible using the FastMap method. In addition, the choice of dimension k is 

critical for the best searching performance. 

To address the problem of false dismissal in time warping, a new indexing 

technique using a suffix tree and employing lower-bound distance functions to 

filter dissimilar subsequences were proposed in [PCYHOO]. As branch pruning 

in the index structure cannot help if there is no common subsequences, they 

introduced the concept of categorization to increase the number of common sub-

sequences. The first method is an equal-length categorization which is fast but 

information about value and frequency distributions of the sequences may be lost. 

The second method is a maximum-entropy categorization. This can minimize the 

information loss but it is not easy to determine the suitable number of categories. 

A new distance function A ^ - i t that consistently underestimates the time 

warping distance between two sequence was proposed in [KPCOl]. Their time 

warping distance, however, does not accumulate the time warped distance be-

tween two elements but just only the maximum time warping distance. Given 

two sequences S and Q, their time warping distance, Q), is defined recur-
sively as follows: 

A . ( ( ) , ( ) ) = 0 

0 ) = A“〈〉，Q) = oo ( 

力 - First{Q) f 

n (cn^ Dt^{S,Rest{Q)) “ 
Q) = max 

� DtURest{S),Rest(Q)) \ 
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where First{S) and Rest{S) denote the first element in S and the subsequence 

of S excluding First{S). For each sequence S, a four-tuple feature vector is 

extracted and indexed in an iT-tree. The feature vector contains the first element, 

the last element, and the elements with the largest and smallest value in S. With 

the lower bound distance function 

\F%TSi[S)-F%TSi{(i)\ 

\Last{S) — Last(Q) 
Dtw-ib = rnax 

\Greatest(S) 一 Greatest{Q) 

\Smallest(S) 一 Smallest{Q) 
and the the following inequality 

a candidate set can be returned from the tree by enlarging the four-tuple feature 

vector of the query Q. As there are false alarms, post-processing of the candidates 

are needed. Although an index-based time warping without false dismissal is 

made possible, their time warping distance function is weaker than the traditional 

one as they only consider the maximum distance among all the time warped 

points and neglect the other time-warped distances which may be essential in 

determining similarity. 

2.2.2 Amplitude Scaling and Shifting 

Besides time warping, another definition of similarity which is based on scaling 

and shifting transformation along the amplitude axis is also considered in some -

applications. Proper amplitude scaling and offset translation are necessary before 

determining if the two sequences are similar. An intuitive way is to apply a global 

normalization to the time sequence. However, such a global scaling will make the 
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transformation easily affected by the chosen scale points which may be outliers 

or noises. 

To minimize the bias of global normalization, a similarity search with scal-

ing and translation based on local subsequence normalization was discussed in 

ALSS95]. In general, two sequences are considered similar if they have enough 

non-overlapping time-ordered pairs of subsequences that are similar. Two nor-

malized subsequences are called e-similar if the absolute differences of two cor-

responding elements are bounded by a tolerence e. The matching process is 

divided into three stages, namely "atomic" subsequence matching, long subse-

quence matching, and sequence matching. In the first stage, every locally nor-

malized subsequence of size cj are indexed into an W-tree. Therefore, all atomic 

subsequence pairs which are e-similar can be easily retrieved by spatial join. The 

second stage employs a fast algorithm for stitching atomic matches to form long 

subsequence matches, gap is allowed to exist between the atomic matches. In the 

third stage, the maximal length match in sequences is determined. 

A definition of sequence similarity based on the slope of sequence is discussed 

in [CLW98]. By using a sliding window, each extracted subsequence is translated 

into a binary string according to the sign of the slope of two consecutive data 

within the subsequence. All binary strings are then indexed using a hashing 

algorithm. In a similar fashion, a query will also be transformed into a bit-

stream for searching potential candidates in the hash table. The algorithm can 

also be extended to handle linearly scaled similar subsequences. However, the 

range of scaling factors has to be pre-specified before the hash table is built, thus 

decreasing the flexibility if a different set of scaling factors are needed at different 
time. 

A projection algorithm for similarity matching which considered vertical shift. 

ing and linear scaling was proposed in [LW98]. Besides the Euclidean distance, 
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their criteria for similarity sequences also takes "individual" distance into ac­

count as they argued that the Euclidean distance alone cannot ensure similarity 

in shape. The distance between each corresponding data pair from two sequences 

must not exceed a user defined threshold (J which is the individual distance. Given 

a subsequence of A' = (aI, a2, ... aN) and a query sequence Q = (ql , q2,· .. qN), 

they proved that the following inequality must hold: 

Using this inequality, N-dimensional subsequences can be projected to an (N -1)­

dimensional space. All subsequences that are similar to a basic query subsequence 

must have their projection points inside a bounding box centered at the query 

data projection point. The overall strategy is to first partition a database se­

quence A = (aI, a2, ... an) into t segments where each segment contains nit data 

elements. Then a sliding window of size w is slid over each segment and also the 

query sequence to extract subsequences. All subsequences extracted from each 

segment is projected to a plane forming a search space. Therefore, t search spaces 

are created. Using w = 3, the process of projecting subsequences of the first seg­

ment Sl of sequence onto a search space is depicted in figure 2.2. Although the 

author suggested to use a small t, a query sequence cannot be answered if it 

span over two segments even there exists a similar subsequence spanning over 

two segments. Finally, they proposed to use turning points for handling linear 

scaling problem but, as mentioned in the paper, the algorithm is vulnerable to 

data which is noisy at high frequencies. 

An indexing scheme which can efficiently search for subsequences that are 

similar to a query after scale-shift transformation was proposed in [CW99]. A 

database sequence A = (a1' a2, ... an) is said to be similar to a query sequence 

Q = (ql, q2, ... qn) if there exists a scaling factor s and a shifting offset t such 
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Figure 2.2: An example of projecting subsequences to a 2-D plane. 
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that J 马 q i S + t — diY < e where e is a user-specified error bound. The whole 

searching algorithm is composed of three main steps. The first step is to extract 

a set of subsequences using a window of length n which slides over each data 

sequence. Then these subsequences will be transformed by the Shift Eliminated-

Transformation and the resulting transformed subsequence is indexed into an 

i?-tree. In this transformation T此(萝)，a point 节 ( o r a sequence with length n) 

is projected to the plane which passes through the origin "Ô  and has its normal 

vector in the direction of = (1，1，... , 1) in IT. In the second step, a query 

Q will also be transformed and let the transformed query be.T^eW). Searching 

begins from the root node of the i?-tree built by transformed subsequences. At 

each level, every node's MBR is enlarged by e and if the line tTse{Q) penetrates 

this enlarged MBR, then the node is traversed. When a leaf node is reached, 

the original sequence is retrieved if the minimum point line distance between 

the corresponding transformed sequence and the line 力T此(Q) is within e. The 

last step is to post-process all subsequences retrieved in the second step. Those 

subsequences whose scaling factors and shifting offsets are within user specified 

bounds are reported. Although amplitude domain scaling and shifting are the 

sole consideration in this indexing scheme, our proposed method which considers 

time domain scaling and shifting also adopts their indexing scheme but with some 

modifications. 

2.3 Data Smoothing and Noise Removal 

2.3.1 Piecewise Linear Segmentations 

Piecewise approximation is described as a way of feature extraction, data com-

paction，and noise filtering. A fast algorithm which allows a variable number of 
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segments was proposed by [PH74] in 1974. In general, after an arbitrary initial 

choice on number of segments, segments are split or merged in order to drive the 

error norm under a pre-specified bound. There has been considerable work us-

ing piecewise linear segmentations as the underlying representation in time series 

pattern matching. 

A probabilistic approach for pattern matching using segmentation was pro-

posed in [KS97]. Local features, such as peaks, troughs, and plateaus which are 

captured from the segmented sequence, are defined using a prior distribution of 

the expected deformations form a basic template. Global shape information is 

represented using another prior distribution of the relative locations of the indi-

vidual features. A probabilistic model then integrates the local and the global 

information and directly leads to an overall distance measure between sequence 

patterns based on the prior knowledge. A search algorithm using this distance 

measure was proposed. 

An algorithm deciding the optimal number of linear segments for pattern 

matching was proposed in [Keo97]. The number of linear segments k is chosen 

after an intensive experiment on different numbers of segments. For each number 

the balance of error, which is the variance in segment error, is calculated. 

The k with the minimum value of balance of error is selected for that sequence. 

After applying segmentation to all sequences and also the query sequence, the 

subsequence matching is accomplished by sliding the segmented query Q sequence 

along the segmented database sequence R. The left edge of Q is anchored with the 

left side of every segment in R, The distance is based on the variance of the length 

of the projected lines in between Q and R as shown in 2.3.1. Using this distance 

measurement, they proposed a method to handle longitudinal scaling. However, 

prior knowledges on the maximum stretch and shrink are needed. To begin with, 

two small sub-queries Qi and which are the leftmost and rightmost segments, 
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are extracted from Q. Two searches are done for each of the sub-queries, one 

where the sub-query is being stretched to the maximum amount and one where 

being compressed to the minimum amount. The goodness of fit is computed 

whenever the stressed or compressed sub-query is aligned with any segment of 

the reference sequence. The whole query matching is started with the segment 

having the best goodness of fit with Q, and Q,. This similarity model is further 

extended to handle classification and clustering as proposed in [KP98 • 

Segmented reference sequence R 

projected | I 
lines / \ z 

U I 4 / � 

Segmented query sequence Q 

Figure 2.3: Projected lines between segmented query sequence Q and part of the 

reference sequence R [Keo97 . 

To model subjectivity in information retrieval, an approach using relevance 

feedback from the user to adjust the similarity metric was proposed in [KP99b]. 

Again，segmentation is carried out to every sequence as in [Keo97]. They argued 

that the Euclidean distance metric does not capture many notions of similarity 

between time series, in particular, it is sensitive to various distortions like offset 

translation and amplitude scaling. Depending on the domain and the user, one 

may wish a query to be sensitive or insensitive to distortions of varying degrees. 

They addressed this problem by introducing a profile that encodes the user's 

subjective notion of similarity in a domain. 

Previous work using segmentation did not incorporate an indexing schemer. 
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An indexing algorithm using bins that contains time series subsequences of ap-

proximately the same shape was proposed in [KP99a]. After applying segmen-

tation to every sequence, a sliding window with equi-spaced grid is used. Each 

grid produces a bit decided by the majority sign of the slopes within the grid 

as shown in Figure 2.3.1. The resulting bit-strings from the window are then 

indexed using a set of bins. When the distribution of all subsequences into bins is 

finished, the processing of individual bins takes place. This step simply consists 

of comparing every pair of items in the same bin and precomputing a distance 

matrix for the ease of subsequent pruning. Having the same grid placed over 

the query, it is compared with all bins which are then ordered to improve the 

efficiency of searching. 

\ \ \ \ 
1 0 1 1 

Figure 2.4: Creating bit-string using a sliding window with equi-space grid as 

proposed in [KP99a . 

2.3.2 Approximation Function 

Using families of real-valued functions as an approximate representation was pre-

sented in [SZ96]. They proposed a curve fitting algorithm which recursively sub-

divides the sequence into subsequences, each of which is fitted by a curve (or any 

real-valued functions). The curve-fitting process stops when all points in a subse-

quence is within an error bound e. They demonstrated the curve fitting algorithm 
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using linear interpolation which simply takes as its curve the line interpolating 

the endpoints of a sequence，as shown in Figure 2.5. Using linear interpolation 

as the curve fitting function, they applied it on actual digitized segments of elec-

trocardiograms (ECG) and suggested an indexing scheme for answering “R - R 

interval，，query which looks for two prominent peaks with intervals bounded by 

In summary，they only emphasized on breaking the time series into disjoint 

regions，each of which is approximated by a function chosen from a predefined 

family. However, they did not study the problem of general query processing on 

approximate representations of time series. 

o 
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Figure 2.5: Curve Fitting Algorithm by [SZ96J 

Two specific approximation methods which are wavelet based and line-fitting 

based were proposed in [WWOO]. For wavelet based approximation, they first 

use the standard method to obtain an approximation, and then compare each 

subsequence of the approximation with the corresponding subsequence from the 

original one, and calculate distance between them. If the distance is greater than 
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a threshold, more wavelets in that region are included into the approximation. 

For the line-fitting approach, a linear interpolation approach similar to [SZ96 

was proposed. Starting from the first time point A of the series, the farthest 

point B is found such that distance between each point in-between A and B and 

the line joining A and B is within a certain boundary. The process continues at 

B until the end of the sequence is reached. They give some tradeoffs between two 

approximation methods but again, efficient query processing technique incorpo-

rating into sequence approximation was not discussed. 

2.3.3 Best-fitting Line 

Using best-fitting line to handle movement pattern query was proposed in [YJC98a'. 

A time series matches a pattern if the series can be converted into a word that 

match the pattern. The series is first partitioned into consecutive subsequence of 

some given unit length. For each subsequence, if its distance from its best fitting 

line is within some given tolerance (a monotonic function of the length of the 

subsequence), then a letter to which its best fitting line belong is identified. The 

concatenation of all the letters for all subsequences become the resulting word. 

The classification of a line into a letter is based on its slope which falls into one 

of the three pre-specified disjoint ranges that are associated with three letters 

U (upward), F (flat) and D (downward). Taking the advantage of a dynamic 

programming technique as well as properties of best fitting lines and tolerance 

functions, they proposed an efficient algorithm to pre-compute the best fitting 

lines of all the subsequence and to find the slopes of them if the distances are 

within the allowed tolerances. They also showed that points belonging to a par-

ticular gradient letter are usually clustered roughly into right-angled, isosceles 

triangular shapes. Thus, instead of storing these points individually, triangles 

are used to index them. 
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2.3.4 Turning Points 

Using turning points to approximate database sequence was proposed in [PWZPOO . 

The authors proposed to use first-order turning points (named as Landmark) 

instead of raw data processing. They introduced a smoothing process called 

Minimal Distance/Percentage Principle (MDPP) to filter out undesirable land-

marks. Given a sequence of landmarks {x^yi) ,…， [x^, 2/n), a minimal distance 

D and a minimal percentage P, MDPP process removes the landmarks (x^,队)and 

fe+i, 终 1) if - X i < D and (丨」]^:二" < 尸.Instead of using the Euclidean 

distance, they proposed a two-dimensional dissimilarity measurement function 

that considers time drift and amplitude difference separately. Under the same 

parameters of MDPP smoothing, two sequences of landmarks L = (L i , . . . 

and L' = (L ' l ,… ,L 'J where ^ = and L[ = the distance be-

tween the k-th. landmarks is defined by A(L, L') = L'), L')) 

where S f ' ^ ^ i L . L ' ) = 工知 - 1 : 卞 ) c � ) j , , � _ h/"',丨 rr.. 
知 k , ) ana 0 左 L ) — ( 丨 副 • 之 . T h e dis-

tance between two sequences is A(L,L ' ) = L')||, 广p(L’ Z/)||). After 

the landmarks smoothing process, a set of seven features is extracted from every 

landmark point. Different transformation will be invariant under different sub-

sets of those features. Depends on users' preference on the set of transformations, 

only a subset of those features is needed for indexing using S'^-tree. They also 

presented the upper bounds and lower bounds for the seven features for the ease 

of querying landmark sequences. Although strings of features can be indexed, 

a new indexing structure has to be built if a different set of transformations is 

considered, The similarity of two sequences highly depends on the MDPP param-

eters. If two sequences, one of which may be relatively noisier, are considered to 

be dissimilar under certain MDPP parameters. However, they may be consider 

similar under another set of MDPP parameters. 



Chapter 3 

Time-Series Searching with 

Scaling and Shifting in 

Amplitude and Time Domains 

In this chapter, an approach to find similar sequences which are invariant to 

scaling and shifting in both amplitude and time domains is presented. Using this 

approach, similar subsequences are not necessary to have the same length. The 

idea is to capture critical points and organize them into a lattice structure which 

encapsulates different levels of details about the original time series. Besides 

precomputing a lattice structure, an indexing scheme is also employed to enhance 

the efficiency of evaluating pattern queries. 

3 • 1 Representation 

A good representation or approximation of time series data is important for time 

and me励ry efficiency of the searching algorithm. Specifically, the complexity 
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of searching for subsequences which are similar to the query sequence can be 

very high as subsequences with different lengths may also form such a shape. 

Therefore, we propose a method to find different sets of control points, which 

reside in a lattice structure, to represent the original time series data with different 

error bounds or depth of details. As an example, Figure 3.1 shows two similar 

sequences (A and B) of different lengths and the corresponding control points. 

2001 , 
SeqenceB 

O Seqence B's Turning Points 
Sequence A 

180- 口 Sequence A’s Turning Points -

f � , � _ 

120-/'-、、 y j 
1' \ ‘ 

‘ ‘ A , ' 

100 ，、 凡 ，'、 
、,-•、'、 ‘ 
» ‘ \ \ 
V ' V' 

801 Q_, 
0 20 40 60 80 100 

Figure 3.1: Similar subsequences of different lengths. 

3.1.1 Control Points 

As suggested in [Sch98], trendlines can be drawn using successions of relative 

highs (lows), which are respectively data points higher (lower) than those over 

N prior and N succeeding days. Usually, this kind of data points are referred 

as turning points. TV is a user-defined parameter which has direct effect on the 

resulting trendline. Intuitively, a larger N results in a set of trendlines showing 

a more general view of the time series but those relative highs and lows used can 

represent more significant changes comparing with those derived from a smaller 
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N. The notion of control point is similar to relative highs and relative lows except 

that we do not classify highs and lows (or peaks and troughs) and there is no fixed 

N when extracting control points from the series. In general, a control point is a 

data point that indicates remarkable changes over a certain period of time. We 

only consider control points which are either local maximum or local minimum 

in a time series A = {ai , a), 03, . . . , a^}. 

Definition 1 (TV-day-coverage control point) A local maximum or local min-

z'mwm，dj, is an N-day-coverage control point if N is a maximum integer such 

—t either {Vm G [-N, N],ai > aj+rn) or {Vm G [—iV，iV], en < aj+rn} holds. 

As mentioned in Chapter 1, the coarseness of a shape extracted from a time 

series is inversely proportional to the number of points used in the representation. 

A coarser shape is formed by joining a smaller set of points which can highlight 

the most important changes. By progressively adding relatively less important 

points into the set, the shape for approximation can be refined. Therefore, all 

control points of a time series have to be first sorted according to their importance 

before organizing them in a lattice structure (to be described in Section 3.1.2). 

The goal is to rank the control points such that those which can represent more 

significant changes in the series are ranked higher. 

The value of N for each control point depends on how many neighboring data 

points that are all larger or smaller than it without considering how much they 

differ from it. Using N as the quantitative measure of the importance of a control 

point is not informative enough, because we are interested in the pattern formed 

by a set of control points and the rate of change of data values is a crucial factor -

that affects the pattern formed. Consider the three control points (A, B and 

C) in the time series shown in Figure 3.2. Both points A and B are 10-day-

coverage control points and C is a 5-day-coverage control point. However, point 
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B should be of the least importance among the three control points from the 

shape formation perspective. We therefore propose a measure of the significance 

of a point aj, known as Importance{aj). 

Definition 2 (Importance) Given an N-day-coverage control point, aj, its im-

portance among the series is defined by: 

N 

Importance{aj) = ^ {\aj_i - a � + - a � ) 
i=l 

According to definition 2, points A, B and C have values of N equal to 10, 10 

and 5 respectively but their Importance are 100, 10 and 25. 

i Point A 

1 。 | ' ' ‘ ‘ ‘ ‘ ‘ ‘ 

5 - 丄 PointC 

y® i Point B eT 
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Figure 3.2: Three local maxima: points A, B and C. 

3.1.2 Lattice Structure 

After sorting the time series data according to their relative importance, the 

lattice structure can be constructed. The lattice structure consists of layers of 

control points. These layers are disjoint to each others, that is, a control point 

only appears in one of the layers of the lattice structure. As an example, Figure 3.3 

shows a lattice structure formed by twelve control points, each labelled by its 

index value (time value) in a circle. Each layer of control points together with 

control points from all upper layers form a series that approximates the original 
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Figure 3.3: Example of a lattice structure of a series with twelve control points. 

series. Figure 3.4 shows the actual set of control points used to form features 

from the lattice structure of Figure 3.3. 

C D C l ) ( 5 ) The highest layer 

) Intermediate layers 
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Figure 3.4: Control points used to form features from the lattice structure of 

Figure 3.3 

Before presenting the algorithm on establishing the lattice structure of a given 

time series A = {(axi,ayi), . . • the formal definitions of the lattice 

structure, the segments generated and their properties are first given. 

Definition 3 (Lattice Structure) A lattice structure is defined as follows: It 

consists of N layers of control points. Each layer, layen where z G { 1 , . . . ,7V}, 

tThis is a two-dimensional notation of a series, [axuayi] represents the time-domain value 

{axi) and the amplitude value {ayi) of a point a .̂ 
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has a set of control points CPi where CPi C A. The highest and lowest layers 

are respectively layers and layern. 

The set of control points used for forming an approximation pattern at layeri 

IS CPi U . •. U CPi一 1 U CPi. Having them sorted according to their time-domain 

values (axi), we use this sorted sequence of control points, denote it as Q = 

{{cxijCyi),. ••，{cxm, cym), {cxm+i, cy^+i)} , to form m consecutive segments which 

together form an approximation pattern. 

Definition 4 ( Segment) The j-th segment of laye^ is defined as the following 

line segment 

V - CXj y '' CXj+, - CXj ) t [c 工， c 工 州 J. 

As the segment may not pass through all the data points, we have to compute 

the error distance between the segment and all data points aligned along the same 

time interval. We first define the error induced in each segment in Definition 5. 

Then, based on this segment error, the error of each layer is defined in Definition 
6. 

Definition 5 (Segment Error) The segment error of any segment, Segj, is 

defined as 

SegErrj = ^ \Segj{ax) 一 ay 

/ or all {ax, ay) satisfying cXj < ax < cxj+i and {ax, ay) e A. 

Definition 6 (Layer Approximation Error) The layer approximation error 

of any layer, layevi, is defined as 

Layer Err i = maxf^^{SegErrj) 
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A lattice structure has the following three properties: 

Property 1 (Compactness) The sets of control points at different layers are 

disjoint to each other, that is，for any i + j, CPi 门 CPj = 0. 

Property 2 (Significant-Feature-First) For any control point {cxj,cyj) in 

Ci, it must be the most important point among all control points located between 

its two adjacent control points which are (crTj—i，and {cxj^cyj). Formally, 

the following should hold 

Importance((cXj, cyj)) > Importance({cxi, cyi)), 

where cxj^i < cxi < cxj^i. 

Property 3 (Feature Refinement) For any two different layers, layevi and 

layer j where i, e {1，...，N), Layer Err i < Layer Err j j. 

The approximation error is monotonically increasing from that of the highest 

layer {LayerErri) to that of the lowest layer {LayerErrj^). As mentioned in 

Chapter 1, sequence approximation can be subjective, users may control the 

coarseness of the patterns extracted by restricting the approximation error bound 

with an upper limit and lower limit, say [e邵,则].In other words, the constructed 

lattice structure should have Layer Err i < £邵 and Layer Err n > Siow 

3.1.3 Algorithm on Lattice Construction 

The algorithm applies a top-down approach to construct the lattice structure 

from layeri to layern. Figure 3.5 shows the pseudo-code of the algorithm. For 

each iteration of loop LI, a set of control points will be chosen for the newest layer 

formed {newJayer) and inserted into the lattice structure {Lattice[newJayer]). 
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Each control point selected [selected.CP) has the largest value of Importance 

either among all control points (if no control point has been selected yet) or within 

a segment with the largest segment error among all the segments formed by the 

set of previously selected control points (new.CP.set). The largest segment error 

before {pre.SegmentErr) and after (post.Segment Err) inserting the selected 

control point into the set {new.CP.set) will be compared. If the largest segment 

error is increased after the insertion, the selected control point failed to minimize 

the maximum segment error. This phenomenon is due to the trough-to-trough 

or peak-to-peak problem as shown in Figure 3.6. Further control points have 

to be selected in loop L2 for such problem and also if the maximum segment 

error exceeds the user specified bound (e^p). Finally, the set of selected control 

points will only be included into the new layer if the layer error (or the maximum 

segment error) is not below the user specified lower bound (siow)-

3.2 Pattern Matching 

With a lattice structure holding different layers of patterns of a time series sub-

jected to an approximation bound [eup.Siow], a query on existence of certain pat-

tern can be answered without scanning all the raw data in the time series. The 

definition of similarity is based on linear scaling and shifting in both the time 

and the amplitude dimensions. In the following sections, a definition of similar-

� ity between a query pattern Q = {(gx^qyi),. •. ,(qXn-uqyn-i),(gXn, qVu)} and a 

sequence of control points C = {{cxucyi),... c?/„)} and the 

error measurement of matching will be given. With control points holding differ-

ent layers of features subjected to different error bounds, a query on existence of 

certain shapes under an error bound e can be answered without checking every 

data in the series. We claim that the subsequence, bounded by the control points, 
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Lattice Construction Algorithm 
I叩ut: A = (ai’ a2，•.. ’ an), £邵，Siow 
Ouput: Lattice[] 

LatticeConstruction(A, Sup, eiow, Lattice) 

n 卜 total number of control points; 
new-layer ^ 0; 

new-CP set ^ 0; 
old-CP-set — 0; 
i ^ 0 

while (i < n) / * Loop LI * / 
do / * Loop L2 * / 

if (new-CP-set = 0) 
selected-CP select the most important point among series A; 

else 

selected-CP — select the most important point within the segment 
with the largest segment error; 

end if 

preSegmentErr ^ compute largest SegmentErr; 
new.CP.set new—CPset U selected—CP\ 

post.SegmentErr compute largest SegmentErr; 
while (pre.SegmentErr < post—Segment Err or post Segment Err > e邵)； 

if {postsegmentErr > siow) 

new—layer ^ new—layer + 1; 

Lattice[new-layer] — new-CP 一 set 门 old-CP set., 

old-CP set ^ new-CP set-, 

else 

break the outermost while loop; 
end if 

end while 

Figure 3.5: Lattice Structure Construction Algorithm. 
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^ newly chosen point 

o O o 
O ^ a segment undergoing breakage 

Figure 3.6: A peak-to-peak problem after a point is chosen for breaking up a 

segment. 

forms a similar shape with the query if the shape of the query and those control 

points are similar with respect to a threshold. 

The definition of similarity is based on linear scaling and shifting transfor-

mations in both the time and the amplitude dimensions. Figure 3.7 is used 

as an example to demonstrate the effects of scaling and shifting on sequence 

similarity. In this figure, four sequences are claimed to be similar. They are 

A = { ( 1 , 5), (2, 10), (3’ 6), (4, 12), (5, 4)}，B={(1，10), (2, 20), (3，12), (4, 24), 

(5, 8)}，C={(1, 25), (2, 30), (3，26)，（4, 32), (5, 24)}, D = { ( 1 , 2.5), (1.5, 5)，（2, 3), 

(2.5, 6)，(3, 2)} . Although they are different time series, they are closely related. 

B can be obtained after scaling A along the amplitude axis by a factor of 2; C 

can be obtained from A by shifting along the amplitude axis up by 20 units. If 

B is scaled along the amplitude axis by a factor of 0.5 and then shifted up by 20 

units, it becomes C. Moreover, if the interval between data points of A is scaled 

by a factor of 0.5, it becomes D. A, B, C and D are essentially the same when 

suitable scaling and shifting transformations are applied. 
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Figure 3.7: Examples of scaling and shifting transformation. 

3.2.1 Formulating the Problem of Similarity 

Consider each {qxi, qyi) and (cxj, cyi) where z 6 [1, n] as a 2D coordinates such 

that the query series Q and series of control points C can be visualized as polylines 

in a 2D space. Our problem is to find an optimum way to scale and translate series 

Q such that the resultant shape best matches C or vice versa. 

Before solving the problem, clear definitions of scaling, translation and best 

matches are given. We use homogeneous coordinates (affine space) so that we can 

represent both 2D scaling and translation with a single 3 x 3 matrix. Therefore, 

each of the 2D coordinates, [qxi,qyi), is now transformed into (qxi,qyu 1) (affine 

transformations). Next, we define s^ and Sy as the scaling on X and y-dimensions 

respectively and also, t^ and ty as the translation on X and y-dimensions respec-

tively. In this way, we can formulate the following matrix to describe a unique 
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2D scaling and translation, 

x̂ 0 tx 

0 Sy ty . 

Hence, we are ready to apply this transformation on each point {qxi, qyi) in Q 

and obtain their transformed positions by 

/ a , \ ( \ 
Sx 0 qXi 

0 Sy ty qyi • 

� 0 0 1 八 l y l 

Furthermore, we can define the error concerning this scaling and translation on 

Q. Let E be the error such that 

/ . , \ / \ / \ ^ 
S^ U b^ Q 00 COC 

E = I 0 Sy ty qyi - cVi • (3.1) 

I " 1八 1 J vv 
Consequently, our matching problem becomes a minimization problem such that 

we have to find Sx^ Sy, tx and ty that minimize E. Furthermore, we can transform 

E into a simplified form by making use of the independence in dimensions, 

/ . , \ / \ / \ ^ 
S ̂  L) "C 工 (^OC ̂  COCj^ 

Tt 
^ = 0 Sy ty qyi — CVi 

_ + 「 2 21 
=Z^ {qXiS：, + Q — cXi + {qViSy + ty) — cyi 

i=i 
n n „ 

E r 2-1 „ r 2-1 
_ (q工iSx + tx) - CXi J + Z- / [ (msy + ty) — cyi 

i=l 1=1 

= E , + Ey. 

With this derivation, our matching problem can further be simplified such 

that we can minimize E^ with respect to s^ and t^ and Ey with respect to Sy and 



Chapter 3. Time-Series Searching with Scaling and Shifting in Amplitude and 
Time Domains 25 

ty independently. Therefore, to minimize E, we can minimize Ex and Ey. Since 

Ex and Ey are structurally the same, the following derivation will be based on 

Ex. Recall that 

“ 「 2-1 
Ex = y^, {qXiSx + tx) - cXi . 

i=l 
To minimize Ex, we can first take partial derivative on Ex with respect to Sx and 

^ ^ = 2 ̂ [(qXiSx + tx) - cXi\qXi 
彻工 i二 1 

dEx V — ^ p , 、 

= ^ i^m^iSxtx) - CXi • 

dE^ dE^ 
Putting —~~ = — ~ = 0 into these two equations yields 

as 工 dt^ 
n 

^[(qXiSx + tx) — cXiJqXi == 0 
i=l 

n 

+ tx) - CXi] = 0 

and re-arranging s^ and t^ as the subjects, we have 
n n n 

(YIq^I)Sx = Y^(cxiqxi) 
i二 1 i=l i=l 

n n 

( y ^ qoCi)s工 + ntx = y^^(cxi) • 
i=l 1=1 

Now，we define 

‘P2 = Er=i 狄？ 

Pi = 
< 

Q2 = Yl^=i{cxiqxi) 

、Qi = ⑷ 
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and obtain 

f p . pA = (Q.\ 

\Pi ri) \txj \Qi / 

Solving the equation gives 

—PiQi - nQ2 
p2-nP2 

and 

,P1Q2 - P2Q1 
Pi - nP2 • 

Similarly, we can apply the same technique to find Sy and ty to minimize Ey. 

More precisely, we denote this set of values as s^o, txo, Syo and tyo so as not to 

confuse with 8工，t工,Sy and ty. Since they minimize E工 and Ey, E can also be 

minimized as E^ and Ey are independent. As a conclusion, s^o, txO, Syo and tyo 

will guarantee to minimize the square fitting error so that the query Q can best 

match with control points C. 

3.2.2 Error Measurement 

Up to now, we can find s^o, t^o, Syo and tyo for the best matching. However, we 

still need to measure how good Q matches C under this set of values. Regarding 

this, we substitute s⑷，t工o, Syo and tyo back to Equation 3.1 so that we can find 

the minimum error, say Emm-

Intuitively, from the definition of E, E is the sum of Euclidean distance be-

tween each corresponding points in C and the transformed Q. Here, we have to 

note that if the sequence data in Q or C are large numerically, the resultant Emin 

would be large even if the two series just deviate from each other slightly. To 

isolate the sizing effect of Q and C, we first look at the formulation of Emin, 

Emin — Efninx + Eminy ‘ 
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Note that E—n has two components Eminx and Eminy that corresponding to the 

minimum error terms in X and y-dimensions. By taking into account the range 

of data in both time and amplitude domains, we propose another error definition 

defined in Definition 7. 

Definition 7 (Relative Minimum Error) The relative minimum error between 

the query sequence and a control sequence is defined as 

E 画 伞 = + (3.2) 
rqxrcx ^QyVcy 

where tq^ is the range of Q in X-dimension, that is max{qxi) - min{qxi). Sim-

ilarly, TQy, rcx and rcy are the range of Q in Y, range of C in X and range of 

C in Y respectively. 

Therefore, to decide the matching error, we consult Emin<t> instead of Emin-

3.3 Indexing Scheme 

With the lattice structure, different shapes are captured at different layers. Given 

a query on a certain shape, sequential search for similar shapes is possible by 

traversing every control point at each layer. However, if a large set of time series 

(for example, different kinds of stocks) is needed to be processed and in turn 

forming large lattice structures, it would be wise if an indexing scheme can be 

applied to improve the searching performance. To achieve this, the indexing 

scheme proposed by Chu and Wong [CW99] can be modified and integrated with 

the lattice structure. The integrated indexing scheme significantly reduces the -

number of retrieved control points. However, there can be false alarms. Hence, 

post-processing on every set of control points to reject unqualified sets is needed. 
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3.3.1 Indexing with scaling and shifting proposed by Chu 

and Wong 

In the work of [CW99], an indexing scheme which can efficiently search for any 

subsequences that are similar to a query after scale-shift transformation was pro-

posed. The transformation is one dimensional along the amplitude domain. 

To better illustrate the integration of this indexing scheme and the lattice 

structure, we rewrite the transformation with our notation: Denote a subse-

quence C = {{cxi, cyi), (cx2,01/2),... , {cXn, cyn)} and a query sequence Q = 

{[qxi, qyi)八 qcc2, qy2),... , [qXn,qyn)� . The Euclidean distance between C and 

Q after scaling and shifting Q by a factor of Sy and an offset of ty respectively is 

defined as 

n 

D(Q, C, Sy, ty) = E((棚 Sy + ty) _ C?/,) 2 • (3.3) 
\ i=l 

C is similar to Q if there exists a scaling factor Sy and a shifting offset St such 

that D{Q,C, Sy,ty) < e. 

The mechanism: Each subsequence is transformed by the SE-Transformation^ 

and the resulting subsequence is inserted into an R-tree, in which each of its non-

leaf node is bounded by a minimum bounding hyper-rectangle (MBR) defined by 

two end points, L = {luh,--- , Q and 丑 = ( " 1 ’ /12’. ••’ K), k < hi iorl<i< n. 

A query Q is also transformed by the SE-Transformation and let the transformed 

query be Tse{Q). Searching begins from the root node of the R-tiee built by 

transformed subsequences. At each level, every node's MBR is enlarged by e and 

if the line tTse{Q) penetrates this enlarged MBR {L' = - — e , . . . ’ - e) -

tin 况 p o i n t 节(or a sequence with length n) is projected by the Shift-Eliminated (SE) 

Transformation Tse(节)to the plane which passes through the origin and has its normal 

vector in the direction of 二（1,1 I) in 况 
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and H' = (/ii + e, h2 + e,...人+ e))，then the node is traversed. When a leaf node 

is reached, the original sequence is retrieved if the minimum point line distance 

between the corresponding transformed sequence and the line tTse{Q) is within 

e. 

3.3.2 Integrating with lattice structure 

The above indexing scheme cannot be directly applied to our lattice structure as 

the error definition (Equation 3.3) is different. The error definition in the indexing 

scheme, D{Q,C, Sy,ty), assumes the query sequence Q and any subsequence C 

have the same data interval. In contrast, the control points at each layer in the 

lattice structure are not necessarily equally spaced along the time axis. Our error 

definition, Emin<p (Equation 3.2)，has thus taken time interval into account and 

allows scaling and shifting in both time and amplitude domains. 

To integrate our definition of Emincp with the R-tiee indexing scheme, we 

can first temporarily set aside values from one dimension, assuming the query 

and all subsequences have equal values in the disregarded dimension and index 

the other dimension. Intuitively, amplitude domain should first be indexed while 

time domain should be set aside since time intervals within a subsequence usually 

have small deviations, but amplitude domain contributes to different features that 

people concerns about (for example, chart patterns). 

Using standard deviation as a measure, we have carried out an experiment 

to compare the dispersion of subsequence's data intervals and data values. 500 

lattice structures built from S&P500 historical stock data with approximation 

error bound [Sup = 2^0,Siow = 50] have been analyzed. For each sliding window 

with size ranging from 3 to 12，we extracted subsequences from each layer of 

every lattice structure. The standard deviations of in data intervals and data 
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values of each subsequence are computed. Both the average standard deviations 

on amplitude and time domains of all the extracted subsequences against different 

sizes of sliding windows are plotted in Figure 3.3.2. This experiment showed that 

data values are more disperse than data intervals regardless of the size of the 

sliding window. As the size of sliding window increases, data values are shown to 

be much more disperse than data intervals. In searching for similar patterns of 

interest, considering time domain in advance may therefore result in higher rate 

of false alarms. This may deteriorate the searching performance as variations in 

data intervals are in general smaller compared with data values. 
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Figure 3.8: Average standard deviations of subsequences' time-domain and 

amplitude-domain values against the size of subsequences (size of sliding win-

dow). 

Now, at the preliminary searching stage, we assume subsequences and the 

query sequence have the same data interval between corresponding pair of data. 

Referring to our error definition in the time domain, we have E^inx equals to 

zero. By rearranging equation 3.2’ we have 

pp _ / rp ^minx \ 
^miny = [J^min<t> j^Qy^Cy . 

^QxTCx 
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Given the searching criteria Emin<i> of a query Q(qXi, qy )̂ where i e [1，n], any 

qualifying patterns C{cXi,cyi) must satisfy 

771 ^ / 771 ^minx \ 
^miny S (必 min0 POyfCv 

rqxrcx 

^ Emin(f>T^QyrCy . 

Thus, if Eminx is neglected, the error bound {Emin<t>rQyrcy) for searching simi-

lar patterns in amplitude domain will be larger, ensuring that no qualified control 

point sequence is missed. Note that Eminy has one variant (r^y) which depends on 

the range of data values. Therefore, searching the SE transformed subsequence 

in an i?-tree would not have a fixed e for MBR enlargement. Instead, at each tree 

level, every node's bounding box is enlarged from {L,H) to {L",H") 

L" = (“ — y/Emind/TQyrcy, k - \/Erni一rQyrcy,…，ln- \/Emincj>rQyrcy) 

H" = + y/Emincf/rQyrcy, h: + ^ Emin4>rQyrcy,...,‘ + y/E—rQjcy) 

where rcy = max{hi) - min{li) and rqy = max(qyi) - min(qyi). When a leaf 

node is reached, the original control points of those transformed subsequences 

should be further checked against the query. Those control points with relative 

minimum error Emincp larger than the user specified error bound should be re-

jected. More criteria can also be imposed on scaling factors and shifting offsets 

in both time and amplitude domains. 

3.4 Results 

Experiments were carried out using historical data (from 6/16/1999 to 6/15/2000) 

of S&P 500 stocks. Every stock (open price only) is first pre-processed into a 
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lattice structure with approximation error bound [sup = 250, £iow = 50]. Fig-

ure 3.9(a) shows the second layer of lattice structure of American Online and a 

"W，，shape (highlighted by a thicker line) was formed by five consecutive control 

points starting from the second leftmost one. For instance, a query on this shape 

is carried out to all other stocks using sequential search. The query results are 

restricted by the two scaling factors (5^ > 0.3, Sy > 0.3) and the relative minimum 

error {Ernin(l> < 0.037). Seven sequences of control points were reported to have 

satisfy the query constraints and they are shown in Figure 3.9 (b) to (h). 

Using the same set of lattice structures, an experiment on searching the same 

query pattern was performed using our proposed indexing scheme and a compar-

ison on searching performance was made. The dimension of the i?-tree is equal 

to the five which is the same as of query sequence. A window of length five is 

placed and slid over each layer of every lattice structure. As the control points 

of any upper layer in lattice structure is the subset of its lower layer, there may 

be duplicates of the five extracted control points while the window slid over layer 

by layer. To ignore any duplicated set of control points, another i?-tree was built 

to index time domain values (0x1,0x2,...，cx^) of the set of control points whose 

data values (q/i，q/2，... , q/5) had already been SE-transformed and indexed into 

the R-tree. Thus, each set of control points are first checked against the time 

domain indexing structure to avoid unnecessary duplications. With this indexing 

scheme，the query pattern in Figure (3.9a) requires 2.1 seconds user time (not 

� including preprocessing time) whilst sequential search requires 42 seconds search-

ing time. To further compare the performance between the sequential search and 

the indexing scheme, 10 queries were performed for different error bounds and 

the average user time used were collected. Their performances are plotted in ‘ 

Figure 3.10. 
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Figure 3.9: The "W" shape found in layer 2 of American Online's Lattice struc- . 

ture(as shown in chart (a)) was used as a query pattern. Query results are marked 

by crosses and are highlighted and are shown in charts (b) to (h). 



Chapter 3. Time-Series Searching with Scaling and Shifting in Amplitude and 
Time Domains 25 

—Sequen l i a ] Search 

45 r , , , , , , J 寺 Indexing Sehcmc 

1 h H H h •+ H 1 1-

40 - . 

35 - -

30 • . 

I25- . 
I 
120- -

15 - . 

10 - . 

5 • . 

e o 
( A - ~ ^ : “ 1 J • • 

0 0.0 丨 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 O.I 
Relative Minimum Error Bound 

Figure 3.10: User time versus Relative Minimum Error of sequential search and 

our indexing scheme 



Chapter 4 

Chart Patterns Searching for 

Chart Analysis 

In this chapter, a novel approach of finding meaningful chart patterns using crit-

ical points is proposed. Identifying prototype patterns has been a major issue 

in chart analysis. The identified chart patterns are useful in forecasting future 

trend. While one-day patterns (like gaps and spikes) can be easily identified, 

reversal patterns (like wedges) and continuation patterns (like triangles) can not 

be trivially retrieved . 

4.1 Chart Patterns Overview 

The most popular charting method is the bar chart (or the candlestick chart). 

A bar chart is plotted using the highest, the lowest and closing stock price. As 

an example, Figure 4.1 shows a bar chart of the stock price of Sun Microsystems 

adapted from [sto]. The top and bottom ends of a vertical line represents the 

daily high and daily low respectively whilst the daily closing price is represented 
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by a horizontal line. In this example, the chart is plotted from daily data but it 

can also be plotted from weekly data. 

“High/Low/Close Bars — H — — " " | — 寸 十 | ——丨so 
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Figure 4.1: An example of Bar Chart using the stock price of Sun Microsystems. 

Chart analysis is the process of recognizing and interpreting of individual 

patterns from a bar chart. Technically, these patterns are categorized into three 

main types, namely one-day patterns, continuation patterns and reversal pat-

terns [EM97]. One-day patterns are found easily by examining each vertical line 

with its adjacent vertical lines. Gaps, spikes and reversal days are examples of 

one-day patterns. A gap day is one with its low being above the previous day's 

high or its high being below the previous day's low; a spike is a day whose high 

is sharply above the high of the preceding and succeeding days; a reversal day is 

a day that witnesses a new high in an upmove followed by reversing to a close 

below the preceding day's close. In contrast to one-day patterns, continuation 

patterns and reversal patterns are formed within long-term trends. Both patterns 

need careful examinations of trends and sharp changes over a period of time. 

We propose a novel approach that automatically identifies reversal and con-

tinuation patterns using critical turning points. These two categories have several 

major types of patterns that are commonly used by stock analyst and the expla-
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nation of these chart patterns in Sections 4.1.1 and 4.1.2 are adapted from [sto . 

Figures 4.2 and 4.3 show different bar chart patterns which are of reversal type 

and continuous type respectively. The close price indicator is omitted as it does 

not contribute to the chart pattern formation. Again, the top and bottom of 

the vertical lines represent day highs and day lows. A detailed description of the 

formation of these patterns is described in the following subsections. 

4.1.1 Reversal Patterns 

In general, a reversal pattern implies that the previous trend will be reversed when 

the pattern is complete. Here is a list of such patterns that can be identified by 

our method. 

Falling Wedge (Figure 4.2 (a)): It is a pattern that begins wide at the top and 

contracts as the price drops. The overall price pattern forms a cone that slopes 

down as the highs and lows converge. There should be at least two highs to form 

the upper trendline and two lows to form the lower trendline. Each high (or low) 

should be lower than the previous high (or low). 

Rising Wedge (Figure 4.2 (b)): It is a pattern that begins wide at the bottom 

and contracts as the price rises and the trading range narrows. There should be 

at least two highs to form the upper trendline and two lows to form the lower 

trendline. Each high (or low) should be higher than the previous high (or low). 

Head and Shoulders Top (Figure 4.2 (c)): It contains three consecutive peaks 

with the middle peak (head) being the highest and two roughly equal and lower 

adjacent peaks (shoulders). There are two lows which respectively mark the end 

of the left shoulder and beginning of the right shoulder. The line joining these 

two lows is called a neckline. 

Head and Shoulders Bottom (Figure 4.2 (d)): It can be referred to as the 

inverse of head and shoulders top. It forms after a downtrend, and its completion 
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(g) Triple Top (h) Triple Bottom 

Figure 4.2: Reversal Patterns. 
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Figure 4.3: Continuation Patterns. 



Chapter 4. Chart Patterns Searching for Chart Analysis 52 

marks reverse change in trend. It encompasses three consecutive troughs (lows) 

with the middle trough (head) being the deepest and the two adjacent troughs 

(shoulder) being shallower. There are two highs which respectively mark the end 

of the left shoulder and beginning of the right shoulder. The line joining these 

two highs is called the neckline. The neckline should be roughly horizontal. 

D o u b l e T o p (Figure 4.2 (e)): It forms after an extended downtrend. It is made 

up of two successive peaks (highs) which should be roughly equal and with a 

moderate trough (low) in between. 

Double Bottom (Figure 4.2 (f)): It forms after an extended uptrend. It is made 

up of two successive troughs (lows) which should be roughly equal and with a 

moderate peak (high) in between. 

Triple Top (Figure 4.2 (g)): It is a pattern formed by three highs which should 

be reasonably equal, well spaced and mark significant turning points. They do 

not have to be exactly equal but at least equivalent to each other. 

Triple Bottom (Figure 4.2 (h)): It is a pattern formed by three lows which 

should be reasonably equal, well spaced and mark significant turning points. 

They do not have to be exactly equal but at least equivalent to each other. 

4.1.2 Continuation Patterns 

A continuation pattern implies that the previous trend will resume when the 

pattern is complete. Here is a list of such patterns that can be identified by our 

method. 

Ascending Triangle (Figure 4.3 (a)): It can be also referred to as a right-

angle triangle. Two or more highs, with reasonable proximity of each other, form 

a horizontal trendline at the top. Two or more rising lows form an ascending 

trendline that converges on the horizontal trendline. Each of these rising lows 

should be in between two highs of the top horizontal trendline. 
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Descending Triangle (Figure 4.3 (b)): It can also be referred to as a right-

angle triangle. Two or more lows, with reasonable proximity of each other, form 

a horizontal line at the bottom. Two or more declining peaks form a descending 

trendline above that converges with the horizontal line as it descends. Each 

of these declining highs should be in between two lows of the top horizontal 

trendline. 

Symmetrical Triangle (Figure 4.3 (c)): It can also be referred to as a coil 

which is wide at the beginning and narrowing over time. At least two highs and 

two lows are required such that two trendlines form a symmetrical triangle. The 

second high should be lower than the first and the upper line should therefore be 

sloping down. The second low should be higher than the first and the lower line 

should therefore be sloping up. 

Price Channel (Figure 4.3 (d)): It is a pattern that may be sloping up or down 

and is bounded by an upper and lower trendlines which are parallel to each other. 

Rectangle (Figure 4.3 (e)): This pattern is easily identifiable by two comparable 

highs and two comparable lows. The highs and lows can be connected to form 

two parallel lines that make up the top and bottom of a rectangle. 

4.2 Representation 

As in finding patterns in a time series, a good data representation is also essential 

in finding chart patterns. All patterns described in Section 4.1 are formed by 

an upper trendline and (or) a lower trendline which are roughly constructed by 

joining a set of highs and lows. Therefore, trendlines are crucial representations 

for mining chart patterns, particularly when processing a massive set of highs and 

lows. Finding the appropriate set of highs (lows) for the upper (lower) trendlines 

is one of the major challenges in finding patterns in charts. As will be shown in 
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this section, traditional method of trendline formation is not suitable and flexible 

enough for identifying chart patterns. Therefore, we propose a new method in 

constructing the upper and lower trendlines. After forming the upper and lower 

trendlines individually, we have to view the chart as a whole and prepare for 

searching. This is done by forming a set of trendline pairs, each of which composed 

of a portion of upper trendline and lower trendline. These trendline pairs can be 

considered as basic units for later chart pattern classifications. 

4.2.1 Trendline Preparation 

One standard definition of an uptrend (downtrend) is a succession of higher (lower) 

highs and higher (lower) lows [Sch98]. Thomas DeMark claimed that the drawing 

of trendlines is a highly arbitrary process [Dem94]. Presented with the same 

chart, different people will intuitively draw different trendlines, and even the same 

person might draw different trendline at different times. DeMark's methodology 

for defining trendlines is explained by the following definitions: 

Definition 8 (Relative High) A relative high refers to a day with its daily high 

higher than that of the N prior and N succeeding days, where N is a user-defined 

parameter. 

Definition 9 (Relative Low) A relative low refers to a day with its daily low 

� lower than that of the N prior and N succeeding days, where N is a user-defined 

parameter. 

Definition 10 (Downtrend Line) A downtrend line is defined as the line con-

necting the most recent relative high and the most recent preceding relative high 

that is also higher than the most recent relative high. 
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Definition 11 (Uptrend Line) The uptrend line is defined as the line connect-

ing the most recent relative low and the most recent preceding relative low that is 

also lower than the most recent relative low. 

Successive downtrend lines and uptrend lines can be drawn based on Defini-

tions 8 to 11. Depends on user's preference, the drawing of downtrend (uptrend) 

line is not restricted by using relative highs (lows) only but relative lows can also 

be used. Figure 4.4 shows successive downtrend lines and uptrend lines drawn 

using iV = 5, A/" = 9 and TV = 13 respectively. As can be seen from the figures, dif-

ferent values for N yield very different trend lines. The lower the value of N, the 

more frequently the downtrend lines and uptrend lines are redefined. Schwager 

stated that the choice of N is strictly a matter of subjective preference [Sch98 . 

Generally speaking, short-term traders gravitate to low values of N and long term 

traders prefer to use high values. 

Although relative highs and lows constructed by the parameter N can mark 

long term or short term changes, their spacing or distribution over a period of 

time are not considered. To become a qualified chart patterns, however, those 

relative highs and relative lows need to be properly spaced and able to mark 

significant turning points. In order to meet such requirements, we propose some 

modifications to the selection of relative highs, relative lows, and the subsequent 

trendline drawing process. 

To mark out significant turning points, a quantitative measurement that fa-

cilitates the comparison of importance of a set of highs or lows over a period of 

time is essential. Solely using the parameter N cannot give comparison among 

all relative highs or relative lows which are selected by this single parameter. 

Moreover, a relative high or a relative low can be chosen more than once with 

different values of N. Although it is possible to mark out significant changes by 
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Figure 4.4: Succession of downtrend and uptrend lines 
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using a larger value of parameter N, the spacing is unpredictable. Instead of 

fixing this parameter, we inspect the extend that each relative high or relative 

low can cover. To make ranking of importance feasible, we thus define the term 

max-iV for relative high and relative low as follows: 

Definition 12 (max-7V Relative High) A daily high is higher than the high 

on at most N prior and N succeeding days. 

Definition 13 (max-7V Relative Low) A daily low is lower than the low on 

at most N prior and N succeeding days. 

Therefore, different relative highs (lows) will have different max-A/" values and 

each of them should have a unique max-7V value. For example, if a relative high 

which is at most 5 days higher than its preceding and succeeding high, then it is a 

max-5 relative high. Therefore, max-TV can be used for comparing the significance 

among relative highs or relative lows over a period of time. Figure 4.5 shows the 

pseudocode for computing the max-A^ of each high and low in a given series. 

Another issue in qualifying a chart pattern is the way that highs and lows 

used in making trendlines are spaced. Again, it is subjective but one can specify 

the ideal spacing using a range which simply denotes the minimum distance (we 

denote it as min.dist) and maximum distance (we denote it as max.dist) between 

adjacent highs or lows. Our definition of trendlines ensures good spacing of highs 

or lows, and at the same time marks significant turning points. The semantics of 

downtrend and uptrend lines which are previously stated in Definitions 10 and 

11 are preserved. However, we need to enforce the drawing of trendlines by using 

Max-iV relative high and Max-A^ relative low instead of a fixed parameter N. 

Given the two user-defined parameters {min.dist and max-dist), the following 

definitions show how upper trendlines and lower trendlines are drawn using Max-

N relative high and Max-A^ relative low respectively. 
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Rating Relative Point 

Input: price[1 -)• num.days],iy^Q 

Output: max_N[l -> num.days\ 

for index = 1 to num_days { 

days = 0; 

if index < num_days - index 

coverage = index - 1; 

else 

coverage = num_days - index; 

switch{type} { 

case 'high'： 

for j = 1 to coverage { 

if price[ index ]<price[ index - j ] or price[ index index + j ] 

break for loop; 

days = j 

} 
case 'low'： 

for j = 1 to coverage { 

if price[ index ]>price[ index - j ] or price[ index ] ¥ i c e [ index + j ] 

break for loop; 

days = j; 

} 
} 
max-N [index] = days; 

J 

Figure 4.5: Rating Relative Point Algorithm. 
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Definition 14 (Upper Trendline) The upper trendline is defined as the line 

joining the formerly chosen relative high and a succeeding Max-N relative high 

which is at least min.dist and at most max.dist away from the former relative 

high, and there is no max-N' relative high such that N' > N. 

Definition 15 (Lower Trendline) The lower trendline is defined as the line 

joining the formerly chosen relative low and a succeeding Max-N relative low 

which is at least min.dist and at most max.dist apart from the former relative 

low, and there is no max-N' relative low such that N' > N. 

Based on Definitions 14 and 15 for finding succeeding relative highs and rel-

ative lows, trendlines will be continually generated as new relative highs and 

relative lows are chosen while traversing along the time line. Figure 4.6 shows 

the pseudocode for generating successions of trendlines using either highs or lows. 

As an example, with the stock prices in Figure 4.4, the upper trendlines and lower 

trendlines which are defined using Definitions 14 and 15 are shown in Figure 4.7. 

4.2.2 Trendline Pair 

The upper and lower trendlines together enclose all highs and lows forming a form 

a price envelop. It is possible that some portions of this price envelop can form 

valid chart patterns as described in Section 4.1. However, it is not practical to 

check every portion of the price envelop against all kinds of chart patterns and 

find their maximum likelihoods. In addition, the number of relative highs and 

relative lows which are involved in forming a chart pattern is not fixed. 

Instead of searching a complete chart pattern in an atomic manner, we propose 

to decompose the price envelop into small pieces called trendline pairs which 

can be considered as basic units for later pattern recognition. A trendline pair 
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Trendline Establishing Algorithm 

Input: min_dist,max_dist,max_N[l-^num_days] 

Output: trend[1 ^num_trendlines] 

index = 0; 

while index < num.days - max_dist { 

index = index + 1; 

best_so_far = -1； 

idx_best_so_far = -1; 

for i = (index + min_dist ) to (index + max_dist) { 

if max_N[i] > best_so_far { 

idx_best_so_far = i; 

best_so_far = max_N[i]; 

} 
} 
index = idx_best_so_far; 

trend [num_trendlines] = index; 

num.trendlines = num.trendlines + 1; 

J 

Figure 4.6: Trendline Establishing Algorithm. 
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Figure 4.7: Successions of upper and lower trendlines drawn using minMst =15 

days and max.dist = 35 days. 

is composed of an upper trendline and a lower trendline which are respectively 

formed by two relative highs and two relative lows. The time periods of the upper 

trendline and lower trendline must overlap in order to form a trendline pair. Let 

U = ( 肪 h •. • , RHn) be the series of n relative highs for establishing a succession 

of upper trendlines and L = (Rh,..., RLm) be the series of m relative lows for 

establishing a succession of lower trendlines where RHi = {RHTi.RHPi) and 

RLj = {RLTj, RLPj). RHTi and RLJ] denote the time value of the z-th relative 

high in U and the j-th relative low in L respectively, and RHPi and RLPj denote 

the corresponding prices. Therefore, the i-th upper trendline is represented by the 

line joining [RHTi, RHPi) and and the j-th 
upper trendline 

is represented by the line joining (RHTj .RHPj ) and RHPj+, ) . These 

notations are illustrated in Figure 4.8. 
、 

The following is a formal definition of a trendline pair. 

Definition 16 (Trendline Pair) Given U = 卿 , 嗎 , . . . ， 叫 and L = 

{RLi,RL2, .. •’ RHm), any consecutive pairs of relative highs RHi+J and 

rek,切 e lows (RLj, RLj^,), where 1 < i < m andl < j < n, form a trendline pair 

让 satisfies the overlapping condition: {RLTj < RHTi+i A RHT] < RLTj+i}. 
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Figure 4.8: Notations for relative highs and relative lows which form a price 

envelope. 

A trendline can be involved in forming different trendline pairs depending on 

the values of min.dist and max.dist used in forming the upper and lower trend-

line. In general, a trendline can project up to L ^ f J g J trendline pairs. Figure 4.9 

shows three scenarios in which one, two and three trendline pairs are projected 

from an upper trendline. Figure 4.10 shows the pseudocode for generating a full 

set of trendline pairs from a succession of upper trendlines and lower trendlines. 

Starting from the leftmost upper trendline, every upper trendline is compared 

with one or more lower trendlines. The variable first points to the leftmost rel-

ative low of the first lower trendline to be compared with an upper trendline. If 

either the overlapping condition is satisfied or the upper trendline lags behind, 

the next adjacent lower trendline will be retrieved and compared. Figure 4.11 

illustrates this continual condition. 

Whenever the overlapping condition is satisfied, the variable first is updated 

to the first relative low of the lower trendline pair which is included in the most 

recently formed trendline pair. Figure 4.12 shows the value of first after pro-
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(c) Three trendline pairs: 

i. [(RHi,卿,[RLi,RL2)} 
ii. [ { R H u R H 2 ) , { R L 2 , R L s ) ] 

iii. [ { R H u R H 2 ) , { R L s , R L , ) ] 

Figure 4.9: Examples of trendline pairs projected from a trendline formed by 

(RHi, RH2). 
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Generating Trendline Pairs 

Input: U = {RHu RH2,...，RHn), L = (RLi, RL2,...，RHm) 

Output: trendline.pair [1 —)• numjpairs] 

first = 1; 

numjpairs = 0; 

for i = 1 to n - 1 

for j = fist to m - 1 

if {RLTj < RHTi+i and RHTi < RLTj+i) 

trendline.pair [numjpairs] = {[RHi, RHi+i"),[RLj, RLj+i")}; 

first = j] 

num—pairs++; 

else if {RLTj > RHTi+i) 

break inner for and proceed to next relative high 

end if 

end for 

end for 
Figure 4.10: Pseudocode of Generating Trendline Pairs 
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(a) The i-th upper trendline overlaps with the j-th lower trendline. 

RHi RHi + l RHi+2 
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(b) The i-th upper trendline lags behind the j-th lower trendline. 

Figure 4.11: Continual conditions in which the (j + l)-th lower trendline can be 

retrieved and potentially form a trendline pair with the i-th. upper trendline 

RHi RHi+l RHi+2 
0 n O 

o e G 9 o 
RLj RLj+1 RLj+2 RLj+3 RLj+4 

first = j+2 

Figure 4.12: An example on how first is updated 
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jecting all possible trendline pairs from the upper trendline formed by RHi and 

RHi+i. Therefore, by keeping track of the most recently formed trendline pair, 

any further retrieval of lower trendlines is obviated. Once the overlapping con-

dition is no longer satisfied when proceeding to the next lower trendline, the 

next adjacent upper trendline is retrieved. Again, the first lower trendline to be 

compared is formed by the first-th and the {first + l)-th relative lows. 

4.3 Three-Phase Pattern Classification 

Having the price envelope sliced into trendline pairs (the basic units), a progres-

sive pattern classification can be carried out. Basically, the pattern classification 

is divided into three phases. In the first phase, every trendline pair is inspected 

individually and a preliminary classification is made. Merging of similar adjacent 

trendline pairs will be done in the second phase and at the same time unmerged 

patterns may be rejected. The final phase attempt to merge trendline pairs which 

are either unclassified in the first phase or rejected in the second phase. Detailed 

descriptions of the three phases are given in the following subsections. 

4.3.1 Phase One: Trendline Pair Classification 

In this phase, each trendline pair is classified by inspecting the slopes of its upper 

� and lower trendlines. The classification is based on the sign of the slope of the 

upper trendlines and lower trendlines as well as their slope differences. A careful 

study on how to classify those chart patterns using trendline pairs is needed. 

Except double (or triple) top (or bottom), all patterns shown in Figures 4.2 

and 4.3 can be sliced into basic trendline pairs. It can be shown that trendline 

pairs extracted from different charts have different properties in terms of slope. 
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This analysis is summarized in Table 4.1. The first column shows differnt types 

of chart patterns and their corresponding sloping features are presented in the 

second column. In this table, Mapper and M i �醫 denote the slopes of an upper 

trendline and a lower trendline respectively. To facilitate the explanation, each 

type of patterns is presented with two identical examples which is formed by 

minimal numbers of relative highs and relative lows. 

Table 4.1: Studying chart pattern features by investigating the slopes. 

Chart Patterns Sloping Features 

Falling Wedge Trendline pairs a and b: 

* ^upper�^lower 

Rising Wedge Trendline pairs a and b: 

“ 丨 丨 厂 • \Mupper\ < \Miou.er\ 

Head and Shoulders Top Trendline pair a: 

/ 会 、 / 尝 、 s " : 

Head and Shoulders Bottom Trendline pair a: 

"丨 I ~ 7 f i r |丨丨丨丨"I , — i — — n V - , ' | l . M—er < 0 

l l ^ i ^ ^ l ^ l l I ' l i i^；^' T r e - 一 ： 

^ ^ . M—er > 0 

continued on next page 
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continued from previous page 

Chart Patterns Sloping Features 

Ascending Triangle Trendline pairs a and b: 

之：二 

Descending Triangle Trendline pairs a and b: 

. Mupper < 0 

|\ A A V � ! / V ^ i . 一 

Symmetrical Triangle Trendline pairs a and b: 

Pricing Channel Trendline pairs a and b: 

^ ' T ^ r ^ ^ - V ^ . Mupper ^ M—er 

觀 、 麵 I I ： 二 

Rectangle Trendline pairs a and b : 

丨丨| ^——j——p 丨l| N � . Mupper ~ 0 

‘ | | | | i A / | 丨丨||/丨|丨"丨I 丨 丨 : i i / V V i \ I 一 • 

Excluding Head and Shoulders Top (Bottom), it can be seen in Table 4.1 that 

the sloping features of other chart patterns are mutually exclusive. As there is 

no restriction on the slope of the necklines (Mapper for Head and Shoulders Top 

and Mio而 for Head and Shoulders Bottom), hence it is impossible to identify 
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the uniqueness of trendline pairs exist in these types of pattern. As an example, 

if trendline pair (b) of Head and Shoulders Top have sloping features {M卿er < 

0, Miower ~ 0}, then this trendline pair would confuse with that of Descending 

Triangle during the course of classification. To avoid ambiguity, we propose 

to leave out potential trendline pairs for Head and Shoulders patterns in this 

phase. Such a strategy does not misclassify nor omit any valid chart patterns, 

the arguments are as follows: 

§1. If a Head and Shoulder (either Top or Bottom) pattern exists in the chart 

b侦 0恥 of^ts trendline pair is being classified as other patterns, there should 

be no mis-classification nor omission of valid chart patterns. 

We show below that if a Head and Shoulders (Top or Bottom) pattern is 

valid, none of its trendline pairs can overlap with that of any other valid 

chart patterns. As overlapping of chart patterns is impossible, a wrongly 

classified trendline pair, which belongs to a valid Head and Shoulders Pat-

tern, would be eventually rejected as it cannot be merged in Phase two. 

As stated in [Sch98], the Head and Shoulders (Top or Bottom) is not consid-

ered complete until the neckline is penetrated and it should be formed after 

a major price movement has occurred. Therefore, patterns that bear the 

shape of a head-and-shoulders formation, but lack of these requirements, 

may be misleading and should be disqualified. To illustrate valid Head and 

Shoulders patterns graphically, we adapted two charts from [sto] as shown 

in Figure 4.13. 

To study whether an overlapped head and shoulders pattern fulfils those 

requirements, we show all patterns possibly bearing the shape of a head-

and-shoulders and at the same time overlap with a valid chart pattern in 

Tables 4.2 and 4.3. In these tables, the head-and-shoulders are marked by 
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(a) Head and Shoulders Top formed after a major up movement of price (as 

marked by the grey trendline) with the neckline being penetrated by the down 

movement of price. 
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(b) Head and Shoulders Bottom formed after a major down movement of price 

(as marked by the grey trendline) with the neckline being penetrated by the up 

movement of price. 

Figure 4.13: Valid Head and Shoulders pattern adapted from [sto . 
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bold arcs while its neckline is marked by a bold line. It can be seen from 

the tables that even if a pattern exhibits a head-and-shoulders shape, it is 

unqualified if it coexists with another chart pattern whose upper trendline 

overlaps either (1) on the left, the previous trendline is the same as the neck-

line, meaning a premature anticipation of head-and-shoulders formation, or 

(2) on the right, the neckline remains the trendline of latter price movement, 

meaning a premature completion of head-and-shoulders formation. 

§2. If a Head and Shoulder (Top or Bottom) pattern exists in the chart but none 

of its trendline pairs is being classified, there should be no false dismissals. 

The unclassified trendline pairs which form a valid Head and Shoulders 

pattern will be merged together in the third phase of classifications. 

In Phase one, therefore, every trendline pair is either unclassified or only 

classified into one of the following patterns: 

1 Rectangle 

2 Price Channel 

3 Rising Wedge 

4 Falling Wedge 

5 Descending Triangle 

6 Ascending Triangle 

7 Symmetrical Triangle 

The classification requires two user inputs, namely the zero-sloping threshold a 

and equality threshold ^ {a, xp > 0). The zero-sloping threshold, cr, indicates 
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Table 4.2: Patterns overlap with patterns that bear the shape of Head-and-
Shoulders Bottom. 

Chart Patterns Sloping Features 

Pricing Channel (Slopes Up) M 譽 r > 0 

Mio而 > 0 

|| |l||l||| || l|l|| Mupper ~ Miower 

Pricing Channel (Slopes Down) M聊er < 0 

Miower < 0 

|l'l'' h ,1 Supper ~ Mior̂ er 

^ ^ ^ 
Ascending Triangle M — ^ 0 

丨“丨 H Mio窗> 0 

丨 "I111ll 丨丨 I I y 

Falling Wedge M 零 r < 0 
''l| Mio雷 < 0 

� Rising Wedge M 赛 > 0 

^ M—er > 0 

i f c / ' V \Mupper\ < I风薩r| 
yi 

Symmetrical Triangle M — � 0 

丨丨1| Mio而< 0 

y i 丨 丨 / 1 夢 
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Table 4.3: Patterns overlap with patterns that bear the shape of Head-and-
Shoulders Top 

Chart Patterns Sloping Features 

Pricing Channel (Slopes Down) M聊er < 0 

""" I l I l f ^ ^ ^ T . Mupper ~ M—er 

iliii 

Pricing Channel (Slopes Up) > 0 

� M—er > 0 

^-^r^^lK Mupper W Mio 雷 

Ascending Triange M — < 0 

^ Mlower ~ 0 

|lii„ i'' i|| 

V " ' " i ^ i . 

I" ^ 
Falling Wedge M 華 < 0 

^ I Mlower < 0 

liSi,' l|| liN̂ lllll''' I礼PP-I > \Miôer\ 
丨丨丨丨 ^ ^ ^ 

Rising Wedge M 赛 > 0 

M一 > 0 

Symmetrical Triangle M零丫 > 0 

|||ll丨丨丨||"丨丨丨 y ^ l ^ l l y j ^ l ^ ^ l^upperl ~ i M w r l 

I" 
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user's perception on how a trendline with non-zero slope can be considered as 

a horizontal line; The equality threshold,也 indicates user's perception on how 

two trendlines with different slopes can be considered to have the same slope. 

Given these two thresholds, Figure 4.14 shows the pseudocode for classifying a 

trendline pair according to its sloping feature { M ^ r , Mun^er). The slopes of 

the upper and lower trendlines are set to zero if they are bounded by the zero-

sloping threshold. Also, if the absolute slope difference between the upper and 

lower trendlines is within the equality threshold, the upper and lower trendlines 

are considered parallel. 

4.3.2 Phase Two: Patterns Merging and Rejection 

In phase one, every trendline pair is processed and classified into one of the 

seven patterns, namely Rectangle, Price Channel, Rising Wedge, Falling Wedge, 

Descending Triangle, Ascending Triangle and Symmetrical Triangle. They are 

readily to be merged to form valid chart patterns. If two consecutive trendline 

pairs being previously classified as the same pattern, they can be potentially 

merged to form one single trendline pair. As an example, Figure 4.15 shows the 

merging of two adjacent trendline pairs which are preliminary classified to the 

same pattern either by (a) combining the upper trendlines or (b) combining the 

lower trendlines. The merging strategy must ensure the merged pattern can (1) 

sustain the properties of the original pattern as which the previous trendline pairs 

are classified，(2) bound all data points (highs and lows) properly. 

In merging two adjacent trendline pairs, we propose two strategies. The 

GVee办 Approach is for merging trendline pair which are classified as Falling 

Wedge or Rising Wedge; the Best-Fitting Line approach is for merging trend-

line pairs which are classified as Rectangle, Price Channel, Symmetrical Triangle, 



Chapter 4. Chart Patterns Searching for Chart Analysis 75 

Classifying Trendline Pair 

Input: cr, P̂, M 等 r , Mior̂ er 

Output: pattern-type 

If I 礼pperl S cr Then 

M.upper = 0 ； 

End if 

If \Mion;er\ < cr Then 

M-lower = 0 ； 

End if 

If Slower = = 0 and Mioujer == 0 Then 

pattern-type = 'Rectangle'； 

丑Z北 if \Mupper - Mio^erl < Then 

pattern-type = 'Pricing Channel'； 

if Mu仰er > 0 and M— > 0 and 肌�1 > \Mapper] Then 

patternJype = 'Rising Wedge'； 

丑Zse if M聊 < 0 and M—er < 0 and < \M,pper\ Then 

patternJype = 'Falling Wedge'； 

Else if Mio資==0 and Mapper < 0 Then 

patternJype = 'Descending Triangle'； 

Else if Mupper == 0 and Mi�窗 > 0 Then 

patternJype = 'Ascending Triangle'； 

Else if Mupper < 0 and M—er > 0 and + M^^^erl < 功 Then 

patterndype = 'Symmetrical Triangle'； 

Else 

patternJype =' Nil'； 

End if 

Figure 4.14: Pseudocode of classifying trendline pairs into chart patterns 
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R H 2 

T 7 S i / \ |i'Sl/ 
RL, 

RL, 

(a) Merge two trendline pairs with their lower trendlines overlapped. 

RH2 RH2 

A , / K r I Hi 
I 丨IH i , III \ 
!\ H / J /j Nl 

~ < 
RL, 

(b) Merge two trendline pairs with their upper trendlines overlapped. 

Figure 4.15: Different merging of trendline pairs who have been classified to the 

same pattern. 

Ascending Triangle and Descending Triangle. 

Merging Strategy 1 (Greedy Approach for Merging Upper Trendlines) 

G— t勘 upper trendlines formed by any three Relative Highs: (RHPi^RHTj, 

(RHP2,RHT2) and (RHP,,RHTs), the formation of the merged trendline de-

on the slopes of these two upper trendlines. If the slope of the first trend-

/z'ne is smaller than that of the second trendline (R肝广Rhp, ^ Rim-Rim� 
\RHT1-RHT2�RHT2-ium )， 

仇 e n the merged trendline is equivalent to the line joining (RHPi,RHTi) and 

(RHPs, RHTs); If the slope of the second trendline is smaller than that of the 

fi树计—{rVtIZTht： > SB^St), then the merged trendline is equiva-

lent to the second trendline extending from RHT2 to RHTi. 
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Merging Strategy 2 (Greedy Approach for Merging Lower Trendlines) 

Given two lower trendlines formed by any three Relative Lows: (RLPi,RLTi), 

(RLP2, RLT2) and (RLPs,RLTs), the formation of the merged trendline depends 

on the slopes of these two lower trendlines. If the slope of the first trendline 

is smaller than that of the second trendline (g说二觀 > g恋溫)，then the 

merged trendline is equivalent to the line joining (RLPi, RLT\) and (RLPs, RLT3); 

If the slope of the second trendline is smaller than that of the first trendline 

{rl^-rltI < rltI-rltI)^ then the merged trendline is equivalent to the second 

trendline extending from RLT2 to RLTi. 

Using the Greedy Approach, Tables 4.4 and 4.5 show respectively the merging 

of upper and lower trendlines that form different Falling Wedge or Rising Wedge 

patterns. In these tables, m' and m" denote the slopes of the first and the second 

trendlines which are undergoing the merging process. The second and the third 

columns show two scenarios of merging, that is, when m' < m" and m' > m" 

and each merged trendline is represented by a dotted line. The Greedy Approach 

ensures the merged trendline pair retains the property of a Falling Wedge or a 

Rising Wedge. 

Merging Strategy 3 (The Best-Fitting Line Approach) This approach ap-

Pl—切—merging of the upper or lower trendlines. For simplicity, we use a 

common notation to represent relative high and relative low. A 2-D point {xi,yi) 

represents the time and price of either a relative high or relative low. Given two 

consecutive trendlines formed by three points: (xo,yo)^ (x:,y,) and (0:2,2/2), the 

/ea对 squares method [Edw76] is used to estimate the intercept A) and the slope 

A of the best-fitting line so that the sum of the squares of the differences between 

——Vi and the best fitting line, y = Po + Pix, is a minimum. Therefore, the 
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Table 4.4: Greedy Approach for Merging Upper Trendlines. 

Chart Pattern m! < m" rn' > m" 

Falling Wedge 
R H i 

RL2 

爪'< Slower A m" < Mio而 m" < M—er 

^ Kpper < Mio雷 =爪" 

Kpper < Slower 

Rising Wedge 
RIHs RH3 

肌'< Miower A rn" < M—er m" < M—er 

• Kpper < Slower Mapper =爪” 

^ ^upper — ^lower 
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Table 4.5: Greedy Approach for Merging Lower Trendlines. 

Chart Pattern m' < m" rn'�m" 

Falling Wedge 
R广 RH1 

( 丨 丨 H | | | | ' 

RL3 ^ ^ 
RL3 

肌 " ^ M聊 m丨> M卿er A m" > M赛 

M L = rn" • M L > M卿er 

^ ^lower — ^upper 

Rising Wedge 
RH2 

R L i R L i 

饥 " > M零r m' > M卿er八讯丨丨> M零r 

= m" 冷 M L > M卿er 

Kwer > Mupper 
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regression model is 

2/i = A + PiXi + ei, z = 0 , l , 2 

w;/iere e^ is the error component with zero mean and unknown variance. The least 

square criterion is 

2 

i=0 

The least square estimators of po and A，denoted by ft and ft respectively, must 

satisfy 

dS 2 

^ = — A) — P m ) = 0 

and 

dS 2 

^ = - A) - A a ) 而 = 0 . 

Simplifying these two equations yields 

A . 2 2 
3 A + PiY^Xi = J ^ i (4.1) 

i=0 i=0 
2 2 2 

化Xi + = E ( ^ ^ ) t e ) . (4.2) 

Solving Equations 4.I and 4.2 yields the solutions 
A A 

Pix (4.3) 

and 

/ 2 \ / 2 \ 

2 
⑶ ⑷ - ‘ 0 / \ 口 0 / 

o i=0 3 

仇 T^-Y"""" (4.4) 

2 
一 A i ^ 

i=0 d 
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where 

1 2 1 2 
y = -^^Vi and X = . 

i=0 i=0 
A A 

Therefore, po and ft in Equations 4.3 and 44 are the least squares estimators of 

认e intercept and slope. The best fitting line is then 

y = Po-h Pix. 

For a trendline pair to be qualified as any one of the chart patterns, its lower 

and upper trendlines should possess the sloping feature of a particular pattern 

as described in Table 4.1. Therefore, the resultant trendline pair merged from 

two trendline pairs should also retain the sloping feature, otherwise another un-

expected or invalid pattern would be formed. 

Before showing that Merging Strategy 3 can preserve the sloping feature of 

the patterns: Rectangle, Price Channel and Symmetrical Triangle, we need to 

understand the relationship among the slopes of the two trendlines being merged 

and also that of the trendline resulted from merging. For the ease of presentation, 

the three points (either all Relative Highs or Relative Lows) forming two consec-

utive trendlines are all translated by ( - x q , -yo) such that the first point (xo,yo) 

becomes the origin. After such a translation, the three points are now re-denoted 

as (0,0)，{x[,y[) and ( 4 , 乂）where x； = - xo, y'^y^ y 。 ， 工 广 x, and 

yi2 = y2 — yo- Suppose the first trendline formed by joining (0,0) and {x [ ,y [ ) has a 

slope of m while the second trendline formed by joining {x[ ’ y[) and (《，y',) has a 

slope o f m + A, where A is a real number indicating the slope difference between 

the first and the second trendline pairs. Figure 4.3.2 illustrates the notations 

after this translation. 
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y'l v f s l o p e = m + A 

0,0 xi xi 

Figure 4.16: Translation of two consecutive trendlines such that the first point 

touches the origin. 

To find out the relationship among m, m + A and ft (slope of the best-fitting 

line)，we first write yi and y) in terms of the slopes and the corresponding x-axis 

values 

y'l = (4.5) 

y'2 = ma;; + (m + A ) ( 4 - x l ) . (4.6) 

Then，we expand Equation 4.4 using (0,0)，{x\,y[) and 

,,,,,{y'i + y'2){< + A) 
^ ^iVi + ^ 
A = ^ 

,2 / 2 + ^2) 
Xi + Xn -

2 3 

二 2工+ - yWi -
- + 2:4' — 2x[X'2 

= + — . (4.7) 
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Substitute y[ and y') from Equations 4.5 and 4.6 into Equation 4.7 gives 

^ - rnx[{2x[ — x'^) + [mx\ + (m + A)(4 — a:；)](24 - x；) 

+ 2 4 2 2x[X'2 

_ + 4 ) + (m + A ) ( 4 - x[)(2x'2 - x[) 
2xf + — 2x1x2 

_ rn[2x+ 242 23；；4] + A ( 4 — x[)(2x'2 —工'i) 

We conclude from Equation 4.8 that the slope of the merged trendline satisfies 

the following set of inequalities 

< A < m + A if A > 0, 
A “ (4.9) 

m + A < ft < m if A < 0. 

Lemma 1 If two trendline pairs individually form Price Channels and both of 

仇 e m have a common trendline with slope m', the resultant trendline pair after 

applying Merging Strategy 3 also forms a Price Channel, that is, the following 

criterion always holds: 

- A < (4.10) 

Proof: If the two trendline pairs are classified to the pattern Price Channel, 

the following set of inequalities must hold: 

( m ' — m| g ip 

m'—（m + A)| < ip 

or we can write 

( - i p < m! -m < 

< m'—（m + A) < ip. (4.11) 
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According to the sign of A and using the result concluded from Equation 4.9，we 

divide the proof into two cases: 

Case 1: when A > 0, 

m < ft < m + A 

—(m + 八 ) < - f t < - m 

- (m + A) < m' - ft < m'-m, 

implied by Equation 4.11, we can state 

< m' - ft < ijj 

m' - ft < . 

Case 2: when A < 0, 

m + A S ft < m 

=> -m < —ft < - ( m + A ) 

m'-m < m' - ft < m' _ (m + A) ’ 

implied by Equation 4.11, we can again state 

< m ' - f t < ijj 

m'- Pi < ip. 

• 

Lemma 2 If two trendline pairs individually form a Symmetrical Triangles and 

bo仇 of them have a common trendline with slope m', the resultant trendline pair 

a/ter applying Merging Strategy 3 also form a Symmetrical Triangle, that is, the 

following criterion always holds: 

m' + ft <iIJ, (4.12) 
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Proof: If the two trendline pairs are classified as Symmetrical Triangles, the 

following set of inequalities must hold: 

| | m ' + m\ < ip 

m' + (m + A)| < ^ 

or we can write 

I—lb < m' + m < lb 
(4.13) 

-ip < m' + (m + A) < ip. 

According to the sign of A and using the result concluded from Equation 4.9, we 

divide the proof into two cases: 

Case 1: when A > 0, 

m < ft < m + A 

m' + m < m' + ft < m' + (m + A ) , 

implied by Equation 4.13, we can state 

< m' + ft < ip 

m' + ft < ip. 

Case 2: when A < 0, 

m + A < ft < m 
- . - (4.14) 

m' + (m + A) < m' + ft < m' + m , 

implied by Equation 4.13，we can again state 

< m' + ft < ^ 
=> m' + ft < ip. -

• 
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Lemma 3 If two trendline pairs individually formed Rectangles, the resultant 

trendline pair after applying Merging Strategy 3 also forms a Rectangle, that is, 

the following criterion always holds: 

(4.15) 

Proof: If the two trendline pairs are classified to the pattern Rectangle, the 

following inequalities must hold: 

m + A| g cr 

or we can write 

—o < m < a, 
一 (4.16) 

I -a < m + A < a. 

According to the sign of A and using the result concluded from Equation 4.9, we 

divide the proof into two cases: 

Case 1: when A > 0, 

m < ft < m + A , (4.17) 

implied by Equation 4.3.2, we can state 

- a < ft < cr 
< (J. 

Case 2: when A < 0, 

m + A < /3i < m , 

implied by Equation 4.3.2，we can again state 

—o < A < ^ 

力 S a . 

• 
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Lemma 4 If two trendline pairs individually forms Descending Triangles and ei-

ther their upper trendline (slope < 0) or lower trendline (slope ^ 0) is overlapped, 

the resultant trendline after applying Merging Strategy 3 also forms a Descending 

Triangle, that is, either one of the following two criteria holds: 

ft < 0 if upper trendlines are merged 

or 
A 

A < cr if lower trendlines are merged. 

Proof: If the two trendline pairs are classified as Descending Triangle, one of 

the following sets of inequalities must hold: 

m < 0 and m + A < 0 if Upper Trendlines are merged, (4.18) 

or 

m\<(7 and \m-{- A\ <a if Lower Trendlines are merged. (4.19) 

According to the sign of A and using the result concluded from Equation 4.9, we 

divide the proof into two cases: 

Case 1: when A > 0, 

m < < m + A , 

then implied by Equations 4.18 and 4.19, we can deduce 

/N 

� A < 0 if upper trendlines are merged 

or 
A 

Pi < CF if lower trendlines are merged. . 

Case 2: when A > 0, 
—— 7 

m + A < ft < m , 
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then implied by Equations 4.18 and 4.19, we can deduce 

< 0 if upper trendlines are merged 

or 

ft < (7 if lower trendlines are merged. 

• 

Lemma 5 If two trendline pairs individually form Ascending Triangle and either 

their upper trendline (slope < 0) or lower trendline (slope ^ 0) is overlapped, the 

resultant trendline after applying Merging Strategy 3 also forms an Ascending 

Triangle, that is, either one of the following two criteria holds: 

Pi < a if Upper Trendlines are merged, 

or 
/V 

ft > 0 if merging Lower Trendlines are merged. 

Proof: The proof is similar to that of Lemma 4 and so it is left behind. • 

The merged trendlines resulting from Merging Strategies 1, 2 and 3 do not 

necessary touch all the relative highs or relative lows. This allows certain extent 

of flexibility of pattern formation. However, one may want to restrict this by im-

posing an allowable distance between the merged trendline and the three relative 

highs or lows forming it. Therefore, depends on user's requirements or judgement, 

the pattern results from merging can also be rejected and more criteria can also 

be put on the resultant pattern. 



Chapter 4. Chart Patterns Searching for Chart Analysis 89 

4.3.3 Phase Three: Patterns Merging of Unclassified and 

Unmerged Trendline Pairs 

In the last phase of patterns searching, an attempt to find meaningful chart 

patterns by merging those trendline pairs which are not classified in Phase One 

nor merged in Phase Two. Unlike Phase Two, in which the merging is carried out 

only if two trendline pairs are overlapped and also both classified to the same type 

of pattern, in Phase Three two trendline pairs are merged to see if the merged 

trendline pair can form a valid pattern. In this final phase, three types of chart 

patterns are searched in the following order: 

1 Price Channel and Rectangle 

2 Head and Shoulders (Top or Bottom) 

3 Double (Top or Bottom) and Triple (Top or Bottom) 

Price Channel and Rectangle are searched again in this phase because they 

can be potentially formed by a combination of unclassified trendline pairs and 

classified patterns such as Triangles and Wedges. Tables 4.6, 4.7 and 4.8 show 

the merging of unclassified and classified trendline pairs, and the resultant pat-

tern. These trendline pairs (either classified or unclassified in Phase One) are 

not classified to Price Channel or Rectangle although they can potentially form 

such patterns by setting a larger value of the zero-sloping threshold a and the 

equality threshold ip. Although setting higher values of a and ip in the Phase 

One is feasible, trendline pairs belonging to patterns other than Price Channel or 

Rectangle may be wrongly classified. Therefore, smaller values of a and should 

be used in Phase One to ensure no potential patterns are missed. While in the 

final phase, we can attempt to merge two adjacent trendline pairs using Merging 
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Strategy 3 and then check whether the merged patterns form a Pricing Channel 

or Rectangle. 

Head and Shoulders Top (or Bottom) are searched after no Price Channel 

or Rectangle pattern could be formed by two overlapped trendline pairs. The 

two shoulders in the pattern formation should be comparably equal which can 

be adjusted by user input parameter. Double Top (or Bottom) and Triple Top 

((or Bottom) are simplest form of pattern which rely only on investigating either 

the upper trendlines or the lower trendlines to see if they are bounded by the 

zero-sloping threshold a. 

4.4 Results 

Experiments on finding chart patterns were carried out using historical data (from 

6/16/1999 to 6/15/2000) of S&P 500 stocks. During the trendline preparation, 

the trendline were drawn using relative highs and relative lows which are at least 

10 days and at most 40 days apart. However, in finding (Triple or Double) top 

and bottom, those relative highs and relative lows are at most 60 days apart as 

they are usually formed in longer period of time. The equality threshold and 

zero-sloping threshold were set to 0.05 and 0.008 respectively. Part of the results 

are shown in this section while a full set of results can be obtained in Appendix 

A. Examples of chart patterns found in SP500 are shown in Figures 4.17 to 4.28. 
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Table 4.6: Merging unclassified and unmerged trendline pairs which can form 

Rectangle. 

Decomposed Trendline Pairs Merged Pattern Phase One Classification 

11 ^ ” ^ I Trendline Pair: 

11 I 丨丨 "III 1| [ � Unclassified 

|丨丨丨| li|||||l 丨||丨丨|丨1 l|||l丨|丨丨 1|丨|丨 ( i i ) Descending Triangle 

‘ 

11 I Trendline Pair: 

l| I丨丨 l| (i) Descending Triangle 

'i|||' 丨i|||||l \|l'丨丨l|i|丨丨丨III (ii) Unclassified 

V\/7 ‘ 
/ . / \ \ Trendline Pair: 

\ \ (i) Unclassified 

\ / I 丨丨 (ii) Ascending Triangle 

V t T M i i i ' 1,|丨^^|丨" 
/' ‘ “ ^ ^ ^ ^ ^ ^ ^ 

/ / \ .. \ Trendline Pair: -

J \ \ (i) Ascending Triangle 

\ / I 丨丨 (ii) Unclassified 

i''' ii ii'丨丨、I々 丨11丨 || 'î î JCV ||| 'i|'' 'i'丨|i “ 
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Table 4.7: Merging unclassified and unmerged trendline pairs which can form 

Price Channel (Slopes Up). 

Decomposed Trendline Pairs Merged Pattern Phase One Classification 

^ ^ ^ ^ ^ ^ 11' I Trendline Pair: 

丨丨|丨1 丨丨丨 ( i ) Unclassified 

'I 秘 ’ 
11 Trendline Pair: 

||l (i) Rismg Wedge 

(ii) Unclassified 

I' / V 

^ ^ ^ ( " \ ^ ^ 11 Trendline Pair: 

L I [̂̂ 1̂丨丨1丨丨丨丨1 (A Unclass恤d 

[ J U 丨I |l丨丨丨丨| I' (ii) Rising Wedge 

^ ^ ( ii \ 丨丨 Trendline Pair: -

( ^ (i) R—ng IVedge 

X 丨丨丨 il'l I丨丨丨丨丨 (ii) Unclassified 
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Table 4.8: Merging unclassified and unmerged trendline pairs which can form 

Price Channel (Slopes Down). 

Decomposed Trendline Pairs Merged Pattern Phase One Classification 

'l| I Trendline Pair: 

V /k V � Unclassified 

l|| ^ ^ ^ ^ ^ Trendline Pair: 

V ‘ 11 � Falling Wedge 

K / 'l|| (ii) Unclassified 

/ • ) Trendline Pair: 

/ \ ii \ (i) Unclassified 

丨丨 ^ ^ ^ 'l| (ii) Falling Wedge 

、驢 
/ i / ^ ^ Trendline Pair: -

^ ^ Y ^ (i) Falling Wedge 

l|i ^ I丨丨 (ii) Unclassified 

^ ^ ^ I ^ ^ ^ 个 || 
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Figure 4.17: Examples of Symmetrical Triangle found in SP500. (Upper: Hal-

liburton Co, Lower: Visteon Corp) 
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Figure 4.18: Examples of Descending Triangle found in SP500. (Upper: US West, 

Lower: Lucent Technology) 
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901 1 . . , , 
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Figure 4.19: Examples of Ascending Triangle found in SP500. (Upper: Illinois 

Tool, Lower: Kerr Mcgee) 
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Figure 4.20: Examples of Falling Wedge found in SP500. (Upper: Jefferson Pilot, 

Lower: Wells Fargo) 
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Figure 4.21: Examples of Rising Wedge found in SP500. (Upper: Eaton; Lower: 

Praxair, Inc.) 
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Figure 4.22: Examples of Price Channel found in SP500. (Upper: Marsh h 

Mclennan; Lower: Unocal Corp.) 
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Figure 4.23: Examples of Rectangle found in SP500. (Upper: Schlumberger Ltd.; 

Lower: PACCAR Inc.) 
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Figure 4.24: Examples of Double Top found in SP500. (Upper: Occidental 

Petroleum; Lower: GTE) 
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Figure 4.25: Examples of Double Bottom found in SP500. (Upper: Abbott Labs; 

Lower: Sempra Energy) 
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Figure 4.26: Examples of Triple Top found in SP500. (Upper: St Paul; Lower: “ 

Masco Corp.) 
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Figure 4.27: Examples of Triple Bottom found in SP500. (Upper: Ashland; 

Lower: St Jude Medical) 
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Figure 4.28: Examples of Head and Shoulders found in SP500. (Upper: Apply 

Computer; Lower: Bestfoods) 



Chapter 5 

Conclusion 

Time series analysis is of growing importance as the observed patterns in historical 

time series data are useful for predicting future trends. Since time series data 

are usually large in size, people are seeking efficient methods for searching in 

time series databases. As sequence data usually contain observable trends and 

random noises, one ideal approach is to remove the noises and perform searching 

on approximated sequence data. To reduce noise while retaining the general 

shape in a time series is hence a challenge for developing an efficient time series 

pattern matching system. 

Different patterns formed by time series data may be considered similar after 

appropriate scaling and shifting in time and amplitude domains. We should avoid 

applying brute force checking on different scaling and shifting factors to vast 

amount of data as performance will be degraded. Therefore, a lattice structure 

which encompasses layers of control points has been proposed to capture different 

resolutions of features in a time series. An algorithm to build a lattice structure “ 

and a method for similarity matching have also been proposed. An experiment 

on finding a specific pattern on historical stock data was conducted. The results 
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show that our algorithm can apply appropriate scaling factors and translation 

offsets to locate similar patterns. 

To further improve the pattern matching performance, we have integrated 

the lattice structure with the indexing scheme proposed in [CW99]. The time 

domain values are first temporarily set aside while the amplitude domain values 

are indexed with an R-tree. This may result in false alarms but experimental 

results show that the indexing scheme still outperforms sequential search. 

While the technique of control point identification can handle pattern match-

ing in uni-value time series, it was successfully extended to find chart patterns 

which are bi-value time series. Specifically, we have focused on finding continu-

ation and reversal patterns which are formed over a certain period of time. The 

formations of these patterns are arbitrary, so one could not find a query tem_ 

plate for any of these patterns. Therefore, traditional methods of time series 

pattern matching cannot be applied. We observed that those chart patterns are 

supported by significant turning points. In other words, those significant turning 

points form trendlines which contribute to the pattern formation. Therefore, as 

what we have done in uni-value time series, we spot out remarkable control points 

through a ranking process. Trendlines are then continuously defined along the 

time line by always selecting the most representational control point within a 

user-defined period. As there is no restriction on the length of the chart patterns, 

we propose to slice the trendlines into pairs and use a bottom-up approach to 

� identify patterns through progressive merging and rejection. An experiment was 

carried out using 500 different stock charts and thirteen types of chart patterns 

are successfully located. 

Finally, we conclude that using control points can minimize the overhead of 

processing a massive time series while preserving its original features. In this 

dissertation, we have only considered local maxima and minima as control points 
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which are more suitable for volatile time series like stock data. For slowly chang-

ing time series in which local maxima and minima are far apart from each other, 

inflection points or other points whose higher order derivatives are zero may be 

suitable candidates of control points. 



Appendix A 

Supplementary Results 

In this appendix, we show a full set of the chart patterns found in stock charts of 

S&P 500 Stocks (daily high and daily low price from 6/16/1999 to 12/14/1999) 

using the algorithm proposed in Chapter 4. 
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