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Abstract 

Neural networks represent an emerging technology which has been widely used in many 

engineering disciplines. They are endowed with some unique attributes: universal approxi-

mation, the ability to learn from and adapt to their environment, and the ability to invoke 

weak assumptions about the underlying physical phenomena responsible for the generation 

of the input data. An important class of neural networks: multilayer perceptions, also 

called feedforward neural networks, perform efficiently towards the design of the widest 

range of successful forecasters, pattern classifiers, controllers and sensors. Feedforward 

neural networks can act as a universal approximator. It can not only be used to approx-

imate nonlinear mappings, but also be used to solve many complex nonlinear equations 

including nonlinear partial differential equations, up to any degree of accuracy. This capa-

bility has been explored in control community to solve various difficult nonlinear control 

problems. This thesis will explore the capabilities of the feedforward neural networks in two 

different ways. On the one hand, we will study the feasibility of using the neural networks 

to approximate a nonlinear control law arising from the feedback linearization approach. 

The motivation of doing so is that the control law based on the feedback stabilization is 

usually highly nonlinear, and is difficult to be implemented in real time. The mass pro-

cessing capability of a feedforward neural network due to its parallel structure lends itself 

to an efficient way of computation. Our investigation has been applied to a flexible joint 

robot control system. A nonlinear control law is first synthesized based on the feedback 

linearization approach. The resulting control law is then approximated by a feedforward 

neural network through a supervised learning approach. Simulation study shows that the 

system performance driven from the neural based control law is very close to the real sys-

tem performance which strongly supports the argument of the feedforward neural network 

approximation ability. 

On the other hand, we have pursued a more difficult problem of using the neural net-

works to approximately solve a set of nonlinear partial differential equations known as cen-

ter manifold equations. The center manifold equations arise from many nonlinear control 

problems such as the nonlinear output regulation problem. Due to the nonlinear nature, 



it is difficult to obtain the closed form solution of the center manifold equations. We have 

developed an approximation approach to solving the center manifold equations based on 

the universal approximation theorem of the feedforward neural networks. Many examples 

have been studied to test the effectiveness of our approach. In particular, we have ap-

plied our approach to two well known nonlinear control problems, namely, the asymptotic 

tracking problem of the ball and beam system and the disturbance rejection problem of 

the translational-oscillational-rotational-actuator (TORA) system. Our designs have been 

compared with the existing approach which is based on the Taylor Theorem. Computer 

simulation shows that our approach is superior to the Taylor series based approach in most 

of the cases. Additionally, we also studied the effects of other factors to the performance of 

our design. These include the effects of different activation functions to the approximation 

accuracy, and convergence of the weights, and the effects of the different feedback gains on 

the steady state tracking errors. 

In summary, our investigation show that neural networks can indeed be used to solve 

many nonlinear control problems with a better solution than conventional approaches. 
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摘要 

神經網絡這一新興技術已被廣泛應用於許多工業領域。它具有以下特 

性：通用逼近、自學及適應環境的能力。其中，多層PERCEPTRON，也稱前 

饋神經網絡，能成功實現多方面預測、模式分類、控制器及傳感器的設 

計。前饋神經網絡可用作通用逼近，它不僅可以逼近非線性映射，也可用來 

解決許多複雜的非線性方程包括非線性偏微分方程。前饋神經網絡的這一 

特性已被用于控制領域中解決許多非線性控制問題。本文擬從兩個不同角度 

探討了前饋神經網絡的能力。 

.一方面，基于反饋線性化的控制律通常是非線性的，因而難以實現實時 

控制，我們將研究使用神經網絡來逼近由反饋線性化方法產生的非線性控制 

器。由于前饋神經網絡具有並行結構，因此它有很強的處理能力，是一有效 

的計算方法。我們的方法已被用于具有柔性關節的機器人控制系統中。首 

先，由反饋線性化方法綜合設計出一非線性控制律；然後用前饋神經網絡逼 

近該控制律。仿真結果表明由基于神經網絡的控制律控制的系統，其性能非 

常接近實際系統的性能。 

另一方面，我們將研究更為複雜的問題：用神經網絡近似解一組非線性 

偏微分方程(中心流形方程）。包括非線性輸出調節問題在内的許多非線性控 

制問題都可歸結為求解中心流形方程。由于其非線性特性，中心流形方程的 

精確解往往難以解出。我們研究了一種基于通用逼近理論的近似解法，並應 

用到許多實例中包括著名的BALL & BEAM系統的跟蹤問題和TORA系統的 

抗干擾問題。計算仿真結果表明我們的方法优于現有的其他方法。 

總之，我們的研究表明神經網絡在解決許多非線性控制間題方面优與傳 

統的方法。 
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Chapter 1 

Introduction 

1.1 Motivation and Objectives 

The artificial neural network has been a powerful computational tool for solving many 

complex engineering problems. There are many books published for describing all kinds 

of neural networks and its applications [18],[15],[46],[44]. The mathematical representation 

of a neuron began with the pioneer scientist McCulloch and Pitts at 1940s. In late 1950s, 

a single layer perception was invented by Rosenblatt's. After 30 years of continuation of 

research in this field, the multilayer feedforward neural network was developed in conjunc-

tion with the back-propagation algorithm by Rumelhart, Hinton and Williams in 1986. It 

was the first time that the engineering communities was provided with an effective method-

ology for the construction of real nonlinear systems accepting large number of inputs and 

resulting in remarkable success in applications to engineering problems of classification, 

regression and forecasting. The development of back-propagation algorithm represents a 

milestone in neural networks in that it provides a computationally efficient method for the 

training of multilayer perceptions. 

1.2 Principles of Feedforward Neural Network Ap-

proximation 

The feedforward neural networks consists of a group of neurons, the basic unit of the neural 

�network, that are arranged layer by layers [18]. A typical feedforward neural network, shown 
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Figure 1.1: A model of three-layer Feedforward Neural Network 

in Figure 1.1，has an architecture of three different layers: input layer, hidden layer and 

output layer. The network is fully connected in the direction from input layer to hidden 

layer to output layer which means that a neuron in any layer of the network is connected 

to all the nodes/neurons in the previous layer. There is a parameter, called weight, which 

is connected between two nodes from adjacent layer. Each neuron, stored a function or 

called activation function, gives its output value with respect to the characteristics of the 

function itself and the weighted inputs. Consequently, the output signal is generated by the 

transmission of input signals associated with the activation functions stored in the neurons 

and the weights. In other words, it can be modeled as a function mapping with respect to 

the inputs, the weight value and the activation functions as follows: 

+ (1.1) 

Researclies on the properties and capabilities of feedforward neural network had been well 

developed at late 1980s [20],[11]. The paper written by Hornik showed the approximation 

capabilities of a feedforward neural network upon any continuous functions. That successful 

result was announced in the paper which can be rephrased as follows [50]: given a real valued 

function f e C^ defined on a compact subset F G R^, and any e > 0，there exists an integer 
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N, and real numbers wf̂ , w^, wfj and wfo, i 二 1，•..，iV, and j = 1，• •.，n such that the 

mapping defined by 

f(W,x) = + (1.2) 

satisfies 

suplf(W,x)-f(x)l<€ (1.3) 
xeT 

In (1.2), coi, i 二 1, • • .，n, is the input, f the output, and the integer N the number of 

hidden layers. The real numbers wf, i ^， a n d wf� , z = 1,…，/V"，and j 二 1，...，n are called 

weights. Specifically, lyP, i = 1, • • •, TV, is called the weight of the hidden neuron i, and wjj, 

and w-Q are the weights and the bias term of the input neuron i, respectively, (j) is sigmoidal 

activation function. The mapping defined by (1.2) is called three layer feedforward neural 

network. Figure 1.2 shows the common activation functions used in the feedforward neural 

尸 r a t a � y , r e _ 
I I A 

+1 +1 +1… .+1 

� X ——yZ^l y Z ^ l 

.；—....z.;— z«............... 
• • • 

\J 

1 0 0 0 
Figure 1.2: Common Activation Functions 

networks. Usually, we choose the first three functions as the activation function in the 

hidden layer, and the linear function is used in the output neurons such that the overall 

mapping is nonlinear which can be performed in all real values. This network can be used as 

a general function approximator. It can approximate any function with a finite number of 

discontinuities, arbitrarily well, given sufficient neurons in the hidden layer. The outputs 

of the network have been substituted into an objective function which is minimized by 

3 



updating the weights iteratively till the performance value of the objective function is less 

than €. 

A typical three layers neural network model is shown in Figure 1.1. The solvability of a 

nonlinear function is converted into a parameter optimization problem, that can be handled 

by gradient based methods. This method can not only lead to a nonlocal approximation 

scheme, but also offer some well known advantages associated with neural networks such 

as computational efficiency, and hardware realizability. 

Research based on the approximation capability of the neural networks has been ex-

plored in many different engineering disciplines since the last decade. Many research results 

after 1990 have been done for utilizing the feedforward neural network approximation in 

solving the nonlinear control problems[50], [41], [2], [51], [ 10], [42], [38]. Some researches were 

concentrated on solving the nonlinear equations and functions such as [21],[19],[11]. Some 

other researches focus on improving the efficiency of the feedforward neural network ap-

proximation algorithm. [9], [7], [8], [37 . 

In this thesis, our interest is to handle some nonlinear control problems incorporating 

the feedforward neural network approximation techniques. Since 1980s, many nonlinear 

control approaches have been developed including feedback linearization, input-output lin-

earization, adaptive control, sliding control, nonlinear H ô control, output regulation, etc 

39], [31], [16], [35]，[6]. A common feature of these nonlinear control approaches is that 

the synthesis of the control law involves complex computation. In many cases, it is either 

inefficient or in feasible to apply these methods to complex engineering systems. For exam-

ple, the control law based on the feedback linerization is typically highly nonlinear, and is 

difficult to be implemented in real time. Thus it is interesting to consider using the neural 

networks to approximate this nonlinear control law so that the real time implementation of 

the control law is possible. As another example, it is known that the solvability of the out-

put regulation problem relies on a set of partial differential and algebraic equations known 

as regulator equations[32],[27],[28],[29],[12],[22]. For a large class of nonlinear systems, the 

regulator equations can be reduced to the so-called center manifold equation, which is a set 

of nonlinear partial differential equations. Previous approach to solving the center mani-

fold equations is based on the classical Taylor series approximation. This approach is less 

efficient，and is valid only in a neighborhood of the origin of the pertinent Euclidean space. 
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In this thesis, we will also explore using the feedforward neural network to solve the center 

manifold equations.. 

1.3 Contribution of The Thesis 

The research outcome of this thesis can be summarized as follows 

• The study of the capabilities of the feedforward neural networks to approximate 

nonlinear mappings with application to the approximation of a feedback linearization 

based control law for a flexible joint robot system. 

• The study of the neural network to solve the center manifold equations. 

• Based on the approximated solutions of the center manifold equation, we design the 

nonlinear control laws for the ball and beam system and TORA system. 

• The study of the effect of various feedback gains on the steady state response of the 

control law based on the output regulation theory. 

1.4 Outline of The Thesis 

The rest of this thesis is organized as follows: 

• In chapter 2, we first study the multilayer feedforward neural networks. The brief 

description of the neural network and its learning algorithm are included. There are 

two main learning algorithms for training the neural networks: supervised learning 

and unsupervised learning. The free parameters, also called weights, are adapted by 

the steepest gradient descent method. We also brief some pros and cons for feedfor-

ward neural network approximation. For the supervised learning, we will implement 

a feedback linearization based control law of a flexible-joint robotic system. In the 

example, the nonlinear control law is designed by feedback linearization method. As-

suming all the target states and initial states of the system are known, we will apply 

the supervised learning approximation method. Both the robot system and the con-

troller have been approximated by respective three layer feedforward neural network. 

5 



Finally, the closed-loop robot system is approximated by combining two individual 

neural networks. 

• Chapter 3 studies the approximation of center manifold equations. Due to the non-

linear nature, the closed form solution is not easy to obtain. An approximation 

method for solving the equation is thus proposed. Since it is a function approxima-

tion problem without knowing the target values of this equation, we need to apply 

the unsupervised approximation to solving this equation according to the universal 

approximation theorem. The objective function is defined in terms of the center man-

ifold equations which is minimized by changing the values of a set of scalars，called 

weights of the feedforward neural network, iteratively. In other words, the problem of 

solving the center manifold has been converted into parameter optimization problem. 

An example has been used to demonstrate the effectiveness of our approach. 

• In chapter 4，we will introduce the nonlinear output regulation problem, and connect 

its solvability to the solution of the center manifold equations. The objective of the 

output regulation problem is to design a control law which results in the asymptotic 

tracking of a reference input or/and the rejection of a disturbance. Both the reference 

input and the external disturbance come from the exosystem. The solvability of the 

problem boils down to the solvability of the regulator equations which can be further 

reduced to the solution of the center manifold equations for a large class of nonlinear 

systems. 

• In chapter 5，an application to the asymptotic tracking of the ball and beam system 

is presented. The design of the control law is such that the output of the system is 

able to track the sinusoidal input asymptotically. The mathematical model of the 

system is described in which the center manifold equations can be derived. The 

objective function is defined with respect to the center manifold equations which will 

be minimized by our proposed approach with an arbitrarily small error. Two classes 

of feedback gain design methods are investigated and compared, namely, ITAE and 

Bessel prototype designs. It is shown, in comparison with the P右 order and order 

Taylor series approximated approach, that our approach led to a much smaller steady 

state error. 
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• In chapter 6，we will further apply our neural based approach to solve the distur-

bance rejection problem for TORA (Translational-Oscillational-Rotational-Actuator) 

system. This is a difficult control problem known as the nonlinear benchmark prob-

lem [23], [48], [49]. The design objectives are to have the output of the system able 

to reject the sinusoidal disturbance and keep the position of the cart asymptotically 

stable. We need to derive those pertinent center manifold equations, and solve it 

with the neural network approximation method. Similar to the previous example on 

the ball and beam system, a three layer feedforward neural network is adopted and 

the objective function is constructed based on the center manifold equations. The 

overall control law is obtained based on the approximation solution and a stabilizing 

feedback gain. Again, simulation results have been compared with the order and 

order Taylor based approach. It is seen that the output of the system from the 

neural based approach attain a far smaller error than the linearized case. On the 

other hand, our neural based result is more or less the same as the 3”̂  order one. 

• In chapter 7, we draw some conclusions from our research and give some future 

research directions. 
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Chapter 2 

Feedforward Neural Networks: An 

Approximator for Nonlinear Control 

Law 

2.1 Optimization Methods Applied in Feedforward Neu-

ral Network Approximation 

To utilize the approximation capability of a neural network, it is necessary to allow the 

network itself to learn in order to get closer to the desired function by adjusting the weight 

value iteratively according to the learning algorithm. Learning algorithms used in feed-

forward neural network approximation mainly fall into two broad categories: supervised 

learning and unsupervised learning. 

In supervised learning, the learning rule is provided with a set of examples (the training 

set) of proper network behavior: 

Pl，亡1，P2,右2，. . . ,Pn,tn 

where p i ) 二 1 , . . . , ri’ is an input to the network, and ti,i 二 1，.. •，n，is the corresponding 

correct (target) output. As the inputs are applied to the network, the network outputs are 

compared to the targets. The learning rule is then used to adjust the weights and biases 

of the network in order to move the network outputs closer to the targets. 

^ In unsupervised learning, the weights and biases are modified in response to network 
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inputs only. There are no target outputs available. Most of these algorithms perform 

clustering operations. They categorize the input patterns into a finite number of classes. 

This is especially useful in such applications as vector quantization. 

A cost function, also called performance function, is necessarily defined which is opti-

mized by the adaptation of the weight values. The weights can be adjusted in accordance 

with the steepest gradient descent method. 

Wj+i = Wj + /^AWj (2.1) 

where AWj = -rjj^^^ + AWj^i j = 0，1’ •. .，ly and f3 are the learning rate and the 

momentum coefficient respectively. The momentum term is considered to prevent any local 

minimum of the performance function which traps the optimization path. Either slower 

convergence or oscillation of the performance value will often happen when a fixed, smaller 

leaning rate or larger one is chosen respectively. Adaptive learning rate is thus adopted 

to optimize the rate of convergence of the performance function. Generally speaking, the 

change of the learning rate depends on the change of the current performance value and the 

previous one. It goes up when the performance function of the current iteration is smaller 

than the last iteration one. The situation is reversed when the current performance value 

is larger than the previous one. In the meantime, the momentum term is ignored until the 

performance function is pulled down again. 

Prom equation (2.1), the weights of j + 1 iteration are updated by the sum of the change 

of weights at previous iteration and the gradient of the cost function with respect to the 

weights at j iteration. Most simply, we define a sum square error function as the cost 

function. That is, 

Qm 二 l^ieceUW) (2.2) 

where ei{W) is the error function of equation (2.2). The error function is defined differ-

ently in supervised and unsupervised manners. For supervised learning, with the targets 

information known, the error function is 

ei == t i - P i (2-3) 

On the other hand, the error function for unsupervised learning is represented as 

ei{W) 二 Fi{W) (2.4) 
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As shown in Figure 2.1, we are trying to minimize the error function F{W) as much as 

/ 
hPut Neural Network 
工 • • F{W) 

( W 

Figure 2.1: Block Diagram of Unsupervised Approximation 

possible. 

2.2 Example in Supervised Learning 

As mentioned in the introduction, it is possible for approximating any nonlinear functions 

with supervised learning in case the input patterns and target patterns are available. Here, 

we demonstrate a nonlinear feedback control of a flexible-joint robot system. A state 

feedback control law for this system is designed using input-output linearization method 

which results in a stable closed-loop system. Our objective is to approximate the state 

feedback control law and the robot system so that the closed-loop neural controller/robot 

system behaves close to the desired closed-loop system up to a small error. 

2.2.1 Problem Description 

Shown in Figure 2.2 is a flexible-joint robot system that consists of a link driven by a 

motor through a torsional spring in the vertical plane. The equations of motion can be 

easily derived as [47 

Iqi + MgLsinqi + k{qi 一 g2) = 0 (2.5) 

Jq2 - k{qi - q2) = u (2.6) 
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Figure 2.2: A Flexible-joint Robot System 

The state-space representation of the system is 
• "1 r _ • • 

工2 0 

- . / = - 毕 咖 工 1 一 ！ ( 工 1 - 工 0 (2.7) 

q2 工 4 0 

q2 —冗3) 7 
- J L J u -J 

y = xi (2.8) 

Therefore, using input-output linearization method, the relative degree of the system can 

be defined by deriving the derivatives of the output y. That is, 

y = X2 (2.9) 

y 二 - M^L s切工 1 一� � x i - xs) (2.10) 

一 二 工2Cosj>i - 、 、 3 ： 2 - 工 4 、 (2.11) 
… MqL , o MgL k. k, 

二 — H — — j - c o s x i + 了) + j{xi - Xs)[j 

frackJ + cosxi) + -^u (2.12) 

=a{x)+P{x)u (2.13) 
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where 

, � MgL • , 2 MgL k. k, k k MgL 
a{x) = —^sinxi{xl + —j-cosxi + j) + ji^i —工 3)( 了 + j + -y-co5XiJ(2.14) 

m = (2.15) 
1 J 

Obviously, the relative degree is 4 and it is thus possible for designing the control law as 

follows: 

y �—a{x) 
以 = P { x ) 

二 (2 16) 
一 m • 

where yd is the reference input, e(4—《）二 - y(广)are the errors between the actual 

output and the reference input as well as their derivatives. Under the control law (2.16)， 

the tracking error e satisfies 

e � + 016(3) + C2e + C3e + C4e = 0 (2.17) 

Therefore, if we choose the coefficients q's such that the polynomial 5̂  + ci5^ + C25̂  + C35+C4 

is Hurwitz, then we have lim^^oo y = 0. Here，we have chosen the roots at [ - 2 - 2 - 2 - 2 

so that the coefficients Ci will be [8 24 36 16 . 

2.2.2 Neural Network Configuration and Training 

The control law given in (2.16) is highly nonlinear and complex. We will consider to approx-

imate this control law by feedforward neural networks. Figure 2.3 shows a system which 

comprises a neural controller and the actual robot system. However, it is impracticable to 

approximate the desired linearized system by this system since it is difficult to train the 

neural controller throughout. To this end, we need to create a neural robot model in order 

to train the neural controller. Therefore, we need to use two, as shown in the introduction, 

three layers feedforward neural networks to approximate the nonlinear robot system and 

the state feedback controller. Since supervised approximation is adopted, it is necessary to 

define all the input patterns and target patterns. The input patterns are chosen with all 

possible combination of the robot movement and the steady state. The initial condition of 

the system is also considered. 

12 



State Next 

I • ^ 
Neural State 

^ Robot system ^ 
Input toice 

春 _ Controller ^ 

Figure 2.3: Neural Controller/Robot System 

The states of the robot system and the linearized system are obtained by simulating the 

system for 0.05 sec using MATLAB function "ODE23" while the initial patterns put in this 

function are the input patterns. The target patterns make use of the difference between the 

next state and the input state. The input and target patterns of the linearized system are 

used for the approximation of the state feedback controller. We will find a neural network 

controller which takes the current robot arm angle, velocity and the inputs, and gives out a 

current value which can be applied to the robot system. The current value should make the 

next state of the robot system identical to that defined by the desired linearized system. 

Therefore, the neural robot model should have two outputs representing the angle and the 

velocity while the neural controller model has one output only. 

The neural network models are learned to predict the change in state over 0.05 sec 

because the state does not change by a large amount in this period of time, and we can 

improve the performance of the model if we predict only the change in state. If we need to 

know the actual state we simply need to add the change to the previous state. 

The neural robot model is a tansig/purelin network with 8 hidden neurons. The outputs 

of the network are the angle and the velocity of the robot system. The results of the 

approximation of the robot system are shown below. 

2.2.3 Simulation Result 

Having obtained the neural robot system whose performance is quite close to that of the 

actual robot system, we can make use of it in training the neural controller. Similarly, 

13 
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Figure 2.4: Simulation Result of the Neural Robot System at xi = 士50 degrees 
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Figure 2.5: Simulation Result of the Neural Robot System at xi = 土40 degrees 

the neural controller use same network with only one force output. As the neural robot 

model has been trained with performance error less than le"^, a neural controller-neural 

robot model network is thus generated by combining up these two models. As shown in 

Figure 2.9, the error occurs at the output of the neural robot model. The derivatives of 

this error can be back-propagated through the neural robot model to the neural controller. 

The error are then back-propagated through the neural controller and used to adjust its 

weights and biases while the values of the weights and biases of the neural robot model 

are kept unchanged. Thus the control network must learn how to control the robot system 

so that it behaves like the linearized system. After the training process is completed with 

14 



Open Loop System Response ol Actual and Neural Based Robot System Open U)op System Response ol Actual and Neural Based Robot System 

, I ——,U 丨 . ‘ ‘ ‘ ‘ ‘ ‘ ‘ 

-4 ； ； ； ； ； ； ； 1 -T 丨 ； ； ； ； 丨 T ； ； 1丨。 

Time (sec) 丁i邮 

50| 1 1 1 1 1 1 1 1 1 50| ‘ ‘ ‘ ‘ ‘ ‘ ‘ ^ ~ ‘ ~ 

- 0 1 ^ " " “ i i 5 " " “ a ； " " “； ； 10 ； 2 3 i s a ； « ^ H o 
Time (sec) Time (sec) 

Figure 2.6: Simulation Result of the Neural Robot System at xi = ±30 degrees 
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Figure 2.7: Simulation Result of the Neural Robot System at Xi = ±20 degrees 

performance error less than we have to test the neural controller-robot system. 

We have simulated the neural controller-robot system with initial angle of 10 degrees 

with 0 velocity, and two desired constant input angle of 60, -60 , 40，-40，20, 20 degrees. 

The network does a near perfect job of making the nonlinear robot system act like the 

linearized system even for a wider range of degree of movement of the robot arm. 
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Figure 2.9: Neural Controller/Neural Robot Network 
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Figure 2.10: Simulation Result with Desired Input Angle ±60 degrees 
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Figure 2.11: Simulation Result with Desired Input Angle 土40 degrees 
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Chapter 3 

Neural Based Approximation of 

Center Manifold Equations 

3.1 Solving Center Manifold Equations by Feedfor-

ward Neural Network Approximation 

In this Chapter, we will consider to solve a nonlinear partial differential equation of the 

following form 

学 S … ( 3 . 1 ) 
ov 

where v e R^, S e 化、and a(.，.) ： iT x 丑？ is a sufficiently smooth function 

defined in a neighborhood of the origin K" x R^ satisfying a(0,0) = 0. It is assumed 

that all the eigenvalues of S have zero real parts, and all the eigenvalues of |j(0, 0) have 

nonzero real parts. The local solution z{v) of (3.1) characterizes the center manifold of the 

following system [31]: 

i 二 a{z,v) 

V = Sv (3.2) 

Equation (3.1) is called the center manifold equations for (3.2). Equation (3.2) is the 

special case of (A.6) and (A.7) in Appendix A with 仍 equals to zero. The center manifold 

equations arise in many control problems such as the nonlinear output regulation problem 

19 



which aims to design a control law for a nonlinear plant to achieve asymptotic tracking and 

disturbance rejection in the closed-loop system. 

Due to the nonlinear nature of the center manifold equations (3.1)，it is usually impos-

sible to obtain an exact solution. The way for solving this kind of problem is to develop 

an approximation method. The feedforward neural network can approximately solve such 

equation according to the universal approximation theorem. Hence, in this chapter, we are 

going to develop a neural based approach to solve the center manifold equations approxi-

mately. As a result of the Universal Approximation Theorem, given any 7 > 0, there exist 

an integer N, scalars 切?《，…，切S，切?0，…，切S)，切fi，…，切L, and w^q such that 
P -

z(v) 二 : (3.3) 

satisfies 

majCi,er | | z � 一 < 7， 

臓”汗 (3.4) 

Moreover, using the technique developed in [29], it is possible to show that the center 

manifold equations can be solved up to an arbitrarily small error e”，that is, 

W^^Sv - a{z{v),v)\\ < €r, veV (3.5) 
ov 

Next, we will consider the problem of how to find an desirable neural network which satisfies 

(3.5). For clarity, we will use the notations z{W,v) to explicitly indicate the reliance of z 

on the weight vector W which consists of all weights as given in (3.3). The dimension of 

W is denoted by sn which is determined by the number N of the hidden neurons. Let 

J{W,v)= ‘严 (r，…5” - a(MW，^;)，”)||2 (3.6) 
Za (ju 

Clearly, if for some N s^ndW e î 〜， 

j { w , v ) < e l , y v e r (3.7) 

Then z(W,v) satisfies (3.5). Nevertheless, it is difficult to solve (3.7) since J{W,v) depends 

on both W and v. Therefore we will discretize (3.7) by defining 

Q{w)= X： W y) (3.8) 

veTd 
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where Ta is a subset of r consisting of finitely many elements of r. When r^ is sufficiently 

dense in P, then Q{W) < e^ will lead to a good approximation of the solution of (3.5). 

Since, for each fixed N, Q{W) relies only on the parameter W, the optimal weight that 

minimizes Q{W) can be searched by any minimization technique which has been mentioned 

in chapter 2. For example, gradient mehtod gives 

Wj+i = Wj + pAWj (3.9) 

Thus the problem of looking for the approximated solution of the center manifold equations 

is converted into a parameter optimization problem. 

3.2 Example 

3.2.1 Problem Description 

Here we introduce an example to demonstrate the efficiency of our approach described in 

the last section. We will show how to solve the center manifold equations approximately. 

Consider the center manifold equations shown as follows: 

= — + 外 (3.10) 
dvi dv2 

- 二 — + X I ( + 1 (3.11) 
dvi dv2 

where a � 0 . The above two equations can be put into the form of (3.1) as follows with 

x i � 1 . . [ � 1 f • a 
z{v) 二 ，q;(z，z;) = ，二 

X2(>) J [ 一X2(tO L 一a 0 -

The partial differential equations (3.10) and (3.11) can be viewed as the center manifold 

equations for the following system 

Xi = -Xi + Vi 

X2 = + 

Vi 二 av2 

V2 二 CLVi 

Our goal is to solve the above center manifold equations (3.10) and (3.11) approximately 

to a prescribed small error by using neural based method. We then construct a feedforward 
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neural network in which the outputs of the neural model are the approximated solution 

of the unknown functions and Figure 3.1 shows the approximated solutions 

'^NO 

Hidden Layer 

Figure 3.1: A Neural Model for Solving the Center Manifold Equations 

and X2(W>) which approximate the solution of the center manifold equations 

(3.10) and (3.11). The approximated solution is of the form 

i i ( W ； … = f > ? i 0 ( M O + � o i (3.12) 
i=i 

M ^ . y ) = 執 风 ( 3 . 1 3 ) 

where 

M, 二 E ^ ^ i + /̂o (3.14) 

and (j){.) is the hypertangent activation function used in the hidden neurons. That is 
pMi _ -Mi 

_ 二 J v ^ T T i ^ (3.15) 

and its derivative is 

\ (l>'{Mi) = 1 - (3.16) 
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In order to find the approximated solution of the center manifold equations, let 

二 放 i ( W ； … + (评，…一外 (3.17) 
ov 

二 5 X 2 ^ ^ 5 ,； + X2 W - (3.18) 
ov 

m v ) = 一 + (3.19) 

Q{W) = XMW,"? ; ) (3.20) 
veVd 

The derivatives of Q(W) with respect to weights and biases are derived as follows: 

dQ{W) 吞「 ( deip de2p�] /o o^ 

W 二 + ( 浏 

赞 二 + (3.23) 

織 二 卖 [ 〜 _ 

W -套[〜(為)+ -命 _ 
where 

= <l>\Mi){wj,av2 - w{,avi) + mi) (3.27) 
dwyi 

為 = - m i ) v i (3.28) 

- 0 (3.29) 
如 ? 2 - 。 、 ） 

= <l>'{M,){wiav2-wiav,) + ct>{Mi) (3.30) 

+(l)\Mi)wf^aVj + cl)'{Mi)wf\ (3.31) 

^ == -2w?(t>�Mi)(t/(Mi)(vricw2 - wla”i>j + 
dwij 

+ct> ' {Mi )wf\- c^\Mi)wf\vi (3.32) 

錄 = 1 (3.33) 
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錄 = - -

二 G (3.35) 

^ = 1 (3.36) 

owio 
^ = - w^avi) + (^'(M^^f - (t>\Mi)wf̂ Vi (3.38) 

With 15 hidden neurons and a set of training pattern in a defined region \\v\\ < 2, we have 

implemented our approximated approach to minimize Q{W) up to 10"^. 

3.2.2 Simulation Result 

The approximated solution will be compared with the exact solution xi(^) and X2O): 

x i � 二 , 1 (外一 巧) (3.39) 
\ 1 + â  

X 2 ⑷ = 1 + 丄 4 辽 4 ( ( 1 + 一 3a柳2 + Sa^;^) (3.40) 

where a 二 3 and the graphs shown below are obtained from our approach and the exact 

solution respectively. 

Figures 3.2 and 3.3 show the simulation results from our neural based approximation 

and the exact solution. Obviously, the approximated solution is closed to the exact solution 
as shown in Figure 3.4. 

Figures 3.5 and 3.7 show the partial derivatives of ±i{W,v)，xi(”），X2(W,^) and X2(t；) 

respectively. We also found that the feedforward neural network approximation indeed work 

in high precision which has been indicated in Figure 3.7. We show that the approximated 

solution from our approach is close to the exact solution. Consequently, it implies that 

the neural based approximation method is an efficient way for solving the center manifold 

equations. On the other hand, during the training process, we have investigated some 

important factors affecting the approximation efficiency and accuracy. 

3.2.3 Discussion 

The solutions derived from the center manifold equation are linear function and quadratic 

function of v which is an odd and even function respectively. The existence of the bias 
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Figure 3.4: Difference Between the Exact Solution and the Neural Based Solution for 

Ml < 2 

term is a crucial factor for the approximation in this example. Without the bias term, we 

cannot get any satisfied approximated solution even the performance error is small enough 

since the hyperbolic tangent is odd and radial basis is even. However the bias term can be 

neglected if the functions to be approximated are known to be even or odd a priori. 

The complexity of the system and the number of the training patterns used will also 

affect the optimization performance. In this example, since the system is simple, we have to 

handle the latter factor only. Using different number of hidden neurons of the network gives 

the same condition of the system, the time spent on minimizing the performance function 

to the desired value is greatly different. Below we show two couples of the training processes 

for this argument. The first training is done in a smaller region ||t;|| < 1 and the second 

training is implemented in a larger region ||t;|| < 2. The larger the region is, the more the 

training patterns are required. 

Within a smaller region, it is sufficient to use fewer neurons, e.g. 8, to yield a fast rate 

of convergence in Table 3.1. The situation is opposite for the case in a larger region which 

� i s shown in Table 3.2. Now the problem of solving the partial differential equation from 
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Hidden neurons AT = 8 N = 10 

No. of iterations 1.5 x 10̂  7 x 10̂  

Table 3.1: Training Performance with Hidden Neurons Within the Region \\v\\ < 1 

Hidden neurons N = N = 20 

No. of iterations 29 x 10̂  12 x 10̂  

Table 3.2: Training Performance with Hidden Neurons Within the Region < 2 

numerical calculation is converted into parameters optimization problem, we can easily 

implement this method efficiently. 
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Chapter 4 

Connection of Center Manifold 

Equations to Output Regulation 

Problem 

4.1 Output Regulation Theory 

The solution of the center manifold equations can be used to solve the output regulation 

problem proposed in [32], [28]. More precisely, the problem can be described as follows: 

Consider a nonlinear plant which is described as 

e{t) = h(x(t),u(t),v(t)) (4.1) 

where x(t) is the plant state, u(t) is the plant input, e(t) is the plant output representing 

tracking error, and v(t) are reference inputs and disturbances generated in an exosystem. 

力⑴ 二 a �=Sv(t), = vo, t>0 (4.2) 

We assume f G C ^ i T x R^ x h e x R^ x R�and / (0,0,0) 二 0， 

/i(0,0,0) = 0 where A: is a sufficiently larger number. 

The state feedback control law is of the form 

u 二 从 : ( 4 . 3 ) 
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where G C � B r x Rq) and 二 0. The closed-loop system, by using the above 

control law (4.3)，will be as follows 

m = fc{x,v) = f{x,^{x,v),v) 

e 二 (4.4) 

The closed-loop system (4.4) can be described by Figure 4.1 [32. 

V = Sv 

— o 

• 
u(t) 士二/(工，仏”） eft) 

V) — ^ 
y 二 

I 

Figure 4.1: Block Diagram Representation of the Closed-Loop Nonlinear System 

Output Regulation Problem : Design a feedback control law of the form u 二 V^O，”) 

such that the closed-loop system satisfies 

Rl: The eigenvalues of ^ ( 0 , 0 ) have negative real part. 

R2： For sufficiently small xq and Vq, the solution of the closed-loop system exists for all 

t > 0，and 

lim丨丨/̂ c(工⑷，咖丨丨二 0 (4.5) 

The first requirement ensures the (local) asymptotic stability of the closed-loop system 

32], which ensures the (local) bounded-input bounded state property for the closed-loop 

system (4.4). 

The solvability of the above problem is given as follows: 

Theorem 1: Assume 
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Al: The pair {兹(0，0，0)，(0,0,0)} is stabilizable, and 

A2: The equilibrium of exosystem (4.2) at the origin is stable, and all the eigenvalues 

of S lies on the imaginary axis. 

A3: There exist two sufficiently smooth functions x(^) and defined in an open 

neighborhood V of the origin of R^ such that x(0) == 0, u(0) = 0，and, for all 6 V， 

^ S v = f(x(v),u(v),v) (4.6) 
av 

0 二 / i ( x ⑷ ， • ) , 。 ） （4.7) 

The above two equations (4.6),(4.7) are called the regulator equations. The solution of 

these two equations leads to a state feedback control law given by [32 

u(t) = u(v(t)) + Klx(t) - x(v(t))J (4.8) 

where K is a, feedback gain such that all the eigenvalues of the matrix 

|^(0，0,0) + g(0，0，0)K (4.9) 

have negative real parts which always exists under assumption Al. 

4.2 Reduction of Regulator Equation into Center Man-

ifold Equations 

Equations (4.6) and (4.7) are known as the regulator equations. For a large class of non-

linear systems, the solvability of regulator equations (4.6) and (4.7) can be reduced to the 

solvability of a center manifold equation of the form (3.1). Consider a single-input-single-

output system described in the standard form 

x{t) = f{x) + g{x)u, X e R"", ue R, y e R 

y 二 /i(:r) (4.10) 

Assuming the relative degree of (4.10) is r, then its normal form is given by 

Xi = X2 
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Xj*—1 — X'jf* 

Xr = cr{x) + p{x)u 

ir+l = Qii^) 

士 n 二 

y = Xi (4.11) 

where a{x), p(x), qi{x),. ‘�qn-r〔工)are some sufficiently smooth functions. 

Consider the tracking problem for a reference input d{v) where v e R^ is generated by 

ij = Sv (4.12) 

with S e a matrix with all its eigenvalues on the imaginary axis. Thus, the error 

equation is defined as 

e = y - d{v) (4.13) 

The regulator equations corresponding to (4.11), (4.12) and (4.13) are 

学 Sv = Mv) (4-14) 
ov 

叔 ⑷ s” 二 X办） （4.15) 
ov 

^ ^ ^ S v = a(x⑷）+ p ( x � ) u � （4.16) 
ov 

^ ^ ^ ^ S v = g i ( x i ⑷ ， … ， x 々 ) ， X … ⑷ ， … ， ( 4 . 1 7 ) 
ov 

^ ^ S V = Qn-riMv),…，X,⑷，X^+i ⑷， . . .，⑷） （4.18) 
OV 

0 二 ^i{v)-d{v) (4.19) 

Equations (4.19)，and (4.13) to (4.16) give 

xi ⑷ 二 cK”） (4.20) 

X2 ⑷ 二 (4.21) 

X3(.) = (4.22) 
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X办）二 '-^Sv (423) 

and 

— ！ ^ S r - • � ) (4.24) 

Let 
r ， r “ 

gi(xi(>)，...’xr0)，2；) 

2； = '： , a{z,v) = : (4.25) 

a;n gn-r(XiO)，...，Xr(̂ 0，Z) 
J ^ 

Then equations (4.17) to (4.18) can be put in the following standard form 

^ S v 二 a(z(”)，”） （4.26) 
ov 

• 一 

Xr+1 � 

where 7.{y) 二 ： . Clearly (4.26) is a center manifold equations of the system 

X n ⑷ _ _ 

i 二 a(z，^ (4.27) 

V = Sv (4.28) 

The solvability of (4.26) implies the solvability of (4.14) to (4.19) and leads to the solvability 

of the output regulation problem. Thus, equations (4.6) and (4.7) can be reduced to 

center manifold equations of the form (3.1). In other words, the solution of the regulator 

equations (4.6) and (4.7) are available as long as we can obtain the solution of the center 

manifold equations. Prom Chapter 3，we have shown that the approximated solution of 

center manifold equations can be obtained by neural based method. Therefore, with using 

the approximated solution of the center manifold equations, the approximated solution of 

the regulator equations is obtained which results in the solvability of the output regulation 

problem. Therefore, in Chapter 5，we will illustrate the approximate tracking of a reference 

input in the ball and beam. In addition, in Chapter 6，we will demonstrate the neural 

approximate disturbance rejection of the TORA system which involves the approximated 

solution of the center manifold equations. 
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Chapter 5 

Application to the Control Design of 

Ball and Beam System 

5.1 Problem Description 

The ball and beam system is shown in Figure 5.1. The system dynamics can be described 
• 

Ball 

： j ^ i 
： ^ Torque. / • 

Figure 5.1: Ball and Beam System 
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by 

= X2{t) 

X2 二 BrriOOa:诉）-BGsin工3 � 

Xs = X4{t) 

x^ = u 

yit) = (5.1) 

where y is the ball position, G = Q.Slm/s^ is the acceleration of gravity, and B 二 0.7143 

some dimensionless constant [17 • 

We will consider the problem of designing a state feedback control law for this system 

such that the position of the ball can asymptotically track a sinusoidal function yd{t) 二 

Asinut. Let us put (5.1) into the following standard form 

X 二 + 

y = h{x) (5.2) 

where 
— r" "1 

r 厂 
Xi X2 0 

Xs , \ Bxixl - BGsin{xz) 0 
X = ， f { x ) 二 ’ = 

X3 0 

0：4 0 1 L J L J L 

and h(x) = Xi. 

Also, introduce the following exosystem 

i) 二 Sv) t > 0, ^(0) 二 (5.3) 

with 
r "1 r - I p 

v̂  0 0； 0 
V 二 , S = , = 

V2 —OJ 0 A 
J L -J L J 

Then clearly, yd(t) = vi. 

The regulator equations associated with the above tracking problem take the following 
form: 

学 S v 二 / (X⑷）+ " (X⑷ )u⑷ （5.4) 
ov 

0 = x i � 一 t̂ i (5.5) 
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Expanding (5.4) and (5.5) gives 

二 X 2 � （5.6) 
ov 

= 恥 ( — 4 ⑷ 2 - 抓 — X 3 ⑷ （5.7) 
ov 

学 Sv = X4 � （5.8) 
ov 

二 u ⑷ （5.9) 
ov 

X i ⑷ 二 仍 （5.10) 

from which we can obtain 

x i ⑷ 二 外 （5.11) 

X2 � = 0 J V 2 (5.12) 

u( . ) = (5.13) 
\ , ov 

with two unknown functions X3(̂ ;) and X4(i/) satisfying 

-uj'^vx = - BGsinxsiv) (5.14) 

= X4 � (5-15) 
ov 

It is clear that in order to obtain the solution of regulator equations (5.4) and (5.5), 

we only need to obtain the solution of the equation (5.15) where x^iv) satisfies = 

B x i O ) X 4 � 2 - BGsinx3(2J). Thus 

l-cuvi + BGsinxs(v) 
X4W 二 V ^ 

二 a(X30)，… 

Let 

l—ojvi + BGsin:x.^{v) , 
z{v) 二 X3(”) and a{z[v),v) — d — (i).丄bj 

which is in the form of (3.1). Once we can obtain the solution of (5.14) and (5.15)，we can 

obtain the solution of the regulator equations by (5.11) to (5.13). Next, we will use neural 

based approximation method described in last section to solve (5.14) and (5.15). 
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5.2 Neural Approximation Solution of Center Mani-

fold Equations 

By using the same network model which is shown in the previous section, we approximate 

the unknown functions X3O) and X4O) as the outputs of the neural model. That is, 

X3(W，W = f > ? i 补 i) (5-17) 
i = l 

二 补 i ) (5.18) 
i二 1 

where 

Vi 二 切 fo (5.19) 
j 二1 

and N is number of hidden neurons, and • [ . � i s the sigmoid activation function. 

and X4(T^，…are the approximated solutions of and X4(”) respectively. An objective 

function is defined which is composed of two error functions ei and 62 in terms of the 

approximated function X3(W； ;̂) and X4(W，外 Those equations are defined as 

二 — � X4(W；力2 + 几 X3(W;z;) (5.20) 

e, = (5.21) 
ov 

J{W,v) = + (5.22) 

QiW) = E 八所”） （5.23) 

The gradients of the above equations with respect to different scalars，or called weights, 

are 

= GB<j>{zi)cosi^^{W,v) (5.24) 

為 二 f：产V4ICO”2 -彻W!2C0”1 (5.25) 

二 - 2 彻 1X4(W;”)0(而） （5.26) 

錄 二 - 利 ( 5 . 2 7 ) 

^ = -2BviX,(W, + GBcosxs(W, (5.28) 

1%- = + V � 
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+[-2wf^(l){zi)(t)'{zi)viwi2]covi - w^2iVi(l)'{zi) (5.29) 

P^ = [-2wf'cl>{Zi)(t>'{Zi)v2wl, + wf'ct>'{Zi)]0JV2 
dwt2 

+[-2wf^(l){zi)(j)'{zi)v2wi]uvi - w^2iV2(l)'{zi) (5.30) 

Thus, the desirable weight W can be searched by using the gradient descent method as 

described in chapter 2. We have tested the case for cj = 7r/2, iV 二 20，r 二 {t; G | |卜|| < 

2}, and Fd = {(psin0, pcos^) | p 二 0.1，0.2，... 2，0 二 一tt, 一 0.9冗，一O.Stt …，0，O.Itt . •.，tt}. 

Figure 5.2 shows the performance function Q{W) versus the iteration steps. The algorithm 

stops when Q{W) < e, = 10"^ 

5.3 Simulation Results 

Now we are going to show the system performance from different approximation approaches. 

8 I I T 1 ‘ 

7 -

6 -

5 -

4 - 一 

3 - — 

: L : 
„ I I I 1 

° 0 ^ 1 ^ 2 2 . 5 

X 1 o^ 

Figure 5.2: The Performance Function Q{W) Against Training Iteration 

Our proposed method has been already mentioned clearly, so it is time for describing 

the other two approximation approaches. Prom [39], there is an brief description of the 1 站 
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Error performance against v for neural network training. 
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Figure 5.3: The Performance Surfaces of Neural Based Approximation J{W,v) 

order and 3�4 order Taylor series approximation. The Taylor series of ±{v) is 
r • 

OJVo 
±{v) 二 (5.31) 

aiVi + ai2vivl + aso î H 
biV2 + b2ivlv2 + bosvl H _ • 

where 

_ cu2 _ ^ _ a>s 
二丽 0>12 = B ^ 辽30 — 653G3 

The performance surfaces from the Taylor based approach are show in Figures 5.4 and 5.5. 

There is a sharp increase in performance value at outer region among three surfaces. 

However, the peak value of our neural based approximated result is smaller than those 

from other two approximation approaches. On the other hand, the performance surface 

based on our proposed method is more smooth than other two approaches. It reflects that 

the neural based approach can get a smaller performance value throughout all the region 
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Error performance against v f o r c a s e . 
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Figure 5.4: The Performance Surface of order Approximation 

Error performance against v for linear case. 

• • • •. 
• • • .1 . • 

. • • . . • . . . ’ 

..' ： : : : •• ： • 
. • . • • • • . : 

.• : •： r • •. . ... 
,. :....;:::::::、:.：:：:.：：• .. • 

- : ； . . :.丨：：_i ：：:；:丨：：：：::.•： ； . . . 

. . . ： , . : . r . . : ：、 . ： . . . . 

0 . 2 V • , 、 

... � 、 二 ..:. K 
0.15、. 、 \ 。 ？ 、 \ \ 、 、 乂 \ \ ： fmwmmh . :... .； 

V2 -2 -2 V , 

Figure 5.5: The Performance Surface of 1 对 order Approximation J'^{v) 
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while those from Taylor approach can only keep smaller value closer to the origin. Next, 

we draw our attention in the simulation result of the asymptotic tracking of the ball and 

beam system. 

The overall control law consists of the approximated solution of x…)and the feedback 

gain K. It is derived from the linearized system of ball and beam system (5.1). Refer to 

the linearized Jacobian matrix 
r "I r 

0 1 0 0 0 

懇 二 0 0 - B G 0 ’ _ 二 0 

彻 0 0 0 1 0 

0 0 0 0 1 
. J L «J 

The control law of r力 order and 3广"order approximation, drived from equation (5.31) with 

respect to the degree of approximation i, is thus defined. Therefore, 

u 二 ui(z0 + i^[z-x\7；)]，z. = l，3 

where u^{v) = ciqVi and 二 cio”i + cuvivl + csovf with 

— 

C l O 二 _ 

— ( 1 - 7丑 )⑴ 8 

Cl2 = 53(̂ 3 
^ — cj^-ABuj^ C30 — 2B3G3 

The neural based control law is in the form of 

u 二 uO^，z;) + _K(a;-x(W;7；)) (5.32) 

wlierex(W，…=(xi⑷，x^O；), ：^恢，…，交4(•州，and u{W, v) = ^^^Sv. The feedback 

gain K is designed based on the Jacobian linearization of the ball and beam system. Using 

pole placement method gives K =卜5.5812 - 6.028 21.25 5.25] and K 二 [-5.5973 -

7.1597 27.468 7.81] which are such that the eigenvalues equal to (-0.424士 

1.263i)a;o, (一0.626 士 0.4141i)a;o and (-0.6573 ± 0.8302i)a;o，(-0.9047 土 0.2711i)a;o where 

ojQ = 2.5rads~^. With the initial condition x == [0 0 0 0 the simulation results are shown 

as follows: Figures 5.6 to 5.8 show the system responses of the asymptotic tracking of 

a sinusoidal input with amplitude at 1.2. It is di伍cult to compare the performance from 

these three approaches by these figures. We thus focus on the steady state tracking error. 
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Figure 5.6: Time Response for Neural Based Tracking of a Sinusoidal Input at A=1.2 
S o l i d l i n e : R e f e r e n c e , S t a r : 

. 亡 . , < I 1 1 » 1 
一 1 - 5 o 5 i o 1 5 2 0 2 5 3 0 3 5 4 0 

T i m e / s e c 

Figure 5.7: Time Response for 3”" order Tracking of a Sinusoidal Input at A=1.2 
S o l i d " n e : R « f € » r © n c o . D a s h o d l i n o ; L i n e a r 

f 
^ 口 I I I I — 1 1 “ ‘ — 

- ^ O 5 1 0 - 1 5 2 0 2 5 3 0 3 5 4 0 
n r i m o / s e c 

Figure 5.8: Time Response for Linearized Tracking of a Sinusoidal Input at A=1.2 

42 



D a s h d o t l i n e : N e u r a l , D a s h e d l i n © : L i n e a r , S o l i d : 沪 
0 . 4 I 1 1 1 r - ‘ ‘ 

— 

0 . 2 ‘ \ 一 

I - “ 
.E' 
3 -0 .4 • -

二 11 -
一IQ 5 10 15 20 25 30 35 40 

X i m o / s o o 

Figure 5.9: Tracking error at A=1.2 
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Figure 5.10: Steady State Tracking Error for A=0.8 

Amplitude Neural Linear 3”̂  Neural Linear 3�4 

ITAE ITAE ITAE BESSEL BESSEL BESSEL 

A 二 1.0 0.4% 4.66% 0.21% 0.43% 5.53% 0.2% 

A=1.2 1.35% 7.42% 0.42% 1.59% 8.45% 0.42% 

A 二 1.6 1.88% 17.16% 1.59% 2.18% 17.4% 1.61% 

A=1.8 1.06% 26.4% 2.94% 1.18% 23.98% 2.87% 

A 二 2.0 1.16% 40.98% 5.24% 1.24% 32.23% 4.81% 

Table 5.1: Maximal Percentage Steady State Tracking Error 
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Figure 5.11: Steady State Tracking Error for A=1.0 
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Figure 5.12: Steady State Tracking Error for A=1.2 

Table 5.1 lists the maximal steady state tracking errors of the closed-loop system under 

the neural network based control, the linear control and the order control with w 二 f 

and A 二 1，1.2，1.6，1.8，2.0. It is seen that the steady state tracking errors resulting 

from both Taylor approximation approaches increase significantly as the input amplitude A 

increase while the neural network based control law maintains a quite uniform performance 

over different amplitudes of the the sinusoidal signal. In the meantime, the tracking error 

from neural based approach is smaller than that from order approach in case of the 

larger input amplitude, greater than A = 1.6. Figures 5.10 to 5.16 show all the tracking 

performance associated with three approaches. 
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Figure 5.13: Steady State Tracking Error for A二 1.4 
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Figure 5.14: Steady State Tracking Error for A二 1.6 

5.4 Discussion 

The choice of the feedback gain usually plays an important role for the system performance. 

In order to take the system performance in a systematic and logical way, we have chosen 

the feedback gain from two typical prototype design: ITAE and BESSEL [16 . 

ITAE prototype design is to minimize the integral of the time multiplied by the absolute 

value of the error: 

广oo 
X = / t e dt 

Jo 
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Figure 5.15: Steady State Tracking Error for A=1.8 
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Figure 5.16: Steady State Tracking Error for A=2.0 

Bessel filter prototype design is applied for those systems with all overshoots avoided. 

The transfer functions are given by ； w h e r e Bn{s) is the n力"-degree Bessel polynomial. 

Both prototype designs serve for those n认 orders systems. 

Since the ball and beam system is a fourth order system, we choose the poles from Table 

5.2 at /c 二 4. That is, [(-0.424a;o 土 1.263a;oi) {-0.626ujo 土 0.414:UjoO] and [(-0.6573cjo 士 

0.8302a;oO (-0.9047a;o 土 0.2711a;oi):. 

The design of the linearized feedback gain K affects the system response critically. 

For example, for the case A = 0.2, when the feedback gain is obtained from the Bessel 

prototyping, all three control approaches lead to stable closed-loop system, and when the 
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k Pole Locations for ouq 二 Irads'i 

(a) ITAE transfer 1 5 + 1 

function poles 2 5 + 0.7071 士 0.7071i 

3 (5 + 0.7081)(5 + 0.521 士 1.068i) 

4 (5 + 0.424 土 1.263i)(s + 0.626 土 0.4141i) 

5 (5 + 0.8955)(5 + 0.3764 土 1.292明s + 0.5758 士 0.5339i) 

6 (5 + 0.3099 土 1.2634i)(s + 0.5805 士 0.7828i)(s + 0.7346 士 0.28730 

(b) Bessel transfer 1 5 + 1 

function poles 2 5 + 0.866 士 

3 (5 + 0.942)(5 + 0.7455 士 0.7112i) 

4 (5 + 0.6573 士 0.8302i)(s + 0.9047 士 0.2711i) 

5 (5 + 0.9264)(5 + 0.5906 土 0.9072i)O + 0.8516 土 0.44270 

6 {s + 0.5385 士 Q.9617i)(5 + 0.7998 士 0.5622i)(s + 0.9093 士 0.1856i) 

Table 5.2: Prototype Response Poles 

feedback gain is obtained from the ITAE prototyping, the closed-loop system from the 

linear control law is unstable. Figure 5.16 shows the steady state tracking error where the 

left one is associated with the ITAE design while the right one Bessel design. Figure 5.17 
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Figure 5.17: Time Response for Neural Based Tracking of a Sinusoidal Input at A二2.0 

shows the time response of the closed-loop system with ITAE design. 
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Chapter 6 

Neural Based Disturbance Rejection 

of Nonlinear Benchmark Problem 

(TORA System) 

6.1 Problem Description 
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Figure 6.1: The TORA(Translational-Oscillational-Rotational Actuator) System 

The TORA system has been described by P. Tsiotras, M. Corless and M.A. Rotea 

'48],[49]. As shown in Figure 6.1，the system consists of a mass M which is constrained 

to translate horizontally. The cart is connected to an inertially fixed point with a linear 
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spring. Mounted on the cart is a "proof body" actuator of mass m and moment of inertia 1. 

The proof body rotates relatively to the vertical line passing through the cart mass center. 

A horizontal force F acting on the cart which is regarded as an external disturbance force. 

A motor on the cart can be used to generate a torque N to control the proof mass in 

such a way that the force F has minimal effect on the cart's position. In other words, 

the external force F will be attenuated â  much as possible on the cart by appropriately 

choosing the control input torque N. The nonlinearity of the problem comes from the 

interaction between the translational motion of the cart and the rotational motion of the 

eccentric proof mass. 

The equations of motion ’ with certain normalization, for this nonlinear system is in 

the form: 

l + f 二 €{d'^sinO - OcosO) + w (6.1) 

e 二 -4cose + u (6.2) 

where ^ is the (non-dimensionalized) displacement of the cart and 6 is the angular position 

of the proof body, w and u are the (non-dimensionalized) disturbance and control inputs, 

respectively. The coupling between the translational and rotational motions is captured by 

the parameter e which is defined by 

6 = I 霞 (6.3) 

where e is the eccentricity of the proof body. Clearly, 0 < e < 1 and e 二 0 if and only if 

e = 0; in the case, the translational and rotational motions decouple and equations (6.1) 

and (6.2) reduce to 

i+c 二 ^ 

0 = u 

Letting x == X2 X3 x j ^ = ^ ^ , the state space representation of the system 

can be written as 

X = f{x) gi{x)u + g2{x)w 

y = 
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where 

“ X2 1 [ 0 1 0 
—xi-\-€x\sinxz —ecosx3 1 

J 二 W 幻 ， 二 ，仍二二 1 - 0 ： 3 ( 6 . 4 ) 

0；4 0 0 

ecosxz{xi—ex\sinxz) 1 —ecosxz 
_ 1-ê cos'̂ xz J L 1-e^cos'^xz� L l-ê coŝ ŝ • 

with 1 - e^cos^xz + 0 for all 0:3 and e < 1. 

The objective of this problem is to design a state feedback control law such that, under 

a sinusoidal disturbance w{t) 二 Asinut, the closed loop system is asymptotically stable， 

and the position of the cart can asymptotically approach 0. That is, 

lim y(t) = 0 

t-^00 

This problem has been called nonlinear benchmark problem and has attracted a lot of 

attention in nonlinear control community since 1995. The problem is interesting since 

the system is nonminimum phase, and hence posed a great challenge to existing control 

methods. In the following, we will first show that the system with w disconnected is a 

nonminimum phase system. To this end, using the approach described in [33], we can 

derive the zero dynamics of the system with ly 二 0 as follows 

xz = X4 (6.5) 

X4 = xltanxs (6.6) 

Clearly, the zero dynamics is unstable. Next we will formulate the above problem as an 

output regulation problem. For this purpose, we also need to model the disturbance by the 

following exosystem v = Sv where 
r "1 r 1 「 • 

vi 0 CO 0 
V = , S = ,仰二 

V2 —0； 0 A 
J L. 」 L J 

which clearly yields w{t) 二 ” i � . N e x t , we need to derive the center manifold equations. 

To this end, we first obtain the zero dynamics of the augmented systems consisting of the 

plant and the exosystem as follows: 

= 

. o Vi 
x^ = x\tanxz H secx^ 

i) = Sv 
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Clearly, from Chapter 3，the center manifold equations corresponding to the above equation 

is 

如 ⑷ r r / 、 

r, SV = X 4 ⑷ ov 
^ ^ S v = 4 t a n M v ) + - s e c ^ v ) (6.7) 

ov € 

Once we obtain the solution of the center manifold equations, then the solution of the 

regulator equations are in the form: 

0 

0 
x ( v ) = 

X 3 � 

X4O) _ 
and 

— ) 二 X 勝 + 

Again, it is practically impossible for obtaining an exact solutions for these center mani-

fold equations due to its nonlinear nature. However, we propose a new method that the 

approximated solution of the center manifold equations will be obtained by using neural 

based approach, we use a three layer feedforward neural network model, similar to Fig-

ure 3.1，where the inputs come from the exosystem. Note that both equations consist of 

two unknown functions and X4(…，hence the outputs of the network model are the 

approximated solutions of X3 � and X4(t;). 

6.2 Neural based Approximation of the Center Man-

ifold Equations of TORA System 

The mathematical expression for the outputs of the neural network are shown below: 

MW^y) = (6.8) 
i=l 

MW^v) = f > ? 2 树 2/i) (6.9) 
i=l 
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where 
2 

Vi = + 4 (6.10) 
i=i 

and N is number of hidden neurons, and (/>(.) is the hypertangent activation function. 

X3(W,v) and are the approximated solutions of :x.s{v) and X4(”) respectively. 

An objective function, defined by the half sum of square of equations (6.8) and (6.9)，is 

minimized to the desired small value by adjusting the values of weights. For simplicity, we 

will use X3 and X4 to represent the outputs of the neural network. 

= ^ S v - X4 (6.11) 
ov 

62 二 — ^hanxs - —secxs (6.12) 
ov e 

J{W,v) = \{el + e^) (6.13) 

Q{W) = E J{W, v) (6.14) 
veTd 

The bias terms of the hidden neurons are all put as 0 which performs a faster rate of 

optimization of equation (6.14). In addition, the necessary requirement x(0) 二 0 will be 

satisfied. We will discuss the existence of the bias term later. The error function，as shown 

in equation (6.13)，J\v) with respect to the Taylor approximated solution of x'(^) are 

represented as follows: 

4 = ^ ^ ^ S v - xi (vftanxi(v) - %ecx^(v) 

J\v) 二 - ( e f + e � 

The detailed derivations for the gradient with respect to weights are shown as follows: 

dQ{W) 吞r ( �丄(de2p�i - 1 

d Q { W ) 各 r I � , / 彻 、 • ！ 1 只、 
^ 二 + (6.16) 

dQ{W) 吞「 ae2p�i ,只 17、 
二 S [ � ( 呵 ) + 吻 ( 网 ) ] (6.17) 

where 

^ ^ 二 (切⑴巧一切『2⑴外) (6.18) 
% 
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= -ct>{y,){x%sec'xs, + ^^ecxsptanxs,) (6.19) 

^ = —cKVi) (6-20) 
o 

= - - 2x4ptanx3p0(yi) (6.21) 
OWi 

dwi 

- 彻 w ? � (6.22) 

- 編 w ? � (6.23) 

-2yiAptan±zp(t)' {yi)wf'^vi 

+ ^5ecx3ptanx3p) (6.24) 

+ jsecxsptanx^p) (6.25) 

Choosing suitable N hidden neurons and a set of training pattern in a defined region 

Ml < 2, the objective function Q{W) has been minimized to about 10一3’ where r 二 {z; € 

R2 I I卜II < 2}, and T^ = {{psinO, pcos9) | p 二 0.2，0.4，…2，没二一tt，一鲁tt,-舍tt …，0，^tt • • •，|7r}. 

6.3 Simulation Results 

On the other hand, Taylor series approximation method is proposed by J.Huang in [33 

where the approximated series of solution (6.7) and the control law are in the form of 
mm _ 

0 

x(^) = 0 (6.26) 
aivi + ai2vivl + aso-y? H 

hii2 + b2ivlv2 + bosvl H 
• • 

and the Taylor approximated solution of the control law is 

u(^) 二 ， + a^hlv,vl + 擎 + . . . (6.27) 
6 
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Error Performance for Linear Approximation. 
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Figure 6.2: The Performance Surfaces of Linear Approximation 

where ai, 62, 621, 603, 1̂2 and 030 are the coefficients of the polynomials. That is, 

7 a? 7 2b2ioj-aibl 
b2i = 003 = a^T^ 

ai2 = ’，aso 二 ^ ^ ^ ^ 

Since we are going to compare the results from our proposed approach with the Taylor series 

approximated result of i 二 1，3, we thus only show the coefficients of the series within order 

equal or below 3 where 

0 

⑷ 二 0 (6.28) 

dlVl 
_ • 

m _ 

0 

二 0 (6.29) 

aivi + ai2ViV2 + asovl 

b2V2 + b2ivlv2 + bosvl 
m _ 

� = J (6.30) 
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= t + a i 6 i ” . + (6.31) 
e 丄乞 

Error Performance for Order Approximation. 
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Figure 6.3: The Performance Surfaces of 3”̂  order Approximation Qt^^(f) 

Figures 6.2 to 6.4 are the performance surfaces with respect to linear, order and 

neural approximation respectively. The performance increases significantly at the outer 

region of the surface, however, the largest performance value of the neural based approxi-

mation is the smaller than other two performance surfaces. The roughness of the linearized 

case performance surface appears obviously in the inner region, however, it is quite hard 

to distinguish which one gets a better performance between the ？i'd case and our neural 

based case. We take a comparison of the system responses from these approximated results. 

Similar to the previous example, we have to design the control law like (4.8). For Taylor 

series approximated approach, the control law is of the form 

u 二 "Q乂…+ — i乂z;): 

which constitutes the series of equations (6.26) and (6.27). However, the neural based 

control law relies only on the outputs of the neural network since u(W, v) is a function 

of and iU(W，….In addition, the feedback gain K from ^ + g{0)K is nec-

essarily defined. The poles are chosen from Bessel prototype, that is, s = (-0.3944 士 
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Error Performance for Neural Network Approximation. 

.• • : • 
； ； ； • •. 

• . • • • 

• , . . . . . • .. ’. 
. . . , • • • • • . • 

• • • . • ‘ • • • • . . . 
... ‘ • • ； .. 

.• • • • • • •• ！ .. 

..... ： . . . : ： • • • ； . 
. . . . ： ： . . . . ： ： ； . ： ： . . . . 

150 丫.. .••：••• 

： . . . ： ： . . . ： . . . . ： ； . • • . . . ： 

‘.• • . • • • • • . • . . • 
••. • ： • .. ： , , _ 
• ：. ： ： ： . . ： ； i 

1 0 0 、 . • • . 

V2 - 2 - 2 ^ 

Figure 6.4: The Performance Surfaces of Neural Approximation Q{W) 

0.4992z), (-0.5428土0.16270 gives the feedback gain K 二 [一 1.9705 -5.6723 0.1248 0.6650；. 

The simulation results, with initial condition x = [0 0 0 0]^ are shown here: In order to 
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Figure 6.5: Output Response with a; = 3 and ] 二 1.8 

make it clearer to compare the performances from these approaches, we take a look at the 

steady state response. 

Figures 6.6 to 6.12 are the simulation results of the system response for three approxi-

mation approaches. It is evident that the output of the system from neural based approach 
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Figure 6.7: Steady State Output Response with o; 二 3 and A = 1.0 
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Figure 6.8: Steady State Output Response with o; 二 3 and A = 1.2 

has far smaller steady state error than that from linearized approach but it is only close to 

the performance from order Taylor series approximated approach. It does not perform 
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Figure 6.9: Steady State Output Response with cj = 3 and A 二 1.4 
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Figure 6.10: Steady State Output Response with cu = 3 and A = 1.6 
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Figure 6.11: Steady State Output Response with w 二 3 and A = 1.8 

like the example of ball and beam system in the previous chapter. By the way, we will 

discuss this specific phenomenon in the next section. 
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Figure 6.12: Steady State Output Response with a; = 3 and A = 2 

Amplitude Linear 3 " Neural 

ITAE ITAE ITAE 

A=0.8 � 3 X 10-3 � 2 . 5 X 10"^ < 1 x 10"^ 

A = 1 . 0 〜5.5 X 10-3 〜7.5 X 10-4 〜 5 x 10"^ 

A二 1.2 〜9.5 X 10-3 〜2.1 X 10-3 � 1 . 9 x 10-3 

A=1.4 � 1 . 6 X 10—2 � 4 . 5 X 10—3 � 4 . 7 x 10一3 

A 二 1 . 6 〜 2 . 3 X 1 0 - 2 〜 9 X 1 0 - 3 〜 9 . 7 x 1 0 - 3 

A 二 1 . 8 〜 0 . 9 〜 1 . 6 5 X 10—2 〜 1 . 7 5 x 10—2 

A=2.0 � 1 . 1 � 2 . 8 X 10-2 � 3 X 10-2 

Table 6.1: Estimated Steady State Output Repsonse 

6.4 Discussion 

It is questioned for the effectiveness of the universal approximation theorem that, from 

the above example, the implementation of neural based approach is not better than 

order Taylor series approximated approach as the the objective function Q{W) has been 

minimized to about 10"^ Probably, it may give a better performance than order case if 

can be minimized to smaller than 10"^ Unfortunately, during the training process， 

it can not be minimized more though it has still been taken for a longer time. Therefore, we 

will consider two design scenarios, namely, 1) the amplitude A of the sinusoidal reference 

input is allowed to change between 0 < A < M for some fixed constant M, and 2) the 
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amplitude A of the sinusoidal reference input is known and equal to some given constant 

M. For the first scenario, we need to obtain the approximate solution of the regulator 

equation in a sphere r = {̂； | \\v\\^ < M^} while for the later we only need to obtain the 

approximate solution of the regulator equation in a circumference r 二 { ” | = M^}. 

The first scenario has been described before, we do not need to repeat. To analyze the 

result of the second scenario, we take M 二 2，iV = 15 and discretize r to obtain 

r = {vi= AsinO, V2 二 Acos 没 | A 二 2’ 6> 二 ̂  j , j 二 一6, —5，...，4，5} (6.32) 

and the performance function can be minimized to 1 x 10—4. Then comparing with figure 
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Figure 6.13: Steady State Output Response with o; 二 3 and A 二 2 for Single Circumference 

Training 

6.12, we obtain a weight vector W that gives a better system response than 3�"order case 

in figure 6.13. Actually, there are some limitations of using the feedforward neural network, 

with one hidden layer, on the functions approximation. Barron established some properties 

on a three layer feedforward neural network approximation [3]. There are two main factors 

affecting the training result: 

• The accuracy of best approximation is satisfied if the size of the hidden layer m 

is large enough in accordance with the universal approximation theorem. In other 

words, we should provide sufficient number of hidden neurons if the problem is more 

complicated. 

• The accuracy of empirical fit to the approximation is satisfied if the ratio of the size 
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of hidden layer m and the size of training sample AT is as small as possible. However, 

it will be implemented in conflict with the first requirement. 

In order to optimize the trade-offs between these two contradiction, the minimization of 

the performance function may be affected. The above problem reflects the limitations 

stated in these conclusion. The universal approximation theorem does not guarantee a 

three layer feedforward neural network is optimum in the sense of learning time, ease of 

implementation or generalization. 
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Chapter 7 

Conclusion 

The research in this thesis has shown that feedforward neural network can be utilized 

to solve some nonlinear control problems that cannot be easily handled by conventional 

approach. It is apparent that a feedforward neural network derives its computing power 

through its massively parallel distributed structure and its ability to learn. These two 

information-processing capabilities enable it to solve some complex problems that are cur-

rently intractable. Some concluding remarks are in order: 

1. The neural network approach provides an effective tool to handle a large class of 

complex problem which is nonlinear in nature. The solvability of center manifold 

equations is a typical example. 

2. The massively parallel nature of the neural network leads itself to an efficient compu-

tational tool. The neural network approach is particularly suitable to those problems 

involving complex nonlinear equations. The approximate control design of the ball 

and beam system and the TORA system has illustrated this property. 

3. As the nonlinear functions are considered to be solved by feedforward neural network, 

it will be first converted into parameter optimization. A cost function has been defined 

first which is optimized by the adaptation of the parameters in the network model, 

called weights, but gradient based method. The steepest gradient descent method 

guarantees that the cost function will be optimized iteratively. That is, 

Q{W{n + l)) < Q{W{n)) {7.1) 
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and the optimum solution is possibly found according to the universal approximation 

theorem where 

Q{W*) < Q{W) (7.2) 

The optimum solution will be found with respect to the optimum weights W*. How-

ever, it is practically unnecessary for searching such optimal weights, in other words, 

that it is sufficient for obtaining a set of weight values which results in an acceptable 

small error. As illustrated in all examples, we did not have to find the minima of 

the cost functions. Rather it suffices to obtain an approximated result that results in 

sufficiently small tracking error in the control design of nonlinear systems. 

7.1 Future Works 

As we have implemented the neural based approach on the nonlinear control problem 

successfully, there are still some areas for improvement. 

• First of all, we may further improve the gradient based method to speed up the 

training since it costs a lot of time on the training process with larger number of 

training patterns involved. 

• It is possible to use different activation function in the hidden layer of the neural 

network such as radial basis function, and compare it with the hyper-tangent function. 

Also, it is interesting to consider other types of neural networks such as recurrent 

neural networks or wavelets. 

• A lot of other nonlinear control problems also lead to some nonlinear partial differ-

ential equations such as HJI equation from the nonlinear Hoo control. It might be 

interesting to adapt the approach developed in this thesis to solve the HJI equation. 
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Appendix A 

Center Manifold Theory 

Linearization is usually used to study stability of equilibrium points of an autonomous non-

linear system. It can be seen that linearization fails when the Jacobian matrix, evaluated 

at the equilibrium point, has some eigenvalues with zero real parts. Center manifold the-

orem is to study stability of the origin of an autonomous system in the critical case when 

linearization fails. It is the theorem developed by J.Carr [6] and Consider the autonomous 

system 

X = f(x) (A.l) 

where / is a C vector field (r > 2) defined on an open subset U of EJ\ /(O) = 0. Let 

F = (A.2) 
ox 

Invariant Manifold: A submanifold 5 of /7 is said to be locally invariant for (A.l), if 

for each G S, there exist < 0〈亡2 such that the integral curve x{t) of (A.l) satisfying 

x(0) 二 is such that x{t) G S for all t G (̂ 1,̂ 2)-

In other words, let x\r]{x) = 0 be a submanifold of R^, where rj : R^ W, then 

a:|?7(a:) = 0 is invariant for (A.l) if the solution of an equation {77(0;) 二 0} is said to be an 

Invariant Manifold for system (A.l) if 

770r(O)) = 0 = ^ 'n{x{t)) = 0, vte [0，ti) C R (A.3) 

where [0，亡i) is any time interval over which the solution x{t) is defined. 
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Assumption: Consider the case in which the matrix F has all eigenvalues with non-

positive real part. 

i = = + (A.4) 

we can always find a similarity transformation to reduce F to a block diagonal form: 

1 0 1 … � T—iFT = (A.5) 
0 B _ 

by means of a linear change of coordinates in U such that the system (A.l) is represented 

in the form 

y == Ay + gi( j j ,z� (A.6) 

i 二 B z + ^(y，z) (A.7) 

where A is an matrix having all eigenvalues with negative real part, B is an matrix having 

all eigenvalues with zero real part，and the functions gi,g2 are C functions satisfying 

访(0，0) = 0; 1^(0，0) 二 0;尝(0，0) 二 0 (A-8) 

for i 二 1, 2. 

Theorem: Suppose the matrix F has nP eigenvalues with zero real part, n— eigenvalues 

with negative real part. There exist a neighborhood V" C i ? " � o f z 二 0 and a C mapping 

TT : V ^ such that 

S 二 {(2/，z) G (i^-) xV:y = 7r{z)} (A.9) 

is an invariant manifold for (A.6,A.7), i.e. y = 7:{z) satisfies 

^{Bz + g2(7r(z), z)) = A t t � + gi(7r(z),z) (A.IO) 
oz 

and 

7r(0) = 0 , 芸 ( 0 ) = 0 (A.11) 

Remark: The manifold defined by (A.9) is called a center manifold [6 . 

65 



Appendix B 

Relation between Center Manifold 

Equation and Output Regulation 

Problem 

Considering the following system: 

x{t) 二 f{x{t),v{t)), t>0 (B.l) 

v{t) 二 a 園 (B.2) 

where x{t) G v{t) G 丑（f and a are C\ satisfying /(0，0) = 0 and a(0,0) 二 0. 

Suppose none of the eigenvalues of the matrix 

! ( • ’ • ) (B.3) 

have zero real parts, and all the eigenvalues of matrix 

》 ） （B.4) 

have zero real parts. Then by center manifold theorem, for some e > 0，there exists a C: 

function ^ BT' with x(0) 二 0’x'(0) = 0 such that, for 丨卜|| < e, 

f a ( … 二 / ( x ( … ， y ( B . 5 ) 

Solutions of (B.l) and (B.2) have the following properties: 

(Reduction Principle) The zero solution of Equation (B.l) and (B.2) are stable (asymp-

z totically stable) (unstable) iff the zero solution of (B.2) is stable (asymptotically stable) 
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(unstable). This principle is rather important since we can easily determine the stability of 

the system by reducing it from higher dimension to lower dimension like as equation (B.2). 

Lemma Let {x{t),v{t)) be a solution of Equation (B.l) and (B.2) with 0(0)，<0)) 

sufficiently small. Let x…)be such that Equation (B.5) holds. Then there exist positive 

constants K and M such that 

\\x{t) - X刚)丨丨 < M e - 们丨 _ — x(^(0))|| (B.6) 

for all t > 0. 

This Lemma shows that any trajectory of the system (B.l) and (B.2) starting at a point 

sufficiently close to (0,0) will converge to the center manifold as t tends to infinity，with 

exponential decay. 
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