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摘要： 

基於萬維網(World Wide Web)的普及化，現在越來越多人將他們的資料存放在萬 

維網上以供存取。只可惜現在萬維網上的資料均是分散式的(decentralized)，因而 

導至存放在萬維網上的資料沒有一個完整的結構。而這點也是使人未能針對萬維 

網上的數據作出進一步處理的主因，亦因而導至很多其他的問題，例如有很多内 

容相近的資料卻因結構上的分別而難於搜尋，而内容相近的資料亦會因結構不同 

而被重覆存放在萬維網上。 

雖然萬維網上的文件並沒有一個很完整的結構，但因萬維網上的所有文件也必須 

依據HTML的基本定義，所以我們可以跟據HTML的基本定義，將萬維網上的 

文件轉化為物件交換模型(Object Exchange Model)的數據(OEM data)。物件交換 

模型主要是用作處理半結構化的數據。而當萬維網上的文件轉換為物件交換模型 

的數據後，那些資料便可作出進一步的處理(如分類、聚類、索引等），因而簡化 

了整個搜尋程序。而我們將根據被轉換成物件交換模型之數據提出一些新的運算 

法則，用以將萬維網的文件分類及聚類。 

除此以外，我們亦會在這篇論文中討論將傳統的向量空間索引及聚類技巧 

(Vector-space Indexing and Clustering Techniques)合而為一而藉此改善傳統索引技 

巧的表現。現有的向量空間索引技巧存在著很多未能解決的問題，例如當向量空 

間的維數增加而起的表現退化問題(The problem of Dimensionality Curse)和當索 

引結構内的數據增加而引起的表現退化問題。聚類可以提供有關數據點及其附近 

數據點的資料，而藉著這些資料，對計算機需求較大的knn-搜尋可以轉換成一 

個普通的定距搜尋°我們會在這篇論文的實驗部份中證明我們所建議的索引結構 

(稱為IR-Tree)將比其他向量空間索引技巧有更好的表現。此外，我們亦會將這個 

建議引用到計量空間(Metric Space)上。 

本論文的主要頁獻如下：（1)提出一個跟據後在萬維網文件内的超連結和文件語 

義而訂定的相似性定義(similaritydefinition) ； (2)建議一個將萬維網分類和集成 

的運算法則；（3)提出一個新的字典結構用作識別相關字和相關文件；(4)提出 

一個用作抽取「普遍結構」（general structure)及減低在不同物件交換模型的數據 



結構之差異的運算法則°此外，我們亦會（5)提出一個跟據現有的索引結構及 

聚類結構而成的新索引結構，並證明我們建議的索引結構能改善過往相類結構的 

表現。 
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Abstract 

There are more and more people who put their information on the World Wide 

Web (WWW). However, the WWW grows in a decentralized process and the 

documents placed in the WWW are lack of logical organization. This makes the 

further manipulation of the data placed on the WWW a difficult task. There are 

several drawbacks concerning this problem, for example, it is difficult to retrieve 

similar or closely-related information, and the data placed on the WWW will be 

duplicated, resulting in the redundancy of resources. 

Although web documents are of little logical organization, they should follow 

the basic definition of HTML (Hypertext Markup Language). Based on the basic 

definition from HTML, a web document can be transformed into an Object Ex-

change Model (OEM) data. OEM is designed for manipulating semi-structured 

data. Once the web documents are transformed to the same data model, they 

can be further manipulated, like classification, clustering and indexing for the 

ease of further retrieval of web documents. In this thesis, We will propose al-

gorithms, based on the OEM data transformed, to classify and integrate web 

documents. 

In this thesis, we will also give a discussion on the integration on vector space 
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indexing and clustering techniques in order to enhance the performance of index-

ing. There are many problems associated with the existing vector space indexing 

techniques, like the dimensionality curse and the performance degradation upon 

the addition of data entries. Clustering provides information about its closely 

located data points. With the aid of clustering information, the expensive knn-

search can be transformed into a range search. We will show in the experiments 

that IR-Tree, the proposed indexing structure, out-performs other spatial index-

ing algorithms under a highly-clustered environment. We will also try to extend 

the idea to indexing structures for metric space. 

The major contributions of this thesis are : (1) propose a similarity definition 

based on the hyperlinks embedded in the web documents and the document se-

mantics; (2) propose an algorithm for the classification and integration of related 

web documents into the same subset; (3) propose a dictionary data structure for 

identifying related words and documents; and (4) then propose an algorithm for 

retrieving the “ general structure" and reducing the variation of the structures on 

different OEM records. Moreover, we will also propose a new indexing structure 

based on existing clustering and indexing techniques for which the performance 

can be improved. We will show in the corresponding experimental section that 

my proposed algorithms can successfully classify and integrate related docu-

ments and reduce the variations on the data structures generated from sets of 

semi-structured web documents. 
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Chapter 1 

Introduction 

The World Wide Web (WWW) is a treasure of information in the sense that 

you can find any information you want on the web. There are billions of web 

documents on the WWW and thousands appearing each hour. However, the 

WWW is growing through a decentralized process, and documents in the web 

are lack of logical organization in the sense that similar or related documents 

are presented in totally different styles and have no inter-relation. This leads 

to the difficulty for the users and computers to access and process those web 

documents. 

As the improvement on the Web technology, not only text, but multimedia 

data, like images, sounds and movies can also be found in various homepages. 

However, the majority of web documents are still in the form of plain text, or text 

with little multimedia data embedded in. If we consider only the textual data on 

the WWW, it can be considered as a large but un-structured database containing 

billions of web documents. Although there are so many web documents, we need 

not analyze all the web documents as a whole. Web documents can usually be 

divided into disjoint sets based on their document content. For example, web 

documents concerning automobiles have no or very little relation with documents 

about various programming languages. It is meaningless to compare the inter-

1 



Chapter 1 Introduction ^ 

relation between an automobile company homepage and h t tp : / / java .sun .com/ . 

Hence, some algorithms [10, 25] were proposed to partit ion the huge set of web 

documents into smaller subsets that group related documents together for further 

operations. 

Once the huge set of documents are partitioned into smaller subsets, more 

operations can be done. If documents are partitioned into subsets of related 

documents, the documents can be organized in a hierarchical manner. Moreover, 

keywords can be extracted from the subset of documents for the representation 

of the subset. Features are extracted from all the documents in each subset 

and the set of features can be considered as a set of entries in a large database. 

Clustering and indexing can be done based on the set of entries extracted from 

the subset of documents and the retrieval of web documents can be enhanced. 

The objective of the first three chapters of this thesis is to propose a method-

ology to process the set of web documents. Web documents are organized in a 

decentralized process and hence we will try to partition the set of web documents 

into iiieaningful subsets. Then the set of web documents in the same partition 

will he integrated and indexed. The final goal of this thesis is to extract mean-

ingful iiiforinalioii about the web documents from each subset and enhance the 

ret rieval of wel) documents. 

There arc already many web document classification algorithms proposed, 

and many of ihein are applied on various search engines. However, the classifi-

cation and iiUrgration algorithiii is dilT(T(�nt from 1 radiiioiial algorithms in the 

s r i i s ( � t h a t m o s t o f I h e e x i s t i 1112; alo:orit h i n s c l a s s i f v w e h c loc i i iTier i is l)v usino; kev-
0 0 ^ O V 

words cxlractrd from I ho document set. TIUTC are also sonic other algorithms 

t hat ext ract a f(�atur(�x'cctor from each floruinciit and classify web documents 

based on the feature vectors rxlracted. Ho\\.�vfT. there is no much algorithm 

proposed that considers the structures of the web rlociimenls upon the similar-

ity computation. The consideration of the structure of web documents take an 

http://java.sun.com/
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important role on the web document integration algorithm. 

Instead of handling web documents, the later parts of this thesis describes 

another problem based on the domain of vector space. We will focus mainly on 

the integration of indexing and clustering techniques to improve the performance 

of searching from an indexing structure. There are already many indexing struc-

tures proposed for indexing vector space data. However there are many problems 

associated with Spatial Access Methods (SAMs). For example, the problem of 

dimensionality curse [5] associated with those SAMs cannot be solved efficiently. 

Moreover, as the data size grows, the performance of those SAMs will deterio-

rate. In the later part of this thesis, we will introduce an integration of clustering 

and indexing techniques, the IR-Tree. The proposed new indexing structure, IR-

Tree, solve the problems of performance degradation upon the structural reor-

ganization and the increase of dimensionality of data (dimensionality curse [5]). 

Experiments showed that the performance of IR-Tree out-performs other SAMs. 

Then, we will try to extend the idea used in IR-Tree to improve the perfor-

mance of indexing structures for metric space. Vector space is a subset of metric 

space. However, there are less research efforts placed on the indexing of metric 

space when compared with that placed on vector space indexing techniques. In 

the later two chapters of this thesis, we will discuss the algorithms in detail. 

1.1 Web Document Classification 

From chapter 2 to 5 of this thesis, we will discuss a web document classification 

methodology, together with a similarity definition. A web document is consid-

ered as a document containing self-described information, together with a set 

of hyperlinks embedded in the document that points and establishes a relation 

with other web documents. However, due to the semi-structured property of 
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web documents [13], web documents should be transformed to a standardized 

data structure before comparing their content. Object Exchange Model (OEM) 

is used to manipulate semi-structured data. In this thesis, web documents will 

be transformed to an OEM data before comparison and further manipulation. 

However, it is not feasible to compare the huge set of OEM data for similarity 

comparison. A web document, besides its content, also contains a set of hyper-

links that points to other web documents. These sets of hyperlinks can provide 

information about inter-relationship among web documents. For instance, a web 

document about Java programming language should contain a set of hyperlinks 

that point to other web documents about Java, or other object-oriented pro-

gramming languages. Instead, no one will expect a web document about Java 

contains a hyperlink that points to an automobile company. We will first trans-

form the set of web documents to a directed graph and retrieve a set of important 

web documents (center nodes) based on two definitions: importance and refer-

ence. Then based on the set of center nodes, the large set of web documents 

can be partitioned into smaller and related subsets. The details concerning the 

partitioning based on hyperlinks will be discussed in detail in Chapter 3. 

Hyperlinks can help partitioning the web documents into smaller subsets, but 

it is insufficient. Document content, in addition to the hyperlinks embedded, 

should be used to classify web documents. Thus, after the coarse partitioning 

based on the hyperlinks, the documents within a subset should be refined such 

that all the documents within the subset should concern about the same, or a 

related topic. In Chapter 3, we will give a similarity definition based on the docu-

ment content. Documents are difficult to compare with their similarity directly. 

Therefore, documents will be transformed into OEM data before comparison, 

and the similarity between the OEM data within a subset is computed based on 

the similarity definition given. A representative document will be retrieved from 

the subset of documents and the algorithm will also be discussed in Chapter 3. 
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1.2 Web Document Integration 

Even after web documents are classified into different subsets, the structure of 

the OEM data within the same subset (the layout of web documents) is still 

varied. This leads to an unnecessary waste of storage for keeping the original 

structure of web documents. Moreover, due to the variety of web documents, 

further operations, like searching and indexing, are also hard to perform. 

Therefore, in order to minimize the variation, a general structure will be 

generated for each subset of documents and the general structure is used for 

the manipulation of all the OEM data in the subset. The general structure is 

generated based on the OEM and all the OEM data within the same subset will 

be transformed following the general structure of their subset. The detail of the 

general structure generation and the transformation algorithm will be discussed 

in detail in Chapter 4. 

1.3 Dictionary and Incremental Update 

In order to increase the correctness of the similarity computed, a dictionary data 

structure is introduced. The dictionary data structure keeps the information of 

related keywords and the occurrence of each word in the corresponding OEM 

record. The dictionary helps locating the occurrence of keywords and speeds 

up the performance of keyword search. Moreover, the information of related 

keywords can also be used to increase the accuracy of similarity computed. The 

details of the dictionary will be discussed in Chapter 5. 

However, as mentioned before, there are thousands of new web documents 

placed on the WWW. Thus, an incremental update algorithm is essential to 

keep the database updated. The incremental update of the dictionary, as well 

as the general structure and the web documents will also be discussed in the 
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corresponding chapters. 

1.4 IR-Tree 

There are many spatial access methods (SAMs) which are proposed for spatial 

data indexing, such as R-Tree [26], SS-Tree [52], SR-Tree [34], X-Tree [6], etc. 

Most of them are variations of R-Tree, which partitions data into different regions 

of minimum bounding rectangles (MBRs). Some modifications on R-Tree ,like 

R*-Tree [4], alter the optimization criterion upon splitting of nodes and try to 

attain a better optimization on the index structure. Experimental results show 

that all these variations can improve the performance of the original R-Tree 

indexing structure. 

However, there is a fundamental problem associated with R-Tree: the per-

formance will deteriorate gradually when the number of points inserted in an 

R-Tree increases. As the number of points increases, the overlapping of the 

MBRs will increase, hence resulting in the accessing of extra and unnecessary 

nodes. Though there are some proposals to reduce the overlapping of nodes (like 

the Forced Reinsert in R*-Tree), the problem still exists. 

The problem of dimensionality curse is also one of the main weaknesses of 

SAMs. By using X-Tree as an example, experiments show that the performance 

deteriorates as the dimension increases, and a search tends to touch all the data 

pages when the dimension of the data is higher than 10 [5]. This drawback is 

seldom handled in SAMs and so it seems those general SAMs are not suitable 

for high dimensional data. 

Motivated by the drawbacks above, we propose an enhancement on the 

R-Tree methods based on a clustering algorithm Incremental-DBSCAN [22 . 

Incremental-DBSCAN is based on DBSCAN [21], a clustering algorithm which 
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searches for the neighbors based on the pre-defined distance Eps and MinPts as 

the basis of cluster generation. Upon insertion, the vector will be added to the 

corresponding cluster(s). The resultant clusters will take an important role in 

the performance improvement on the searching of relevant points. 

In this thesis, we will introduce a new indexing structure, IR-Tree, which is 

based on the combination of R*-Tree and Incremental-DBSCAN. The difference 

between IR-Tree and other SAMs is that the clustering information will be uti-

lized for the searching of elements, used in R*-Tree, each vector will be clustered 

into corresponding clusters. The clusters generated will be used to improve the 

performance of k nearest neighbor search (knn-search for short). 

1.5 Thesis Overview 

After giving the introduction on my works, a global picture on my work is given 

in this section. It is difficult to index the WWW. However, based on our ap-

proach, web documents can be indexed. Web documents are transformed and 

integrated into the same data structure based on the algorithm proposed. Once 

the set of web documents are integrated together, they can be grouped based 

on the ”general structure" generated. Then the set of general structures can be 

transformed into a set of multi-dimensional vectors. The set of multi-dimensional 

vectors can then be indexed by using IR-Tree introduced in the later chapter of 

this thesis. 

In this chapter, we have introduced the contributions of this thesis, which are 

web document classification and integration as well as an integration of indexing 

and clustering technique. In Chapter 2, we will give some backgrounds on the 

problems we did, especially some techniques on web document classification, in-

tegration as well as the indexing techniques on vector space. The web document 
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classification algorithm as well as the definitions on different types of documents 

will be discussed in Chapter 3. In Chapter 3, transformation algorithm from a 

web document to an OEM record, similarity definitions and the representative 

selection algorithm will also be presented. The web document integration algo-

r i thm is discussed in Chapter 4. The details about the dictionary data structure 

will be given in Chapter 5. The details of IR-Tree and the suggested new index-

ing structure based on the integration of M-Tree and Incremental-DBSCAN are 

discussed in Chapters 6 and 7 respectively. In addition, performance analysis 

and experiments are carried out throughout this thesis to show the performances 

of our proposed algorithms. We conclude our works in Chapter 8. 



Chapter 2 

Related Works 

In this Chapter, we will first discuss some issues on web document classification, 

web document integration and indexing. Throughout the first part of the thesis, 

we use Object Exchange Model (OEM) for the manipulation of web documents. 

Web documents are characterized by its semi-structured property. Thus, we will 

also discuss the issues concerning OEM in this chapter. 

2.1 Semi-structured Data and OEM 

OEM is mainly designed for the manipulation of the semi-structured data [13 . 

Thus, before discussing about the OEM, we will give an introduction on the 

semi-structured data. 

2.1.1 Semi-structured Data 

Traditionally, data is manipulated in the form of relational data or object-

oriented data. However, some of the data may not appear in the form that 

can be constrained by a schema. The most immediate example of such data 

is the WWW data. Ahthough researchers want to treat the WWW as a large 

9 
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database, there is no standard model to describe the structure of the WWW 

documents. Hence, it is difficult to formulate the queries. 

Moreover, there is no all-embracing data model that can be used to model all 

the data. Without such a data model, it is difficult to build a software that can 

convert between two desperate models. Besides, for traditional data models, it 

is difficult for the users to formulate queries which may have opaque terminology 

and the rationale for the design. Thus, the author of [13] proposed the idea of 

semi-structured data, which use a graph-like or tree-like structure to represent 

the data. 

2.1.2 Object Exchange Model 

OEM was proposed in [13] for the representation of semi-structured data. OEM 

is a labeled tree with a label associated with each edge, which can be formulated 

as follows: 

typelahel = int\string\."\symbol 

typetree = set(lahel x tree) 

The first line describes a tagged union or variant, while the second line men-

tions that a tree is a set of label/tree pair. Some variations on the basic OEM 

are proposed, where internal nodes are empty and symbols are placed in leave 

nodes. 

typebase = int\string\... 

typetree 二 hase\set[symhol x tree) 

This is not the only format of OEM. There are some possible variations on 

the OEM tree structure, and the structure above is only one of them. In this 
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model, there is no meaningful data stored in the internal nodes of the tree, and 

all the data are stored in leaf nodes. There is no ordering on the edges. Please 

refer to [13] for more detail on about OEM. 

OEM is the data model proposed for manipulation and representation of data 

with no rigid schema. This is particularly useful for representing web documents, 

which is characterized by having no rigid schema. In chapter 3, 4 and 5, an 

algorithm will be given on transforming web documents into OEM and generating 

a "global structure" in OEM for each subset of documents which can represent 

all the data from documents in the subset. 

As a remark, relational and object-oriented database can be transformed 

into this model. However, for the case of object-oriented data, the issue of 

object identity has to be handled with great care. The transformation from 

other databases to semi-structured database is not unique, and different results 

for different transformation algorithms may be resulted. 

2.2 Related Work on Web Document Partition-

ing 

In the first part of the thesis, we will try to partition the set of web documents 

based on hyperlinks and the document semantics. Most traditional web docu-

ment categorization techniques partition web documents based on the document 

content. However, in this thesis, we will try to use the hyperlinks embedded in 

web documents and the document semantics for the partitioning. In this section, 

we will briefly introduce some related works on web document partitioning as 

well as the utilization of hyperlinks in partitioning web documents. 
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2.2.1 Retrieval of Authoritatives 

The analysis of hyperlinks in web documents was proposed in [35, 25]. HITS 

25] is the application based on [35]. In [35, 25], the authors gather a set of 

related documents from different search engines and transforms the set of hy-

perlinked documents as a directed graph G=(V,E): the nodes correspond to the 

pages, and a directed edge [p.q) G E means the existence of a link from p to q. 

Then the author defines two types of documents, namely authorities and hubs. 

Authoritative pages are documents which have a high in-degree (the number 

of links pointing to a document), while hubs are those documents which point 

to multiple authorities. Authoritative pages and hubs should have a mutually 

reinforcing relationship: a good hub should point to many authoritative pages, 

while a good authority should point to many hubs. Moreover, in this paper, 

unrelated page is also defined, which is a document with high in-degree and very 

low out-degree, like some advertising documents. By computing their in-degree 

and out-degree (the number of links points to others from a document) iteratively 

and eliminating irrelevant ones, authoritatives and hub pages can be identified. 

However, there is a problem associated with the algorithm. The algorithm 

works well if the query is specific. For example, if query on "Java" is performed, 

the document http:// java.sun.com/ will be retrieved easily. However, if the query 

is not specific, it may not be possible for the algorithm to return the authoritative 

pages. For example, if a user searches for "University", a huge set of documents 

will be returned. They should be grouped into different subsets. However, by 

using this algorithm, only one or two authoritative pages will be retrieved. This 

is not desirable. 

http://java.sun.com/
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2.2.2 Document Categorization Methodology 

There are many web document categorization methods proposed. HyPursuit [51 

uses semantic information embedded in the hyperlink structure and document 

content to cluster web documents. Authors in [51] first defined the similarity 

based on the content-links. The similarity definition counts on the number of 

common ancestors and common descendents between two documents. Then the 

authors define the similarity based on the content of documents that based on 

the term frequency and the weight contribution. Clusters are formed based on 

the two similarity definitions. 

Instead of browsing the entire set of web documents or gathering search re-

sults from various search engines, Bookmark Organizer (BO) [40] takes a local 

view on the web documents that the user browses. BO clusters collections of web 

documents which is in the form of bookmarks by using hierarchical clustering 

techniques. It works on a semi-automatic way: it combines manual and auto-

matic organization on the bookmarks to enhance the accuracy on categorization. 

WAKNN (Weight Adjusted k-Nearest Neighbor) classification algorithm [28 

is based on k-NN classification paradigm. [19]. The weights of features in 

WAKNN are learned iteratively and only the weights of feature with the most im-

provement in the objective function will be updated. PEBLS [17] and VSM [39 

are also k-NN classification algorithms which applies the Modified Value Differ-

ence Metric (MVDM) [17] and conjunction gradient optimization technique [47 

for the learning and update of the feature weights. 

While WAKNN learns the weight of features by an iterative approach, the 

authors in [36] use Bayesian classifiers [33] in the feature selection process. The 

authors propose an approach that utilize the hierarchy in topics to reduce the size 

of feature set, and use Bayesian classification methodology to classify documents. 

Besides [36], AutoClass [14, 48] also applies Bayesian classification methodology 



Chapter 2 Related Works 29 

for document classification. 

There are also some other approaches such as those using association rule hy-

pergraphs [29, 42] and mobile agents [55]. However, most document classification 

methodologies, which are mainly distance- or probability-based, are inadequate 

in the sense that they require a large number of pre-inputted features for learn-

ing (probabilistic approaches) or improper distance measure due to variations of 

documents in length and wordings (for distance based approaches). Hyperlink is 

a common feature for all web documents. By analyzing the set of hyperlinks in a 

document, inter-relations among documents can be observed, without learning of 

special features required. However, there is not much research for web document 

classification that utilize the set of hyperlinks in web documents. In Chapter 

3 of this thesis, we will discuss the web document classification algorithm by 

hyperlinks in detail. 

2.3 Semi-structured Data Indexing 

Together with the introduction of semi-structured data, indexing methodologies 

for semi-structured data are also introduced. The most well-known one is Lore 

41], a DBMS designed for the storage and representation of semi-structured 

data. There are also some algorithms which manipulate semi-structured data. 

2.3.1 Lore 

As mentioned before, Lore (Lightweight Object REpository) [41] is a DBMS 

designed for the storage and representation of semi-structured data. It uses 

OEM to represent the data. Together with the query language specific for Lore, 

Lorel [1]. Lore can be used to store, query and index semi-structured data. 
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2.3.2 Tsimmis 

Tsimmis (The Standard IBM Manager of Multiple Information Sources) [27, 44: 

is a project in IBM that provides an architecture and tools for accessing multiple 

heterogeneous information sources, which will translate the data into Object-

Exchange Model (OEM) [27, 1:. 

2.3.3 Other Algorithms 

There are some papers studying on matching the structure of semi-structured 

data [7], while some others try to store the semi-structured data in form of re-

lations [18]. However, they just concentrate on the original structure of data. If 

the structure deviate too much, their algorithms cannot be applied. Moreover, 

those algorithms usually require extra information or well-defined and standard-

ized structure. In [3], a wrapper is implemented to automatically wrap HTMLs 

into structures and perform searching. In [56], the authors propose an algorithm 

which retrieve the n most related documents from a set of search engines based 

on the representatives generated by the database search engine. Then documents 

are ranked following their relevance. 

2.4 Related Work on SAMs 

There are many Spatial Access Methods (SAMs) proposed in order to provide 

a fast and robust searching on vector space data. Most of them are derivations 

of R-Tree [26]. In this section, we will give an introduction on R-Tree and its 

derivatives, as well as some other indexing methodologies. 
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2.4.1 R-Tree and R*-Tree 

Among various spatial access methods, R-tree [26] is the most common and 

fundamental one. The basis of R-tree is to build a multi-dimensional index 

structure by packing data points into rectangles. It is a height-balanced tree, with 

leaves pointing to various data objects. Both leaf nodes and non-leaf nodes have 

the minimum bounding rectangles (MBR), with MBR on leaf nodes bounding 

all its data points and that of non-leaf nodes bounding all its children MBRs. 

That means, an R-tree is a hierarchy of bounding rectangles. 

However, R-tree suffers from the performance deterioration when more and 

more data are inserted into the tree. Upon splitting, R-tree is based on a heuristic 

optimization, minimizing the enclosing area of rectangles. Experiments proved 

that the performance of R-tree drops when more data are added into it. Hence, 

a variant of R-tree, R*-tree [4] is proposed. 

The main difference between R-tree and R*-tree is that the latter employs 

the forced reinsert mechanism on inserting data and splitting nodes. In R*-tree, 

when a node overflows, parts of its entries will be re-inserted. This leads to an 

improvement on the organization of points and nodes. 

2.4.2 SS-Tree and SR-Tree 

Instead of using MBRs that R-tree and R*-tree do, there are some variations 

of R-tree which use a different hierarchy. SS-tree [52] is one of these examples. 

In SS-tree, data are bounded in spheres rather than rectangles. The nesting 

property of R-tree is retained in SS-tree, i.e. the bounding spheres of all children 

nodes are nested in their parent sphere. The center of a sphere is the centroid 

of all points in its subtree. It also allows the tree to divide points into isotropic 

neighborhoods during insertion and splitting. Upon insertion of a new point, the 
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subtree with the closest centroid will be selected and propagates downwards. If 

the node is full, the variance for all the children with the centroid is calculated 

on each dimension, and split on the dimension with greatest variance. 

There are several advantages for using bounding spheres instead of using rect-

angles in an index structure. Firstly, using bounding spheres can improve the 

performance of nearest neighbor search. As the sphere bound all its children in a 

specific radius, it is easier to compute the nearest neighbor and prune away irrel-

evant members using the triangular inequality of Euclidean distance. Moreover, 

the storage space can be reduced as only the centroid and covering radius are 

stored in a node for bounding sphere, while dimensionality number of variables 

(the bounding rectangle) have to be stored for each node in an R-Tree. 

However, there are also some drawbacks for using hyper-spheres rather than 

hyper-rectangles in an indexing structure. By using bounding spheres, the cov-

ering area is much larger than that of using bounding rectangles. This leads to 

an increase in the number of node access when a range search or an insertion is 

performed. 

SR-tree [34], considering the pros and cons of rectangles and spheres, uses 

both spheres and rectangles to index data. A leaf stores the data point, while 

a non-leaf node uses a bounding rectangle and sphere to indicate its bounding 

area, which is the intersection of two areas. The centroid of bounding sphere 

is computed by taking the average of all children on all dimensions; the radius 

of bounding sphere is the minimal distance which can bound all the children 

rectangles and spheres. Experiments show that SR-tree outperforms SS-tree and 

R*-tree upon nearest neighbor queries. 
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2.4.3 TV-Tree and X-Tree 

While SS-Tree and SR-Tree improve the performance of the R*-Tree by applying 

hyper-spheres instead of hyper-rectangles, there are some other SAMs which try 

to enhance the performance by adding and altering some features of the R*-Tree. 

TV-Tree [38] and X-Tree [6] are the examples of such SAMs. In TV-Tree, the 

dimensionality of feature vectors is reduced and only the active dimensions are 

kept for indexing high dimensional data. All the dimensions are sorted according 

to their importance and only the first few active dimensions are kept as the index. 

The active dimensions may shift if for most of the feature vectors in a sub-tree, 

the coordinates for the most important active dimension are the same. That 

dimension is then set inactive and the next important dimension is set to be 

the new active dimension. However, as mentioned in [52, 34], the effectiveness 

of TV-Tree depends much on the nature of the dataset, in which the feature 

vectors should allow the shift of active dimensions. Hence, the performance of 

the TV-Tree may not be as good as expected for real data. 

Instead of reducing the dimensionality of feature vectors as that in [38] does, 

X-Tree [6] tries to improve the performance of R*-Tree by employing the overlap-

free split and the use of supernode. In X-Tree, the split of nodes is ensured to be 

overlap-free, so that the performance of point queries can be improved. However, 

if the overlap-free split is not possible, a supernode, which is an oversized node, 

is introduced. The idea of the supernode is to circumvent the overlap area so 

that the I /O throughput for reading and writing nodes can be reduced. 

2.5 Clustering Algorithms 

SAMs use hyper-rectangles or hyper-spheres for spatial management and the 

hierarchy between the parents and its children is clear. For example, in SS-tree 
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or SR-tree, a node is represented in a hyper-sphere (or a combination of hyper-

rectangles and hyper-spheres). So, the relation between children and its parent 

is obvious: all children are bounded within the radius from the centroid of the 

bounding sphere of its parent node. However, it is difficult for those indexing 

structures to maintain the inter-relations among data points. 

Clustering [37] is one of the numerous methods for maintaining informa-

tion among related points, which is to group closely related data into corre-

sponding groups. Clustering algorithms can be divided into three different cat-

egories, namely model-based and optimization-based, density-based and hybrid 

approaches. Model-based and optimization-based approaches like K-Means [24 

and CLARANS [43] try to retrieve and assign a set of cluster centers (like medoids 

in [43]) and use the optimization criteria specified in the corresponding algorithms 

for cluster assignment. For density-based approaches, clusters are identified if 

the density of the data is larger than the threshold specified for the corresponding 

algorithm. DBSCAN [21] identifies clusters in form of a sphere, while STING 

'50] and Hierarchical Grid Clustering [45] partition the data space into a grid 

structure and there is no shape specified for clusters in DBCLASD [54]. Some 

transformation techniques are also applied for cluster identification. The authors 

of WaveCluster [46] apply wavelet transform for the identification of clusters. For 

hybrid approaches, like BIRCH [57] and CLIQUE [2], a coarse clustering on the 

dataset will be performed first and further operations on the set of coarse clus-

ters (like merging of closely-located clusters) are done. In the later parts of this 

section, we will discuss more on one of the clustering algorithms, DBSCAN [21], 

and its variant, Incremental-DBSCAN [22 . 
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2.5.1 D B S C A N and Incremental -DBSCAN 

Incremental-DBSCAN [22] is originated from the clustering algorithm DBSCAN 

.21]. In DBSCAN, every data d 二 di,d2,.",dn is scanned. If the number of 

points bounded in the "sphere" with d as center is larger than a threshold MinPts 

within a specified radius Eps, c? is a cluster center and a cluster is identified. For 

those data points which have insufficient support within the bounding radius, 

they are regarded as noise. By using SAMs like R*-tree，the searching of all 

density-reachable objects is performed as a range query and hence by recursively 

searching, clusters can be found. 

DBSCAN defines the relation directly density-reachable between two objects: 

if an object p has more than MinPts bounded within the radius Eps and q is 

one of its bounded point, then q is said to be directly density-reachable, or ddr 

from p. If two centers p and q are directly density-reachable with each other, 

the two clusters will be combined into one and all density-connected clusters will 

be combined into one. For two objects p and g, if there exists a set of objects 

…，尸n such that p is ddr from pi, Pn is ddr from q, and pi is ddr from pi+i, 

p and q are said to be density-connected. Clusters are defined as the set of all 

density-connected objects. All objects not included in clusters are regarded as 

noise. 

However, DBSCAN can only be applied on a static database. Incremental-

DBSCAN modifies the algorithm of DBSCAN and make it applicable to a dy-

namic database. It first defines which object(s) (clusters or data points) will be 

affected during insertion (or deletion) of a cluster. Different scenarios and their 

corresponding handlings to the clusters affected are also discussed in detail in 

22]. With this modification, the database need not be scanned and can handle 

the clustering problem dynamically. 
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Web Document Classification 

There are billions of web documents in the WWW, and thousands of new doc-

uments coming every day. Due to the enormous size and the dynamic behavior 

-of the web documents, it is impossible to process them as a whole. Moreover, 

as mentioned before, web documents are unstructured so that it is difficult to 

estimate the similarity between web documents. In this Chapter, we will discuss 

the details of web document partitioning by hyperlinks. By considering the web 

documents as nodes and hyperlinks in the document as edges, the set of web 

documents can be transformed to a graph. The partitioning of web documents 

is based on the graph generated. 

3.1 Basic Definitions 

Before the presentation of the partitioning algorithm, we will give a set of basic 

definitions concerning the graph transformed and the set of nodes (web docu-

ments). Web documents usually contain a set of hyperlinks. By considering the 

sets of web documents as nodes and hyperlinks as directed edges, any set of web 

pages W can be transformed into a directed graph G=(V,E): a web page corre-

sponds to a node in W and a directed edge n(i,j) where i, j G V means there is 

21 
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a hyperlink from document i to document j. This definition is the same as that 

used in [35]. The following is the definition of a directed link in such a graph G. 

Definition 3.1 (Directed Link) For a graph G=(V,E)，ij G V, n{ij) G E 

=1 if there is a directed link from node i to node j，or 0 otherwise. 

In this chapter, we want to propose an algorithm that performs a preliminary 

partitioning on the enormous set of web documents into smaller partitions. It 

is easier to handle a smaller subset of documents instead of handling all the 

documents at a time. However, the partitioning of web documents should gather 

related documents together instead of just dividing the set of documents into 

random subsets although the partitioning is a preliminary one. Moreover, the 

algorithm should be fast and simple in the sense that it should be capable of 

handling a large set of documents in a short time. Hence, we propose to use 

hyperlinks in web pages for partitioning. 

Before presenting the algorithm, we have to classify web documents into dif-

ferent types. In this chapter, we assume that hyperlinks in web pages should be 

relevant to the topic that the document describes. However, not all hyperlinks 

in a web page is related to the specific topic that the document is about. Some 

links in a web document are related, while some of them are just link to some 

common sites like http://www.yahoo.com/. Some web documents even contain 

many hyperlinks that link to some totally unrelated documents, as some personal 

homepages do. Thus, before partitioning web documents, we should classify dif-

ferent class of web documents according to the following definitions: 

Definition 3.2 (Importance) The importance of a web document i is defined 

http://www.yahoo.com/


Chapter 3 Web Document Classification 38 

as 

X n{j,i)/J2n{iJ) 
jev jev 

Def in i t ion 3.3 (Reference) The reference of a web document i is defined as 

jev jev 

Importance of a document defines how important the document is among 

the set of documents by considering a document's in-link and 
out-link. The 

importance of document i defines the number of documents that have links to 

document i and document i has links to those documents. If importance is large, 

it means the document is an important document which is of high inter-relation 

with other documents. The importance can be used to identify the important 

documents (which should have links pointing to other related documents and 

being pointed by those documents) from irrevalent ones (which many documents 

have hyperlinks pointing to those documents but they do not have links pointing 

back), like the set of search engine pages. 

Reference of a document defines how many documents have hyperlinks point-

ing to the document. In other words, the reference of a document shows how 

many documents take that document as an reference. For those documents 

which have high reference value, it may also be an important document (with 

high importance) or it is a commonly-referenced page (with low importance) like 

http://www.yahoo.com. Based on definitions 3.2 and 3.3, documents can be 

classified into different types. 

As mentioned before, documents that discuss about a programming language 

probably do not contain a hyperlink to an automobile company. Thus, the hyper-

graph V should be able to partition into set of subgraphs. We define documents 

http://www.yahoo.com
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within a subset of documents as related documents or related nodes. Within 

the set of related nodes, two different types of nodes can be identified: center 

nodes and terminal nodes. Center nodes are those which are being pointed to by 

many documents in the subset; while terminal nodes are nodes that have no di-

rected edges to other nodes except those which have edges pointing to that node. 

Besides related nodes, there are some nodes in the hypergraph that link up sev-

eral subsets but not on a specific topic. We name this type of nodes as unrelated 

nodes. The following are the definitions of nodes based on definitions 3.2 and 3.3: 

Definition 3.4 (Center nodes) For a node i e V, if importance > ai and 

reference > a^, the node is considered as a center node. 

Definition 3.5 (Unrelated nodes) For a node i e V, if importance < 5i or 

reference < 82, and n(i，j) are not pointing to the set of center nodes in a parti-

tioned subgraph, the node is considered as an unrelated node. 

Definition 3.6 (Terminal nodes) For each node i G V, if Ejev ^{hj) < 义 

and = Yljev ^(^i) x n(J, i) , the node is considered as a terminal 

node. 

Figure 3.1 shows graphically the various types of nodes. In (a), the set of 

nodes are related together; while in (b), there is an unrelated node that links up 

two different subset of nodes, which are of no inter-relation. In (c) and (d) of 

figure 3.1, the node(s) which is/are hollow represent the center node and terminal 

nodes respectively. The center nodes can be used as seeds for the generation of 



Chapter 3 Web Document Classification 25 

W W 
(a) (b) (c) (d) 

Figure 3.1: Graphs showing (a) related nodes, (b) unrelated nodes, (c) center 
nodes and (d) terminal nodes 

subsets. The set of parameters can be tuned so that the partitioning of documents 

can be done more efficiently and accurately. If the set of nodes are of a related 

topic (gathered from a set of search engine's result), parameters Si and S2 can 

be set larger, so that less documents will be eliminated. However, if the set of 

documents are just gathered by random, a i and should be set smaller, which 

is for a coarse classification first, while preventing from pruning away related 

documents. 

By taking the set of center nodes as seeds, the set of related documents can be 

generated in an a-priori manner. The set of nodes that center nodes have edges 

pointing to are put in the same set. If nodes added into a subset are not terminal 

nodes nor unrelated nodes, the set of nodes that those newly-added nodes point 

to will be added to the subset too. The algorithm terminates when an unrelated 

node or a terminal node is encountered for all edges. If there are more than one 

center node (or related nodes in different subsets) that have edges to a node (not 

an unrelated node), those subsets should be combined into one. 

Then, based on the set of center nodes in each subset of documents, poten-

tial representatives can be identified. Potential representatives can be used to 

represent the subset of documents. In this stage, the set of representatives is 

only potential because re-confirmation by using the algorithms proposed in later 

sections has to be done. 



Chapter 3 Web Document Classification 41 

史。么 ^ 
(a) (b) (c) 

o center node(s) 

• related node(s) 
© unrelated node(s)/terminal node(s) 

Figure 3.2: Generation of sub-graphs from the hypergraph of web documents 

The set of potential representatives is the minimal set of center nodes that 

point to the largest number of documents in the subset. Greedy algorithm [20 

is employed that the center node with the largest number of out-links to the 

documents in its subset is selected. If all the nodes that a center node points to 

are being pointed by the set of nodes in the potential representatives, the node 

is ignored from the set of potential representatives. 

3.2 Similarity Computation 

In this section, we shift the focus of our computation from a global view to a 

local one, which will focus on the similarity between documents within a set of 

documents and retrieve the most important document (the representative) in a 

set. However, before computing the similarity, all the web documents should be 

transformed to the same data model for similarity computation. Web documents 

are characterized by its unstructured property. It is difficult to compare their 

similarity if the documents are of different formats. In this thesis, we employ the 

Object Exchange Model (OEM) [13] as the data model for the manipulation of 

web documents. 



Chapter 3 Web Document Classification  

3.2.1 Structural Transformation 

As mentioned before, web documents are characterized by its unstructured prop-

erty. Though web documents are unstructured, the construction of web docu-

ments should follow the basic definitions on Hypertext Markup Language [8]. In 

this thesis, we define a properly-formatted web document as follows: 

1. It should follow the syntax of HTML strictly: started w i t h � H T M L � t a g , 

body content enclosed b y � B O D Y � a n d � / B O D Y � t a g s , etc.. 

2. "Structure" should contain in an HTML document, which have headings, 

sub-headings and content using different tags enclosed in a hierarchical 

way. 

3. A document should exist some hyperlinks that link to other web documents, 

and vice versa (it is not an isolated page). 

Basically, a properly-formatted web document should be able to be trans-

formed into an OEM data record. For example, an HTML document as shown 

in figure 3.3 can be transformed into an OEM record in figure 3.4 by following 

the hierarchy of tags in an HTML document. 

Among the set of tags that an HTML document uses, some of them can be 

used as the identification of the document structure and the hierarchy of the 

document content. The set of tags, which can represent the importance of some 

words, like title and topic headings in a document, are named structural tags. 

Table 3.1 shows some of the structural tags and their corresponding id values. 

Each tag in the set of structural tags are assigned with an id corresponding 

to its level in the hierarchy of an HTML document. For example, if <H1> is 

assigned with an id of 3, <H2> should be assigned with an id larger than 3, which 

indicates <H1> is on a higher level of hierarchy than that of <H2>. Based on 
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<HTML> 

< T I T L E > 

A simple HTML p a g e 

</TITLE> 

<BODY> 

<H1> 

How to w r i t e an HTML page? 

</Hl> 

It is not a difficult task to w r i t e a n H T M L p a g e . 

<H2> 

HTML Tags 

</H2> 

</BODY> 

</HTML> 

Figure 3.3: A sample HTML page 

Structural Tags ID 

m f " 
H2 2 
H3 3 

BOLD/ITALIC 7 
TABLE/UL/OL/DL 8 

Table 3.1: Some structural tags and its corresponding id 
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I I <nTLE> 

/Simple HTML page I 
/ Simple HTML page 

How to write HTML p a g e ? / ' " ' ^ \ h o w to write HTML page? ^ ^ 
How to write HTML page? How to write HTML page? 

z V / < H / … … \ 
notdiffioilt HTML tags / \ \ / , \ 

7 \ notdiffic^t HTMLtags …… 

(a) (b) 

Figure 3.4: (a) The transformation of an HTML into OEM format (b) The 
corresponding preliminary OEM format 

the set of structural tags, a web document will be converted into a set of nodes 

organized in a hierarchical way. Conceptually, the transformation algorithm 

converts a web document into a preliminary OEM record as shown in figure 3.4b 

with tags as edge labels and section headings as internal node content. Then by 

promoting the internal node content as edge label and removing the original edge 

label which is originally a tag, the OEM record in figure 3.4(a) can be generated. 

After the set of documents are transformed into OEM, the similarity between 

documents can be computed. However, before the computation of similarity, 

we have to define the similarity between two documents. In this thesis, the 

similarity definition is defined on the OEM of the set of web documents instead 

of the content of two documents based on feature vectors. We will define the 

similarity of two documents under three aspects, namely node similarity, edge 

label similarity and structural similarity. The overall similarity between the two 

documents is the linear combination of the three similarities. 

3.2.2 Node Similarity 

A node in an OEM record transformed from a web page is a set of words ex-

tracted from the content of the corresponding document. In this chapter, the 
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computation of node similarity is based on overlap of keywords. Basically, we 

define the individual node similarity between two nodes first, and then the over-

all node similarity. 

Individual node similarity between two nodes i and j nn5(z, j) = (number of 

words in i that match with j ) / (number of words in i) 

For example, if the content of node z is (a b c d) and that in node j is (c d e 

Note that nns{i,j) is not necessary equals to nns[j,i). After defining the 

individual node similarity, the overall node similarity between two OEM records 

can be defined based on it. The overall node similarity ns{A, B) for two nodes 

A and B is defined as follows: 

ns{A, B) = ^ max(72725(z,j)/(number of leaf nodes in A) 
ieA,jeB 

The denominator is used as an normalization factor to ensure that the sim-

ilarity lies between 0 and 1. Hence, if there exist two OEM records which are 

highly correlated, their corresponding node similarity should be high, or vice 

versa. 

3.2.3 Edge Label Similarity 

The computation of edge label similarity is based on the edge labels of each 

branch in an OEM record. Here, a branch is defined as all the edges from root to 

leaf. The following is the definition of edge label similarity over two individual 

branches: 
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Edge label similarity between two branches nes{ij) = (number of edge 

labels in i that match with that in j ) / (number of edge labels in i) 

For example, if there are two branches i j which are of the forms: 

i a__yb__^c_g 

j .•一b—a—m—n ^ 

where the characters on the arrows are the corresponding edge labels. The com-

putation of edge label similarity considers only the content of the edge labels and 

ignores the order of edge labels. For example, the edge label similarity of the 

above example nes(z, j ) is 2/4=0.5. 

Once the edge label similarity between two edges is defined, it is easy to define 

the overall edge label similarity es{A^ B): 

es(A, B) = ^ max[nes{i,j)]/{t}ie number of branches in A) 
ieAjeB 

3.2.4 Structural Similarity 

In this subsection, we will define the similarity based on the structure of the 

OEM record. Firstly, we consider the simplest case: a tree with leave nodes only 

(no internal nodes). The structural similarity between two nodes in such a 

tree nns{i^j) is as follows: 

structural similarity nss(i,j) 二 [number of parent of i - g(z, j)] + [number of 

children in i - f(z,j)]/(number of children in i + number of parent in i), where 

{difference in number of children between i and j, if difference < number of children in i, or 

number of children in i, if difference > number of children in i 
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{ d i f f e r e n c e in number of parents between i and j, if difference < number of parents in i, or 

number of parents in i, if difference > number of parents in i 

Hence, if i has one parent and three children, while j has one parent and one 

child, nns (z , i )=2 /4=0 .5 . The overall structural similarity is defined as: 

ss{A, B) = ^ max[nns{ij)]/{nnmhev of non-leave nodes in A) 
ieAjeB 

The rationale behind the structural similarity is as follows: similar data 

should have similar ”basic，，structure too. What it means by，，basic，，is that simi-

lar records should consist of similar node structure, though not exactly the same. 

For instance, "Individual Profile" or ”Personal Information" usually have at-

tributes ”Name”, "Sex/Gender", "Age/Date of Birth", "Address", etc. Though 

not necessarily the same, they should have a certain degree of relation and sim-

ilarity. Therefore, structural similarity should also be considered. 

3.2.5 Overall Similarity 

Based on the three similarity definitions defined in the previous subsections, the 

similarity between two OEM records A and B is as follows: 

sim{A,B) = axns{A,B)^l3x es{A, B)+ x ss{A, B), where a + /? + 7 = 1 

The similarity can be adjusted by tuning the three variables a,f3 and 7. 

The rationale behind the computation of similarity into three different aspects 

is that it is possible to handle different types of documents. Node similarity and 

edge label similarity are computed separately as it is possible for two nodes in 

different OEM records to be similar, but of totally different edge labels (head-

ing/ subheadings). Moreover, similar data should have similar "basic" structures. 
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Some similar records may be characterized by similar structures together with 

similar data content. So, the three variables should be tuned carefully based 

on the nature of the documents. In handling web documents, it is possible to 

put the heaviest weight on node similarity and put a lighter weight on edge label 

similarity as well as structural similarity. 

3.2.6 Representative Selection 

After the definitions of similarity being proposed, the final step is simple: com-

pute the similarities between potential representatives and members, and select 

the potential representatives with the maximum average similarity with all doc-

uments in the subset. It is noted that there may be more than one representative 

that is of the same average similarity. If this happens, the one with higher im-

portance value should be selected. If the importance values are still the same, 

simply take both as the representative. 

It is possible for two or more document subsets that are of similar content, 

but in different partitions because of no hyperlinks existing between two docu-

ment subsets. Hence, after the identification of representatives, they should be 

compared with their similarity. If the similarity between the representatives is 

larger than a certain threshold, the two document subsets should be merged into 

one subset. 

It is also possible for the representative of a subset to contain only very little 

content. For this case, if the average similarity between the representative and 

its member is too low, the representative is ignored. Instead, the feature vector 

extracted from the documents in subset should be obtained as the representative 

of the subset. However, if the documents are properly-formatted, the probability 

for representatives to contain only very few information should be low. 
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3.3 Incremental Update 

When a new web document is added, the set of hyperlinks in the document is 

analyzed and the number of in-links and out-links should be counted. However, 

on the computation of in-links, it is not necessary to check the entire set of 

documents in the database. Only the subset of documents pointed at by the 

hyperlinks contained in the document should be checked for most of the cases. 

Consider the following three scenarios: 

Case 1: the page is a related page to a subset of documents 

If the new document is related to the subset of documents, it should contain 

some hyperlinks pointing to some documents in the subset. Hence, for this case, 

there is no need to consider other subsets of documents. 

Case 2: the page is pointing to many subsets of documents 

For this case, it is obvious that the document is an unrelated document to any 

subset of documents. Hence, this document can be ignored. 

Case 3: most of hyperlinks are pointing to a subset of document, but no hyper-

links from the subset to that document 

It is possible for the document to be a related document to the subset. However, 

based on the definition of related documents in this dmpter(Proposition 1, 2 and 

3), this document will also be discarded. 

Based on the definition, if the document has no links to other documents, it 

will not be assigned to any subset. Hence, there is no need to check those subsets 

which the document (or the set of documents) have no hyperlinks pointing to. 

It is possible for a newly added document to be one of the following types: 

a related document to a subset, an unrelated document to any subsets or a link 

document to more than one subsets. All these cases will be discussed below. 
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3.3.1 Documents related to a subset 

If the newly added document has the entire set of links pointing to the documents 

in a subset and there are hyperlinks from the documents in the subset to the 

new document, the document can be grouped into the subset. Recalled the 

definitions for center pages and unrelated pages, if a document is pointing to a 

subset of documents, it should be checked to see if it is the center page of the 

subset. If it follows the requirements on Proposition 1, it should be set the center 

document of the subset. If it is not an unrelated document to the subset, and 

the new document is pointed by a document in the subset, it is also regarded 

as the related document in the subset, as related documents are gathered by 

apriori-gen algorithm based on the set of center documents. 

If the newly added document is a center document, the same algorithm men-

tioned above is applied to gather all the documents pointed by the new document 

into the subset. The status of some documents in the subset may change due to 

the addition of new documents. 

3.3.2 Documents unrelated to any subset 

Based on Proposition 2，the newly added document can be determined if it is 

an unrelated document or not. If the document is an unrelated document, the 

document is ignored from the subset. If the new document is unrelated to all 

subsets of documents it is pointing to, the document can be ignored. 

3.3.3 Documents linking up two or more subsets 

It is possible for two or more subsets of documents to refer to some similar 

topics, but classified into different subsets. Hence a document may link up two 

or more document subsets. For this case, just create a new subset which is the 
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union of all subsets. The general structure for the new subset is the union of 

all the general structures in original subsets. All the old document subsets will 

be removed. Nothing in the new subset will be changed (center nodes, related 

nodes, relation between OEM record and the general structure). The addition 

of the new document can follow the steps mentioned in section 3.3.1. 

3.4 Experimental Results 

In this section, we will report some of our experimental results, which show 

the effectiveness of the proposed algorithm. Our experiments are done on two 

aspects: compare the proposed algorithm with k-nn classification algorithm and 

compare the representatives with feature vectors. 

3.4.1 Compare with k-NN 

In this subsection, we will compare our proposed algorithm with fc-nn classifica-

tion algorithm on a set of web documents. As our proposed algorithm is different 

from the traditional methodologies which are mainly based on feature vectors and 

compare similarities among documents, it is difficult to compare our proposed 

algorithm with those algorithms. Hence, we just compare our algorithm with 

the most basic case: A;-nn classification algorithm. 

The set of experimental data we use are a set of 630 web documents that 

gathered based on three different topics. This set of documents is named data 

set 1. Moreover, we also gather a set of 60 documents which is totally unrelated 

with the set of documents extracted before (noise documents), which is used to 

compare the noise filtering capacity of the two algorithms. We name this set of 

documents data set 2. 
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. C l u s t e r center Precision RecalT~| | Q̂ i 卜 2 | | Precision Recall 
2 0 626049 O.eSSMT ~ ~ ^ O X " 0-676885 0.63346 
3 0 849492 0.791174 ~ 0 X " 0.27 M T 0.836950 0.702256 
4 0.836933 0.6954M" ~ ^ ~ 0 ： 2 2 O T " 0.852088 " 0.723223 
6 0.780295 0.630929 0.877067 0-742108 
8 0 728929 0.580^7" " M S ~ ~ O 0 ： 0 6 ~ 0.880128 0.750740 
10 &684615 0.397534 0.1 0.09 0.05 0.860552 0.702155 

(a) (b) 

Table 3.2: Experimental results for the first set of documents for (a) k-nn and 
(b) our proposed algorithm. 

For each document downloaded, we will extract a feature vector of dimension 

20, based on the occurrence frequency of words in the document. The feature 

vector extracted will be used in the k-im classification algorithm. The follow-

ing subsections will show the accuracy of the classification algorithms based on 

precision and recall on a noise-free and a noisy environment. 

Classification on a quiet environment 

In this subsection, we will evaluate the two classification algorithms based on 

the first set of documents downloaded. For A;-nn classification algorithm, we will 

vary the number of k (cluster centers) and compute the precision (p) and recall 

(r) of the classification. While for our proposed algorithm, we will vary the set 

of parameters and S to yield different results in p and r. The results are 

summarized in table 3.2. 

Based on table 3.2, we can see that our proposed algorithm out-performs A;-nn 

classification algorithm. However, the data set used in this subsection are well-

classified and have little noise. In the next subsection, we will show the effect on 

the presence of noise to our algorithm and k-nn classification algorithm. 
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非 Cluster center Precision RecalT"] 卜 卜 2 | M Precision Recall 
2 0.332956 ~0：452^ ~ 0 0 5 ~ ~ ^ 0-676885 0-633465 

3 0.389399 0 . 4 9 6 ^ ~~0：^ 0.15 0.836950 0.702256 

4 0 .6084270.626904 ~ ~ O T " 0.852088 €.723223 
6 0.751473 0.650623 0.18 0.15 ~0M~ 0.87706"?" 0.742108 
8 0.751423 0.650623 " O F 0.1 0.06 0.88012"^ 0.750740 
10 0.726384 0.490127 0.1 0.09 0.05 0.860552 0.702155 

(a) (b) 

Table 3.3: Experimental results for the first set of documents for (a) k-nn and 
(b) our proposed algorithm. 

Classification on a noisy environment 

The experiments done in this part is exactly the same as that in the previous 

subsection, but the data set used is the combination of data set 1 and data set 

2. That means, there are some documents in the set that are totally unrelated 

with other documents nor any clusters. The experimental results are shown in 

3.3. 

From table 3.3, it can be seen that there is no effect on the results generated 

by our proposed algorithm. That means, the presence of noise does not affect 

the performance of our proposed algorithm. However, when compared with k-nn 

classification algorithm, it is adversely affected and the clusters formed are not 

as good as that formed in the previous subsection's result. 

3.4.2 Representative vs Feature Vector 

The most important features in a subset are contained in the feature vector. 

Can representatives have the same property that can represent the subset of 

documents it belongs to? The experimental results presented in this subsection 

are to show that the representative can represent the set of documents it belongs 

to. 



Chapter 3 Web Document Classification 54 

Chi ID # docs FVioo FV^p FV20 FVip 
" " " I 2 4 O F 0 .32 0 .30 

2 ^ 65 0.68 0.65 0.50 
3 m 0 . 4 7 0.50—- 0.65 
4 3 1 . 0 0 "TqQ~ 1.00 ~ T W 
5 3 l . �1 . 0 0 1.00 
6 2 1.00 1.00— 1.00 " T ^ 

7 6 0.38 0.48— 0.65 
8 I 305 I 0.48 0.52 0.55 0.70 “ 

Table 3.4: Experimental results on the comparison of representatives with 
feature vectors. 

Representative{s) is/are identified from each subset of documents based on 

data set 1, with a i , a � and being set 0.18, 0.15 and 0.08 respectively. The 

representatives are compared with the feature vectors (dimension 100, 50, 20 

and 10) of its subset to see how many features in the feature vectors are contained 

in the representatives. 

For the document set 1, according to our proposed algorithm, the set of 

documents are classified into 8 subsets. They are numbered with number 1 to 8 

respectively. Table 3.4 shows the results on our experiment. 

Table 3.4, it can be seen that representatives in each document subset can 

represent the document subset. It is impossible for the representatives to contain 

all the keywords in its document subset. However, by ignoring those subsets with 

only few documents and considering those with large number of documents, it can 

be seen that the representatives usually contain more than 50% of the keywords 

in its subset. The representative for the cluster with ID 1 has a low percentage 

on the feature contained because there is a document with high importance and 

reference, but have few content as mentioned in section 5. 
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Web Document Integration 

In Chapter 3, we discussed the algorithm on how to partition web documents into 

smaller and meaningful subsets. However, the structures of the web documents in 

the same subset are still of large derivation. This also prohibits further operations 

like efficient searching of web documents. Thus, we try to integrate the subset of 

web documents under a standardized data structure for each subset of documents. 

In this chapter, an algorithm is proposed to generate a "general structure" 

based on OEM data in each subset. The general structure generated can be 

used to store the data retrieved from the subset of documents. In the previous 

chapter, an intermediate step for representative selection is the transformation 

of web documents into OEM. The set of data will be used again in this section 

and based on that in the same subset, the general structure can be generated. 

4.1 Structure Borrowing 

In the previous chapter, a similarity definition between two web documents was 

proposed. For the computation of representatives discussed in the previous chap-

ter, node similarity may contribute more under the computation of similarity 

between two documents. However, in this chapter, the node similarity will be 

40 
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ignored and the main focus will be put on the edge label similarity as well as 

structural similarity for the computation of the general structure. 

In this section, two parameters, S and 7, have to be pre-inputted for the iden-

tification of seeds for "general structure" generation. A set of seeds is identified 

from each subset of documents which their OEM data structure will be used as 

the base of the general structure. The criterion as the seed of a document subset 

is that its structure as well as its edge label is close to many other documents in 

its subset, so that most of the documents in its subset can employ its structure 

for data manipulation. Hence, a definition is given based on the requirement 

above: 

Definition 4.1 (Potential seed for a subset) If the document di in a subset 

of documents has edge similarity es(di,dj) > 5 as well as structural similarity 

ss(di,dj) > 7 towards a document dj in the same subset, di is considered as a 

potential seed of the subset. The document dj is said to be structurally similar 

to (sst) di. 

It is obvious for us to consider the structural similarity in the identification 

of potential seeds. However, the edge label similarity is also considered because 

it is possible for two documents to have similar structures in terms of their 

OEM record, but of totally different content (edge label). Recalled the definition 

of structural similarity, it considers only the basic structure of nodes based on 

the number of children and parents. Moreover, not only the basic structure 

of a potential seed is considered, but the edge labels too will be used in the 

generation of the general structure. Hence, it is essential for considering the 

edge label similarity between documents. 

However, it is possible for more than one document that have similar structure 

with a document in the subset. Redundant potential seeds will increase compu-

tation time for further operation and result in generating unnecessary branches 
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in the general structure. Therefore, the minimal set of potential seeds should be 

extracted such that the set should have a high similarity (the edge label as well 

as the structural one) to as many documents in the subset as possible. 

Figure 4.1 is the algorithm for identification of the set of seeds in a subset. By 

following the algorithm, sets of seeds can be retrieved from subsets of documents. 

The set of seeds should be the minimal set of documents that are structurally 

similar to the set of documents in the subset. After the retrieval of seeds, the 

general structure can be generated based on the set of seeds. 

4.2 Integration of Seeds 

In the previous section, all the web documents are transformed into OEM before 

computing their similarities. The corresponding structures are used again in 

this subsection. The set of seeds retrieved should be of similar structure with 

its documents. Hence, if all the OEM records corresponding to the set of seed 

documents are integrated into one large OEM record, its structure should be 

capable of representing all the OEM records in the subset. 

It is not difficult to combine all the seed OEM records in one large OEM 

record. However, the large OEM record is not the minimal one as it is possible 

for more than one seed record to contain the same (or similar) edge. Thus, an al-

gorithm should be employed to eliminate redundant edges. Before the algorithm 

is j)rescnle(L a definitioii for redundant edge is given here. 

Definit ion 4.2 (Redundant Edge) If an edge in an OEM record (from root 

to leaf) has the same number of internal nodes and set of edge labels as another 

edge in the same record, and the two edges have no common nodes except the 

root, the pair of edges is said to be a redundant edge pair. Only one edge in the 

redundant edge pair is uecessanj and the remaining can bt pruned away. 



Figure 4.1: The algorithm for identification of potential seeds. 

I 
i 
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Figure 4.2: An OEM record with a redundant edge (a) and the same OEM 
record with the redundant edge removed (b). 

Figure 4.2 shows a redundant edge pair in an OEM record. In figure 4.2(a), 

the edges labeled with [a]->[b]->[e] (edge with leaf node 1 and 3) are redundant 

edge pair. Hence, one edge can be removed from the record (the edge with leaf 

node 3 is removed in figure 4.2(b). However, the edge with leaf node 2 should 

not be removed, as there is more internal nodes than that with leaf node 1. The 

edge [a]->[b]->[e]->[j]->(3) has more information than the edge [a]->[b]->[e -

� ( 1 ) . In fact, if data can be stored in internal nodes, the edge with leaf node 1 

can also be removed, but in this thesis, the model with no information stored in 

internal nodes is used. 

The algorithm for the generation of general structure is listed in figure 4.3. 

Based on the algorithm, the general structures for each subset of documents 

are returned. Notice in the algorithm that, there is a parameter param for the 

comparison of similarity between two sets of edge labels. This is a user-defined 

parameter which is used to classify the similar edges from dis-similar ones. It 

is not necessary for all the edge labels of a redundant edge to be exactly the 

same as other edges. However, it should not be set too low. Otherwise, it will 

eliminate edges that should be kept. 
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algorithm general_stru_gen 
for each subset of documents s i 

di = the set of seeds in s i 

gsi = {} // gs i: the general structure for subset i 

for each OEM record o j of corresponding document in d i 

gSi = gs i + o j 
end for 

II the basis of the general structure is stored in gs i 

for each edge e ^ in gs i 

for each edge e i ！= e ̂  in gs i 

if count (edge labels in e k) ==count (edge label in e i) and 

same edge label in e k and e i > param 

gSi 二 gs i - ei 
end if 

end for 
end for 

// unnecessary edges are eliminated 

end for 

end general_stru_gen 

Figure 4.3: The algorithm for general structure generation 
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Figure 4.4: An OEM record (a) and a decomposition of the OEM record into 
a set of trees that all have one parent and one child in internal nodes (b). 

In this chapter, the structural similarity is ignored in the computation of 

the general structure as all the edges in the OEM tree record are broken down 

into many edges with no branching in internal nodes. This phenomenon can be 

explained by the example in figure 4.4. As shown in the figure, the OEM record 

is decomposed into a set of OEM records with one parent and one child for all the 

internal nodes and one child for root node. The purpose for the decomposition is 

to ensure that the generation of general structure is not affected by the underlying 

structure of the OEM record. It is possible that some of the branch records are 

actually not useful in representing the structure. In order to extract the useful 

edges which can cover as many OEM records as possible, seeds are decomposed 

into set of OEM records following that in figure 4.4. 

Then the following step is simple. For each node in the OEM records of a 

subset of documents, the edge in the general structure which is closest to its 

original edge should be selected. Though simple, there are some points that 

should be noticed. Recalling the algorithm for the selection of seed records, only 

some records in the subset of documents are selected. It is possible that there 

exist some edges in the subset that is not similar to any edges. If such edges are 

mapped into the general structure, it is possible that an error will be occurred. 

Moreover, it is also possible for more than one edge in the general structure that 
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have the same similarity with an edge. Those problems will be discussed below. 

Before the transformation from its original structure to the general OEM 

structure, a parameter 入 is set as the threshold that the structure to be "bor-

rowed" . A s mentioned before, it is possible for some edges that there is no edge 

in the general structure suitable for "structural borrowing". If there is no edge 

in the general structure that has similarity to the edge that has the similarity 

greater than A, the edge should not be transformed as there is no edge suitable 

for transformation. Under this situation, three solutions are proposed: 

1. eliminate the edge, as if there is no similar edge in the general structure, 

the edge should not be an important edge. This may result in loss of 

information. 

2. add the edge on the general structure, but this may result in addition of 

unnecessary edges on the general structure and lead to an increase in its 

size 

3. com pare tlie node simi lar i ty with nodes of other records. For the set of 

11 odes similar with the node, check which edge the node is trans formed 

iiiuler the general structure. Then transform the node under that edge 

on the g(Micral structure. This can be sure the node abolished is of no 

importanc(^ on the subset of (lata as \v(、ll as keeping the general structure 

j)ack, hut t he complexity of conipiit at ion will he large. 

Th(、similarity ment ioned al)()v(、is ma in ly bas(、(l on the definit ion of edge label 

similarity. If th(、OEM record has only on(、child and one parent in its internal 

nodes, tlu、similarity used in this part will Ix、just t ho sanir as that of rdgr label 

siinilarit 

The next problrni is i h r (、(lg(、sclrrt ion when same simi lar i ty is encoiintered. 

If the similarity for an edge in an 01':M record is the same for more than one 
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Figure 4.5: An OEM edge (a) and a general structure for a subset (b). 

edge in the general structure, the edge with the same edge label in lower parts 

of the tree should be selected. The following figure is an example. 

In figure 4.5, (a) is an edge in an OEM record. When compared with the set 

of edges in the general structure as shown in (b)，edges labeled with (1), (2), (3) 

and (4) are of the similarity 0.67. They all have two out of three edge labels that 

match with the edge from the OEM record. However, in this case, edge (3) will 

be selected as the edge to store the leaf node data d. For an OEM data record, 

data is represented in a hierarchical way. The same argument also applies on the 

arrangement of edge labels in an edge. Edge labels should be arranged in the 

sense of hierarchy, from general to specific. Hence, in the example shown above, 

edge (3) or (4) should be selected instead of (1) or (2). However, in (4), the edge 

label c is in an upper level than that in (3). So, edge (3) will be selected as the 

edge to store the OEM data represented in (a). 

4.3 Incremental Update 

When a document is added into a subset of documents, the OEM record of the 

document should be integrated into the general structure. This can be divided 
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into two cases: the new document is a potential seed, and the new document is 

a normal record. The two cases will be discussed in the following subsections. 

4.3.1 N e w OEM record is a normal record 

If the record is a normal OEM record, it should be transformed into the general 

structure as other member document does. There is no change on the general 

structure generated. That means, the new OEM record will be integrated into 

the general structure as other records in the subsets do. For the set of edges 

that cannot be transformed into the general structure, they should be treated 

following the solution that the transformation algorithm handles the redundant 

edges. 

However, as the set of redundant edges accumulates, some redundant edges 

may gain sufficient support to be transformed into the general structure. Here, 

we will introduce another data structure for the storage of the set of redundant 

edges in each subset. The data structure will keep all the redundant edges. 

Under a certain period, or if the size of the set of redundant edges is increased to 

a certain level, the similarities between the edges will be computed. If there is 

a redundant edges that have a large edge label similarity with a certain amount 

of redundant edges in the subset (e.g. more than 1% out of the entire set of 

redundant edges or more than 5 edges, taking the larger one), the edge will be 

promoted as an additional edge in the general structure. All the edges in the 

set of redundant edges that is of high edge label similarity with the newly added 

edge will be removed from the set of redundant edge and stored under the set of 

general structure. 

In the computation of similarity for the redundant edges, only the edge label 

similarity will be considered. After the transformation, the set of redundant 

edges are a set of OEM data with only one child for each non-leaf nodes. Thus, 
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it is meaningless to compute the structural similarity, as that in the previous 

section does. 

4.3.2 N e w record is a potential seed 

If the OEM record is a potential seed based on Definition 2, the general structure 

should be changed by adding new edges in it. The newly added OEM record 

should be broken down into set of edges with internal node having one child 

and one parent. The similarity of each edge between the edges in the general 

structure is computed. By following the algorithm in chapter 4, redundant edges 

are eliminated and the general structure is updated. 
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Dictionary 

In this chapter, we will introduce a new data structure called "dictionary". In 

the previous chapters, we discussed how to classify and integrate the set of web 

documents based on the hyperlinks embedded in the documents as well as their 

structures and content. However, the issue of semantics about the keywords is 

still not addressed. Some related keywords that appear together frequently, can 

be used to identify the semantics of a document. For example, the keyword 

"Java" is about an object-oriented programming language or a kind of coffee. 

However, it is difficult to understand the relation of words without an additional 

data structure for the semantics between words does not exist. In this chapter, 

we will try to introduce a new data structure called dictionary to keep track of 

the relation among words based on their co-occurrences. 

The dictionary will serve several purposes. The first purpose is，just as men-

tioned before, to identify the relations among words. In our proposed data 

structure, the dictionary keeps the information of a word, which includes the oc-

currence of the word, the occurrence in different subset, the position of the word 

located and the co-occurrence with different words. Based on these information, 

we can identify correlated words. For example, the keyword "Java" should have 

a high occurrence on subsets of documents concerning programming languages or 
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coffee. Therefore, we expect to have a high co-occurrence between the keyword 

"Java" and the keyword "programming" or "coffee". Moreover, based on the 

occurrence and the distribution of keyword, we can also identify some "useless 

words" like "is", ”a” or ”the，，. They cannot help identifying document semantics, 

as they appear in many documents. We can prune out these words and hence 

can save the storage space. 

Moreover, the dictionary can help representing the subset. The representative 

may not be possible to include all the keywords in its subset of documents. If 

solely the representative is used for representing the subset, some keywords may 

be missed. The representative is expected to be the one which is the most similar 

to all documents in the subset. However, in most cases, it is impossible for the 

representative to contain all the keywords in its subset. Thus, the dictionary can 

help representing the set of documents. In the proposed structure of dictionary, 

the occurrence of a specific keyword in a subset is kept. Based on this entry, 

we can retrieve the set of keywords for each subset quickly. In addition, by 

submitting a keyword, the sets of related keywords and subsets containing the 

keyword can be retrieved quickly. 

In the following sections, we will discuss the details about the dictionary. 

5.1 Structure of a Dictionary Entry 

There are several important information that should be kept in the dictionary. 

Based on the two functionalities that mentioned in the previous section, we 

should expect the dictionary to keep the information below: 

1. the total occurrence of the keyword 

2. the occurrence of the keyword in a subset 
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d. ： word 1 
occurrence O12) 

occurrence pos Pi 

occurrence (o^^, 0^2 ) 

occurrence pos Pi5 

Figure 5.1: The structure of an entry in a dictionary 

3. the co-occurrence of the keyword with other keywords 

Figure 5.1 shows the structure of a word stored in the dictionary, where the 

explanations of the entries are as follows: 

di： the index of a word in the dictionary 

word: the actual content of the word 

Oji: the total number of occurrence for the word in different records of subset 

j 

Oj2： the number of web documents with the word appeared in subset j 

p/j : the document that contains the word 

Each document will be scanned and the words in the document will be added 

to the corresponding entry in the dictionary. If the entry does not exist, it will 

be added to the dictionary entry. Otherwise, the count on the corresponding 

word will be updated. 

In the proposed data structure, we keep the occurrence information of a key-

word word in a subset as well as the total occurrence. We also keep the occurrence 

position of word so that the relevant document can be retrieved quickly if the 

keyword is supplied for searching. This also helps on multiple keyword searching, 

which the subsets containing each keyword are extracted and the intersection of 
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these subsets is taken as the resultant document set. Since it is possible for more 

than a subset of documents that contain the keyword, multiple entries for on 

and Oi2 together with its corresponding occurrence position pi will be resulted. 

However, there is no co-occurrence information maintained in the dictionary. 

It is impossible, and unnecessary, to keep all the co-occurrence information as 

there are thousands of words that are co-occurred with a word in a document. 

It is meaningless to keep all these information. In the next section, we will dis-

cuss on how to discover the co-occurrence information based on the information 

maintained in the dictionary data structure. 

5.2 Dictionary: Relation Identifier 

The dictionary keeps no information about the co-occurrence of words. However, 

we can obtain this information based on the occurrence of the words in a subset. 

Here, we make an assumption that two words are correlated if the two words 

co-occur in a high frequency. In order to save the computation power, we first 

consider the occurrence within a subset. If there exists more than one word in 

the subset that have a high occurrence, the words will be selected for further 

examination. What it means by "high occurrence" is that if the occurrence of 

a word within a subset is higher than a threshold, say 50% of the word's total 

occurrence. 

Then the set of selected words will be examined for the co-occurrence of 

words. The co-occurrence should be estimated under the node level, that is, if 

the two keywords appear in the same node, they are considered as co-occurred. 

The co-occurrence of the two keywords is counted. If the co-occurrence counts 

for both keywords are larger than a proportion of the total occurrence of the 

corresponding keyword, the two words are said to be related. Here, we introduce 
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a variable p such that for two keywords a and b, if the co-occurrence for a 

keyword a with b is larger than p times the total occurrence of a, a is said to be 

related with b. If b is also related with a, the two keywords a and b is said to be 

correlated. 

Moreover, the dictionary can be used to identify unimportant words from 

keywords. A keyword should be specific to a subset of documents in the sense 

that it should not appear frequently in many other subsets. In other words, 

if a word appears in many subsets with high frequency, the word should not 

be a keyword. Those words should be indexed with special index to indicate 

its unimportance so that the set of unimportant words can be ignored while 

performing related word searching and keyword searching. 

The set of unimportant words, like "is", "a" and "the", help nothing on 

structural recognition nor representing the document. However, these words 

appear all around the documents. If a word appears in all subset of documents 

and if the occurrence of the word in all the subsets is larger than (total occurrence 

of the word) / (total number of subsets x 2) (that means, if the word appears in 

all the subsets with the occurrence not less than 50% of its average occurrence), 

the word is classified as unimportant word. 

5.3 Dictionary: Complement of Representative 

Though the representative can be used to represent the subset of documents, it 

is not probably that the representative contains all the words in the subset of 

documents. Hence, the dictionary can be used as the complement of representa-

tive upon searching. As the dictionary keeps the occurrence of all the words in 

each subset, the set of words with high occurrence will be picked out first and 

this serves as the complement of the representative. If a keyword is supplied 
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as a query for web document, instead of searching from the representative, the 

dictionary is searched and the corresponding documents containing the keyword 

are returned as the answer. 

Moreover, this can help speedup the searching. This is t ime consuming to 

retrieve all the representatives for the corresponding keyword. However, with the 

aid of the dictionary, we can retrieve the desired set of documents based on the 

dictionary quickly. Entries in the dictionary are arranged following the hierarchy 

predefined (like ordered following the alphabetical order of the keyword) and 

hence the searching of a keyword in the dictionary is faster than that in the set 

of representatives. 

In addition, the dictionary can be applied to solve the problem of word am-

biguity. As mentioned before, "Java" can either be a kind of coffee or an object-

oriented programming language. Upon the retrieval, if there exists more than one 

subset which contain the query word, its correlated words will also be retrieved 

and returned as the preliminary query result. Users can retrieve the desired 

subset of documents and ignore those they do not want based on the correlated 

words retrieved. 

5.4 Incremental Update 

Upon the addition of new documents, the dictionary has to be examined and 

updated. Since the dictionary keeps the occurrence information about the set 

of documents, the incremental maintenance is simple. The dictionary will be 

checked to see if the entry exists or not. If the entry exists, the corresponding 

count and the new document should be added into the entry. However, if the 

entry does not exist, the entry is added in the dictionary. 

Moreover, it is not necessary to perform the related word checking too fre-
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Subse t ID # D o c u m e n t Represen ta t ive U R L 
1 ht tp: / /www.cse .cuhk.edu.hk/pgm/ug .html  
2 4 http: / /www.cse .cuhk.edu.hk/privacy/statement .html  
3 4 http: / /www.cse .cuhk.edu.hk/ internet / internet .html  
4 i h t tp: / /www.cuhk.edu.hk/eco / index .html  
5 8 ht tp: / / ihome.cuhk.edu.hk/ z044086/ index.html  
6 http: / /www.acm.org/s igmod/recorcl /credits .html  
7 http: / /www.acm.org /s igmod/record/ index .html  
8 http: / / w w w . a m d . c o m / a b o u t / i n v e s t o r / 1998annual/annual.html 

Table 5.1: The classification on the set of documents. 

quently. The checking can be done on batch or upon request. The incremental 

update of the dictionary is simpler when compared with other algorithms. 

5.5 Experimental Result 

In this section, we report some experimental results based on the searching by 

representatives and the dictionary. 2,000 web documents are gathered based 

on three main topics: 1) The Computer Science and Engineering Department 

of the Chinese University of Hong Kong [30]; 2) ACM Homepage [31] and 3) 

AMD Homepage [32]. Then based on the UNIX command ” wget,,, a set of web 

documents are gathered. Then based on the algorithm discussed on Chapter 3, 

the set of documents are partitioned as shown in table 5.1. 

The following subsections will show the searching results based on the search 

of keywords, ambiguous words and related words. 

5.5.1 Search based on keyword 

In this part of the experiment, we try to search for the documents based on 

the submitted keywords by using representatives. The keywords selected are 

CUHK, SIGMOD and AMD. Table 5.2 shows the results of the searching. The 

second column is the subset IDs that contain the keyword. The third and the 

http://www.cse.cuhk.edu.hk/pgm/ug.html
http://www.cse.cuhk.edu.hk/privacy/statement.html
http://www.cse.cuhk.edu.hk/internet/internet.html
http://www.cuhk.edu.hk/eco/index.html
http://ihome.cuhk.edu.hk/
http://www.acm.org/sigmod/recorcl/credits.html
http://www.acm.org/sigmod/record/index.html
http://www.amd.com/about/investor/
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Search word Subset Die retrieved for Die retrieved for Keyword contained in 
related subset? unrelated subset? unrelated subset? 

CUHK _ 1,2,3,4 — No Yes ^  
SIGMOD - 6,7 No Yes ^  

AMD 6,8 I No Yes Yes 

Table 5.2: The result based on keyword search. 

Search word | IR | IS | 2R | 2S I 3R I 3S I 4R I 4S I 5R I 5S I 6 R I 6S I 7R I 7S I 8R I 8S 
D a t a b a s e N Y N N N N ^ N _ _ N _ _ N _ _ Y _ _ Y _ _ N _ _ N _ _ N _ _ Y _ 

C o n f e r e n c e N Y N N ^ N N " I T " N _ _ N _ _ N _ _ Y _ _ N _ _ Y _ _ N _ _ L 
— c ^ ^ e r | y | y | y | y | y | y | n | n | n | n | n | y | n | y | n | y 

Table 5.3: Search results when submitting ambiguous words. 

fourth column of the table indicate if the dictionary is retrieved while checking the 

existence of the keyword in the related subsets and unrelated subsets respectively. 

The last column indicates if the keyword is contained in the unrelated subsets. 

The result shows that if the keyword submitted is related to the document set, the 

representative will usually contain the keyword. Note that the keyword "AMD" 

also appears in the subset 6 (documents from SIGMOD pages) but have to be 

retrieved through dictionary. 

5.5.2 Search by submitting ambiguous words 

In this subsection, we will try to submit some ambiguous words to check if the 

corresponding representative contains the words or not. There are 8 subsets 

returned after the classification of documents. The table below shows whether 

the representative (R) and the subset (S) contain the query word or not. The 

below is the result: 

It shows that if the word submitted for query is ambiguous, the representative 

may not contain the word and the dictionary is required for the search of the 
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(185) computer (523) department (176) hong (240) 
science (240) I research (269) | engineering (299) I kong (205) 
Chinese (308) please (145) university (296) system (200)  

cuhk (283) software (151) information (185) 2000 (296) 
systems (174) network (251) new (152) 

Table 5.4: The related words returned for the keyword "CUHK". 

acm (2354) management (2887) library (1442) systems (2676) 
digital (1472) conference (1449) database (2805) “ data (2045) 

information (1714) international (1306) 

Table 5.5: The related words returned for the keyword ”ACM”, 

word. Thus, for searching of ambiguous words, the dictionary should be used. 

5.5.3 Retrieval of related words 

In this part of the experiments, we try to search for some keywords from the 

document set and see which "related words" will be returned. Here, we try to 

search for two keywords: CUHK and ACM. The search results are shown in 

the following tables. Words in the tables are the corresponding related words 

retrieved. Digit in the blanket following the word is the co-occurrence of the 

corresponding word with the keyword inputted. 

According to the search result, the related words are retrieved successfully: 

” Computer” and ”Science” can be retrieved from input of CUHK (one of the 

seeds for gathering web documents is the Computer Science and Engineering De-

partment of CUHK) and ”International” and "Conference" for ACM (the ACM 

homepage is another seed). However, since the number of subsets is too small, 

the set of keywords generated are not as clear as expected. For example, the 

word ”please” is considered as a related word with "CUHK". If more documents 
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are inputted, a better result may be obtained. 
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Chapter 6 

Structured Data Manipulation: 

IR-Tree 

From this chapter onwards, we will discuss an integration of indexing and cluster-

ing techniques to improve the performance of indexing. In the next chapter, we 

will discuss the new indexing algorithm under Metric space; and in this chapter, 

we will discuss the integration of the two techniques under Vector space. 

6.1 Range Search vs Nearest Neighbor Search 

Range search and nearest neighbor search are the two most common operations 

for an index structure upon searching. Hence, while comparing different indexing 

structures, the performance for the two query operations is usually compared. 

However, there are not many studies about the performances of the range search 

with knn-search. R-Tree and R*-Tree are non-deterministic indexing structures 

in the sense that the sequence of data insertion will affect the arrangement of 

data and the tree structure. Therefore, the performance of knn-search will be 

affected as traditional knn-search algorithm is done on a depth-first manner. 

In this section, we will compare the performance of range search with that of 
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Figure 6.1: The performance of range search and knn-search on varying (a) 
data set size and (b) distribution of data. 

knn-search under different aspects. 

Figure 6.1 shows the performances of range search and knn-search on varying 

the dataset size and the distribution of the data respectively. The data plotted 

in the figure is the average of 100 queries. For all queries, the closest 100 records 

from the query points have to be retrieved. The distance between query point 

and the corresponding 100-th closest point is computed and used as the radius for 

the range search. 50% of data is clustered following the Incremental-DBS CAN 

clustering algorithm [22] with the parameter setting listed in table 6.1 for the 

data set used in figure 6.1 (a). For figure 6.1 (b), the parameter setting is listed 

in table 6.2. 

As shown in figure 6.1 (a), the performance of the range search is better 

than that of the knn-search under a clustered environment, which reduces the 

number of page accesses by around 50%. The radius specified for range search 

limits which nodes should be visited. However, there is no constraint placed on 

which node to visit until the number of retrieved data points reaches k. Figure 

6.1 (b) shows the performances of the two search operations on different data 

distributions. The performance of range search is poor when there is no cluster 

identified and all the data are in one cluster. There are many studies that 

examine the performance of R-Tree [38, 5]. The results show that if the data is 
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uniformly distributed, only some active partitions will be involved in the split 

and all remaining dimensions are kept unchanged. The overlapping of bounding 

rectangles is large and the performance of range search is deteriorated (the curse 

of dimensionality). However, the performance of knn-search is still worse than 

that of the range search. 

In this chapter, we will propose an algorithm that can transform a knn-search 

into a range search, which is less expensive. We will discuss the transformation 

algorithm and compare the performance of the traditional knn-search algorithm 

and the transformed range search algorithm in later sections. 

6.2 W h y R*-Tree and Incrementa l -DBSCAN? 

In chapter 2, various vector-space indexing methodologies as well as cluster-

ing algorithms are introduced. In this chapter, I will discuss why R*-Tree and 

Incremental-DBSCAN are selected as the indexing and clustering algorithm used 

in IR-Tree. 

From previous studies [34], there are pros and cons for employing bounding 

rectangles as well as spheres for indexing structures. For rectangle, it has bet-

ter space management and hence less dead space, or overlapping, is resulted. 

Therefore, it is more efficient for performing range-search for indexing structure 

using hyper-rectangles like R-Tree. For bounding spheres there is an important 

property: for any point p bounded in the bounding sphere, the distance be-

tween p and the center of bounding sphere must be smaller than the radius of 

that sphere. Thus, indexing structures by using bounding spheres (SS-Tree and 

SR-Tree) have a better performance for knn-search, even though there are more 

overlapping. 

In this thesis, instead of combining both spheres and rectangles in an indexing 
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structure (like SR-tree does), we will try to integrate the Incremental-DBSCAN 

into R*-tree structure. The rationale behind selecting Incremental-DBSCAN is 

that it is a sphere-based clustering technique. Moreover, it is an incremental 

clustering algorithm, which is not for most of existing clustering algorithms. 

Finally, as the R*-tree can also help in searching for directly density-reachable 

objects for Incremental-DBSCAN, there's no need to build another data structure 

to keep track of the clusters. In the later parts of this chapter, we will present how 

Incremental-DBSCAN is integrated into R*-tree in order to enhance its searching 

efficiency. 

6.3 IR-Tree: The Integration of Clustering and 

Indexing 

6.3.1 Index Structure 

The structure of an IR-Tree is divided into two parts: the first part is a tree 

structure, which is based on R*-tree, while the second part is a data structure for 

maintaining cluster information, which is based on Incremental-DBSCAN. There 

are two different types of nodes associated with the tree data structure: the leaf 

node and the non-leaf node. A leaf of an IR-Tree for data with dimensionality 

M has the following structure: 

L:{I,Eu...,En),mL<n< ML 

Ei : (pi.data) 

In a leaf L, there are n entries E2,EJjul < n < Ml), where each Ei 

contains a point pi and its attribute data. All its entries are bounded in its 

bounding rectangle I of dimension M, with its structure (/•, / i , . . . , Im-i), where 
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/• is the bounding area of I on the z-th dimension. The structure of a leaf node 

in IR-Tree is the same as that in R-Tree or R*-Tree. 

The structure of a nonieaf node in IR-Tree is as follows: 

N : (/，cnt —point-contained, Ci, C2,Cn),rnL < n < Ml 

Ci : {child.pointer) 

In a non-leaf node, it consists of n entries. As that in a leaf node, the bound-

ing rectangle I bounds all its children. Each entry Q contains a child.pointer 

pointing to its subordinate. The subordinate of a non-leaf node can either be a 

non-leaf node or a leaf-node. There is a variable, cnt—point-contained, added for 

all the non-leaf nodes which keeps the total number of data points contained in 

its subordinates. This count will be used for the knn-search algorithm in IR-Tree. 

Besides the basic tree structure, we also introduce a data structure keeping 

the cluster information. The structure of a cluster is as follows: 

CLi : {pj}, cnt{pj), centroid, interval ^radius 

A cluster CLi keeps all its member entries pj and the total count on the number 

of points cnt(pj). A centroid is computed for each cluster, which is the aver-

age of all the points in the cluster, and it is stored in the variable centroid. 

The variable interval—radius is an array which keeps the radii of the cluster on 

various percentage of point count from the centroid. For example, if the array 

intervaljradius is of dimension 10, interval—radiuso is the radius from centroid 

the radius specified, 10% of the points in the cluster are bounded. More detail 

about centroid and intervaljradius will be discussed in the later subsections. 
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6.3.2 Insertion of IR-Tree 

Inserting a point to an IR-tree is divided into two parts: the insertion of the point 

into the tree data structure, and the addition of the point to the corresponding 

cluster. 

The insertion mechanism for the tree structure of the IR-Tree is more or less 

the same as that of an R*-Tree. A point is inserted in the node which contains 

the point, or requires the least enlargement on the bounding rectangle. If there 

exist two or more nodes which meet the requirement, the one with less children 

point will be selected. If the number of points in these nodes are the same, one 

of them will be selected randomly. If overflow happens, forced reinsert algorithm 

will be performed as mentioned in [4 . 

The difference on the insertion of a point between R*-Tree and IR-Tree is the 

update of children point count cntjpoint一contained. If there is no split occurred 

on the inserted node, the variable cnt-point-contained are increased by 1 for the 

inserted leaf and all its parents. Otherwise, the total number of children points 

are counted again for all nodes involved in the split. 

The cluster insertion algorithm for the IR-Tree is the same as that of Incremental-

DBSCAN [21, 22]. For each point inserted, if there are more than MinPts 

bounded within ddr, a cluster is formed. The newly formed cluster may merge 

with other cluster(s), or exists as its own. It is also possible for the point to be 

a member of an existing cluster. For more details, please refer to [21, 22 . 

Besides the update of clusters, the information of the corresponding clusters 

is also updated. The cnt, centroid and the intervaLradius of C should be updated 

if the cluster C is being updated. The centeroid for the cluster is computed by 

the following equation: 
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Figure 6.2: (a) A cluster with 20 points and (b) the table interval jadius 

centroidi = {^Pi}lcnt{p) 
pec 

that means, the i-th dimension of the centroid is the average of the i-th dimension 

for all the points p in the cluster C. Once the centroid is computed, the distance 

between the centroid and the points in C are computed and sorted. Then the 

array intervaLradius can be computed based on a pre-defined variable interval 

as follows: 

interval jradiusj — dist[centroid^p sortedj^cnt{c)l interval) 

which means, the set of sorted distance are partitioned into interval parts and 

the longest distance within the partition is stored in the array intervaljradius. 

Figure 6.2(a) is a cluster with 20 data points and (b) is the array intervaLradius 

with interval being set to 4. 

As the update of the tree structure and the cluster structure are independent 

of each other, they may be done in an asynchronous manner: the update of the 

cluster structure can be done in batch; while the update of the tree can be done 

in real time. It is a time-consuming task to update the cluster information and it 
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is possible to update the clusters in batch (or offline). However, it is also possible 

to update the cluster information for each addition of data point. 

6.3.3 Deletion on IR-tree 

The deletion of an element from the IR-tree is also divided into two parts: dele-

tion of the entry from the cluster structure and the deletion of entry from the 

tree. 

Deletion of an entry from the tree structure of the IR-tree is just the same 

as that in R*-tree. It removes the entry from the leaf node and update its and 

its parents' bounding rectangles. If underflow happens, those underflow entries 

and nodes are removed and reinserted. Similar to the insertion algorithm, the 

count on the number of children points cnt-point-contained for the affected nodes 

should be updated. 

Deletion of an entry from a cluster is also straight-forward. For the entry p 

to be removed, if it belongs to a cluster, p should be removed from the cluster. 

If there is insufficient support for the cluster after the removal of p, a split or a 

removal on the cluster may be occurred. For more details about the splitting of 

a cluster, please refer to [22]. After the deletion of the entry, cut, centroid and 

intervcd—radius should also be updated for those affected clusters. 

The insertion of a point to a cluster can be delayed and batched. However, 

the deletion of a point from a cluster must be done before a knn-search is done. If 

knn-search is done on a real-time manner, the deletion of a point from a cluster 

should also be clone in real-time. The centroid is unnecessary to be updated 

frequently, but the variables cnt as well as intervaljradius must be updated to 

ensure the consistency of these two variables. 
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6.3.4 Nearest Neighbor Search 

Most traditional SAMs like R-tee, R*-tree, SR-tree and SS-tree employ depth 

first search for knn-search. However, in many cases, most of the nodes in a tree 

have to be visited. Hence, knn-search usually results in poor performance. In this 

subsection, we will present how we can improve the performance of knn-search by 

applying the modifications on the tree structure and the addition of the cluster 

structure in the IR-Tree. By applying the cluster structure, the expensive knn-

search can be transformed in a less expensive range-search, resulting in a better 

performance on knn-search. Moreover, based on the variable cnt-point-contained, 

knn-search can be done on a breadth first manner, so that less page access is 

resulted. In the following subsections, we will discuss the two modified, algorithms 

and the conditions for applying these algorithms. 

KNN-Search with Clusters: Virtual Radius 

There is no range specified for a knn-search, and hence, knn-search is usually 

done in a depth-first manner. Nodes are not visited only if the number of data 

points retrieved reaches k and the accessing bounding boxes contain no data 

point that is closer than any retrieved points. Unnecessary node retrieval is 

resulted if the data closest to the query point is located in the last leaf. In this 

section, we will propose a concept of virtual radius ( VR for short). Our approach 

guarantees that the k data records closest to the query point will be bounded 

within VR, such that a knn-search can be transformed into a range search based 

on VR. 

The computation of VR is based on the clusters retrieved. For each cluster 

identified, there are three variables associated: centroid, cnt, and intervaLradius 

upon query. The distances between the query point q and the centroid of clusters 

are computed and sorted in ascending order. The VR is computed based on two 
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O query point virtual radius (vr) 
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• data point add-on radius (a) 

Figure 6.3: The generation of the virtual radius [VR) under a (a) single cluster 
and (b) multiple clusters environment 

parts: base radius and add-on radius. The base radius is the minimal distance 

between the query point q and the set of centroids. For example, if the distance 

between q and the centroid of a cluster is 0.1, base radius is equal to 0.1. The 

add-on radius is the radius of the corresponding cluster that bounds more than k 

data points. The value of add-on radius can be obtained from the interval—radius. 

Figure 6.2 shows a cluster with 20 data points. From figure 6.2 (b), we can see 

that the radius of the cluster which bounds 50% of data points (10 data points) 

is 0.45. Thus, if the value of k for the knn-search is 10 and the clusters shown 

in figure 6.2 is examined, add-on radius is equal to 0.45. It is possible for VR 

to bound more than one cluster. If this happens, all the points bounded by VR 

should be counted. Figure 6.3 shows how VR is computed in a (a) single cluster 

and (b) multiple clusters environment. 

After the computation of VR, a range search is performed by taking VR as 

the radius. The size of the returned set of points should be larger than the total 

number of points required (k). Only the k points closest to q will be returned. 
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KNN-Search without Clusters: Breadth-First KNN-Search 

We discussed the proposed knn-search algorithm based on the clusters identified 

and the generation of VR. However, it is possible that the VR generated is 

invalid, if either one of the following two cases is true: 

• the base radius is larger than 2xEps, or 

• there is insufficient cluster support or no clusters identified 

What it means by "insufficient cluster support" is that the total number of 

points bounded by all clusters is smaller than k, the number of points required. 

Under these two cases, the algorithm proposed in the previous subsection fails to 

operate. Thus, in this subsection, we will propose another knn-search algorithm, 

which is on a breadth-first manner. 

Before presenting the breadth-first knn-search algorithm, we will introduce 

two distance functions MINJDIST and MAX-DIST. MIN—DIST is the minimal 

Euclidean distance from a point to a bounding box; while MAX-DIST is the 

maximal case. The definitions of the two distance functions between a point and 

a bounding box of dimension n are as follows: 

n 

MIN.DIST{point, box) = . ^ mm(pomti, (6.1) 
\ i=i 

n 

MAX-DIST {point, box) = . ^ max{pointi, boxiY (6.2) 

where min[pointi, boXi) and max{pointi^ boxi) are the minimal and maximal dis-

tance respectively between the point, point, and the bounding box, box, on the 

i-th dimension. The min{pointi, box^) is equal to 0，if the query point lies between 

the bounding box on the i-th dimension. 
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Figure 6.4: The selection of desired nodes and the pruning of unnecessary nodes 
upon knn-search 

After the definition of the two distance functions are introdced, we can discuss 

the new knn-search algorithm. The algorithm is performed on the tree under a 

breadth-first manner from root to leaf. All the nodes in the same level that 

are not being pruned are sorted according to their M AX _D I ST. The first n 

nodes, which contain the k points closest to the query point q, will be selected. 

The MAX-DIST of the last node is defined as LAST_MAX—DIST and all the 

remaining nodes with their MIN.DIST larger than LAST.MAX.DIST will be 

pruned away. Only the children of the selected nodes will be examined in the 

next level. The algorithm stops when leaf nodes are visited and the k closest data 

points are returned as the answer. Figure 6.4 is an example for the algorithm, 

where k is set to 3 (the three points closest to q have to be retrieved), x is the 

closest bounding rectangle from q. However, there are only two points bounded 

in X. Hence, box y, the next bounding bounding box closest to q, is selected. 

However, the MAX—DIST for bounding box y is longer than the MIN.DIST of 

bounding box ^ and hence the bounding box z will also be included in the set of 

nodes and their children will be examined. All the remaining bounding boxes in 

the same level are pruned away. 
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6.3.5 Discussion on IR-Tree 

Generally speaking, the difference between the IR-Tree and R*-Tree is mainly on 

the algorithm for knn-search. The knn-search algorithm for the IR-Tree is divided 

into two different algorithms: the computation of virtual radius and transform 

the knn-search into a range search when one or more cluster is located close to 

the query point, and the breadth-first knn-searching algorithm when there is no 

cluster support for the query point. For the first case, it requires the support 

of clusters which is identified based on the Incremental-DBSCAN clustering al-

gorithm. Clustering algorithms are usually slow in performance when compared 

with traditional SAMs. Thus, it is not beneficial to use the first knn-search algo-

rithm for IR-Tree if the dataset is not intended to be clustered. However, if the 

dataset is intended to be clusterized, the first knn-search algorithm for IR-Tree 

may be applied. 

Instead of being limited by the clusters identified, the breadth-first knn-search 

algorithm for the IR-Tree is not limited by the existence of clusters. No matter 

there is cluster discovered or not, the second proposed algorithm still works. In 

the next section, we will compare the performances of the two algorithms and 

have a further discussion on the result. 

6.4 Experimental Results 

In this section, we will present some results based on the experiments we did. We 

will concentrate on the number of page accesses and the CPU time required on the 

knn-search based on different indexing structures. The insertion and deletion al-

gorithms are mainly based on the existing algorithms (R*-Tree and Incremental-

DBSCAN). There are much research effort that compares the performance of 

those algorithms with other proposed algorithms. Hence, we only compare the 
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Parameters Values 
Dimension of data set 10 

% of data being clustered 50% 
Max no. of children in a node (leaf and non-leaf) 10 

MinPts 20 
^ 0.005 

Table 6.1: Parameter settings for the experiments on the general performance 
of R-Tree, R*-Tree and IR-Tree. 

performance of our proposed algorithm with other existing algorithms based on 

knn-search. We will compare the performance of the knn-searches among IR-

Tree, R-Tree and R*-Tree. All the experiments are done on a Sun Microsystems 

workstation, Sun Ultra 5/270, with 128Mbytes of main memory and with the 

OS of Solaris 2.6. All programs are implemented in C + + . The size of nodes is 

set to 8192 bytes while the size of data area associated with each leaf entry is 

512 bytes. All the data are synthetic and their values are ranged from -1 to 1 for 

all dimensions. The number of k for knn-search is set to 500 for all queries. 100 

trials are done and the average is taken as the final result. Special parameters 

that will be tuned in the experiments, like the data set size, dimensionality of the 

data set and the distribution of the data, will be specified in the corresponding 

experiment. 

6.4.1 General knn-search performance 

In this subsection, we will estimate the performance of knn-search for i) R-Tree, 

ii) R*-Tree and iii) IR-Tree. The size of data sets is varied from 10,000 to 100,000 

data points and the parameters used in various indexing data structures are listed 

in table 6.1. 

The performance on the knn-search for the three different indexing structures 

is shown in figure 6.5. From the figure, we can see that IR-Tree out-performs R-
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Figure 6.5: The general performance of R-Tree, R*-Tree and IR-Tree on knn-
search based on (a) CPU time and (b) disk access. 
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Figure 6.6: The leaf and non-leaf access for the three indexing structures. 
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Parameters Values Parameters 一 Values 
Data size 50,000 Data size 50,000 

% of data being clustered 50% Dimension of data set 10 
Max no. of children 10 Max no. of children 10 

MinPts 20 MinPts 20 
Eps dimension ^ 0.005 

(a) (b) 

Table 6.2: Parameters for data sets varying (a) dimensionality and (b) distri-
bution. 

Tree as well as R*-Tree. As the tree insertion algorithm for IR-Tree is exactly the 

same as that of the R*-Tree (except the variable added for counting the number 

of children points), the improvement on the performance of the knn-search is 

from the new searching mechanism of IR-Tree. Figure 6.6 shows the number of 

leaf node and non-leaf node access. The ratios for leaf and non-leaf node access 

are similar for three different indexing structures. 

6.4.2 Performance on Varying Dimensionality and Distri-

bution 

In this subsection, we will show the performance of the three indexing structures 

on varying the dimension of data set as well as the distribution. Table 6.2 lists 

the setting of parameters. Those parameters listed in table 6.2 (a) are for the 

data set on varying the dimensionality, while those parameters listed in table 6.2 

(b) are for the data set on varying the data distribution. Noted that in table 

6.2 (a), the variable Eps is a variable depending on the dimension of data. The 

increase in dimensionality means the decrease in the density of data. Hence, the 

Eps for a cluster should be adjusted according to the dimensionality. 

Figures 6.7 and 6.8 present the results on the CPU time required and the 

number of disk accesses on varying the dimensionality and data distribution 
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Figure 6.7: The performance of the three indexing structures on varying the 
dimensionality of data. 
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Figure 6.8: The performance of the three indexing structures on varying the 
data distribution. 



Chapter 6 Structured Data Manipulation: IR-Tree ^^ 

respectively. From figure 6.7, we can see that the performance of the R-Tree 

and R*-Tree deteriorates in a much faster rate when compared with that of the 

IR-Tree. That means, the effect of dimensionality curse to IR-Tree is not as 

severe as that to the R-Tree or R*-Tree. In figure 6.7 (a), we can see that there 

is a 600% increase in the CPU time needed for the IR-Tree from dimensionality 

of 10 to 50. As the dimensionality increases, it requires more looping for the 

computation of distances between the query point and the bounding boxes/data 

points and hence more CPU time is required. 

From figure 6.8, we can also see that the performance of knn-search for IR-

Tree out-performs that for R-Tree and R*-Tree upon varying the data distribu-

tion. However, for R-Tree and R*-Tree, the performance is optimal for around 

100 clusters, while that of the IR-Tree is optimal for only one cluster and no clus-

ter identified. Figure 6.9 shows the performance of knn-searches for IR-Tree with 

and without using clusters (all the queries are ensured to have cluster support). 

From the figure, we can see that the performance of the search algorithm is better 

without cluster support for the data with low dimensionality. When the dimen-

sionality increases, the performance of searching with clusters deteriorates in a 

slower rate than that without using clusters. When the dimensionality is low, less 

overlapping for bounding rectangles is resulted upon splitting. Hence, the per-

formance of searching without using clusters, which is on a breadth-first manner, 

is better as less overlapping implies efficient pruning of unwanted bounding rect-

angles. However, when the dimensionality increases, the splitting of bounding 

rectangles during insertion is less clear-cut and excessive overlapping is resulted. 

Thus, the performance of searching without using clusters deteriorates in a faster 

rate than that with using clusters. 
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Figure 6.9: The performance of IR-Tree with and without using virtual radius 
on different dimensions. 



Chapter 7 

IM-Tree: An Review 

In the previous chapter, we discussed in detail on how to apply the clustering 

algorithm, Incremental-DBSCAN, on vector-space indexing structure, R-Tree, 

to improve the performance of R-Tree and to solve some existing problems (like 

the problem of dimensionality curse) that the R-Tree and its derivations are 

facing. We already showed in the experiment section that the integration of 

Incremental-DBSCAN and R-Tree can improve the performance of knn-search. 

In this chapter, we will extend this idea on the integration of a clustering algo-

rithm and a metric-space indexing technique. We will also have a discussion on 

which indexing and clustering algorithms to be used and compare their benefits 

and weaknesses to see if those algorithms are suitable for the integration or not. 

7.1 Indexing Techniques on Metric Space 

In this section, we will have a discussion on existing metric space indexing tech-

niques. However, before discussing the indexing techniques, we will first define 

the metric space. Then we will introduce some existing metric space indexing 

techniques. 

80 
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7.1.1 Definition 

Formally speaking, a metric space is a pair, M 二 (D, d), where is a domain of 

feature values (the indexing keys) and is a distance function with the following 

properties [16]: 

1. d{jX,Oy) = d{Oy,Oa:){symmetry) 

2. d{0^,0y) > 0 Oy) and d 队 CQ = 0{nonnegativity) 

3. Oy) < 0,) + Oy){triangularinequality) 

Similar to vector space indexing structure, indexing a metric space means 

that it must provide e伍cient support for answering similarity queries [16]. The 

similarity is measured based on the distance function d. The indexing structures 

in metric space also support range queries and k nearest neighbor queries. Their 

definitions are given below: 

Definition 7.1 (Range Query) Given a query object Q e D and a maximum 

search distance r(Q), the range query range(Q,r(Q)) selects all indexed objects 

Oj such that d{Oj, Q) < r{Q). 

Definition 7.2 (k Nearest Neighbor Query) Given a query object Q e D 

and an integer k >1, the k-NN query NN(Q,k) selects the k indexed objects 

which have the shortest distance from Q. 

7.1.2 Metric Space Indexing Algorithms 

There are already many algorithms proposed for indexing metric space data. 

However, for most of the proposed algorithms, the indexing tree built are static. 

That means, once built, the tree structure cannot be changed. In this section, 

we will have an introduction on these proposed algorithms. 
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Static Metric Space Indexing 

The authors in the FastMap algorithm [23] try to transform the problem of 

metric space indexing to vector space indexing. The algorithm first computes the 

distances between the elements and then organize the set of distances in pairwise 

into a matrix. Then the matrix is transformed into a set of low-dimensional points 

such that the set of points can be indexed by a SAM. 

However, the FastMap algorithm associates with a problem that it assumes 

the data set is static. In order to handle the dynamic dataset, the authors 

introduce approximation errors in the mapping process. Hence discrepancy may 

occur. 

Another indexing algorithm, Vantage Point (VP) Tree [15], first selects a set 

of vantage points and the dataset is partitioned into corresponding partitions 

based on the distances between the objects and the vantage points. Usually the 

median of the set of distances will be used as the separator for the partitioning 

of objects in order to obtain a balanced split. The splitting of objects is done 

recursively in order to split the set of objects into smaller subsets and the nodes 

(partitions) are arranged in the hierarchy. The authors of the MVP-Tree [11 

extend the idea by introducing multiple vantage points. They also introduce 

the idea of pre-computed distances in order to reduce the number of distance 

computation upon query. 

The GNAT design [12] applies the generalized hyperplane [49] for the par-

titioning of the objects. For each partitioning, two reference objects will be 

selected from the set of objects and all the remaining objects are assigned to the 

closest reference object. The subsets can be splitted recursively if necessary. 

However, all the algorithms mentioned above are static and the performance 

of the indexing algorithms deteriorate when more and more objects are inserted. 

In order to prevent performance degradation, expensive reorganization on the 
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tree structure has to be done. 

Dynamic Metric Space Indexing 

There is not many metric space indexing methods proposed. The most well-

known algorithm is M-Tree [16]. The structure of an M-Tree is similar to that 

of a R-Tree [26]. In the leave node of an M-Tree, the key of the corresponding 

objects, the object identifier and the distance from its parent are kept. A routing 

object is introduced in a non-leaf node for the indexing of its children objects. 

In a non-leaf entry of an M-Tree, the feature value of the routing object, the 

covering radius, together with the pointer to its parent object and the distance 

between the routing object and its parent is kept. All the children objects are 

guaranteed to be bounded within the covering radius from the routing object. 

The M-Tree is built and maintained on a top-down fashion. Splitting of nodes 

will be done when node(s) overflow. Moreover, the two most common operations, 

range search and knn-search, are also applied on M-Tree. Thus, we proposed to 

use M-Tree as the indexing structure for indexing data generated on the previous 

chapters. 

7.2 Clustering Algorithms on Metric Space 

There are already many clustering algorithms proposed for clustering a set of 

data. However, there is no clustering algorithm that is designed for Clustering 

Metric Space data. In this section, we will introduce some clustering algorithms 

that is applicable on metric space data. 

K-means [24] selects a set of cluster centers and the set of data points are as-

signed to the closest cluster center to form the cluster. The criterion for selecting 

which cluster the object belongs to is to minimize the overall distance. The clus-
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ter center can be shifted to the center of the set of clustered objects (the object 

with the minimal overall distance with all the objects in the cluster). However, 

the problem associated with k-means is that it has to pre-define the number of 

k (clusters to be formed) in order to get a good result on the clustering, which 

is not practical for most cases. 

There are also some linkage-based clustering methods [9] proposed. The 

concept is simple: two objects are assigned to the same cluster if the distance 

between the two objects is less than a specified distance d. The two objects are 

said to be connected if their distance is less than d. Some modifications on this 

approach are proposed, which assign a minimal number of connected objects for 

the assignment of an object to a cluster [53]. Some clustering algorithms are also 

proposed by applying similar approaches, like DBSCAN [21 • 

7.3 The Integration of Clustering and Metric-

Space Indexing Algorithm 

In Chapter 6, we have already discussed the integration of R-Tree and the 

Incremental-DBSCAN clustering algorithm. We select Incremental-DBSCAN 

because this is an incremental clustering algorithm. Moreover, Incremental-

DBSCAN applies R-Tree for the indexing and retrieval of relevant points. Hence, 

we need not use another indexing structure for indexing the clustered data points. 

Thus, we will also follow the same idea for the selection of the indexing and clus-

tering algorithms. 

Incremental-DBSCAN applies well on clustering vector-space data. However, 

since this clustering algorithm depends on only two variables eps and MinPts 

22], it is obvious that this algorithm should also work well on clustering metric 

space data. The problem is whether there exists an indexing algorithm that 
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helps performing range search efficiently. M-Tree [16] is a suitable choice for the 

indexing metric space data. Additionally, the M-Tree indexing algorithm is quite 

similar to that of R-Tree [26]. Similar algorithms and analysis can be applied to 

the integration of M-Tree and Incremental-DBSCAN algorithms. 

7.4 Proposed Algorithm 

As mentioned in the previous section, similar logic based on IR-Tree is applied on 

the new indexing structure. The new structure, called IM-Tree, is based on the 

integration of M-Tree indexing algorithm [16] as well as Incremental DBSCAN 

clustering algorithm [22]. In this section, we will have a brief discussion on the 

changes on M-Tree for the integration. 

7.4.1 Index Structure 

As similar to the changes made in IR-Tree, the only modification made on the 

indexing structure is to add the counter for counting the number of data objects 

contained in its subordinates for the non-leaf nodes in an M-Tree. There is no 

need to make any modification to leaf nodes. For the structure of nodes in an 

M-Tree, please refer to [16]. 

Similar to the changes made on the clustering structure, a data structure is 

also added for keeping the clustering information. Please refer to section 6.3.1 

for more detail on the data structure. Only one change should be made based 

on the generation of the cluster information. For IR-Tree, a centroid should be 

generated based on the set of cluster points in the center, which is the average 

of all the data points in it. However, in IM-Tree, it is difficult to generate the 

centroid based on the technique used in IR-Tree. For IM-Tree, the centroid 

should be selected from one of the cluster members. The one with minimal 
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average distance from all the points within the cluster should be selected as the 

centroid and the intervaLradius is computed based on the centroid. 

7.4.2 Nearest Neighbor Search 

The modification on the addition and deletion algorithm for IM-Tree is similar 

to the modifications made on IR-Tree. Please refer to section 6.3.2 and 6.3.3. for 

more details on the modification of the algorithms. 

In fact, the algorithm is exactly the same as that used in IR-Tree. The 

generation of virtual radius based on the base radius and add-on radius is exactly 

the same as that in IR-Tree. The virtual radius is used as the input for the range 

search of IM-Tree. Since the count on the number of data records is kept in 

non-leaf node, the breadth-first knn-search can also be applied in IM-Tree. 

7.5 Future Works 

Although the basic concept of IM-Tree is more or less the same as that of IR-

Tree, more research efforts should be placed on the issue. The main difference 

between vector space and metric space is that for the first case, any objects can 

be represented by an explicit vector (coordinate), but in metric space, it is hard 

to tell the explicit "location" of an object and only the relative distance between 

two objects can be done. This makes the computations of cluster centers and 

overlapping clusters difficult. 

Moreover, in this chapter, only the feasibility of the IM-Tree is discussed. 

Hence, more experiments should be done in order to show the effectiveness of 

the algorithm. 
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Conclusion and Future Works 

Most of the traditional data manipulation algorithms handle structured data, 

like data on a relational database. However, as the size of the data set and the 

dimensionality of the data increases, new algorithms as well as modifications 

on old algorithms are proposed. The introduction of semi-structured data and 

OEM also arouse more attention on the data manipulation algorithms on semi-

structured and structured data. 

In this thesis, we presented algorithms on the manipulation of semi-structured 

data, by using web data as an example. We also presented an enhanced algorithm 

for indexing structured data on vector space. Based on our proposed algorithm, 

web documents can be classified and integrated based on OEM. Searching can 

be enhanced based on the representatives retrieved as well as the dictionary data 

structure. Moreover, based on the general structure generated from the set of 

web documents, the variation of web documents can be reduced. 

We also proposed a modification on a traditional vector space indexing algo-

rithm, R-Tree, which is the integration of the R-Tree indexing algorithm and a 

clustering algorithm Increment al-D B S C A N. Based on the integration of a clus-

tering algorithm, an expensive knn-search can be transformed to a range search. 

Under a clustered environment based on the Incremental-DBSCAN, the perfor-
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mance of knn-search can be enhanced. 

In this chapter, we will summarize our works and discuss on some further 

issues related to our works. In the coming section, we will conclude our works 

on semi-structured data manipulation. After that , we will summarize our works 

on the integration of vector-space indexing and clustering. 

8.1 Semi-structured Data Manipulat ion 

Semi-structured data are data having no rigid schema. The flexibility of semi-

structured data allows users to represent their data in a more realistic form. 

However, the manipulation of semi-structured data is more difficult due to the 

lack of a rigid schema. Hence much research efforts are placed on the manipula-

tion of semi-structured data. 

Web data, which is characterized by having no rigid schema, is an example 

of semi-structured data. As the increasing popularity of the WWW, more and 

more data are placed on it. However, due to the variety on the format of web 

documents, it is difficult to retrieve the desired data from the WWW. In this the-

sis, we proposed an algorithm based on hyperlinks and the document semantics 

for the classification of web documents. 

The enormous size of web documents prohibits us to analyze it as a whole. 

Therefore, in this thesis, we proposed a coarse partitioning algorithm by utilizing 

the hyperlinks embedded in web documents. Based on the number of in-links 

and out-links, we can classify web documents into different classes. Then based 

on the set of center nodes identified, documents can be partitioned into smaller 

subsets. After the coarse partitioning, we also proposed an algorithm for verifying 

the similarities within a subset of documents based on the similarity definitions 

proposed in this thesis. Unrelated documents are pruned away from the subset. 
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A representative document is retrieved for each subset. Moreover, the entries 

in each web document will be added into the dictionary data structure. The 

dictionary, together with the representative, can be used to enhance the searching 

of web documents. 

However, the structure of web documents within the subset is still varied. We 

proposed the idea of general structure in this thesis. The generation of general 

structure is based on the extraction of frequently appeared OEM data structures 

within the subset. Then the subset of web documents are mapped under the 

general structure. The variation of data structure for the set of web documents 

within the subset can be reduced. 

Although we showed in the experimental sections that our algorithm can help 

improving the searching and manipulation of web documents, further extensions 

on the proposed algorithm is still possible. In the proposed algorithm, it requires 

many many variables which should be pre-defined. The algorithm should be 

improved such that the set of parameters can be automatically adjusted based on 

the nature of the data set. Additionally, there are some issues not yet addressed 

in this thesis, like indexing and clustering of web data. With slight modification, 

our proposed algorithm can cluster and index the set of web documents. 

8.2 Structured Data Manipulation 

In the later chapters of this thesis, we proposed a new algorithm based on the 

traditional R*-Tree structure and Incremental-DBSCAN clustering technique. 

By using the clusters identified, an expensive knn-search can be transformed into 

a less expensive range search. Moreover, we also propose a breadth-first searching 

algorithm that can reduce the number of page access while performing knn-

search. From the experimental results, we can show that our proposed algorithm 
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out-performs the traditional algorithms on knn-search. 

Our proposed algorithm can also reduce the effect of Dimensionality Curse. 

The problem of Dimensionality Curse is due to the poor construction on the in-

dexing tree and highly overlapping of bounding boxes. However, in our proposed 

algorithm, we will prune away bounding boxes that do not contain the set of 

points we desire, by limiting the radius of searching or the nodes to examine. 

We proposed our algorithm based on the R*-Tree indexing structure. How-

ever, our algorithm is not limited to the integration of Incremental-DBSCAN 

and R*-Tree only. Variants of R-Tree, like X-Tree and TV-Tree, can also be in-

tegrated with various clustering algorithms. Moreover, by using clustering tech-

nique, the information among closely-related data records can be maintained. 

Those information can be used for the spatial management of SAMs to improve 

the performance of those SAMs. More research effort will be put on this issue. 

Besides, it is also possible to extend the idea to metric space. In this thesis, 

we also analyzed the feasibility for integrating a metric space indexing algorithm 

and clustering algorithm. 
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