
Design of Smart Card Enabled Protocols for
Micro-Payment and Rapid Application
Development Builder for E-Commerce

By

TSANG Hin Chung

Supervised By

Professor K. S. LEUNG

Professor K. H. LEE

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Philosophy

in

Computer Science and Engineering

©The Chinese University of Hong Kong

August, 2001

The Chinese University of Hong Kong holds the copyright of this thesis. Any

person(s) intending to use a part or the whole of the materials in this thesis

in a proposed publication must seek copyright release from the Dean of the

Graduate School.

统系館書圖

|7 / V
m 14 m 12

、碟^ - '.-^o/j

槪要

隨著電子商務迅速發展，傳統的安全認證和網上交易的安全措施已不能滿足現今

越來越嚴峻的互聯網環境。傳統的電子商務系統的可信性和可靠性都受到先進的

逆向工程技術和容易攻擊的作業系統威脅。因爲黑客會透過應用邏輯襲擊用戶的

電腦。

透過適當地運用防干擾的智能卡所產生的系統是不易受到攻擊。然而，許多已發

表的智能卡系統仍然遇到不同的困難，如過份依賴「對稱鑰匙加密」技術。更糟

的是，有些系統不可以在智能卡執行，或因不適當的設計而需要作進一步的改善。

本論文有幾項目的。首先是編寫一個有條理的智能系統、認證及交易協定。透過

分析其他智能卡的系統工具，找出它們的不足之處，例如忽視互相認證等。本論

文亦會提出嶄新的認證及交易協定，以補足其他智能卡的缺點，提高智能卡的效
Ẑ N 0

本論文所提出的全面的認證協定不但支援近端認證協定、密碼確認或人體特徵確

證，更支援獨特的遠端認證協定。除此之外，認證協定還可以執行相互認證及抵

抗認證重複的攻擊。在認證協定完成之後，「安全三重資料加密標準鑰匙」會建

立於用戶端和服伺器，使兩者能夠互相溝通。這項新穎的協定也能處理智能卡及

伺服器的失效問題。至於，建基於認證協定的交易協定，本論文亦會作出介紹。

本論文的交易協能締造一個可靠的、有效率的交易，以及使終斷的交易重新執行。

以往，很多發行者都沒有驗證交易協定的正確性，有見及此，本論文將會深入分

析交易協定，以驗證它的正確性。而且，本論文亦會詳細介紹協定的實驗評估。

爲使智能卡系統容易建立起來，在論文中也提出了一項爲B2C與P2P電子商務

軟件開發的革新方案，Smart RAD，。這由「應用程式界面」及「公用建立工具」

所組成。這個方案可幫助應用程式開發員按需耍設計認證和交易協定。在功能方.

面，這個方案提供一個穩健的認證和可靠的交易、可描述性、原始化設定、個

人化、公開密碼匙基礎建設。另外，在論文中，亦會將這項計劃與其他智能卡開

發的工具作比較。

最後，透過P2P與B2C的應用，Multi-Max程式，去示範及解釋Smart RAD的

用法和功能。Mul t i -Max程式容許用戶與商戶或其他用戶進行網上買賣。

Abstract

As a consequence of the burgeoning e-commerce industry, the conventional

security measures for authentication and online transaction can no longer fulfill

the current stringent Internet environment. The reliability and the credibility

of the traditional e-commerce systems are at stake due to the advance of the

reverse-engineering technology and the vulnerability of the operating system

because the application logic residing in the client machine is susceptible to

intrusion.

With the appropriate deployment of tamper-resistant smart cards, the re-

sulting system is less likely to be attacked easily. Nevertheless, most of the

published authentication protocols on smart card based system suffer from

different tricky problems such as heavy dependence on symmetric key cryp-

tography. Even worse, some of them are not feasible to be implemented on

the ordinary smart cards, or need further enhancement due to inappropriate

design.

This thesis has several objectives. It fashions a coherent study on the state-

of-the-art of smart card systems, authentication and transaction protocols. By

analyzing the related work, we identify potential critical defects such as the

ignorance of mutual authentication. As a remedy, we propose efficient smart

card based authentication and transaction protocols.

The proposed comprehensive scheme not only supports local authentica-

tion protocol, either password-based or biometric-based, but also supports

unique remote authentication protocol for secure remote access. It performs

i

mutual authentication and resists replaying attack. A secret session key is also

established between both client and server sides after the completion of the

authentication protocol by the silent key distribution scheme. The session key

can be used for subsequent communications. The devised protocol can handle

both the smart card and server failures well. The transaction protocol for the

micro-payment built on top of the authentication protocol is described. This

protocol enables reliable transaction, efficient and faultless resumption from

broken transactions.

An in-depth analysis based on BAN logic, which is not done in other sim-

ilar work, to prove the correctness of the proposed authentication protocol is

described. In addition, the experimental evaluation results of the proposed

protocols are detailed to show the efficiency and the effectiveness of the pro-

tocols.

Lastly, to make ease of the development of smart card based system, we

have designed and implemented an innovative builder, Smart RAD, for B2C &

P2P e-commerce software development. The implementation is comprised of

an application-programming interface and utility builder to facilitate the appli-

cation developers to customize their own authentication and different services,

say the transaction service. Functionally, it provides strong authentication,

reliable transaction, accountability, personalization, customization and PKI

systems. A comparison with other smart card development kits would be

shown.

As our last contribution, a P2P and B2C application, Multi-MAX, is imple-

mented to successfully demonstrate the feasibility and the flexibility of Smart

RAD. It allows the user to purchase a product from a retail shop on the web

or trade with other users through an application based interface.

ii

Acknowledgments

This thesis would not have been accomplished without the guidance, technical

and mental supports of my supervisors, fellow researchers and friends. I owe

my warmest thanks to my supervisors Kwong-Sak Leung and Kin-Hong Lee.

I greatly appreciate Ng Man Lung and Lin Yuen Wun s' helps for designing

a nice graphical user interfaces for this project. It is my pleasure to work with

them.

iii

Contents

1 Introduction 1

1.1 Authentication and Transaction Protocol 2

1.2 E-Commerce Enabler 3

2 Literature Review 4

2.1 Cryptographic Preliminaries 4

2.1.1 One-Way Hash Function 4

2.1.2 Triple DES 5

2.1.3 RSA 7

2.1.4 Elliptic Curve 8

2.2 Smart Cards 8

2.2.1 Smart Card Operating Systems 11

2.2.2 Java Card 12

2.3 Authentication Protocol 14

2.3.1 Properties 15

2.3.2 Survey 16

2.4 Transaction Protocol 19

2.5 BAN Logic 20

2.5.1 Notation 20

2.5.2 Logical Postulates 22

2.5.3 Protocol Analysis 25

iv

3 Authentication Protocol 26

3.1 Formulation of Problem 26

3.2 The New Idea 27

3.3 Assumptions 29

3.4 Trust Model 29

3.5 Protocol 30

3.5.1 Registration 30

3.5.2 Local Authentication 31

3.5.3 Remote Authentication 33

3.5.4 Silent Key Distribution Scheme 35

3.5.5 Advantages 37

3.6 BAN Logic Analysis 38

3.7 Experimental Evaluation 43

3.7.1 Configuration 44

3.7.2 Performance Analysis 45

4 Transaction Protocol 51

4.1 Assumptions 52

4.2 Protocol 55

4.3 Conflict Resolution Policy 58

4.4 Justifications 58

4.5 Experimental Evaluation 59

4.5.1 Configuration 59

4.5.2 Performance Analysis 60

5 E-Commerce Builder 65

5.1 Overview 66

5.2 Design of Smart RAD 68

5.2.1 Mechanism 68

5.2.2 Java Card Layer 69

V

5.2.3 Host Layer 71

5.2.4 Server Layer 72

5.3 Implementation 73

5.3.1 Implementation Reflection 73

5.3.2 Implementation Issues 76

5.4 Evaluation 77

5.5 An Application Example: Multi-MAX 79

5.5.1 System Model 79

5.5.2 Design Issues 80

5.5.3 Implementation Issues 80

5.5.4 Evaluation 84

5.6 Future Work 89

6 Conclusion 91

A Detail Experimental Result 93

A.l Authentication Time Measurement 94

A.2 On-Card and Off-Card Computation Time in Authentication . . 95

A.3 Authentication Time with Different Servers 96

A.4 Transaction Time Measurement 97

A.5 On-card and Off-card Computation Time in Transaction 97

B UML Diagram 99

B.l Package cuhk.cse.demo.applet 99

B.2 Package cuhk.cse.demo.client 105

B.3 Package server 110

C Glossary and Abbreviation 115

Bibliography 118

vi

List of Figures

2.1 Simple view of DES 5

2.2 Simple view of 3DES 7

2.3 Class hierarchy of smart card 9

2.4 Example of physical architecture of smart card 10

2.5 Format of Command APDU and Response APDU 11

2.6 Java Card Technology Architecture 13

2.7 General Payment Model 19

3.1 System Diagram of the Authentication System 28

3.2 Registration 32

3.3 Local authentication protocol 34

3.4 Remote authentication protocol 36

3.5 Testing environment 44

3.6 Authentication time with different hosts 46

3.7 On-card and off-card computation time in authentication 47

3.8 Authentication time with different servers 49

3.9 Authentication time with different servers 50

4.1 Testing environment 53

4.2 Class of Transaction 53

4.3 Flow diagram of the transaction protocol 54

4.4 Transaction time with different hosts 60

4.5 The On-card and the off-card computation time in the transaction 62

vii

5.1 System Diagram of Smart RAD 69

5.2 UML diagram of the objects in Java Card layer 71

5.3 UML diagram of the objects in Host layer 73

5.4 Utility Services 74

5.5 System Model of Multi-MAX 80

5.6 UML diagram of class Install 81

5.7 UML diagram of class RunTradeServer and RunTradeServer-

Thread 82

5.8 UML diagram of class CardUtility and ClientBase 83

5.9 UML diagram of class RunTimeServerThread and RunCAServer-

Thread 83

5.10 Sample JNLP file 84

5.11 Snapshot of initialization form 85

5.12 Snapshot of web-based shopping portal 86

5.13 Snapshot of authentication form 86

5.14 Snapshot of banking form 87

5.15 Snapshot of transaction form 88

5.16 Snapshot of transaction log form 88

B.l UML diagram of UFO Applet 99

B.2 UML diagram of Hash 100

B.3 UML diagram of HashGenerator 100

B.4 UML diagram of Record 101

B.5 UML diagram of SmartPurse 102

B.6 UML diagram of Transaction 103

B.7 UML diagram of TransactionManager 104

B.8 UML diagram of ClientBase 105

B.9 UML diagram of CardUtility 106

B.IO UML diagram of Install 107

viii

B. l l UML diagram of BankRecord 107

B.12 UML diagram of Transaction 108

B.13 UML diagram of BigHash 108

B.14 UML diagram of TimeUtility 109

B.15 UML diagram of CAUtility 109

B.16 UML diagram of CustomCertAndKeyGen 109

B.17 UML diagram of TradePanel 110

B.18 UML diagram of CAPanel 110

B.19 UML diagram of TimePanel I l l

B.20 UML diagram of Server Frame I l l

B.21 UML diagram of RunCAServer 112

B.22 UML diagram of RunCAServerThread 112

B.23 UML diagram of RunTimeServer 112

B.24 UML diagram of RunTimeServerThread 113

B.25 UML diagram of RunTradeServer 113

B.26 UML diagram of RunTradeServerThread 114

B.27 UML diagram of StopServer 114

ix

List of Tables

2.1 Meaning of APDU header and trailer 11

2.2 Advantages and Disadvantages of one-factor authentication pro-

tocol 14

2.3 Advantages and Disadvantages of two-factor authentication pro-

tocol 15

2.4 Advantages and Disadvantages of biometric-based authentica-

tion protocol 15

2.5 Characteristics of different remote authentication protocols . . . 18

3.1 Notations used in the proof 38

3.2 Statistical result of the authentication time with different hosts 46

3.3 Statistical result of the on-card and off-card authentication time 48

3.4 Statistical result of authentication time with different servers . . 49

3.5 Cases to be studied 50

4.1 Statistical result of the transaction time with different hosts . . 61

4.2 Statistical result of the on-card and the off-card computation

time in the transaction 62

5.1 Brief description of smart card development products 78

5.2 Comparison of Smart RAD with other products 78

A.l Authentication Time Measurement 94

A.2 On-card and off-card computation time in authentication 95

V

A.3 Authentication time measurement with different servers 96

A.4 Transaction time measurement 97

A.5 On-card and off-card computation time in transaction 98

xi

Chapter 1

Introduction

Reverse engineering, Trojan horses and physical intrusion are the tricky issues

in the security of the e-commerce software in recent years. With the new

discovery on the vulnerability of the operating system, intruders are able to

attack a remote host.

Usually, the application logic of e-commerce systems resides in the client

host and the security of the client host is always undermined. With the rapid

enhancement of the reverse engineering technology, hostile users can extract

the high-level representation of the application and the data flow within the

application logic. By understanding the application logic, hostile users can

re-engineer the application logic and bypass the system security measure such

that hostile users can perform restricted operations illegally or at the worst

case, interrupt the regular operation of the application server.

In addition, the remote attack with Trojan horses is one of the common

scenario in cyber attacks. It is not necessary for the intruder to have physical

contact with the targeted computer. Instead, Trojan horses are installed in

the targeted computer by other means in advance. The intruder can remotely

monitor the user's action, read and write processes in the targeted computer.

Hence, the application logic in the targeted computer can be attacked easily.

To cope with these serious problems, the application logic should be in-

stalled in a tamper-proof device such that no unauthorized local and remote

1

Chapter 1 Introduction 2

access is allowed without the knowledge of the computer owner. The solution

is Smart Cards.

Tamper-resistant feature prevents the smart card from being attacked eas-

ily. The cost for hacking an advanced smart card is unreasonably high. More-

over, with the memory and processing chip, the smart card can store and

manipulate the sensitive information without leaking out. The smart card can

communicate with other parties secretly with the help of the cryptographic

co-processor. These factors contribute to the trend that the smart card is very

popular in e-commerce applications.

1.1 Authentication and Transaction Protocol

The smart card is particularly useful in the authentication and the transaction

processes. The smart card helps to identify the valid card holder and performs

secure transactions.

Today, most of the smart card based authentication protocols ignore the

mutual authentication and perform only user authentication. Also, some of

the published works suffer from critical problems that make them not realistic

to be used practically. More importantly, some of them are not allowed to be

implemented on different types of smart cards.

As a matter of fact, the biometric-based authentication system can protect

the system for local access. However, it may not be true for remote access.

Several studies [58] [30] [40] have shown that biometric-based systems cannot

simply apply to remote access systems.

These concerns motivate us to design a new local and remote authentication

protocol, which can be used in biometric-based or password-based local/remote

access systems. The proposed protocol is designed to eliminate the critical

defects in existing protocols.

Chapter 1 Introduction 3

1.2 E-Commerce Enabler

Development of smart card based applications is not trivial. It involves the

understanding of smart card operating systems, underlying system of card ter-

minal, cryptographic theory and its related development libraries. In addition,

the time to familiarize oneself with the usage of smart card and smart card

reader is considerately long compared with other application developments.

It drives us to propose an innovative solution for smart card enabled soft-

ware developments particular to B2C and P2P e-commerce softwares, which

are designed for speeding up the development time. Unlike [22] [19] [18] [20

55] , it is intended to encapsulate the underlying mechanism of smart cards

so that the developer can develop a smart card based system easily without

considering the complicated smart card architecture.

Chapter 2

Literature Review

In this chapter, we fashion a coherent study on the state-of-the-art of crypto-

graphic techniques, smart card issues, authentication and transaction issues.

The internal mechanism of the one-way hash function, DES, triple DES and

elliptic curve will be described. The current issues of authentication and trans-

action protocols will be examined. Finally, the BAN logic is introduced for

the analysis of authentication protocols.

2.1 Cryptographic Preliminaries

In this section, we will overview the most common used cryptographic algo-

rithms and techniques in smart cards.

2.1.1 One-Way Hash Function

One-way hash function is commonly used on message authentication by pro-

ducing a “ fingerprint" of a message. MD5 and SHAl are examples of well-

known hash function. A hash function, H can be generalized in this form:

h — H(M), where M is the input message

Typically, the hash function must have the following properties:

4

Chapter 2 Literature Review 5

• H can be applied to any block of data M with any size.

• The hash value h always has a fixed length.

• For any given M, H{M) can be computed easily.

• For any hash value it is computationally infeasible to find M such

that H{M) — h. This is called one-way property.

• For any given data M, it is computational infeasible to find N such that

H{M) = H{N). This is called weak collision resistance.

• It is computational infeasible to find any pair (M, N) such that H{M)—

H{N). This is called strong collision resistance.

2.1.2 Triple DES

Triple DES is the variation of Data Encryption Standard (DES) [57] [64] which

is adopted in 1977 by the National Bureau of Standards. In DES, data are

encrypted in 64-bit blocks using a 56-bit key. The algorithm transforms a 64-

bit input in a series of steps into a 64-bit output. The same steps, with the

same key, are used to reverse the encryption. Figure 2.1 shows how DES is

performed.

Plaintext
Block

6 4 bits

5 6 bits

DES <] Key

V J
6 4 bits

__iz
Ciphertext

Block

Figure 2.1: Simple view of DES

Chapter 2 Literature Review 6

By and large, the design criteria of DES are:

1. Randomness

The output is changed randomly.

2. Nonlinearity

The encryption function is non-affine to any value of key.

3. Avalanche Property

It is a property of the ordinary encryption algorithm, that a small change

of inputs (plaintext or key) results in a significant change in the cipher-

text.

4. Correlation Immunity

The output bits are statically independent of any subset of input bits.

5. Completeness Property

Each bit of ciphertext is a complex function of ALL input bits.

However, DES suffers from brute-force attacks, and hence, a substitute

for it, triple DES is found to make the best use of the existing DES devices.

Triple DES is now adopted for the use in the key management standards of

ANS X9.17 and ISO 8732. Figure 2.2 describes the mechanism of triple DES in

encrypt-encrypt-encrypt (EEE) and encrypt-decrypt-encrypt (EDE) modes.

Chapter 2 Literature Review 7

EEE Mode EDE Mode

PlainText PlainText

DES ^ 1 K-H DES pi 1 K1
Encryption \| ‘ ̂ • Encryption |m

56-bit 56-bit

DES p , DES p] K2
Encryption kj 乙 Decryption

56-bit 56-bit

DES |/1 1 DES 1 K1 Encryption ‘ ̂ ^ Encryption |sj ' �
I 56-bit I 56-bit

^^ 168-bit key ^^ 112-bit key
CipherText CipherText

Figure 2.2: Simple view of 3DES

Currently, there is no practical cryptanalytic attack on triple DES. [12

assured that the cost of brute-force key search on triple DES is on the order

of 2112 and it is estimated that the cost of the differential cryptanalysis grows

exponentially, that is exceeding ICP.

2.1.3 RSA

Ron Rivest, Adi Shamir, and Len Adleman at MIT designed the RSA scheme

in 1978 [52]. It utilizes exponential functions as its expression and its security

is based on the difficulty of factoring the product of two large prime numbers.

RSA key pairs, where the public key consists of a modulus m and public

exponent e while the private key consists of the same modulus m and a private

exponent d.

The two keys are generated from two randomly chosen large prime numbers,

p and q. To assure maximum security, the lengths of these numbers should be

equal. The modulus m is computed as the product of the two primes:

m = p ^ q

Chapter 2 Literature Review 8

Next, an encryption key e is chosen so that e and {p—l){q — l) are relatively

prime. The decryption key d is chosen so that:

ed 二 1 (mod {p - l){q - 1))

d 二 e—1 (mod (p-l)(q-l))

Let X be the plaintext with the same size as the modulus and y be the

ciphertext. Then, the formulas for encryption and decryption are as follows:

y — x^ mod m

X = yd mod m

For this algorithm to be satisfactory for public-key encryption, the following

requirements must be met:

• It is possible to find the values of e, d, m such that x^^ = x mod m for

all X < m.

• It is relatively easy to compute x^ and y^ for all values of x < y.

• It is infeasible to determine d given e and m.

2.1.4 Elliptic Curve

The algorithm using the Elliptic curve is faster than RSA or DSA. With the

same key size, the security level of Elliptic curve is higher. The obvious ad-

vantage of the elliptic curve in the implementation is that it does not require

cryptographic co-processors and the smaller key size can save valuable memory

space in the smart card. However, the elliptic curve is not widely applied in

the smart card because RSA and DSA are more compatible with the existing

PKI system such as SSL and certification authority.

2.2 Smart Cards

Smart Cards [60] [11] [6] [10] [1] are credit-card sized cards with processors

built inside. Roughly speaking, smart cards can be categorized as memory

Chapter 2 Literature Review 9

cards and microprocessor cards. Most of the earlier released smart cards are

memory cards without processing power. They are widely used for the storage

of data only. A Microprocessor card is a card with limited processing power

and memory for the data storage. In general, it can be sub-classified as multi-

functional or specific-functional microprocessor cards. Figure 2.3 shows the

class hierarchy of smart cards. Nowadays, multi-functional microprocessor

cards have become dominant in the market since their release because they

allow sensitive data to be stored and manipulated inside the cards without

leaking out.

Smart
Card

I ^ ^ I
Memory Microprocessor

Card Card

Specific- Multi-
function functon

Figure 2.3: Class hierarchy of smart card

At the same time, we can also divide the smart cards into contact or

contact-less type. A card that is of contact type needs to be placed in the

card acceptance device for use. A card that is of contact-less type must be

put within certain distance around the card acceptance device without being

placed in a card acceptance device. Still, a contact-less card is more expensive

and less common than a card of contact type.

In addition, the smart card is always equipped with the read-only memory

(ROM), electrical erasable programmable read-only memory (EEPROM) and

random access memory (RAM). In order to perform cryptographic operations,

a crypto-coprocessor can be embedded in the card to enhance the performance

of the computational intensive operation such as modular arithmetic and large

integer calculation. Figure 2.4 shows the physical architecture of the smart

Chapter 2 Literature Review 10

card.
—

I ROM (32K) IEEPROM (32K)
Operating System File System
Communication System Files
Security (3DES, Keys
RSA) PIN

强 * Application

I

I _ _ r ，
CPU RAM

8 bit processor 2K
5 MHz, 5V
crypto-processor

Figure 2.4: Example of physical architecture of smart card

Smart Cards communicate with the attached host according to IS07816-4

standard, that defines the application protocol between the smart card and

host application. The card and the host can send an application protocol data

unit (APDU) to each other for communications. The APDU sent from the

host to the card is called command APDU while the APDU sent from the

card to the host is called response APDU. Figure 2.5 describes the format of

the command APDU and response APDU. For the command APDU, CLA,

INS, PI and P2 are its header while the optional data field and Le form its

body. For the response APDU, the optional data field forms its body while

SWl and SW2 form its trailer. Table 2.1 shows the physical meaning of

different fields in the APDU.

Other than IS07816, many standards for the smart cards have been drafted

and released including GSM, EMV, Open platform, OpenCard and PC/SC for

different purposes and platforms.

Chapter 2 Literature Review 11

Command APDU

Mandatory Header Optional Body

CLA INS P1 P2 Lc Optional Data Le

Response APDU
〇 P J 二 她

Body

Optional Data SW1 SW2

Figure 2.5: Format of Command APDU and Response APDU

Field Length (byte) Meaning

CLA 1 identifies the class of an instruction

INS 1 identifies an instruction for a specific applet

PI 1 passes command specific parameters to the command

P2 1 passes command specific parameters to the command

Lc 1 specifies the length of the optional data

Le 1 specifies the length of the optional data in the corresponding response APDU

SWl 1 specifies the the status code

SW2 1 specifies the the meaning of the status code

Table 2.1: Meaning of APDU header and trailer

2.2.1 Smart Card Operating Systems

In general, smart cards can be classified in terms of their operating systems,

namely, file system smart cards, Java Cards, Multos, smart cards for windows.

• File System Smart Card

It is composed of the Elementary file (EF), Dedicated file (DF) and

Master file (MF). They form a hierarchical file system.

Chapter 2 Literature Review 12

• Multos [45:

The smart card program written in Multos Executable Language (MEL)

is run on top of the Application Abstraction Machine (AAM).

• Smart Card for Windows [42:

It is a combination of the traditional ISO 7816-4 compliant operating

system and a programmable platform. The core provides a file system,

access controls，cryptography services, an API and a selection of ISO

commands.

• Java Card

The Java Card platform allows the application to be written in Java

language.

2.2.2 Java Card

The Java Card [66] specification enables the on-card program to be written in

Java and allows the on-card program to be run on smart cards and other devices

with limited memory. Figure 2.6 shows the Java Card technology architecture.

Nevertheless, there are many limitations on the Java Card platform as follows:

1. Dynamic class loading is not supported.

2. Garbage collection is not mandatory.

3. Customized security manager is not supported. Security policies are

implemented directly.

4. Multiple threads are not supported in JVM.

5. An object cannot be cloned.

6. Package java.lang is not fully implemented on Java Card JVM.

Chapter 2 Literature Review 13

7. Primitive types such as double, float and long are not available. The

keyword int is optionally supported.

8. Only one dimensional array is supported.

Applet 1 Applet 3
Applet 2

JCREI

Industry
Specific

Java Card API Extension

Java Card VM

OS Kernel

J

Figure 2.6: Java Card Technology Architecture

Advantages of a Java Card

Strictly speaking, the benefits of Java Card includes platform independence,

multi-application capability, post-issuance, flexibility and compatibility with

smart card standards.

Java Card technology is platform-independent, enabling developers to use

Java Card technology-based applets to run applications on different vendors'

cards. Java Card technology has been designed fundamentally to be secure and

multi-application capable. It provides a post-issuable feature, where applica-

tions can be securely loaded after the cards are issued, allowing card issuers

to dynamically respond to the preferences of the card holder.

Additionally, Java Card technology is compatible with existing smart card

standards, such as formal international standards IS07816, and industry-

specific standards, such as Europay/MasterCard/Visa (EMV) and the Eu-

ropean Telecommunications Standards Institute 03.19 (ETSI 03.19).

Chapter 2 Literature Review 14

2.3 Authentication Protocol

When a registered system user logs into the system, the system initializes the

authentication protocol with the login user. How does the system know that it

is the registered user? There is a situation that a hostile user impersonates a

registered user to login to the system. Authentication protocol is designed to

resolve this problem. Typically, authentication can be performed with these

approaches:

• what a person knows

Some examples are the password [37] [44], pin and hand-written signa-

ture. It is called one-factor authentication.

Advantages Disadvantages

• Easy to remember • Easy to leak out the password

• Easy to modify the secret • Easy to intrude such systems

• Easy to be confused when there are

many passwords memorized by a user

• Dependency of the security with the

length of passwords or the complexity

of the signature

Table 2.2: Advantages and Disadvantages of one-factor authentication protocol

• what a person has

Credit card systems and ATM machines are examples of it, in which

a person holds a user's specific password-protected card. It is called

two-factor authentication.

Chapter 2 Literature Review 29

Advantages Disadvantages

• Not able to be forged without expen- • Only applicable to local access or se-

sive equipment cure network systems

• Being protected by a password so that

only stealing the card cannot access the

system

Table 2.3: Advantages and Disadvantages of two-factor authentication protocol

• what a person is (Biometrics)

Human has some unique inborn features such as the retina pattern and

fingerprint. These features can be used for the identification of a person.

Advantages Disadvantages

• Extremely difficult to be falsified • Expensive to equip with sophisticated

retina and fingerprint readers

• System failure when the retina or fin-

gerprint data are lost

Table 2.4: Advantages and Disadvantages of biometric-based authentication

protocol

2.3.1 Properties

Central to the authentication protocol, the following requirements [51] [27

must be achieved:

• Mutual Authentication

It is an important property that enables the involved parties to identify

themselves mutually and establish a secret session key. Traditionally, the

Chapter 2 Literature Review 16

authentication protocol only considers the user authentication. Nowa-

days, this design practice can lead to the potential intrusion into the user

host by the forged authentication server.

• Confidentiality

All messages should be transmitted in the encrypted form to prevent

the masquerade and compromise of secret session keys. Otherwise, a

plaintext message can be grabbed with a simple sniffer program and

interpreted directly.

• Timelessness

The protocol is able to resist message replay attacks, which could lead

to the compromise of a session key or the impersonation of another user.

Replay attack can be classified in different types [26] as follows:

• Simple replay

• Repetition that can be logged

• Repetition that cannot be detected

• Backward replay without modification

2.3.2 Survey

Authentication protocols can be classified as local and remote authentications.

Local authentication [54] [15] is used for local access within a secure network

while remote authentication is used for remote access in an open network. We

focus on remote authentication systems with the collaboration of the smart

card and public key infrastructure.

Many smart card based remote authentication protocols have been pro-

posed. In 1991, reference [9] described a remote authentication protocol mak-

ing use of smart cards. This protocol allows the server to verify the password

Chapter 2 Literature Review 31

without storing the password in the server. This protocol can also tackle the

replaying attack by using time-stamps. Nonetheless, it was later discovered [8

that anyone who possesses the public information in the network could derive

some of the secret keys of the password generation center. A hostile party can

therefore impersonate a legal user in a subsequent login.

In 1993, Chang et al. [7] proposed another authentication protocol based

on Shamir's algorithm for the signature scheme. All messages transmitted

have included the time-stamps to resist replaying attacks. This protocol does

not require the authentication server to store the password. However, this

protocol does not allow the user to change the password unless the username

is changed as well since the password is dependent on the username according

to a predefined formula. It makes this protocol too impractical to apply to

real systems.

Later, Lee and Kim [38] proposed a remote authentication protocol in 1998.

More precisely, it is called mutual authentication protocol. This protocol in-

corporates the challenge-response protocol into public key techniques. The

card generates a digest according to the username and smart card identifica-

tion number. The digest is sent to the authentication server and compared

with the digest computed in the server. Obviously, the digest may be sent to

the fraudulent authentication server even though it is sent through a secure

channel. After that, the fraudulent server can impersonate the legal user to

access the authentication server successfully.

Recently, Hwang and Li [35] proposed a new remote authentication protocol

based on EIGamal's public key crypto-system in 2000. The authentication

server does not need to store the password for each user, and this protocol can

withstand replaying attacks. However, this protocol does not support mutual

authentication. At the same time, the user password cannot be changed unless

the username is changed as [7] proposed in 1993.

On the other hand, a local collaborative authentication protocol by using

Chapter 2 Literature Review 32

fingerprint verification was proposed by Moon [43] to verify the ownership of

a smart card in 2000. It is considered as a highly secure measure to guaran-

tee that only the valid user can activate the authorized card. However, this

authentication system cannot be used for the remote authentication that is

common in the e-commerce system. It provides no guarantees that only the

correct user can login to the correct remote authentication server, ignores of

the key distribution scheme and does not handle the failure of the system [58

40] [30:.

In general, we can characterize the remote authentication protocol accord-

ing to the features listed as follows:

1. Resist time attacks

2. Store the user password for verification in the server

3. Use a formula to verify the user identity

4. Authenticate the client only

5. Authenticate the client and the server mutually

6. Password cannot be changed once it is assigned to a user

Table 2.5 summarizes the characteristics of these protocols.

Protocol Resistance to Storage of the Storage of the User authenti- Mutual au- Fixed password
replay attacks user password formula cation thentication

[9] Yes No Yes Yes No Yes
[7] Yes No Yes Yes No Yes
[38] No Yes No Yes Yes No
[35] Yes No Yes Yes ^

Table 2.5: Characteristics of different remote authentication protocols

Chapter 2 Literature Review 19

2.4 Transaction Protocol

Transaction protocols describe the methodology for the exchange of payments

and goods. The security concern of the transaction protocol will be examined.

Generally, different payment systems [2] [4] [34] [62] [63] [49] may have dif-

ferent requirements from the transaction protocol. Typically, they are always

characterized by the properties such as integrity, authorization, confidentiality,

availability and reliability.

(^^^^Seller^ Deposit 1 Acquirer

分 -1 g §
z CD ^ ！:
^ 3 « ！2

� <

I Wi!TT"arawn �I S S U e r

Figure 2.7: General Payment Model

Integrity

The protocol guarantees that the payment transferred cannot been modified

and it can only be deposited to a dedicated party.

Authorization

It is of paramount importance that the protocol disallows the receipt of pay-

ments without explicit authorization. Reference [2] generalizes the method for

authorization into three types.

• Out-band authorization

• Password authorization

• Signature authorization

Chapter 2 Literature Review 20

Confidentiality

Confidentiality of a message ensures that the unrelated parties in the protocol

would not be able to read the message. A message can only be read by the

participants of the protocol system.

Availability

It ensures that the buyer and seller can always make or receive payments

whenever necessary.

Reliability

Obviously, the protocol must be free from hanging in unknown or inconsistent

state. Both the buyer and seller will not suffer a loss of property in case of

protocol failures. On the other hand, the protocol can perform recovery from

failures.

2.5 BAN Logic

BAN logic [5], named by its founders M. Burrows, M. Abadi and R. Need-

ham, is popularly applied to the analysis of protocols for authentication in

distributed systems. It provides the formalism [48] [16] that allows a protocol

to prove the true presence of each party to the others, and to check the redun-

dancy as well as the security problems. The notation and logical postulates of

the BAN logic are outlined in the following sections.

2.5.1 Notation

The symbols A, B and S denote the specific principles. Kab, Kas and î bs

denote the specific shared keys. Ka, Kb and Ks denote the specific public

keys, i^a—i,机-1 and denote the corresponding private key. Na, N^ and

Chapter 2 Literature Review 21

Nc denote the specific statements. The symbols P, Q and R represent the

principles. The statements were represented by X and Y. K represents the

encryption key. These notations are used as either meta-symbols or as the free

variables with an implicit universal quantification.

The proposition is connected by the conjunction, denoted by a comma.

Conjunction has the properties of associativity and commutativity. In addition

to the conjunction, we use the following connective expression:

• P I 三；^

P believes X , or P would be entitled to believe X . In particular, the

principal P may act as though X is true. This operator is central to

logic.

• P < X

P sees X. P receives a message from a principal and can read and repeat

X in that message.

• P I - X

P has said X. P has sent X，but it does not contain the information

of when this message was sent. However, it is known that P believed X

when P sent X.

.P X

P has jurisdiction over X. In other words, P has the authority on X.

Similar situation such as the certification authority has jurisdiction to

say which certificate (public key) of a person is.

•

The message X is fresh. This message has not appeared before the

current round of the protocol. Nonce is one example of such a message.

It usually includes a time-stamp or message sequence number.

Chapter 2 Literature Review 22

• P ^ Q

P and K use the shared key K for the communication. The shared key

K is only known to P and Q, or a principle trusted by either P or Q.

K

• I— P:

P has a public key K. The corresponding private key will not be

known by any principal except P, or principals trusted by P.

X

• P # Q

The formula X is a secret known only to P and Q. P and Q can use X

to prove their identities to one another. An example of a shared secret

is a password.

This represents that X is encrypted under the key K.

• < X >Y

This represents that X has combined with the formula Y and it is in-

tended that y is a secret, and its presence proves the identity of whoever

says < X > y .

2.5.2 Logical Postulates

Now, we introduce the logical postulates to provide enough machinery to carry

out the analysis of authentication protocols.

• Rule 1: Message-meaning rule

It concerns the interpretation of plaintext messages, encrypted messages

and messages with secret. It is used to derive the beliefs about the origin

of messages. The formula below is postulated for shared keys.

P \= Q ^ P, P < {X}k
P \= Q X

Chapter 2 Literature Review 23

Similarly, the formula for public keys is postulated like this:

K
P 1= Q, P <

P I 三 Q I 〜 X

The formula for shared secrets is postulated like this:

P \= Q ^ P, P < <X>Y

P I 三 Q I �X

• Rule 2: Nonce-verification

It ensures that the message is fresh and the sender still believes it.

P I三 tl(X), P \= Q X
P Q \= X

• Rule 3: Jurisdiction

It states that if P believes that Q has jurisdiction over X , then P trusts

Q on the truth of X\

P Q X, P \= Q \= X
P X

• Rule 4: A necessary property of the belief operator

P believes a set of statements if and only if P believes each individual

statement separately.

P \= X, P \=Y P I三（X, Y) P 1= Q 1= (X , Y)
P I三 (X , Y) P 1= X P \=Q\= X

• Rule 5: Similar rule is applied to the operator | �

P I三 Q 卜（X, F)
P I 三 Q I 〜 X

Chapter 2 Literature Review 24

• Rule 6: A principal sees a formula, then he also sees its components,

provided that he knows the necessary keys.

P < (X , Y) P < <X>Y P \= Q ^ P, P < {X}K

P < X P < X P < X
K K

P I三 P，P < {X}k p 1= Q, P <
P < X P < X

• Rule 7: Freshness of a formula

If one part of a formula is known to be fresh, the entire formula must be

fresh.

P I 三 t t �

p I三 tt(x,y)

• Rule 8: If a key is used between a pair of principals in both directions,

the following formulas can describe this property.

P \三 R 艮 R, P \= Q = R^

P \三R!艮R P |三Q I三R丨艮R

• Rule 9: If a secret is used between a pair of principals in both directions,

the following two rules can reflect this property.

P \三 R I R, P I三 Q I三 $

P \= R' ^ R P \= Q R^ ^ R

With the postulates, we can construct the proofs in the logic. Starting from

a formula X , we can prove the validity of Y if there is a sequence of formula

Zq, ...Zn, where Zq — X , Zn — Y, and each Z^+i can be obtained from Zi by

the application of the mentioned logical postulates.

Chapter 2 Literature Review 25

2.5.3 Protocol Analysis

Principally, a protocol is analyzed with the following procedures:

1. The protocol to be analyzed is converted from its informal form into the

formalized logical statements.

2. The assumptions about the initial state are stated.

3. The assertions for each statement about the state of the system are

devised.

4. The logical postulates are applied to the protocol step-by-step, in order

to derive the conclusion.

Chapter 3

Authentication Protocol

With the advance of the smart card technology and growing demand for secure

applications in the community, many researches are being done on smart-card

based systems from in-house applications to the Internet applications.

In this section, we will propose our design of the smart-card based authenti-

cation protocol and silent key distribution scheme with the failure handling for

the ordinary application service provider. Compared with other similar proto-

cols, our protocol not only can resist replaying attacks, but also can perform a

mutual authentication, and handle smart card or server failures properly. The

protocol can be incorporated into biometric-based or password-based systems.

Formal analysis of our protocol with BAN logic will be detailed to show its

correctness. Finally, the implementation with the Java card and the experi-

mental result will also be described.

3.1 Formulation of Problem

When we have remote access to an application service provider, the choice of

the authentication mechanism is very crucial to the security of the system.

Without deliberate consideration to the design of the authentication protocol,

serious defects of the authentication system would be induced and harmful to

the service provider and other system users.

26

Chapter 3 Authentication Protocol 27

The choice of the password-based authentication system cannot simply

resolve the challenges from the intruders. As mentioned before, the hostile

party can always impersonate a user by the brute-force password search in the

password domain. The password can also be stolen more easily compared with

other approaches.

Another solution is the biometric based authentication system. It is gen-

erally applied to local access systems or secure networks. Obviously, it cannot

be applied to remote access system because of the unrecoverable failure of

biometric-based systems. Just imagine what would happen when the finger-

print data of a person is stolen, say in the remote authentication process. Still,

the intruder can impersonate the user to log in the system with the stolen fin-

gerprint data. Anyway, the user can replace the fingerprint data with another

fingerprint, but what would happen when all ten fingerprint data are stolen?

Unlike password-based or PKI systems, in which the password or the certificate

can be regenerated easily, it is fatal that the biometric based system cannot

handle data loss failures.

3.2 The New Idea

We propose the one-way function based authentication protocol with the col-

laboration of the smart cards and public key infrastructure.

Inspired by the idea of [17] [3], we use a pair of one-way hash function f

and F to send a secret to another party for the verification without disclosing

the secret. The authentication data are hashed with f and salted with a time-

stamp [29]. The generated hash value can be verified by another party who

holds F.

Definition: f is of the form f.G^G where G is a domain where we can

test the membership, compute the inverse and group operation, sample from

a nearly uniform distribution efficiently. There is a constraint applied on / :

Chapter 3 Authentication Protocol 28

m in
0 y ^ ^ ^ 0?=:。。：
；丨丨丨:统丨丨證缀丨丨̂̂ A N

T丨me server 二 “ W

Java Card Appic^ion Database
Client Host Serve� Servee

Figure 3.1: System Diagram of the Authentication System

G ^ G, that is

F{xJ{y))^f{x^y) for x ^ 1 (3.1)

Several parties are involved in this protocol as shown in figure 3.1. Consider

the scenario that the client host attached with the card reader is trying to login

to the remote application server to access some services. Certification authority

and the time server will participate in the protocol.

• Client Host

It initializes the authentication protocol by activating the card applet

and communicating with the application server.

• Java Card

It has a built-in finite state machine to handle the request from the client

host and make a suitable response.

• Application Server

It handles the client request for accessing some services.

參 Database Server

It stores user's information partly for the authentication.

Chapter 3 Authentication Protocol 29

• Certification Authority

It stores, distributes and issues the certificate of the service subscribers

and the application service provider.

• Time Server

It distributes its current GMT time.

3.3 Assumptions

We hereby assume that the certification authority and the time server are

trustable and can always give us the valid data according to the request. Also,

the communication channel between the card and client host is protected by

the PKI，which is commonly provided in the smart card system. The PKI

protection is also available to the communication channel between the database

server and application server. At last, we assume that the communication

channel between the client host and application server is protected.

3.4 Trust Model

A trust model is used to describe how the entity in a protocol can trust another

entity. With the trust model, we can determine who can be trusted by someone

when some constraint(s) is/are satisfied. The trust model of the card, client

and application are defined as follows:

• Trust 1

The card and server believe that only the one who can show the valid

password/biometric data is the legal user.

• Trust 2

The client and server believe that only subscriber's card can sign the

message with his private key.

Chapter 3 Authentication Protocol 30

• Trust 3

The card believes that only the application server can generate the cor-

rect digest with the card-specific F.

參 Trust 4

The application server believes that only the card can generate the cor-

rect digest with the card-specific f.

3.5 Protocol

In general, our protocol is divided into three phases.

• Registration Phase

The subscriber is issued with an authorized smart card.

• Local Authentication Phase

The card and local host are mutually authenticated.

• Remote Authentication Phase

The card and application server are mutually authenticated and a shared

session key is established on the card and application server without the

knowledge of the client.

When the service subscriber initializes the protocol, the subscriber must be

issued with the authorized smart card in advance. This can be done when the

subscriber approaches to the card center to formally apply for a service and

the card.

3.5.1 Registration

In the registration phase, the subscriber will be assigned an authorized smart

card. The subscriber should go to the card center to prove his identity. Then

Chapter 3 Authentication Protocol 31

the following steps will be taken as shown in figure 3.2 to issue the smart card.

The sequence of the protocol is indicated in the circle on the top left corner of

each text box in the figure.

1. A card applet is loaded onto the card and customized with the pass-

word/biometric data.

2. A pair of RSA keys, functions / and F are generated on card.

3. The RSA public key and F are downloaded from the card.

4. The RSA public key downloaded from the card is used to generate a self-

signed certificate, which is further signed by the certification authority

while F is stored in the corresponding user-entry in the database.

5. The purse in the card is activated.

3.5.2 Local Authentication

As mentioned before, the subscriber can only access the service provided by the

application server with an authorized card. Before the subscriber can access

the desired service, the local authentication must be performed successfully.

A client program runs on behalf of the subscriber to help the subscriber to

execute the authentication procedure. Figure 3.3 illustrates how the local

authentication is done. The card and client can identify each other after this

phase.

We describe the protocol as a sequence of rounds, which consists of a num-

ber of messages. The notation X Y : M is used to describe that message

M is sent from X to Y. For the interest of brevity, the messages transmitted

are assumed private and signed by the corresponding party.

Chapter 3 Authentication Protocol 32

Card Administrative Certification Authority
Program

Upload card applet and \
© c u s t o m i z e with the

password/biometric data

Generate a pair of RSA 广“-x
key, functions /and F (3)

I Download the RSA public
^ key and function Ffrom

the card Sign the submitted
u. , certificate and store in its

Upload the RSA public key ^ ^ ^ ^ server for distribution
and function F Generate a self-signed - f -

1 certificate for the service *
I • subscriber and submit to

the certification authority D a t a b d S G
for signing

； 0
store the user's Fin the V ^ an entry for the

database subscriber and store his F

I ® ^ ^ ^
Enable the function of

The Purse function is ^ purse of the card
activated

Figure 3.2: Registration

Chapter 3 Authentication Protocol 33

Formally, the subscriber supplies the login information login in Ml , say

password or biometric data，in step 5 to the host which further sends to the

card.

Host Applet : user name, login, time t (Ml)

The card receives the message and verifies its content in step 6. Upon the

successful verification, the card generates the authentication data in step 7

and sends M2 to the host in step 8 for remote access of the application server.

Otherwise, the card sends a failure signal to the host and halts the execution.

Applet Host : user name, f {random number X), time t (M2)

3.5.3 Remote Authentication

When the card and host are ready, the remote authentication can be carried

out to enable the subscriber to access the services. Figure 3.4 illustrates the

mechanism of the remote authentication protocol. The interactions with the

certification authority and time server are not shown in the figure for simplicity.

The card, client and application server would have been authenticated by each

other after this phase.

The username, time t and hashed random number f {random number X)

attached in M3 (defined below) are sent to the remote application server in

step 1. They are for the calculation of the hashed value by the application

server.

Host Server : username, /{random number X), time t (M3)

When the server has received the message, the user's F would be re-

trieved from the database and used for the computation of the hash value

Chapter 3 Authentication Protocol 34

Card Client Program Time Server ^

^ — ^
Initialize an a u t h e n t i c a t i o i H ^ wait for the request]

request 广

Send a request to time Send the time f to the
server client 丫

if password or the (5 J
biometric data is valid, ^ Send the username, the
go to 7’ else go to 6a password and time t m

to the card

compute a r a n d o m © [j terminate the protocol w i t f t Certification Authority
number N^and f(NJ T 她re signal.

； ④ @ J @
Sign and send the V ^ Send a request to the • Wait for the request |

message ^ certification authority
{A, t} to client

——^C^
if the signature of m e s s g a V _ y Send the requested V V

sent from 8 is verified certificate or failed
correctly, start the remote -m message to the client

authentication protocol

Figure 3.3: Local authentication protocol

Chapter 3 Authentication Protocol 35

F{time t, f {randome number X)) in step 5. Time t' and the hash value are

sent in M4 to the host for the user authentication.

Server -> Host : F{time t, f [randome number X)), time t' (M4)

The host would forward the received message M5 to the card upon correct

signature verification of the message in step 8.

Host Applet : F{time t, /{random number X)) , time t' (M5)

The card applet checks the validity of the hashed value in step 10. After

correct verification in step 11, the card computes the hashed value for the

server. The computed hash value M6 is sent to the server in steps 12 and 13.

Otherwise, a failure signal is sent and the protocol is halted.

Applet -> Host : f{time t' * random number X) (M6)

Applet —)• Host : /{time t' * random number X) (M7)

When the server receives the forward message from the host, it checks the

correctness of the hashed value in step 14. For the correct matching of the

hash value, the remote authentication protocol is terminated successfully and

a secret session key is formed in step 15.

3.5.4 Silent Key Distribution Scheme

Once the authentication protocol is completed successfully, a shared secret key

would be built in the card and application server without the knowledge of the

client program. Afterwards, this key can be used for the subsequent secure

Chapter 3 Authentication Protocol 36

Card Client Program ^^^^ Application Servei*

———
Send the signed messgae 厂 Wait for the authentication
to the application server • request

. 1 _ _ _ ^
Verify the signature of the^ . . ^ /
signed message. If failed,
send failed message to

client, else go to 4

, �̂ L
Get the user's Ftrom t n ^ ^ ^ ^

database. Send failed
message to client if no
such use, else go to 5. J - ^

+ f 5)
if no such user, send f a i l e y ^ ^

message to the client.
Else, compute F(t，f(NJ)

and go to 6

r s) — — ‘ ©
Get the time f ' from the \

if receive failed message, | time server
terminate the protocol with
failure signal. Otherwise,

verify the signature and the ,, 广 y ^
@ t i m e s t a m p of the message

^ Send the messgae
. . . , , {F(t, f(NJ, f}to the client

matched with f(t*NJ, 1 i 9 j ‘
terminate if not match, else ^ � „ ^

goto 11 Sen6{F(t,f(N^),f}\o the ^
F card
i , r r ^

Compute f(t'*N》V^ Verify the signature of th l ' ^ J
Sign the message , ~ . mesage

(f(t'*NJ} f H Q] and check the correctness
T V p / of f(t'*NJ

* (1 2) Send the signed message]
Send the signed message. ' ^ to the application server (1 5)
to the client program and „ • • � • _ , V J

build the session key ^uild the session key V ^
and terminate the protocol

Figure 3.4: Remote authentication protocol

Chapter 3 Authentication Protocol 37

communication between the card and application server when the confidential

information is being sent between them.

The card builds the secret key for triple DES algorithm [57] by using three

data sets obtained from the protocol:

肌 f{{t' - 1) * X) , f ((t - l) * X)

Meanwhile, the application server constructs the secret key according to

three data sets collected from the protocol:

f (X) , F ((t ' - 1) , f (X)) , F ((t - 1) , f (X))

3.5.5 Advantages

By and large, our protocol has the following features and improvements on the

existing smart-card based remote authentication protocol.

1. Higher security measures by the mutual authentication

2. Complement the biometric-based protocol

3. Resistance to replaying attacks by using time-stamp token

4. Silent key distribution scheme for the applet and server

5. Resist the ordinary physical and remote attacks

6. Independence of the username from the password

7. Better smart card failure handling because different user has different / ;

better server failure handling because F cannot generate f{x) given x

8. Suitableness to apply on password-based or biometric-based systems,

wireless and Internet-based e-commerce service servers

Chapter 3 Authentication Protocol 38

3-6 BAN Logic Analysis

Formally, the following notations are used in the proof. denotes that

the message M is signed with the private key of A. denotes that the

message M is encrypted with the shared key of A and B.

Symbol Meaning
ID Username
PWD Password or biometric data
X Random number
t Time generated by the time server
t' Time generated by the time server

Kah Shared key of Applet and Host
Kh s Shared key of Host and Server
Kas Shared key of Applet and Server
Kj^-i Private Key of Applet
Kg- i Private key of Server

Table 3.1: Notations used in the proof

Step 1 - Formalize Protocol

The messages transmitted in the protocol are listed as follows:

• Ml: Host -> Applet

The message is encrypted with the shared secret key of the applet and

the host. The password is included in this message as the critical login

information that is only known by the applet and host.

PWD
{ID, Applet ^ Host, t, it}KAH (Ml)

• M2: Applet Host

The message is signed with the private key of the applet and is encrypted

with the shared key of the applet and host.

Chapter 3 Authentication Protocol 39

{ID, {{Applet 卜 / (X)) , t, mK^-AK^H (M2)

參 M3: Host Server

Message M2 is decrypted with the shared secret key of the applet and

host. The decrypted message is encrypted with the shared key of the

host and the server. The encrypted message is then forwarded to the

server.

{ID, {Applet 卜 f(X), t ， (M 3)

• M4: Server Host

The message contains the required hash value F{t, f{X)) for the server

authentication and the generated parameter for the subsequent user au-

thentication.

{{Applet 邓，為 S e r v e r , 財 丑 , (M4)

• M5: Host -> Applet

The host re-encodes the message M4 with the shared key of the applet

and host.

{{Applet ⑷）Server, t', (M5)

• M6: Applet Host

The applet computes the required hash value from the server and signs

it with the private key of the applet.

f(t' * X) ,
{{Applet ^ Server} (M6)

Chapter 3 Authentication Protocol 40

• M7: Host Server

The host re-encodes the message M6 which is then forwarded to the

server. After successful user authentication, a shared secret session key

would be established on the server and applet.

* X)

{{Applet ^ Server}K^-AKHs (M7)

Step 2 - State Initial Assumptions

There are some axioms made before the initialization of the protocol. Shared

secret key Kah is established between the applet and the host (axiom 1) while

Khs is established between the host and the server (axiom 2). The applet

has Ka as the public key (axiom 3) while the server has Ks as the public key

(axiom4). The applet, host and the server believes the certificate issued by

the certification authority, i.e. the applet, host and server believe Ka is the

public key of the applet (axioms 5，6 and 7); the host and the server believe

Ks is the public key of the server (axioms 8, 9).

Applet 弹 Host (Axiom 1)

Host K啓 Server (Axiom 2)
Ka

Applet (Axiom 3)
Ks

—Server (Axiom 4)
KA

Applet I 三 Applet (Axiom 5)
Ka

Host I 三 Applet (Axiom 6)
Ka

Server | 三 Applet (Axiom 7)
Ks

Host I 三 Server (Axiom 8)
Ks

Server | 三 Server (Axiom 9)

Chapter 3 Authentication Protocol 41

As for the hash functions / and F, it is well-known that the server has

the access to the hash value of F(M) for any message M (axioms 12 and 13)

while the applet has the access to the hash value of / (M) for any message M

(axioms 10 and 11). The applet and host have the password or biometric data

as the shared secret (axiom 14). The server and applet believe the time server

(axioms 15 and 16).

Applet I三 \Jx.[Applet | � f{x)] (Axiom 10)

Server |三 / (x)] (Axiom 11)

Applet I三 V:r.[S^eri;er F(x)] (Axiom 12)

Server | 三 F { x)] (Axiom 13)
PWDs

Applet ^ Host (Axiom 14)

Applet I 三 U (Axiom 15)

Server |三 jj力' (Axiom 16)

Step 3 - Devise Assertion and Execute Proof

By the application of rule 1 (please refer to the logical postulates stated in

chapter 2), axiom 1, the applet sees the valid password supplied by the host

(A3), which is the secret known only by the applet and card holder. In other

words, the applet believes the presence of the card holder according to the

trust model. By the trust model and jurisdiction rule, the applet believes that

the time t is fresh.

Host I � (A l)

Applet > PWD (A2)

Applet I 三 Host I �P W D (by rule 1 and axiom 1) (A3)

Chapter 3 Authentication Protocol 42

The applet generates a hash value from a random value and sends the signed

message to the host, which sends to the server. When the server receives the

message, it believes that it is the applet's login request (A7) since the correct

hash value is signed with the applet's private key (A5) and its time-stamp is

fresh (axiom 16). Then, the server computes the requested digested value for

the applet and starts the user authentication. With the freshness of t and rule

7, the server is convinced that the request message is sent recently and is not

a replay of an old message.

Server O f{x) (by rule 6 and axiom 2) (A4)

Server |三 Applet | � / (>) (by rule 1 and A4) (A5)

Server |三 Applet \ � t (by rule 1 and axiom 2) (A6)

Server | 三 Applet | 三 f{x) (by axiom 16 and A15) (A7)

The host forwards the message with the digested value F(t, f{x)) to the

applet. The applet finds that the hash value F{t, f{x)) is matched with

f{t * X) by the definitions of f and F. Similarly, by the application of the

nonce-verification rule, the authentication request is fresh and not a replaying

message.

Since the applet can see and verify the hash value F{t, f{x)) correctly, we

can conclude that the applet believes the true identity of the server (CI) by

the jurisdiction rule and corrected hash value. Then, the applet generates the

requested hash value f{t' * X) and sends to the server via the host for the

user authentication.

Chapter 3 Authentication Protocol 43

Applet O f{x)) (by rule 6 and axiom 2) (A8)

Applet I三 Server | �F { t , f{x)) (by rule 1 and A7) (A9)

Applet I三 Server |三 F(t, f{x)) (by A8，rule 2 and axiom 15) (CI)

Applet I三 Server | �t ' (by rule 1) (AlO)

When the server receives the information, it checks the correctness of the

hash value. Since f{t丨 * X) is equal to F{t', f{x)) and the applet is convinced

that the reply message is fresh, the user authentication is passed (C2) according

to the jurisdiction rule and nonce-verification rule.

Server > F{f, f{x)) (by rule 6 and axiom 2) (A l l)

Server |三 Applet 卜 F{t', f{x)) (by rule 1 and A l l) (Al2)

Server |三 Applet |三 f{x)) (by A12, rule 2 and axiom 16) (C2)

Step 4 - Draw Conclusions

Finally, a shared secret key is established between the server and applet (C3

and C4) since the server and host know the true presence of each other (CI

and C2) after validating the authentication data.

Applet I三 Applet Server (by CI) (C3)

Server |三 Applet 效 Server (by C2) (C4)

3.7 Experimental Evaluation

This section describes the experimental result we have done for the evaluation

of the proposed authentication protocol.

Chapter 3 Authentication Protocol 44

• _ _
^ Certification

Time Server Authority

A p ^ t i o n Database

Java Card Client Server"

Figure 3.5: Testing environment

3.7.1 Configuration

The development environment is based on GemXpresso rapid application de-

velopment toolkit 211 version 2.4 with the GemXpresso 211PKis Java card.

This Java card is implemented according to Java Card 2.1 API and Java Card

2.1 VM [31] [11] with triple DES and RSA algorithms [57:.

Various APIs are used for writing the test program. They include Java

Core API 1.2.2, Java Card 2.1, Java Cryptography Extension 1.2.1, Java Se-

cure Socket Extension 1.0.2’ Opencard 1.2, Gemplus Card Service and Open

Platform.

The experimental environment is setup as shown in figure 3.5.

The implementation of hash functions f and F is based on the exponential

expression as expressed in Hash 1 and Hash 2.

It is assumed that G = Z^* where AT is a product of two large distinct

prime numbers. By definition, f and F have the following expressions:

Chapter 3 Authentication Protocol 45

f{x) = mod N (Hash 1)

F{x, y) = x'^ ^ y mod N (Hash 2)

It can be proved that f{y)) = f{x * y).

3.7.2 Performance Analysis

In order to evaluate the authentication protocol in term of the speed, we have

performed the following experiments for testing.

• Measurement of the authentication time with different PCs

• Measurement of the on-card and off-card computation times in the au-

thentication

• Measurement of the authentication time with different servers

• Measurement of the scalability of the authentication server

Experiment 1

In this experiment, we have tested the authentication time in different ma-

chines. We have tested the authentication protocol with 333MHz PC, 500MHz

PC and 667MHz PC. Figure 3.6 shows the corresponding results and table 3.2

shows its corresponding statistical results.

From the observation, the faster the speed of the CPU is, the faster the au-

thentication speed is. In general, the authentication can always be completed

within 3100 ms. However, the authentication time does not decrease linearly

with the speed of the CPU. Therefore, we measure the on-card and off-card

computation time in experiment 2 and measure the effect of the sever to the

authentication time in experiment 3.

Chapter 3 Authentication Protocol 46

Authentication time on PC with different CPUs

4500 1

4000 - ^ — — “

3000 —

1 2500

0)
f i 2000

1500

1000

500 —

0 -r- 1 1 r —I 1 I ‘
0 5 10 15 20 25 30 35 40 45

Sample Number

— ~ 3 3 3 MHz - ~ '500 MHz Windows 667 MhT

Figure 3.6: Authentication time with different hosts

Host CPU (MHz) 333MHz 500MHz 667MHz

OS Windows 98 SE Windows 98 SE Windows 98 SE

Average Time (ms) 3934 3801 3229

Standard Deviation 283 73 93

Maximum Time (ms) 5060 3900 3630

Minimum Time (ms) 3680 3670 3130

Table 3.2: Statistical result of the authentication time with different hosts

Experiment 2

In this experiment, we have measured the on-card and off-card computation

in each authentication. The client host has 667MHz CPU and 128M RAM

running on windows 98 SE platform. Figure 3.7 shows the experimental result

Chapter 3 Authentication Protocol 47

On-card and Off-card computation time in authentication

4000 J - — —

3500

3000 — “

2500 — “

E
2000

E
P

1500

1000

5 0 0 - 一 — “ _ _ 、•、 - —

0 1 1 1 广 1 ‘

0 5 10 15 20 25 30 35

Sample Number

on-card (ms) off-card (ms) (ms)

Figure 3.7: On-card and off-card computation time in authentication

in graph and table 3.3 shows the statistical result of this experiment.

Obviously, the off-card computation time only takes 17.2% of the total

authentication time while the on-card computation time is 2677 ms, which

takes 82.8% of the total authentication time. In other words, however fast

the client and server CPUs are, the fastest time cannot be less than 2600 ms.

The reason for the long on-card computation time is because of the relatively

slow speed of the optimized RSA signature generation and verification. The

software implementation of the one-way hash function f also introduces certain

degree of time overhead.

Chapter 3 Authentication Protocol 48

On-card Off-card Total

Average Time (ms) 2677 558 3235

Standard Deviation 38 67 69

Maximum Time (ms) 2750 720 3350

Minimum Time (ms) 2590 440 3130

Table 3.3: Statistical result of the on-card and off-card authentication time

Experiment 3

In this experiment, we have evaluated how the performance of the authenti-

cation protocol varies with the authentication server. Figure 3.8 shows the

experimental results and table 3.4 shows the corresponding statistical results.

The client host has 500MHz CPU and 128M RAM running on windows 98 SE

platform.

It is observed that the performance of the server would not change the

authentication time significantly and can be negligible when the server CPU

has speed more than 333MHz as the authentication times on the 333MHz

server and 12400MHz server are very close in average with less than 0.001%

fluctuation.

There are two reasons for this observation. First, most of the time is spent

on the card and the off-card computation is negligible. Second, the most time

consuming operations are RSA signature generation and verification which

have already been optimized. The performance results are similar on the server

with CPUs faster than 333MHz.

Chapter 3 Authentication Protocol 49

Authentication time with different servers

4500 "[

4000 — — “

細 “ 一 “ 〜 心 一 ， 二 、 “ 乂 ； • ^ , ’ ^ ^ ^ ! ^ 一 , 心 、 — • • 广 — 一 .

3000 ‘

1 2500 —

0)
P 2000 —

1500

1000 —

500 —

0 1 1 1 1 —1 1 ―‘ ‘
0 5 10 15 20 25 30 35 40 45

Sample Number

500 MHz Windows 270 MHz Sun 12400 MHz Sun

Figure 3.8: Authentication time with different servers

Server CPU (MHz) 333 270 12400

Server OS Windows 98 SE Solaris 2.6 Solaris 7.0

Average Time (ms) 3361 3791 3335

Standard Deviation 136 61 65

Maximum Time (ms) 3680 3900 3520

Minimum Time (ms) 3180 3680 3240

Table 3.4: Statistical result of authentication time with different servers

Experiment 4

In this experiment, we determine the scalability of the authentication server

by simulating a number of authentication request from clients. A number of

authentication request is sent to the server at the same time and we record

Chapter 3 Authentication Protocol 50

Measurement of the scalability of the authentication server

100000 1 — — “

90000 — — ：：：̂
, «

80000

。；.
70000

—
60000 ：：：̂-

£ ^ ^ ：丨:.:�'.
» 50000-" ：：：：：̂-" “ “ ；

F • ‘‘

40000 — ？

30000 —

厕 。 — ‘

• - • • ,

0-®* -®~ . -— ‘
0 20 40 60 80 100 120

Number of client request

-_ — . Case 1 •>»««•Case 2 Case 3 ……Case 4

Figure 3.9: Authentication time with different servers

the time to complete all requests by the server. Four cases are considered as

shown in table 3.5 (the row indicates the client while the column indicates the

server):

SunUltra 5/270 Sun Enterprise E4500

SunUltra 5/270 case 1 case 2

Sun Enterprise E4500 case 3 case 4

Table 3.5: Cases to be studied

In general, the time to complete all the authentication requests grows lin-

early with the number of the request.

Chapter 4

Transaction Protocol

Transaction protocols handle the exchange of payments and products. Before

the transaction protocol can be initialized, the negotiation protocol should be

completed for making the compromise on the payment and product between

the involved parties. On the other hand, the product delivery protocol will be

started when the transaction protocol is done.

The study of the micro-payment transaction is motivated by the high cost

of credit card transactions. Practically, credit card transactions are only ap-

plicable when the amount of money involved is large because of the relatively

high cost for each transaction. It is also inappropriate to perform credit card

transactions on the web-based system in case that the network is insecure or

the credit card information is misused by the seller.

The transaction protocol should have the following characteristics:

• Low cost for micro-payments

• Privacy and anonymity of the parties

• Recoverable transaction if it is broken

• Appropriate conflict resolution policy based on digital signatures

• The seller cannot find the identity of the buyer

51

Chapter 4 Transaction Protocol 52

• Money can be transferred amongst the buyer, seller, bank and application

service provider

• Secured by smart cards and PKI

In this chapter, we introduce the proposed transaction protocol based on

our authentication protocol. We first state the assumptions and list out the

protocol in detail. The conflict resolution, justification and evaluation are

outlined in the rest of this chapter.

4.1 Assumptions

As the transaction protocol is based on the authentication protocol, it is as-

sumed that the authentication protocol is completed successfully and a triple

DES key is established between the card and payment gateway, which is built

on top of the authentication server. Hence, the transaction message is en-

crypted and authenticated.

The scenario for the transaction is shown in figure 4.1. The payment gate-

way handles the transaction request from the buyer. The seller server can

handle the request from the payment gateway and buyers.

Additionally, we assume that the transaction record has different fields as

shown in figure 4.2. time stores the time of the transaction. The identity

of the seller is stored in merchantCode while the product ID is stored in

productCode. note describes the product in detail. Moreover, group is used

for the product classification. For handling recovery, isComplete is used to

indicate whether this transaction has been completed or not while is Empty is

used to indicate whether this record is empty or not.

Chapter 4 Transaction Protocol 53

B p i H ^

_ 1 / _
Certification

Seller Server Authority

Paym 的 t Database

Java Card Client Gateway

Figure 4.1: Testing environment

class Transaction
{

private Calendar time;

private String merchantCode;

private String productCode;

private int amount;

private String note;

private String group;

private boolean isComplete;

private boolean isEmpty;

}

Figure 4.2: Class of Transaction

Chapter 4 Transaction Protocol 54

Seller Server Payment Gateway Client Host Smart Card

fT^——：
Wait tor the request from the . Wait for the request "^―i V ^ V Submit a transaction

buyer and the application server. I — ^ 1 j g A
If the request is from the ， 1

application server, go to 12. else 1 j check the validity of the
go 22 I Add this transaction to the card • transaction. Send REJECT

I message if not valid, else go to 4

© _ _ t
n It receive REJECT message. ^ Sign and encrypt the transaction

terminate the process. Else, | ；_

commit the transaction if there is
enough money f g j ^ r

debit the cost of transaction
temporary

CD r?) c^
Decrypt and verify the V l y S e n d the processed transaction ^ V — f Send the processed transaction

transaction. If the transaction is • message to the application to the application
not valid, send the REJECT | server I —

message. Else, go to 10 I “

^ i
Generate a token, and sign the

transaction and magic, and
encrypt it

I I ^̂ ^
^ T ^ e c e i v e the acknowledgement 1 ！

with the signed token and the 一 ^ ^ Send the signed message to the ^^^^
transaction log | | f se!ler |

® 0 • Receive the message from the
Receive the acknowledgement I ^ \ application server. If REJECT
until TIMEOUT. If TIMEOUT. ^ message, abort the transaction.

Send the acknowledgement to • send REJECT message.日se go Else, verify the tjje
_ , . 1 . to message. If the messge is valid,

the application server go to ??, else abort this

^ 1 transaction |

^ ^ ^ ^ S e n d the enervated message to | f v ? ^ ； [r i - r n - ~
the client host \ _ ^ e c r y p t e d the message and tne

“ “ Send the encrypted message to signed token, debit the money
the card permanently, remove the

transaction from the recovery list I

@ ® I
1 Send the signed token to the

Receive the signed token M client host

c^, ® 1
* ； 1 Initialize the product delivery

Verify the signed token and protocol to get the product with
send the product and receipt to ‘ — ~ the signed token

the buyer 1 二 1

Note:
1. It is assumpted that the the local and remote authentication have been performed sucessfully.
2. Transaction record has fields TIME, SELLER, PRODUCT, DESCRIPTION, GROUP, COST

Figure 4,3: Flow diagram of the transaction protocol

Chapter 4 Transaction Protocol 55

4.2 Protocol

Intuitively, the buyer and seller compromise on the product and payments

by the negotiation protocol. Then, the buyer initializes the transaction pro-

tocol and makes a request to the payment gateway. The gateway sends an

acknowledgement to the seller, who then sends another acknowledgement to

the gateway. After receiving the acknowledgement from the seller, the gateway

sends the signed token to the buyer. The buyer can use the signed token to

initialize the product delivery protocol for getting the product and receipt.

Figure 4.3 shows the flow diagram of the transaction protocol. The se-

quence of the transaction protocol is indicated in the circle on the top left

corner of each text box in the figure. The following notations are deployed in

this section:

• Kah denotes the secret key between the applet and host.

• Khs denotes the secret key between the host and payment gateway.

• Kas denotes the secret key between the applet and payment gateway.

• KSeller dcnotes the public key of the seller server.

• Ks denotes the public key of the payment gateway.

Transaction protocol is initialized by the client in the host. When the client

wants to buy a desired item, the client host gets the transaction record for this

item in step 1. Next, the host sends the transaction record M l to the applet

on the card in step 2.

Host Applet : M l = {Transaction}Kah

After checking the validity of the transaction, the card sends the encrypted

and signed transaction record M2 to the remote payment gateway via the

Chapter 4 Transaction Protocol 56

client host in step 8. At the same time, money is temporary deducted from

the card in step 6.

Applet Gateway : M2 二 {{Transaction)AS

The payment gateway verifies the signature and the validity of the product

record in the received transaction record. If the record is verified successfully,

the gateway will generate a unique token Token which is a signed message

with the transaction record, acknowledgement from the seller and a random

generated number. Message M3 is sent to the seller server without the seller

acknowledgement. Then, the seller server sends the signed acknowledgement

to the gateway. After receiving the acknowledgement from the seller server,

the gateway sends message M4 to the client host. The token is used to allow

the seller server and client host to identify each other in the product deliv-

ery protocol. When the host receives the purchase acknowledgement from the

gateway in step 16, the debit operation can be committed ultimately in step

18 and the applet can send the token to the host .

Gateway Seller Server : M3 = {{Transaction, Token}Kg.i}Kseiier

Gateway Applet : M4 = {{Transaction, Token}K^_^}KAs

Concurrently, the token will be verified and the local token database will be

updated when the seller server receives the token from the gateway in step 12.

Finally, the client host uses the received token to get the product from the

seller in the product delivery phase.

Chapter 4 Transaction Protocol

Transaction Recovery

In case of any abnormal transaction termination before the commitment of

transactions in the applet, money that is temporary deducted from the card

would be restored if the client chooses to cancel the transaction. Otherwise,

the transaction would be resumed and money would be debited from the card

permanently once the transaction is completed successfully. Consider different

scenarios listed as follows:

• Before the permanent deduction of money (before the execution of step

18)

In case of the abnormal terminal of the protocol, money that is tem-

porarily deducted in the card is restored. For the protocol termination

before step 18, the gateway and seller server can ignore the uncommitted

transaction since the gateway cannot send Token to the applet. More-

over, as the seller server cannot show the signed Token by the buyer to

the gateway, the seller cannot earn any money. Even before step 18, the

client host still cannot get Token to retrieve the product from the seller

server since it is encrypted with the secret session key. In other words,

the buyer will not pay for the product and the seller does not deliver the

product to the buyer.

• After the permanent deduction of money (after the execution of step 18)

Up to step 18, it is guaranteed that the seller server has received Token

from the gateway and the applet has received Token. Money is deducted

permanently. For any subsequent termination of the protocol, the buyer

can restore the broken transaction later and get the product from the

seller. It should be noted that the execution of step 18 is atomic, i.e.

step 18 is either executed successfully or uncommitted.

Chapter 4 Transaction Protocol 58

4.3 Conflict Resolution Policy

In case there is a conflict among the seller, buyer and application service

provider, the following conflict resolution policy can help to resolve the dispute.

Several conflicts are considered:

• Case 1: The buyer cannot deny a transaction if

the gateway can show the request from the buyer and the seller can show

the signed token from the buyer.

• Case 2: The seller cannot deny a transaction if

the gateway can show the acknowledgement from the seller and the buyer

can show the acknowledgement from the seller in the signed token.

• Case 3: The gateway cannot deny a transaction if

the seller can show the acknowledgement from the gateway and the buyer

can show the signed token from the gateway.

4.4 Justifications

Confidentiality

It is trivial to show the confidentiality of the transaction protocol since the

message transmitted in the protocol is secured with the triple DES key to keep

the message from being read by other parties and signed by the appropriate

RSA key.

Non-repudiation

By utilizing the digital signature and PKI, the transaction is non-repudiated.

Messages must be signed by the corresponding party for making it effective.

Therefore, any parties can resolve the conflict according to the conflict resolu-

tion policy described before.

Chapter 4 Transaction Protocol 59

Privacy and Anonymity

To make the protocol practical in the real world, the transaction protocol

supports partial-anonymity. During the transaction, the gateway does not

send the identity of the buyer to the seller server. The seller would identify

the buyer by the signed Token instead. On the other hand, only the buyer

and the gateway knows all identities of the involved parties.

4.5 Experimental Evaluation

Several experiments are done to evaluate and analyze the performance of the

transaction protocol so as to find the possible improvements.

• Measurement of the transaction time on different hosts

• Measurement of the on-card and the off-card computation time in the

transaction

• Testing of the recoverability of the transaction protocol

4.5.1 Configuration

The development environment is based on GemXpresso rapid application de-

velopment toolkit 211 version 2.4 with the GemXpresso 211PKis Java card.

This Java card is implemented according to Java Card 2.1 API and Java Card

2.1 VM [31] [11] with triple DES and RSA algorithms [57:.

Different APIs are used for writing the test programs. They include Java

Core API 1.2.2, Java Card 2.1, Java Cryptography Extension 1.2.1, Java Se-

cure Socket Extension 1.0.2，Opencard 1.2, Gemplus Card Service and Open

Platform.

Chapter 4 Transaction Protocol 60

Transaction time on PC with different CPUs

3300 1

3250 — “
A

3000 1 1 ‘ ‘ ‘ ‘
0 5 10 15 20 25 30 35

Sample Number

500 MHz 667 MHz

Figure 4.4: Transaction time with different hosts

4.5.2 Performance Analysis

Experiment 1

In this experiment, the transaction times are tested on the hosts of different

speeds. The average transaction time is around 3000 ms which is similar for

both 500MHz and 667MHz PCs. The performance of the client host and server

cannot affect the transaction protocol significantly. Therefore, we evaluate the

on-card and off-card processing times in the experiment 2.

Chapter 4 Transaction Protocol 61

Server Host CPU (MHz) 500MHz 667MHz

Server OS Windows 98 SE Windows 98 SE

Client Host CPU (MHz) 500MHz 667MHz

Client OS Windows 98 SE Windows 98 SE

Average Time (ms) 3124 3082

Standard Deviation 57 44

Maximum Time (ms) 3240 3130

Minimum Time (ms) 3020 3020

Table 4.1: Statistical result of the transaction time with different hosts

Experiment 2

In this experiment, the on-card and off-card computation times are measured.

The testing machine has 667MHz and 128M ram running on the windows 98

SE platform.

It is found that the on-card processing time is longer than the off-card

processing time taking almost 70% of the total. However, the ratio of the

on-card to the off-card processing time is less than that in the authentication.

The extra-long off-card processing time is induced by the communication cost

of the payment gateway with the seller server and application server.

Chapter 4 Transaction Protocol 62

On-card and off-card computation time in transaction

3500 1 —

� � f c 一 - — — — - - 〜 、 一 一 •^一知‘〜〜〜~ …〜：一

3000 — — ^ ‘ “

2500 一 一 - - -

-55- 2000

E,
0)
E
口 1500 —

1000 —

^ ^ ^ — ^ ^ — — �

500 —

0 1 1 1 1 1 T ‘ 1 ‘ ‘
0 2 4 6 8 10 12 14 16 18 20

Sample Number

on-card (ms) » off-card (ms)碰<讓嫩战Total (ms)

Figure 4.5: The On-card and the off-card computation time in the transaction

On-card Off-card Total

Average Time (ms) 2410 712 3122

Standard Deviation 54 55 77

Maximum Time (ms) 2530 820 3300

Minimum Time (ms) 2360 660 3020

Table 4.2: Statistical result of the on-card and the off-card computation time

in the transaction

Experiment 3

Experiments are done to test the recoverability of the transaction protocol. We

break the running transaction and resume the broken transaction. Considering

the single point of failure in the protocol, we terminate the normal operations

Chapter 4 Transaction Protocol 63

of the card, host, gateway and seller server and evaluate the recoverability of

the protocol.

• Stop the card

Any termination in steps 3, 5, 6 and 7 enables the silent termination

of the transaction. The broken transaction can be resumed in the next

login session. Otherwise, the card holder can cancel the transaction

without affecting the other parties and the temporary deducted money

can be restored. After the execution of step 18, it is guaranteed that the

card holder can get the product even the subsequent termination of the

protocol. The card holder can request the delivery of the product later.

• Stop the host

If the transaction is broken in steps 1 or 2, it will not affect other parties

since the transaction is not submitted to the card. If the transaction is

broken in step 8，the card can restore to the original state or resume the

broken transaction in the next login session. If the transaction is broken

in steps 16 or 17, the card can do the same as before. The application

server and seller server do not suffer from any loss for the storage of an

invalid record. The card holder can execute steps 20 and 21 until the

product is retrieved from the seller server.

• Stop the payment gateway

If the transaction is broken in steps 9，10 or 11, the host and card can

restore the transaction later; the seller server operates normally as the

broken transaction record is not received. For the termination in steps

14 or 15, the host and card can restore the broken transaction as before.

Alternatively, it is not harmful to the seller server since the card cannot

obtain the Token for the retrieval of the product.

• Stop the seller server

Chapter 4 Transaction Protocol 64

Considering the broken transaction in steps 12 or 13, the payment gate-

way can detect this condition by using the acknowledgement from the

seller server. The gateway can send the REJECT signal to the host and

card to recover from this broken transaction. If the transaction is broken

in step 22, the seller server can use the sophisticated product delivery

protocol to provide a reliable product delivery. The buyer can execute

steps 18 and 19 until he receives the desired product.

To conclude, the abnormal termination of the transaction can always be

recovered successfully, and the payment can always flow correctly.

Chapter 5

E-Commerce Builder

Nowadays, smart cards are regarded as the promising enabler of the E-commerce

system. Smart card systems have a stronger resistant to reverse engineering

compared with the mandatory approach that the business logic resides in the

client host. Nonetheless, the development of smart card based e-commerce sys-

tems is heavily dependent on the knowledge of smart card operating systems,

security and different advanced application-programming interfaces. Under-

standing the smart card operating systems [32], namely file system smart card,

Java Card, Multos and smart card for windows, is not enough for an appli-

cation developer to develop a smart card based system. It is also essential to

understand the OpenCard architecture [31] [41] [47] to interface with the smart

card and card terminal. To familiarize oneself with the cryptographic theory

"53] [61] [14] [13] and security-related application programming interfaces [39

50] [69] is also a formidable task. Altogether, the acquisition of this knowledge

definitely lengthens the development period and significantly raises the cost of

the development. Otherwise, a fragile system may be built without carefully

understanding them.

This chapter proposes the first innovative solution for the rapid application

development (RAD) of smart-card based B2C k P2P E-commerce applica-

tions. We have developed a builder with all the necessary resources for these

types of application developments. With our builder, it helps to speed up the

65

Chapter 5 E-Commerce Builder 80

development time effectively. Our builder supports strong authentication ser-

vices and reliable transaction services with service recovery. The flexibility of

our builder also facilities the application developer to customize their appli-

cations according to their requirements. Section 5.1 gives an overview of the

builder. The underlying mechanism and the detailed implementation of the

builder are described in sections 5.2 and 5.3 respectively. A comparison with

other similar products is outlined in section 5.4 and an example of the usage

is shown in section 5.5.

5.1 Overview

Smart RAD has a number of important features, which are radical to the

ordinary B2C and P2P e-commerce applications:

• Strong Authentication Service

• Reliable Transaction Service

• High Customization Capability

• Accountability

• Standardized Public Key Infrastructure

Strong Authentication Service

Unlike most of the e-commerce applications, the authentication service is based

on what the card holder has and what the card holder knows. Nowadays, sim-

ple password based authentication systems cannot cope with the stringent se-

curity requirement of many e-commerce systems. Our authentication protocol

72] is intended to ensure the confidentiality, non-repudiation, anonymity and

authentication of the services provided. Different from other smart card based

authentication services [7] [9] [35] [38], it can perform mutual authentication,

Chapter 5 E-Commerce Builder 67

and handle the failure of smart cards or the authentication server properly as

mentioned in chapter 3.

Reliable Transaction Service

Transactions occur frequently between the application service provider and all

card holders. Hence, we offer the transaction service that enables the developer

to deploy, and the non-repudiated transaction protocol such that the conflict

between the application service provider and card holder can be resolved easily.

The details of the transaction mechanism can be found in chapter 4.

High Code-level Customization Capability

Considering that different application service providers have different applica-

tion logics, we allow the developer to embed their own application logic within

our system framework. The developer is able to build their services based on

the authentication service, and therefore, controls the interaction between the

card and application server.

Security

With a view to providing a fast and secure communication channel between the

application provider and card holder, the communication channel is protected

with a triple DES [31] session key for each new login session. Triple DES

with 112-bit key length means a very high level of security. It has stronger

resistance to the linear and differential cryptanalysis [59] than DES .

Accountability

All the transaction and interactions with a bank are recorded and kept for

audit trace. The application service provider and card holder can keep their

own logs and use it for any possible conflict resolutions.

Chapter 5 E-Commerce Builder 68

Standardized Public Key Infrastructure

The system is built on the Public Key Infrastructure (PKI). The certificate is

created and signed with accordance to the X.509 standard. With this feature,

the system can inter-operate with other PKI systems.

The card holder can take advantage of the RSA key [57] in the smart card

to sign the sensitive data and use the triple DES session key for encryption and

decryption. On the other hand, other card holders can retrieve the certificate

of a particular user with the help of the certification authority and therefore,

verify a signed message.

When a smart card is issued to a card holder, a pair of RSA keys is gener-

ated on the card. The private key is stored in the card while the public key is

downloaded from the card and bound to a X.509 certificate, which would be

stored in the certification authority.

5.2 Design of Smart RAD

With a view to offering a comprehensive solution for B2B k P2P e-commerce

software development, the design of the builder is based on the principle that

it can provide sophisticated e-commerce operations reliably and be customized

easily by the developer. Also, the builder architecture should be extended and

enhanced easily.

5.2.1 Mechanism

Figure 5.1 shows the system architecture of Smart RAD. It provides an inter-

face for the developer to access the services provided by the Host layer and

Java Card layer. Some utilities are offered to allow the developer to access

and maintain all servers. In our case, the servers are the authentication server,

certification authority and time server. The developers should also define their

Chapter 5 E-Commerce Builder 69

m
‘

Certification
“ “ Authority

Smart RAD interface (Sp-i

II 鬥
opencard interface ^ ^ ^ ^ ^ t J [

f織藥— Database
javacard interface ^ ^ ^ m

^ ^ Authentication Server

Lb
碰 微 ^

T ime Server

Figure 5.1: System Diagram of Smart RAD

database schema and build their own application server based on the authenti-

cation server. For the interests of brevity, some UML [28] diagrams are drawn

as circles or the object attributes are not shown. The Smart RAD applica-

tion builder is a software development toolbox containing the following three

packages corresponding to the Java Card, Host and Server layers respectively.

• Package cuhk. cse. demo, applet in Java Card Layer

• Package cuhk. cse. demo, client in Host Layer

• Package server in Server Layer

The above three packages are detailed below.

5.2.2 Java Card Layer

Figure 5.2 shows the UML diagram of the objects in the Java Card layer. UML

is the universal modelling language, which is used to describe the class formally

with a diagram, and show the relationship with other classes. The objects in

the Java Card layer manages the logic and information in the card. Package

cuhk. cse. demo, applet is made up of a number of classes. The purposes of each

class are listed as follows.

Chapter 5 E-Commerce Builder 70

• UFOApplet

It is the central unit of the card. It initializes and manages all the

information. It is also responsible for the communication between the

card and card terminal.

• HashGenerator

It is used to generate a pair of hash function during the initialization of

the card for the service subscriber. The generated hash functions f and

F are used for the authentication.

• Hash

It is the logical representation of the mathematical hash function / . It

is used for the authentication.

• SmartPurse

It is the on-card agent for the management of credit records. It can

insert, delete and update records.

• Record

It is the logical representation of a bank credit record.

參 TransactionManager

It is the on-card agent for the management of all the transaction-related

operations such as insertion, deletion and updates of transaction records.

The agent can keep the information for any conflict resolutions.

• Transaction

It is the logical representation of a transaction record. It would store

the attributes of the transaction such as the status of emptiness and

completeness.

Chapter 5 E-Commerce Builder 71

o , o o
Hash java card .framework. Applet HashGenerator <

UfOAppiet

o^ o ^
Record SmartPurse ^ Transaction rransacffonManager

Figure 5.2: UML diagram of the objects in Java Card layer

5.2.3 Host Layer
Figure 5.3 shows the UML diagram of the objects in the Host layer. The Host

layer forms an interface between the developer and card. The developer can

retrieve, update, add or clear the information on the card via this layer. Here,

we outline the function of each class in this layer. These classes correspond to

the classes in the package cuhk.cse. demo, client The function of each class in

this layer is outlined as follows. • ClientBase

It provides the basic facility to access the card applet.

• Install

It uploads the packages onto the card and initializes the card applet. It

updates the information in the user database and certification authority.

• BigHash

It is the logical representation of the mathematical hash function F. It

is used for the authentication.

• CustomCardAndKeyGen

Chapter 5 E-Commerce Builder 72

It is the utility class providing the facility to create and sign a certificate

for a specified user by a specified issuer.

• CardUtility

It is the utility class that provides an interface for the developer to access

the function of the card. The developer must use it to perform the

functions such as the generation of the hash function and a pair of RSA

key, as well as the query of transactions and banking records.

• CAUtility

It is the utility class that allows the developer to retrieve the certificate

in the certification authority server.

• TimeUtility

It is the utility class that allows the developer to access the time server

to retrieve the current GMT time.

• Transaction

It is the logical representation of the transaction record.

• BankRecord

It is the logical representation of the bank credit record.

5.2.4 Server Layer

Figure 5.4 shows the UML diagram of the objects in the utility package. In

general, the utility package provides the services related to the certification

authority, authentication server (application server) and time server.

• Certification Authority Server

The certification authority has the certification repository that can add,

update and distribute the certificates it stored.

Chapter 5 E-Commerce Builder 73

o o o o
CUentBase BatikRecord CAUMty Serializable

/ K BioHash

\ o
/ ^ j Serializable
^^ Transaction

tnstaff CardUmy ,

o o
CustomCertAndKeyGen Timeiftiiity

Figure 5.3: UML diagram of the objects in Host layer

• Time Server

The time server can distribute its GMT time.

• Authentication Server

The authentication server can perform the remote authentication proto-

col with remote clients and establish a secret triple DES key for subse-

quent communications with the top-level application layer in the client

side.

5.3 Implementation

We describe the implementation details of the builder from the development

tools to implementation issues. The proposed implementation is cross-platform.

5.3.1 Implementation Reflection

The following softwares/hardwares are deployed for building the builder:

Chapter 5 E-Commerce Builder 74

o o o o
JFrame JFrame Runnable Runnable

Action Listener Actio nUstener RunCAServer RunTimeServer

TradePaneS CAPanei

小 A o
Runnable

^^^^ StopServer

JFrame ^ JFrame
ActionListener ActionListener
ServerFrame TimePanei

o o o
Runnable Runnable Runnable

RimCAS&verTtiread Run TimeServerTtiread RunTradeServer

o
Runnable

Run rraileServerTtwead

Figure 5.4: Utility Services

Chapter 5 E-Commerce Builder 75

1. GemXpresso RAD 211 version 2.4

It is the development builder [21] for building an application on Gemplus

smart cards. It provides the Gemplus-specific application-programming

interface [23] [25] [24 .

2. Java Development Kit 1.2.2

It provides the necessary Java Virtual Machine and Application Pro-

gramming Interface [65] for building Java applications.

3. Java Secure Socket Extension 1.0.2

It is a Java package [68] that enables secure Internet communications.

It implements a Java version of Secure Sockets Layer (SSL) [46] and

Transport Layer Security (TLS) protocols and includes functionality for

data encryption, server authentication, message integrity, and optional

client authentication.

4. Java Cryptography Extension 1.2.1

It is an application-programming interface [67] that provides a framework

and implementations for encryption, key generation and key agreement,

and Message Authentication Code (MAC). Encryptions including sym-

metric, asymmetric, block and stream ciphers are also supported.

5. OpenCard Framework

It is an application programming interface for bridging the communica-

tion between the card reader and card terminal.

6. GCR 410 Smart Card Reader

It is an external reader for serial port. The reader supports ISO 7816-

1 /2 /3 /4 memory/microprocessor card and accepts T=0 and T=1 proto-

cols.

7. GemXpresso PKis smart card

It has a RSA crypto-processor and support triple DES algorithm.

Chapter 5 E-Commerce Builder 76

5.3.2 Implementation Issues

In the implementation of the builder, the following problems are encountered

and we describe how we resolve them.

1. Limitation of Java Card VM

Due to the memory constraint of the ordinary smart card, the Java Card

VM only supports a subset of features of Java languages. Therefore,

numbers of double, float, or long type cannot be manipulated.

2. Limitation of the cryptographic processor of the smart card

Smart cards cannot support all cryptographic algorithms. GemXpresso

211PKis card supports both triple DES and RSA. That means only one

secret key algorithm and one public key algorithm can be used. The

principle is to use the public key algorithm to establish a secret session

key because the cost for using the public key algorithm is higher in

general. It would be cost-effective and secure to adopt a hybrid approach.

3. Memory constraint of the smart card

The smart card always suffers from two kinds of memory-related prob-

lems. Lack of memory confines the functionality of smart card appli-

cation and memory leakage can lead to fault in runtime. In our case,

GemXpresso 211PKis card offers 32 K of ROM, 32 K of EEPROM and 2

K of ROM. Out of these resources, about 23 K of EEPROM and 0.8 K of

RAM are available to application developers. Hence, we are particularly

careful to instantiate an object. Reuse the object as much as possible

and confine to the singleton pattern [36] if the object to be instantiated

is large or resource-intensive.

4. I /O speed and bandwidth of the card terminal

The cost of the latency for communications between the card and card

terminal should be considered. Most of the smart card readers use the

Chapter 5 E-Commerce Builder 77

serial port as the terminal connection with the client host. Also, there is

a constraint on the maximum size of the data to be transferred between

them.

5. Type conversion between the card and card terminal

As the underlying transmission protocol between the card and card ter-

minal only supports the transfer of byte stream, the object to be trans-

ferred between them should be converted to byte array. Hence, for these

objects, they should have the constructor with the byte array as the input

argument and the method toByteArrayi) to generate the corresponding

byte array.

6. Implementation of PKI with open standard API

In order to build a generic PKI, we should not use the third party API for

building the PKI. This introduces one difficulty since JDK cannot gen-

erate a certificate without using keytool Even the package sun. security

can only be used to issue a self-signed certificate. We therefore imple-

ment our own class for issuing self-signed certificates and issuer-specific

certificates in accordance to X.509 standard [33 .

7. Performance of the implementation

Since the implementation of this builder is based on the Java language.

We should be particularly careful when dealing with I /O, graphical user

interface control [71] and threading [39 .

5.4 Evaluation

In this section, we compare our integrated solution with other smart card

products. The products being compared with include CyberFlex Access [55],

GemMobile Card Issuer [18], Gemplus Wallet [19] , and GemUtilities [20 .

Table 5.1 describes these products briefly and table 5.2 shows the comparison

Chapter 5 E-Commerce Builder 92

of the builder with different similar products according to their functionalities

and features. Analysis and experimental results of the authentication and the

transaction protocols have been described in chapters 3 and 4 respectively.

Products Description
CyberFlex Access Cross platform development kit for multi-function cryptographic cards
Gemplus Wallet Development kit for Smart card-based electronic wallet

GemUtilities E-commerce software toolkit to automate repetitive tasks so customers can
easily and quickly navigate and make purchases on the Internet

GemMobile Card Issuer Personalization software tool enabling quick personalization of SIM cards in
a secure environment

Table 5.1: Brief description of smart card development products

Products Smart R A D CyberFlex Access Gemplus Wallet GemUtilities GemMobile Card Issuer

Local Authentication Yes No Yes Yes No

Remote Authentication Yes No Yes No No

Reliable Transaction Yes No Yes No No

Personalization Yes No Yes Yes Yes

Accountability Yes No Yes No No

Code-level Customization Yes, Yes No No No

PKI Support Yes ^ ^ No ^

Table 5.2: Comparison of Smart RAD with other products

As shown in the table, most of the smart card products are only designed

for local access, which is not suitable for the ordinary e-commerce applications.

The e-commerce application always involves the remote access service. On the

other hand, Smart RAD provides both local and remote authentications such

that the system can be applied either locally or remotely.

As a matter of fact, products like Gemplus Wallet and GemMobile Card

Issuer are limited to apply to the transaction related in-house application de-

velopments. Their features of personalization are also very restricted and

definitely not appropriate for more sophisticated software development. By

providing code-level customization, the application developer is able to build

smart card based applications according to their requirements.

Chapter 5 E-Commerce Builder 79

Unlike other products, our system can inter-operate with other secure ser-

vices through the common public key infrastructure.

5.5 An Application Example: Multi-MAX

After understanding the internal structure of Smart RAD, we show how to

deploy this builder in the design and implementation phase of P2P and B2C

e-commerce application development. We illustrate it with Multi-MAX. The

builder is used in the the development of the transaction and authentication

modules of Multi-MAX. Multi-MAX is a large-scale online trading platform

that is a P2P and B2C application. It allows the service subscriber to buy

and sell product with other service subscribers. At the same time, the server

subscriber can use the same interface to shop on web-based retail portals.

5.5.1 System Model

Figure 5.5 describes the system model of Multi-MAX. The seller and buyer

are the service subscribers. The seller can sell an electronic product or a

physical product by publishing the product list in the directory repository.

The potential buyer can browse the item listed in the directory repository.

Whenever a buyer locates a desired item for purchase, the buyer can negotiate

with the seller in real time through audio/video conferences. Alternatively,

retail portals can publish their products on the web and the buyer can also

buy it.

Once the seller and buyer have made the deal, the payment is made from

the buyer's smart card and deposited on the application server which is built

on top of the authentication server. The seller can retrieve the payment later

with his smart card or through a specific bank account. The service subscriber

can use the same graphical user interface to access the trading services through

a browser or a stand-alone application.

Chapter 5 E-Commerce Builder 80

^ ^ mmsi ^ -mm.

Seller Payment f d Z I I ^ Directory
Gateway Repository

z 一

^ N ^ ^ 圉 ， D a t a b a s e 震 �

暴u U BJ
Buyer Certification Time Server

Javacard Authority
Figure 5.5: System Model of Multi-MAX

5.5.2 Design Issues

To deploy Smart RAD builder for building Multi-MAX, several issues need to

be considered in the design phase.

• What kind of customized service would be built on top of the authenti-

cation server. For example, the developer can provide the services such

as auction, gambling or trading.

• What information is needed during the initialization of the card for the

service subscriber. In addition, the developer can perform other tailored

initialization other than the initialization of the smart card.

• What utility servers need to be integrated with the system such as the

time server, certification authority server or other developer's servers.

5.5.3 Implementation Issues

For the purpose of deploying the builder in the implementation of Multi-MAX,

we demonstrate the procedures for implementing the system with four steps.

1. Extend class cuhk. cse. demo. client.Install and override method initCard()

Chapter 5 E-Commerce Builder 81

ClientBase

interface

install

+Install0

*getinstanceO .‘Install
+setJLabel(label:JLabe^ :void
+setLabefrext(text:Stnr)g}:void
*imtCard(pin:byte[lname:Strmbank:Stm^^^ �
+isPresentO:l:)ooledn

Figure 5.6: UML diagram of class Install

to perform the customized initialization. Figure 5.6 shows its UML dia-

gram. The developer can perform the proper initialization with the card

and user database.

2. Extend class server.RunTradeServerThread and override method cus-

tomized(). The secret triple DES session key, input and output streams

will be passed to the method as arguments. The developer can use the

stream to communicate with the client while the triple DES session key,

which is established during authentication can be used for encryption

and decryption of messages sent between the client and server. Figure

5.7 shows the UML diagrams of class RunTradeServer and RunTrade-

ServerThread. Finally, the registry of RunTradeServer Thread in Run-

TradeServer should be updated with the classes that are extended from

them.

3. Extend class cuhk. cse. demo, client CardUtility and then the developer

can add his customized methods that are corresponding to the devel-

oper's customized application server. With this, the developer can con-

trol the logic and information in the card. Figure 5.8 illustrates the UML

diagram of the class CardUtility.

4. Extend the classes server.RunTimeServerThread and server.RunCAServerThread,

Chapter 5 E-Commerce Builder 82

Runnable

RunTradeServerThread
+RunTradeServerThread(sock:Socket.priv:RSAPrivateKey.textArea:JTe)<tArea)

+r_:void

-+bn}ldf<ey(fNA -.short, t:short_ tshoit bh:BigHaat)) :void

#+cListomizecS(oos:ObjeciOutputStream, oia-.ObjectinputStream):_

-+encrypt(buffer:byte[], offsetshoii, ！ : b y t e [}

-+deciypt(buffer:byte[l offsetshoii, lengthishorV！!

Runnabfe
RunTradeServer

+RunTradeSetver(object:Object,port:i nt.textAre a: JTextAre a)

+ninO:vo}d

Figure 5.7: UML diagram of class RunTradeServer and RunTradeServer-
Thread

and overrides methods getCert() and getTimeQ respectively if neces-

sary so as to integrate the system with the developer's certification au-

thority server and time server. Figure 5.9 shows the UML diagram of

these classes. The registry of classes RunTimeServerThread and Run-

CAServerThread in RunTimeS erver and RunCAServer should be up-

dated with the classes that are extended from them.

With the use of the Java Network Launching Protocol (JNLP) [56], the

application can run alone or in a browser. Namely, it is promising that the

service subscriber can access the services with the same interface in different

environments. Figure 5.10 shows a sample JNLP file. To gain the advantage of

JNLP, the web server should be JNLP enabled and the desktop of the service

subscriber has to be installed with the Java Web Start client program [70

which is able to handle the JNLP request.

With Java Web Start, the subscriber can launch the application by simply

clicking on a web page link. If the application is installed for the first time,

it would be cached on the user computer. The subscriber can invoke the

cached application from the desktop or browser. It should be noted that the

Chapter 5 E-Commerce Builder 83

ClientBase

interface

CartfOMfy

+CarclUtilityO
+getlnstanceO -.CarcfUWity
+isPresentO .boolean
+aL}thenticate{pin:b]/teg name-.String) :int
+getUsemameO :St_
+QetBafanceO:int
+add\/aiue(ba}ance:shon, accountStm^ :short
+g9tNumberOfBanf<RecordO :short
+getBankH}atoiy(mdex:byte):BankRecorci
+getBankHistoiyO :BankRecordl}
+getBar}kA ccountQ :St_
+clearBankHistoiyO .boolean
+dearBankH)stoiyOnciex:byte[J) :boo!ear)
+dearBankHisto}y(index:byte): boo 冶 an
+adcffransaction(record:Transact}on) :byte
+commitTranaaction(}ndex:byte) M
+hasBrokenTransactionO - Jbyfe
+QetTrar)saction(inciex:bYte) Transaction
+getTr3nsact}onO:Transaction[l
+c!earTran53ct}on(index:byte) :boofean
+dearTransactionOndex.bytel^ -.boolean <
+ciearTramactionO :booiean

Figure 5.8: UML diagram of class CardUtility and ClientBase

Runnable Runnable
RunTimeSeiverThread RunCASeiverThread

+RunTimeServerThreaci(sock:Socket) +RunCASetv9rThread(sock:Socket.aTe){tArea:JTextArea)

+r_:void +rmO:void
-getTimeO .Date +getCert(iiserString) :X509Certificate

Figure 5.9: UML diagram of class RunTimeServerThread and RunCAServer-
Thread

Chapter 5 E-Commerce Builder 84

Java Web Start application is independent from the implementations of the

browsers. It provides the flexible application version management and security

management.

<?xml versions" 1.0" encoding="utf-8" ?>

<jnlp spec="0.2 1.0 codebase="http://www2.cse.cuhk.edu.hk/ hctsang" href="hctsang.jnlp">

<information>
<title>Multi-MAX Demo</title>
<vendor>CSE, CUHK</vendor>
<homepage href = "http//www.cse.cuhk.eciu.hk"/>
<description>Multi-MAX Demo</description�

�description kind=" short" >Mutli-MAX Pro j ect < /description>
� i c o n href="logo.jpg"/>

< / information�

�resources�

<security>
<all-permissions/>

� / s e c u r i t y �

<application-desc main-class二"client丄ogonFrame">
<argument>Product Code< /argument>
<argument>Merchant Code< /argument>
�argument�Price< /argument>
<argument>Product Description< /argument>
< argument > Time < / argument >

< / application-desc>
</jnlp>

Figure 5.10: Sample JNLP file

5.5.4 Evaluation

We have tested the trading platform, Multi-MAX and evaluated its perfor-

mance during the initialization, authentication and transaction.

http://www2.cse.cuhk.edu.hk/

Chapter 5 E-Commerce Builder 99

r^rd registration ‘

Ijefsosal mforrmthn

username | ： hcaiity name j"~~ i

password j ~ ~ ~ s t a t e | “

retype password | country |ad

organization unit | orsanization

bank Infomittion

account number j “ Registration

s 融 • ^ clear

Figure 5.11: Snapshot of initialization form

Initialization

A snapshot of the initialization to the card and server is shown in figure 5.11.

During the initialization, the information of the service subscriber would be

loaded onto the card. Concurrently, an X.509 certificate can be created and a

signed request can be submitted to the certification authority. The certificate

of subscriber can be signed and stored in the certification authority while the

private key can be stored safely in the card.

Figure 5.12 shows the shopping portal, in which the user can select the

desired item for shopping. Using Java Web Start, Multi-MAX can integrate

with the browser to offer the same graphical user interface to the user.

Authentication

Figure 5.13 shows the authentication screen. By supplying a valid username

and the password, the service subscriber can activate the PIN-protected smart

card after the authentication protocol has performed a local and remote au-

thentication with the remote application server successfully. Afterwards, the

service subscriber can access the services provided by the application server.

Chapter 5 E-Commerce Builder 86

一 ‘ - 这 丄 d 'J&
j hllp•"酬 c« c 此 e(iuhkrml^fl/S，W8_¥_，laiLhlml „ 广 f

」 ： . 红 —

, . . , , 0 ^ ^ V/ (
丄 、 '

Experience convenient purchasing over the Internet with Smart Card Payment in this demol

r Lhrt Price:««
\f - RE M Our Price: $13

, , 二 Not Yet Released •• On Order You Save: S5 P0%)

厂 fBlffil WSnqsfxtn (Hits A History) List Price: f49 r i p i ~ PaulMcCartney Our Price: $13 t i AJ Usually ships In 24 houis You Save: S5 (30%)

r Mm^U l̂omfw; List Price:
fiSKB ~ Tool Our Price: $13
^ ^ ^ B Not Yet Released - On Order You Save: $5 (30%)

國 一 — h _ — 。 ）

厂 IP rht> SOf}咖w • P晰麟 Eijgs: Music from iha HBO Serita;[SOUmiRACKJ List PricB： "一 — ：二 :::.，,..」:•:…:iSJ

î o— ‘ ‘ " " " " " " — " “ “ ‘ ‘ "T""“"‘"""""" '""f "“ êin̂

Figure 5.12: Snapshot of web-based shopping portal

”、顯,•liltMliillffiMliglllPMBMIllll—illlliim^^^B^^^M^iilil

：； ,：;!• ... •办 s-i .;•!； Ĥs .A'

i ；. - > : •-： -
：： -•； 、、： � • • � � � � - �\ � � " i； ^ 、、、、

Smart Card Losin

m ^ ^ S t a t u s B a r

“ .

Figure 5.13: Snapshot of authentication form

Chapter 5 E-Commerce Builder 87

g B E S H H U I f f l H W B H H M H H H M f H H I ^ n ^ H ^ ^ ^

Multi-MAXTrading System _ j

[1 My Profile _ Trade Log E............^nk― f f 谢 g j ^ r s w Quit ；

Banking .

Current card balance = HKD 500 ，

i rBankimg History “ |
I [peletei Date ‘ Description

.11 "•"p"'"" "“‘..11' “™"™ZZIZII
i 1.....n ii

} i:.
1 I • K
1 i " p 1

M
； .

i I ‘
i Last 5 logs are shown DELETE DELETE ALL

1 i —-一 — —-—---——-—--I
ij rTransaction 1 ！
llirTransaction From ； ~ — rDetails —
I i 厂 I；
； : A c c o u n t ； Balance Amount ‘

jl jHSBC12312321312 J � j HKD 1050.0 |
l i i r Credit Card (VISA) Expired Date (month/year) j 丨 | h k D 5 0 � •

I " " " ' I " " " " � Ir ^ I r m 11 I
— ‘ I::丨

OK CLEAR i;::
...... I 15；

Figure 5.14: Snapshot of banking form

For example, the card can be deposited with more money on the banking

form. The payment can be charged either from the credit card account or

banking account. Logs which stores the last five deposit records are shown in

the same form as shown in figure 5.14.

Transaction

Figure 5.15 shows the snapshot of Multi-MAX on how it handles transaction

related operations. A list of transactions is displayed in the item table. By se-

lecting the desired item from the item table, the service subscriber is prompted

for the confirmation before the purchase of the selected item(s). Only after

successful transaction, the payment would be deducted from the card and the

corresponding log would be recorded in the card. The log can be used for audit

checks or dispute resolution. Figure 5.16 shows the log of all transactions.

The resulting system can be built rapidly with Smart RAD. The remote

Chapter 5 E-Commerce Builder 88

r 、 〜 今 � � ‘ � ”
S�� , , ‘

•、'：作‘«• V：； ；、 I ' • : “ � � “ ？ ： 二 1 � ’
-、 ‘ ‘ ‘ ……八…

：：广 - ‘ •

. * 二
s i ^ ^ S - _ • • • _ / - � ’ " - - H - S

“ r ‘
p “ � •

j r _ … „
I 奢 、 5. ‘

i: I 1 ；！； iii
• ••; g,；|,...,.小.,‘...............,.‘..,.,？,.-,...-..,.：_...,•--..‘.州少w.州 . ‘

r ‘ ..

I f 麵

S r � … ’ ：

； r , „
！ I I I
-j r ； - -- £
I r ‘ I 严 - . ；-- '''-''、-' ‘ ‘“‘ 鞾
I ？ •• -‘ ‘ atftt^t

I . _. _|___|幽|____|__|_____ ... 1
j �•‘ A"’ ‘ “�A乾

Figure 5.15: Snapshot of transaction form

Muiti-MAXTradtng System
•一 —- — — …一一—I

；[| My Profile ̂ rVadeLoĝ j s Bank Vf ^ Qun
i Tr̂ eHistorv__

Delete] Dale j Seller | Filename | Price File Descrption Group
i | �i r ! i'""" """" ml Ii:
：! I -------- ———™—…™j - I
：！ ……一——I— 一…— T""""'"""" •"' ‘ ‘“ I ；：欲I� 1：；：
； r „ „ „ t —— i ^ j-I ———— t- ， 丄
：； ？二 4. !• {：：|-：：：->!. !：： P ！ ！ ！ ！ 111 i!
：I '..--�.••一 i „ | „ If— — — 奴”了 i；；.

n ‘ "p" i I i 11 w
ij i »
i i 一一!_ .„ i- "4 — — ""t 1:«、:，:i i-：

L X L j 二 i ��

l - f - 1 ！ N
jr_j 1 ！ ： i
； r : I i
i ~ I ！ : � ‘
丨"TZIZT""" ‘ i ！ I - ：
i " F ^
； ： I �I iiiir I I i 、、丨
I 厂 i ‘ ； 、： i
i I E T Z Z Z l ^ i J I i

i I z z y !
*« i > I 1 i；：

DELETE DELETE ALL ,
:i| ‘ J 11;

„ _ — " T — — ——" — “―"“― “….'..".：-:::,"̂ " " "T^. .

Figure 5.16: Snapshot of transaction log form

Chapter 5 E-Commerce Builder 89

authentication and transaction services can be integrated to perform the online

trading process. The performance of the authentication and transaction are

efficiency enough to work properly. The remote authentication services can

recognize the correct card holder correctly and the transaction is performed

with recover abilities.

As mentioned before, Smart RAD provides the public key infrastructure

so that Multi-Max can be compatible with other PKIs. In other words, the

certificate can be recognized by other parties and it is trivial to interact with

other systems using the same trading protocol.

5.6 Future Work

With the thriving development of e-commerce, different applications of smart

cards can be built either vertically or horizontally. In view of coping with these

tremendous changes, the following features can be added to Smart RAD in the

future.

• Develop a more generic interface for the transaction records in the card

applet: Different e-commerce projects may have their own transaction

interface and need different customizations. Different option attributes,

which are used by the developer can be added.

• Develop the copyright agent: It acts as a security manager to ensure the

usage of a product compliant with the license agreement, or the behavior

of the service subscriber is compliant with the permission context, which

defines the access rights of the subscriber.

• Allow the card applet to be automatically customized by the developer

and therefore the developer can add their own Java Card classes to the

card. It involves auto code generation.

Chapter 5 E-Commerce Builder 90

• Integrate with the personal email system: The service subscribers can use

the same smart card to protect their emails from being read or sent by

unauthorized parties, or being misused by hostile parties for any illegal

use.

Chapter 6

Conclusion

The objective of this thesis is to describe the unique and efficient smart card

based secure services for e-commerce. We have particularly tackled the ap-

proach of using smart cards incorporated with the public key infrastructure.

We have designed the unique remote authentication protocol, which improves

significantly on the existing protocols.

To perform the remote authentication, the approach of using one-way hash

functions f and F has been described. To ensure the authentication protocol

from being suffered from replay attacks, a number of nonce have been used to

ensure the freshness of messages. Experimental results have indicated that its

implementation on the Java Card is feasible and its performance is good in

speed. A formal notation BAN logic has been deployed for the analysis of the

correctness of the protocol. On the other hand, we have identified different

problems in existing authentication protocols and shown how to correct them

with our protocol.

Based on the proposed authentication protocol, an efficient and secure

transaction protocol has been built. It supports the transaction recovery and

handles micro-payments. The transaction is performed atomically such that

either credit and debit operations have to be completed, or the original state

has to be restored.

91

Chapter 6 Conclusion

It should be noted that the remote authentication is of paramount impor-

tant to the e-commerce application with remote service access. With the highly

integration of transaction and authentication protocols, the security of the e-

commerce application is less susceptible to be intruded than the mandatory

approach that the security measure of the transaction protocol is separated

from the authentication protocol.

Towards a better utilization of smart cards in the e-commerce, we have de-

signed and developed a generic builder, Smart RAD, which is an application-

programming toolbox for application developers to build secure smart card

based applications. The developer can develop secure e-commerce systems

rapidly without knowing the sophisticated architecture of smart cards. We

have developed a web-based B2C and application-based P2P trading plat-

forms called Multi-Max for evaluation purpose. This trading platform has

demonstrated the feasibility and flexibility of our toolbox developed.

Appendix A

93

Appendix A Detail Experimental Result 94

Detail Experimental Result

A. l Authentication Time Measurement

C P U 333MHz 500MHz 667MHz

Memory 224M 128M 128M

Authentication Time (ms) Authentication Time (ms) Authentication Time (ms)

3620 3300

3790 3570 3350

3680 3300 3180

3730 3290 3250

3850 3630 3240
3840 3290 3240

3840 3250 3130
3680 3290 3180

3680 3400 3190

3620 3460 3240

3680 3300 3630
3850 3290 3240

3680 3570 3130

3510 3350 3240

3630 3190 3240

3840 3300 3290

3740 3290 3140

3620 3410 3300

3520 3190 3300

3730 3180 3350

3520 3180 3130

3840 3620 3190

3680 3570 3290

3630 3350 3300

3570 3410 3130

3900 3680 3130

3680 3400 3240

3620 3360 3190

3570 3350 3190

3520 3400 3180

3840 3290 3300

3680 3300 3300

3630 3300 3130

3570 3350 3190

3900 3180 3190

3680 3290 3190

3620 3250 3130

3570 3350 3180

3520 3290 3190

~ A v e r a g e Time (m s) “ 3700 3361 3229

Standard Deviation 123 136 93

Maximum Time (ms) 3960 3680 3630

Minimum Time (ms) | ^ ^

Table A.l : Authentication Time Measurement

Appendix A Detail Experimental Result 95

A.2 On-Card and Off-Card Computation Time

in Authentication

The client host and the server have 667MHz and 128M ram running on windows

98 SE.

On-card (ms) Off-card (ms) Total (ms)

2690 610 3300

2750 490 3240

2630 500 3130

2690 550 3240

2690 550 3240

2590 650 3240

2630 720 3350

2690 500 3190

2690 490 3180

2700 600 3300

2690 610 3300

2700 600 3300

2630 550 3180

2700 490 3190

2690 600 3290

2690 610 3300

2630 500 3130

2630 500 3130

2740 610 3350

2690 440 3130

2640 600 3240

2680 560 3240

2690 500 3190

2690 440 3130

2700 600 3300

2750 540 3290

2640 490 3130

2640 600 3240

2690 610 3300

2690 550 3240

2640 490 3130

Average Time (ms) 2677 558 3235

Standard Deviation 38 67 69

Maximum Time (ms) 2750 720 3350

Minimum Time (ms) 2590 440 3130

Table A.2: On-card and off-card computation time in authentication

Appendix A Detail Experimental Result 96

A.3 Authentication Time with Different Servers

The testing client host has 500MHz CPU and 128M ram running on windows

98 SE platform.

Server C P U ^ ^ ^ 270MHz 華 MHz

Server Memory 224M 512M 8G
Server OS Windows 98 SE Solaris 2.6 Solaris 7

Authentication Time (ms) Authentication Time (ms) Authentication Time (ms)
^ 3300

3570 3840 3350

3300 3740 3350

3290 3900 3300

3630 3790 3400

3290 3840 3350

3250 3850 3410

3290 3900 3350

3400 3730 3290

3460 3850 3350

3300 3730 3240

3290 3790 3300

3570 3740 3410

3350 3680 3290

3190 3840 3300

3300 3680 3400

3290 3680 3300

3410 3730 3290

3190 3740 3300

3180 3850 3300

3180 3730 3520

3620 3900 3350

3570 3730 3240

3350 3850 3290

3410 3790 3410

3680 3850 3350

3400 3790 3410

3360 3840 3240

3350 3790 3290

3400 3740 3460

3290 3840 3240

3300 3790 3300

3300 3790 3290

3350 3790 3300

3180 3740 3350

3290 3790 3460

3250 3790 3300

3350 3840 3350
^ ^ ^

Average Time (ms) ^ 3791 3335

Standard Deviation 136 61 65

Maximum Time (ms) 3680 3900 3520

Minimum Time (ms) ^ ^ —

Table A.3: Authentication time measurement with different servers

Appendix A Detail Experimental Result 97

A.4 Transaction Time Measurement

Server C P U 500MHz; 667MHz

Server Memory 128M 128M

Client C P U 500MHz 667MHz

Client Memory 128M 128M

Transaction Time (ms) Transaction Time (ms)

3 1 ^ 3180

3080 3030

3190 3080

3080 3130

3240 3070

3070 3130

3020 3130

3130 3130

3130 3070

3130 3020

3170 3130

3190 3070

3070 3130

3130 3020

3130 3080

3190 3130

3130 3080

3070 3030

3020 3130

3130 3020

3130 3080

3130 3130

3020 3130

3190 3130

3070 3020

3130 3070

3130 3020

3190 3030

3130 3 0 ^

Average Time (m s) ~ 3124 3082

Standard Deviation 57 44

Maximum Time (ms) 3240 3130

Minimum Time (ms) ^ ^ I

Table A.4: Transaction time measurement

A.5 On-card and Off-card Computation Time

in Transaction

The client host and the server has 667MHz and 128M ram running on windows

98 SE platform.

Appendix A Detail Experimental Result 98

On-card (ms) Off-card (ms) Total (ms)

2 4 ^ 820 3300

2470 660 3130

2410 770 3180

2530 660 3190

2470 720 3190

2470 660 3130

2420 770 3190

2410 780 3190

2420 710 3130

2360 710 3070

2360 660 3020

2360 770 3130

2360 720 3080

2420 660 3080

2360 660 3020

2360 660 3020

2360 770 3130

2360 660 3020

Average Time (ms) 2410 712 3122

Standard Deviation 54 55 77

Maximum Time (ms) 2530 820 3300

Minimum Time (ms) 2360 660 3020

Table A.5: On-card and off-card computation time in transaction

Appendix B

UML Diagram

B• 1 Package cuhk.cse.demo• applet

UFOApplet

Java card .frame wo rk.Ap p I et

interface

UFOAppfef

+UFOApplet(bArray:byteD.bOtrset:short.bLength:byte)

+InstalKbA rray:b}/te[L t>Qffset: byte, bLength:byte) :void
+seiectO:boolean
+deseiectO:void
+buifdKey(fNA .short, t:shoit_ tshort hash-.Hash) :void
+encrypt(buffer:byte[l inOffsetshon, iengthshort, output: byteH :void
+decn/pt(biifrerbyteg inOffsetahon, _th:shorl output: bytell outOfTsetshon) .void
+paddedData(buf:b}/te[l inOffsetshort, fength:short,pdd:bytell} :st)on
+amer}ticate(apdu:A PDU) void
+process(apdu:A PUD) .void

Figure B.l: UML diagram of UFOApplet

99

Appendix B UML Diagram 100

Hash

interface

Hasti
+Hash(n:shoi1,pwd:shoi1)

+iipdate(time:shorO :short

+getHashPWDO:st}on

Figure B.2: UML diagram of Hash

HashGenerator

interface
HashGenerator

+HashGeneratorO
+getlnstdnceO .HashGenerator
+getN(butfer:byte[l offsetshort, iength:sho}f .short <

Figure B.3: UML diagram of HashGenerator

Appendix B UML Diagram 115

Record

interface
Record

+RecordO
+setRecord(data:byte!J) void
+QetRecordO:t>ytell
+dearRecordO:void

+getAmountO:shori

Figure B.4: UML diagram of Record

Appendix B UML Diagram 102

SmartPurse

interface

SmartPurse

+SmartPurse(account:byteQ)

+getinstance(account:b}/te[!):SmanPurse
+adci\/alue(data:byte[!}:boo!ear)
+debit{vaiiie:st)or(}:booiean
+getAccoi}y>tO:t)yte[}
+getVafiieO:st}ort
+c!earO:void
+clear(index:sho}^ .void
+c!earOndex:byte[I} .void
+getNumberOfRecordO :short
+getRecordOndex:sho}^ :byte[J
+iipdateO:void ^
+fir}dHe_ 血 n "

Figure B.5: UML diagram of SmartPurse

Appendix B UML Diagram 103

Transaction

interface
Transaction

+TransactionO
+setData(data:bytell} :booiean
+getDataO:bytel!
+aetHash(t)ash:bytelJ) .void

+isCompieteO iboofean
+}sEmptyO-boolean
+ciearO:void
+getAmoiintO-5hort

Figure B.6: UML diagram of Transaction

Appendix B UML Diagram 104

TransactionManager

interface
TransactionManaQer

+TransactionManagerO
+get丨 nstanceO TransactionManager
+getRecordOndex:byte) Transaction
+getN umt^erOfRecordO '.short
+5eai'chRecord(tran:Transaction):b}/te
+addRecord(data:bytel!) :byte
+ciear(ind9x:byte) :void
+cfear(}ndex:byte[D void
+clearO:void
+iipdateO:void
+tmdHeadO:st}on ^

Figure B.7: UML diagram of TransactionManager

Appendix B UML Diagram 105

B.2 Package cuhk.cse.demo.client

ClientBase

interface
CUeniBase

+Client 曰 aseO
+addCTUster}er(handferCTUstener) :void
+removeCrUstener(handier:CTUstener}:void
+runA dm}nCommand6(pin:byte[J) :t)oofean
+ioadPackage(pack:OPLoadF}le,p}n:bYtel]) :void
+rLinAppliCommands(pin:byte[D :void
+stopQCFO:void
+printA vaifabieTerminafQ :void

Figure B.8: UML diagram of ClientBase

Appendix B UML Diagram 106

CardUtility

CljentBase

interface

CardUmy

+CarclUtilityO

+getfnstanceO .CardUtility
+isPresentO :boo!ean
+authenticate(pin:b]/te[l nameStrin^ :int
+QetUsemameO :St_
+getBafanceO:int
+add\/aiue(bafance:short, account: Siting) :s_
+getNumberOfBankRecordO :shon
+getBar}f<H}stofy(index:byte):BankRecord
+getBankH}sto}yO :BankRecordl!
+getBankA ccountQ -.String
+clearBankHistoryO :boo!ean
+c!earBankH)atoiy(index:byte[I} .boolean
+dearBanf<H)stoiy(mdex:byte):boolean
+addTransaction(recorci:Ti'ansaction) :byte
+commitTransactionOr}dex:byte) M
+hasBrokenTransactionO .byte
+getTransaction(mdex:byte):Transactior}
+getTransactionO:Transaction[J
+dearTransaction(index:byte) -.boolean __
+dearTransactionOndexibytelD -.booiean ^
+clearTransactionQ -.boolean

Figure B.9: UML diagram of CardUtility

Appendix B UML Diagram 107

Install

Clien 旧 ase

interface

Install

+Install0

*getlnstar)ceO： Install

+setJLabel(label:JLabe!) :void

+setLabefrext(text:Str_:void

*initCard{pin:byte{],name:String,bank:Stmg^^^^ <

+isPresentO:boolean

Figure B.IO: UML diagram of Install

BankRecord

interface

BankRecord

+BankRecord(time:Calenclar_amount:short,account:Str_)

+BankRecord(record:byteD)

+toByteA rra}/(record:BankRecorcO :t)yte[}
+getTimeO .Cafendar
+getAccountO: short
+isEmptyO-.boolean

Figure B.ll : UML diagram of BankRecord

Appendix B UML Diagram 108

Transaction

Serializable

interface

Transaction

+Transaction(tjme:C;alendat,merchantCocJe:Strjng_productCode:Strjng,amoLjnt:jnt.note:String,grciup:String)

+Transaction(out:byteD)

+toByteA rray(recordJransaction) :tytelj
+getTimeO:C3lendar
+geW!ei'chantCodeO .String
+getProductCodeO -.String
+getAmountO:int
+QetNoteO:Stnng
+getGro_:St_
+getPropert!/0:int
+setPropei1y(propeii!/:)n^ .void
+isCompieteO .boolean
+is£mpiyO'i^oolean

Figure B.12: UML diagram of Transaction

BigHash

Serializable
interface
BioHash

+曰 igHash(n:int_hashPWD:short)
+update(time:short} :short

Figure B.13: UML diagram of BigHash

Appendix B UML Diagram 109

TimeUtility

interface

TirneUtim

+getTimeO:Date

Figure B.14: UML diagram of TimeUtility

CAUtility

interface

CAumy

+getCertfiiderString) :X509Certificate

Figure B.15: UML diagram of CAUtility

CustomCertAndKeyGen

interface

CustomCertAndKeyGen

+CustomC8rtAndKeyGen(s:String,s1:String)
+generateO:in1) :void
+getCenRequest(x500Name:X500Name) :PKCS10
+getPnvaieKeyO:PnvateKey
+geiSetfCert(x500name:X500Name, l:long) :X509Ceii
.getCenificate(x500aignerX500Signer,uaerX500NameJ:!^^^^^
+getSef(Certifkate(x500naive:X500Name,l:long):X509Certificate
+getSigner(x500name:X500Name,pnv:PnvateKey) :X500Signer
+getSigner(x500name:X500Name) :X500Signer
+setRandom(secureR3ndom:SecL>reRandom):void ^^^^^^^^^^^^^^^^^^^^^

Figure B.16: UML diagram of CustomCertAndKeyGen

Appendix B UML Diagram 110

B.3 Package server

TradePanel

. ^ ― ^ ― ^ ― ^ ― ^ ― ^ ―

JFrame
ActionListener

interface
TradePaneS

+TradePanelO
+addGB(aComp:Componentx:mty:int} .void

+actionPerformed(e:A ctionEvent} .void

+saveLogO'yoid

+iaunchO:void

+stopO™d

Figure B.17: UML diagram of TradePanel

CAPanel
I

JFrame
ActionListener

interface
CAPaneS

+CAPanel(port:int)
+addGB(aComp:Compor}entx:mty:int} .void
+actionPertomed(9:A ctionEven^ -.void

Figure B.18: UML diagram of CAPanel

Appendix B UML Diagram 111

TimePanel

JFrame
ActionListener

interface

TimePanei

+TimePanel(_: int)
+addGB(aComp:Componentx:mtyJnt} .void

+actionPerformed(e:A ctionEven^ :void

+aaveLogO:void

+launch�:void

+stopO:void

Figure B.19: UML diagram of TimePanel

ServerPrame

JFrame

ActionListener

interface

ServerFrame

+ServerFrameO

+actionPerformec{(e:A ctionEven^ yoid
+addGB(aComp:CornponenlxMyM 'void
+addDBinPanei(aPanef:JPanei, aComp:Component aConsl.GndBagConstraints^xMyM .void
+main(args:Stmg[!} :void

Figure B.20: UML diagram of ServerFrame

Appendix B UML Diagram 112

RunCAServer

Runnable

interface

RunCAServer

+RunCAServer(object:Object.port:int.aTe)ctArea:JTextArea)

+runO:vo}d

Figure B.21: UML diagram of RunCAServer

RunCAServerThread

Rurmabie
RjunCASefverThread

+RunCAServerThreacl(sock:Socket.aTe){tArea:JTextArea)

+runO:void
+getCen(iiser.StmQ) :X509Cert}ficate

Figure B.22: UML diagram of RunCAServerThread

RunTimeServer

Runnable

interface

RunTimeS&ver

+RunTimeServer(object:Object.port:int.aTe}ctArea:JTe)ctArea)

+r_:void

Figure B.23: UML diagram of RunTimeServer

Appendix B UML Diagram 113

RunTimeServerThread

— ^ ― ^ ―
Runnable

RunTimeSefverThread
+RunTimeServerThread(sock:Socket)

+runO:void

-getTimeO'.Date

Figure B.24: UML diagram of RunTimeServerThread

RunTradeServer

Runnabie

RunTradeServer

+Ru nTra deServer(obje ct: Object.po rt: i nt.textAre a JTextAre a)

+r_:void

Figure B.25: UML diagram of RunTradeServer

Appendix B UML Diagram 114

RunTradeServerThread

Runnable

Run TradeServerThread

+Ru nTra deServerThread(sock:Soc ket, p riv: R SAP rivate Key.textAre a: JTextAre a)

+runO:vo}d

-buildKey(fNA:short,t:short.J:short,bh:BigHash):void

#customized(oos:ObjectOutputStream.ois:ObjectlnputStream):void

-enci7pt(buffer:byteD.offset:shoi1.length:short):byteQ

-decrypt(buffer:byteD.ofrset:short.length:short):byteD

Figure B.26: UML diagram of RunTradeServerThread

StopServer

Runnable

interface

StopServer

+StopServer(host:String.poi1:int)

+r_:voici

Figure B.27: UML diagram of StopServer

Appendix C

Glossary and Abbreviation

• 3DES - Triple Data Encryption Standard

• APDU - Application Protocol Data Unit

• B2C - Business to Customer, a service that allows the customer to pur-

chase a product from the Internet

• BAN logic - Logic for analyzing the correctness of authentication protocol

• Card Applet - A Java program that runs and executes on Java Card

• Command APDU - the APDU sent to the card

• DES - Data Encryption Standard

• Digital Signature - the fingerprint of a message for integrity and authen-

ticity

• EDE - Encrypt-decrypt-encrypt, a sequence of 3DES encryption

• EEE - Encrypt-encrypt-encrypt, a sequence of 3DES encryption

• EEPROM - Electrically Erasable Programmable Memory.

• Hash - a function to generate a fingerprint for input data

• Java Card - A smart card that can run Java program

115

Appendix C Glossary and Abbreviation 116

• JCE - Java Cryptography Extension

• JDK - Java Development Toolkit

• JSSE - Java Secure Socket Extension

• JVM - Java Virtual Machine

• Local Authentication - authentication for local access

• OpenCard - Standard for smart card access on Java platform

• P2P - Peer-to-Peer

• PKI - Public Key Infrastructure

• Private Key - It is used for the generation of signature and decryption

• Public Key - It is used for the verification of signature and encryption

• Public Key Algorithm - Asymmetric key algorithm where public key is

accessible by any parties, while the private key is kept by the own as a

secret.

• Remote Authentication - authentication for remote access

• Response APDU - APDU sent from the card

• ROM - Read Only Memory

• RSA - Asymmetric cryptographic algorithm found by Rivest, Shamir and

Adlemen

• Secret Key - The key for symmetric algorithm

• Smart Card - A credit card sized plastic card with processor chip

• Tamper-proof - A device is tamper-proof if the information in that device

would be lost when someone tries to tamper with the device

Appendix C Glossary and Abbreviation 117

• UML - Universal Modelling Language

4

Bibliography

1] w . A. Aiello, A. D. Rubin, and M. J . Strauss. Using smartcards to secure

a personalized gambling device. In Proceedings of the 6th ACM conference

on Computer and communications security, pages 128-137, 1999.

2] N. Asokan, P. A. Janson, and M. Waidner. The state of the art in elec-

tronic payment systems. In Computer, volume 30, pages 28-35, September

1997.

3] N. Asokan, M. Schunter, and M. Waidner. Optimistic protocols for fair

exchange. In Proceedings of the 4th ACM conference on Computer and

communications security, pages 7-17, 1997.

4] M. Bellare, J. A. Garay, R. Hauser, A. Herzberg, H. Krawczyk, M. Steiner,

G. Tsudik, E. V. Herreweghen, and M. Waidner. Design, implementation,

and deployment of the ikp secure electronic payment system. In Selected

Areas in Communication, IEEE Journal on, volume 18, pages 611-627,

April 2000.

5] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. In

ACM Transactions on Computer System, volume 8, 1990.

6] D. Chadwick. Smart cards aren't always the smart choice. In Computer,

number 142-143, 1999.

118

7] C. C Chang, R. J. Hwang, and D. J. Buechrer. Using smart cards to

authenticate passwords. In Security Technology Proceeding, number 154-

156, 1993.

8] C. C Chang and C. S. Laih. Remote password authentication with smart

cards. In Computers and Digital Techniques, volume 139, page 372, July

1992.

9] C. C. Chang and T. C Wu. Remote password authentication with smart

cards. In Computers and Digital Techniques, volume 138, pages 165-168,

May 1991.

10] F. Chau. Smart card technology. In U.S. Department of

Commerce - National Trade Data Bank, November 2000.
http://www.tradeport.org/ts/countries/hongkong/isa/isar0040.htmL

.11] Z. Chen. Java Card Technology for Smart Cards: Architecture and Pro-

grammer's Guide. The Java series. Addison-Wesley, 2000.

12] D. Coppersmith. The data encryption standard (des) and its strength

against attacks. In IBM Journal of Research and Development, May 1994.

13] D. W. Davies and W. L. Price. Security for Computer Networks. John

Wiley and Sons, 1984.

14] D. E. Denning. Cryptography and Data Security. Addison-Wesley, 1982.

15] M. T. El-Hadidi, N. H. Hegazi, and H. K. Asian. Performance eval-

uation of a new hybrid encryption protocol for authentication and key

distribution. In IEEE Symposium on Computers and Communications

Proceedings, pages 16-22, 1999.

119

http://www.tradeport.org/ts/countries/hongkong/isa/isar0040.htmL

16] F. J. T. Fabrega, J. C. Herzog, and J. D. Guttman. Strand spaces: Why is

a security protocol correct? In 11th IEEE Computer Security Foundations

Workshop, pages 160-171, 1998.

17] M. K. Franklin and M. K. Reiter. Fair exchange with a semi-trusted third

party. In AT&T Laboratories, 1997.

18] Gemplus. Gemmobile card issuer.

http: / / www.gemplus.com / products / software / gmobile_card�ssiier .htm.

19] Gemplus. Gemplus wallet.

http: / / www.gemplus.com / products / software / wallet / index, htm.

20] Gemplus. Gemutilities.

http:// www. gemplus. com / pro ducts / software / gemutilities_mktng .htm.

21] Gemplus. Gemxpresso rad 211.

http: / / www. gemplus. com / products / software / gemxpresso_rad_211 .htm.

'22] Gemplus. Smartxcess cashcard explorer,

http:// www. gemplus. com / pro ducts / software / smartxcess / index, htm.

23] Gemplus. GemXpresso 211 V2 Card: Reference Manual Version 2.0.

Gemplus, May 2000.

24] Gemplus. GemXpresso RAD 211 v2.3/2.3 IS and v2.4 PK/2.4 PK IS:

Getting Started Version 2.0. Gemplus, July 2000.

25] Gemplus. GemXpresso RAD 211 v2.3/2.3 IS and v2.4PK/24 PK IS:

User's Guide Version 1.0. Gemplus, July 2000.

26] L. Gong. Variations on the themes of message freshness. In lEE computer

Security Foundations Workshop Proceeding, June 1993.

120

http://www.gemplus.com
http://www.gemplus.com

27] D. Graft, M. Pabrai，and U. Pabrai. Methodology for network security

design. In Ninth Annual International Phoenix Conference on Computers

and Communications, pages 675-682, 1990.

28] The Object Management Group. Unified Modeling Language Version 1.1.

1997.

29] S. Haber and W. S. Stornetta. How to time-stamp a digital document. In

Journal of Cryptology, pages 99-111, 1991.

30] G. Hachez and J. J. Quisquater. Biometrics, access control, smart cards:

a not so simple combination. In Proceedings of the Fourth Working Con-

ference on Smart Card Research and Advanced Applications (CARDIS

2000), pages 273-288, September 2000.

31] U. Hansmann, M. S. Nicklous, T. Schack, and F. Seliger. Smart Card

Application Development Using Java. Springer, 2000.

32] Hendry. Smart Card Security and Applications. Artech House Inc., 1997.

33] R. Housley, W. Ford, W. Polk, and D. Solo. Internet x.509

public key infrastructure certificate and crl profile. January 1999.

http://www.faqs.org/rfcs/rfc2459.html.

34] G. Howland. Development of an open and flexible payment system.

November 1996. http://www.systemics.com/docs/sox/overview.htmL

35] M. S. Hwang and L. H. Li. A new remote user authentication scheme using

smart cards. In IEEE Transaction on Consumer Electronics, volume 46，

pages 28-30, Feburary 2000.

36] F. Joshua. When is a singleton not a singleton. In Javaworld - Design

Pattern, January 2001.

121

http://www.faqs.org/rfcs/rfc2459.html
http://www.systemics.com/docs/sox/overview.htmL

37] L. Lamport. Password authentication with insecure communications. In

Communications of the ACM, volume 24, pages 770-772, November 1981.

38] H. W. Lee and T. Y. Kim. Smart card based offline micropayment frame-

work using mutual authentication scheme. In Global Telecommunication

Conference, volume 4, pages 2514-2519, 1998.

39] B. Lewis and D. J. Berg. Multithreading Programming with Java Tech-

nology. Java series. Prentice Hall, 2000.

40] S. Liu and M. Silverman. A practical guide to biometric security technol-

ogy. In IT Professional, pages 27-32, January 2001.

41] X. Lorphelin. Internet and smart card application deployment. In J Source,

August 1999.

42] Microsoft. Smart card for windows.

http://www.scia.org/SignificantEvents/98msft_sc.htm.

43] Y. S. Moon, H. C. Ho, K. L. Wan, and S. T. Wong. Collaborative finger-

print authentication by smart card and a trusted host. In Electrical and

Computer Engineering, volume 1, pages 108-112, 2000.

44] R. Morris and K. Thompson. Password security: A case study. In Com-

munications of the ACM^ volume 22, pages 594-597, November 1979.

45] Multos. The multi-application operating system for smart cards,

http://www.multos.com/.

46] Netscape. Secure socket layer ssl. http://www.netscape.com.

47] OpenCard. Opencard framework, http://www.opencard.org.

48] L. C. Paulson. Proving security protocols correct. In 14th Symposium on

Logic in Computer Science, pages 370-381, 1999.

122

http://www.scia.org/SignificantEvents/98msft_sc.htm
http://www.multos.com/
http://www.netscape.com
http://www.opencard.org

49] P.A. Pays and F. D. Comarmond. An intermediation and payment system

technology. In Fifth internation world wide web conference, May 1996.

http: //www5conf.inriair/fich_html/papers/P27/Overview.htmL

50] M. Pistoia, D. F. Reller, D. Gupta, M. Nagnur, and A. K. Ramani. Java

2 network security. In Prentice Hall, 1999.

51] M. K. Reiter and S. G. Stubblebine. Toward acceptable metrics of au-

thentication. In IEEE Symposium on Security and Privacy, number 10-20,

1997.

52] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital

signatures and public key cryptosystems. In Communications of the ACM,

February 1978.

53] H. E. Rose. A course in number theory. Oxford University Press, second

edition, 1996.

54] RSA. Rsa secureid.
http://www.rsasecurity.com/products/securid/index.html.

55] Schlumberger. Cyberflex access sdk 3.0.
http://www.l.slb.com/smartcards/products/network/sdk.html.

56] R. W. Schmidt. Java Network Launching Protocol & API specification

version 1.0. Sun, December 2000.

57] B. Schneier. Applied Cryptography second edition: Protocols, Algorithm,

and Source Code in C, John Wiley k Son, second edition, 1996.

.58] B. Schneier. Secrets and Lies: Digital Security in Networked World. Wiley

Computer Publishing, 2000.

59] B. Schneier. Self-study course in block cipher cryptanalysis. In Cryptolo-

gia, pages 18-34, January 2000.

123

http://www.rsasecurity.com/products/securid/index.html
http://www.l.slb.com/smartcards/products/network/sdk.html

60] B. Schneier and A. Shostack. Breaking up is hard to do: Modeling security

threats for smart cards. In USENIX Workshop on Smart Card Technology,

pages 175-185, October 1999.

61] M. R. Schroeder. Number theory in science and communication. Springer

Verlag, second edition, February 1985.

62] H. Schuldt, A. Popvici, and H. J. Schek. Automatic generation of reliable

e-commerce payment processes. In Web Information Systems Engineering

2000, volume 1, pages 434-441, 2000.

63] V. Y. Shen. ecyberpay - a micropayment solution for electronic com-

merce on the web. September 2000. http://www.ecyberpay.com/zh-

tw/body/press/hkcc.htm.

64] W. Stallings. Cryptography and Network Security. Prentice Hall, second

edition, 1998.

65] Sun. Java 2 sdk. http://java.sun.eom/products/jdk/l.2/.

66] Sun. Java card technology.

http: //java.sun.com/products/javacard/index.html.

67] Sun. Java cryptography extension, http://java.sun.com/products/jce/.

68] Sun. Java secure socket extension, http://java.sun.com/products/jsse/.

69] Sun. Java security, http://java.sun.com/security.

70] Sun. Java web start, http://java.sun.com/products/javawebstart/index.html.

71] K. Topley. Core Swing Advanced Programming. Prentice Hall, 2000.

72] H. C. Tsang, K. S. Leung, and K. H. Lee. Design and analysis of

smart card based remote authentication protocol for internet-based sys-

tem. Technical report, The Chinese University of Hong Kong, 2001.

124

http://www.ecyberpay.com/zh-
http://java.sun.eom/products/jdk/l.2/
http://java.sun.com/products/jce/
http://java.sun.com/products/jsse/
http://java.sun.com/security
http://java.sun.com/products/javawebstart/index.html

'.：̂'- •'••;••；• •‘ .:.,’〔+•.' • ..: •:. , ... ‘ •

V .:. .•.:...?、::.）.:.:..•’.：.. ••• ••

… . . … 『 / … • , • • • ^ , . ,

.:.、.::•:::...:.:：.：/ ••：： .V '“；’ ••、:.:‘： ... ,,1 ,.:.•+••.•..、+• ,„.

•r：：；-̂;；-:̂^̂^ :；.. . ：；；•,.-; -f) .,...

..::>.::,:,、-•••"：. • ..: : .、., • • 、 I』 .

. • • . 、 . V • .

. 、 . : . ’ • I

..•••• ‘ ‘ • ,
： ； ： . . • , • • .

.:::。”.";‘::..,:.::、..:• •…：•• • • -* • .
. . . . ‘ ‘ ： ‘ . ,. . • , ..1 • .

„ ‘， . \ -. ： •• • . . • . . • ‘ - . . - • ：‘ •

CUHK L i b r a r i e s

圓圓•lllllllllllll

