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Abstract 

Image Mosaic construction is about stitching together adjacent images of a scene into 

an image that displays a wider field of view. Existing mosaic construction algorithms 

have the following restrictions: (1) the scene is planar or very distant, or (2) the scene is 

generic but the camera motion is a pure rotation. In either case the registration of images 

involves a global parametric mapping. In this work we address the general case: a 

generic scene is pictured under an arbitrary camera motion. The image data so captured 

contains parallax that makes the registration of images a difficult problem because global 

parametric transformation that allows one image to be registered with another is lacking. 

The work is based upon a 3-image algorithm that is capable of constructing mosaic from 

images of such nature. The algorithm exploits projective reconstruction to solve for the 

problem of geometrical image transfer between the images being registered. We extend 

the algorithm for an image stream that contains parallax. We answer two questions: (1) 

how an image stream is divided into various 3-image sets for the three-image algorithm 

to iterate upon; and (2) how intermediate mosaic results over the various 3-image sets are 

accumulated to compose the overall mosaic at the end. The framework allows uneven 

sampling of the video stream. Experimental results on real image data are presented. 
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；筒要 

相片鑲嵌製作是將同一場景的不同照片組合成一張有較大視野的相片，現存的相 

片鑲嵌技術有著以下的限制• ( 1 )場景須要是平面或遠離鏡頭，或（2 ) —般場景 

但鏡頭動向只能作純旋轉，以上情況會利用一個全體性參數拼合相片。在這裡我 

們嘗試一般情況：利用一個隨意活動的鏡頭拍攝一般場景，在得出的相片中會發現 

視差，視差會令拼合相片成爲一個難題因缺乏一個全體性參數以作拼合相片。這裡 

的硏究工作是建基於一個名爲三相片系統的技術，這個三相片系統有能力應付上述 

情況。這個新技術是利用投射性重組，以解決拼合相片間的幾何移送問題。我們更 

將這個技術延伸至包含視差的相片串。在這裡我們解決了兩個間題（1 )如何將相 

片串分折成一組三相片以應用三/I篇贫，及（2 )如何將過程中得到三 / I — 

鑲嵌相片累積成最後的鑲嵌相片。這個技術也容許對錄像的不均等取樣.這裡也提 

供對真實照片的實驗成果。 
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Chapter 1. Introduction 

1.1. Background ‘ 

Image mosaic construction is about stitching together adjacent images of a scene into 

an image that displays a wider field of view. Image mosaicking can be used in a wide 

variety of applications including remote sensing, visual surveillance, virtual reality, and 

video compression. 

There have been a few pieces of work about it in recent years [8,11,14,16], but they are 

only effective in constrained situations where the camera motion is a pure rotation or the 

viewed scene is planar or very distant. The more general case of a generic scene viewed 

under a general camera motion has not been addressed much. What makes the general 

case more difficult is the parallax present in the images. Mosaicking images with 

parallax is challenging because there is no global parametric transformation between the 

images, as is present in the above restricted cases [8,11,14,16]，that allows the images to 

be registered and warped to the same image frame. 
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1.1.1. Parallax 

Parallax [18] is the distortion in the image that is resulted from the displacement of the 

camera motion. As shown in Fig. 1, if two distinct 3D points {P and Q) project to the 

same point in an image n，(whose optical center is O，）along the same view ray. There 

would exist a displacement in their image positions if the viewpoint changes. For 

example if we change the viewpoint from n ’ to another image IT (whose optical center 

is O) the image on n ' will become two image points p and ^ on n . That 

displacement between the two image points is the parallax that we are addressing. 

Parametric 
surface 

瑪 
Fig. 1 : Illustration of parallax. 
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The existence of parallax in images makes image mosaicking problematic because of 

the lack of global parametric transformations between the images. Blurring and ghosting 

will occur if we use a global transformation to construct mosaic from images that contain 

parallax. For example, consider the case in Fig. 1. If we transform the image n ’ to image 

n using a global transformation, blurring and ghosting will exist sincep' on image n , 

will transform to p and q on image IT. 

1.2. Literature Review 

There have been a few pieces of work about mosaic construction in recent years 

[8,11,19,20,26]. Global parametric transformations between two images are typically 

used to register the images and thereby construct the mosaic. The transformations 

include image-plane similarity transformations, affine transformations, bilinear 

transformations, and planar-projective (homography) transformation. 

The work [26] demonstrated the use of homography as the transformation to register 

images. It can construct 2D mosaics from image with small overlap and is able to deal 

with cases when the rotation around the optical axis and zooming are large. The work [12] 

uses Gaussian Pyramid to construct mosaic. It has the ability to do inverse mosaic for 

tracking the current image frame, but the work is limited to panoramic scene. The work 

[16], unlike most of the other works that mainly focus on restrictive situations. It allows 

zooming and forward motion in the camera, but it relies on the use of some nonlinear 
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method. The work [23] focuses on constructing panorama from image sequence. It uses 

planar-projective transformation to register adjacent image frames instead of projecting 

the images onto a common surface. It then refines the mosaic result using global and 

local alignments. 

The work [7] aims to construct real-time video mosaicking from images of the ocean 

floor captured by a semi-autonomous underwater vehicle. The work uses kalman filter 

and correlation method between image frames to reduce the error in resulting mosaic. It 

shows the ability of reducing the propagation of image alignment errors within the 

mosaic and the use of resulting mosaic for the position estimate of an underwater vehicle. 

But the effect of parallax to mosaic construction was not mentioned in this work. 

In [19] authors proposed a method in which both the planar and parallax motion 

components are computed with a coarse-to-fine scheme, but a highly complicated 

nonlinear system is required to deal with a large number of unknowns in order to obtain a 

good result. 

In summary, most of the previous works are effective only in constrained situations 

where the camera motion is a pure rotation or the viewed scene is planar or very distant. 

The general case, i.e.，the case of having a generic scene viewed under a general camera 

motion, has not been addressed much. What makes the general case difficult is the 

parallax present in the images. Mosaicking images with parallax is challenging because 

there is no global parametric transformation between the images, as is present in the 
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above restricted cases [14,16,19,20,26], that allows the images to be registered and 

warped to the same image frame for the stitching process. 

A framework proposed in [3] allows mosaic to be constructed from images with 

parallax. The work argued that in such a case two images could not possibly allow 

mosaic to be constructed. It proposed the use of an additional image, termed the 

intermediate image, that allows intensity region visible only in one image but not in the 

other to be warped from the former to the latter. The idea was to perform projective 

reconstruction from feature matches of the images to obtain 3D projective shape. Then 

project the 3D projective shape onto the mosaic frame. The merit is that all the techniques 

used in the system are classical techniques in computer vision. However, the framework 

applies only to a discrete set of three images. As the framework involves not two 

adjacent images but three images, it is not obvious how the framework is extended to 

process not three images but an image stream. 
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1.3. Research Objective 

The first aim of the research is to study the 3-image algorithm first proposed by [3] and 

making modification on the existing system of the 3-image algorithm. We also aim at 

developing a mechanism that allows the framework to be applied toward an image stream. 

The mechanism should allow image mosaicking to be no longer limited to planar scene or 

pure rotation of camera. Mosaic can be constructed even under arbitrary motion of a 

hand-held camcorder. Experiments are also conducted in order to support the arguments 

in developing the system. 

1.4. Organization of Thesis 

The remainder of the thesis is organized as follows. Section 2 reviews the 3-image 

algorithm. Section 3 discusses the extension of the algorithm from the case of a discrete 

image set (the 3-image algorithm) to the case of an image stream (the n-image algorithm). 

Section 4 shows the modifications on the n-image algorithm to allow the system to 

produce a more pleasing mosaic using an uneven-sampling-rate of the input video. 

Section 5 presents experimental results we obtained in applying the proposed method to 

real and synthetic image data. 
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Chapter 2. The 3-Image Algorithm 

Given two images (that are taken from different viewpoints) of a generic scene, we aim 

to construct a mosaic that displays all that is visible in the two images. In this work, all 

image points will be represented by their homogeneous coordinates. Let R and t be the 

rotation and translation components of the spatial transformation between the two camera 

coordinate frames. Let K denote the intrinsic parameters of the camera (a 3x3 upper-

triangular matrix). For any pair of matched pixels or features, p! and p2� in the two 

images, we have the following equations [5,6,9,12,18,21](^stands for the equality up to a 

scale factor): 

p,=KRK-'p, +-Kt (1) 
z 

planar parallax 

where z is the depth of the corresponding 3D feature. Since KRfC丨 is the homography at 

infinity, and Kt represents the epipole 62 on the second image, Eq.(l) can be written as: 

P2 z 

Thus the 2D motion of the feature or pixel can be decomposed into two components 

(Eq.(l)): (i) planar (the first term in the above equation), and (ii) parallax (the second 

term in the above equation). Note that this decomposition can be done with respect to any 

arbitary plane n (real or virtual) in the environment [11]. The parallax is the image 

projection of the deviation of the associated 3D feature from the chosen plane. 

7 



The above equation can be written as 

(2) 

where k can be considered as the projective depth of the point pi. In this case, the parallax 

is defined with respect to plane n . 

While the planar transformation can be computed by choosing a physical or virtual 

plane in the scene, the second component depends on both the camera translation and the 

individual depth of the considered pixel. 

From Eq. (2)，one would notice that the knowledge of the correspondence (pi, P2) and 

the knowledge of the scalar k are equivalent in the sense that the knowledge of one yields 

that of the other. However, due to the intrinsic property of images that their texture might 

not permit a pixel-to-pixel correspondence for the whole image, the parallax component 

is not known for the majority of pixels even though it is known for some of them (the 

feature correspondences). As a consequence, one cannot use Eq. (2) to register the two 

images. 

It is impossible to construct a global 2D parametric transformation between two images 

in the general case (an arbitrary scene under an arbitrary camera motion), so we make use 

of a third image which we refer to as the intermediate image. 

We are thus left with three images. We call them as follows. The reference image R is 

the image whose viewpoint is where all image data are warped to, and where the final 
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mosaic is constructed. The target image T is the image to be warped to the viewpoint of 

the reference image for constructing a mosaic there. The intermediate image I is a third 

image that is to assist the warping of the target image to the reference image; it should 

show something in common with the target image as well as with the reference image. It 

should be noticed that we have two parallax fields: (i) the one associated with the couple 

target-reference, and (ii) the one associated with the couple target-intermediate. 
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2.1. Projective Reconstruction 

Given a pair of uncalibrated images with no knowledge of the intrinsic and extrinsic 

parameters of the camera, a set of pixel correspondence is the only information that we 

have and we do not know the location of the original 3D points. What we can recover 

from this set of correspondence is the camera transformation matrices (i.e. the 

fundamental matrix) and the point placements may be determined up to a collineation of 

projective 3-space (only the connection of points can be recovered but the size, angle and 

parallelism cannot be recovered) [4,8]. 

Thus, our 3 images are related to an arbitrary projective space. Each image will have a 

3x4 projective mapping M that maps 3D projective space into the image plane such that 

r 1 � Z _ u 
Y 

V -M 
Z 

1 

where fX Y Z 1]' axQ the 3D homogenous coordinates of a object point and [uv 1]' are 

the homogenous coordinates of an image point on the image plane. Let M, M,，and M" be 

the projective mapping associated with the target image, the intermediate image, and the 

reference image respectively. These three matrices can be easily inferred from point 

matches. But before recovering the projective mappings, we have to recover the 

fundamental matrix between the target image and the intermediate image. 
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2.2. Epipolar Geometry and Fundamental Matrix [5] 

Any two images of a single scene/object are related by the epipolar geometry. It is 

independent of scene structure, only depends on the cameras' intrinsic parameters and 

relative pose. Consider the case of two cameras as shown in Fig. 2. Let O and 0’ be the 

optical camera centers of the first and second cameras. Given an object point P projected 

onto the image planes i and i\ we will get the image points p andp ' lying on the two 

image planes i and i, respectively. For image point p on the image plane i, its 

corresponding point in the second image is constrained to lie on a line /，called the 

epipolar line. The epipolar line is the intersection of the plane n defined by P, O and O， 

(known as the epipolar plane) with the second image plane. The image point p may 

correspond to an arbitrary point on the line OP (P may be at infinity) and the projection 

of OP on the second image plane is the epipolar line. Moreover, the intersection of the 

line 00，and the image planes form the epipoles (e and e ‘ respectively) of the images. If 

p and p，correspond to a single physical point P in 3D space, then p,p’，0 and O，must be 

coplanar. 
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Fig. 2 ： The epipolar geometry. 

Epipolar geometry can be described by a 3x3 singular matrix called the fundamental 

matrix. It captures all geometric information contained in the two images such that if we 

have 2D point x in the first image and jc, in the second, then the image points satisfy the 

relation Fx = 0. 

2.3. Determine the Projective Mappings 

Let F be the fundamental matrix between the target image and the intermediate image, 

and e' be the corresponding epipole in the intermediate image. It is well known that a 

solution for the mappings M and M，is given by [22]: 

M = [l 0: 

M'=[s[e^)F + e'w' coe\ 

for some 3-vector w, and a non-zero scale cd. Matrix I represents the 3x3 identity matrix, 

S(e ’) is the skew-symmetric matrix associated with the 3-vector e,. 
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Once M and M，are determined, the 3D projective coordinates of all feature matches 

present in the target image and the intermediate image can be recovered. The third 

mapping M，，is then obtained by imposing that some reconstructed 3D points are 

reprojected to their matches in the reference image frame. The criterions are presented in 

the coming section. 

2.3.1 Conditions for Initial Matches 

The fundamental matrix F between the target image and the intermediate image is a 

3x3 matrix of rank two. Also, it is defined up to a scalar factor. Therefore, a fundamental 

matrix has only 7 degrees of freedom. There are only seven independent parameters 

among the 9 elements of the fundamental matrix. As each point correspondence provides 

a linear equation for the entries of F，so it is possible to recover the fundamental matrix 

using 7 pairs of correspondence points between the target image and the intermediate 

image. In our system, we use the linear least-squares technique to recover the 

fundamental matrix. In other words, if we ignore the dependence of the 8 degrees of 

freedom, we can recover F (up to an overall scale factor) by a linear estimation more 

easily with at least 8 point correspondences. 

13 



Suppose we have n point correspondences, where n>8 , we will get the following 

homogeneous system of linear equations 

Bf = 0 

r / i i i ro" 

少 " V "̂ î V •ViJi,少1’ 少 1 1] /i2 0 
： ； = ； (3) 

少 少 1 」 f y i 0 

_ / 3 3 �k 
^ � S H S ^ 

B f 0 

where 5 is a «x9 matrix related to the image coordinates of feature correspondences in 

the target image {[x y i f ) and intermediate image {[x' y' i f ) . / is a vector associated 

with the elements of the fundamental matrix. In order to recover a nontrivial fundamental 

matrix, the rank of 5 must be equal to 8. If the rank of B is less than 8, there will be too 

many degrees of freedom in the fundamental matrix other than the arbitrary scale factor. 

If the rank of 5 is 9 (an nx9 matrix cannot have rank more than 9)，the system of 

equations is just determined and the only solution we get from the system of equations is 

the trivial solution which does not conform to physical situation [8,10,14:. 

The projective mapping M，，of the reference image is a 3x4 matrix which is defined up 

to a scalar factor. Therefore, a projective mapping has 11 degrees of freedom. There are 

only 11 independent parameters among the 12 elements in the projective mapping. Since 

each point correspondence will generate two equations in recovering the projective 

mapping, there must be at least six matches between the feature points on the reference 
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image and the 3D points reconstructed from target image and intermediate image, so that 

we have at least 12 equations to estimate 11 degrees of freedom of the projective 

mapping M，， 

To recover the projective mapping M” using the least-squares technique, we have the 

following homogeneous system of equations. 

Ax = 0 

Y, Z, I 0 0 0 0 - x j , -X, Tmii l �(T 
0 0 0 0 X, Y, Z, I - y j , -y, m,^ 0 

； ； = : ( 4 ) 

7„ Z„ 1 0 0 0 0 - x X ^33 0 
_ 0 0 0 0 Y„ 1 - y j „ -y„Z„ [ o_ 

^ S H S H 

A X 0 

where y l i s a2«x l2 matrix associated with the coordinates of the reconstructed 3D points 

{[XYZ i f ) and image points in reference image (Jx y i f ) , and n is the number of point 

correspondences used to recover the projective mapping, x is a vector associated with 

the elements of the projective mapping M". 

In order to get a non-trivial solution of M”, the rank of A must be equal to 11. If the 

rank of A is less than 11, there will be degrees of freedom beyond that of the arbitrary 

scale factor of M,，cannot be recovered. If the rank of A is 12, the system of equations is 

just determined, and we can only get a trivial solution for M" but that is physically 

impossible [8,10]. 
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In summary, the initial matches must fulfill the following conditions: 

(1) On the feature correspondences between the target image and the intermediate image: 

a) The number of initial matches must be at least 8 (assuming the linear least-square 

method is used). 

b) The matrix B formed by the initial matches (according to Eq. (3)) must be of rank 8. 

(2) On the feature correspondences between the target, intermediate, and reference image: 

a) The number of initial matches must be at least 6. 

b) The matrix A formed by the initial matches (according to Eq. (4)) must be of rank 

11. 

To get such matches we use the software developed by Zhang et al. [25]. Details of the 

software will be discussed in the following section. 

Our method relies on the following fact. In general, for any pixel of the image to be 

registered (target image) if we know the 2D location of its correspondence in the 

intermediate image we are able to transfer this pixel to the reference image using a 

projective reconstruction followed by a projection, i.e., using the three projective 

mappings M, M\ and M". This is illustrated in Fig. 3. 
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Fig. 3: Illustration of the three-image algorithm. 

2.3.2 Obtaining the Feature Correspondence 

We use a software developed by others but not our own because the main purpose of 

this research work is develop an algorithm for image mosaicking but not feature 

matching. So the focus was on the mosaicking part. Moreover, it is very difficult to 

include the feature matching in the research work because feature matching itself is a 

challenging work. It caused many researchers lots of time in developing system for 

feature matching. If we construct our own feature matching system, its preference might 

not as good as the system developed by the others. So it would be more efficiency to use 

a feature matching system that developed by other researchers. 
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Since the quality of the feature correspondence plays an important role in our research 

work, there are some requirements about the feature matching system. The accuracy of 

the correspondence feature is very important since it will affect the error of the estimation 

of the transformation mappings used in the mosaicking algorithm. The feature matching 

system should also able to work with uncalibrated images because we do not want to add 

limitation on the camera used in capturing image/video. 

The software image-matching developed by Zhang et al. [23] was used to obtain the 

matches that to be use in the 3-image algorithm. Image-matching is a software which 

implements a robust technique for binocular image matching by exploiting the only 

available geometric constraint, the epipolar constraint. It thus computes also the epipolar 

geometry, in terms of the fundamental matrix, between two images. 

If the images are uncalibrated, the motion between them and the camera parameters are 

not known. Thus, the images can be taken by different cameras or by a single camera at 

different time instants. If we make an exhaustive search for the epipolar geometry, the 

complexity is prohibitively high. The idea underlying the approach of image-matching is 

to use classical techniques (correlation and relaxation methods) to find an initial set of 

matches, and then use a robust technique—the Least Median of Squares (LMedS)---to 

discard false matches in this set. The epipolar geometry can then be accurately estimated 

using a meaningful image criterion. More matches are eventually found, as in stereo 

matching, by using the recovered epipolar geometry. Fig. 4. shows an example of using 

image-matching to obtain feature correspondence. 
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Fig. 4.: example of using image-matching to obtain feature correspondences from a pair 

of images 

19 



Although image-matching is able to match corresponding features with acceptable 

quality in most experiments. But there are some limitations on image-matching. If the 

features of the scene were not distinguished enough, it will affect the accuracy of the 

resulting matches. Moreover, image-matching uses points obtained by comer detector to 

perform feature matching. If such comers are not available in the images, it also affects 

the accuracy of the resulting matches. 
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2.4. Registering Pixel Element 

Since parallax also exists between the target image and the intermediate image, so 

transferring pixels from the target image to the intermediate image for the entire image is 

as difficult as transferring them onto the reference image. Recall the situation that when 

parallax is present in an image pair, the correspondence pixel can be represented by: 

where pi' denotes pixel on the intermediate image and pi represent pixel on the target 

image. H is the planar motion associated with the reference plane (the plane is chosen as 

the average plane associated with all feature correspondence in the target image and the 

intermediate image), and e，represent the epipole of the intermediate image. Both H and 

e' can be recover from the feature correspondences between the target image and 

intermediate image. 

Since the parallax di is unknown for each pixel, the above equation cannot be used to 

transfer the target image pixels to the intermediate image. Therefore, it is necessary to set 

the parallax di to an approximated value d. ’ since the exact value of parallax of every 

pixel cannot be recovered for the reasons mentioned above. Transferring target pixels to 

the intermediate image is performed using the following equation: 

Pi�=Hpi +d.e' 

Approaches that proposed to determine the approximation will be presented in the 

following section 
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2.4.1. Single Homography Approach 

First taking d^ 二 0. Then the above equation will become 

this is a good approximation if the distance between the centers of projection associated 

with the target image and the intermediate image is small compared to the scene depth. 

One might question that this approximation would mean the camera motion between 

the target and intermediate images is a pure rotation, and a pure camera rotation would 

not allow any 3D notion about the scene to be recovered. However, the approximation, as 

a planar homography, also covers the case that there is considerable translation between 

the images but the scene is planar. So we can use the latter interpretation in introducing 

the mapping, approximating the scene with a plane (the reference plane) that best fit the 

available feature correspondences. So the approximation of the transformation between 

the target image and the intermediate image can be obtained. 

Once Pi' is obtained, the 3D projective coordinates of the 3D point that projects onto 

pixel Pi can be easily computed from the two projective mappings M and M，. Then, the 

2D location in the reference image (mosaic frame) is computed by the 3D point using the 

projective mapping M". 

The Single Homography approach is able to estimate pi’ when the scene can be 

approximated by a reference plane. But if the scene cannot be approximated by a 
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reference plane. A great error will be the result of using Single Homography approach. 

Another approach was introduced to overcome the problem. 

2.4.2. Multiple Homography Approach 

In this approach we taking J. = closest parallax which is known. Recall the 

approximation of the first case, that the scene can be represent by a reference plane. Now 

we do not assume the scene can be represented by one single reference plane but by 

multiple reference planes. So the approximation will become 

local Pi 

where Hiocai is a local planar homography that can be calculated from at least four feature 

correspondence pairs. 

For every pixel on the target image, we will search for the three closest features of the 

pixel. With the help of epipoles of the image, we will get four pair of feature 

correspondences. We can use the four point pairs to calculate a homography, since four 

pairs are the minimum requirement for calculating a planar homography. Then using that 

homography we can transform a pixel from the target image to intermediate image. 

We then will perform projective reconstruction on pi and pi' to determine the 3D 

projective coordinate then project it to the mosaic frame with M". 
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But this approach comes with some disadvantages. First we need to perform the search 

of closest features and calculate the local homography once for every pixel. It is a time 

and resource consuming process. One more important disadvantage is that we cannot 

ensure that the three closest feature correspondences will give us the correct 

approximation. In a case if the three feature points are collinear or close to collinear the 

recovered reference plane will deform to a line in the 3D space. The recovered 

homography will not give us the correct transformations. Because of all these problems, 

we had introduced another approach to replace the Multiple Homography approach. 

2.4.3. Triangular Patches Clustering 

We all know that if you have three distinct points in the 3D space, you can define a 

plane with the three points. Therefore we can approximate the scene using planes defined 

by any three 3D points that obtained by the projective reconstruction. But the problem is 

that if we pick up three points randomly, using them to define a (local) plane in the scene. 

The approximated scene would not be accurate. So we need an algorithm to cluster the 

points to found an optimal solution. Delaunay triangulation is one of the ways to do this. 

Delaunay triangulation is widely used in representing 3D data in the field of computation 

geometry. It is one of the fastest triangulation methods with relatively easier 

implementation, giving excellent results for most applications. 
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2.4.3.1. Delaunay Triangulation 

Given a set S of n points Si of an Euclidean space s, the correspondence Voronoi 

diagram is set Vofn convex polyhedra Vi where Vi is the set of points which are closer to 

Si in £ than to any other point in S\ 

V. = •，y/,1 <j< n,d{x,s,)<d[x,sj)] 

where d denotes the euclidian distance. 

The straight-line dual of the Voronoi diagram, obtained by linking line segments of the 

points Si，Sj’Sk whose Voronoi polyhedra are adjacent, is called the Delaunay triangulation. 

The Delaunay triangulation of a point set = � si，办..”Sn } is defined by the empty 

circle condition: a triangle SiSjSk appears in the Delaunay triangulation if and only if its 

circumcircle encloses no other points of [1,17]. Fig. 5. shows a simple demonstration of 

the Delaunay triangulation, Fig. 5(a) shows an image of a scene with feature points 

obtained by image-matching. We want to cluster the feature points into triangular patches 

using Delaunay triangulation. Fig. 5(b) shows the resulting triangular patches. 
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(c) The triangular patches obtained by Delaunay triangulation 

Fig. 5.: A simple demonstration of Delaunay triangulation. 
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So we will use the Delaunay Triangulation to cluster the feature correspondence in 

target image into a set of triangular patches. Each triangular patch will define a 3D plane 

in the projective space. The equation of this plane is inferred from the projective 

coordinates of the three vertices that compose the triangle (these are computed at the 

stage of projective reconstruction). Each plane is parameterized by a four-vector vj such 

that: 

J^jT X = 0 

where the four-vector x represents the 3D projective coordinates (up to a scale factor) of 

any point on the plane. 

There is a step different in construct mosaic using the single/multiple homography 

method and the triangular patches clustering method. If we use the single/multiple 

homography method, For a pixel p in the target image, we will first find its corresponding 

coordinatep'in the intermediate image then reconstruct the corresponding 3D coordinate 

P and find out the corresponding coordinate p ” in the reference image. 

For the triangular patches clustering method, For a pixel p in the target image, we will 

recover its 3D projective coordinate P by computing the intersection of the line of sight 

and the triangular patch that contains p. P can be computed be solving: 

p = MP 
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rp 

The above equations provide 3 linear equations in P = (X’ 7, Z, 1) • Since M = (I 0) 

solving P is very simple. 

The corresponding coordinate p" in the reference image can be recovered by using the 

projective mapping M" in the way: 

The occlusion and disocclusion problem is also a problem of the developed algorithm. 

The quality of the resulting mosaic will be affected by the occlusion and disocclusion 

problem since it will cause misalignment in the mosaic frame. This issue being one of the 

most difficult issues in computer vision, is not in this work. However, the fact that we 

represent a generic scene as a number of small planar patches would reduce the 

likelihood of this error, in comparison with the global homography method. 

The triangular patches clustering method might not be as reliable as the single 

homography method when the scene is a planar or distant. This is because in the method 

only three points are used to determine a (local) plane in 3D space and it is thus sensitive 

to noise in the feature correspondences. But for the single homography method, it 

assumes a single plane for the entire scene, and all feature correspondences are used to 

determine just a plane in 3D space. The effect of noise in feature correspondence is thus 

reduced in this case. 
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2.5. Mosaic Construction 

Once we have approaches to deal different cases, we have to decide which approach 

should be applied. A simple method was used to decide whether the scene is a planar one 

or not. The method is that we first calculate the homography using the all feature 

correspondences of the target image and the intermediate image and measure the error of 

the homography. If the error is smaller than a threshold value, the scene can be 

approximated by a global reference plane and the single homography approach will be 

used. But if the error is larger than a threshold value, the scene cannot be approximated 

by a reference plane and the triangular patches clustering method will be used. 

The final mosaic will be constructed by merging two images: the wraped image 

(previous section) and the reference images. Fig. 6. shows a summery of the 3-image 

algorithm. 
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Fig.6 : Summery of the 3-image algorithm. 
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Chapter 3. The n-Image Algorithm 

Here we describe how we extend the 3-imgae algorithm form the case of discrete set to 

the case of image stream [2]. 

It could be expected that if the 3-image algorithm is to be extended for an image stream, 

it would involve (1) iterations of processing over the various 3-image sets of the image 

stream, and (2) propagation of the intermediate mosaic results across the 3-image sets and 

at the end to the final mosaic frame. The issues are, how should the image stream be split 

into various 3-image sets, how the 3 images in each iteration be designated as the image 

frames {T，R’I} in the 3-image algorithm, and most importantly how the mosaic results 

can be accumulated across the iterations and be propagated to the mosaic frame. In this 

work we propose a solution to all these questions. The solution contains an orderly 

splitting of the image stream into 3-image sets as well as a systematic designation of the 

three images in each set as the T’RJ frames. Most importantly, it requires no explicit 

propagation of intermediate mosaic results across the iterations; all intermediate 

mosaickings happen at the final mosaic frame. 

We first sample the image stream with an equal sampling. We refer to the most current 

image frame of all these sampled images as S(t), where t represent the current time frame, 

and the second most current image frame as S(t-1), and the third most current image 

frame as S(t-2), and so on. We assume that the desired mosaic frame is the most current 
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image frame S(t). In other words, we are to warp all the previous images to the most 

current image frame and construct a mosaic there. 

We begin the iterations from the most current end of the image stream. In the first 

iteration, we pick the images S(t)’S(t-2)’S(t-3) to apply the 3-image algorithm. S(t) is 

designated as the reference image frame R, S(t-2) as the target image frame T, and S(t-S) 

as the intermediate image frame I. S(t-l) is not used as the target image as very often it 

resembles the reference image S(t) too much and its information content does not justify 

the mosaicking effort. Using the 3-image algorithm, whatever visible in both S(t-2) and 

S(t-2) but not S(t) will be warped to S(t) to create an intermediate mosaic there. Notice 

that this mosaic of iteration 1 is constructed at the final mosaic frame S(t). Notice also 

that in this iteration we have compute a mapping that allows any feature point in S(t-2) to 

be mapped to S(t), the final mosaic frame. 

In the second iteration, we pick the images S(t-2),S(t-4),S(t-5) to apply the 3-image 

algorithm, this time with S(t-2) as the reference image frame R, S(t-4) as the target image 

frame T, and S(t-5) as the intermediate image frame 1. However, instead of constructing 

the intermediate mosaic for these three images at the frame S(t-2), we first make use of 

the mapping from S(t-2) to S(t) we have calculated in the previous iteration, to transfer 

the initial set of feature points over the frames S(t-2)’S(t-4)，S(t-5) to a set over the frames 

S(t)，S(t-4)’S(t-5). With this transfer, we have initial matches over not S(t-2)，S(t-4)’S(t-5)， 

but S(t)’S(t-4)’S(t-5) instead. Treating S(t) as the new reference frame R ‘ in the 3-image 
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algorithm, we can construct the intermediate mosaic of this iteration not at the frame S(t-

2) but the final mosaic frame S(t) directly. 

The third and the other iterations over even earlier image frames are processed in the 

same fashion. The idea of the algorithm is illustrated in Fig. 7. This way, propagation of 

intermediate mosaic results is no longer necessary, and all the intermediate mosaic results 

are constructed at the final mosaic frame. Through the iterations over the images up to the 

very first one a mosaic could be constructed. 

參 參 參 

^ S(t-5) S(t-4)\ S(t-3) S(t-2)x S(t-l) 
Previous linage \ Frame 
Frames V k T 1 \ R 1 

X 1 
Iteration 1 

12 T 2 \ 

Mosaic Frame 

Fig. 7. : Illustration of the n-image algorithm. 
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Chapter 4. The Uneven-Sampling-Rate n-Image Algorithm 

The n-image algorithm employs a fixed-sampling-rate strategy in picking the reference, 

target, and intermediate frames over the image stream. Even sampling (with respect to 

time) is not always desirable, as how dense we should have the video stream sampled at a 

particular section of it should depend upon how close the scene is toward the camera over 

that particular section. The closer the scene is toward the camera, the faster the visuals 

move in the image plane, and the denser the sampling should be so that the images to 

register are still not too different. On the other hand, the sampling should not be so dense 

that the reference, target, and intermediate images are actually all displaying the same 

data. Experimental results echo this argument. We found that different sampling interval 

for the reference, target, and intermediate images in each iteration could result in mosaic 

of different qualities. In this section we propose methods to allow the above n-image 

algorithm to have an uneven sampling rate. 

The key is whether we could have a measure of whether the picked images (for the 

reference, target, and intermediate frames) in any particular iteration are too close or too 

far apart. We found that the error in projecting the 3D projective coordinates (acquired 

from the target and intermediate image frames) to the reference image is a good measure. 

There are two degrees of freedom in sampling image frames for the three image used in 

the 3-image algorithm, they are the Reference-Target images separation and the Target-

Intermediate images separation. It is obvious that if we change any of the sampling 
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intervals it will affect the error in projecting the 3D projective coordinates to the 

reference image. So it is the best way for us to vary both the Reference-Target images 

separation and the Target-Intermediate images separation in order to obtain the best result 

in the projection of the 3D projective coordinates to the reference image. But it will be an 

inefficient way in varying both two separations at the same time. So we only want to vary 

one separation in order to save effort and we have to decide which to be varied. That 

issue we are going to discuss in following paragraphs. 

4.1. Varying the Reference-Target Images Separation 

If we fix the separation of the target image and the intermediate image and just 

changing the separation between the reference image and the target image, that means we 

are changing the overlapping area of the reference image and the target image. As a result, 

it will affect how much extra data we will add on the reference image. 

Moreover, varying the reference-target images separation also changes the input for 

estimating the projection of 3D projective coordinates to the reference image (M"). That 

will affect the accuracy of the projective mapping M，，. Experimental results show that 

there is a significance difference in the resulting mosaic when we vary the reference-

target images separation. Fig. 8. shows an example of the variation of the projection error 

to the reference image due to the variation of the reference-target images separation. Fig. 

8(a) shows the input images. We fix the separation between the target image and the 

intermediate image. Then we increase the separation (in image frame) between the target 
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image and the reference image until we cannot obtain matches between the target image 

and the reference image. The projection error to reference image against the separation 

between reference image and target image is shown in Fig. 8(b). 
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(a) Input images 
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(b) error of projective mapping of reference image against the separation between 

reference image and target image 

Fig. 8. : An example of result of varying the reference-target image separation 
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4.2. Varying the Target-Intermediate Images Separation 

Again, if we fix the separation of the reference image and the target image and just 

varying the separation between the target image and the intermediate image, that means 

we are varying the baseline of a stereo reconstruction of a stereo image pair. That also 

affect the accuracy of the projective mapping M" since we are changing the input for the 

computation of the projective mapping. Fig. 9. shows an example of variation of the error 

of projective mapping of the reference image due to the variation of the reference-target 

images separation. The example is similar to the example in section 4.1. but this time we 

fix the separation between the reference image and the target image and vary the 

separation between the target image and the intermediate. 
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Fig. 9. : An example of result of varying the target-intermediate image separation 

Besides affecting the accuracy of the projective mapping of the reference image. One 

thing more important is that the target image and the intermediate image actually is a 

stereo image pair used for projective reconstruction. Varying the target-intermediate 

separation means varying the distance of the baseline of a stereo image pair. If we vary 

the distance of the baseline of a stereo image pair, the accuracy of the reconstruction of 
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the 3D projective coordinates will be greatly affected. In the worst case, we cannot obtain 

any 3D data if we put the target image and the intermediate image too close. 

Since the approach of varying the target-intermediate images separation is more 

reasonable and suitable for our situation. So it is recommended to vary the separation 

between target image and intermediate image in the uneven-sampling-rate n-image 

algorithm. The algorithm will execute as follow: 

In the first iteration we still use the frames S(t), S(t-2) as the reference image and target 

image. But for the intermediate image, we need to search for a frame which shares the 

most suitable separation with the target image (frame S(t-2)). The search will start from 

frame S(t-3) to frames earlier in the input sequence. It will continue until we cannot 

obtain feature correspondence between the candidate intermediate image and the target 

image frame. In most of the cases, we find that the suitable intermediate image frame is 

close to the target image so efficiency of the search is not so much a problem. 

We decide which frame will be the best intermediate image by examining the distance 

between (a) the feature positions projected from the target image to the reference image, 

and (b) the original feature positions in the reference image. The image frame that 

contributes the least error will be chosen as the intermediate image of the iteration. 

In the second iteration, we pick the frame S(t-2) as the reference image frame, and S(t-4) 

as the target image. Again we will examine the distance between (a) the feature positions 
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projected from frame S(t-4) to frame S(t-2), and (b) the original feature positions in 

frame S(t-2), in deciding which frame will be the best intermediate image. 

The third and the other iterations over even earlier image frames are processed in the 

same fashion. With decisions about which image frames are to be the target, intermediate, 

and reference images in each iteration, we could proceed with the n-image algorithm as 

detailed in the previous section. 
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Chapter 5. Experiments 

5.1. Experimental Setup 

The algorithm has been implemented in TargetJr code. TargetJr was a C++ software 

environment used for computer vision research and image processing applications. The 

detail of TargetJr can be found in [27]. The task of the system implemented in TargetJr is 

to perform projective reconstruction and construction of the final mosaic from the 

matches we obtained from image-matching. 

5.1.1. Measuring the Performance 

Besides judging the resulting mosaic visually. The performance of the system will be 

measured with (1) between the feature positions projected from the target image to the 

reference image, and the original feature positions in the reference image, (2) the time 

used to construct the resulting mosaic. 
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5.2. Experimental on 3-Image Algorithm 

5.2.1. Planar Scene 

In the first experiment, we want to conduct an initial test on our system of 3-image 

algorithm. A set of three 512x512 images of an indoor scene taken by the same camera 

was used. This set of images was downloaded from the public domain at 

ftp://krakatoa. inria. fr/vuh/. As we can see the scene shown in the images is a planar 

scene. The input images and the resulting mosaic are shown in Fig. 10. The resulting 

mosaic shows that area that can be seen in the target image but not in the reference image 

was added to the reference image correctly as we expected. To construct the resulting 

mosaic in this experiment need 2 minutes 27 seconds. The average projection error to the 

reference image is 1.0168 pixel over 45 feature points. 
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Fig. 10. : The three images used in the first experiment and the obtained mosaic. 

5.2.2. Comparison between a Global Parametric Transformation and the 3-Image 

Algorithm 

After proving that the 3-image algorithm is workable in constructing mosaic, we want 

to compare the 3-image algorithm to a method that using global parametric 

transformation. Homography was chosen to be the global parametric transformation 

method. 

In this experiment, synthetic data was generated to compare the 3-image algorithm to 

the homography method. We first construct a unit sphere in the virtual space, the point 
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feature of the surface of the unit sphere will be project onto three images by a virtual 

camera with a perspective projection as: 

f fX u = f — 
.Y 

v = f— 
[ Z 

where (u, v) is the image position of the projected feature point, (X, Y, Z) is the 3D 

position of the point feature relative to the camera and f is the focal length of the camera 

which was set to 1. The camera was placed at a position with a distance d from the 

surface of the unit sphere. The images are the reference image with the optical center on 

the same line of the center of the sphere. The optical center of the target image had a shift 

of 0.5 unit in the y-direction to the reference image. The intermediate image shifting 0.2 

unit in the y-direction to the target image. 
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Fig. 11.: Illustration of the experiment. 
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Next we will calculate the homography of the target image and the reference image, 

comparing its error to that of the 3-image algorithm on the three images. After that, we 

will change the distance d between the camera and the sphere to see the change of the 

error due to the change of the distance between the camera and the scene (Fig. 12). It can 

be seen that the effect of decreasing distance between the images and scene is less 

significant for the 3-image algorithm than the homography method. 
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Fig. 12 . Error form homography method and the 3-image algorithm as the distance of the 

camera from the scene is changing. 
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5.2.3. Generic Scene 

In this experiment, a set of three image of a generic scene was used. This set of images 

was downloaded from the public domain dX ftp://krakatoa. inria. fr/mb/. The image size of 

the target image and intermediate image are 512x512 pixels, and the reference image is 

of size 512 x 412 pixels. Both the single homography and multiple homography 

approaches were applied to the image set in order to find out their difference in 

constructing mosaic of generic scene using the 3-image algorithm. It can be seen that the 

mosaicking results obtained by the two approaches are different. Straight lines broke into 

discontinuous line segments in the merging region of Fig 13(b), and that did not happen 

in Fig. 13(c). 

The projection errors to the reference image are different in the two approaches. The 

average projection error in single homography approach is 2.94995 pixels over 144 

common feature points. When we applied the multiple homography approach to the same 

set of input images, the average projection error was reduced to 2.0025 pixels over 144 

common feature points. It shows that the multiple homography approach is more suitable 

for a generic scene although it requires more processing time. We used 2 minutes 10 

seconds to construct the resulting mosaic shown in Fig. 13(b), 2 hours 10 minutes to 

build that shown in Fig. 13(c). 
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Fig. 13.: Comparison of the single homography approach and the multiple homography 

approach. 
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5.2.4. The Triangular Patches Clustering against the Multiple Homography Approach 

Although the multiple homography is workable on some generic scene but later we 

found that it cannot crop with scene in the real world. When we applied it on a set of 

images of the CUHK campus, we obtain the result as Fig 14(c). We can find out that 

many regions are missing in the resulting mosaic, it was because that the closest features 

used to define reference plane for this regions was ill posed. So regions are projected to 

somewhere that cannot be seen in the image. 

Then we try to apply the triangular patches clustering method on the same set of image. 

This time we obtain a better result as Fig. 14(d), the resulting mosaic become more 

presentable. It shows that using the Delaunay triangulation is more suitable than using the 

multiple homography approach in the images of a generic scene. The average projection 

errors on the reference image is 7.43332 pixels over 108 common feature points for both 

approaches. The two approaches having the same value in the error on projected features 

onto reference image because the error measured here was the error of the projective 

mapping of the reference image and both approaches occupy the same algorithm in 

computing the projective mapping. The time used in constructing the mosaicking result 

shown in Fig. 14(c) is 2 hours 32 minutes. It takes 4 minutes 17 seconds for result shown 

in Fig. 14(d). 

Why does this experiment show a contradicted consequence to the experiment 

presented in section 5.2.3.. That was because the scene in that experiment was 
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constructed for the purpose of computer vision research so it was well featured and the 

feature was distributed equally. But for real world, the features were most likely to be 

distributed randomly so the multiple homography is no longer valid then we have to use 

another method in this situation. 
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(b) The Delaunay triangulation of the target image 
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(d)The resulting mosaic from triangular patches clustering 

Fig. 14.: Comparison of the multiple homography approach and triangular patches 

clustering. 
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5.3. Experiments on the n-Image Algorithm 

5.3.1. Initial Experiment on the n-Image Algorithm 

The first set of experimental result in n-image algorithm was a video stream of the 

CUHK campus. Since this is the first test of the implantation of the n-image algorithm so 

only a sequence of five images was used, that needed two iterations to produce the final 

mosaic result. The input of image in each iterations is as follow. For iteration one, images 

(5), (4) and (3) was chosen as the reference image, target image and intermediate image 

respectively. Then images (4), (2) and (1) become the reference image, target image and 

intermediate image for the second iteration. The average error in projected features is 

0.961888 pixels over 125 common features points for the first iteration, that for the 

second iteration is 1.04618 pixels over 86 common feature points. The time used to 

complete the first iteration was 4 minutes 33 seconds and the total time used to build the 

resulting mosaic was 9 minutes 14 seconds. The result was showed as Fig. 15. It can be 

seen that the registration is pleasing even the camera motion is a general one. 
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(1) (2) (3) (4) 

(5) 

(a) input images 
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(b) The final mosaic 

Fig. 15. : Experimental result of the n-image algorithm toward an image sequence. 
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5.3.2. Another Experiment on the n-Image Algorithm 

Fig. 16 shows another experimental result of the n-image algorithm. We used an image 

set of seven images (Fig. 16(a)) which was the same set of images as experiment in 

section 5.2.1. It takes totally three iterations to construct the final mosaic (Fig. 16(c)). 

The input images for each iterations are as follow (Table 1.). 

Iteration Reference image Target image Intermediate image 

1 ^ (6) W) 

2 W) W 0) 

3 W ^ W 

Table 1. The input sequence of images for the system in the experiment in section 5.3.2. 

One thing special in this experiment is that we have shown the intermediate mosaic 

results since they also can be obtained from the system. Fig 16(b) shows the intermediate 

mosaic result which was obtained after two iterations. The intermediate result obtained 

after one iteration was omitted in this section since the intermediate mosaic result after 

the first iteration was same as the result of experiment in section 5.2.1. 

We used 2 minutes 27 seconds for the first iteration and the average projection error to 

the reference image was 1.0168 pixels over 45 common feature points. The second 

iteration needed 5 minutes 26 seconds to complete and with error of 0.730547 pixels over 
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45 common features. The total time used to build the final mosaicking result shown in 

Fig. 16(c) is 8 minutes and 30 seconds and the error is 1.95044 pixels over 67 common 

features. 

mmM 
(1) (2) (3) (4) 

(5) (6) (7) 

(a) Input images 
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(b) The mosaic after two iterations 

(c) The mosaic after three iterations 

Fig. 16. : Experimental result of the n-image algorithm with the intermediate mosaic 

result. 
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5.3.3. the n-Image Algorithm over a Longer Image Stream 

Fig. 17 shows another set of results over a longer image-sequence and a scene much 

closer to the camera. There are totally 13 images in the sequence. The n-image algorithm 

requires six iterations to construct the final mosaic. The input images for the system in 

each iterations is as follow (Table 2.). 

Iteration Reference image Target image Intermediate image 

1 13 12 n 

2 12 10 9 

3 10 8 7 

4 8 6 5 

5 6 4 3 

6 4 2 1 

Table 2. The input sequence of images for the system in the experiment in section 5.3.3. 
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Mis-registration can be seen in the final mosaic result is due to the fixed sampling of 

the video stream for the reference, target, and intermediate images in each iteration. 

Iteration Projection error # of common feature Time used 

1 4.27406 ^ 4，30’， 

2 1.87319 ^ 

3 3,25864 ^ 13，41’， 

4 1.87832 114 19' 

5 2.18778 n o 24,30” 

6 5.30416 E 30'56" 

Table 3. Performance of the system in the experiment in section 5.3.3. 

From the performance showed in Table 3. we find that the propagation of image 

alignment errors is a major problem for the system. 
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(a) Sampled Input Image Stream 
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(b) The final mosaic 

Fig. 17. : Experimental result of the n-image image algorithm over a longer image stream 

and a "closer" scene. 
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5.4. Experiments on the Uneven-Sampling-Rate n-Image Algorithm 

5.4.1. Varying Reference-Target Images Separation 

After obtaining the result in experiment presented in section 5.3.3.，modification have 

be made on the n-image algorithm. Uneven-sampling-rate was use instead of the fixed-

sampling-rate method. 

Fig. 18 shows the experimental result of using the varying reference-target images 

separation method to sample the input images. There are totally 13 images in the image 

sequence. It takes six iterations to construct the final mosaic result. The use of images for 

each iteration is as follow (Table 4.). 

Iteration Reference image Target image Intermediate image 

1 13 12 n 

2 12 10 9 

3 10 8 7 

4 8 6 5 

5 6 4 3 

- 4 2 1 

Table 4. The input sequence of images for the system in the experiment in section 5.4.1. 
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The image sequence contains same number of image as that of experiment in section 

5.3.3. but the final results show there are significant difference between the two 

approaches. It can be seen that the final mosaic result (Fig. 18(b)) is much pleasing when 

compare with the mosaic result of the experiment (Fig. 17(b)). One should notice that the 

sampled image input is different to that of the experiment 5.3.3 since they use different 

methodology in sampling the input images. Even though the images were captured from 

the same video stream. We can find out the difference in the error of projected features 

which was as follow (Table 5.). 

Iteration Projection error # of common feature Time used 

1 1.43804 ^ 4，22，， 

2 0.787325 75 8,50” 

3 0.822752 ^ 13,50” 

4 0.701881 ^ 18,55” 

5 1.42258 % 24,22” 

6 2.05888 ^ 30’30，， 

Table 5. Performance of the system in the experiment in section 5.4.1. 

It can be seen that the growth of error for this approach is less rapid than that of 

the approach with even sampling. The time used for both approaches are almost the same 

because the time used for computing depends on the number of iteration but not the 

sampling technique. 
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(a) Sampled input images 
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(b) The final mosaic 

Fig. 18. : Experimental result of the uneven-sampling n-image algorithm using the 

varying Reference-Target separation method. 
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5.4.2. Varying Target-Intermediate Imges Separation 

Fig. 19 shows the experimental result of using the varying target-intermediate images 

separation method to sample the input images. There are totally 17 images in the image 

sequence. They were captured from the same video stream as the experiments in section 

5.3.3. and section 5.4.1. It takes eight iterations to construct the final mosaic result since 

the sequence contains more images than experiment in section 5.4.1. The use of input 

images is as follow (Table 6.). 

Iteration Reference image Target image Intermediate image 

i 17 16 15 

Y 16 14 13 

3 14 12 n 

4 12 10 9 

5 10 8 7 

6 8 6 5 

7 6 4 3 

8 4 2 i 

Table 6. The input sequence of images for the system in the experiment in section 5.4.2. 
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The final mosaic result was as pleasing as that of experiment in section 5.4.1. That 

means the both sampling technique are workable to be applied as tool of uneven sampling. 

The average error in projected features and time used to construct the mosaic is shown in 

Table 7. 

Iteration Projection error # of common feature Time used 

1 1.33597 41 4,40” 

2 L ^ ^ 

3 1.05658 ^ 14,05” 

4 0.925117 I T 

5 0.671268 24’40，’ 

6 0.983246 30,05” 

7 1.38879 ^ 

8 1.93668 4 r 

Table 7. Performance of the system in the experiment in section 5.4.2. 

It can be shown that varying the target-intermediate separation also reduced the growth 

of the error of projected features of the reference image. But due to the argument in 

section 4, varying the target-intermediate separation method is recommended to be use as 

the tool for sampling input images. 
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(b) The final mosaic 

Fig. 19. : Experimental result of the uneven-sampling n-image algorithm using the 

Varying Target-Intermediate Separation method. 
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5.4.3. Comparing the Uneven-Sampling-Rate n-Image Algorithm and Global 

Transformation Method 

We are going to present two mosaicking results obtained by difference methods. One is 

obtained from our algorithm another is obtained by the homography method. The aim of 

this experiment was to compare the performance of the two approaches. 

Fig. 20(a) shows the input images captured from a video. The use of images in each 

iterations in our algorithm have been shown in Table 8. 

Iteration Reference image Target image Intermediate image 

1 13 12 n 

2 12 10 9 

3 10 8 7 

4 8 6 5 

5 6 4 3 

6 4 2 1 

Table 8. The input sequence of images for the system in the experiment in section 5.4.3. 

We get the mosaicking result shown in Fig. 20(b) after a process of six iterations. For 

the homography method, the same set of input images is used and the result is shown in 

Fig. 20(c). 
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When comparing the two mosaics, mis-alignment is very serious in the part of the 

steps in Fig. 20(c) but that was less obvious in Fig. 20(b). The mis-alignment in Fig. 20(c) 

was due to the change of distance between the objects in the scene and the camera. But 

the variation of distance between objects and camera plays a less important role in 

Uneven-Sampling-Rate n-Image Algorithm. This result agrees with the result of the 

simulation of section 5.2.2. 

(I) (2) (3) (4) (5) 

(6) (7) (8) (9) (10) 

(II) (12) (13) 

(a) Input images 
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8BIII'"•riffliiin.ii.,' 1,'nriî ' ^^Baagaaaaaagfca • 丨丨…‘ 丨丨丨丨 ：： 

(b) The mosaicking result obtained by the Uneven-Sampling-Rate n-Image Algorithm 

— — 

(c) The mosaicking result obtained by homography method 

Fig. 20. : Comparison on uneven-sampling-rate n-image algorithm and the homography 

method 
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Chapter 6. Conclusion and Discussion 

The study and development of a mechanism that allows image mosaicking to be 

constructed from image data with parallax was reported in this thesis. The further 

development of the mechanism from the case of a discrete image set to the case of an 

image stream was also presented. 

Parallax in the image data, in the case of an arbitrary scene pictured under arbitrary 

camera motion, is a challenge to image mosaicking since it causes the absence of the 

global transformation between the images. This work presents a framework that allows 

images with parallax to be stitched together and form a mosaic of acceptable quality. 

The 3-image algorithm (first proposed by our research group in [3]) uses a third image 

(the intermediate image) to overcome the problem of parallax in the image data. The 

algorithm first performs a projective reconstruction to recover the projective coordinates 

of the scene using the common features between the intermediate image and the target 

image (the image we like to register) with the reference (the desired mosaic frame). It 

then re-projects 3D projective coordinates onto the reference image to obtain a mosaic 

result. The 3-image algorithm does not suffer from mis-registration arisen from the 

presence of parallax since it does not assume a global parametric transformation between 

the images. In this work, modifications have been made on the 3-image algorithm to 

make it more robust and reliable. 
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With the 3-image algorithm as a basis, we seek to construct mosaic from video stream 

that contains parallax. The n-image algorithm was proposed to accomplish the aim. The 

n-image algorithm is an extension of the 3-image algorithm; it has the mechanisms to (1) 

divide image stream into 3-image sets for the 3-image algorithm to iterate upon; and (2) 

accumulate intermediate mosaic results over various 3-image sets to compose the final 

mosaic result. 

Experiments show that the fixed-sampling-rate n-image algorithm is insufficient in 

constructing mosaic from a longer image sequence and for scene that is close to the 

camera. Erroneous results were obtained in the above situation. The uneven-sampling-

rate n-image algorithm was developed to overcome that problem. The key of the uneven-

sampling n-image algorithm is to choose the suitable image frames to be the 3-image sets 

in each iteration. It then uses the image sets to perform the original n-image algorithm. 

The error in the projecting the projective coordinate to the mosaic frame is used as a 

measurement in choosing the image frames. 

The advantages of the developed algorithms are that the concept is simple, and the 

algorithms are easy to implement and reliable. Experiment results show that even for 

images with parallax the final mosaic is of acceptable quality. The results show that the 

developed algorithms are efficient and reliable for registering images and image stream 

with parallax. Comparisons have also been made to show the difference in the 

performance of the methods using global transformation and that of the developed 

algorithms. 

77 



Although we can obtain mosaic of acceptable quality from the developed algorithm but 

the accumulation of image alignment errors is a major problem for the algorithm. The 

accumulation errors are due to the structure of the algorithm. For the target image in the 

iteration m of a series of input image, how that target image is transforms to the final 

mosaic is determined by the transformation of the previous iteration (iteration m-1). Error 

in the result of iteration m-1 will cause error in the referencing coordinates of iteration m. 

That means we try to transform the target image in iteration m to the reference image 

with an incorrect position. 

And error in the result of iteration m will cause error in the referencing coordinates of 

the following iteration (iteration m+1). As the mosaicking process continues, the error 

will accumulate and affect the quality of the mosaicking result. 

Even though we have tried to reduce the accumulation of image alignment errors by 

using the uneven-sampling technique on the input images, it still exists in the process of 

the developed algorithm. So ftirther research should be done on the existing algorithm to 

reduce the accumulation of image alignment errors. 

Improvements could also be made on the developed algorithms to reduce the error of 

the transformation mappings used in the algorithm (they include the fundamental matrix, 

projective mapping and homography) in order to make the algorithms more robust and 

reliable. 
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The processing time of the developed algorithm is also a limitation. Currently it takes 

three to four minutes to complete one iteration and it is too long compared to the 

processing time of other mosaicking systems. So improvements should be done on the 

developed algorithm to reduce the processing time. 

The triangular patches clustering method used in constructing mosaic might not be as 

reliable as the single homography method when the scene is a planar or distant. This is 

because in the method only three points are used to determine a (local) plane in 3D space 

and it is sensitive to noise in the feature correspondences. But for the single homography 

method, it assumes a single plane for the entire scene (which is a valid assumption in this 

particular case), and all feature correspondences are used to determine just a plane in 3D 

space. The effect of noise in feature correspondence is thus reduced in this case. 

However, our system has a threshold measurement (please refer section 2.5) to decide 

which method should be used. 

Moreover, the quality of the resulting mosaic is affected by the performance of the 

feature matching software also is a limitation of the developed algorithm. The developed 

algorithm requires a quite dense of feature correspondences in the images in order to 

construct a mosaic with acceptable quality. But for methods that employ global 

transformation mapping to construct mosaic, it only needs a few correspondence points to 

recover the transformation mapping and then a mosaic can be constructed. 
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The possibility of constructing panorama using the n-image algorithm could be a 

suitable topic for further research. We cannot construct a panorama using the current 

system because of the limitation of accumulated image alignment errors. If we want to 

construct a panorama, the first image and the last image of an image sequence need to be 

merge together in the process. But for the current system, merging the first image and the 

last image of an image sequence will cause larger error in the resulting panorama since 

the position of the last image will be inaccurate due to the accumulated image alignment 

errors. 
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