
An Adaptive Communication Mechanism for
Heterogeneous Distributed Environments

Using XML and Servlets

CHEUNG Wing Hang

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Master of Philosophy
in

Department of Computer Science & Engineering

Supervised by:
Prof. Michael R. LYU and Prof. Kam Wing NG

@ The Chinese University of Hong Kong
August, 2001

The Chinese University of Hong Kong holds the copyright of this thesis. Any

person(s) intending to use a part or whole of the materials in the thesis in a pro-

posed publication must seek copyright release from the Dean of the Graduate

School.

统 系 链 書 園

Lf """‘.4
m I i 鄉 m
\ \ :.,'二\ — _ . ̂ /y
义U^iVERSiTY

丨丫 SYSVcUy^y/

An Adaptive Communication
Mechanism for Heterogeneous

Distributed Environments Using XML
and Servlets

submitted by

CHEUNG Wing Hang

for the degree of Master of Philosophy

at the Chinese University of Hong Kong

Abstract

Nowadays, distributed systems are becoming more and more popular in the

provision of enriched information to the increasingly demanding users. Yet,

many communication obstacles hinder the expansion of distributed systems.

First, the use of firewalls has become the barricades for many different commu-

nication protocols. Another problem is the lack of a simple and generic method

to solve the problems that arise when integrating heterogeneous systems with

different communication protocols. In this thesis, we describe our mechanism

of using XML and Java Servlet components to support various communication

protocols in distributed systems and solve the two problems mentioned above.

Regarding firewall matters, people are trying to use XML to represent the

communication protocols and to transmit the XML messages by HTTP, which

is a common communication protocol recognized by most firewalls. SOAP,

XML-RPC and XIOP are examples of this approach. Yet, they have some

deficiencies, such as designing not targeted for traditional systems, requiring

modification of existing components, or not supporting complicated mecha-

ii

nisms, e.g. callbacks.

We have developed a mechanism which supports CORBA general calls tun-

neling through firewalls with HTTP and XML, and does not require modifica-

tion to the existing components. Then, we have extended our mechanism to

support callbacks. Moreover, we have developed a schema and implemented a

translator for mapping CORBA IDL to XML format. These XML documents

can help in creating add-on components in our mechanisms, and help in setting

up a standard in the transmission of messages in communication. We further

describe how we extend our mechanism to heterogeneous communication pro-

tocols. XML has flexible semistructure that can be the communication bridge

between different protocols. We use XML as the common communication pro-

tocol for CORBA, DOOM and Java RMI.

We demonstrate our mechanism by applying it to the integration of a prac-

tical system. We have implemented a scalable mediator-based query system

with CORBA and we apply the proposed tunneling method to integrate differ-

ent components across firewalls and perform callbacks. We then demonstrate

the extension to other protocols by integrating our CORBA-based mediator

query system with other DCOM and Java RMI objects. We finally evaluate

the performance of our mechanism using this system.

iii

利用XML與Servle ts在異構的分布式系統上建立具適應性的通訊機制

作 者：張永恒

修讀學位•哲學碩士

香港中文大學計算機科學及工程學部

摘要

爲提供更豐富的資訊，分布式系統已變得愈來愈流行。不過，很多通訊上的障

礙限制了分布式系統的擴展。首先，防火牆的使用阻礙了很多通訊協議0另外

是缺乏簡單而通用的方法去整合使用不同通訊協議的異構分布式系統°本論文

闡述我們如何利用XML與Java Servlets部件來支援多種的分布式系統通訊協議

從而解決上述兩問題。

有關防火牆問題，有人已嘗試使用XML表達通訊協議內容’並用可被防火牆識

別的HTTP協議傳送�SOAP�XML-RPC和XIOP都是利用這方法°不過它們都

有不足之處，例如不爲著傳統分布式系統而設計、需改動系統中已有部件、或

者不能支援複雜的通訊機制(如回叫）。

我們設計了一套機制支援一般CORBA調用，利用XML和HTTP開隧穿過防火

牆，從而不需改動系統中已有的部件。我們更伸延這機制以支援回叫。另外我

們設定了一套XML訊息模式，並編寫了一個翻譯器將CORBA介面定義語言翻

譚成那XML模式。翻譯出來的XML文件，可幫助創建機制中的添加部件，和

幫助建立XML訊息通訊標準。我們進一步闡明如何在異構通訊協議中’使用提

出的通訊機制。利用靈活的半結構化XML爲構架橋樑，我們建立了 CORBA�

DCOM和Java RMI的共用通訊協議°

我們在一個實際應用系統中示範這機制的可行性，以CORBA建立了一個基於

Mediator的可擴展查詢系統，並用我們的開隧機制在防火牆下組合不同部件，

並支援回叫查詢。繼而把系統擴張，與DCOM和Java RMI部件合倂成更大的系

統。而該系統會亦用作評估這機制的性能。

iv

Acknowledgments

I would like to take this opportunity to express my gratitude to my supervisors,

Prof. Michael R. Lyu and Prof. Kam Wing Ng, for their generous guidance

and patience given to me in the past two years. Their numerous support and

encouragement, as well as their inspiring advice are extremely essential and

valuable in my research papers (published in CISST'2000, JCDL'Ol, IC'2001

and SCr2001/ISAS'2001) and my thesis.

I am also grateful for the time and valuable suggestions that Prof. Kin Hong

Lee and Dr Yiu Sang Moon have given in marking my term papers. Without

their effort, I will not be able to strengthen and improve my research projects

and papers.

I would also like to show my gratitude to the Department of Computer

Science & Engineering, CUHK, for the provision of the best equipment and

pleasant office environment required for high quality research.

Special thanks should be given to my fellow colleagues, C.Y. Chan, Roy

Chan, Willis Chan, Kenny Kwok, Anson Lee, Nicky Ng, Keith Wong, Ricky

Wong, Benny Yan and Kevin Yuen, who have helped me in solving program-

ming and computer problems, enlightened me with new research ideas, and

given me encouragement and supports. They have given me a joyful and un-

forgettable university life.

Finally, my thanks must go to Phyllis Tsoi and my family, who have been

unfailingly supportive and wonderfully encouraging in those times when I won-

dered if I could make my degree to the end.

V

Contents

Abstract ii

Abstract in Chinese iv

Acknowledgments v

1 Introduction 1

1.1 Firewall Issue in Distributed Systems 2

1.2 Heterogeneous Comiiiunication Protocols 4

1.3 Translator for Converting Interface Definition to Flexible XML 8

1.4 An Implementation of a Scalable Mediator Query System . . . 9

1.5 Our Contributions 9

1.6 Outline of This Thesis 10

2 Related Work and Technologies 12

2.1 Overview of XML Technology 12

2.1.1 XML Basic Syntax 13

vi

2.1.2 DTD: The Grammar Book 15

2.1.3 Representing Complex Data Structures 17

2.2 Overview of Java Servlet Technology 18

2.3 Overview of Simple Object Access Protocol 20

2.4 Overview of XML-RPC 21

2.5 Overview of XIOP 22

3 Using XML and Servlets to Support CORBA Calls 24

3.1 Objective 24

3.2 General Concept of Our Mechanism 25

3.2.1 At Client Side 27

3.2.2 At Server Side 28

3.3 Data in Transmission 30

3.3.1 Using XML 30

3.3.2 Format of Messages in Transmission 30

3.4 Supporting Callbacks in CORBA Systems 33

3.4.1 What is callback? 33

3.4.2 Enhancement to Allow Callbacks 34

3.5 Achieving Transparency with Add-on Components 37

4 A Translator to Convert CORBA IDL to XML 39

4.1 Introduction to CORBA IDL 39

vii

/

4.2 Mapping from IDL to XML 40

4.2.1 IDL Basic Data Types 41

4.2.2 IDL Complex Data Types 42

4.2.3 IDL Interface 48

4.2.4 Attributes 48

4.2.5 Operations (Methods) 49

4.2.6 Exceptions 50

4.2.7 Inheritance 51

4.2.8 IDL Modules 52

4.2.9 A Sample Conversion 52

4.3 Making a Request or Response 53

4.4 Code Generation for Add-on Components 54

4.4.1 Generation of Shadow Objects 54

4.4.2 Generation of Servlet Components 55

5 Communication in Heterogeneous Distributed Environments 58

5.1 Objective 58

5.2 General Concept 60

5.3 Case Study 1 - Distributed Common Object Model 61

5.3.1 Brief Overview of Programming in DCOM 61

5.3.2 Mapping the Two Different Interface Definitions 63

viii

5.3.3 Sample Architecture of Communicating Between DOOM

and CORBA 66

5.4 Case Study 2 - Java Remote Methods Invocation 67

5.4.1 Brief Overview of Programming in Java RMI 67

5.4.2 Mapping the Two Different Interface Definitions 69

5.4.3 Sample Architecture of Communicating Between JavaRMI

and CORBA 71

5.5 Be Generic: Binding with the WEB 72

6 Building a Scalable Mediator-based Query System 74

6.1 Objectives 74

6.2 Introduction to Our Mediator-based Query System 76

6.2.1 What is mediator? 76

6.2.2 The Architecture of our Mediator Query System 77

6.2.3 The IDL Design of the Mediator System 79

6.2.4 Components in the Query Mediator System 80

6.3 Helping the Mediator System to Expand Across the Firewalls . 83

6.3.1 Implementation 83

6.3.2 Across Heterogeneous Systems with DTD 87

6.4 Adding the Callback Feature to the Mediator System 89

6.5 Connecting our CORBA System with Other Environments . . 90

6.5.1 Our Query System in DCOM 91

ix

6.5.2 Our Query System in Java RMI 92

6.5.3 Binding Heterogeneous Systems 93

7 Evaluation

7.1 Performance Statistics 95

7.1.1 Overhead in other methods 97

7.2 Means for Enhancement 98

7.2.1 Connection Performance of HTTP 98

7.2.2 Transmission Data Compression 99

7.2.3 Security Concern 99

7.3 Advantages of Using Our Mechanism 101

7.4 Disadvantages of Using Our Mechanism 102

8 Conclusion 104

V

List of Tables

1.1 Pros and cons of existing methods for remote method callings

across firewalls 5

1.2 Pros and cons of existing methods for communication in hetero-

geneous environments 7

2.1 Meanings of some regular expressions in DTD 17

4.1 Basic types in IDL and their corresponding XML tags 41

5.1 Mapping the Basic types in MIDL to CORBA IDL/XML Schema 65

5.2 Mapping Basic Types from Java to CORBA IDL/XML schema 70

5.3 Mapping Basic Types from CORBA IDL/XML schema to Java 70

7.1 Performance Statistics of the Query System Described in Chap-

ter 6 96

7.2 Performance Evaluation of OrbixCOMet 97

xi

List of Figures

2.1 An example of XML document 14

2.2 The tree hierarchy of the XML document in Figure 2.1 15

2.3 The DTD of the XML document in Figure 2.1 16

2.4 A tree structure and its corresponding XML data describing its

structure 18

2.5 Diagram showing the mechanism of SOAP 20

2.6 Diagram showing the mechanism of XIOP 22

3.1 Our mechanism to support general CORBA HOP across the

firewalls 26

3.2 The details of our tunneling mechanism at client side 28

3.3 The details of our tunneling mechanism at server side 29

3.4 Mechanism that supports CORBA callbacks 34

3.5 CORBA callback mechanism on client side 35

3.6 CORBA callback mechanism in server side 36

4.1 A sample IDL file for an information system 53

xii

4.2 XML format of the IDL in Figure 4.1 56

4.3 The DTD for the parameter passing of simulated calls 57

5.1 An example of MIDL document 63

5.2 Our mechanism to support communication among DOOM and

CORBA 67

5.3 An example of Java RMI interface definition 68

5.4 Our mechanism to support communication among Java RMI and

CORBA 72

5.5 Allowing heterogeneous systems to communicate 73

6.1 Diagram of the mediator concept 77

6.2 The architecture of our query system 78

6.3 The IDL design of our system 80

6.4 QueryMediator, another interface that QueryMed Class imple-

mented 81

6.5 HttpQueryGateway, another interface that HttpGateway Class

implemented 84

6.6 The architecture of our query system 85

6.7 An sample request message in XML for calling a mediator object 86

6.8 An sample response message in XML returns from a mediator

object 87

6.9 The DTD for the parameter passing of simulated calls 88

6.10 The IDL design of our system 89

xiii

6.11 Mechanism for supporting callbacks in our query system . . . 91

6.12 The MIDL file for the query system in DCOM enclave 92

6.13 The DTD for the parameter passing of simulated calls 93

6.14 Query system in heterogeneous environments with our mecha-

nism 94

xiv

Chapter 1

Introduction

Nowadays, distributed systems are becoming more and more popular than cen-

tralized systems because of their global nature, scalability, openness, hetero-

geneity and fault-tolerance. [1] A distributed system will have components

that are distributed over various computers. These components need to in-

teract with each other for providing access to others' services or requesting

services from others. By using distributed systems in the provision of different

services in different hosts, we can enhance the system scalability and increase

fault-tolerance.

To further enhance the system scalability and fault-tolerance, and to pro-

vide better services to the demanding users, there is a trend of integrating

several distributed information systems into a single one. In spite of many

benefits of integrating multiple distributed systems, we first have to tackle

many challenges in communication among different components and different

environments, where the situation is far more complicated than building a dis-

tributed system in a single enclosed area.

In this thesis, we focus on two communication problems in system integra-

tion. They are:

1

Chapter 1 Introduction 17

• The common use of firewalls which blocks the integration of information

systems;

• The integration of several systems with different communication proto-

cols.

Though currently, there are a number of solutions for these two problems, they

have their deficiencies. Our research motivation is to use XML and Servlet

technologies to provide better solutions to those problems. We explain these

two problems with more details below.

1.1 Firewall Issue in Distributed Systems

With the rapid expansion of the Internet, the use of firewalls is also becoming

more and more common nowadays. Firewalls are used in the gateways between

the local networks and the public Internet, in order to protect the computers

in the internal networks by enforcing some security policies [2]. Their role is

to control external access to internal information and services. Using packet

filtering by a router in the network layer to enforce certain rules is one of the

most common mechanism used by the firewalls. But firewall systems can in-

clude elements that operate at layers above the network layer in the application

level. Application level gateways for Telnet, File Transfer Protocol (FTP), and

Hypertext Transfer Protocol (HTTP) are in common use.

Common firewalls block many less common applications, such as the com-

munication protocols for agents, and also the Internet InterORB Protocol

(HOP) used in Common Object Request Broker Architecture (CORBA) [3".

This is because these common firewalls may not be able to decode the message

bodies of those protocols. Using CORBA HOP as an example: HOP is the

Object Management Group's (OMG) specified network protocol for commu-

Chapter 1 Introduction 18

nication between object request brokers, which employs T C P / I P and can be

handled by common firewalls at the network and transport level with packet

filters. But at the application level, the message body of HOP is encoded in

Common Data Representation (CDR) and firewalls are unable to decode it.

Therefore, firewalls cannot base filtering decisions on HOP messages [4 .

With the blocking of some protocols by firewalls, the scalability of system

development and system integration would be limited. There exist specific

firewalls dedicated for certain protocols, but they are usually not generic and

may have some limitations. Take CORBA HOP as an example again: There

are a number of firewalls for CORBA HOP, such as lONA Orbix Wonderwall

5] and Visibroker Gatekeeper [6], but they cannot solve all firewall problems.

As they are not commonly used, both server and client sides must be using

them. They may also be vendor-dependent and proprietary. Finally, some

CORBA features, such as callbacks, may not be handled.

Elenko and Reinertsen [7] have suggested a communication perspective for

the cooperation between XML and CORBA by employing XML, Servlet and

HTTP calls to substitute for CORBA HOP communications. Applying HTTP

calls to transport XML parameter contents can eliminate the complicated fire-

wall issue of HOP, as application level gateways for HTTP are in common

use.

SOAP [8] and XML-RPC [9] are proposed specifications which use XML

for distributed system protocol. But they are not designed for mapping to

existing distributed systems, such as CORBA and Java RMI. XIOP [10] is a

proposed substitute of HOP by XML data, which is dedicated for CORBA. But

it does not propose a mechanism to avoid great modifications to the existing

components. Also, it does not have a mechanism to perform callbacks.

Table 1.1 summarizes the pros and cons of the above methods. Our target

Chapter 1 Introduction 4

is to develop a solution which can cover their weaknesses, i.e., a generic mech-

anism that can bind to the existing systems, without any modifications to the

existing components in the systems.

Consequently, we took CORBA HOP as our target and developed a sim-

ple solution by using HTTP, XML and Java Servlets for tunneling through the

firewalls to support the CORBA HOP calls in a more generic way. We then fur-

ther enhance our mechanism to allow CORBA callbacks which are not feasible

behind many CORBA firewalls. We briefly describe how we can automatically

generate the necessary components to support our mechanism, by referring to

the design of Interface Definition Language (IDL) for a CORBA system. In

general, our approach can be applied to other communication protocols as well.

1.2 Heterogeneous Communication Protocols

Currently, we have many different ways to build distributed systems, and the

most prominent middlewares are CORBA [3], DCOM [11] and Java RMI [12 .

CORBA is defined by the Object Management Group, which supports hetero-

geneous and distributed objects. The CORBA objects are using the HOP com-

niunication protocol to interact with each other. The Distributed Component

Object Model (DCOM) protocol is an application-level protocol for object-

oriented remote procedure calls which is useful for distributed, cornponent-

bascd systems of all types. It is a Microsoft technology. Java RMI is developed

hy Sun Microsystem, which uses the Java Remote Method Protocol (JRMP)

to coiiiiiiiinicate.

All of them have difFerent architectures and different protocols for communi-

cation, hence it is \'erv difficult to inteorate systems with different middlewares

directly. Integrating them requires some bridging tools. Though there are

Chapter 1 Introduction 20

Table 1.1: Pros and cons of existing methods for remote method callings across
irewalls

Solutions I Strengths Weaknesses
CORBA • Past to handle HOP • Not popular
dedicated
firewalls • Capable to handle compli- • Vendor-dependent

cated CORBA services
• Not able to handle call-

backs

SOAP and • Flexible semistructured • not designed for existing
XML-RPC XML to represent data protocols

• Simple; Complicated ser-
vices are not required

XICP • compatible with CORBA • modification to existing
objects is needed

• no mechanism for callback
is suggested

• the XML messages involve
low-level contents

quite a number of bridging tools developed, they may not be able to solve

the problems nicely. Some bridges can only map the CORBA objects to the

COM/DCOM objects, or vice versa. They do not support inter working. Some

bridges actually can only support inter working between the CORBA objects

and COM objects; they don't support the inter working between the CORBA

objects and DCOM objects.

With the release of new COM-CORBA interworking specification by OMG,

many vendors have developed some better applications for bridging, there are

still some area that can be improved. Let us discuss one of the very famous ap-

plications, OrbixCOMet 2000 [13], which is developed by lONA Technologies.

Chapter 1 Introduction 21

OrbixCOMet 2000 implements the COM/CORBA Interworking specification

by enabling transparent communication between COM/Automat ion clients and

CORBA servers. There is a COMET component located between the CORBA

enclave and COM/DCOM enclave, and it acts as a bridge which provides the

mappings and performs translation between CORBA and COM/Automat ion

types.

Though OrbixCOMet is already a good implementation in bridging between

CORBA and COM, it allows only a limited number of connections for DCOM,

as DCOM is distributed while COM is not. Moreover, the weakest point of

OrbixCOMet is that it only supports the communication between CORBA and

COM/DCOM, and not other protocols. It is because the COMET component

would only convert a binary communication protocol message to another binary

communication protocol message. As they use binary messages, protocols other

than CORBA and COM/DCOM are not able to read them.

Another example of is RMI/IIOP package [14] of Java RMI, which helps

RMI objects to communicate with CORBA objects. With modifying the exist-

ing RMI objects with RMI/IIOP package, the communication protocol of those

RMI objects would be substituted by HOP, such that they are communicate

with CORBA objects. But the drawback is that those modified RMI objects

are no longer be able to invoke other RMI objects, as they have given up the

original communication protocol.

Table 1.2 summarizes the pros and cons of the two methods mentioned.

Again, our target is to cover the weaknesses of those methods, i.e. to give a

generic bridging solution to heterogeneous distributed environments and com-

munication protocols.

Here, we extend the mechanism for tunneling across firewalls, and use XML

as the bridging messages between different distributed system environments.

Chapter 1 Introduction 22

Table 1.2: Pros and cons of existing methods for communication in heteroge-
neous environments

Solutions Strengths Weaknesses
OrbixCOMet • Fast • Not generic to other protocols

RMI/IIOP • Fast; no real-time • Not generic to other protocols
protocol conversion
overhead • Not reversible to communicate

with RMI objects

Based on the generic CORBA IDL, we design a mapping schema from CORBA

IDL to XML. Also, we have developed some rules for mapping other Interface

Definition Languages, such as MIDL of DCOM and Java Interface of JavaRMI,

to the same XML schema.

By sharing the same schema, different distributed environments can com-

municate with that “ common language" for remote object method calling. The

easily-manipulated and human-readable XML messages are not only limited to

the usage of CORBA, DCOM or Java RMI, but can be also applied to other

web-based applications, such as Active Server Pages (ASP), Java Server Pages

(JSP), etc. It is because all of them can use the same XML method calling

schema to invoke those CORBA or DCOM objects. Hence, our approach can

provide a generic bridge for communication among different distributed system

environments and web applications, without modifying the existing compo-

nents.

Chapter 1 Introduction ^

1.3 Translator for Converting Interface Defini-

tion to Flexible XML

As we have mentioned, to tackle the firewall and heterogeneous distributed

environments problems, we have to make use of passing XML messages with

HTTP. With the flexible semi-structured XML, messages of remote object call-

ings can be well-represented. However, we still need a standard for the trans-

mission of messages, otherwise the objects in different enclaves are not able to

communicate.

We have designed a schema for mapping CORBA IDL to XML format,

and implemented a translator to convert the IDL files and generate the XML

documents. By making use of the XML documents that follow an agreed Data

Type Definition (DTD), we can have a standard for message transmission.

Moreover, these XML documents can help to generate the add-on components

automatically. The generation of these source codes can help to reduce the extra

programming work for those add-on components as they usually contain many

similarities, especially in the part of converting the internal data structures to

XML formats.

CORBA has a very generic IDL as it supports a variety of programming

languages, such as C++, Java, COBOL, etc. As CORBA IDL is so generic, we

use the XML mapping scheme of CORBA IDL as the fundamental, and map

other interface definition languages of other distributed environments to the

same XML schema. By using the same schema, different distributed system

environments can have a "common language" and hence be able to communi-

cate with each other.

Chapter 1 Introduction 9

1.4 An Implementation of a Scalable Mediator

Query System

Nowadays, there is a trend to integrate several information systems to offer

richer information. As we have mentioned, the firewall problem, and the het-

erogeneous distributed environments, are often the obstacles in building or

integrating a scalable large system.

We have proposed the solutions for those problems and we would like to

demonstrate our work by a mediator-based query system and applying our

mechanism onto it, such that it can be scalable across the firewalls and hetero-

geneous distributed system environments.

We use the mediator architecture to integrate multiple query systems via

the Internet. Mediators forward the client queries to the appropriate digital li-

braries or mediators, and then integrate the returned answers and forward them

back to the clients. We use the CORBA-based mediators to make queries across

the firewalls by making use of XML and Java Servlets, and also querying across

the heterogeneous systems with some components which are programmed in

DCOM or Java RMI.

By building this query systems, we can demonstrate the advantages of our

approach. Also, we will evaluate our approach by measuring the performance

of this system.

1.5 Our Contributions

Briefly speaking, we have the following contributions in our research work:

• We have proposed a generic mechanism to enable distributed objects to

Chapter 1 Introduction 10

communicate across firewalls by using XML and Java Servlets. We use

CORBA as an example, but this mechanism is generic and can be applied

to other distributed environments.

• We have extended the mechanism to support the callback feature in

CORBA, which is not supported by other XML-based protocols nor many

CORBA-dedicated firewalls.

• We have proposed a schema for mapping CORBA IDL to XML format.

With this schema, we can automatically generate some add-on compo-

nents in our mechanism. Also the schema can provide a standard gram-

mer for the transmission messages of method callings.

• We have extended the mechanism to support remote object calling in

heterogeneous environment. By mapping different interface definition

languages of different distributed environments to the schema we have

designed, objects of different distributed environments can have commu-

nication.

• We have implemennted a mediator-based query system to demostrate

our work. This mediator-based query system has applied our mechanism

thus it can make queries to a remote object beyond the firewalls, and have

callback feature support. Also, the system can make queries to objects

from heterogeneous distributed environments, such as DCOM objects,

JavaRMI objects, or even other web applications (JSP, ASP etc).

1.6 Outline of This Thesis

We would explain the contributions described above in details in the coming

chapters. First, we have an overview of some related work and technologies in

Chapter 2. We describe XML and Java Servlets technologies there, as they are

Chapter 1 Introduction 11

closely related to our approach. Also, we look at SOAP, XML-RPC and XIOP,

which are similar appoarches that use XML as a protocol. We will discuss their

pros and cons there.

In Chapter 3, we introduce our tunneling mechanism, and how we sup-

port the callback feature there. Chapter 4 will cover our schema for mapping

CORBA IDL to XML format, and outline how we generate the add-on compo-

nents. For Chapter 5, we focus on the way we support communication among

heterogeneous distributed envrionments.

We demonstrate our mechanism with a mediator-based query system in

Chapter 6, and we describe in details the components of that system and how

we apply our mechanism to enhance it to be a more scalable system.

In Chapter 7, we evaluate the performance of our approach, and also the

advantages and disadvantages. We will also address the enhancement on secu-

rity issue and perfomance issue in our mechanism. We then conclude our work

in Chapter 8.

Chapter 2

Related Work and Technologies

In this chapter, we will present an overview of some XML technologies and

Java Servlets technologies as they are closely related to our research project.

We have used XML and Java Servlets technologies heavily in our research.

XML has a flexible structure and strong capability in representing data, hence

it plays a very important role in our research project. Java Servlet technology

is a popular choice for building interactive Web application, thus we use it to

transmit XML messages in the Internet.

There are some protocols which are similar to our approach, such as SOAP,

XML-RPC and XIOP. We will also give a brief overview of these technologies

in this chapter, and discuss their strengths and weaknesses.

We hope this chapter can help you to understand our research work better.

2.1 Overview of XML Technology

In the age of worldwide information networks, documents must be easily acces-

sible, portable and flexible. The information documents must also be system-

and platform-independent. XML possesses these features and offers documents

12

Chapter 2 Related Work and Technologies 13

an advantage not found in other document description languages.

Extensible Markup Language (XML) [15, 16, 17] is a new standard adopted

by the World Wide Web Consortium (W3C) in 1998, and it is a kind of gener-

alized markup language. Some of the design goals of XML are [18, 19]:

• XML shall be straightforwardly usable over the Internet;

• XML shall be able to store complex data structures.

• XML shall support a wide variety of applications

These goals make XML to be a data exchange and representation standard.

Also, XML can be widely used in various kinds of applications, and exchange

information among different applications, and also heterogeneous platform.

Our research mainly focuses on using XML and Java Servlet to support

various communication protocols. XML is used because it can provide flexible

structure description to complex protocol structures and data structures. Also,

XML is platform-independent and system-independent that would be very suit-

able to be used in distributed heterogeneous environment. Moreover, we can

foresee that the Internet would be a platform in building large and scalable dis-

tributed in future, for which XML can work well. Hence, we use XML heavily

in the system implementation of our research work.

In the following sections, we will address the basic syntax of XML, the use

of DTD, and how XML represents complex data structures.

2.1.1 XML Basic Syntax

In this part, we overview the syntax of XML data, which is based on the

specification of XMLl.O by W3C [15]. We will only cover those standards that

will be used in our research project.

Chapter 2 Related Work and Technologies 14

<news>

<source>South China Morning Post</source>

<date>

<day>15</day>

<month>4</moiith>

<year>2000</year>

</date>

<title>Press waxiiiiig appropriate, says Beij iiig</title>

〈reporter location="Hong Kong">

< f i r s t n am e > G r e g < / f i r s t n am e >

<lastnaine>Torode</lastnaine>

</reporter>

<coii1:eirt>Beijing yesterday defended remarks made by senior
SAR-based official Wang Fengchao that local media should
avoid reporting separatist views.

</content〉

</news>

Figure 2.1: An example of XML document

XML is a textual representation of data. The basic component in XML is

the element, that is, a piece of text bounded by matching tags. Users can define

new tags for their needs, which should appear in pairs with a start tag and an

end tag. For example, to describe a piece of news article, we can define a pair of

tags <news> and </news>, and then we can put all of the news contents inside

this tag pair. Inside an element we may have text, other elements, or even a

mixture of both. Figure 2.1 shows a typical XML document. You can see we

have defined new tags like <date>, <source>, etc.

XML also allows us to associate attributes with elements. Attributes in

Chapter 2 Related Work and Technologies 15

news

I ‘ I
date title reporter content

year month day firstname lastname

Figure 2.2: The tree hierarchy of the XML document in Figure 2.1

XML are like properties in data models. In XML, attributes are defined as

(name, value) pairs. With tags, users may define arbitrary attributes, which

can enrich the meaning of an element. In the example of Figure 2.1, the tag

� r e p o r t e r � h a s an attribute loca t ion which indicates the location of that

reporter.

There are some differences between tags and attributes. A given attribute

may occur only once within a tag, while sub-elements with the same tag may

be repeated. Also the value associated with an attribute is a string, while that

associated with an element can contain sub-elements.

XML data can always be viewed as a tree structure. For example, in Figure

2.2, the tree hierarchy is the representation of the XML document in Figure

2.1.

2.1.2 DTD: The Grammar Book

We have given an overview of some simple syntax in the previous section. But

for most of the time, just following the syntax would not be enough for real-life

applications. We usually have to give rules to the XML documents in order to

Chapter 2 Related Work and Technologies 16

<!DOCTYPE database [

<！ELEMENT database (news*)>

<！ELEMENT news (date,title,reporter*,content)>

<！ELEMENT date year CDATA #REQUIRED

month CDATA #REQUIRED

day CDATA #REQUIRED>

<!ELEMENT title (#CDATA)>

<！ELEMENT reporter (firstname, lastname)>

<!ATTLIST reporter location (#CDATA)>

<！ELEMENT firstname (#CDATA)>

<!ELEMENT lastname (#CDATA)>

<！ELEMENT content (#PCDATA)>

]>

Figure 2.3: The DTD of the XML document in Figure 2.1

regulate them to have specified numbers of specific tags or attributes, and also

to have specific structures. To do this, we can use Document Type Definition

(DTD) [15]. A DTD serves as a grammar for the underlying XML document,

and it is part of the XML language. To some extent, a DTD can also serve

as a schema for the data represented by the XML document; hence we are

interested in DTD also.

Consider the example in Figure 2.1, it may follow the DTD in Figure 2.3.

The meanings of some regular expressions in DTD are shown in Table 2.1.

Based on the DTD, we can hence define more documents of a similar schema.

Also, different sources can be compromised to use a common schema for their

standard.

Chapter 2 Related Work and Technologies 17

Table 2.1: Meanings of some regular expressions in DTD
Regular Expressions Meanings

test* any number of test element
test+ one or more occurrence
test? zero or one

test I test ‘ alternation
test，test ^ concatenation

2.1.3 Representing Complex Data Structures

XML plays a very important role in the transmission of HTTP messages. XML

has the flexibility in defining new tags on top of its semi-structured feature,

so that it can well represent most of the complicated data structures [19 .

Even in the case of unlimited-multilevel recursive data structures, such as tree

structures, XML can still handle them nicely. Figure 2.4 shows a tree structure

and its corresponding XML representation. We can see that the XML data

can represent data with complex structures with great flexibility. Hence, we

use HTTP to send streams of XML data between the client and server sides to

represent the parameters in the remote procedural calls.

By using the DTD of XML data, we can further provide a grammar for

the XML data transmission format. Hence we can make a compromise on the

interpretation of data transmission of complicated data structure formats for

both client and server sides.

Besides the flexibility of data representation, the readability and the ease

of manipulation of XML information also provide great flexibility for server

as well as client implementation. As long as we follow the DTD of the data

transmission format, programmers can have a high degree of freedom to choose

different implementation methods.

Chapter 2 Related Work and Technologies 18

1
<node> 1

<node> 2
^ ^ ^ ^ <node> 4 </node>

——i—— ——I—— <node> 5
2 3 <node> 8 </node>

l i i l l l i S i i l i i i <node> 9 </node> :
</node>

r ^ 1 I 1 </node>
4 t 5 I灘 6 b 7 丨凝 <nocle> 3

一_「」 - - - - <node> 6 </node>
<node> 7 </node>

</node>
——I—— ——I—— </node>

8 9) 藝

Figure 2.4: A tree structure and its corresponding XML data describing its
structure

2.2 Overview of Java Servlet Technology

Currently, Java Servlet Technology [20, 21, 22] has become a popular choice

for building interactive Web applications. In our research project, we also

use Java Servlets to support different communication protocols and build the

distributed systems upon an Internet-based environment. As Java Servlet plays

an important role in our research, we would like to present a brief overview of

it before the following chapters.

According to the Java Servlet Specification [20], a Servlet is a web compo-

nent, managed by a container, that generates dynamic content. Servlets are

small, platform-independent and are able to cooperate with web servers. They

interact with web clients via a request-response paradigm implemented by the

Servlet container. This request-response model is based on the behavior of the

Hypertext Transfer Protocol (HTTP). It provides a simple, consistent mecha-

nism to Web developers for extending the functionality of a Web application

and for accessing existing business systems.

Chapter 2 Related Work and Technologies 19

Servlets provide a component-based, plat form-independent method for build-

ing Web-based applications, without the performance limitations of Common

Gateway Interface (CGI) programs. And unlike proprietary server extension

mechanisms (such as the Netscape Server API or Apache modules), Servlets

are server-independent and platform-independent. This leaves the program-

mers free to select a "best of breed" strategy for the servers, platforms, and

tools.

When compared to other traditional server extension mechanisms, Servlets

have the following advantages:

• They are generally much faster than CGI scripts because a different pro-

cess model is used.

• They use a standard API that is supported by many web servers.

• They have all the advantages of the Java programming language, includ-

ing ease of development, portability, performance, reusability, and crash

protection

• They can access the large set of APIs available for the Java platform,

such as JDBC.

• A Servlet module would be loaded once the first time it is invoked and

then it stays loaded until the HTTP server task is shut down or restarted.

But a CGI script is loaded every time it is invoked and unloaded when it

has finished, hence the performance is worse.

For the mechanism in our research, the Java Servlets modules can actually

be substituted by other server extension mechanisms. But as Java Servlets

have more advantages when compared to CGI, especially in terms of system-

and platform-independence, and memory management, we chose to use Java

Servlets in our implementation.

Chapter 2 Related Work and Technologies 20

KFirewall
广 ^ ill 广 \

K 11 K -
Client Object 1 Server Object

「 S O A P X M L] . S O A P Messages . f s O A P X M L |

parser N ^ parser
� J III V y

L J 11 V J
\ J m \ J

Figure 2.5: Diagram showing the mechanism of SOAP

2.3 Overview of Simple Object Access Protocol

Simple Object Access Protocol (SOAP) [8, 23] is a lightweight protocol for the

exchange of information in a decentralized, distributed environment, which has

been accepted by World Wide Web Consortium as a standard. People started

discussing XML-based protocol in early 1998, and SOAP specification finally

shipped at the end of 1999 by W3C.

It is an XML based protocol that consists of three parts: an envelope that

defines a framework for describing what is inside a message and how to pro-

cess it, a set of encoding rules for expressing instances of application-defined

datatypes, and a convention for representing remote procedure calls and re-

sponses. Objects need to integrate with some XML-parsers to create messages

for making requests or responses. Figure 2.5 shows the mechanism of using

SOAP in a distributed system.

Due to XML features, building distributed systems with SOAP can provide

many advantages:

• Able to work through firewalls with use of HTTP in transmission of XML;

• Adaptable to widely distributed networks, as XML is platform- indepen-

Chapter 2 Related Work and Technologies 21

dent and system-independent;

• Flexible in implementation of different components. Components can be

developed in Perl, Java, PHP, ASP etc.

But SOAP still has some deficiencies when compared to our approach or

working with traditional distributed systems:

• SOAP is not designed to give support to those popular platform types,

such as CORBA, DCOM, etc. We have no standard mapping schemes

from mapping SOAP to many traditional distributed environments. Hence,

it cannot be combined to existing CORBA systems, DCOM systems, or

Java RMI systems naturally.

• SOAP is a definition of the communication protocol contents. The calling

mechanism has to be defined by users. It would be hard to support some

complicated calling methods, such as callbacks.

• Programmers need to deal with XML details while developing distributed

systems, such as dealing with XML parsers, etc.

For our approach described in this thesis, we would try to maintain the

advantages of using XML in communication messages protocol, and to avoid

the deficiencies of SOAP.

2.4 Overview of XML-RPC

XML-RPC is another XML-based protocol for communication in distributed

systems across Internet firewalls. It is developed by User Land Software, Inc

at 1998. Though it is not a standard of W3C. it has a little-bit longer history

than SOAP.

Chapter 2 Related Work and Technologies 22

r \ k F i r e w a l l / \
CORBA CORBA Client

Server Object \ A _ [\ ^ ^ / Object
^ r v U _ _ • ^ �
. 、 A J ^ J H Pluggable / XIOP Messages \ Pluggable I^LJ^：^ K . X I CORBA y W o y i Protocol K (X M U H T T P)爿 Protocol cORBA
S e r v e r \ =< \ _ 丨 \ Object)

N / Portable Data _ Portable Data 、

f ^ V Z Representation ：：：：：； Representation \ f ^
CORBA _ < r J i > _ _ CORBA

Server Object ~ 、 ^ Client Object
V J 画 J

吻凝緣

Figure 2.6: Diagram showing the mechanism of XIOP

It provides very similar functionalities as SOAP (refer to section 2.3). XML-

RPC also works by marshaling procedure calls over HTTP as XML documents.

It is even more lightweighted than SOAP as SOAP supports XML Schemas,

enumerations, strange hybrids of structs and arrays, and custom types which

XML-RPC does not support. At the same time, several aspects of SOAP are

implementation defined. So, XML-RPC has less features than SOAP, but the

advantage of it is having more compact XML message structures. ,

As XML-RPC is very similar to SOAP, they both have similar advantages

and deficiencies.

2.5 Overview of XIOP

Different from SOAP and XML-RPC, XIOP is designed as a substitute of

CORBA HOP in XML format. It is a pretty new protocol developed by Fi-

nancial Toolsmiths AB, which was introduced in April 2000. Besides working

well across the Internet firewalls, XIOP is compatible with existing CORBA

systems. XIOP requires a pluggable protocol framework to make conversion

between HOP and XIOP. Figure 2.6 shows the mechanism of the use of XIOP.

The advantages of XIOP are:

Chapter 2 Related Work and Technologies 23

• Integrates HTTP and XML into a distributed object framework.

• Fits into an existing, open and well established distributed object frame-

work: OMG CORBA.

• Uses the OMG IDL type system and therefore is more suitable for map-

pings to programming languages “ natural datatypes"

• Leverages existing mappings to programming languages such as C, C++ ,

Java, ADA, (Python, Perl etc).

• Leverages existing object serialization standard.

In spite of the many advantages of XIOP, it still has many rooms for im-

provement. XIOP development is mainly focusing on the conversion mapping

of traditional HOP and XML-based XIOP, but for the mechanism of conversion

and callings, there are still some deficiencies that can be improved.

• The pluggable protocol framework increases the complexity of the CORBA

environment.

• The pluggable protocol framework centralizes all protocol conversion jobs

which may be the bottle-neck in message transmission.

• We need to modify the original CORBA components in order to use the

message-conversion framework.

• It contains many low-level contents which increase the complexity of the

protocol.

Our approach described in this thesis is trying to maintain the advantages

of XIOP messages, but using a simple architecture, avoiding modification to

the original components, and providing methods for workload distribution.

Chapter 3

Using XML and Servlets to

Support CORBA Calls

3.1 Objective

In Chapter 1, we have described the need of integrating different distributed

systems and how this would induce some communication problems. One prob-

lem we have mentioned is that the common use of Internet firewalls would block

the communication with many traditional distributed system platforms, such

as HOP in CORBA. Using HOP as an instance, it is the Object Management

Group's (OMG) specified network protocol for communication between object

request brokers. It employs TCP/IP and can be handled by common firewalls

at network and transport level with packet filters. But at the application level,

the message body of HOP is encoded in Common Data Representation (CDR),

which is different from the packet formats with other common protocols, such

as FTP or HTTP. Firewalls are unable to decode it because they cannot base

filtering decisions on HOP messages.

There are some firewalls which are dedicated for some special protocols, for

example, Orbix Wonderwall [5] and Visibroker Gatekeeper [6] are dedicated for

24

Chapter 3 Using XML and Servlets to Support CORBA Calls 25

CORBA HOP. But there are some deficiencies for these two firewalls, as they

are generally vendor-dependent and may not support certain CORBA features

like callbacks.

There are proposals to use SOAP, XML-RPC or XIOP to tackle this firewall

problem. But SOAP and XML-RPC are not specified to work with other

protocols and programmers may have to deal with XML parsers or other XML

tools in order to use it. And for XIOP, programmers also need to deal with the

pluggable protocol framework, which is not transparent to them.

Here, we try to use XML, Java Servlets and HTTP to simulate HOP calls.

Modifications to the existing components are avoided in order to give great

transparency to users about our newly added implementation.

In this chapter, we will introduce our mechanism which can achieve this

target. First, the general concept of our approach will be introduced, and we

will explain what the server and the client sides will do in details. Then, we

will describe how callbacks can be done. We also describe what would be the

contents in the XML messages and how we automatically generate some source

codes of our newly added components, and make those components transparent

to programmers.

3.2 General Concept of Our Mechanism

Here, we use CORBA as an example to demonstrate our tunneling mechanism.

Actually, the same mechanism can be applied to other distributed system en-

vironments. such as DCOM or other agent environments.

Let us assume that we are having two CORBA enclaves, each of them is

located in a Local Area Network (LAN). For each LAN. it has a firewall that

separates them from the outside Internet. Now, we want to let the objects

Chapter 3 Using XML and Servlets to Support CORBA Calls 26

Client Side CORBA FIREWALL Server Side CORBA
Enclave K /^y j Enclave

Client / V Shadow f HTTP messages with V Servlet A Server \
Object \ A Seiver i data in XML format A Component、）Object i

J J
、 一 - - ， . .

Figure 3.1: Our mechanism to support general CORBA HOP across the fire-
walls

in these two enclaves to be able to communicate with each other. Unfortu-

nately, CORBA HOP cannot pass through those common firewalls. In order

to support HOP calls between two CORBA enclaves separated by firewalls,

the main approach we use is to convert the contents of HOP calls into HTTP

calls, as HTTP calls can go through the firewall blocking. Figure 3.1 shows

the mechanism of our tunneling solution. The object that issues a request is

named as client object, while the object that gives a response is named as the

server object. The enclaves they are located are named client side and server

side respectively.

In this case, we need two components to do the conversions from HOP to

XML-based data automatically:

• one is at the client side to convert the request messages from HOP mes-

sages to HTTP messages (i.e., the one named as Shadow Server in Figure

3.1),

• another one is at the server side to convert the HTTP request messages

Chapter 3 Using XML and Servlets to Support CORBA Calls 27

back to normal HOP messages (i.e., the one named as Servlet Component

in Figure 3.1).

Their duties will be inter-changed when the server returns the computation

results back to the client side. We now explain the details of these two compo-

nents.

3.2.1 At Client Side

At the client side, we add a new CORBA object which is used to convert HOP

messages into XML-based messages and vice versa. We call this client-side

conversion component as Shadow Server, as it will perform exactly the same

functions as the actual target server object. This conversion component allows

client objects to make requests to it, with request methods which are exactly

the same as in the actual server object. And this component will immediately

return the results to the client objects, with the returned data in the same type

and format as the actual server would return. So, in the viewpoint of the client

objects, this conversion component performs exactly the same as the original

target server object, and we can just regard this conversion component object

as a proxy. That is why we call it a Shadow Server.

Figure 3.2 shows the details of what is happening at the client side. Client

object first sends a request to the Shadow Server. The Shadow Server object

provides the same interface as the real target server object. They are sharing

the same interface definition of the target server IDL file. By using the same

interface, the client objects will not notice the differences between these two

objects while making requests.

Other than the common interface, all the internal implementation of the

methods would be different. The Shadow Server will not do any real com-

Chapter 3 Using XML and Servlets to Support CORBA Calls 28

REQUEST Z ,

1_Sr&dsa「equestta Side C O R B a X
2. Shadow Server converts the / E n c l a V G \

HOP request to XML format /
3. Shadow Server sends the XML / 厂

message to server side by j Shadow \ j l Z i 「、、.
HTTP Client A - u o P ^ f 合抓折 f data in XML by HTTP~>

. . \ J}^—1 /^mtmr^Mmm^mm Mk 「 ！ /
RESPONSE \ 。…ect 邸一力_、
1. Shadow Server receives XML- \ t ^ ^ ^ i二 = \ / m

based response message \ 一一 ' ' z 』 _ _ :
2. S/iadoMz Sen/e厂 parses the XML \

message and extracts the \ /
contents

3. Shadow Server sen6s an MOP ^^m
response calls to client object 、 、 、 〜 一 …

Figure 3.2: The details of our tunneling mechanism at client side

putation or manipulation to the data passed by the clients, instead it will

convert the parameters and other related information to XML-based messages

and send them to the real server object via HTTP. The details of the XML

message contents will be described in section 3.3.

When the server side returns a response message to the client side, no matter

it is a normal response, or an exception, it will also be a XML-based message

via HTTP. The response message will be returned to the Shadow Server and

then the Shadow Server converts all received HTTP messages into ordinary

HOP messages and returns them to the client objects.

3.2.2 At Server Side

At the server side, we add a new Java Servlet component which is used to

convert HOP messages into XML-based messages and vice versa. This Java

Servlet component on the server side communicates with the Shadow Server

on the client side. Servlets interact with web clients via a request-response

paradigm implemented by the Servlet container. This request-response model

Chapter 3 Using XML and Servlets to Support CORBA Calls 44

RECEIVE
/ \ 1. Servlet component receives request

/ Server Side CORBA \ IN XML format
/ E n c l a v e \ 2. Servlet component parses the XML

/i |\ / ^ ^ \ message and sends the contents to
/ ‘ 」 \ 广 \ i l server object.

(data in XML by HTTP ： (Servlet A Server \
\ i I / 1 1 ComponentW Object i | | | RESPONSE

‘ \ / 1. Server object responses to the
\ / Servlet component
\ / 2. Servlet component converts the

\ A response message into XML format
^ and sends back to the client side

' ' • • • • 、 、 、 一 z

、、•̂ 一

Figure 3.3: The details of our tunneling mechanism at server side

is based on the behavior of HTTP.

Each server object, which is ready for outside calls, will have a corresponding

Servlet component associated with it. Figure 3.3 shows the detailed situation

on the server side. When the client side sends a message, it will directly send

to the Servlet component, which is already associated with the target server

object. This Servlet component will parse the XML-based request message,

extract the necessary parameters and the related information from it, and then

convert it to an ordinary HOP call and invoke the target server object.

When the server object has finished the computation, it will send the re-

sponse to the Servlet component. The Servlet component will convert the

response to XML format and return it back to the client side via HTTP. It is

expected that the Shadow Server at the client side will receive that response

message.

It would be very similar for the server to return exception messages. The

exception messages will also be converted into XML format by the Servlet

component and then return to the client side via HTTP. Also, the Shadow

Server at the client side will receive those exception messages. In section 3.3,

Chapter 3 Using XML and Servlets to Support CORBA Calls 45

we will describe the details of the data contents in XML messages.

3.3 Data in Transmission

3.3.1 Using XML

Extensible Markup Language (XML) plays a very important role in the trans-

mission of HTTP messages. XML is semi-structured and hence has the flexi-

bility to well represent most of the complicated data structures. Hence, we use

HTTP to send streams of XML data between the client and server sides.

Further to the flexibility of data representation, the readability and the

ease of manipulation of XML information provide great flexibility for server as

well as client implementations. That is the reason why we convert the binary

stream of HOP messages into XML.

By using the Data Type Definition (DTD) of XML data, we can provide a

grammar for the XML data transmission format. Hence we can make a com-

promise on the interpretation data transmission formats for both client and

server sides. As we have DTD to provide rules and guidelines of transmission

message format for decoding and encoding, there is no limitation for the client

side or the server side to be implemented by CORBA objects. Hence, program-

mers can have great freedom to choose different implementation methods. We

will give more details of this in the next chapter.

3.3.2 Format of Messages in Transmission

If a client object needs to make a request to a server object, it has to first send

the request message to Shadow Server. An ordinary request message is sent to

Chapter 3 Using XML and Servlets to Support CORBA Calls 31

Shadow Server by the client object, and then Shadow Server will get the values

of the parameters.

Based on the corresponding DTD of the target object, the Shadow Server

constructs an XML document which describes the parameter types and values,

and the object method being requested. There is a generic component in the

Shadow Server that can construct the XML message based on the regulations

stated in the DTD. For the details about the DTD format and the XML data

format, please refer to Chapter 4.

After the XML message is constructed, it will be sent to the Servlet com-

ponent on the server side by the POST method calls of HTTP. Then the whole

XML message will be sent to the server side immediately. Each message in the

POST method calls contains the following information:

• the IP address or domain name that the Servlet component is located;

• the port number to access that Servlet component;

• the path name and the name of the Servlet component; and

• the encoded XML message.

The first three items should be known by the Shadow Server during its initial-

ization. The last item can only be determined at run time. We will give more

details about the formation of the XML messages in the next chapter. For

example, if we want to send a piece of XML request message form the client

side to the server side, which calls the deposit method of object Account, we

would have the following XML message:

<request>

〈Account type="interface">
〈deposit type="operation">

〈parameter ref="in" order="l">
<floa t name="amount">23000.45</float>

Chapter 3 Using XML and Servlets to Support CORBA Calls 47

</parameter〉

</deposit:>

</Account>

</request>

Assume the domain name of the server host is pc90003. cse . cuhk.edu.hk,

path name is research/, port number is 8000 and the name of the Servlet

component is testing. After encoding the XML message, the Shadow Server

on the client side would use the HTTP POST method to send the encoded

XML message to the Servlet component:

http://pc90003. cse . cuhk. edu. hk: 8000/research/testing?yo3C

request+"type%3D%22iirter:eace%22%3E+%3Caccomrt+1:ype%3D。/。22 士

nterface%22%3E+%3Cdeposi1:+"type%3D%22operat:iony。22%3E+%3Cp

arameter+ref%3D%22in%22+order%3D%22iyo22%3E+yo3Cfloat+name

%3Dy。22amount%22y。3E23000.45%3C%2Ff loa1:%3E+%3C%2Fparame1:er

yo3E+yo3C7c2Fdeposit7o3E+7o3C7o2Faccountyo3E+7o3C7o2Frequest7o3E

At the server side, when the Servlet component gets the message by the

HTTP POST method, it will extract and parse the XML message, and then

invoke the corresponding method of the server object, by passing the extracted

parameters to it. The server object will perform the computation immediately

and pass the results or any exception message back to the Servlet component.

The Servlet component will then convert the results, or the exception signal

into XML message again, based on the DTD of the server object. The returning

stream would be the response part of the HTTP POST method that the Shadow

Server issued. When Shadow Server gets the returned XML message, it will

parse it, and then return the results or raise an exception to the caller client

object.

http://pc90003

Chapter 3 Using XML and Servlets to Support CORBA Calls 33

3.4 Supporting Callbacks in CORBA Systems

The mechanism introduced in section 3.2 can handle all of the basic types of

method calls. But only applying this mechanism may not be able to handle

other more complicated calling features. For example, CORBA provides an

interesting and useful feature, named Callbacks, which needs an enhancement

of our mechanism in order to handle it.

3.4.1 What is callback?

Just imagine an example of a stock-prices reporting system: You are using the

client application to lookup the changes of the prices of your stocks. There

are thousands of users like you, and hence there may be thousands of client

programs that need to connect to the server for looking up the prices every

minute in order to know the latest stock prices. Though the prices may not

be changing all the time, there will still thousands of connection and lookups

every minute. This would lead to a nightmare in network traffic.

When client objects need to react to changes or updates that occur on the

server side, it would be rather inefficient for the client objects to lookup the

server periodically. Instead, it would be more efficient if the server can notify

the clients whenever there is an update on the server side, hence the client

programs can react to changes with a faster response, and also can minimize

the nuniber of connect ions. That is, once the client programs have subscribed

to certain stocks, whenever there are updates in stock prices, the server will

inform the client programs. What those client programs need to do is just

waiting for the server to call. This approach is called the callback feature.

The callback feature allows a client object to pass the reference of itself as

one of the parameters when invoking the server object's methods. And then,

Chapter 3 Using XML and Servlets to Support CORBA Calls 34

Client Enclave I Server 已门clave
FIREWALL • 厂 “

S ^ e I e. 二 r

Servlet V HTTP & XML
^ r * /

••.••••‘• _ :.:.:.:•:.: .:•:.:•:. ^̂awcggs Swwwfi' ：•：•：•：•：• •:.:.:.:. ^̂ ^S g iggggggs ： :.:.:.:.:•: I - —- i :.:.:,:•:•:

Figure 3.4: Mechanism that supports CORBA callbacks

the server object can call the client object's methods by the reference. This

requires both sides to be capable of starting a communication. Because of this,

many CORBA-dedicated firewalls are not capable to do so. Here, we try to

enhance the mechanism we described before to enable the callback features.

3.4.2 Enhancement to Allow Callbacks

As the callback feature needs both client and server objects to be capable of

initializing a new communication, we implement both sides to have the shadow

objects and Servlet components. We describe our mechanism for CORBA

callbacks in Figure 3.4.

Enhancement on Client Side

On the client side, if the client object is expected to use the callback feature,

it should have a Servlet component associated with it at the very beginning,

which can be known from the system IDL design.

Chapter 3 Using XML and Servlets to Support CORBA Calls 35

Client Enclave ~ ~ " T V
1. Client object first sends a method call

广 t o the Shadow Server. For callbacks,
J \ f Shadow、^^HTTP &' the method call must contain the client

Server J — X M k - Y 、 ' ' ' ' as one of the parameters.
2. Once the Shadow Server checks out

/ there is a possibility of callbacks, it will
' ' create a new Se「vlet component

U i e n t creaie assoicated with the client object for the
UDjec i ——server object to callback later.

/I J 獵

Servlet / HTTP & X M L ' 3. Shadow Server sends the method
I \\ 」 request as normal to the server side,
I V y with some additional information of the

new Servlet component, such as its
location, port number, calling method
list, etc.

4. The new Servlet component waits for
callback from server side.

Figure 3.5: CORBA callback mechanism on client side

The client object will first get a reference to the Shadow Server on the client-

side CORBA enclave. When the Shadow Server receives a method call from

the client object that may request a callback (that is putting itself as one of

the parameters), and if it is the first time, it will create a Servlet component

to be associated with that client object, and will store the information such as

IP address, port number, host name, calling methods, etc, in itself.

These information (IP address, port number, call method and calling meth-

ods, etc) of the Servlet component associated with the client object, will also

be sent to the server side when invoking the server method. Figure 3.5 shows

the details of what happens on the client side.

Enhancement in Server Side

On the server side, once the Servlet Component has received a message that

includes the information of the location of the Servlet component of the calling

Chapter 3 Using XML and Servlets to Support CORBA Calls 36

Server Enclave procedure
, … 1. Servlet Component in the Server side

, 厂 、 receives call from outside. If there is
H T T P ^ Y M i \ Servlet callback, this Servlet Component will

l—r j J _ 二] 八 create a Shadow Client immediately,
' V) which will be initialized by the info of

location provided by client side.

create Server ； 2. Servlet Component will inform the
. Ohip。t 丨 server object the location of the

, v v J Shadow Client that has required
/ H T T P - 丨斤 h a d o w ^ ^ ^ callback.
\i&rXUL \ Client M ^ H

3. When there is a need to callback,
V：：̂--̂：：/ server object will call the Shadow

I Client(s).

4. The Shadow Client(s) will invoke the
Servlet Component(s) on the client
side.

Figure 3.6: CORBA callback mechanism in server side

client object, it will automatically generate a new Shadow Client object, which

has the same interface as the calling client object. This Shadow Client object

will be initialized by the information of the real client and its Servlet compo-

nent, so that it will know how to set up the connection with the real client

later.

The real server object then gets the reference of the Shadow Clients (the

newly created ones on the server side) that requires callbacks. Whenever the

server is updated, it can call the Shadow Clients to invoke and notify the client

object. During the data transmission, we still employ similar XML data for-

mat as described in the previous section. By this mechanism, we can support

HOP calls for CORBA callbacks by integrating XML, Servlet and HTTP calls.

Figure 3.6 shows the details of what is happening on the client side.

Chapter 3 Using XML and Servlets to Support CORBA Calls 37

3.5 Achieving Transparency with Add-on Com-

ponents

One of the advantages of our add-on components are their transparency to the

whole system. They also help us to avoid any modifications to the existing

components in the system. We have shadow objects that have exactly the

same interface as the objects being called in another enclave. Shadow objects

are located at the same enclave as the callers, and they perform exactly the

same functions as the target objects that the callers want to call. Servlets

components, which are located at the same enclave as the objects being called,

should be able to convert the XML messages to appropriate calling methods

that the objects being called can understand. Interfaces of the objects are very

important for the function and the creation of these add-on components.

When building a CORBA system, programmers are first needed to design

the interfaces of all CORBA objects and provide an IDL file to generate the

necessary source codes for server skeletons, client stubs and other system archi-

tectures. The IDL design of a CORBA system provides the interface definitions

of all the objects in the system. The IDL files can provide the following interface

information:

• Interface names;

• Object method names provided by each interface;

• The return type of each method;

• All parameters types and their orders in prototypes of each method;

• All passing types of the parameters (i.e. if they are "passing by reference

or passing by value);

Chapter 3 Using XML and Servlets to Support CORBA Calls 38

• All exceptions in each method;

• All newly defined structures; and

• The possibility of having callbacks features (i.e., when a CORBA object

interface has another CORBA object interface as one of its parameters).

With IDL providing adequate information about the interface, we can use

these interface information to generate the XML message schema, and also the

source code for the add-on components. As both the add-on Servlet components

and the shadow objects have many common parts of source codes and they are

both concerned only with the interfaces of the server and client objects, we can

use the IDL files to generate these add-on components automatically.

We have developed a compiling tool which can compile the IDL files, analyze

the interface design and then generate the following artifacts:

• Source code for Shadow Server /Cl ient objects;

• Source code for Servlet components; and

• DTD of the transmitted messages.

The generation of these source codes can help to reduce the extra programming

work for those add-on components as they usually contain many similarities,

especially in the part of converting the internal data structures to XML for-

mats. The generation of DTD files, on the other hand, provides a standard for

information exchange in XML formats. Based on the DTD, system developers

can have implementations other than using CORBA for their clients or servers

components. These tools will be introduced in the next chapter.

、

Chapter 4

A Translator to Convert CORBA

IDL to XML

4.1 Introduction to CORBA IDL

In order to generate the XML documents for data transmission in remote pro-

cedure calls and source code generation for the add-on components, we make

use of the Interface Definition Language (IDL) files for CORBA object design.

We try to use these IDL files to extract all the necessary information of the

interfaces from IDL files for the auto-creation of our Shadow Server or Shadow

Client, and the DTD standards for message passing. We are able to do this

because the IDL files have already contained all the information about all the

interfaces of all CORBA objects that would be involved in remote calling.

The CORBA IDL is used to define interfaces to objects in a distributed

environment [3, 24, 25]. The first step in developing a CORBA application is

to define the interfaces to the objects required in the distributed system. IDL

allows programmers to define interfaces to CORBA objects without specifying

the implementation of those interfaces. In fact, programmers can implement

IDL interfaces using any programming language for which an IDL mapping is

39

Chapter 4 A Translator to Convert CORBA IDL to XML 55

available. CORBA applications written in different programming languages are

fully interoperable. CORBA defines standard mappings from IDL to several

programming languages, including C + + , Java, and Smalltalk, hence, we can

say that CORBA IDL is very generic.

A translator, which is written in Perl, is implemented in our research project

for XML documents generation. Here, we will describe how this translator

works to produce XML documents and the DTD files of those XML documents.

In the following sections, we introduce different elements of CORBA IDL

and describe one by one in details about how we convert different items into

XML format. We will also discuss how the add-on components work, and how

they can be generated by the XML files.

4.2 Mapping from IDL to XML

Here, we will describe the schema of mapping CORBA IDL to XML in details.

First, we explain how we represent some data types in XML formats. Then,

we describe the schema for mapping all information in i n t e r f ace . Basically,

i n t e r f a c e in CORBA IDL is representing an object in CORBA. We will also

address the inheritance issue in our mapping.

We will explain two uses of the XML documents. One is for representing the

IDL, which mainly contains only the structural information of different object

interfaces. With this XML file, we can generate the add-on components, such

as shadow objects and Servlet components, automatically.

Another one is for transmitting request or response messages in method

calling. For these XML messages, they are not just representing the structure,

but also data values. DTD is provided to give the grammar for these XML

messages.

Chapter 4 A Translator to Convert CORBA IDL to XML 41

Table 4.1: Basic types in IDL and their corresponding XML tags
IDL Type Representation Size Corresponding XML

short 16-bit <short> </short>

unsigned short 16-bit <ushort> </ushort>
long 32-bit <long> </long>

unsigned long 32-bit <ulong> </ulong>
long long 64-bit <longlong> </longlong>

unsigned long long 64-bit <ulonglong>
</ulonglong>

float IEEE single-precision <f loat> < / f l oa t>
floating point numbers

double IEEE double-precision � d o u b l e � � / d o u b l e �

floating point numbers
char An 8-bit value <char> </char>

Boolean — TRUE or FALSE. � b o o l e a n � � / b o o l e a n � —
octet An 8-bit value that is For simplicity, we do not

guaranteed not to un- support it right now. In
dergo any conversion fact, uuencode can convert
during transmission binary messages to character

strings
any The any type allows the For simplicity, we do not

specification of values support it right now.
that can express an ar-
bitrary IDL type

4.2.1 IDL Basic Data Types

Same as many programming languages, IDL also provides a number of basic

types for defining interfaces, such as integers, floating point numbers, etc. Table

4.1 lists the basic types supported in IDL.

To convert these values into XML data, we simply use the variable type

names as the tag names. For example, short becomes <short>, </short>,

unsigned short becomes <ushort>, </ushort> etc.

In transmission messages, we will put the value of a variable inside the tags,

and state the variable name in an attribute of the tags as name. For example,

Chapter 4 A Translator to Convert CORBA IDL to XML 42

a short integer named abc is carrying 14, then the representation is:

� s h o r t name="abc">14</short>

In the XML representation of attribute definition in IDL files, no data is in

shor t variable, hence we use a short form of t a g s : � s h o r t name="abc" />.

4.2.2 IDL Complex Data Types

This section describes the IDL complex data types including: enum, s t r u c t ,

string, sequence, and array. They may consist of a number of basic type

elements. In IDL, for the definition of these complex types, a new type name

may be assigned. We use these new type names as the new tag names in XML

documents. And all new tags would bound all their detailed information and

have the attribute complex to indicate what category of complex data type it

is. Here, we will describe different complex data types in details.

Enum Type

All enumerated type allows you to assign identifiers to the members of a set

of values. For example, a variable of Color type below may have red, blue or

green as its value:

enum Color {red, blue, green}；

To use XML in representing the IDL design, we will use tags�element〉，

� / e l e m e n t � t o present the possible values as follow.

<Color complex="enum">
<element>red</element>
<element>blue</element>
<element>green</element>

</Color>

When we use XML in message transmission, we will use only o n e � e l e m e n t �

Chapter 4 A Translator to Convert CORBA IDL to XML 58

� / e l e m e n t : � p a i r to represent the current value of the variable. For instance,

a variable pixel of Color type in the previous example containing a value as

blue, would be represented in the XML message in transmission like this:

〈Color complex="enum" name="pixel">

<element>blue</element〉

</Color>

Struct Type

A struct data type allows programmers to package a set of named members of

various types, for example:

struct Customer!

long id;

short age；

boolean ismale；

}；

The Customer type contains three members, including a long integer named as

id, a short integer named as age, and a boolean named as ismale.

Shown here is the way we represent the definition above in XML format:

〈Customer complex="struct">
<long name="id"/>
<short name="age"/>
〈boolean name="ismale>"/>

〈/Customer〉

If we are using the XML to represent a struct variable, say with variable

name as peter of type Customer in the previous example, and id is 123, age

is 28 and ismale is TRUE, the information will be presented as follow.

、 〈Customer complex=“struct“ name="peter"/>
<long name="id__>123</long>
〈short name="age">28</short>
〈boolean name="ismale">TRUE</boolean

</Customer>

Chapter 4 A Translator to Convert CORBA IDL to XML 59

Union Type

An union data type allows programmers to represent a type that can contain

only one of several alternative members at any given time, for example:

union Date switch (short){

case 1: string USformat；

case 2: string UKformat；

default: long digitalformat;

}；

The Date type contains three members, including two strings named as USf ormat

and UKf ormat, a long integer named as digital format, which is the default

type. W h e n users specify 1, the only member of this type is USf ormat; if 2 is

specified, the member would be UKf ormat. If no specification is given, then it

would be of the default type.

Shown here is the way we represent the definition above in XML format:

<Date complex="union">

〈element〉

<switch><short>l</short></switch>

<string name="USformat"/>

</element>

〈element〉

<switch><short>2</short></switch>

〈string name="UKformat"/>

</element>

<element> 〈long name="digit:£Llformat"/〉 〈/element〉

</Date>

If we are using the XML to represent a struct variable, say with variable

name as checkin of type Date in the previous example, and we give switch value

as 1 to choose using USf ormat, the information will be presented as follow.

<Date complex="union" name="checkin" switchtpe="short"/>
〈element>

<switch><short>l</short></switch>
〈string iiame="USformat">06082001</s"t:riiig>

</elemeiit>
</Date>

Chapter 4 A Translator to Convert CORBA IDL to XML 45

String

An IDL string represents a character string, where each character can take

any value of the char basic type. If the maximum length of an IDL string is

specified in the string declaration, then the string is bounded, otherwise the

string is unbounded.

string<10> place ； / /Bounded String

s t r i n g name ； / /Unbounded String

The usage o f � s t r i n g � t a g s is very similar to those basic data types. To

represent a string with maximum length defined, we use an attribute s ize in

t h e � s t r i n g � t a g s . (Otherwise, this attribute will be omitted.)

� s t r i n g size="10" name="name"/�

Sequence and Arrays

In IDL, you can declare a sequence and array of any IDL data types. An IDL

sequence is similar to a one-dimensional array of elements, but it does not have

a fixed length. If the sequence has a fixed maximum length, then the sequence

is bounded. Otherwise, the sequence is unbounded.

sequence<short, 6> marksix; //Bounded Sequence of Short Integers

sequence<string> name ； //Unbounded Sequence of String

Shown here is how we represent a sequence in XML for IDL definition.

�sequence size="6">
<short/>

</sequence>

If we represent data, the elements bounded by tag sequence should be re-

peated with corresponding values. Say, a sequence of short with variable name

Chapter 4 A Translator to Convert CORBA IDL to XML 46

as number, with values in the sequence (1,2 and 3) will be represented as follow:

〈sequence size="3" name="number">

<short index="l"> 1 </short>

<short index="2"> 2 </short>

<short index="3"> 3 </short>

〈/sequence〉

XML is so flexible that it can well represent structures even as complex as

a sequence of struct type data. Using customer in the struct type section as

an example:

〈sequence size="6" name="number">

〈Customer complex:"struct" index="l">
<long name="id">lll</long>
〈short name="age">24</short>
〈boolean name="ismale">TRUE</boolean>

〈/Customer〉

<Customer complex="struct" inde;x="2">
<long name="id">:L12</long>
〈short naine="age">39</short>
〈boolean name="ismale">FALSE</boolean>

</Customer>

<Customer complex="struct" index="3">
<long naine="id">113</long>
〈short name="age">23</short>
〈boolean name="ismale">TRUE</boolean>

</Customer>
</sequence〉

For arrays, they are very similar to sequence, but they are multi-dimensional

and always have a fixed size. Using an example of a 3x2 array:

short test [3,2]

We use attributes sizel, size2, sizeS,..., etc. to represent the size in different

dimensions, in which sizel means the first dimension, size2 means the second

dimension, etc. To represent this statement of IDL in XML format:

<array sizel="3" size2="2" naine="test'7>
<short/>

</array>

Chapter 4 A Translator to Convert CORBA IDL to XML 47

To represent the data for transmission in XML format, we use attributes

indexl, iiidex2, iiidex3,..., etc. to represent the indexes of the elements with

different dimensions. We can have the following structure:

<array sizel="3" size2="2" name="test">

<sliort iiidexl="0" index2="l"> 123 </short>

〈short iiidexl="0" index2="2"> 124 </short>

<short iiidexl="l" iiidex:2=" 1"> 125 </short>

<short indexl="l" iiidex2="2"> 126 </short>

<short indexl="2" index2="l"> 127 </short>

<short indexl="3" index2="2"> 128 </short>

</array>

TypeDef

The typedef keyword allows programmers to define a meaningful or more sim-

ple name for an IDL type. The following IDL provides a simple example of

using this keyword:

typedef float Money
typedef MarkSix short[6]；

We would just use the new type name to create a pair of tag to bound the

data type it representing.

<MarkSix complex="typedef">
<array sizel="6" naine="test"/>

<short/>
</array>

</MarkSix>

To represent the typedef data in transmission, tags of the typedef name

would bound the original message.

<MarkSix complex="typedef">
<array sizel="6" naine="test"/>

〈short indexl="l"> 1 </> <short iiidexl="2"> 13 </>
<short iiidexl="3"> 17 </> <short iiidexl="4"〉 24 </>
<short indexl="5"> 29 </> 〈short indexl="6"> 38 </>

</array>
</MarkSix>

Chapter 4 A Translator to Convert CORBA IDL to XML 63

4.2.3 IDL Interface

An IDL interface describes the functions that an object supports in a dis-

tributed application. Interface definitions provide all of the information that

clients need in order to access the object across a network.

interface Account {

// The account owner and balance,

readonly attribute string name；

attribute float balance；

II Operations available on the account.

void deposit (in float amount)；

boolean withdraw (in float amount)；

}；

The example above shows the interface Account. The objects which imple-

ment this interface will have two attributes, and two operations. To represent

by XML, we just use the interface name as the new tag name and bound ev-

erything inside.

<Account complex="interface">

Details of Attributes and Operations

</Account>

We will talk about the detailed XML representation of attributes and op-

erations in the following parts.

4.2.4 Attributes

Attributes correspond to variables that an object implements. They indicate

that these variables are available in an object and that clients can read or write

their values.

In general, attributes map to a pair of functions in the programming Ian-

Chapter 4 A Translator to Convert CORBA IDL to XML 63

guage used to implement the object. These functions allow client applications

to read or write the attribute values. However, if an attribute is preceded by the

keyword readonly, then clients can only read the attribute value. These read

and write functions will also be prepared in our Shadow Client and Server

objects, and Servlet components.

With reference to the interface Account shown in the previous section, it

contains two attributes:

readonly attribute string name；

attribute float balance；

In the example, the string attribute is read-only while another one is read-

write. To represent these, we use a tag attribute readonly.

<string type^"attribute" readonly="true" name="name"/>

<float type="attribute" name="balance"/>

4.2.5 Operations (Methods)

IDL operations define the format of functions, methods, or operations that

clients use to access the functionality of an object. An IDL operation can take

parameters and return a value, using any of the available IDL data types.

In our representation of IDL files using XML, we use the operation name

as the tag name, and have an attribute type to indicate that it is an object

method. Within the pair of tags, we have two more kinds of element tags,

they are〈parameter〉and <return>.〈parameter〉tags describe one of the

parameters of the operation. It has attribute ref to state if it is passed by

reference or values, and attribute order to describe its listing order with other

parameters in the method call.

Here is an example with the two operations shown in the example in the

previous section.

Chapter 4 A Translator to Convert CORBA IDL to XML 63

〈deposit type="opereLtioii">

〈parameter ref=__in" order="l">

<float naine="amount "/>

</parameter>

</deposit>

〈withdraw type="operation">

<return>

<boolean/>

</return>

〈parameter ref="in" order="l，>

<float name="amount"/>

</parameter〉

</withdraw>

If the operation takes an object as one of its parameters, we pass the object's

interface in the method call, which is also bounded by parameter tags. The

XML-based interface definition passed should contain all the information of

its attributes, operations and exceptions. This would be useful in callback

features.

4.2.6 Exceptions

IDL operations can raise exceptions to indicate the occurrence of an error.

CORBA defines two types of exceptions: System exceptions are a set of stan-

dard exceptions defined by CORBA. User-defined exceptions are exceptions

that you define in your IDL specification.

Implicitly, all IDL operations can raise any of the CORBA system excep-

tions. No reference to system exceptions appears in an IDL specification. Also,

as all objects may throw system exceptions, it is not necessary to put the

definition of system exceptions in the XML documents.

An IDL exception is a data structure that contains member fields. In the

following example, the exception notEnoughMoney includes a single member of

type string.

Chapter 4 A Translator to Convert CORBA IDL to XML 63

interface Account {

exception notEnoughMoney {

string reason;

}；
void withdraw(in CashAmount amount)

raises(notEnoughMoney)；

}；

Inside the〈Account〉tags, we will have the definition of the exception

notEnoughMoney as follow:

〈notEnoughMoney type="exception">

<string name="reason"/>

</notEnoughMoney>

And inside the m e t h o d � w i t h d r a w � t a g s , we will add a new tag for the

exception, <raises>, to bound the exceptions (similar to〈parameter〉and

<return> tags).

4.2.7 Inheritance

IDL supports inheritance of interfaces. An IDL interface can inherit all the

elements of one or more other interfaces. In our mapping scheme, we will

simply put all information of the parent interface into the child interface. For

example, we have two interfaces in IDL, where ch i ld is inherited from parent.

interface parent {

short op(in a)；

}；
interface child : parent {

readonly attribute short cat；

>；

In our XML file, the interface chi ld would be:

Chapter 4 A Translator to Convert CORBA IDL to XML 63

<child type- ' i i r r ter face" parent 1="parent“>
<short t ype="a t t r i bu te" name="cat">
<op type="operation">

�paramete r r e f=" in" order="l">
<short name="a" />

< /paramete r�

</op>
</child>

4.2.8 IDL Modules

An IDL module defines a naming scope for a set of IDL definitions. Modules

allow you to group interfaces and other IDL type definitions in logical name

spaces, and prevent name clashes with other modules.

As IDL module is the outermost bounding of the whole IDL file in the XML

document, we also create a pair of tags with the name of the module to be the

root tags. The tag would contain an attribute type with value as module.

<bank type="module">

<！一一 . . . d e f i n i t i o n i n t e r f a c e s 一一>

</bank>

4.2.9 A Sample Conversion

We have described the schema of the conversion from CORBA IDL to XML.

Here, we give a sample IDL file, and then demostrate how we convert it into

XML format. Figure 4.1 shows a sample IDL of the information system of a

small shop. Figure 4.2 is the XML format of the IDL in Figure 4.1.

Chapter 4 A Translator to Convert CORBA IDL to XML 63

module OrderProcessing {

typedef string ProductCode;
enum PriceType { retail, coirtract:， promotion }；

struct Customer {
string customerCode；
string customerName；

}；

interface Price {
attribute float price；
attribute PriceType priceType；
attribute string expiryDate；

>；

typedef sequence < Price > PriceSequence;

interface PriceCalc {
attribute Customer customer;
attribute ProductCode product；
void ge"tPrices(oirt PriceSequence prices);
void recordUseOfPrice(in Price priceUsedj;

>；
}；

Figure 4.1: A sample IDL file for an information system

4.3 Making a Request or Response

If a client object wants to make a request to the server object, it will make a

request call to the Shadow Server instead. The Shadow Server will generate

a XML request message to the server side, which uses a pair o f � r e q u e s t � t a g s

as the root tags to bound the method calling information.

After the server object has performed the request, it will return a returned

value or throw an exception to the client side. The returned messages would

be bounded by a pair of <response> tags as root tags.

Both XML-based request and response messages will follow the generated

Chapter 4 A Translator to Convert CORBA IDL to XML 63

DTD. It is shown in Figure 4.3.

4.4 Code Generation for Add-on Components

In the previous sections, we have shown the complete schema for the mapping

of CORBA IDL to XML messages. With that XML data, we can generate

the add-on components automatically, as they already have all the information

about the interfaces.

For instance, in CORBA callback calls, a client would put itself as one of

the parameters in the server's method call. Here, the client putting itself in

the parameters means that on the client side, the Shadow Server would send

the interface definition of that client to the server side. The Servlet component

on the server side would immediately use the interface definition of the client,

which is in XML format, to create a Shadow Client immediately. While on the

client side, the Shadow Server will also generate a Server component. Here,

we will discuss the generation of these two components.

4.4.1 Generation of Shadow Objects

A Shadow Object has the same interface as the actual target object. To gen-

erate it, we have to analyze the XML file that represents the object interface.

For each operation in the interface, we create the same operation which takes

the same parameters and returns a value of the same data type.

Inside each operation, we would have three parts of source code:

1. To convert the parameters into text strings, and form a XML message

which describes a request call.

Chapter 4 A Translator to Convert CORBA IDL to XML 63

2. To start a HTTP connection with and send the XML message to the

server side, and wait for the response.

3. When the XML-based response message is returned, either a returned

value form or an exception, it is parsed and returned to the caller object

by returning it or throwing an exception.

4.4.2 Generation of Servlet Components

The mechanism in Servlet components is much simpler than that in Shadow

Objects. A Servlet component is to take the XML-based request messages

from the client side, and then make a corresponding call to the server object.

Hence, it has to know how to call all the operations of the server object.

Inside a Servlet component, we would have three parts of source code.

1. To wait for the client requests by HTTP connection.

2. When the XML-based request message is received, which contains infor-

mation about the calling method and its parameters, the Servlet parses

the message and makes a method call with corresponding parameters to

the server object.

3. To convert the returned values or any exceptions into XML format, and

then return it back to the client side.

Chapter 4 A Translator to Convert CORBA IDL to XML 63

<OrderProcessing type="module">

<ProductCode complex="typedef"> <string/> </ProductCode>

<PriceType complex="enum">
〈element>retail</element>
<element>contract</element>
<element>promotion</element>

</PriceType>

〈Customer complex="sequence">
〈string naine="customerCode">
〈string name="customerName“>

〈/Customer〉

<Price complex="interface">
<float type="attribute" name="price"/>
<PriceType type="attribute" iiame="priceType"/>
<string type:"attribute" name="expiryDate"/>

</Price>

<PriceSequence complex="typedef">
〈sequence〉 <Price/> 〈/sequence〉

</PriceSequence>

<PriceCalc complex="interface">
〈Customer type:"attribute" name="customer"/>
<ProductCode type:"attribute" naine="product"/>
<ge"tPrices type="operation">

〈parameter ref="out" order="l">
〈PriceSequence name="price"/>

</parameter>
</getPrices>
<recordUseOfPrice "type="operation"〉

^parameter ref="in" order="l">
〈Price iiame="p:riceUsed"/>

</parameter〉
</recordUseOfPrice>

</PriceCalc>
</OrderProcessing>

Figure 4.2: XML format of the IDL in Figure 4.1

Chapter 4 A Translator to Convert CORBA IDL to XML 63

<！DOCTYPE OrderProcessing [
<！ELEMENT OrderProcessing (ProductCode, PriceType，

Customer, Price, PriceSequence, PriceCalc)>
<!ATTLIST OrderProcessing type (#CDATA)>

<！ELEMENT ProductCode (string)>
<!ATTLIST ProductCode type (#CDATA)>
<!ATTLIST ProductCode complex (#CDATA)>
<!ATTLIST ProductCode name (#CDATA)>

<！ELEMENT PriceType (element*)>
<!ATTLIST PriceType complex (#CDATA)>

<！ELEMENT Customer (string*)〉
<!ATTLIST Customer complex (#CDATA)>
<!ATTLIST Customer type (#CDATA)>
<!ATTLIST Customer name (#CDATA)>

<！ELEMENT Price (float, PriceType, string)>
<!ATTLIST Price type (#CDATA)>

<！ELEMENT PriceSequence (sequence)>
<!ATTLIST PriceSequence type (#CDATA)>

<！ELEMENT sequence (Price*)>
<！ELEMENT PriceCalc (Customer, ProductCode,

getPrices， recordUseOfPrice)〉
<!ATTLIST PriceCalc complex (#CDATA)>

<！ELEMENT getPrices (parameter)>
<!ATTLIST getPrices type (#CDATA)>

<！ELEMENT recordUseOfPrice (parameter)>
<!ATTLIST recordUseOfPrice type (#CDATA)>

<！ELEMENT parameter (PriceSequence I Price)>
<!ATTLIST parameter ref (#CDATA)>
<!ATTLIST parameter order (#CDATA)>

<！ELEMENT float (#CDATA)>
<!ATTLIST float name (#CDATA)>

<!ELEMENT string (#CDATA)>
<!ATTLIST string name (#CDATA)>

<！ELEMENT element (#CDATA)>
]>

Figure 4.3: The DTD for the parameter passing of simulated calls

Chapter 5

Communication in

Heterogeneous Distributed

Environments

5.1 Objective

Nowadays, we have a trend to integration of several information systems in

order to provide better services to the increasingly demanding users. In fact,

integrating several distributed system is not an easy task. There are many

popular environments for the development of distributed applications, such as

CORBA [3], DCOM [11] or Java RMI [12] etc. They are developed by differ-

ent organizations, hence they use different communication protocols. CORBA

systems use HOP, DCOM systems use DCOM protocol, and Java RMI uses

Java Remote Method Protocol (JUMP). So, when we want to integrate sys-

tems with different distributed environments, it would be hard to let those

distributed objects to communicate with others.

Though we have many applications that help us to achieve the commu-

nication among heterogeneous distributed environments, they are not generic

58

Chapter 5 Convrnunication in Heterogeneous Distributed Euvi'm'n'meuLs 59

enough. Take the famous OrbixCOMet [13] by lona Technologies as an exam-

ple. It is a typical bridging tool, and implements the COM/CORBA Interwork-

ing specification by enabling transparent communication between COM clients

and CORBA servers. There is a COMET component located between the

CORBA enclave and COM/DCOM enclave, and it acts as a bridge to provide

the mappings and perform translation between CORBA and COM/DCOM.

OrbixCOMet provides very good performance in bridging CORBA and

COM/DCOM applications, but it is not generic enough to give bridging to

other environments, such as JavaRML It is because OrbixCOMet uses a mid-

dleware COMET between CORBA enclave and COM/DCOM enclave, which

would directly convert the binary streams of CORBA HOP messages to binary

streams of DCOM HOP messages. Though this approach is fast, it cannot be

used with other distributed environments. Moreover, as their protocols may

not be supported by many common firewalls, they may also encounter the

firewall problems as mentioned before.

We try to extend the mechanism described in Chapter 3 in order to support

communication in heterogeneous distributed environments. We map the inter-

face definition languages of different environments to the same XML schema,

that we have introduced in Chapter 4, hence they have the “ common language"

to communicate. We base on our CORBA IDL's XML schema, as CORBA IDL

is very generic which can be mapped to many different programming languages,

hence, it has greater flexibility to let other interface definition languages map

to it.

In this chapter, we will first introduce our general principles for the exten-

sion of our mechanism. Then, we will focus on the cases of DCOM and Java

RMI. For each case, we will look at their mapping schema, and how we achieve

communication. Lastly, we will describe how generic our approach is and how

it can also adopt to other web applications.

Chapter 5 Communication in Heterogeneous Distributed Environments 60

5.2 General Concept

In Chapter 3, we proposed a mechanism of using XML streams with HTTP to

solve the firewall problem in distributed systems. This mechanism works be-

cause we can avoid the use of HOP across firewalls, we use HTTP instead. The

use of shadow objects and the Servlet components can make our conversion

of HOP to XML transparent from other CORBA objects, as these CORBA

objects cannot distinguish them from the real callers or callees. More impor-

tant, our add-on components are also CORBA objects and located at the same

enclave as those original objects, hence there are no communication problems.

Now, we use the approach described in Chapter 3 and extend it as the com-

munication bridge among heterogeneous distributed environments. In hetero-

geneous distributed environments, objects in one enclave cannot communicate

with objects in another enclave. It is because they use different communication

protocols. CORBA systems use HOP, DCOM systems uses DCOM protocol,

and Java RMI use Java Remote Method Protocol (JRMP) and they are in-

compatible to each other. The case is similar to the blocking of firewalls, one

enclave cannot talk with another enclave.

To solve this problem, again, we rely on our add-on components, shadow

objects and Servlets components. The add-on components are developed under

the same environment as the other objects located at the same enclave, so they

have no problem to communicate with the objects in the same enclave. At

the same time, the shadow objects and the Servlets components can talk to

the others with XML and HTTP. This can help to join different heterogeneous

enclaves into a network and hence they all can communicate with each other.

To achieve the joint network it is important that all enclaves must agree

to use a common XML schema, such that they have the common language to

talk with the others. In Chapter 4, we have described the schema of mapping

Chapter 5 Convrnunication in Heterogeneous Distributed Euvi'm'n'meuLs 61

CORBA IDL to XML format. With this, we can achieve communication of

CORBA objects in different enclaves, as all CORBA objects in different en-

claves use the same language. We have set the schema for IDL to XML mapping

to guarantee the unity in representation.

What we have to do now is to ensure that the interface definition languages

in different distributed environments can map onto the same schema. CORBA

has a generic IDL which is able to map to many different programming lan-

guages. As CORBA IDL is so generic, we try to use its XML schema as the

fundamental schema and map other IDLs into the same schema.

In the following sections, we are going to show how we link DCOM systems,

Java RMI systems and CORBA systems together with an agreed common

XML schema, and a suitable architecture. Based on some well-known and

standardized mapping specifications released by Object Management Group,

we map the interface definition languages of other distributed environments

to our XML schema of CORBA IDL. Our mechanism is so generic that not

only DCOM or Java RMI systems can be integrated, but also other distributed

environments, or other web applications. We will describe how they can further

connect to other web applications.

5.3 Case Study 1 - Distributed Common Object

Model

5.3.1 Brief Overview of Programming in DCOM

Developed by Microsoft, DCOM is COM (Common Object Model) with dis-

tributed feature (COM only allows processes in a single host to communicate).

DCOM supports remote objects by running on a protocol called the Object

Chapter 5 Convrnunication in Heterogeneous Distributed Euvi'm'n'meuLs 62

Remote Procedure Call (ORPC). A DOOM server is a body of code that is

capable to be called by objects of a particular type at runtime. Each DOOM

server object can support multiple interfaces each representing a different be-

havior of the object. A DOOM client calls the methods of a DCOM server

by acquiring a pointer to one of the server object's interfaces. DCOM server

components can be written in diverse programming languages like C + + , Java,

Object Pascal (Delphi), Visual Basic and even COBOL. As long as a platform

supports COM services, DCOM can be used on that platform. DCOM is now

heavily used on the Windows platform. Companies like Software AG provide

COM service implementations through their EntireX product for UNIX, Linux

and mainframe platforms; Digital for the Open VMS platform and Microsoft

for Windows and Solaris platforms.

DCOM objects use Microsoft Interface Definition Language to define their

interfaces [26, 27, 28]. Figure 5.1 shows a sample MIDL file. The MIDL

compiler creates the proxy and stub code when run on the MIDL file for the

static invocation to work. They are registered in the systems registry to allow

greater flexibility of their use and virtual table (vtable) will be used for invok-

ing objects. In the MIDL, COM objects would implement lUnknown interface

for static invocation. Otherwise, COM objects have to implement an inter-

face called IDispatch for dynamic invocation to work. As with CORBA or

Java/RMI, to allow for dynamic invocation, some ways are needed to describe

the object methods and their parameters. DCOM uses type libraries to describe

the object, and it also provides interfaces, obtained through the IDispatch in-

terface. to query an Object's type library. In COM, an object whose methods

are dynamically invoked must be written to support IDispatch.

Note that in DCOM. each interface is assigned a Universally Unique IDenti-

fier (UUID) called the Interface ID (IID). Similarly, each object class is assigned

a unique UUID called a CLasS ID (CLSID). COM does not support multiple

Chapter 5 Convrnunication in Heterogeneous Distributed Euvi'm'n'meuLs 63

inheritance, instead, it uses the notion of an object having multiple interfaces

to achieve the same purpose.

[

uuid(7371a240-2e51-lld0-b4cl-444553540000)，
version(l.O)

]
library SimpleStocks
{

importlib(|istdole32.tlbi_)；
[

miid(BC4C0AB0-5A45-lld2-99C5-00A02414C655)，
dual

]
interface IStockMarket : IDispatch
{

HRESULT get_price([in] BSTR pi, [out,retval] float* rtn)；
>
[

miid(BC4C0AB3-5A45-lld2-99C5-00A02414C655)，
]
coclass StockMarket
{

interface IStockMarket；
}；

}；

Figure 5.1: An example of MIDL document

5.3.2 Mapping the Two Different Interface Definitions

A MIDL document (refer to Figure 5.1 as example), is usually consisted of

two components: interface header and interface body. The interface header is

the part bounded by a pair of square brackets, which specifies the information

about the interface as a whole. It contains some attributes such as UUID,

version numbers, etc. These attributes are not necessary in our XML messages

Chapter 5 Convrnunication in Heterogeneous Distributed Euvi'm'n'meuLs 64

formation. Below the square brackets are interface bodies. The IDL inter-

face body contains data types used in remote procedure calls and the function

prototypes for the remote procedures. The interface body can also contain

imports, constant declarations, type declarations and object method declara-

tions. So, we are only interested in the information inside the interface body

for the translation of MIDL files to XML format, and we will ignore the things

included in square brackets.

In the naming convention of DCOM, names started with letter I are the

interface names. So, we need to convert the contents inside the interfaces

to XML messages. For example, IStockMarket and IDispatch in Figure 5.1

are the interface names. The DCOM IDL file associates the IStockMarket

interface with an object class StockMarket as shown in the coclass block. That

means object class StockMarket is implementing interface IStockMarket, so

we need the information provided by interface IStockMarket for generating

XML messages.

Inside an interface definition are their method definitions. HRESULT is the

default return type of all object methods in the MIDL file, which represents

error and success notifications' (such as failure, insufficient memory, invalid

arguments, etc). For method parameters, the pair of square brackets in front of

each parameter indicates if the parameter is for input, output or both. The last

parameter may be the return value, which is indicated by the keyword r e tva l .

It will override HRESULT to be the return type. The final object implementing

the interface will return the parameter with r e t v a l keyword as return value.

Table 5.1 shows the mapping of basic types between MIDL and CORBA

IDL. This mapping is based on OMG COM/CORBA Interworking specification

which only spells out what the requirements for mapping and interworking

are, but provides no implementation [3, 26, 29]. Note that in the conversion

from CORBA IDL to MIDL, as MIDL does not have long long and unsigned

Chapter 5 Convrnunication in Heterogeneous Distributed Euvi'm'n'meuLs 65

Table 5.1: Mapping the Basic types in MIDL to CORBA IDL/XML Schema
DCOM MIDL Type CORBA IDL Type Corresponding XML

short short <short> </short>
unsigned short unsigned short <ushort> </ushort>

long long <long> </long>
unsigned long unsigned long <ulong> </ulong>

float float <f loa t> < / f l oa t>
double double <double> </double>

char char <char> </char>
bool boolean <boolean> </booleaii>

long long, these two types will only be mapped to long and unsigned long

respectively.

For other complex types and other definitions, though DCOM and CORBA

have different syntax, they contain similar information for those definitions

such that mapping for them would be trivial.

There are three special issues that needed discussion, they are inheritance .

and exceptions. CORBA IDL supports interface inheritance, while DCOM

does not. Instead of supporting multiple inheritance, DCOM uses the notion

of an object having multiple interfaces to achieve the same purpose. In our

XML representation for interface, we will simply list all the resultant methods,

attributes and exceptions inherited from or extended from all interfaces to the

new interfaces. Hence, we need not handle the problem of differences between

multiple interfaces extension and multiple interfaces inheritance.

Another issue is exception. One difference between CORBA (and Java/RMI)

IDLs and COM IDLs is that CORBA (and Java/RMI) can specify exceptions in

the IDLs while DCOM does not. There are system exceptions also in DCOM,

but they need not be defined in the MIDL file, which is similar to CORBA. So,

we will not include these in our XML representation. For user defined applica-

Chapter 5 Convrnunication in Heterogeneous Distributed Euvi'm'n'meuLs 66

tion exceptions, we need to represent them as parameters of the corresponding

methods.

The last issue is the attributes. In CORBA IDL, they are declared inside

the object interface as ordinary object attributes, with specification if they are

read-only. But in MIDL, methods for reading and writing are defined instead.

Say an attribute with the name as <NAME>, in Java RMI Interface, it would

be presented as two methods, one is for reading _get_<NAME>(); another one is

for writing, _put_<NAME>(). If the attributes are read-only, they will not have

put<NAME>() methods.

5.3.3 Sample Architecture of Communicating Between

DCOM and CORBA

The mechanism applied here is similar to what we have proposed in Chapter 3.

In the DCOM enclave, if a client object needs to call another object outside, a

Shadow Server object is added to the enclave to simulate the behaviour of the

target server object outside. If there is a server object waiting for calls from

outside, a Servlet component has to assoicate with it. They are responsible for

the conversion of XML message to or from DCOM method calls. In the CORBA

side, the configuration is the same as described in previous chapter. Figure 5.2

shows the details of the architecture of establishing such a corrimiinication.

For the Servlet components, besides using Java Servlets, we can also use

alternative solutions, such as Active Server Pages, CGI, etc. It is because in

Windows environment, where DCOM systems work the best at, those alterna-

tive solutions may work better than Java Servlets. in terms of performance and

compatibility. Anyway, Java Servlets still work fine with DCOM systems.

Chapter 5 Convrnunication in Heterogeneous Distributed Euvi'm'n'meuLs 67

DCOM Enclave CORBA Enclave

K / ^ 0 M \ 11 八…〉
DCOM A o c ^ Shadow ? 只 ， _
Client ^ ^ ^ ^ A ^ e r v e r M —————Servlet jV——/ ^ 丨 _
Object 、 ~ 乂 III 、 j 11

DCOM A N l _ /rnRPt̂ JK ⑶卿 1

Server ^ W A DCOM P Client _
S I S V ^ ^ Servlet HTTP o _ _

V ^ 1 1 I 1 III
I 1：：：

Figure 5.2: Our mechanism to support communication among DCOM and
CORBA

5.4 Case Study 2 - Java Remote Methods Invo-

cation

5.4.1 Brief Overview of Programming in Java RMI

Java RMI is similar to CORBA or DCOM which also enables the programmers

to create distributed applications. Its application objects are Java-to-Java, in

which the methods of remote Java objects can be invoked from other Java

virtual machines, possibly on different hosts. A Java program can make a call

on a remote object once it obtains a reference to the remote object, either by

looking up the remote object in the bootstrap-naming service provided by RMI,

or by receiving the reference as an argument or a return value. A client can call

a remote object in a server, and that server can also be a client of other remote

objects. RMI uses Object Serialization to marshal and unmarshal parameters

and does not truncate types, supporting true object-oriented polymorphism.

Chapter 5 Convrnunication in Heterogeneous Distributed Euvi'm'n'meuLs 68

Similar to CORBA and DCOM, Java RMI also has its interface definition

language. As Java RMI supports only Java-to-Java communications, it uses the

ordinary Java interface definition as its interface definition language. All remote

interfaces extend, either directly or indirectly, the interface Java.rmi .Remote.

The Remote interface defines no methods, as shown here:

public interface Remote{ }

For example, the code fragment in Figure 5.3 defines a remote interface for

a bank account that contains methods that deposit to the account, get the

account balance, and withdraw from the account.

public irrterface BankAccount extends java.rmi .Remote {

public void deposit (float amount)

throws java.rmi.RemoteException;

public void withdraw (float amount)

throws OverdrawnException， javat.rmi .RemoteExceptioii;

public float balance 0

throws java.rmi.HemoteException;

}

Figure 5.3: An example of Java RMI interface definition

For object methods, each method must declare Java.rmi .RemoteException

in its throws clause, in addition to any application-specific exceptions. Similar

to the IDLs of other distributed environments, a remote object passed as an

argument or return value (either directly or embedded within a local object)

must be declared as the remote interface, not the implementation class.

Chapter 5 Communication in Heterogeneous Distributed Environments 69

5.4.2 Mapping the Two Different Interface Definitions

Here, we map the Java RMI Interface [12, 30] into the same XML schema

derived from the CORBA IDL. In order to encourage convergence between

the RMI and CORBA communities, Object Management Group (OMG) has

released the specification for converting the Java Language to IDL mapping

31]. Its target is to define a solution that is both fully compatible with current

RMI semantics and fully compatible with OMG IDL, HOP, and CORBA object

model. Sun Microsystems has developed Java RMI/IIOP [14] which uses this

specification to do conversion in the RMI objects such that those objects will

use HOP to communicate. With the usage of RMI/IIOP, original RMI objects

have to be modified in order to use HOP, but these objects would not be able

to communicate with ordinary RMI objects again.

To make RMI objects able to communicate with CORBA objects without

any modification to the existing source code, we apply our mechanism again.

We need to map Java Interface to CORBA IDL, and vice versa. Our conversion

schema is based on the OMG specifications for Java to IDL mapping [31], and

IDL to Java mapping [32 .

In Table 5.2, they are the general rules for converting the basic types in Java

Interface to the corresponding types in CORBA IDL and our XML schema.

This conversion scheme would be useful for binding existing RMI objects to-

wards other systems. For example, the Shadow Servers in the RMI enclaves

need to use these rules to convert parameters in Java RMI into our common

XML schema.

Table 5.3 shows the general rules for converting the basic types in CORBA

IDL, or our XML schema, to Java primitive types in RMI Interface. It is used

to let outside objects to communicate with Java RMI. For example, the Servlet

Components in the RMI enclaves need to use these rules to convert parameters

Chapter 5 C'ommunication in Heterogeneous Distributed Environ77~ents 70

Table 5.2: iVlapping Bas ic Types from Ja\'a to CORB.-\ IDL/~:\IL schen1a

I Java RMI Type J ~()}3-~_;-\ ~I?L Type I Corresponding X lVIL I
short short <short> </short>

in t long <long> </long>
long long long <longlong> </longlong> I

fl oa t Aoat <float> </float>
double d Oll hIe <double> </double>

char char <char> </char>
boolcan bookall <boo lean> </boolean>

- - -- ----------------

Table 5.3: \lapping Bas ic 1~ .\'p('S fro ll1 ('ORl3:\ IDL /~\r L schelll Cl tu .L-l\"Cl

[CORBA IDL Ty1?_~ Jn~~_\f~ __ ~1\I!n~ _ ~xpe l Corresponding XML I
sho rt short <short> </short>

II11 s ig ll C' <i s h() rt short <ushort> </ushort>
IO ll g ill t <long> </long> _.

Illl S ig ll {'d IO ll g i 11 t <ulong> </ulong>
long lung I () I) " ,,,) <longlong> </longlong>

Illl s ig ll P d l () lI g \o ll g IOll g <ulonglong> </ulonglong>
fI O r l t

I
fl oa t <float> </float >

d U)I !> \(' dOllhl (' <double> </d ouble>
f.-' I

('liar I char <char> </char>
--- f I <boo lean> </boolean> !,(Jolt'all h()O\(' illl -- _ .. ---_.- _. ".. --- .~.- -- - -

___ 1 ____________

III (lllr ('ClIlllllOtl \ \1 1, ~ ('1J('1I1a tu .J a\'il H\ ll I-"pt>:"'> .

F{)r (lllwr d('fillitillll ~ , Ill(' .fen'a I lllf ' rf"iuT do('~ lIo t It;l\'(' 11 111<'1 1 dilrt'rI ' ll('{' ",1)(,1 1

nlllq>;lrt'd lu ('() HIL\ IDJ.. ~1lC'h ;l~ ~trl)('1 1,\'P I ' definitjoll. Pl 11111 1 'ypI ' dt'fill iliol1 ,

() h j 1 '(' I i 111 l' r fa ('(. cl t ' fill i I i () 11 , III (Jt III I (. d (' I i 1\ i t i () Il. (. t ('. ' r I !(lilt.!, /1 I I If' Y h; l \' (. cl iI f(. re' 11 t

:' \' III ; \ X I Cl (• () H J3 . \ I [) L. I h t • \ ' :-.1 i II It a \'1' t) If' :--; HI!(, (. ()\ 11 ('l1 t.... \'.' It i (' h (. a I) h c' cl j n'(' f I ..

Illappt'd t,) tlH~ ~alIH' \\11. ~dWIII;l.

Il nw('v('r, titr'rt ' a n ' point" worth 1I)I.·llti{)llill~, () 11f' i:-. Ill(' (lltriIHll f '~ , I II

")HB :\ IDL. {ht·\' an' d .. clan·cI ill...,idt · till' til) j Pcl illl (' rfan' ;t,:-. ordillar.\' (JiJ.i('('t

altri h\l lt'~ with spP(' ilic;tlillll if Ih,,\' an' n ' ;ul-Illlh', Hilt ill r}1f' ,Ja\';t 11lf (Tf;wf' .

Chapter 5 Convrnunication in Heterogeneous Distributed Euvi'm'n'meuLs 71

methods for reading and writing are defined instead. Say an attribute with the

name as <NAME>, in Java RMI Interface, it would be presented as two methods,

one is for reading get<NAME>() (or if the attribute is Boolean, it would be

is<NAME>()); another one is for writing, set<NAME>(). If the attributes are

read-only, they will not have set<NAME>() methods.

Another point worth noting is about exceptions. Some system exceptions

may be thrown out in Java RMI, and they must be defined in the interface

definition in all object methods as RemoteException. It is similar to CORBA,

in which system exceptions may be thrown in every method, but they need

not be defined in CORBA IDL. We do not mark anything in XML schema for

system exceptions for CORBA, and hence for Java RMI interface, we do not

mark anything in XML schema for system exceptions, too.

The last point is about struct and enum complex type. There is no direct

mapping in Java, instead, Java uses a class (having no operations except con-

structors) to represent. So, if there exists a class in Java with no operations,

we can map them to struct or enum type in our XML schema.

5.4.3 Sample Architecture of Communicating Between

JavaRMI and CORBA

The mechanism applied here is similar to what we have applied in the case of

DCOM before. In the Java RMI enclave, if there is a client RMI object that

needs to call another object outside, a Shadow Server object is added to the

enclave to simulate the behaviour of the target server object outside. If there is

a RMI server object waiting for calls from outside, a Servlet component has to

associate with it. They are responsible for the conversion of XML message to or

from Java RMI method calls. Same configuration is set in the CORBA enclaves.

Figure 5.4 shows the details of the architecture of such communication.

Chapter 5 Convrnunication in Heterogeneous Distributed Euvi'm'n'meuLs 72

Java RMI Enclave CORBA Enclave

Client ^ I I V) Object j j
Object III ill

Ill 11
‘ 驗i I 缀缀

_ P I
Server V ® ^ ^) RMI (HTTP & XML Y Shadow object
Object \ S e r v l e t y | � � ' / \ S e r v e y J
• 知:::::::：

Figure 5.4: Our mechanism to support communication among Java RMI and

CORBA

5.5 Be Generic: Binding with the WEB

In the previous sections, we described how we use the same XML scheme as

the communication protocol such that we can connect CORBA objects, DCOM

objects, and Java RMI objects together. With a common language for com-

munication, objects from heterogeneous environments can interact with each

other.

In fact, the calling sides are not limited to CORBA, DCOM and Java RMI

objects, but they can be many other implementations. It is because with a

right format of XML message and HTTP protocol, any application can invoke

the Servlet components associated witli the target object in order to call any

object methods. It is not difficult to form an XML message and send it by

HTTP protocol as many iiiipleinentations can achieve this. Hence, the caller

can be some traditional stand-alone program (e.g. a C or C + + program, a

Java application, etc.). or some web applications (e.g. a Java applets, a Perl

Chapter 5 Convrnunication in Heterogeneous Distributed Euvi'm'n'meuLs 73

DCOM Enclave CORBA Enclave

add-ons J|i add-ons ^ •

I , I — T ^ a v a ^ 巧 — — I | _
K 巧 WEB Applications

Java HMI (ASP，JSP，

_ I ^ - \ a d d - o n S / i i i Servlets, Applets,
Objects X III CGI, etc)

Java RMI Enclave Web Environment

Figure 5.5: Allowing heterogeneous systems to communicate

CGI script, Java Server Pages, Active Server Pages, etc.), or even an ordinary

HTML webpage with a button associated with HTTP POST method!

The Servlet components provide great flexibility of the implementation of

the client side. With Servlet component and XML messages, even the server

enclaves may not be designed as a web application at the beginning, they can

still be integrated to the Internet environment easily.

Moreover, the sides being called are also not limited to CORBA, DCOM

and Java RMI objects. All components or programs that are able to parse the

XML message can be invoked by other CORBA, DCOM or Java RMI objects.

Shadow Servers on the client side convert all client objects' requests to XML

messages, which are readable to many implementations, such as ASP, JSP, etc.

Hence, our mechanism can bring all CORBA, DCOM, all Java RMI objects

into a completely web-based environment, that is, they can invoke web-based

applications, or be invoked by web-based applications.

Chapter 6

Building a Scalable

Mediator-based Query System

6.1 Objectives

In the previous chapters, we have introduced our mechanisms for support-

ing HOP calls in two CORBA enclaves separated by firewalls, for supporting

CORBA callbacks, and for supporting the communication among different dis-

tributed environments. In order to let you have a more detailed understanding

of our proposed mechanisms, and also to show you how our mechanisms con-

tribute in integrating different distributed systems, we would like to show you

how we implement a practical example, a mediator-based query system. It

demonstrates how we use our mechanisms to bypass firewalls, to use callback

features, and to expand across heterogeneous systems, in order to build a scal-

able information systems for system integration process.

In this Internet age, people put lots of information on the Internet for others

to retrieve. Though there are plentiful information ready for us, we may not

be able to query for the contents we need. First, the volume of information is

expanding dramatically. Even within an organization, multiple databases are

74

Chapter 6 Building a Scalable Mediator-has ed Query System 75

usually employed to store their data. Hence, techniques for searching across a

number of distributed data sources are important. Second, information may be

provided by various organizations, which means we may need to search across

many different sites to obtain the richer information.

In order to solve the first problem, we have established a web-based query

system using mediators to search in distributed databases. The mediator is the

middleware that forwards user queries to various database engines, and when

the database engines searched out the results, it integrates them and returns

them back to the users. We will give an introduction to mediators, and describe

our system design and implementation in section 6.2. We use CORBA for our

infrastructure implementation such that mediators can make queries to various

data sources, or even other mediators, within the CORBA enclave.

Although the second problem, that is, making queries to other sites, can

be solved by an extension to our mediator system, we need to tackle some

technical problems first.

The first problem is the firewall issue. For a local system, we usually have a

firewall to protect the computers inside from outside attacks. As we are using

CORBA and HOP cannot pass through firewalls for communication, we try

to use Java Servlets, XML and HTTP to simulate object method calls and

parameter transmissions in CORBA. By doing so, we can make our system to

be more scalable in the Internet with firewalls. This will be discussed in 6.3.

We then demonstrate how we enhance our query system by using the call-

back feature. We extend our mechanism to use XML and Servlets to perform

some interesting features with callback. Section 6.4 will cover this part.

The second problem is that when we need to combine information among

heterogeneous distributed environments, we do not have a generic method to

do so. Here, we use XML and Servlets again to connect our CORBA-based

Chapter 6 Building a Scalable Mediator-has ed Query System 76

system with DCOM-based system and JavaRMI-based system. This part will

be covered in section 6.5

By doing all this, finally, we develop a simple and generic way to achieve

a more scalable query system against firewalls and heterogeneous distributed

environments.

6.2 Introduction to Our Mediator-based Query

System

6.2.1 What is mediator?

The mediator is the middleware between the clients and database servers, which

can solve some deficiencies of traditional client/server systems [33, 34]. The

tight relation between client and server may lead to the following problems:

First, a server may be dedicated to some clients only; also, clients may need to

search a number of servers to obtain what they need, while those servers may be

heterogeneous. Mediator is one of the architectures that can meet the need to

make data widely available over a distributed environment. Mediators forward

client queries to appropriate data sources, and then integrate the answers from

different sources, and forward the integrated answer back to the clients. Figure

6.1 is an example.

There are several advantages of using a mediator system:

• Conceptually, all distributed data sources are integrated into a single com-

ponent even though the data sources are heterogeneous. Hence, clients

need not know about the location or other specific information of the data

sources.

Chapter 6 Building a Scalable Mediator-has ed Query System 77

User Interface User Interface • • • User Interface

^^^^^^^^、、、、、、、Query Result
Query 、、、、、、、

Statement ^^^^\、、、、、

, 、 一 、

Mediator

Query ^ ^ , 岸 • \ ^ 、 、 、 、

StatemepJ^^.^ ' ' ' Quer^ i \ Query Result
^ ^ Z Statement ！ Query Quelyv̂ 、、、、

Query f ! Result S t a t e m ^ i ^ 、 、 \
‘ Result ‘ r ^ 一

Database Database Database

Figure 6.1: Diagram of the mediator concept

• Client programs need not care about the changing of data source loca-

tions, and the addition, deletion, or even failure of some data sources.

• The mediators can help the users to choose the most appropriate data

sources, based on their queries submitted, to enrich the quality of infor-

mation retrieval.

6.2.2 The Architecture of our Mediator Query System

Here, we describe the basic architecture of our mediator query system. Our

mediator query system is mainly consisted of two components: Query Media-

tors and Database Query Engines. The design of the architecture of our query

system is shown in Figure 6.2. Similar to other mediator systems, the database

engines are waiting for the requests from the mediator components. Also the

mediator components are waiting for requests from the user interface and upon

reception will send these queries to the database engines.

Furthermore, mediators can also send queries to other mediators, which

Chapter 6 Building a Scalable Mediator-has ed Query System 78

1st Tier 2nd Tier 3rd Tier

门 l ^ ^ l j e 咖 I ： / Database 卜 Queries and—
： V ^

' / / ".::_:.:.:.:,:.:.:.:.:.:.:.:.:.:.:-:-:.:々 :.:-:.；̂!̂ / ——：̂ -̂v..-. n-th Tier

I 11/'- / I / Database ：

I——I r ： / Mediator ：一―——̂ :

I I “ iNi! Mediator I Layers of�Me^i^ators
丨 •丨： ： \ q u ^ / or Digital

• * l«qgWOOOwQwQwOOMwSOQOOQOOOOQ< \ • V I CI I I w O •••:,:,:.: Web-based Ul ： ； .
‘ • i � � ——一

Figure 6.2: The architecture of our query system

may further forward queries again to other database engines or mediators.

This mechanism forms an n-tier distributed system. As mediator components

have to make queries to both database engines and other mediators, we would

like those database engines and mediators to have the same generic interface.

In our system, we also use XML for the internal data representation and

storage because it works well in a heterogeneous environment. Hence, we use

XML-QL [35, 36] as the query language in the whole system, which is a query

language dedicated for XML data developed by AT&T. We use news data

obtained from local newspapers in our experiments. They are all converted to

XML format.

In the practical application of using mediator architecture in a distributed

environment, we need to handle some special cases. One is the infinite looping

problem: as a mediator may make queries to another mediator, the queries

may be transferred from one mediator to another. Eventually, there may be

a case that the mediators have formed a cyclic path and the first mediator is

Chapter 6 Building a Scalable Mediator-has ed Query System 79

being queried by itself. We need some methods to detect infinite looping. One

possible approach is to give each query a unique ID, and all mediators keep

track of all IDs of those queries that are already submitted but no replies have

been received yet. In case there is an upcoming query with the same ID as any

one entry in its record, we can tell that an infinite looping has occurred.

The second problem is to avoid having a long waiting time for users, which

may be caused by: the connection between some objects may have been broken,

or the number of layers that the queries need to traverse may be too many. For

the broken connection problem, we simply use a time-out parameter to specify

the maximum amount of time that we are willing to wait. For the too many

layers of query traversal problem, we simply use a maximum layer parameter

to specify the maximum number of layers that we want to go.

6.2.3 The IDL Design of the Mediator System

We are using CORBA for our system infrastructure. To design the interfaces

of different components, we use IDL. CORBA IDL is an interface definition

language structures for all concepts of the CORBA object model independent of

programming languages. Both Query Mediators and Query Database Engines

are implementing the same interface in order to make these two objects the

same in the view of the users. In our IDL, we only define a common interface

called QueryEngine. (See Figure 6.3)

We are supposed to provide to the QueryEngine a query statement, and it

will return to us the answer in String format, which is a XML expression. We

have defined only one simple method in CJueryEngine，i.e. query (), which has

a XML-QL statement as its argument, and returns a XML string as the result.

This can be used in both Database Query Engines and Query Mediators, such

that programmer can notice no difference between making a query on them.

Chapter 6 Building a Scalable Mediator-has ed Query System 80

module QueryEngineApp

struct SysPara

I
long qid;
long timeout；
short maxlayer;

}；

interface C)ueryEngine

string query(in SysPara para, in string QueryStatement)；

};}；

Figure 6.3: The IDL design of our system

Though they only share the same interface, the implementation of query ()

method would be different.

6.2.4 Components in the Query Mediator System

We rely on CORBA technology for building the system infrastructure because

CORBA provides a very good infrastructure for designing and implementing

applications in a distributed environment. In order to integrate our system

into the web environment, we also use Java Servlet technology. Java is used

for our implementation, because of its portability. As we have mentioned be-

fore, both the Query Database Engine class and the Query Mediator class are

implementing the QueryEngine interface. We have named these two classes as

QueryDB and QueryMed respectively.

A QueryDB object is directly connected to the data source. A caller can call

the method query (), and this method will take the query statements (XML-QL

statements in our implementation) as the argument and search for the XML

document specified, then it will return the result to the caller in a stream of

Chapter 6 Building a Scalable Mediator-has ed Query System 81

XML string. We have the QueryDBServer object as the server for creating a

QueryDB object, and registering it to the CORBA name service. The server is

also ready to set up multiple threads to support multiple requests on a QueryDB

object at a time. This server should be started at command prompt.

QueryMed object is the Query Mediator which forwards query statements to

other mediators or database engines. Its implementation is more complicated

than QueryDB. Other than the QueryEngine interface, QueryMed also imple-

ments another interface, QueryMediator, shown in Figure 6.4. Methods of this

QueryMediator interface cannot be called by other distributed objects, but can

only be called by Query Mediator Server objects, which contain the QueryMed

objects and located at the same host with them.

pub l ic i n t e r f a c e CjueryMediaLtor
{

pub l ic GJueryEngiiieApp. QueryEngine [] q e l i s t ()；

publ ic void qelist(QueryEngineApp.QueryEngine [] arg)；

publ ic void SLppeiid_resuit (S t r ing res)；

J

Figure 6.4: QueryMediator, another interface that QueryMed Class imple-
mented

In a QueryMed object, the attribute q e l i s t would store all the QueryDB

objects and QueryMed objects which it will further search for. And query()

will start a thread for each QueryDB or QueryMed object and the thread will

take the XML-QL query statement as argument and pass it to its correspond-

ing object in qelist by calling their query () method. Then, when all these

objects have returned the XML result back to the threads, they will call the

append—result () method of the parent QueryMed object, query () will further

organize and integrate the results into a single XML file stream and then return

Chapter 6 Building a Scalable Mediator-has ed Query System 97

it to the caller.

QueryMedServer object is similar to QueryDBServer object, which will cre-

ate a QueryMed object to handle queries. It will also bind the list of query

engines (QueryDB and QueryMed objects) from CORBA services and can set up

multiple threads to support multiple requests at the same time.

Both the database and mediator need to use a configuration file to configure

the objects before start up. The configuration file would contain the following

attributes: CORBA name server location, CORBA name server port, Ob-

ject name used for registering in CORBA name server, log file name, and for

QueryMed object, it also needs the list of QueryMed and QueryDB objects for

distributing the queries.

With SysPara object as the parameter of query (), we can detect infinite

loops and avoid long waiting. The qid in SysPara is a unique number to identify

a query. This number consists of the system time when the user generates the

query, the IP address of the user's machine, plus a four-byte random number.

As described before, when a mediator needs to call other mediators or database

engines, it has to pass this parameter to them by using the newly modified

query 0 method interface. The mediator itself will keep track of all IDs of

those queries that are already submitted but no replies yet. In case there is an

upcoming query with the same ID as any one entry in its record, we can tell

an infinite loop has occurred. When an infinite loop is detected, that query

mediator will simply do nothing and return an empty string to the caller.

maxlayer states the maximum layer that the query can travel onwards.

When that value is passed from one mediator to another mediator or database

engine, the value will decrease by one. The query will stop being forwarded

when the maxlayer value becomes zero, timeout states the maximum time in

milliseconds that a mediator or database engine can wait. When that value is

Chapter 6 Building a Scalable Mediator-has ed Query System 83

passed from one mediator to another mediator or database engine, the value

will be decreased by the estimated processing time of that mediator itself. The

estimated time is calculated by the statistic of previous connections and queries.

The query will stop being forwarded when that value becomes zero.

6.3 Helping the Mediator System to Expand

Across the Firewalls

We use CORBA to implement our mediator query system. Though CORBA is

a very good architecture for distributed systems, we still meet some difficulties

in achieving a real scalable query system, because the common use of firewalls

will block CORBA HOP communication. Here, we apply our mechanism with

using XML and Java Servlets to expand our system across firewalls.

6.3.1 Implementation

We now have two mediator query systems as above, and there is a firewall

separating them. To enable their communication, the QueryMed object must

be able to be called by an object (say, another mediator object) from another

enclave outside the firewall.

In our implementation, the QueryMed object that would be called by outside

is associated with a Servlet component. The Servlet component forwards the

requests from outside to the QueryMed object immediately, thus the QueryMed

object can accept HTTP requests from outside. We use TOMCAT Servlet

engine [37] in our implementation.

On the client side (caller side), we have created a new class, HttpGateway,

which is the Shadow Mediator object and is used to connect to the Servlet

Chapter 6 Building a Scalable Mediator-has ed Query System 84

component of the target mediator. HttpGateway class implements the same

interface, i.e. QueryEngine interface, as the QueryMed mediator object does.

Besides, HttpGateway also implements another interface, HttpQueryGateway,

for its special need. This interface is shown in Figure 6.5.

public interface HttpQueryGateway
{

public String medURLO ；
public void medURL(String U)；

J

Figure 6.5: HttpQueryGateway, another interface that HttpGateway Class im-
plemented

The medURLO method in the interface is used to specify the URL, or the

IP address of the target mediator, which is located in another CORBA en-

clave. This methods should be invoked by its server only, which contains the

HttpGateway at the same host.

If a mediator wants to call another mediator located at another CORBA

enclave, it only needs to call the corresponding HttpGateway object. (Actually,

that mediator can treat that HttpGateway object as the real target mediator

object.) The HttpGateway object will convert all the necessary parameters

into XML format, and then send the request message to the target mediator

by HTTP. The target mediator has a Servlet component and will receive the

HTTP calls. It then converts the XML parameters back to their original format.

We can summarize the procedures for communication by referring to the

scenario shown in 6.6. The scenario is that Mediator Ml wants to make a query

to Servlet component SC of the mediator M2 in another CORBA enclave. The

procedures are:

Chapter 6 Building a Scalable Mediator-has ed Query System 85

Client Enclave k Server Enclave
n FIREWALLI “

III I II
web-based Ul XML+HTTP 1 = 1 , k f ” ||

O l H H j ； I m n sc HOP�M2

"mî ^ II I la I
I Database

: — : ^ Servers ‘ _ _

^~J 网 MOP �C!!!S [_ J ^ ^ 11

^ “ J Q 1
,,4 + HttpGateway | | Servlet Database
|Med_ U Object U Component L J object

Figure 6.6: The architecture of our query system

1. Mediator Ml calls HttpGateway object H with ordinary HOP connection.

2. H converts the HOP calls to HTTP calls with parameters converted into

XML format.

3. The Servlet component, SC, of the target mediator gets the HTTP calls

from H and converts them back to ordinary calling to the target mediator,

M2.

4. M2 keeps on calling other Database object D, the result is returned to M2,

and M2 further returns it to SC.

5. SC converts the result in XML format, and returns it with HTTP calls to

H.

6. H returns result back to Mediator Ml by using ordinary HOP return

method.

Chapter 6 Building a Scalable Mediator-has ed Query System 86

<request>
cQueryEngine type^HiirterfaLce">

<query type="operation">
〈parameter ref="in" order="l">

<SysPara>
<long name="qid">3984982418240339</long>
<long name=""tiineout">2000</long>
<short name="maxlayer">3</short>

</SysPara>
</paraineter>
<parameter ref="in" order="2">

〈string name="QueryStatement">
where <news>$B</news> in "database.xml"
<keyword>satellite</keyword> in $B
construct <result> $B </result>

</string>
</parameter〉

</query>
</QueryEngine>

</request>

Figure 6.7: An sample request message in XML for calling a mediator object

We have described that parameters are converted to XML format for trans-

mission. Here shown in Figure 6.7 is a sample of such XML request messages

with parameters embedded. Figure 6.8 shows a typical response message in

XML format. We use tags to state the objects that are being called, the

method being invoked, the required parameters and their types, and the values

of those parameters.

We can see that both simple data types (like String type variable of XML

Query Statement) and complicated class objects (like the SysPara class of

other enhancement parameters) can be well represented by XML. Basically, it

is believed to be able to handle all kinds of data structures because of XML's

semi-structured nature.

Chapter 6 Building a Scalable Mediator-has ed Query System 87

<response>
<G)ueryEngiiie type="iiiterface">

< query 1:ype="opera"tion">
<return>

<string>
<news> <source>South China Morning Post
</source> <date> <day>15</day><month>4
</month> <year>2000</year> </date> <ti"tle>
Press warning appro priate， says Beijing
</title> <content>Beij ing yesterday defended
remarks made by senior SAR-based official
Wang Fengchao that local media should avoid
reporting separatist views. </corrtent> </news>

</string>
</return>

</query>
</QueryEngine>

</response>

Figure 6.8: An sample response message in XML returns from a mediator object

6.3.2 Across Heterogeneous Systems with DTD

To achieve a scalable system, we need to deal with the heterogeneity of different

local systems. We set up some standard formats for different systems to follow

in order to communicate with other systems. We need two standards, one is

structure of data, and another one is the interface of the system components. If

the structures of data cannot be compromised, we will have confusion of com-

munication. If the interfaces cannot be compromised, we even cannot invoke

other components of the system. Both important information can be obtained

from CORBA IDL files.

To reach a compromise on a standard for data, we use DTD as the grammar

book for XML data. This DTD is obtained from the corresponding IDL file

by our conversion schema. IDL gives an interface for programmer to develop

Chapter 6 Building a Scalable Mediator-has ed Query System 88

objects that have the same interface. But IDL itself is not enough, as for

parameters passing with using XML and HTTP, we also need to define the

parameter format in XML by DTD. The DTD for parameters is shown in

Figure 6.9. Hence, different systems can follow the DTD and understand the

parameter formats. By following all those mentioned, we can achieve a scalable

query without any firewalls or heterogeneous systems problems.

<！_- For Request Messages -->
<！DOCTYPE request [

<！ELEMENT QueryEngine (query)>
<!ATTLIST QueryEngine type (#CDATA)>

<！ELEMENT query (parameter*)>
〈！ATTLIST query type (#CDATA)>

<！ELEMENT parameter (SysPara I string)>
<!ATTLIST parameter ref (#CDATA)>
<!ATTLIST parameter order (#CDATA)>

<!ELEMENT SysPara (long,long,short)>
<!ATTLIST SysPara name (#CDATA)>

<！ELEMENT long (#CDATA)>
<!ATTLIST long name (#CDATA)>

<！ELEMENT short(#CDATA)>
<!ATTLIST short name (#CDATA)>

<！ELEMENT string (#CDATA)>
<!ATTLIST string name (#CDATA)>

]>

<！-- For Response Messages -->
<！DOCTYPE response [

<！ELEMENT OueryEngine (query)>
<!ATTLIST QueryEngine type (#CDATA)>

<！ELEMENT query (return)>
<!ATTLIST query type (#CDATA)>

<！ELEMENT return (string)>
<！ELEMENT string (#CDATA)>

]>

Figure 6.9: The DTD for the parameter passing of simulated calls

Chapter 6 Building a Scalable Mediator-has ed Query System 89

module QueryEngineApp

struct SysPara

long qid;
long timeout；
short maxlayer；

I ‘

iirterface OueryEngine

string query(iii SysPara para, in string QueryStatement)；
void subscribe(in QueryEngine qe, in string topic);
void iiotify(in string newContent)；

} ; } ;

Figure 6.10: The IDL design of our system

6.4 Adding the Callback Feature to the Medi-

ator System

To better help the users in obtaining the information they need, one impor-

tant feature of modern information systems is allowing users to specify some

topics of information they want to subscribe. Whenever there is an update of

the specified information, the digital library can inform the subscribed users

immediately. This feature requires callbacks.

To allow callbacks, we add two methods to the QueryEngine interface. One

is subscribe 0 , which takes a string as parameter to specify the topic of

information that the caller wants to subscribe; and an object with QueryEngine

interface as another parameter to specify the object requests for callback. To

be generic, all user interface objects, mediator objects, shadow objects, and

database objects would implement this interface. Figure 6.10 shows the new

IDL file.

Chapter 6 Building a Scalable Mediator-has ed Query System 90

A conceptual diagram of our system mechanism for callbacks is shown in

Figure 6.11. And below is the step-by-step desciption of the procedures:

1. Mediator Ml calls HttpGateway object HI with ordinary HOP connection.

Ml also puts itself as one of the parameter in subscr ibe () method. (Same

invocation method as calling the target mediator for normal callback)

2. When HI observes that it is a callback invocation, it generates a Servlet

component (SCI), which is assoicated with Ml, immediately.

3. HI sends the HOP calls to HTTP calls with parameters converted into

XML format. The information of SCI will also be sent to the server side.

These information are embedded into the parameter tag as attributes.

4. When SC2 observes that it is a callback invocation, it generates a shadow

client object, H2 (shadow of Ml), immediately. H2 is initialized by the

information of SCI (such as IP address, port number).

5. SC2 will invoke M2，s subscr ibe() method substituting Ml by H2 in the

parameter position, such that M2 will invoke H2 when callback is needed.

6. Whenever there is a callback, M2 calls H2 n o t i f y () and H2 will send the

request to SCI. Finally, Ml n o t i f y () method will be invoked by SCI.

6.5 Connecting our CORBA System with Other

Environments

Merging only CORBA systems would be a great limitation for system inte-

gration. Here, we demostrate how we apply our mechanism to allow CORBA

objects, DCOM objects and Java RMI objects to be able to call each other.

Chapter 6 Building a Scalable Mediator-has ed Query System 91

Client Enclave | Server Enclave
Q FIREWALL ["一^

III I III
Web-based Ul | | msŝssssissm

Q J' XML+HTTP: subs^ibeQ 力 i SC2

顯一u^
^ _ S C 1 W XML+HTTP: no%() [H 2 V ^

I jdZ^atabase
I I Servers

\ i L —̂̂
, , , HttpGateway | | Servlet Database

_ Mediator ^ Object U Component [_ J object

Figure 6.11: Mechanism for supporting callbacks in our query system

Our target is to expand our system across heterogeneous distributed envi-

ronments. To make the whole system to be more generic, we carefully design

the MIDL of the DCOM system and interfaces of RMI components to be very

similar to our existing CORBA system, such that calling the DCOM mediators

or Java RMI mediators would have no difference as calling the CORBA medi-

ator objects. For simplicity of the example, we use the CORBA IDL in Figure

6.3 to develop our DCOM system and Java RMI system.

6.5.1 Our Query System in DCOM

Our DCOM system is developed on Windows 2000 operating systems, with

using Microsoft Visual J + + for implementation. Our implementation is based

on the MIDL file shown in Figure 6.12. From the MIDL, we can find out that

it is basically the same as the IDL of CORBA. One thing worth to point out

is query 0 , the return value is specified in the parenthesis with marking as

Chapter 6 Building a Scalable Mediator-has ed Query System 92

r e t v a l . It is because the default return type in DCOM object is HRESULT,

hence the real return value is defined inside the parenthesis.

import "oaidl.idl";
import "ocidl.idl";

typedef struct SysPara
{

long qid;
long timeout;
short maxlayer;

}SysPara;

[uuid(AC6EDE04-ADF2-4324-BB8C-B350295BFD5E)]
iirterface ICOMQueryEngine : IDispatch
{

HRESULT query([in] SysPara para,
[in] char * queryStmt
[out, retval] char ** rtn)；

}；

[uuid(AC6EDE03-ADF2-4324-BB8C-B350295BFD5E), version(l.O)]
library QuerySystemLib
{

importlib("S"tdole32."tlb")；
importlib("st:dole2.tlb")；
[

miid(AC6EDE02-ADF2-4324-BB8C-B350295BFD5E)，
]
coclass QueryEngine

[default] interface ICOMCJueryEngine;
}；

>；

Figure 6.12: The MIDL file for the query system in DCOM enclave

6.5.2 Our Query System in Java RMI

Our Java RMI system is developed in the Unix environment, but it can be run

in any operating systems. Our implementation is based on the Java interface

definition files shown in Figure 6.13. They are basically the same as the IDL

Chapter 6 Building a Scalable Mediator-has ed Query System 108

of CORBA system.

One special thing to point out is the struct type of SysPara in IDL. As

Java interface definition does not support struct type, a new class of SysPara

is defined instead. But it is mapping to the same XML schema as struct type

in XML.

/* SysPara.Java */
public class SysPara implements java. io.Serializable^C

public long qid;
public long 1:111160111:;
public short maxlayer；

public SysPara0 {
qid=-l；
timeout=-l；
maxlayer=-l；

}
}

/* QueryEngine.j ava */

import j ava.rmi.Remote；
import javeurmi .RemoteException;

public interface dueryEngine extends Remote
{

String query(SysPara para, String queryStmt)
throws RemoteException;

>

Figure 6.13: The DTD for the parameter passing of simulated calls

6.5.3 Binding Heterogeneous Systems

With the interface definition files of DCOM system and Java RMI, the same

XML schema can be mapped from those interfaces. Hence, the mediator objects

Chapter 6 Building a Scalable Mediator-has ed Query System 109

of all systems would have the same interface for calling, hence the scalability

of the binded system is greatly increased. Figure 6.14 shows how the mediator

objects in heterogenous distributed environments communicate with objects

in other enclaves. A common XML schema is the key part to achieve this

communication.

DCOM Enclave CORBA Enclave

III W 11

I (Hjr i
• III ^
• S e r v l e t 。 [_ J ^ ^ a v a R M I

Component ^ py：-；-；-：-；-：-：-：,,.,̂/ / F n r l a V P

^ idl：̂ M (Wl^^f^n/
()HttpGateway Database / i Iji
V ^ Object I _ J object L — „

Figure 6.14: Query system in heterogeneous environments with our mechanism

In fact, this is for the demostration of a generic query system across hetero-

geneous distributed systems with applying our mechanism in it. By matching

the newly designed interface definition with the existing XML schema, a highly

generic and scalable mediator-based query system is achieved. In normal way

of system integration, we use the interface definition files to generate the XML

schema for data transmission, but not using the XML schema to design the

interface definition.

Chapter 7

Evaluation

7.1 Performance Statistics

In Chapter 6, we have described our implementation of a mediator-based query

system and demonstrated how we applied our mechanism on a practical appli-

cation. Now, we are going to evaluate its performance in this chapter. Based on

the original architectures of CORBA, DCOM or Java RMI, we have provided

some add-on components in them for connecting to other enclaves across fire-

walls and beyond heterogeneous environments. As some add-on components

are added in it, it would be important to measure if those components are the

burdens of the system.

We tested our system in an environment with general workload such that

we can ensure that our results would not be influenced by other factors, like

network congestion. The query system was installed in a number of personal

computers with Pentium III 500MHz CPU and 10 Mbps network connection.

For the objects in CORBA enclave, they are implemented in Java, and tested

with Linux platform; for the objects in DCOM enclave, they are implemented

in C + + and tested with Windows 2000 platform; for the objects in Java RMI

enclave, they are located in Linux platform. For each query in our tests, the

95

Chapter 1 Evaluation 96

Table 7.1: Performance Statistics of the Query System Described in Chapter 6
Effective Process Time Milliseconds
Mediator Objects (excluding waiting time for the 20 - 80
return of query results and connection setup time)
Database Objects 180 - 800
HOP Communications with CORBA enclave 10 - 100
(connection within LAN)
Shadow Client or Server (excluding waiting time 20 - 100
for the return of query results and connection
setup time)
Servlet Components with Tomcat Servlet Engine 120 - 250
[37] (excluding waiting time for the return of
query results)
HTTP communications towards other enclaves 240 - 2200
(connection in WAN)

system would return a few hundred bytes of text stream information. In order

to see the overhead of using our approach, we kept track of the time used in

each event in different objects. With similar composition of components in

each enclave, different enclaves would have similar performance. We now focus

on the information gathered in CORBA enclave for analysis. The results are

shown in Table 7.1.

From the statistics, we can figure out the following characteristics of our

system:

• Mediator objects are light-weighted objects when compared to Database

objects, as they need not perform complicated computation but only

forwarding queries and merging the results.

• The performance of our add-on components are somehow similar to those

light-weighted objects. This is because our add-on components are only

converting the method calls into XML messages, or vice versa, which do

not involve complicated computation.

Chapter 7 Evaluation ^

• The most time-consuming part of the whole process is the Internet con-

nection, which is unavoidable in the communications in a worldwide area.

• When compared to the time for Internet connection, time spent on our

add-on components would not be significant.

We can conclude that our add-on components are light-weighted and would

not be the burdens of our overall system. Though they need some time for

processing, the time they used would be negligible when compared to the long

Internet transmission time. So, our add-on components would not make a great

influence on the whole system performance.

7.1.1 Overhead in other methods

Though our add-on components bring overhead to the systems, the overhead

is light-weighted. Moreover, other existing methods also bring overhead.

Our mechanism can substitute for the use of DCOM/CORBA bridging ap-

plications. We want to compare the overhead of these applications and our

mechanism, so we use OrbixCOMet as an example to evaluate its overhead.

Fatoohi et al have done some experiments to evaluate the performance of Or-

bixCOMet [38], Table 7.2 shows the result.

Table 7.2: Performance Evaluation of OrbixCOMet
CORBA Server DCOM Server

CORBA Client 2.6 msec 250 msec
(without OrbixCOMet) (with OrbixCOMet)

DCOM Client 3.8 msec 1.2 msec
(with OrbixCOMet) (without OrbixCOMet)

In their experiments, the server was always located in a different host as the

client. We can see that the use of the bridging application always give overhead

Chapter 7 Evaluation ^

for protocol conversion. When a DCOM Server and a CORBA Client are used,

the overhead is extremely large (250 msec) in their current implementation.

But for another configuration, the overhead is still around 50%. It is not

a direct comparison to our approach, as the object components being tested

were different. But we can see that other bridging solutions also post overhead

to the overall system, so the overhead of our mechanism is still acceptable.

7.2 Means for Enhancement

7.2.1 Connection Performance of HTTP

In order to provide better performance when applying our mechanism, we are

using HTTP 1.1 [39, 40] instead of the HTTP 1.0 standard for the HTTP

connections. One of the problems with the standard HTTP 1.0 is that a new

TCP connection is required for each resource requested by the client, e.g. each

time the client wants to invoke a server method, one TCP request is needed.

This is inefficient as the initialization of each TCP request would require some

overhead for connection establishment, because TCP is connection oriented.

So, if this overhead is repeated for every request made, the system would be

very inefficient, especially when requests are frequently called.

HTTP 1.1 allows persistent TCP connections. Once the connection is estab-

lished, it will not terminate immediately when the request is finished. The con-

nection is still maintained after one request/respond communication is ended.

Hence no more overhead for connection establishment is needed for the on-

going requests. Thus, the time for overhead is reduced and we can have better

performance of the overall system.

Chapter 7 Evaluation 99

7.2.2 Transmission Data Compression

Our XML messages used in transmission are text streams embedding in HTTP

calls, which are much longer than ordinary binary-based HOP, or DCOM calls

in message sizes. That means longer time is needed for transmission of those

XML messages.

If the XML messages are compressed before transmission, the transmission

time would be greatly reduced. The processors are getting faster nowadays,

on-the-fly compression and decompression at the client and server sides should

not pose too much overhead. In general, the need to compress XML data is

great as all the transmission contents are serialized to text-based data and

there are messages sent through the network for every request call. Moreover,

XML compresses extremely well due to the repetitive nature of the tags used

to describe the structure of the data.

As mentioned before, we are using HTTP 1.1 for HTTP communication.

In HTTP 1.1, compression is standard for servers and clients, and XML auto-

matically benefits from this. Currently in HTTP 1.1 standard, gzip is used for

compression, which can provide compression rate of around 5% to 30% in some

XML testing data. Thus the time for transmission can be reduced greatly.

7.2.3 Security Concern

As now we are establishing connections between the objects in two separated

enclaves, we would like to have a guarantee in three security issues. First,

can all objects in a single enclave be invoked by others outside the enclave, or

only some dedicated objects can be invoked? Second, is it possible to verify

which outside object is calling the objects inside the enclave? Third, can the

transmission messages be encrypted such that others cannot steal and read the

Chapter 1 Evaluation 100

messages?

For the first problem, the use of Servlet components can help to ensure

that only those objects which are prepared for being called can be invoked by

outsiders. It is because only XML messages are used in communication between

two enclaves, and only those objects associated with Servlets components can

understand and can be invoked by those XML messages. So, it is quite safe that

other objects in the same enclave are protected from being called by outsiders.

For the second and third problems, as we are applying some popular tech-

nologies, such as Servlets and HTTP, there are many good methods developed

for dealing with those security problems. We can take advantage of HTTP au-

thentication mechanisms as well as Secure Sockets Layer (SSL) [41] for secure

channel communications (using secure HTTP connections via HTTPS (Secure

Hypertext Transfer Protocol) [42]) to communicate in a way that can prevent

eavesdropping, tampering, or message forgery. By using SSL in the commu-

nication between the add-on components (Shadow objects and Servlet com-

ponents), encryption is used after an initial handshake to define a secret key.

Symmetric cryptography is used for data encryption, such that the peer's iden-

tity can be authenticated using asymmetric, or public key, cryptography. So,

basically, we can ensure communication security by HTTPS.

Recently, there are some stronger mechanisms to handle security issue which

are dedicated for SOAP. SOAP has some similarities when compared to our

mechanism. Therefore, we can also apply their security methods to ours. For

example, Damiani et al [43] have suggested a simple, yet powerful and general,

technique to enforce access restrictions to SOAP invocations in order to sup-

port fine-grained authorizations at the level of individual XML elements and

attributes. Moreover, many security work about XML data [44，45, 46] are

also worth referencing for the improvement of our mechanism. Yet, as security

is not the main concern of our research, we have not included them in our

Chapter 7 Evaluation 皿

implementation.

7.3 Advantages of Using Our Mechanism

Our mechanism for communication between distributed systems using XML,

Servlets and HTTP calls described in this thesis has certain strengths and

weaknesses. We are discussing its pros and cons in this and the coming sec-

tion. Generally speaking, our mechanism enjoys the following advantages in

integrating distributed systems:

• It can solve the incompatible firewall problems of some communication

protocols in distributed environments. It provides vendor-independent

support. With our mechanism using HTTP, common normal firewalls

cannot block the communication between distributed objects in different

enclaves, and hence the scalability of system design and construction can

be greatly increased. •

• It can also solve the incompatible problem of heterogeneous distributed

environments. XML can be used as the bridge in connecting hetero-

geneous distributed protocols, such as connecting CORBA, DCOM and

Java RMI systems. Moreover, even if heterogeneous systems are sepa-

rated by firewalls, they can still communicate with objects in other sys-

tems.

• Our mechanism can be applied to a system without modifying the orig-

inally existing objects. The newly-added components to the system are

transparent to the original objects. Internal objects would not notice the

difference between the real target object and the shadow object, thus

no special modification or implementation is needed for ordinary internal

objects, hence increasing the system transparency properly.

Chapter 7 Evaluation 皿

• Systems can maintain good security, as external objects outside the en-

clave can only call the objects integrated with the Servlet components,

hence we can protect other internal objects from being called externally.

Moreover, we are exploiting some very common products like Java Servlet

or HTTP calls, whose security properties are well developed, such as

HTTPS.

• No information loss or distortion, as using XML can represent the in-

formation in the transmitted messages well, even when the parameter

structures of the invoking calls are complicated. This properly enhances

the system interoperability.

• Our mechanism can also be used as a gateway to inter-cooperate with

other Web-based applications. As long as the DTD of transmission mes-

sages is defined and agreed between both clients and servers, we can

include any kind of implementations in the server and the client sides.

These advantages are very important in the integration of distributed sys-

tems. The use of firewalls and the heterogeneity of different system environ-

ments are the major obstacles of system integration, while our mechanism can

provide a solution for that. Providing great transparency and ensuring no data

distortion are also very important, as changes to the existing systems may lead

to some potential hazards. Security concerns in our mechanism can also be

answered by traditional security methods which have been proved to be safe in

many real life applications.

7.4 Disadvantages of Using Our Mechanism

Though our mechanism has many advantages for integrating distributed sys-

tems, it also has some drawbacks, however. Here listed below are the disad-

Chapter 1 Evaluation 103

vantages of our mechanism.

• For each request or response to a remote object, we have to use one more

Servlet component and one more shadow object between the server side

and the client side in our mechanism and thus the system requires extra

workload and time for running them. However, these components are

light-weighted and would not greatly affect the overall performance. The

time for this overhead is also negligible when compared with the average

Internet access delay.

• As XML messages are used in communication, the highly-readable XML

messages would greatly increase the danger of eavesdropping, tampering,

or message forgery. High security level is required for using in the Internet

if critical data are used. Fortunately, many traditional security methods

can be applied to our mechanism, such as HTTPS.

Actually, these disadvantages are the tradeoffs of some good features. Though

Servlet components and shadow objects add extra workload to the systems,

they provide great transparency to the existing objects for invoking objects in

other enclaves. Also, the use of understandable XML can easily provide an

protocol interface to other web-based application by DTD, hence increasing

the system interoperability.

Chapter 8

Conclusion

Nowadays, it is frequently required to integrate several information systems

to work together in order to provide more information to the increasingly de-

manding users. Integrating heterogeneous systems is not an easy task, and the

situation would be more complicated if we want to integrate systems in dis-

tributed environments. There are many major obstacles in integration, such as

common use of firewalls, or heterogeneity of distributed environments for differ-

ent components. In this thesis, we suggested using XML, Servlets, and HTTP

to handle these obstacles and increase the scalability of distributed systems.

The first problem we focused on is the firewall issue. We used CORBA as

an example to introduce our mechanism. Between two CORBA enclaves, if

they are separated by firewalls, objects are unable to communicate with ob-

jects in another enclave as HOP cannot pass through the firewall. To support

HOP communication to objects in other enclaves, we use HTTP carrying XML

messages which contain the information for method calling. XML is semistruc-

tured and is flexible to represent the calling parameters and other relevant

information.

In our mechanism, we have a Shadow Server in the client side, which be-

haves the same as the target server object. This Shadow Server is an ordinary

104

Chapter 8 Conclusion 105

CORBA object and its responsibility is to convert the method calls to XML

messages. On the server side, we have the Servlet component which parses the

received XML messages to an ordinary HOP method calls. When we receive

responses from the server object, Servlet component converts them into XML

message and sends them to client side by HTTP. Shadow Server on the client

side will parse the messages and return the results to the client object.

The mechanism described above can only handle general calls. We then

extend this mechanism to support the callback feature. In callback, the server

can notify the clients whenever there is an update on the server side, hence

the client programs can react to changes with a faster response. This requires

both sides to be able to initiate a call, which many CORBA dedicated firewalls

cannot handle properly. We can simply handle this problem by using another

pair of add-on components in our mechanism: one Shadow Client on the server

side, and one Servlet component on the client side.

Then we have addressed how we can generate XML messages from Interface

Definition Languages in CORBA, and briefly described how we can generate

the related source code and components automatically and in a generic way by-

engaging the interface design (IDL) of a system.

The second problem we focused on is heterogeneity of distributed envi-

ronments. If we integrate two systems in a heterogeneous environment, they

cannot communicate as they have different communication protocols. There

are many bridging tools available on the market, but they are not generic, as

they use binary streams for bridging, which usually allows bridging between

two dedicated environments only. We extend the above mechanism to allow

communication among heterogeneous distributed environments by mapping dif-

ferent interface definition languages to the same XML schema, such that they

can have a common language to communicate.

Chapter 8 Conclusion 蘭

We have also presented a real example of applying our mechanism to imple-

ment a scalable mediator-based query system. This helps to make our query

system to be more scalable across firewalls and across heterogeneous distributed

environments.

Lastly, we evaluated the performance of the mediator-based query system

in order to measure the overhead of our mechanism. We showed that the light-

weighted add-on components used in our mechanism gave extra workload to

the system, but the overhead is acceptable as the latency is very small when

compared to the Internet latency. Enhancements on performance and security,

the advantages and disadvantages of our mechanism were also presented.

We conclude our contributions in the following ways:

• A generic mechanism for distributed objects to communication across

firewalls has been proposed;

• An extension of the mechanism to support callback feature has been pro-

posed;

• A schema for mapping CORBA IDL to XML format has been proposed,

and a translator for that has also been implemented;

• An extension of the mechanism to support generic remote object calling

in heterogeneous environment has been implemented;

• A mediator-based query system has been implemented to demonstrate

our work.

Our mechanism is a generic and simple tool for the integration of distributed

systems in heterogeneous platforms and across firewalls. With consideration

to the overhead, our mechanism is still very suitable to be applied to Internet

platforms, which as the workplace for next generation applications.

Bibliography

.1] Wolfgang Emmerich. Engineering Distributed Objects. John Wiley k Sons,

Ltd, New York, USA, 2000.

2] A. Leon-Garcia and I. Widjaja. Communication Networks. McGraw-hill

International Editions, 2000.

"3] Object Management Group, ftp://ftp.omg.org/pub/docs/formal/97-09-

Ol.pdf. The Common Object Request Broker: Architecture and Specification,

Revision 2.1, August 1997.

4] Rudolf Schreiner. Corba firewalls: An introduction

and analysis. Technical report, Object Security Ltd.,

http://www.objectsecurity.com/whitepapers/corba/fw/main.html, 1999.

"5] ION A Technologies. Orbix Wonderwall Administrator's Guide, June 1999.

6] Visigenic Software, Inc. Visigenic Gatekeeper Guide, February 1998.

"7] Mark Elenko and Mike Reinertsen. Xml & corba. Application Development

Trends, September 1999.

8] D. Box. Simple Object Access Protocol (SOAP) 1.1. Wide Wide Web

Consortium, http://www.w3.org/TR/S0AP/, May 2000.

.9] UserLand Software, Inc, http://www.xmlrpc.com/spec. XML-RPC Speci-

fication, October 1999.

107

ftp://ftp.omg.org/pub/docs/formal/97-09-
http://www.objectsecurity.com/whitepapers/corba/fw/main.html
http://www.w3.org/TR/S0AP/
http://www.xmlrpc.com/spec

10] Financial Toolsmiths AB, http://xiop.sourceforge.net/. XIOP Homepage.

11] N. Brown and C. Kindel. Distributed Component Object Model Protocol

-DCOM/1.0. http://www.globecom.net/ietf/draft/draft-brown-dcom-vl-

spec-03.html, January 1998.

12] Sun Microsystems, http:// java.sun.eom/j2se/l .3/docs/guide/rmi/index.html.

Java Remote Method Invocation (RMI).

13] lONA Technologies, http://www.iona.eom/docs/orbix2000/l.2/comet/html/.

OrhixCOMet Desktop Programmer's Guide and Reference, 2000.

.14] Sun Microsystems, http://java.sun.com/products/rmi-iiop/index.html.

RMI over HOP.

15] Wide Wide Web Consortium, http://www.w3.org/TR/2000/REC-xml-

20001006. Extensible Markup Language (XML) 1.0 (Second Edition), 2000.

16] D. Martin, M. Birbeck, M. Kay, and B. Loesgen et al. XML. Wrox Press,

USA, 2000.

17] F. Boumphrey, O. Direnzo, J. Duckett, and J. Graf et al. XML Applica-

tions. Wrox Press, USA, 1998.

18] J. Widom. Data management for xml: Research directions. IEEE Data

Engineering Bulletin 22(3), July 1999.

19] S. Abiteboul, P. Bimeman, and D. Suciu. Data on the Web: from rela-

tions to semistructured data and XML. Morgan Kaufmann Publishers, San

Franciso, USA, 1999.

20] Sun Microsystems. Java Servlet Specification Version 2.3, October 2000.

21] Sun Microsystems, http://java.smi.com/products/servle1:. Java Servlet

Technology.

108

http://xiop.sourceforge.net/
http://www.globecom.net/ietf/draft/draft-brown-dcom-vl-
http://java.sun.eom/j2se/l.3/docs/guide/rmi/index.html
http://www.iona.eom/docs/orbix2000/l.2/comet/html/
http://java.sun.com/products/rmi-iiop/index.html
http://www.w3.org/TR/2000/REC-xml-
http://java.smi.com/products/servle1

"22] Alexander Nakhimovsky and Tom Myers. Professional Java XML Pro-

gramming with servlets and JSP. Wrox Press, December 1999.

.23] Reuven M. Lerner. At the forge: Introducing soap. Linux Journal,

2001(11), 2001.

'24] Ron Ben-Natan. CORBA: A Guide to Common Object Request Broker

Architecture. McGraw-Hill, 1995.

25] Randy Otte, Paul Patrick, and Mark Roy. Understanding CORBA. Pren-

tice Hall, 1996.

"26] Michael Rosen, David Curtis, and Dan Foody. Integrating Corba and Com

Applications. John Wiley and Sons, October 1998.

27] Rubin Brain. Understanding DCOM. Prentice Hall PTR, Upper Saddle

River, NJ, USA, 1999.

28] Sing Li and Panos Economopoulos. Visual C++ 5 ActiveX COM Control

Programming. Wrox Press, Canada, 1997.

29] Gopalan Suresh Raj. A detailed comparison of corba,

dcom and java/rmi. Technical report, Web Cornucopia,

http://www.execpc.com/ gopalan/misc/compare.html, 1998.

30] Sun Microsystems, http://java.sun.com/docs/books/tutorial/rmi/index.html.

Java RMI Tutorial

31] Object Management Group. Java to IDL Language Mapping Specification,

Version 1.1, June 1999.

32] Object Management Group. IDL to Java Language Mapping Specification,

New Edition, June 2001.

33] G. Wiederhold. Mediators in the architecture of future information sys-

tems. IEEE Computer Vol 25 No 3, March 1992.

109

http://www.execpc.com/
http://java.sun.com/docs/books/tutorial/rmi/index.html

•34] Hui Lin, Tore Risch, and Timour Katchaounov. Object-oriented mediator

queries to xml data. In Proc. of 1st Intl. Conf. on Weh Information Systems

Engineering, (Vol 2), pages 38-45, Hong Kong, China, June 2000. ACM

Conference.

35] D. Florescu, A. Deutsch, A. Levy, D. Suciu, and M. Fernandez. A query

language for xml. In Proceeding of Eighth International World Wide Weh

Conference. W3C, 1999.

36] AT&T, http://www.research.att.com/ mff/xmlql/. XML-QL: A Query

Language for XML.

37] The Apache Software Foundation, http://jakarta.apaclie.org/tomcat.

Jakarta Project Subprojects: Tomcat.

38] R. Fatoohi, V. Gunwani, Q. Wang, and C. Zheng. Performance evaluation

of middleware bridging technologies. In Proc. of 2000 IEEE Int. Symp. on

Performance Analysis of Systems and Software (ISPASS2000), pages 34—39,

Austin, TX, USA, April 2000.

39] J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-

Lee. Hypertext Transfer Protocol — HTTP/LI (RFC). The Internet Society,

June 1999.

40] H. Nielsen, J. Gettys, A. Baird-Smith, E. Prud'hommeaux,

H. Lie, and C. Lilley. Network Performance Ef-

fects of HTTP/1.1, CSSl, and PNG. W3 Consortium,

http://www. w3.org/Protocols/HTTP/Performance/Pipeline.html, June

1997.

41] A.O. Freier, P. Karlton, and P.C. Kocher. The SSL Protocol - Version 3.0.

http://ftp.nectec.or.th/CIE/Topics/ssl-draft/INDEX.HTM, March 1996.

110

http://www.research.att.com/
http://jakarta.apaclie.org/tomcat
http://www
http://ftp.nectec.or.th/CIE/Topics/ssl-draft/INDEX.HTM

42] Sun Microsystems. HTTPS support in Java Plug-in through JSSE, May

2001.

.43] E. Damini, S. Vimercati, S. Paraboschi, and P. Samarati. Fine grained

access control for soap e-services. In The Tenth International World Wide

Weh Conference, pages 504-513, Hong Kong, May 2001. International

World Wide Web Conference Committee.

.44] E. Damini, S. Vimercati, S. Paraboschi, and P. Samarati. Xml access con-

trol systems: A component-based approach. In Proc. of the 14th IFIP 11.3

Working Conference in Database Security, Amsterdam, The Netherlands,

August 2000. International World Wide Web Conference Committee.

45] M. Kudo and S. Hada. Xml document security based on provisional au-

thorization. In Proc. of the 7th ACM Conference on Computer and Com-

munication Security, pages 87-96, Athens, Greece, November 2000. Inter-

national World Wide Web Conference Committee.

46] J. Paajarvi. XML Encoding of SPKI Certificates. Internet Draft.

I l l

Publications

1. Wing Hang Cheung, Michael R. Lyu, Kam Wing Ng. Integrating Digital

Libraries by CORBA, XML and Servlet In Proc. of The First ACM+IEEE

Joint Conference on Digital Libraries (JCDL,01), Roanoke, VA, USA,

June, 2001.

2. Wing Hang Cheung, Michael R. Lyu, Kam Wing Ng. Tunneling Across

Firewalls by Using XML and Servlet: An Experiment on CORBA. In

Proc. of The 2nd International Conference on Internet Computing (IC'2001),

Las Vegas, NV, USA, June, 2001.

3. Wing Hang Cheung, Michael R. Lyu, Kam Wing Ng. A Scalable Medi-

ator System beyond Firewalls using CORBA, XML, and Java Servlets.

In Proc. of the joint meeting of the 5th World Multiconference on Sys-

temics, Cybernetics and Informatics (SCI 2001) and the 7th International

Conference on Information Systems Analysis and Synthesis (ISAS 2001),

Orlando, FL, USA, July, 2001.

112

I I

‘
I i

t,
 i

..

••
 -

.

、
.

：
「

.
.

.
.

.
J'

^
^

I
•

论

<
._
 -

二
…

，
”

，
：

.
.

‘

.

；

‘
I

-
：

f
^
，

)
,,

：

5

CUHK L i b r a r i e s

•瞧 ^̂̂
003fl71fiSl

