A Low Voltage 900 MHz

CMOS Mixer

By
Cheng Wang Chi

A Thesis
Submitted In Partial Fulfilment Of The Requirements
For The Degree Of Master Of Philosophy
In
Department Of Electronic Engineering
Of
© The Chinese University Of Hong Kong
August 2001

The Chinese University of Hong Kong holds the copyright of this thesis. Any person(s) intending to use a part or whole of the materials in the thesis in a proposed publication must seek copyright release from the Dean of the Graduate School

Abstract

Abstract of thesis entitled:
 A Low Voltage 900 MHz CMOS Mixer
 Submitted by CHENG Wang Chi
 for the degree of Master of Philosophy
 in Electronic Engineering
 at The Chinese University of Hong Kong
 in August 2001

This thesis presents two low voltage mixer architectures. They are (1) Current Folded Mirror Mixer, and (2) Current Mode Mixer. The two different architectures used could reduce the number of series connected transistors.

The current folded mirror mixer, which use a current mirror to connect a Gilbert quad (LO part) to the emitter coupled pair (RF part) in parallel instead of the series connection. So, it could operate at a single 1.5 V voltage supply. The current mode mixer could even operate at a lower voltage at 1.2 V . Moreover, the linearity is much better. It is due to the using of input RF and LO current instead of voltage. Two testing circuits have been designed, tested and fabricated with an $\mathbf{A M S}_{\circledast} \mathbf{0 . 6} \mu \mathrm{m}$ CMOS technology.

The measurement results of the two circuits show good agreement with the
simulation results. Experimentally, the Current Folded Mirror Mixer achieves an input 900 MHz at which IIP3 of 1 dBm is measured. Its conversion loss and $1-\mathrm{dB}$ compression are measured to be 2.5 dB and -3 dBm respectively. It occupies an active die area $250 \mu \mathrm{~m} \times 300 \mu \mathrm{~m}$, and consumes 7.5 mW from a single 1.5 V supply.

The second circuit is a Current Mode Mixer, which has a better linearity at a lower supply voltage than the current folded mirror mixer. From the measurement result, it achieves an input 900 MHz and down converted to 10 MHz with -9.1 dB conversion gain. The $1-\mathrm{dB}$ compression point and IIP3 are measured to be 3 dBm and 10 dBm respectively. It dissipates 3 mW from a single 1.2 V voltage supply and the active area is $400 \mu \mathrm{~m} \times 400 \mu \mathrm{~m}$.

The two new low voltage current folded mirror mixer and current mode mixer have similar performance compare to conventional Gilbert Cell mixer, which cannot operate at less than 1.5 V .

摘要

本論文將介紹兩個使用不同結構的低電壓混頻器，它們分別是（1）電流源摺疊鏡像混頻器，和（2）電流模混頻器。由於兩種不同結構方法的運用，因此能減少晶體管串聯接合的數目。

電流源摺疊鏡像混頻器，是利用電流鏡並聯的方式代替了串聯的方式把吉伯四元組 Gilbert quad（震盪器部份）和射極耦合對（射頻部份）連接一起，因此，它能夠在 1.5 V 的低電壓下操作。電流模混頻器更能在更低的電壓下 1．2 V 操作，而且，它能給予更好的線性度，這是由於震燙器部份和射頻部份的輸入改用了電流的方式而不是電壓的方式。這兩個測試電路已經被設計，製造和測試 而其製程利用了 $\mathrm{AMS}_{\odot} 0.6$ 微米互補金屬氧化半導體技術。

這兩個電路的實驗結果顯示與電腦的模擬結果有相當程度的吻合。在實驗中，電流源摺疊鏡像混頻器在 900 兆赫輸入下，它的輸入三階截距點能達到 1 dBm ，而它的全頻帶轉換增益和 $1-\mathrm{dB}$ 增益壓縮點分別為 -2.5 dB 和 -3 dBm ，電路小片的有效面積為 250 微米乘 300 微米，在單一的 1.5 V 電壓供應下，它的總功率消耗為 7.5 mW 。

第二個電路是電流模混頻器，它能在更低的電壓供應下給予更佳的線性度。在實驗的結果中，電流模混頻器在 900 兆赫輸入及向下移頻到 10 兆赫下，它的全頻帶轉換增益是－9．1 dB，輸入三階截距點和 $1-\mathrm{dB}$ 增益壓縮點分別為 3 dBm 和 10 dBm ，在單一的 1.2 V 電壓供應下，它的總功率消耗為

3 mW ，而電路小片的有效面積為 400 微米乘 400 微米。
這兩個新的低電壓混頻器能夠給予相當接近的效能相比吉伯盒式 （Gilbert Cell）混頻器而且吉伯盒式混頻器不能於1．5V或更低的電壓下運作。

Acknowledgments

I would like to take this opportunity to express my wholehearted gratitude to many individuals who give me a lot of supports during my two-year master program in the CUHK. Without them, I will not be able to work on the field of analog integrated circuit design. They give me ideas and encourage me to work on this project.

First of all, I am indebted to my supervisor, Professor CHAN Cheong Fat, for his valuable guidance and encouragement throughout the entire research. Every time I encountered difficulties on the design and became discouraged, his professional advice and encouragement help me to regain my confidence and to overcome the obstacles in front of me.

I wish to thank the laboratory technicians, Mr. YEUNG Wing Yee, who helps to install the design kit and new version of CAD tools so that the physical implementation of the mixer is possible.

My colleagues, Mr. HON Kwok Wai, Mr. TANG Tin Yau and Miss MAK Wing Sum in the VLSI and ASIC Laboratory and Mr. FAN Chun Wah in the Microwave Laboratory provided me a lot of useful discussion, helpful in PCB board making, CAD tools utilization and measurement setup. Moreover, they have shared their fun and experience with me from time to time.

Finally, I wish to thank my family for their support when in my postgraduate studies.

Contents

Abstract i
摘要 iii
Acknowledgments v
Contents vii
List of Tables xiii
List of Figures xiv
Chapter 1
Introduction 1
1.1 Motivation 1
1.2 Technical Challenges of CMOS RF Design 2
1.3 General Background 2
1.3.1 Bipolar and CMOS Mixers 4
1.4 Research Goal 4
1.5 Thesis Outline 5
Chapter 2
RF Fundamentals 6
2.1 Introduction 6
2.2 Frequency Translation 6
2.3 Conversion Gain 8
2.4 Linearity 8
2.4.1 1-dB Compression Point 11
2.4.2 Third Intercept Point (IP3) 11
2.5 Dynamic Range (DR) 13
2.5.1 Spurious-Free Dynamic Range (SFDR) 13
2.5.2 Blocking Dynamic Range (BDR) 14
2.6 Blocking and Desensitization 15
2.7 Port-to-Port Isolation 15
2.8 Single-Balanced and Double-Balanced Mixers. 16
2.9 Noise 16
2.9.1 Noise in the Local Oscillator 17
2.9.2 Noise Figure 18
Chapter 3
Downconversion Mixer 19
3.1 Introduction 19
3.2 Review of Mixer Topology 19
3.2.1 Square-Law Mixer 20
3.2.2 CMOS Gilbert Cell 21
3.2.3 Potentiometric Mixer 22
3.2.4 Subsampling Mixer 23

Chapter 4

Proposed Downconversion Mixer 24
4.1 Analysis of Proposal Mixer. 24
4.2 Current Folded Mirror Mixer 24
4.2.1 Operating Principle 25
4.2.2 Large Signal Analysis 26
4.2.3 Small Signal Analysis 29
4.3 Current Mode Mixer. 32
4.3.1 Operating Principle 33
4.3.2 Large Signal Analysis 33
4.3.3 Small Signal Analysis 34
4.3.4 V-I Converter. 36
4.3.4.1 Equation Analysis 37
4.4 Second Order Effects 38
4.4.1 Device Mismatch 38
4.4.2 Body Effect. 39
4.5 Single-ended to Differential-ended converter. 39
4.6 Output Buffer Stage 40
4.7 Noise Theory 41
4.7.1 \quad SSB and DSB Noise Figure 42
4.7.2 Noise Figure 43
Chapter 5
Simulation Results 44
5.1 Introduction 44
5.2 Current Folded Mirror Mixer 44
5.2.1 Conversion Gain 45
5.2.2 Linearity 46
5.2.2.1 1-dB Compression Point and IIP3 49
5.2.3 Output Buffer Stage 49
5.3 Current Mode Mixer. 51
5.3.1 Conversion Gain 51
5.3.2 Linearity 52
5.3.2.1 $1-\mathrm{dB}$ Compression Point and IIP3 52
5.3.3 Output Buffer Stage 53
5.3.4 V-I Converter 54
5.4 Single-ended to Differential-ended Converter 55
Chapter 6
Layout Consideration 57
6.1 Introduction 57
6.2 CMOS transistor Layout. 57
6.3 Resistor Layout 59
6.4 Capacitor Layout 60
6.5 Substrate Tap 62
6.6 Pad Layout 63
6.7 Analog Cell Layout 64
Chapter 7
Measurements 65
7.1 Introduction 65
7.2 Downconversion mixer 66
7.3 PCB Layout 66
7.4 Test Setups 68
7.4.1 Measurement Setup for S-Parameter 68
7.4.2 Measurement Setup for 1-dB Compression Point and IIP3 70
7.5 Measurement Result of the Current Folded Mirror Mixer 72
7.5.1 S-Parameter Measurement 75
7.5.2 Conversion Gain and the Effect of the IF Variation 77
7.5.3 $\quad 1-\mathrm{dB}$ Compression Point 78
7.5.4 IIP3 79
7.5.5 LO Power Effect to the Mixer 81
7.5.6 Performance Summaries of the Current Folded Mirror Mixer 82
7.5.7 Discussion 83
7.6 Measurement Result of the Current Mode Mixer 84
7.6.1 S-Parameter Measurement 87
7.6.2 Conversion Gain and the Effect of the IF Variation 89
7.6.3 1-dB Compression Point 90
7.6.4 IIP3 91
7.6.5 LO Power Effect to the Mixer 93
7.6.6 Performance Summaries of the Current Mode Mixer 94
7.6.7 Discussion 95
7.7 Measurement Result of the Single-ended to Differential-ended converter. 96
7.7.1 Measurement Setup for the Phase Difference 97
7.7.2 Phase Difference Measurement 98
7.7.3 Discussion 99
Chapter 8
Conclusion 100
Appendix A
Characteristics of the Gilbert Quad Pair 102
A. 1 Large-Signal Analysis 102
Appendix B
Characteristics of the V-I Converter 105
B. 1 Large-Signal Analysis 105
Bibliography 108

List of Tables

Table 7.1: Performance summaries of the current folded mirror mixer 82
Table 7.2: Performance summaries of the current mode mixer.. 94

List of Figures

Figure 1.1: The block diagram of a lock-in amplifier ... 3
Figure 1.2: A simplified front-end RF receiver ... 3

Figure 2.1: The downconversion scheme of an IF receiver ... 8
Figure 2.2: Linear system modeled by a Power Series .. 9
Figure 2.3: A Linear system with saturating characteristics... 10
Figure 2.4: Setup of two-tone test ... 12
Figure 2.5: Definition of the 1-dB compression point and IIP3 ... 12
Figure 2.6: Upper bound of SFDR .. 13
Figure 2.7: Graphical representation of SFDR and BDR... 14
Figure 2.8: (a) Single-balanced mixer, (b) double-balanced mixer...................................... 16
Figure 2.9: Thermal noise model of a resistor and transistor ... 17
Figure 2.10: The frequency spectrum of the LO signal... 18

Figure 3.1: Square-law MOSFET mixer .. 20
Figure 3.2: CMOS version of the Gilbert Cell Mixer ... 21
Figure 3.3: Schematic of poteniometric mixer... 22
Figure 3.4: Illustration of subsampling .. 23
Figure 4.1: Schematic diagram of the current folded mirror mixer 25
Figure 4.2: MOSFET working as a switch 26
Figure 4.3: Simplified schematic of the downconversion mixer in a large signal anlaysis 27
Figure 4.4: Schematic of the Gilbert quad pair 28
Figure 4.5: Half circuit of the current folded mirror mixer in a small aignal analysis 29
Figure 4.6: The small signal equivalent circuit of a common source amplifier with a source
degeneration resistor 30
Figure 4.7: The small signal equivalent circuit of a differential folded mirror 31
Figure 4.8: Schematic diagram of the current mode mixer 32
Figure 4.9: Schematic of the differential pair 33
Figure 4.10: New parallel current mode mixer 34
Figure 4.11: Schematic design of the V-I converter 36
Figure 4.12: The function of the single-ended to differential-ended converter 39
Figure 4.13: Schematic of the single-ended to differential-ended converter 40
Figure 4.14: The concept of noise alias in mixing 41
Figure 4.15: Noise contributions from the harmonics of LO 41
Figure 4.16: Noise models for the mixer NF calculations 42
Figure 5.1: Electrical parameter used in current folded mirror mixer 45
Figure 5.2: The simulated conversion gain against output frequency 45
Figure 5.3: (a) The transient response and (b) the frequency response of the output signal
with a pure sinusoid one tone input RF signal 47
Figure 5.4: (a) The transient response and (b) the frequency response of the output signal with two tones input RF signal 48
Figure 5.5: The simulated 1-dB compression point and IIP3 of the downconversion mixer. 49
Figure 5.6: (a) The input and (b) the output transient response of the output buffer stage 50
Figure 5.7: Electrical parameter used in current mode mixer 51
Figure 5.8: The simulated conversion gain against output frequency 51
Figure 5.9: The simulated 1-dB compression point and IIP3 of the downconversion mixer 52
Figure 5.10: (a) The input and (b) the output transient response of the output buffer stage 53
Figure 5.11: Electrical parameter used in V-I converter 54
Figure 5.12: The simulated differential current output against differential voltage input 54
Figure 5.13: Electrical parameter used in single-ended to differential-ended converter 55
Figure 5.14: The transient response of the two output signals of the single-ended to
differential-ended converter (a) output1, (b)output2 56
Figure 5.15:The phase difference of the two outputs 56
Figure 6.1: (a) One transistor in large aspect ratio, (b) Split into 3 parallel parts connected it in multiple-gate fingers. 58
Figure 6.2: A typical layout for an integrated resistor 59
Figure 6.3: Resistor layout (a) rounded corners with dummy resistor (b) 45° corners with dummy resistor 60
Figure 6.4: Layout of two matched capacitors with common centroid symmetry 61
Figure 6.5: A capacitor layout with equal perimeter-to-area ratios of 4 units and 2.314 units62
Figure 6.6: Layout of the substrate tap 63
Figure 6.7: Layout of the bonding pad. 63
Figure 7.1: Microstrip transmission line on the PCB 66
Figure 7.2: The parameter value and the configuration of the matching networks 68
Figure 7.3: The test setup for S-Parameter measurement 69
Figure 7.4: The 50Ω terminated end 69
Figure 7.5: Experimental setup for $1-\mathrm{dB}$ compression point measurement 70
Figure 7.6: Measurement result of the $1-\mathrm{dB}$ compression point of the mixer 71
Figure 7.7: Experimental setup for IIP3 measurement. 71
Figure 7.8: Measurement result of the IIP3 of the mixer 72
Figure 7.9: Microphotograph of the current folded mirror mixer 73
Figure 7.10: Layout drawing of the current folded mirror mixer 73
Figure 7.11: Top view of the current folded mirror mixer test board 74
Figure 7.12: Experimental setup in the laboratory 74
Figure 7.13: The connection configuration of the RF and LO S-Parameter measurement 75
Figure 7.14: The impedance matching of the (a) S_{11} (LO port) and (b) S_{22} (RF port) 75
Figure 7.15: (a) The connection configuration and (b) the measurement result of the S_{21} 76
Figure 7.16: (a) The connection configuration and (b) 76
Figure 7.17: (a) The connection configuration and (b) the measurement result of the $\mathrm{S}_{12} \ldots$ 77
Figure 7.18: Experimental result of the conversion gain verse output frequency (IF) 78
Figure 7.19: Experimental result of the $1-\mathrm{dB}$ compression point 79
Figure 7.20: Experimental result of the IIP3, SFDR and BDR 80
Figure 7.21: Experimental result of the effect of the LO power on conversion gain 81
Figure 7.22: Microphotograph of the current mode mixer 84
Figure 7.23: Layout drawing of the current mode mixer 85
Figure 7.24: Top view of the current mode mixer test board 85
Figure 7.25: Side view of the current mode mixer test board 86
Figure 7.26: Experimental setup in the laboratory 86
Figure 7.27: The connection configuration of the RF and LO S-Parameter measurement 87
Figure 7.28: The impedance matching of the (a) S_{11} (RF port) and (b) S_{22} (LO port) 87

Figure 7.29: (a) The connection configuration and (b) the measurement result of the $\mathrm{S}_{21} \ldots . .88$
Figure 7.30: (a) The connection configuration and (b) the measurement result of the $\mathrm{S}_{12}88$
Figure 7.31: (a) The connection configuration and (b) the measurement result of the $\mathrm{S}_{21} \ldots . .89$
Figure 7.32: Experimental result of the conversion gain verse output frequency (IF)........... 90
Figure 7.33: Experimental result of the 1-dB compression point.. 91
Figure 7.34: Experimental result of the IIP3, SFDR and BDR.. 92
Figure 7.35: Experimental result of the effect of the LO power on conversion gain 93
Figure 7.36: Microphotograph of the single-ended to differential-ended converter 96
Figure 7.37: Layout drawing of the single-ended to differential-ended converter................ 96
Figure 7.38: Top view of the single-ended to differential-ended converter test board........... 97
Figure 7.39: The test setup for phase measurement ... 97
Figure 7.40: Experimental result of the phase difference between two outputs.................... 98

Chapter 1

Introduction

1.1 Motivation

The ability to communicate with people on the move has evolved remarkably. The new wireless communications methods and services have been enthusiastically adopted by people throughout the world. Particularly during the past ten years, interest and demand for portable wireless communication services like digital cellular phones have increased the emphasis on the development of low-cost, high-performance communications ICs. The operating frequency bands used in the modern mobile systems range from 900 MHz to 1.9 GHz , for example, Global System for Mobile (GSM) is operated at 900 MHz and 1.8 GHz , and the Personal Communication Services (PCS) operated at 1.9 GHz . At such high frequencies, the mobile system usually consists of several ICs and many discrete components, which increase the size and power consumption. These factors limit the size, weight and battery life of mobile systems.

The latest sub-micron CMOS technologies offer a feasible and attractive solution to this problem. The new CMOS technologies are suitable for single chip transceiver implementation, we can design and build a complete communications
system on a single chip.
The major CMOS RF building blocks for a single chip system included low-noise amplifiers (LNA), bandpass filters (BPF), mixers, voltage control oscillators (VCO) and power amplifiers (PA). Several designs have been reported in different literatures [[1], [2], [3], [4], [5], [6]] recently. However, most of the published designs have some drawbacks such as poor noise performance, poor linearity and high operating voltage (3 V or higher). This thesis is focused on the mixer building block, our goal is to design and build a CMOS RF mixer, which can operate by a single 1.5 V or even lower voltage supply.

1.2 Technical Challenges of CMOS RF Design

The evolution of CMOS technologies to sub-micron and deep sub-micron has bought the operating frequency, f_{t}, beyond the GHz range. However, it is still a big challenge to design RF frequency integrated circuit because of the inherent nature of the CMOS technology, such as large device parasitic capacitances, inaccurate high-frequency transistor models, and lack of high-quality and precise on-chip passive components. To overcome these design barriers, special new circuit design techniques are needed. We will address some of this new technique in Chapter 6.

1.3 General Background

Mixer is one of the fundamental building blocks in communication systems such as lock-in amplifiers [[7], [8]] and wireless receivers [[9], [10]], as shown in Figure 1.1 and Figure 1.2 respectively.

Figure 1.1: The block diagram of a lock-in amplifier

Figure 1.2: A simplified front-end RF receiver

Shown in Figure 1.2 is a simplified block diagram of a front-end RF receiver. At this high frequency, conventional designs use GaAs or bipolar transistors and discrete surface acoustic wave (SAW) filters. Since each component is using different technologies, thus, it is not possible to fabricate a single chip system. In addition, high-power output buffers are required to drive the signals from one chip to another. Therefore, conventional RF front end requires several discrete components to build.

1.3.1 Bipolar and CMOS Mixers

The Gilbert multiplier cell is one of the most commonly used mixer. However, the linearity of the bipolar mixer is not good due to the exponential I-V characteristics of the bipolar transistor. Resistive degeneration is a well-known technique to reduce the non-linearity at the expense of power dissipation and noise performance. Recently, capacitive degeneration is another approach to linearize the circuit with less power consumption [3].

The CMOS mixer based on the traditional bipolar cross-coupled differential modulator stage introduced by Gilbert [11]. However, the operation of the bipolar mixer proposed by Gilbert is due to the translinear of the bipolar transistor. This phenomenon does not translate directly into an equivalent CMOS current behavior. The CMOS counterpart of the traditional bipolar mixer is therefore operated in a switching mode instead. Usually, a fully differential structure is used in order to be effectively suppressed the quadratic nonlinearity. So, CMOS mixers not only have the advantage of being integrable, but also have a better linearity.

1.4 Research Goal

The successful implementations of many RF front-end circuits in CMOS technology have shown the feasibility of a low-cost high-performance single chip transceiver, but CMOS RF circuits are still at an early stage of the research topic. Therefore, more research efforts are needed to improve the performance of RF CMOS components.

This thesis attempts to design, fabricate and measure an RF downconversion mixer using standard CMOS technology. The major focus is not only on CMOS
implementation but also on low-voltage, high linearity and large dynamic range.

1.5 Thesis Outline

The operating principles of mixers are reviewed in Chapter 2, followed by the definition of some basic terminologies and analysis parameters, such as conversion, linearity and noise performance, for characterizing RF circuits.

Chapter 3 will give out the brief introduction and comparison on different CMOS mixer topologies used in the past. Afterwards, the two proposed mixers will be analyzed in detail in terms of large and small signal analysis, conversion gain and noise performance in Chapter 4.

In Chapter 5, the two proposed mixers would be simulated using SpectreRF ${ }_{\circledast}$ simulator in order to verify the working principle. At the same time, it would be given out the simulation result of the conversion gain and linearity etc..

Chapter 6 covers some special techniques for drawing analog components layout, including transistors, resistors, capacitors, substrate tap and pad.

Then the testing prototypes and measurement setups are outlined in Chapter 7. Detailed measurements of two proposed downconversion mixers are presented.

Chapter 8 concludes the whole thesis with a summary of the achievements and the experimental result in this research

Chapter 2

RF Fundamentals

2.1 Introduction

This chapter provides some general background to facilitate the discussion of the mixer. The operating principles as well as the figure of merits used for characterizing mixer performance are reviewed. In addition, analyses of these figures help to optimize the circuits for different applications. For example, the distortion sets the largest input signal level before the nonlinearity dominated. Moreover, it is very important for engineers to understand the meaning of these figures, because they are the common languages to specific the entire system.

2.2 Frequency Translation

Most RF communication transceivers manufactured today utilize a conventional superheterodyne approach. In this architecture, the mixer translates an incoming Radio Frequency (RF) signal to a lower frequency, known as the intermediate frequency (IF). Armstrong invented this architecture in 1918 [12], sought this frequency lowering simply to make it easier to obtain the requisite gain, other significant advantages accrue as well. The two modified architectures, direct
conversion [13] and wide-band IF with double conversion [14], have invented later, their operation principle is similar to the superheterodyne. Therefore, "frequency translation" or "mixing" becomes an essential part of wireless communication. This process can be accomplished by multiplication of an RF signal with a periodic one. "Mixer" is a circuit element responsible for this operation in the receiver.

The basic operation of a mixer is to multiply two signals in time domain. The following equations illustrate the basic multiplication of two signals:

Received Signal: $\quad X_{R F}(t)=A_{R F} \cos \omega_{R F} t+A_{I M} \cos \omega_{I M} t$
Local Oscillator: $\quad X_{L O}(t)=A_{L O} \cos \omega_{L O} t$
where $A_{R F} \cos \omega_{R F} t$ represents the RF wanted signal
$A_{I M} \cos \omega_{I M} t$ represents the image signal $A_{L O} \cos \omega_{L O} t$ represents the LO signal

After multiplication:

$$
\begin{align*}
X_{I F}(t)= & \left(A_{R F} \cos \omega_{R F} t+A_{I M} \cos _{I M} t\right)\left(A_{L O} \cos \omega_{L O} t\right) \\
= & A_{R F} A_{L O} \cos \omega_{L O} t \cos \omega_{R F} t+A_{I M} A_{L O} \cos \omega_{L O} t \cos \omega_{I M} t \\
= & \frac{A_{R F} A_{L O}}{2}\left[\cos \left(\omega_{L O}-\omega_{R F}\right) t+\cos \left(\omega_{L O}+\omega_{R F}\right) t\right] \\
& \quad+\frac{A_{I M} A_{L O}}{2}\left[\cos \left(\omega_{I M}-\omega_{R F}\right) t+\cos \left(\omega_{I M}+\omega_{R F}\right) t\right] \tag{2.3}
\end{align*}
$$

Multiplication generates results in output signals at the sum and difference frequencies of the input signals, as shown in Figure 2.1.

Figure 2.1: The downconversion scheme of an IF receiver

2.3 Conversion Gain

One important mixer characteristic is conversion gain (or loss), which is defined as the ratio of the desired IF output to the value of the RF input expressed as a power ratio. Conversion gain can be greater than unity in active mixers; whereas the passive one is always smaller than unity. Conversion gain in excess of unity is usually preferred because of the larger output signal; however, a high conversion gain does not guarantee a better sensitivity. Hence we also need to consider the noise figure of the system.

2.4 Linearity

In RF circuits, linearity is an useful parameter to measure the dynamic range. When a receiver is detecting a weak radio signal at the present of a strong
interference signal. The strong interference signal can drive the receiver into nonlinear region and generate new frequencies, which may swamp out the desired weak signal. Thus, the linearity of a receiver determines the maximum allowable signal level at its input.

All real-life linear systems exhibit some degree of nonlinearity. Suppose the output-to-input characteristic of a system can be modeled by a Power Series shown in Figure 2.2:

$$
\begin{equation*}
v_{o}=a_{0}+a_{1} v_{i}+a_{2} v_{i}^{2}+a_{3} v_{i}^{3}+\ldots \tag{2.4}
\end{equation*}
$$

Figure 2.2: Linear system modeled by a Power Series

For analytical simplicity, terms higher than the third power are neglected in hand calculations.

Now, consider two sinusoidal input signals in different amplitude and slightly different frequencies:

$$
\begin{equation*}
v_{i}=A_{1} \cos \omega_{1} t+A_{2} \cos \omega_{2} t \tag{2.5}
\end{equation*}
$$

Substituting equation (2.5) into the power series, after expanding and collecting the same terms, we could find:

The fundamental frequency terms:

$$
\begin{align*}
& \text { At } \omega_{1}:\left(a_{1}+\frac{3}{4} a_{3} A_{1}^{2}+\frac{3}{2} a_{3} A_{2}^{2}\right) A_{1} \cos \omega_{1} t \tag{2.6}\\
& \text { At } \omega_{2}:\left(a_{1}+\frac{3}{4} a_{3} A_{2}^{2}+\frac{3}{2} a_{3} A_{1}^{2}\right) A_{2} \cos \omega_{2} t \tag{2.7}
\end{align*}
$$

Second-order terms:

$$
\begin{gather*}
\text { At } 2 \omega_{1}:\left(\frac{1}{2} a_{2} A_{1}^{2}\right) \cos 2 \omega_{1} t \tag{2.8}\\
\text { At } 2 \omega_{2}:\left(\frac{1}{2} a_{2} A_{2}^{2}\right) \cos 2 \omega_{2} t \tag{2.9}\\
\text { At } \omega_{1} \pm \omega_{2}:\left(a_{2} A_{1} A_{2}\right)\left[\cos \left(\omega_{1}+\omega_{2}\right) t+\cos \left(\omega_{1}-\omega_{2}\right) t\right] \tag{2.10}
\end{gather*}
$$

Third-order terms:

$$
\begin{gather*}
\text { At } 3 \omega_{1}:\left(\frac{1}{4} a_{3} A_{1}^{3}\right) \cos 3 \omega_{1} t \tag{2.11}\\
\text { At } 3 \omega_{2}:\left(\frac{1}{4} a_{3} A_{2}^{3}\right) \cos 3 \omega_{2} t \tag{2.12}\\
\text { At } 2 \omega_{1} \pm \omega_{2}:\left(\frac{3}{4} a_{3} A_{1}^{2} A_{2}\right)\left[\cos \left(2 \omega_{1}+\omega_{2}\right) t+\cos \left(2 \omega_{1}-\omega_{2}\right) t\right] \tag{2.13}\\
\text { At } \omega_{1} \pm 2 \omega_{2}:\left(\frac{3}{4} a_{3} A_{1} A_{2}^{2}\right)\left[\cos \left(\omega_{1}+2 \omega_{2}\right) t+\cos \left(\omega_{1}-2 \omega_{2}\right) t\right] \tag{2.14}
\end{gather*}
$$

In most circuits of interest, the output is a "compressive" or "saturating" function of the input; that is, the gain approaches zero for sufficiently high input levels as shown in Figure 2.3:

Figure 2.3: A Linear system with saturating characteristics

This compressive transfer curve implies that the first order term and third order terms of the power series equation (2.4) have opposite signs, that is $a_{l}=-a_{3}$. From equation (2.6), we see that the third-order distortion reduces the gain of a mixer as a function of the input amplitude.

2.4.1 1-dB Compression Point

As previous stated that as the input power increases, the gain of the fundamental component would be reduced. So, it has defined that the input level at which the small-signal gain is reduced by 1 dB is called the $1-\mathrm{dB}$ compression point.

For the $1-\mathrm{dB}$ compression simulation, one tone input signal is needed only. Therefore, A_{2} in the Equation (2.5) would set to 0 . By considering the fundamental component shows in Equation (2.6):

$$
\begin{align*}
20 \log a_{1}-1 \mathrm{~dB} & =20 \log \left(a_{1}+\frac{3}{4} a_{3} A_{-1 d B}^{2}\right) \\
A_{-1 d B} & =\sqrt{0.145\left|\frac{a_{1}}{a_{3}}\right|} \tag{2.15}
\end{align*}
$$

The $1-\mathrm{dB}$ compression is typically measured in dBm . The graphical representation could be seen in Figure 2.5.

2.4.2 Third Intercept Point (IP3)

As two close interference signals are passed through a non-linear system, a third-order intermodulation product will be created (Figure 2.4). As the amplitude of the two sinusoidal test tones at ω_{1} and ω_{2} in equation (2.5) are increased with equal amplitude $\left(\mathrm{A}_{1}=\mathrm{A}_{2}\right)$, the third-order intermodulation distortion products will be
increased at the rate of a cubed as shown in equation (2.13) and (2.14). IP3 is the point at which the amplitude of the third orders harmonic signal is equal to the fundamental signal. The input (IIP3) and output (OIP3) third-order intercept point are shown in Figure 2.5. IIP3 can be found by equating the coefficient of equation of the fundamental component to the third-order intermodulation component:

$$
\begin{align*}
a_{1} A_{I I P 3} & =\frac{3}{4} a_{3} A_{I I P 3}^{3} \\
A_{I I P 3} & =\sqrt{\frac{4}{3}\left|\frac{a_{1}}{a_{3}}\right|} \tag{2.16}
\end{align*}
$$

Comparing equation (2.15) with (2.16), we see that

$$
\begin{equation*}
\mathrm{A}_{-\mathrm{tdB}}(\mathrm{~dB}) \cong \mathrm{A}_{\mathrm{ITP} 3}(\mathrm{~dB})-10 \mathrm{~dB} \tag{2.17}
\end{equation*}
$$

Figure 2.4: Setup of two-tone test

Figure 2.5: Definition of the 1-dB compression point and IIP3

2.5 Dynamic Range (DR)

In wireless environment, radio signal strength can vary greatly depending on the distance between the transmitter and receiver, and the medium in between. We use dynamic range to determine the ability of a receiver to accommodate both large and small signals. Receivers with high dynamic range are more tolerant to the variations of the input signal strength. We can define the DR into two categories: Spurious-Free Dynamic Range (SFDR) and Blocking Dynamic Range (BDR). Usually, the receiver noise floor sets the lower bounds of both dynamic range definitions.

2.5.1 Spurious-Free Dynamic Range (SFDR)

The SFDR is defined as the noise floor corresponding to the signal level at which third-order intermodulation distortion products rise to the noise floor level in the two-tone test (Figure 2.6).

Figure 2.6: Upper bound of SFDR

Figure 2.7 shows the definition of the SFDR graphically. By using trigonometry function, SFDR can be expressed in terms of $\mathrm{P}_{\text {IIP3 }}$ and the $\mathrm{P}_{\text {NsFIr }}$.

Figure 2.7: Graphical representation of SFDR and BDR

As the fundamental component has a slope of 1 on a dB scale, $\Delta \mathrm{P}_{0}$ is equal to $\left(\mathrm{P}_{\text {IIP3 }}-\mathrm{P}_{\text {NsFlr }}\right)$. Since the third-order intermodulation products has a slope of 3 on a dB scale, $\Delta \mathrm{Pi}$ is equal to

$$
\begin{equation*}
\Delta P_{i}=\frac{P_{I I P 3}-P_{N s F l r}}{3} \tag{2.18}
\end{equation*}
$$

Therefore, the SFDR is equal to

$$
\begin{align*}
\mathrm{SFDR} & =\left(P_{I I P 3}-\Delta P_{i}\right)-P_{\text {NiFlr }} \\
& =P_{I I P 3}-\frac{P_{I P P 3}-P_{N i F l r}}{3}-P_{N i F l r} \\
& =\frac{2}{3}\left(P_{I I P 3}-P_{N i F l r}\right) \tag{2.19}
\end{align*}
$$

2.5.2 Blocking Dynamic Range (BDR)

The BDR is defined as the noise floor corresponding to the signal at the $1-\mathrm{dB}$ compression point (Figure 2.7). It is a measure of resilience to a large out-of-band
blocking signal that, by driving the receiver into compression, de-sensitizes it to a small desired signal. BDR can be measured in terms of $1-\mathrm{dB}$ compression point and the noise floor that is equal to

$$
\begin{equation*}
B D R=P_{-l d B}-P_{\mathrm{NsFlf}} \tag{2.20}
\end{equation*}
$$

2.6 Blocking and Desensitization

Desensitization would occur when the receiver is detecting a weak signal in the presence of a strong interfering signal, the small signal gain of the receiver is reduced by the interferer. As the interferer's signal amplitude is large enough to reduce the overall gain of the desired signal to zero, the phenomena is known as blocking. To see this effect, set $A_{1} \ll A_{2}$ in equation (2.5):

$$
\begin{equation*}
\left(a_{1}+\frac{3}{2} a_{3} A_{2}^{2}\right) A_{1} \cos \omega_{1} t \tag{2.21}
\end{equation*}
$$

Since $a_{l}=-a_{3}$, the small signal gain is reduced by $\frac{3}{2} a_{3} A_{2}^{2}$. When $a_{1}+\frac{3}{2} a_{3} A_{2}^{2}=0$, the weak signal is said to be blocked by the interferer.

2.7 Port-to-Port Isolation

The isolation between each two ports of a mixer is critical. Even though the input or output port, any feedthrough leakage might collapse the whole system such as LO-RF feedthrough results in LO leakage to the LNA or antenna, whereas the RF-LO feedthrough allows strong interferers in the RF path to interact with the local oscillator driving the mixer.

Therefore, it is need to reach a certain required isolation levels to minimize this effect. If the isolation provided by the mixer is inadequate, the preceding or
following circuits must be modified to remedy the problem.

2.8 Single-Balanced and Double-Balanced Mixers

A mixer with a differential LO input signal and a single-ended RF input signal is called a "single-balanced" mixer (Figure 2.8a). If a mixer operates with both differential LO and RF inputs, then it is called a "double balanced" mixer (Figure 2.8b).

Figure 2.8: (a) Single-balanced mixer, (b) double-balanced mixer

Although the single-balanced configuration exhibits less input-referred noise for a given power dissipation, the double-balanced mixer would be prefer more. It is because it generates less even-order distortion after adding the differential output. Thus relaxing the half-IF issue in heterodyne receivers and lowering the beat components in homodyne architectures.

2.9 Noise

Noise can be loosely defined as any random interference unrelated to the signal of interest. It can take on several forms but usually we only consider in electrical
noise and thermal noise in RF system. Electrical noise arises as a result of random fluctuations in current flow. Thermal noise mainly generated by a resistor or channel resistance of the transistor. The thermal noise of the transistor is usually modeled as a current source connected between the drain and source. The thermal noise of resistors can also be expressed in terms of equivalent noise voltage in series with the resistor having mean squared amplitude (Figure 2.9).

Resistor
where $\mathrm{k}=$ Boltzmann constant
$\mathrm{T}=$ Temperature
$\mathrm{R}=$ Resistance
$\gamma=$ Bias - dependent coefficient
$\mathrm{g}_{\mathrm{m}}=$ zero-biasdrainconductance

Figure 2.9: Thermal noise model of a resistor and transistor

2.9.1 Noise in the Local Oscillator

Besides the electrical and thermal noise, phase noise from the local oscillator is also a very important factor for designing mixer. Phase noise is a combination of electrical noise, thermal noise and circuit structure of an oscillator.

Figure 2.10 shows the real frequency spectrum of an LO signal. Usually an LO signal is very close to an RF signal. If a noisy LO is applied to a mixer, its noise components at the RF and the image frequency (IM) are downconverted to the IF. Thus, the noise power is raised, however, this universal noise can be removed by using a balanced mixer or bandpass filter.

Figure 2.10: The frequency spectrum of the LO signal

The phase noise is also transferred to the received signal directly in the mixing process, RF and the LO frequencies can change the phase angle as well.

2.9.2 Noise Figure

Noise figure (NF) is a figure of merit to measure the noise performance of circuits. It is simply the noise factor expressed in decibels. NF can also be expressed as the amount of signal to noise ratio (SNR) degradation through a circuit block due to the added noise from the circuit block. That is,

$$
\begin{equation*}
N F=\frac{S_{i} / N_{i}}{S_{o} / N_{o}}=\frac{S N R_{\text {in }}}{S N R_{\text {out }}} \tag{2.22}
\end{equation*}
$$

where $\quad S_{i}$ and S_{o} represent the input and output signal powers respectively N_{i} and N_{o} represent the input and output noise powers respectively $S N R_{i}$ and $S N R_{o}$ represent the signal to noise ratio of the input and output respectively

Chapter 3

Downconversion Mixer

3.1 Introduction

This chapter starts with reviewing and comparing different types of CMOS mixer topologies. We have designed two new mixer circuits based on the exciting architectures. The major advantage of the new designs is low operating voltage (1.5 V and 1.2 V). The quantitative theoretical analysis of the new designs will be discussed in detail in Chapter 4. Moreover, simulation results using SpectreRF ${ }_{\text {® }}$ simulator based on $\boldsymbol{A M S} S_{\odot} 0.6 \mu m$ would be given. Finally, measurement setup and results will be presented and discussed in Chapter 7.

3.2 Review of Mixer Topology

We will give a brief review of some of the common mixer architectures in this section.

3.2.1 Square-Law Mixer

Most of the mixers use nonlinear property of transistors to implement the mixing action [15]. Square-law mixer (Figure 3.1) is one of the examples using this technique. In the mathematical sense, the input-output nonlinear function could be expressed as the equation (2.4). If we assume that the input signal v_{i} is the sum of two sinusoids,

$$
\begin{equation*}
v_{i}=v_{R F} \cos \left(\omega_{R F} t\right)+v_{L O} \cos \left(\omega_{L O} t\right) \tag{3.1}
\end{equation*}
$$

After expanding it, we could find the cross-modulation ($v_{\text {cross }}$) output products,

$$
\begin{align*}
v_{\text {cross }} & =2 a_{2} v_{R F} v_{L O}\left[\cos \left(\omega_{R F} t\right) \llbracket \cos \left(\omega_{L O} t\right)\right] \\
& =a_{2} v_{R F} v_{L O}\left[\cos \left(\omega_{R F}-\omega_{L O}\right) t+\cos \left(\omega_{R F}+\omega_{L O}\right) t\right] \tag{3.2}
\end{align*}
$$

Figure 3.1: Square-law MOSFET mixer

In this schematic, the bias, RF, and LO voltage sources drive the gate in series. The summation of RF and LO signals is accomplished by a resistive or a reactive summers. The main advantage of a square-law mixer is the simple structure and the main disadvantage is the poor isolation between RF and LO signals which will cause problems at the subsequent stages of the system

3.2.2 CMOS Gilbert Cell

A CMOS version, a counter part of bipolar [[16], [17], [18]], of the popular Gilbert cell is shown in Figure 3.2.

Figure 3.2: CMOS version of the Gilbert Cell Mixer

By assuming the sinusoidal RF input is commutated by a square wave LO signal (this assumption is valid if the LO signal strength is large enough to completely turn on/off the differential pair), the IF output current is

$$
\begin{align*}
I_{I F} & =g_{m} V_{R F} \sin \omega_{R F} t \times s q\left(\omega_{L O} t\right) \\
& =g_{m} V_{R F} \sin \omega_{R F} t \times\left(\frac{4}{\pi}\right)\left(\sin \omega_{L O} t+\frac{1}{3} \sin \omega_{L O} t+\ldots\right) \\
& =\frac{2}{\pi} g_{m} V_{R F} \cos \left(\omega_{R F}-\omega_{L O}\right) \tag{3.3}
\end{align*}
$$

As shown in Figure 3.2, the Gilbert Cell mixer is in stacked arrangement Therefore, a high supply voltage is needed for this architecture, which is a draw back for modern low voltage communication system.

3.2.3 Potentiometric Mixer

Another multiplier topology is the potentiometric mixer [19] shown in Figure 3.3. The four CMOS transistor operate in the triode region in order to give more linear voltage to current characteristic. As a result, the RF input signal is as if multiplied by the LO continuously. This architecture has the advantages of simple structure consisting of four CMOS transistors, independent input and output frequency responses, and low distortion. The mixer transfer characteristic can be shown to be,

$$
\begin{equation*}
V_{\text {out }}^{+}-V_{\text {out }}^{-}=K\left(V_{R F}^{+}-V_{R F}^{-}\right) \times\left(V_{L O}^{+}-V_{L O}^{-}\right) \tag{3.4}
\end{equation*}
$$

Figure 3.3: Schematic of poteniometric mixer

The vitural ground capacitor $\left(\mathrm{C}_{\mathrm{v}}\right)$ must be added to the circuit to increase input frequency range, so the high frequency will be by-passed by the capacitor and only the down-converted frequency is fed into the opamp, which converts the output current of the mixing transistors back into voltage. However, the gain-bandwidth product of the opamp limits the ideal response of the virtual ground at high frequency,
thus, off-chip filtering capacitors is usually required. Another disadvantages of this circuit include the output bandwidth limitation due to the opamp's finite GBW and a relatively high noise figure [15].

3.2.4 Subsampling Mixer

Subsampling mixer is another class of mixer, which multiplies the input signal with a periodic switching LO signal such as square wave. The LO signal changes the polarities between positive and negative, and vice-versa. The input signal is effectively sampled at the switching frequency. Actually, this kind of technique has been adopted in the single, double-balanced diode mixers [15].

In Figure 3.4, the higher-frequency signal is sampled at the instants indicated by the dots, while the downconverted signal is shown as the lower frequency reconstruction. The theoretical advantage of this design is much easier to realize samplers that operate at a frequency well below the incoming RF signal.

Figure 3.4: Illustration of subsampling

Although it is clocked at a relatively low frequency, the sampler must still possess good time resolution to avoid a large sampling error. Moreover, this design has a large noise figure, which is a major problem for the subsampling mixers.

Chapter 4

Proposed Downconversion Mixer

4.1 Analysis of Proposal Mixer

In the previous chapter, we have introduced different mixer architectures. However, most of the exciting architectures are not suitable for low voltage operation required by modern sub-micron CMOS technologies. Therefore, we have proposed two new mixers design, which are especially designed for low voltage supply.

The two new designs are (1) Current Folded Mirror method and (2) Current Mode method respectively. These two new mixers designs are based on a double-balanced structure.

4.2 Current Folded Mirror Mixer

Conventional Gilbert Cell mixer (Figure 3.2) is difficult to operate at low supply voltage, because the series connected transistors. Since all the MOSFETs must be in saturation, neglecting body effect, each transistor requires at least 0.7 V between drain and source. Consequently, an operating voltage at least $3 \times 0.7 \mathrm{~V}=2.1 \mathrm{~V}$ is required. Therefore, conventional Gilbert architecture cannot operate at low voltage.

The new current folded mirror mixer architecture has only two stacked
transistors compare to three or four transistors stack in conventional architecture.
Therefore, we can reduce the supply voltage below to 1.5 V [[20], [21], [22], [23]].
The structure of the current folded mirror mixer is shown in Figure 4.1.

Figure 4.1: Schematic diagram of the current folded mirror mixer

4.2.1 Operating Principle

The circuit uses an emitter-coupled pair $\left(\mathrm{M}_{1}, \mathrm{M}_{2}\right)$ with source degeneration resistors $R_{E 1}$ to form a differential folded mirror. M_{3}, M_{4} and M_{5}, M_{6} are two current mirrors to bias the Gilbert quad $\mathrm{M}_{7}-\mathrm{M}_{10}$. It uses a pair of differential folded mirror, $\mathrm{M}_{3}, \mathrm{M}_{4}$ and $\mathrm{M}_{5}, \mathrm{M}_{6}$, to fold the RF part to the LO part in order to decrease the number of the stacked transistors. So, it could reduce the voltage supply down to less than 1.5 V .

Transistors $\mathrm{M}_{7}-\mathrm{M}_{10}$ have to be biased in moderate inversion to accommodate the large LO input signal. Transistors $\mathrm{M}_{7}-\mathrm{M}_{10}$ transistors are operating like a switch as illustrated in Figure 4.2 because of the large LO signal. Therefore, in the off-state V_{RF} is made lower than the transistor threshold voltage $\left(\mathrm{V}_{\mathrm{th}}\right)$ and reverse in the on-state.

Figure 4.2: MOSFET working as a switch

Moreover, the double-balanced mixer is constructed in order to generate less even-order distortion after adding the differential IF output.

4.2.2 Large Signal Analysis

Due to the differential input into the transistors $M_{7}-M_{10}$, only two of the four transistors in the Gilbert quad are conducting at any time. Therefore, the mixer can be considered as consisting of two identical pairs. All secondary effects such as channel-length modulation and body effect are neglected at this moment.

As illustrated in Figure 4.3, the proposed mixer relies on the three parts. In the derivation, assuming all CMOS transistors follow the simple current square law operation in the saturation region.

Figure 4.3: Simplified schematic of the downconversion mixer in a large signal analysis

Part 1: Common emitter

M_{1} is bias in the saturation mode; therefore the $\mathrm{I}_{\text {ref }}$ is equal to

$$
\begin{equation*}
I_{r e f}=\frac{K_{n}}{2}\left(\frac{W}{L}\right)_{1}\left(V_{i 1}-V_{s 1}-V_{t}\right)^{2} \tag{4.1}
\end{equation*}
$$

Part 2: Current mirror

The current mirror consists of two CMOS transistors, M_{3} and M_{4}, having equal threshold voltage V_{t}, but with different $(\mathrm{W} / \mathrm{L})$ ratios. M_{3} is fed with the $\mathrm{I}_{\text {refl }}=\mathrm{mI}_{\text {ref }}$ with m is constant. The output current I_{b} is taken at the drain of M_{4}, which must be operated in the saturation region. For M_{3} we can write

$$
\begin{equation*}
I_{r e f 1}=\frac{K_{n}}{2}\left(\frac{W}{L}\right)_{3}\left(V_{g s 3}-V_{t}\right)^{2} \tag{4.2}
\end{equation*}
$$

Since M_{4} is connected in parallel with M_{3}, it will have the same $\mathrm{V}_{\mathrm{g} 53}=\mathrm{V}_{\mathrm{gs} 4}{ }^{(1)}$; thus

$$
\begin{equation*}
I_{b}=\frac{K_{n}}{2}\left(\frac{W}{L}\right)_{4}\left(V_{g s 3}-V_{t}\right)^{2} \tag{4.3}
\end{equation*}
$$

Equation (4.2) and (4.3) can be combined to obtain

$$
\begin{equation*}
I_{b}=m I_{\text {ref }} \frac{(W / L)_{4}}{(W / L)_{3}} \tag{4.4}
\end{equation*}
$$

By substitute the Equation (4.1) into the (4.4), we could get

$$
\begin{equation*}
I_{b}=\frac{m K_{n}}{2}\left(\frac{W}{L}\right)_{1} \frac{(W / L)_{4}}{(W / L)_{3}}\left(V_{i 1}-V_{s 1}-V_{t}\right)^{2} \tag{4.5}
\end{equation*}
$$

${ }^{(1)}$ In the above calculations, in order to generate a close form solutions, we have ignored the small 100Ω resistive connected to the source of M_{3}. Simulation results have concluded this resistor has very little affect on the output current.

Part 3: Gilbert quad pair

The schematic of the Gilbert quad pair is shown in Figure 4.4,

Figure 4.4: Schematic of the Gilbert quad pair

$$
\begin{gather*}
I_{d 7}=\frac{K_{n}}{2}\left(\frac{W}{L}\right)_{7}\left(V_{G 7}-V_{S 7}-V_{t}\right)^{2} \tag{4.6}\\
I_{d 8}=\frac{K_{n}}{2}\left(\frac{W}{L}\right)_{8}\left(V_{G 8}-V_{S 8}-V_{t}\right)^{2} \tag{4.7}\\
V_{i}=V_{G 7}-V_{G 8} \tag{4.8}\\
I_{b}=I_{d 7}+I_{d 8} \tag{4.9}
\end{gather*}
$$

Solving this four equations and assume $\left(\frac{W}{L}\right)_{7}=\left(\frac{W}{L}\right)_{8}$ and $V_{S 7}=V_{S 8}$, we could get

$$
\begin{equation*}
\Delta I_{d}=I_{d 7}-I_{d 8}=\frac{K_{n}}{2} V_{i} \sqrt{4\left(\frac{W}{L}\right) \frac{I_{b}}{K_{n}}-\left(\frac{W}{L}\right)^{2} V_{i}^{2}} \tag{4.10}
\end{equation*}
$$

where $I_{b}=\frac{m K_{n}}{2}\left(\frac{W}{L}\right)_{1} \frac{(W / L)_{4}}{(W / L)_{3}}\left(V_{i 1}-V_{s 1}-V_{t}\right)^{2}$
A detailed mathematical derivation of the characteristic of the Gilbert quad pair could be found in Appendix A.

4.2.3 Small Signal Analysis

The new double balanced design has a symmetric structure, thus we only need to analysis half of the circuit shown in Figure 4.5.

Figure 4.5: Half circuit of the current folded mirror mixer in a small signal analysis

We can divide the circuit into three separate parts for analysis as shown by the circuits in Figure 4.5. The first part is the common emitter with emitter resistance $2 \mathrm{R}_{\mathrm{E}}$. The second part is the differential folded mirror and the third part is the Gilbert quad.

We use a source degenerations resistor R_{E} to increase linearity range of the mixer.

Moreover, the mixer is designed to operate with a small RF input signal and a relatively large LO signal. The conversion gain of the mixer is shown below:

Part 1: Common emitter with emitter resistance

Figure 4.6: The small signal equivalent circuit of a common source amplifier with a source degeneration resistor

The current i_{e} :

$$
\begin{align*}
i_{e 1} & =\frac{v_{R F}-v_{g s 1}}{2 R_{E}} \\
g_{m 1} v_{g s 1} & =\frac{v_{R F}-v_{g s 1}}{2 R_{E}} \\
v_{R F} & =v_{g s 1}\left(2 R_{E} g_{m 1}+1\right) \\
v_{g s 1} & =\frac{v_{R F}}{2 R_{E} g_{m 1}+1} \tag{4.11}
\end{align*}
$$

Therefore, the current i_{cl} :

$$
\begin{align*}
& i_{c 1}=g_{m 1} v_{g s 1} \\
& i_{c 1}=\frac{v_{r f}}{2 R_{E}+1 / g_{m 1}} \tag{4.12}
\end{align*}
$$

Part 2: differential folded mirror

Figure 4.7: The small signal equivalent circuit of a differential folded mirror

The voltage V_{t} :

$$
\begin{align*}
V_{t} & =-i_{c 3} R_{c} \tag{4.13}\\
V_{t} & =v_{g s 3}+g_{m 3} v_{g s 3} R_{E 2} \\
v_{g s 3} & =\frac{-i_{c 3} R_{c}}{1+g_{m 3} R_{E 2}} \\
& =\frac{-m i_{c 1} R_{c}}{1+g_{m 3} R_{E 2}} \tag{4.14}
\end{align*}
$$

where $i_{c 3}=m i_{c 1}$ and m is a constant

Therefore, the current $\mathrm{i}_{\mathrm{c} 4}$:

$$
\begin{aligned}
& i_{c 4}=g_{m 4} v_{g s 4} \\
& i_{c 4}=g_{m 4} V_{t}
\end{aligned}
$$

by Equation (4.13)

$$
=-g_{m 4} i_{c 3} R_{c}=-g_{m 4} g_{m 3} v_{g 53} R_{c}
$$

$$
\begin{equation*}
\text { By Equation (4.14) } \quad=\frac{m g_{m 3} g_{m 4} R_{c}^{2}}{1+g_{m 3} R_{E 2}} i_{c 1} \tag{4.15}
\end{equation*}
$$

Part 3: Gilbert quad

Since the transistors $\mathrm{M}_{7}-\mathrm{M}_{10}$ operate as a switch. Therefore, it is like to gate the input RF signal with a square wave.

Finally, the overall transfer function is:

$$
\begin{align*}
v_{I F} & =v_{I F}^{+}-v_{I F}^{-}=R_{o}\left(i_{c 4}-i_{c 6}\right) \times \text { square wave } \\
& =2 R_{o} \frac{m g_{m 3} g_{m 4} R_{c}^{2}}{1+g_{m 3} R_{E 2}} \frac{v_{r f}}{1+2 R_{E} g_{m 1}} \times \frac{2}{\pi} \\
\frac{v_{I F}}{v_{R F}} & =\frac{2}{\pi} \times \frac{m g_{m 3} g_{m 4} R_{c}^{2}}{1+g_{m 3} R_{E 2}} \times \frac{2 R_{o}}{1+2 R_{E} g_{m 1}} \tag{4.16}
\end{align*}
$$

where the $2 / \pi$ accounts for the conversion gain loss.

4.3 Current Mode Mixer

Although the current folded mirror mixer could operate at 1.5 V single voltage supply. Our goal is to design a mixer, which can operate at a single supply voltage at 1.2 V , because most portable telecommunication equipment is powered by a single 1.2 V battery.

We have modified the current folded mirror mixer into a current mode mixer [24] as shown in Figure 4.8.

Figure 4.8: Schematic diagram of the current mode mixer

4.3.1 Operating Principle

The new design has eliminated the series connected transistors to reduce the supply voltage. Moreover, it uses current input instead of voltage input.

4.3.2 Large Signal Analysis

Transistors $\mathrm{M}_{3}-\mathrm{M}_{6}$ are operated as a switch to generate a multiplications property using the non-linear characteristic of the transistors as shown in the equation (2.3). Therefore, only two of the four transistors $\left(M_{3}-M_{6}\right)$ are conducting at any time and we can consider the mixer as two identical pairs. The schematic of one of the differential pair is shown in Figure 4.9.

Figure 4.9: Schematic of the differential pair

$$
\begin{gather*}
I_{d 3}=\frac{K_{n}}{2}\left(\frac{W}{L}\right)_{3}\left(V_{G 3}-V_{S 3}-V_{t}\right)^{2} \tag{4.17}\\
I_{d 4}=\frac{K_{n}}{2}\left(\frac{W}{L}\right)_{4}\left(V_{G 4}-V_{S 4}-V_{t}\right)^{2} \tag{4.18}\\
V_{i}=V_{G 3}-V_{G 4} \tag{4.19}\\
I_{S 2}=I_{d 3}+I_{d 4} \tag{4.20}
\end{gather*}
$$

where $I_{S 2}$ is a constant current source. Solving this four equations and assume $\left(\frac{W}{L}\right)_{3}=\left(\frac{W}{L}\right)_{4}$ and $V_{S 3}=V_{S 4}$, we could get

$$
\begin{equation*}
\Delta I_{d}=I_{d 3}-I_{d 4}=\frac{K_{n}}{2} V_{i} \sqrt{4\left(\frac{W}{L}\right) \frac{I_{S 2}}{K_{n}}-\left(\frac{W}{L}\right)^{2} V_{i}^{2}} \tag{4.21}
\end{equation*}
$$

A detailed mathematical derivation of the characteristics of a differential pair could be found in Appendix A.

4.3.3 Small Signal Analysis

Based on the Figure 4.10, we could find the relationship between the differential output ($\mathrm{I}_{1}, \mathrm{I}_{2}$) and the two differential input ($\mathrm{i}_{\mathrm{x} 1}, \mathrm{i}_{\mathrm{x} 2}$ and $\mathrm{i}_{\mathrm{y} 1}, \mathrm{i}_{\mathrm{y} 2}$). We can derive the relationship between the differential outputs current $\left(\mathrm{I}_{1}, \mathrm{I}_{2}\right)$ and the two differential input currents ($i_{x 1}, i_{x 2}$ and $i_{y 1}, i_{y 2}$) as shown in Figure 4.10.

Figure 4.10: New parallel current mode mixer

The derivation step:
Consider the loop $\mathrm{M}_{1}-\mathrm{M}_{2}-\mathrm{M}_{3}-\mathrm{M}_{4}$ and $\mathrm{M}_{1}-\mathrm{M}_{2}-\mathrm{M}_{5}-\mathrm{M}_{6}$

$$
\begin{equation*}
\frac{i_{c 1}}{i_{c 2}}=\frac{i_{c 3}}{i_{c 4}}=\frac{i_{c 6}}{i_{c 5}} \tag{4.22}
\end{equation*}
$$

Neglecting the base current, then equation (4.22) becomes

$$
\begin{equation*}
\frac{i_{x 1}}{i_{x 2}}=\frac{i_{c 3}}{i_{c 4}}=\frac{i_{c 6}}{i_{c 5}} \tag{4.23}
\end{equation*}
$$

The differential output current $\left(I_{1}-I_{2}\right)$ is equal to

$$
\begin{equation*}
I_{1}-I_{2}=\left(i_{c 3}+i_{c 5}\right)-\left(i_{c 4}+i_{c 6}\right) \tag{4.24}
\end{equation*}
$$

For

$$
\left\{\begin{array}{l}
i_{y 1}=i_{c 3}+i_{c 4} \tag{4.25}\\
i_{y 2}=i_{c 5}+i_{c 6}
\end{array}\right.
$$

Substitute equations (4.25) and (4.26) into (4.24), we could get

$$
\begin{equation*}
I_{1}-I_{2}=\left(i_{y 1}+i_{y 2}\right)-2\left(i_{c 4}+i_{c 6}\right) \tag{4.27}
\end{equation*}
$$

Solving $i_{c 4}$ and $i_{c 6}$ in terms of $i_{x 1}, i_{x 2}, i_{y 1}$ and $i_{y 2}$.
From Equation (4.25),

$$
\begin{align*}
& i_{c 3}=i_{y 1}-i_{c 4} \\
& i_{c 4}=\frac{i_{x 2}}{i_{x 1}}\left(i_{y 1}-i_{c 4}\right) \\
& i_{c 4}=\frac{i_{x 2} i_{y 1}}{i_{x 1}+i_{x 2}} \tag{4.28}
\end{align*}
$$

By similar method,

$$
\begin{equation*}
i_{c 6}=\frac{i_{x 1} i_{y 2}}{i_{x 1}+i_{x 2}} \tag{4.29}
\end{equation*}
$$

So,

$$
\begin{align*}
I_{1}-I_{2} & =\left(i_{y 1}+i_{y 2}\right)-2\left(\frac{i_{x 2} i_{y 1}+i_{x 1} i_{y 2}}{i_{x 1}+i_{x 2}}\right) \\
& =\frac{\left(i_{x 1}-i_{x 2}\right)\left(i_{y 1}-i_{y 2}\right)}{i_{x 1}+i_{x 2}} \\
& =\frac{I_{x} \times I_{y}}{I_{S 1}} \tag{4.30}
\end{align*}
$$

where I_{x} (Differential I_{x} current $)=\left(i_{x 1}-i_{x 2}\right)$

$$
\begin{aligned}
I_{y}\left(\text { Differential } I_{y} \text { current }\right) & =\left(i_{y l}-i_{y 2}\right) \\
I_{S l} & =\left(i_{x 1}+i_{x 2}\right)
\end{aligned}
$$

From the result of the Equation (4.30), it could be seen that the differential output current, $\left(I_{1}-I_{2}\right)$, is equal to the multiplication of the two differential input $\operatorname{current}\left(\mathrm{I}_{\mathrm{x}}\right.$ and I_{y}).

4.3.4 V-I Converter

The new current mode mixer requires RF and LO current inputs. Therefore, we need to design a V-I converter. In this project, we use a V-I converter shown in Figure 4.11 [[25], [26]].

Figure 4.11: Schematic design of the V-I converter

In order to wider the differential-input voltage swing at low voltage supply, four transistors $\left(M_{3}-M_{6}\right)$ are stacked with the core transistors $\left(M_{1}, M_{2}\right)$ and biased in triode region. Then $V_{d s}$ of M_{3}, M_{4} and M_{5}, M_{6} are biased very close to $V_{d d}$ and ground (several tens of $m V$) respectively. By setting bias input voltage properly, M_{1}, M_{2} can operate in saturation region with $\mathrm{V}_{\mathrm{ds}, \mathrm{M} 1, \mathrm{M} 2} \geq \mathrm{V}_{\text {bias }} \pm \mathrm{V}_{\text {voltage-swing }}$, then the differential-input voltage could be up to $\mathrm{V}_{\text {voltage-swing. Where the feedback loop }\left(\mathrm{M}_{7} \text { - }\right.}$ M_{10}) is used to bias the gates of M3, M4 to maintain triode operation. $\mathrm{V}_{\mathrm{in}}^{+}, \mathrm{V}_{\text {in }}^{-}$ would deliver V_{1}, V_{2} to generate a differential-input signal of M_{7}, M_{8} for the differential-currents. By mirroring this differential-currents through $\mathrm{M}_{9}-\mathrm{M}_{12}$ and differential output current could obtain.

4.3.4.1 Equation Analysis

We have mentioned in the previous section that $\mathrm{M}_{1}, \mathrm{M}_{2}$ are in saturation mode and $\mathrm{M}_{5}, \mathrm{M}_{6}$ are in triode mode. Therefore, we could define the following equation:

$$
\begin{equation*}
I_{M_{1}}-I_{M_{2}}=K_{n}\left(V_{C M}-V_{t n}\right) V_{d}=K_{p}\left(V_{\text {pbias }}-V_{t p}\right)\left(V_{2}-V_{1}\right) \tag{4.31}
\end{equation*}
$$

The left-hand side of Equation (4.31) is derived from the saturation mode of M_{1}, M_{2}, and the right-hand side of Equation (4.31) from triode mode of M_{5}, M_{6}. Thus,

$$
\begin{equation*}
\Rightarrow \quad V_{2}-V_{1}=\frac{K_{n}\left(V_{C M}-V_{t n}\right)}{K_{p}\left(V_{p b i a s}-V_{t p}\right)} V_{d} \tag{4.32}
\end{equation*}
$$

where M_{7}, M_{8} are biased at saturation mode. So

$$
\begin{equation*}
I_{o u t}=I_{M_{7}}-I_{M_{\mathrm{s}}}=\frac{K_{n} K_{n}^{\prime}\left(V_{C M}-V_{t n}\right)\left(V_{1}+V_{2}-2 V_{t n}\right)}{K_{p}\left(V_{\text {pbias }}-V_{t p}\right)} V_{d} \tag{4.33}
\end{equation*}
$$

where $V_{d}=V_{i n}^{+}-V_{i n}^{-}$and $V_{C M}=\frac{V_{i n}^{+}+V_{i n}^{-}}{2}$.

From Equation (4.33), we can observe that the differential output current is a function of the differential input voltage V_{d}. Although the nonlinearity may be increased as the supply voltage is reduced, which could be compensated by increasing the aspect ratios of $\mathrm{M}_{5}, \mathrm{M}_{6}$. The detail derivation could be found in Appendix B.

4.4 Second Order Effects

In order to obtain a meaningful close-form solution, the simplified model is used in the qualitative analysis in Section 4.2.2 and Section 4.3.2. However, the device mismatch and body effect affects have not been discussed. The following section analysis the problem caused by device mismatch and body effect [27].

4.4.1 Device Mismatch

Device mismatch is a main source of error, which usually creates output offset voltage and harmonic distortions. It can be shown that the DC offset and the second order harmonic distortion is a function of the mismatch aspect ratio $\Delta(\mathrm{W} / \mathrm{L})$ and the loading resistor ΔR_{0}.

$$
\begin{equation*}
\Delta V_{I F}=\frac{K_{n}}{2} V_{i}\left(R_{o}+\Delta R_{o}\right) \sqrt{4\left(\frac{W}{L}+\Delta \frac{W}{L}\right) \frac{I_{\text {base }}}{K_{n}}-\left(\frac{W}{L}+\Delta \frac{W}{L}\right)^{2} V_{i}^{2}} \tag{4.34}
\end{equation*}
$$

Fortunately, the layout drawing could minimize this source of mismatch as much as possible.

4.4.2 Body Effect

In the above analysis, the effect of the substrate (or body) bias has been neglected for easier calculation. However, in N -well CMOS technology, NMOS transistors are usually experiencing the body effect, which result in the variation of the threshold voltage $\left(V_{t}\right)$. To include this effect, the V_{t} equation is changed to:

$$
\begin{equation*}
\left.V_{t}=V_{t o}+\gamma \mid \sqrt{2 \phi_{f}+V_{S B}}-\sqrt{2 \phi_{f}}\right\rfloor \tag{4.35}
\end{equation*}
$$

where $\mathrm{V}_{\text {to }}$ is the threshold voltage for $\mathrm{V}_{\mathrm{SB}}=0 ; \gamma$ is a process parameter; ϕ_{f} is a physical parameter.

4.5 Single-ended to Differential-ended converter

In usual case, in order to reduce the noise figure and power consumption, a single-balanced mixer would be used in the RF receiver. However, as mentioned in Section 2.8, in order to reduce the effect of the LO signal at the IF output port, the mixer would be implemented in the double balanced structure instead. Moreover, a double balanced design gives a better isolation between the LO and IF. As a result, a single-ended to differential-ended converter is needed to place before the mixer input port (Figure 4.12).

Figure 4.12: The function of the single-ended to differential-ended converter

Figure 4.13 shows the single-ended to differential-ended converter used in this project, which is consisted of a common source amplifier and a common drain amplifier pairs.

Figure 4.13: Schematic of the single-ended to differential-ended converter

The common source amplifier generates an output with 180° phase shift, while the common drain amplifier generate an output with no phase shift.

4.6 Output Buffer Stage

For experimental characterization purposes, the mixer core output signal has been buffered by means of an on-chip common drain amplifier (source follower), as shown in Figure 4.1 and Figure 4.8, to drive the instrument 50Ω input impedance. Because of this, the conversion gain and third order intermodulation (IM3) measured on the spectrum analyzer are reduced with respect to the corresponding values of the core output. Therefore, we need to measure the conversion loss and subtract it from the total measured conversion gain.

4.7 Noise Theory .

The major function of the mixer is frequency translation. During translation not only the narrow-band input signal is translated, but also the wide-band noise. As illustrate in Figure 4.14 , the portion at $\omega_{\text {LO }} \pm \omega_{\text {IF }}$ are downconverted to $\omega_{\text {IF }}$ together. Thus, the resulting noise power spectral density is about twice of the original one assuming noise at different frequencies is not correlated [28].

Figure 4.14: The concept of noise alias in mixing

If a square wave is employed at the LO, the situation is more complicated. As shown in Figure 4.15, each harmonic component of LO would downconvert a particular band of white noise to the IF with different conversion gain.

Figure 4.15: Noise contributions from the harmonics of LO

4.7.1 SSB and DSB Noise Figure

Noise figure is defined as the signal-to-noise (SNR) at the input (RF) port divided by the SNR at the output (IF) port. Figure 4.14 show that not only the desired RF signal with noise is downconverted, but also the image signal with noise. Therefore, it is important to differentiate the noise measurement into a single-sideband (SSB) and a double-sideband (DSB) noise figures.

In some systems, input signals at both RF and image frequencies are informative and used simultaneously. Then the SNR is determined by the total signal power in both sidebands and defined as Double-SideBand (DSB) noise figure. On the other hand, it is meaningful to refer the mixer noise to only one sideband of the system, which only uses signal at one of the two sidebands. This is defined as Single-SideBand (SSB) noise figure.

The noise models for SSB and DSB noise figure calculations are shown in Figure 4.16. For simplicity, the LO is omitted.

Figure 4.16: Noise models for the mixer NF calculations,
(a) SSB NF and (b) DSB NF

In the SSB case, the SSB input-referred noise power, $\mathrm{P}_{\text {SSB }}$, is given by,

$$
\begin{align*}
P_{n o} & =P_{n i}\left(G_{c r}+G_{c i}\right)+P_{S S B} G_{c r} \\
P_{S S B} & =\frac{P_{n o}-P_{n i}\left(G_{c r}+G_{c i}\right)}{G_{c r}} \tag{4.36}
\end{align*}
$$

where $P_{n o}$ is the output noise power, $P_{n i}$ is the input noise power, and $G_{c r}$ and $G_{c i}$ are the conversion gains at the RF and the image frequency respectively. In the SSB case, only RF input noise is considered, thus the SSB noise figure is given by the ratio of output noise power to the noise power of one input sideband;

$$
\begin{equation*}
N F_{S S B}=\frac{P_{S S B} G_{c r}+P_{n i} G_{c i}}{P_{n i} G_{c r}}+1 \tag{4.37}
\end{equation*}
$$

In the DSB, the input noise comes from both sidebands equally. Therefore,

$$
\begin{align*}
P_{n o} & =P_{n i}\left(G_{c r}+G_{c i}\right)+P_{D S B}\left(G_{c r}+G_{c i}\right) \\
P_{D S B} & =\frac{P_{n o}-P_{n i}\left(G_{c r}+G_{c i}\right)}{G_{c r}+G_{c i}} \tag{4.38}
\end{align*}
$$

and the DSB noise figure becomes,

$$
\begin{equation*}
N F_{D S B}=\frac{P_{D S B}}{P_{n i}}+1 \tag{4.39}
\end{equation*}
$$

If the conversion gain of the RF and the image frequency are same, that is, $\mathrm{G}_{\mathrm{cr}}=\mathrm{G}_{\mathrm{ci}}$, the $\mathrm{NF}_{\text {SSB }}$ will be 3 dB higher than the $\mathrm{NF}_{\mathrm{DSB}}$.

4.7.2 Noise Figure

Actually, it is hard to calculate noise figure by hand due to the time variance and frequency translation in mixers. Moreover, the translation of the RF noise components by switching stage of the Gilbert quad pair will prohibit the direct use of small-signal ac and noise analysis in simulator. Therefore, we will only use measured noise figure results.

Chapter 5

Simulation Results

5.1 Introduction

Simulation is an important procedure in IC design. We use simulation results to guide us through the design. Simulation can provide fast and accurate performance of the circuit.

In this project, we use SpectreRF© simulator, which can simulate steady state and small signal analyses of circuits designed for radio frequency applications.

The beginning of this chapter gives the simulation results of the two proposed mixers in different criteria as mention in Chapter 2. Then the peripheral part, such as single-ended to differential-ended converter, output buffer stage and V-I converter simulation results are discussed.

5.2 Current Folded Mirror Mixer

Figure 5.1 shows the W/L ratio used in each of the CMOS transistor. \boldsymbol{A} single 1.5 V supply voltage is applied to the mixer. The mixer downconverts a 900 MHz RF signal to a 10 MHz IF signal.

Figure 5.1: Electrical parameter used in current folded mirror mixer

5.2.1 Conversion Gain

Figure 5.2: The simulated conversion gain against output frequency

The conversion gain is increasing as a function of the output frequency. Where the gain is equal to -1 dB at 10 MHz (the designed intermediate frequency). Afterwards, the conversion gain is dropping down.

5.2.2 Linearity

In this simulation, which will focus on two linearity terms: (1) $1-\mathrm{dB}$ compression point, and (2) Third order intercept point (IP3). These measurements are widely used standard to measure the linearity of a tested circuit.

For 1-dB compression point simulation, a 900 MHz RF signal is applied to the RF input. Then, the corresponding output power at the IF signal (10 MHz) is measured and plotted on the graph as shown in Figure 5.5.

For IP3 simulation, input two tones RF test signals of very closed RF frequencies (900 MHz and 901 MHz) are applied. The corresponding third-order intermodulation products are measured at 8 MHz and 11 MHz respectively and plotted on the graph as shown in Figure 5.5.

At the same time, the LO signal is set at 910 MHz in both simulation.
Figure 5.3 and Figure 5.4 shown the transient and frequency response of the output signal with a pure sinusoid one tone RF input signal and two tones RF input signals respectively.

(a)

(b)

Figure 5.3: (a) The transient response and (b) the frequency response of the output signal with a pure sinusoid one tone input RF signal

(a)

(b)

Figure 5.4: (a) The transient response and (b) the frequency response of the output signal with two tones input RF signal

5.2.2.1 1-dB Compression Point and IIP3

Figure 5.5: The simulated 1-dB compression point and IIP3 of the downconversion mixer

The simulation result shown that the $1-\mathrm{dB}$ compression point and IIP3 equal to -1.2 dBm and 1.1 dBm respectively.

5.2.3 Output Buffer Stage

As mention in Section 4.6, although the output buffer stage (source follower) has conversion loss, it must be needed for experimental measurement. The transient response of the input and output signal of the output buffer are shown in Figure 5.6. The simulated conversion loss is about 5.56 dB . The conversion gain shown in Section 5.2.1 has cancelled out of this loss.

(a)

(b)

Figure 5.6: (a) The input and (b) the output transient response of the output buffer stage

5.3 Current Mode Mixer

The schematic diagram of a 900 MHz to 10 MHz current mode downconverter with all the transistor W/L ratio is shown in Figure 5.7 The supply voltage is a single

1.2 V .

Figure 5.7: Electrical parameter used in current mode mixer

5.3.1 Conversion Gain

Figure 5.8: The simulated conversion gain against output frequency

The conversion gain is equal to -12.9 dB at 10 MHz (the designed intermediate frequency). Afterwards, the conversion gain is dropping down.

5.3.2 Linearity

The simulation procedure is same as mention in Section 5.2.2, we only focus on two linearity terms: (1) d-dB compression point, and (2) Third order intercept point.

5.3.2.1 1-dB Compression Point and IIP3

Figure 5.9: The simulated 1-dB compression point and IIP3 of the downconversion mixer

The simulation result shown the $1-\mathrm{dB}$ compression point and IIP3 equal to 3 dBm and 11.5 dBm respectively.

5.3.3 Output Buffer Stage

The transient response of the output buffer is shown in Figure 5.10. From the marker in the two graphs, we can calculate the conversion loss and it is about 4.3 dB . The conversion gain shown in Section 5.3.1 has cancelled out of this loss.

Figure 5.10: (a) The input and (b) the output transient response of the output buffer stage

5.3.4 V-I Converter

Since the current mode mixer requires current inputs. Therefore, it is needed to have a V-I converter. The electrical parameter used in the V-I converter is shown in

Figure 5.11.

Figure 5.11: Electrical parameter used in V-I converter
V-I converter should have a high-linearity and a low signal distortion.
Figure 5.12 shows the simulation result.

Figure 5.12: The simulated differential current output against differential voltage input

The simulation result of Figure 5.12 indicates the V-I converter has a high linearity between input and output signals.

5.4 Single-ended to Differential-ended Converter

As the previous two proposed mixers are double-balanced, a single-ended to differential-ended converter is needed. The electrical parameter used is shown in Figure 5.13. The simulation results are shown in Figure 5.14

Figure 5.13: Electrical parameter used in single-ended to differential-ended converter

(a)

(b)

Figure 5.14: The transient response of the two output signals of the single-ended to differential-ended converter (a) output1, (b) output2

Figure 5.15:The phase difference of the two outputs

From the simulation result, it can be realized that the phase difference between two outputs is within 1-degree phase error between 800 MHz and 1 GHz and the amplitude difference between the two outputs is within 0.5 m V .

Chapter 6

Layout Consideration

6.1 Introduction

Layout is the final design step in IC design, which transforms schematic design into physical representation. The performance of an RF circuits is very sensitive to the layout technique.

In this chapter, we will present the layout technique of transistors, resistors, capacitors, substrate tap and pad. The fabrication process used in this project is AMS $_{\circledast} 0.6 \mu \mathrm{~m}$ CMOS.

6.2 CMOS transistor Layout

For analog applications, the aspect ratio (W/L) of transistors is much wider than transistors in digital circuits; therefore, it is necessary to design wide structures. However, as the aspect ratio of a transistor is very large, the resulting parasitic capacitor and resistor become very large. Which will degrade the performance of the circuit. In this case, it is good idea to lay out using multiple-gate fingers similar to the layout shown in Figure 6.1.

Figure 6.1: (a) One transistor in large aspect ratio, (b) Split into 3 parallel parts connected it in multiple-gate fingers

The transistor layout in Figure 6.1(b) with number of elements, $n, n=3$ has a shape better than the one in Figure 6.1(a). This layout has the advantage that the parasitic capacitance is reduced. For a single transistor, the parasitic capacitances C_{sb} (source-bulk) and C_{db} (drain-bulk) are proportional to the width (W) of the transistor. For split transistors, $C_{s b}$ and $C_{d b}$ are reduced by a factor of $n+1 / 2 n$ if n is odd, however, if n is even $C_{s b}$ is reduced by $1 / 2$ while $C_{d b}$ is reduced by $n+2 / 2 n$. This parasitic reduction is quite important for high-speed applications.

Moreover, the practice of splitting a transistor into the parallel connection is
also useful for improving the matching between elements. A major source of transistor mismatches is due to gradients that exist in the fabrication process. To minimize the gradient effect, two transistors that must be matched to each other should be placed very close to each other. Therefore, the use of multiple gate finger arrangements allow us to place matched transistors close to each other.

6.3 Resistor Layout

Integrated resistors can be realized using a wide variety of different conductors. For the $\mathbf{A M S}_{\circledR}$ fabrication process, polysilicon layer is used for resistor. The typical resistivity of the polysilicon layer used is $33 \Omega / \square$. In order to obtain medium-sized resistors, one must use a serpentine layout similar to that shown in Figure 6.2.

Figure 6.2: A typical layout for an integrated resistor

However, the layout structure in Figure 6.2 could not give a precise resistance. Since there is more active etching at the edges of the corner, which makes them rounded, and the shape is poorly controlled. For precise applications, it is a good practice to design rounded (Figure 6.3 (a)) (not available in the $\mathbf{A M S}_{\circledR} \mathbf{0 . 6} \boldsymbol{\mu m}$ fabrication process) or 45° (Figure 6.3(b)). With this solution, better shape control is achieved.

Figure 6.3: Resistor layout (a) rounded corners with dummy resistor (b) 45° corners with dummy resistor

Moreover, dummy resistor placed around, as shown in Figure 6.3, define the same boundary and help to improve resistor value control. Therefore, the effective width of the strip of the resistor will be reduced with respect to the designed value.

6.4 Capacitor Layout

Ideally, capacitor size is give by

$$
\begin{equation*}
C=\frac{\varepsilon_{o x}}{t_{o x}} A_{1}=C_{o x} W L \tag{6.1}
\end{equation*}
$$

However, in the fabrication, the major sources of errors in realizing capacitors are due to over etching and an oxide-thickness gradient across the surface of the microcircuit. The former effect is usually dominant and can be minimized by realizing larger capacitors from a parallel combination of smaller, unit-sized capacitors, similar to what is said in Section 6.2. Errors due to the gradient of the oxide thickness can then be minimized by interspacing the unit-sized capacitors in common-centroid layout so the gradient changes affect both capacitors in the same
way (Figure 6.4). Since oxide-thickness variations are not usually large in a reasonably small area.

Figure 6.4: Layout of two matched capacitors with common centroid symmetry

If we assume that a capacitor has an absolute over etching of $\Delta \mathrm{e}$ and that its ideal dimensions are given by W and L , then its true dimensions are given by $\mathrm{W}_{1}=$ $\mathrm{W}-2 \Delta \mathrm{e}$ and $\mathrm{L}_{1}=\mathrm{L}-2 \Delta \mathrm{e}$, and the true capacitor size is given by

$$
\begin{align*}
C_{e} & =C_{o x}(W-2 \Delta \mathrm{e})(L-2 \Delta \mathrm{e}) \approx C_{o x}[W L-2(W+L) \Delta \mathrm{e}] \\
& =C_{o x}[A-P \Delta \mathrm{e}] \tag{6.2}
\end{align*}
$$

where A is the designed area and P is the perimeter. Thus, the effective capacitance is smaller than the designed area by an amount proportional to the perimeter of the plate. Therefore, another way to minimize the errors in capacitor ratios due to over etching is to need the perimeter-to-area ratios the same, even when the capacitors are different sizes as shown in Figure 6.5.

Figure 6.5: A capacitor layout with equal perimeter-to-area ratios of 4 units and 2.314 units

The routing parasitic capacitance can be calculated from the Equation (6.3), where 8.6×10^{-4} and 1.1×10^{-10} are process extracted parameters.

$$
\begin{equation*}
\text { Capacitance }=8.6 \times 10^{-4}+1.1 \times 10^{-10} \times \text { Perimeter } \tag{6.3}
\end{equation*}
$$

Parasitic resistance may be disastrous to the performance of the device. We can minimized the parasitic resistance by placing more contact windows.

6.5 Substrate Tap

In the $\mathbf{A M S}_{\circledR} \mathbf{0 . 6} \mu \mathrm{m}$ technology, p-type wafer is provided and the n -channel MOSFETs are fabricated directly on the p-type wafer. Substrate taps must be provided to connect the p-type substrate to the ground. Thermal noise also arise due to the substrate. However, the effect of this noise is small and can be neglected. In order to ensure that the effect of the noise is minimized, the number of substrate tap is increased to reduce the substrate resistance. Figure 6.6 shown a typical layout drawing of the substrate tap.

Figure 6.6: Layout of the substrate tap

6.6 Pad Layout

The pad structure used in the $\mathbf{A M S}_{\circledR} \mathbf{0 . 6} \boldsymbol{\mu} \mathbf{m}$ technology is drawn in Figure 6.7. It consists of a Pad layer as bonding layer to conduct the signal, Metal 3 at the bottom us used as shielding. Moreover, there are several layers in between in order to have better shielding. This structure has the advantage of reducing the capacitive coupling from the noisy substrate to the signal pads through the substrate spreading resistance.

Figure 6.7: Layout of the bonding pad

6.7 Analog Cell Layout

Although the complexity of analog cells is limited, the performance of these circuits are strongly depending on the layout technique. Analog design is a very critical task that requires a certain amount of caution. Usually, there are some guidelines to follow in order to maximize the circuit performance:

- Use transistors with the same orientation;
- Use symmetries layout drawing in order to limit offset;
- Use low resistive paths when a current needs to be carried. So, it could avoid the parasitic drop voltages;

Chapter 7

Measurements

7.1 Introduction

In this chapter, the measurement results of the first and second downconversion mixer prototypes will be presented. We have test the following list of mixer parameters:
(i) Matching,
(ii) S-Parameter,
(iii) Conversion gain (loss),
(iv) $1-\mathrm{dB}$ compression point,
(v) Input third-order intercept point (IIP3),
(vi) The effect of the LO power variation,
(vii) The effect of the IF variation.

At the same time, the measurement results of a single-ended to differential-ended converter will be given.

7.2 Downconversion mixer

Two testing prototypes have been fabricated in AMS $_{\circledR} 0.6 \mu \mathrm{~m}$ CMOS technology. Since the probe station and the probe tip are not available during the measurement. Therefore, the first tested circuit (current folded mirror mixer) is in SOP (Small Outline Package) and solders it on a PCB for measurement. The second tested circuit (current mode mixer) uses silver epoxy to glue the circuit die on the PCB and bonds the wire from the die to the PCB. Moreover, a PCB layout design is needed to solder the circuit for high frequency measurement. The detail of the setup and fabrication of the PCB will be presented in the following section.

7.3 PCB Layout

The testing circuit is soldered on a PCB board, which can operate at high frequency $(900 \mathrm{MHz})$. Therefore, the matching between the instrument port and the tested circuit port is very important. Usually, 50Ω matching is required.

Firstly, we need to calculate the width (w) of the microstrip line on the PCB in order to give out the 50Ω characteristic impedance of the line. Then the lumped surface mount elements, inductor (L) or capacitor (C), will be used to tune the input impedance to 50Ω.

Figure 7.1: Microstrip transmission line on the PCB

FR4 (PCB) board is used in the experimental measurement. The height (h) and the dielectric constant $\left(\varepsilon_{\mathrm{r}}\right)$ of the board are 0.8 mm and 4.2 respectively. By solving the following two equations (Equation (7.1) and Equation (7.2)):

$$
\begin{gather*}
\varepsilon_{e f f}=\frac{\varepsilon_{r}+1}{2}+\frac{\varepsilon_{r}-1}{2} \frac{1}{\sqrt{1+12 h / w}} \tag{7.1}\\
Z_{o}=\frac{120 \pi}{\sqrt{\varepsilon_{e f f}}} \frac{1}{w / h+1.393+0.667 \ln (1.444+w / h)}=50 \tag{7.2}
\end{gather*}
$$

where w is the width of the microstrip line
h is the height of the substrate
ε_{r} is the dielectric constant of the substrate
$\varepsilon_{\text {eff }}$ is the effective dielectric constant
Z_{0} is the characteristic impedance

We could get the width (w) of the microstrip line is equal to 1.6 mm . Then the characteristic impedance is equal to 50Ω.

Afterwards, using matching networks with different parameter value in the current folded mirror mixer (Figure 7.2 (a)) and the current mode mixer (Figure 7.2 (b)) to match a 50Ω input impedance.

Figure 7.2: The parameter value and the configuration of the matching networks used in
(a) current folded mirror mixer and (b) current mode mixer

7.4 Test Setups

There are mainly three test setups for measuring the performance of the mixer.
In Section 7.4.1, we will present a setup for measuring the matching and the S-Parameter value. Afterwards, two setups for measuring the 1-dB compression and the IIP3 would be given respectively.

7.4.1 Measurement Setup for S-Parameter

For the S-Parameter measurement, the S-Parameter test set (HP 85046A) accompanies with the network analyzer (HP 4396A) will be used. The connection setup is shown in Figure 7.3.

Figure 7.3: The test setup for S-Parameter measurement

The port of the tested mixer has been already matched to 50Ω by Section 7.3 with SMA connectors. Since the mixer has three ports, RF, LO and IF port, so a 50Ω terminator is needed to terminate one of port while the other two ports are being tested.

Figure 7.4: The 50Ω terminated end

7.4.2 Measurement Setup for 1-dB Compression Point and IIP3

For the $1-\mathrm{dB}$ compression point measurement, we need two signal generators (HP 8648C) and one spectrum analyzer (HP 8594EM). The RF (900 MHz) and LO $(910 \mathrm{MHz})$ input signals are generated by the two signal generators and feed into the tested mixer input ports respectively. The downconverted signal IF (10 MHz) is measured by the spectrum analyzer. The experimental setup is shown in Figure 7.5.

Figure 7.5: Experimental setup for 1-dB compression point measurement

Figure 7.6 shown the downconverted signal (IF) from the spectrum analyzer in the $1-\mathrm{dB}$ compression point measurement.

Figure 7.6: Measurement result of the $1-\mathrm{dB}$ compression point of the mixer

For the IIP3 measurement, one more of the signal generator (HP 8656B) and a 2 way- 0° power combiner (mini-circuits ZFSC-2-2500) are needed. Figure 7.7 shown the experimental setup used for IIP3 measurement.

Figure 7.7: Experimental setup for IIP3 measurement

Two signal generators generate two closed frequency (900 MHz and 901 MHz) and combine with the power combiner to form an RF input in order to measure the third order intermodulation products in the spectrum analyzer.

Figure 7.8 shown the downconverted signal and the third-order intermodulation products on the spectrum analyzer in the IIP3 measurement.

Figure 7.8: Measurement result of the IIP3 of the mixer

7.5 Measurement Result of the Current Folded Mirror

Mixer

The microphotograph and the layout drawing of the current folded mirror mixer are printed in Figure 7.9 and Figure 7.10 respectively. It is operating with a single voltage supply of 1.5 V , the total power consumption of the mixer is 7.5 mW . The active die area is $250 \mu m \times 300 \mu m$.

Figure 7.9: Microphotograph of the current folded mirror mixer

Figure 7.10: Layout drawing of the current folded mirror mixer

Figure 7.11 and Figure 7.12 show the top view of the current folded mirror mixer on the PCB and the experimental setup in the laboratory respectively.

Figure 7.11: Top view of the current folded mirror mixer test board

Figure 7.12: Experimental setup in the laboratory

7.5.1 S-Parameter Measurement

We use S-parameter measured for the following isolation measurement, LO-IF, LO-RF and RF-IF. Moreover, the RF port and LO port impedance matching was measured.

For the RF and LO impedance matching measurement, the LO, RF and IF port would be connected as shown in Figure 7.13.

Figure 7.13: The connection configuration of the RF and LO
S-Parameter measurement

51.84-7.2738j

62.305-17.923j

(a)

(b)

Figure 7.14: The impedance matching of the (a) S_{11} (LO port) and (b) S_{22} (RF port)

The connection configuration and the measurement results of the LO-IF, LO-RF, and RF-IF S-Parameter (isolation) as shown in Figure 7.15, Figure 7.16 and Figure 7.17 respectively

Figure 7.15: (a) The connection configuration and
(b) the measurement result of the S_{21}

From the Figure 7.15 , it is shown that the LO-IF isolation $\left(\mathrm{S}_{21}\right)$ is equal to 21.998 dB at 910 MHz .

Figure 7.16: (a) The connection configuration and
(b) the measurement result of the S_{21}

From the Figure 7.16, it is shown that the LO-RF isolation $\left(\mathrm{S}_{21}\right)$ is equal to 22.092 dB at 905 MHz .

(a)

(b)

Figure 7.17: (a) The connection configuration and
(b) the measurement result of the S_{12}

From the Figure 7.17, it is shown that the RF-IF isolation (S_{12}) is equal to -32.998 dB at 900 MHz .

7.5.2 Conversion Gain and the Effect of the IF Variation

The conversion gain is measured by using the same setup as shown in Figure 7.5. The LO input signal is fixed at 910 MHz with a power of -2 dBm . The RF input signal is fixed at -9 dBm and a frequency is swept from 810 MHz to 908 MHz .

Figure 7.18: Experimental result of the conversion gain verse output frequency (IF)

Figure 7.18 shows the experimental result of effect of the conversion gain as the output (immediate) frequency in varying. The conversion gain starts from -2.1 dB to -3 dB when the immediate frequency rises from 1 MHz to 20 MHz . Afterwards, the conversion gain drop down to -11.8 dB as the IF up to 100 MHz .

7.5.3 1-dB Compression Point

For the $1-\mathrm{dB}$ compression point measurement, the setup of the Figure 7.5 is used. The LO input signal is fixed at 910 MHz with a power of -2 dBm . The RF input signal is fixed at 900 MHz with a power swept from -53 dBm to 7 dBm .

Figure 7.19: Experimental result of the $1-\mathrm{dB}$ compression point

Figure 7.19 shows the measurement result of the $1-\mathrm{dB}$ compression point of the current folded mirror mixer. The value of it is about -3 dBm .

7.5.4 IIP3

The experimental setup shown in Figure 7.7 is adopted for the measurement of the third-order input intercept point (IIP3). The LO input signal is fixed at 910 MHz with a power of -2 dBm . Power combiner combines the fixed two-tone RF signals at 900 MHz and 901 MHz with a power swept from -28 dBm to 6 dBm . The noise floor measured from the spectrum analyzer is equal to -75 dBm .

Figure 7.20: Experimental result of the IIP3, SFDR and BDR

The value of the measured IIP3 shown in Figure 7.20 is equal to 1 dBm .
Moreover, from Section 2.5.1, it can be realized that the Spurious-Free Dynamic Range (SFDR) of the CMOS Current Folded Mirror Mixer is equal to

$$
\begin{align*}
\mathrm{SFDR} & =\frac{2}{3}\left(P_{I I P 3}-P_{\text {NiFIr }}\right) \\
& =\frac{2}{3}[1-(-75)] \\
& =50.7 \mathrm{~dB} \tag{7.3}
\end{align*}
$$

In addition, the blocking Dynamic Range (BDR) (Section 2.5.2) of the CMOS Current Folded Mirror Mixer is equal to

$$
\begin{align*}
\mathrm{BDR} & =P_{-\mathrm{ldB}}-P_{\mathrm{NsFlr}} \\
& =-3-(-75) \\
& =72 \mathrm{~dB} \tag{7.4}
\end{align*}
$$

7.5.5 LO Power Effect to the Mixer

In Section 4.2.1, we have presented that a certain large amount of the LO signal power is needed at a moderate inversion dc bias in order to operate the CMOS Gilbert quad as a switch.

The experimental setup for measuring the effect of the LO power on conversion gain is same as that for measuring $1-\mathrm{dB}$ compression point (Figure 7.5) except that instead of sweeping the RF input signal, we swept the LO input signal from -53 dBm to 6 dBm .

Figure 7.21: Experimental result of the effect of the LO power on conversion gain

From Figure 7.21 , it can be realized that in order to achieve the maximum conversion gain, the optimum LO power should be equal to -2 dBm . As the LO power below or above -2 dBm , the conversion gain is dropping. It is due to the non-perfect switching of the Gilbert quad pair and the over driven of the CMOS pair.

7.5.6 Performance Summaries of the Current Folded

Mirror Mixer

Specifications	Value
Supply voltage / V	1.5
Total power consumption / mW	7.5
LO port impedance / Ω	$51.84-7.2738 \mathrm{j}$
RF port impedance / Ω	$62.305-17.923 \mathrm{j}$
LO - IF isolation / dB	21.998
LO - RF isolation / dB	22.092
RF - IF isolation / dB	32.998
Conversion gain / dB	-2.5
$1-\mathrm{dB}$ compression point / dBm	-3
IIP3 / dBm	1
Active area ${ }^{(1)} / \mu \mathrm{m} \times \mu \mathrm{m}$	250×300

Table 7.1: Performance summaries of the current folded mirror mixer

[^0]
7.5.7 Discussion

Table 7.1 summaries the performance of the Current Folded Mirror Mixer. The measurement results of the circuit show good conformity to simulation. However, there are still some difference between the simulation and the measurement result in conversion gain and $1-\mathrm{dB}$ compression point. It is due to the poor modeling of the circuit model in the substrate conductance and the capacitive coupling in the simulator. Moreover, the uneven bonding wires from the bond pads to the package pins contribute the phase difference and the voltage attenuation. Which is hard to eliminate in the package measurement.

From the experimental result, the current folded mirror mixer gives a similar or improves performance than [[1], [30], [31], [32]] at a low voltage supply of 1.5 V . Moreover, the circuit configuration of the current folded mirror is simple and no inductor is needed, which is more suitable for integrated circuit, because on chip inductor is difficult to fabricate and has very poor performance.

7.6 Measurement Result of the Current Mode Mixer

The microphotograph and layout drawing of the current mode mixer are shown in Figure 7.22 and Figure 7.23 respectively. The operating voltage is 1.2 V , the total power consumption of the mixer is 3 mW , and the active die area is $400 \mu m \times 400 \mu m$.

Figure 7.22: Microphotograph of the current mode mixer

Figure 7.23: Layout drawing of the current mode mixer

Figure 7.24 to Figure 7.26 show the top and side view of the current mode mixer on the PCB and the experimental setup in the laboratory respectively.

Figure 7.24: Top view of the current mode mixer test board

Figure 7.25: Side view of the current mode mixer test board

Figure 7.26: Experimental setup in the laboratory

7.6.1 S-Parameter Measurement

This is the same setup discussed in Section 7.4.1. We have measured the, LO-IF, LO-RF, and RF-IF isolation. Moreover, the RF port and LO port impedance matching was measured too.

For the RF and LO impedance matching measurement, the LO, RF and IF ports are connected as shown in Figure 7.27.

Figure 7.27: The connection configuration of the RF and LO
S-Parameter measurement

56.754-13.42j

Figure 7.28: The impedance matching of the (a) S_{11} (RF port) and (b) S_{22} (LO port)

The connection configuration and the measurement result of the LO-IF, LO-RF and RF-IF S-Parameter (isolation) are shown in Figure 7.29 to Figure 7.31 .

Figure 7.29: (a) The connection configuration and
(b) the measurement result of the S_{21}

From the Figure 7.29 , it is shown that the LO-IF isolation $\left(\mathrm{S}_{21}\right)$ is equal to 24.353 dB at 910 MHz .

Figure 7.30: (a) The connection configuration and
(b) the measurement result of the S_{12}

From the Figure 7.30 , it is shown that the LO-RF isolation $\left(\mathrm{S}_{12}\right)$ is equal to 24.72 dB at 905 MHz .

Figure 7.31: (a) The connection configuration and
(b) the measurement result of the S_{21}

From the Figure 7.31 , it is shown that the RF-IF isolation $\left(\mathrm{S}_{21}\right)$ is equal to 19.476 dB at 900 MHz .

7.6.2 Conversion Gain and the Effect of the IF Variation

The conversion gain is measured by using the same setup as shown in Figure 7.5. The LO input signal is fixed at 910 MHz with a power of 6 dBm . The RF input signal is fixed at -8 dBm and a frequency is swept from 810 MHz to 908 MHz .

Figure 7.32: Experimental result of the conversion gain verse output frequency (IF)

Figure 7.32 shows the experimental result of the conversion gain as the output (immediate) frequency in varying. The conversion gain is increasing from -13 dB to the maximum -9.1 dB as the output frequency increasing from 2 Mhz to 10 MHz . Afterwards, the conversion gain is reduced down to -28.7 dB at 100 MHz output frequency.

7.6.3 1-dB Compression Point

For $1-\mathrm{dB}$ compression point measurement, the setup of the Figure 7.5 is used. The LO input signal is fixed at 910 MHz with a power of 6 dBm . The RF input signal is fixed at 900 MHz and a power swept from -48 dBm to 7 dBm .

Figure 7.33: Experimental result of the $1-\mathrm{dB}$ compression point

Figure 7.33 shows the measurement result of the $1-\mathrm{dB}$ compression point of the current mode mixer. The $1-\mathrm{dB}$ compression point is about 3 dBm .

7.6.4 IIP3

The experimental setup shown in Figure 7.7 is adopted for measurement of the third-order intercept point (IIP3). The LO input signal is fixed at 910 MHz with a power of 6 dBm . Power combiner combines the fixed two-tone RF signals at 900 MHz and 901 MHz with a power swept from -13 dBm to 6 dBm . The noise floor measured from the spectrum analyzer is equal to -76 dBm .

Figure 7.34: Experimental result of the IIP3, SFDR and BDR

The value of the measured IIP3 shown in Figure 7.34 is equal to 10 dBm . Moreover, from Section 2.5 .1 it can be realized that the Spurious-Free Dynamic Range (SFDR) of the CMOS Current Mode Mixer is equal to

$$
\begin{align*}
\mathrm{SFDR} & =\frac{2}{3}\left(P_{I P 3}-P_{\text {NiFlr }}\right) \\
& =\frac{2}{3}[10-(-76)] \\
& =57.3 \mathrm{~dB} \tag{7.5}
\end{align*}
$$

In addition, the blocking Dynamic Range (BDR) (Section 2.5.2) of the CMOS Current Mode Mixer is equal to

$$
\begin{align*}
\mathrm{BDR} & =P_{-\mathrm{ldB}}-P_{\mathrm{NsFlr}} \\
& =3-(-76) \\
& =79 \mathrm{~dB} \tag{7.6}
\end{align*}
$$

7.6.5 LO Power Effect to the Mixer

The experimental setup for measuring the effect of the LO power on conversion gain is same as that for measuring $1-\mathrm{dB}$ compression point (Figure 7.5) except that instead of sweeping the RF input signal, we swept the LO input signal from -33 dBm to 14 dBm

Figure 7.35: Experimental result of the effect of the LO power on conversion gain

From Figure 7.35 , it can be found that the optimum LO power is equal to 6 dBm . At LO power below or above 6 dBm , the conversion gain is dropping. It is due to the non-perfect switching of the Gilbert quad pair and the over driven of that CMOS pair.

7.6.6 Performance Summaries of the Current Mode

Mixer

Specifications	Value
Supply voltage / V	1.2
Total power consumption / mW	3
LO port impedance / Ω	$46.503-9.8452 \mathrm{j}$
RF port impedance / Ω	$56.754-13.42 \mathrm{j}$
LO - IF isolation / dB	24.353
LO - RF isolation / dB	24.72
RF - IF isolation / dB	19.476
Conversion gain / dB	-9.1
1-Db compression point / dBm	3
IIP3 / dBm	10
Active area ${ }^{(1)} / \mu \mathrm{mm} \times \mu \mathrm{m}$	400×400

Table 7.2: Performance summaries of the current mode mixer

[^1]
7.6.7 Discussion

Table 7.2 summaries the performance of the Current Mode Mixer. The measurement result of the circuit shows good conformity to simulation result. The measurement indicates the new current mode mixer has a better linearity compared with the current folded mirror mixer and [[30], [31], [32], [33]]. Moreover, it can be operated by a single AA or AAA battery voltage supply of 1.2 V . The high linearity range of the V-I converter (Figure 5.12) is another important part that provides a large LO and RF current input range to the mixer.

The bonding wire length from the die's pad to the PCB is controlled by myself. Therefore, the phase difference and the voltage attenuation in each bonded wire are carefully controlled.

One drawback of this design is the low conversion gain. However, it can be compensated by adding a post amplifier.

7.7 Measurement Result of the Single-ended to

Differential-ended converter

A microphotography and layout drawing of the single-ended to differential-ended converter are shown in Figure 7.36 and Figure 7.37 respectively.

Figure 7.36: Microphotograph of the single-ended to differential-ended converter

Figure 7.37: Layout drawing of the single-ended to differential-ended converter

The circuit is in a SOP package, which requires a PCB to mount the tested circuit package for high frequency measurement. Figure 7.38 shows the top view of the single-ended to differential-ended converter test board.

Figure 7.38: Top view of the single-ended to differential-ended converter test board

7.7.1 Measurement Setup for the Phase Difference

For the phase measurement, it is same as the 2-port S-parameter measurement.
A S-Parameter test set (HP 85046A) accompanies with a network analyzer (HP 4396A) is used. The connection setup is shown in Figure 7.39.

Figure 7.39: The test setup for phase measurement

The Port 1 of the S-Parameter test set is connected to the input port of the tested circuit. The Port 2 is connected to the two output ports of the tested circuit alternately in order to find out its phase value $\left(\mathrm{S}_{21}\right)$.

7.7.2 Phase Difference Measurement

Figure 7.40 shows the experimental result of the phase difference between the two output ports of the single-ended to differential-ended converter. It gives a 176° phase difference at 900 MHz .

Figure 7.40: Experimental result of the phase difference between two outputs

7.7.3 Discussion

Compared the results between the simulation and the measurement, there are certain amount of the difference. It is due to the non-equal length of the bonding wire from the differential output pads to the two package pins of the SOP package. Therefore, it introduces an uneven phase shift in these two differential output through the unequal length of the bonding wire.

Chapter 8

Conclusion

Two proposed low voltage mixer architectures, (1) Current Folded Mirror Mixer, and (2) Current Mode Mixer, have been designed, fabricated and tested. The two new architectures reduce the series connected transistors to achieve low voltage operations of $\mathbf{1 . 5} \mathrm{V}$ and $\mathbf{1 . 2} \mathrm{V}$ voltages supply respectively. Moreover, only simple components, such as CMOS transistor, resistors and DC blocking capacitors are needed. No inductor is needed for the new designs. Thus, these new designs are more suitable for integrable circuits than [[31], [34]]

We use an $\mathbf{A M S}_{\odot} \mathbf{0 . 6} \boldsymbol{\mu \mathrm { m }}$ technology to fabricate the test circuits. We have found that the measurement results show good conformity to SpectreRF $\mathcal{C l}_{\odot}$ simulation results. However, the unequal length bond wires from the die to the package pins or the PCB introduce uneven phase shift and voltage attenuation. Fortunately, the uneven bond wires only have minor affect on the performance of the two mixers.

The realized current folded mirror mixer achieves an downconverted a 900 MHz input to 10 MHz with a -2.5 dB conversion gain. It consumes 7.5 mW power from a single 1.5 V supply and exhibits a $1-\mathrm{dB}$ compression point of -3 dBm . The IIP3 at 900 MHz is 1 dBm . The active die area is about $250 \mu \mathrm{~m} \times 300 \mu \mathrm{~m}$.

The second proposed mixer, current mode mixer, gives a better performance
than the first proposed mixer. Moreover, it can operate at 1.2 V . From the experimental results, the current mode mixer downconverts a 900 MHz signal to 10 MHz with a conversion gain of -9.1 dB . It consumes 3 mW power from a single 1.2 V supply exhibits a $1-\mathrm{dB}$ compression point of 3 dBm . The measured IIP3 is 10 dBm . The active die area is about $400 \mu \mathrm{~m} \times 400 \mu \mathrm{~m}$.

We have designed two new low voltage mixers, which have compatible or better performance than other published mixers. To our knowledge, these are the first mixer architectures use current input instead of voltage.

Appendix A

Characteristics of the Gilbert Quad Pair

A. 1 Large-Signal Analysis

The schematic of the Gilbert quad pair in Figure 4.4 and Figure 4.9 are reproduced in Figure A. 1 for convenience.

Figure A.1: Schematic of a Gilbert quad pair

Assuming the aspect ratios of M_{1} and M_{2} are $(\mathrm{W} / \mathrm{L})_{1}$ and $(\mathrm{W} / \mathrm{L})_{2}$ respectively, the drain currents of M_{1} and M_{5} in the saturation region can be written as,

$$
\begin{align*}
& I_{d 1}=\frac{K_{n}}{2}\left(\frac{W}{L}\right)_{1}\left(V_{G 1}-V_{S}-V_{t}\right)^{2} \tag{A.1}\\
& I_{d 2}=\frac{K_{n}}{2}\left(\frac{W}{L}\right)_{2}\left(V_{G 2}-V_{S}-V_{t}\right)^{2} \tag{A.2}
\end{align*}
$$

where V_{G} and V_{S} are the gate and the source potentials of the transistor respectively and $K_{n}=\mu_{n} C_{o x}$, and the body effect has been neglected in the derived.

By expressing the input differential voltage as,

$$
\begin{equation*}
V_{i}=V_{G 1}-V_{G 2} \tag{A.3}
\end{equation*}
$$

and writing the drain current in term of the biasing current I_{b},

$$
\begin{align*}
I_{b} & =I_{d 1}+I_{d 2} \\
I_{d 1} & =I_{b}-I_{d 2} \tag{A.4}
\end{align*}
$$

By the Equation (A.1), Equation (A.2) and Equation (A.3), it follows that the input voltage becomes,

$$
\begin{equation*}
V_{i}=\sqrt{\frac{I_{d 1}}{\frac{K_{n}}{2}\left(\frac{W}{L}\right)_{1}}}-\sqrt{\frac{I_{b}-I_{d 1}}{\frac{K_{n}}{2}\left(\frac{W}{L}\right)_{2}}} \tag{A.5}
\end{equation*}
$$

Squaring both sides twice and rearranging terms yield the following quadratic equation in $I_{d l}$

$$
\begin{equation*}
4 I_{d 1}{ }^{2}-4 I_{b} I_{d 1}+\left[V_{i}^{2} \frac{K_{n}}{2}\left(\frac{W}{L}\right)_{1,2}-I_{b}\right]^{2}=0 \tag{A.6}
\end{equation*}
$$

where $(\mathrm{W} / \mathrm{L})_{1}=(\mathrm{W} / \mathrm{L})_{2}$

Solving the quadratic equation (A.6), we could find the root is equal to,

$$
\begin{equation*}
I_{d 1}=\frac{1}{2} I_{b}+\frac{K_{n}}{4} V_{i} \sqrt{4\left(\frac{W}{L}\right)_{1,2} \frac{I_{b}}{K_{n}}-\left(\frac{W}{L}\right)_{1,2}^{2} V_{i}^{2}} \tag{A.7}
\end{equation*}
$$

By inverting the sign of the second term in Equation (A.7), the drain current of M_{2} can be obtained. As a result, the transfer characteristics of the Gilbert quad pair is
given by,

$$
\begin{equation*}
\Delta I_{d}=I_{d 1}-I_{d 2}=\frac{K_{n}}{2} V_{i} \sqrt{4\left(\frac{W}{L}\right) \frac{I_{b}}{K_{n}}-\left(\frac{W}{L}\right)^{2} V_{i}^{2}} \tag{A.8}
\end{equation*}
$$

Appendix B

Characteristics of the V-I Converter

B. 1 Large-Signal Analysis

The schematic of the symmetric V-I Converter in Figure 4.11 is reproduced in Figure B. 1 for convenience.

Figure B.1: The V-I Converter

Since the transistor M_{1} and M_{2} are biased in a saturation region, their differential current can be written as,

$$
\begin{equation*}
I_{d 1}-I_{d 2}=K_{n}\left(V_{i n}^{+}-V_{t m 1}\right)^{2}-K_{n}\left(V_{i n}^{-}-V_{t 22}\right)^{2} \tag{B.1}
\end{equation*}
$$

where $\mathrm{V}_{\mathrm{tn} 1}=\mathrm{V}_{\mathrm{tn} 2}$ and $K_{n}=\frac{1}{2} \mu_{n} C_{o x}\left(\frac{W}{L}\right)_{1,2}$, by direct expanding of the Equation (B.1)

$$
\begin{equation*}
I_{d 1}-I_{d 2}=2 K_{n}\left(V_{C M}-V_{t n}\right) V_{d} \tag{B.2}
\end{equation*}
$$

where $V_{d}=V_{i n}^{+}-V_{i n}^{-}$and $V_{C M}=\frac{V_{i n}^{+}+V_{i n}^{-}}{2}$

For the transistor M_{5} and M_{6} are biased in triode region, there differential current can be written as,

$$
\begin{align*}
& I_{d 5}-I_{d 6}=K_{p}\left[2\left(V_{p b i a s}-V_{t p 5}\right)\left(V_{D D}-V_{1}\right)-V_{D S}^{2}\right]- \\
& \quad 2 K_{p}\left[\left(V_{p b i a s}-V_{t p 6}\right)\left(V_{D D}-V_{2}\right)-V_{D S}^{2}\right] \tag{B.3}
\end{align*}
$$

where $\mathrm{V}_{\mathrm{tp} 5}=\mathrm{V}_{\mathrm{tp} 6}$ and $K_{n}=\frac{1}{2} \mu_{p} C_{o x}\left(\frac{W}{L}\right)_{5,6}$, by direct expanding of the Equation (B.3)

$$
\begin{equation*}
I_{d 5}-I_{d 6}=2 K_{p}\left(V_{p b i a s}-V_{t p}\right)\left(V_{2}-V_{1}\right) \tag{B.4}
\end{equation*}
$$

From the Figure B.1, the transistor M_{5} and M_{6} is directly cascode connected to M_{1} and M_{2} respectively. Therefore the Equation (B.1) equal to Equation (B.4)

$$
\begin{align*}
2 K_{n}\left(V_{C M}-V_{t n}\right) V_{d} & =2 K_{p}\left(V_{p b i a s}-V_{t p}\right)\left(V_{2}-V_{1}\right) \\
V_{2}-V_{1} & =\frac{K_{n}\left(V_{C M}-V_{t n}\right)}{2 K_{p}\left(V_{p b i a s}-V_{t p}\right)} V_{d} \tag{B.5}
\end{align*}
$$

The voltage V_{1} and V_{2} would bias the transistor M_{7} and M_{8} in a saturation region. Therefore, the finalized differential output current is equal as,

$$
\begin{equation*}
I_{o u t}=I_{d 8}-I_{d 7}=K_{n}^{\prime}\left(V_{1}-V_{t n 8}\right)^{2}-K_{n}^{\prime}\left(V_{2}-V_{t n 7}\right)^{2} \tag{B.6}
\end{equation*}
$$

where $\mathrm{V}_{\mathrm{tn} 7}=\mathrm{V}_{\mathrm{tn} 8}$ and $K_{n}^{\prime}=\frac{1}{2} \mu_{n} C_{o x}\left(\frac{W}{L}\right)_{7,8}$, by direct expanding of the Equation (B.6) and substitute back the Equation (B.5). We could get

$$
\begin{equation*}
I_{o u t}=I_{d 8}-I_{d 7}=\frac{K_{n} K_{n}^{\prime}\left(V_{C M}-V_{t n}\right)\left(V_{1}+V_{2}-2 V_{t n}\right)}{K_{p}\left(V_{p b i a s}-V_{t p}\right)} V_{d} \tag{B.7}
\end{equation*}
$$

Bibliography

[1] Karanicolas, Andrew N., "A 2.7 V 900 MHz CMOS LNA and mixer." Solid-State Circuits Conference, Digest of Technical Papers, $42^{\text {nd }}$ ISSCC, IEEE International, 1996, Page(s): $50-51,416$
[2] Kinget, P.R.; Steyaert, M.S.J., "A 1-GHz CMOS up-conversion mixer," Solid-State Circuits, IEEE Journal of, Volume: 32 Issue: 3, March 1997, Page(s): $370-376$
[3] Rezavi, B., "A 1.5 V 900 MHz downconversion mixer," Solid-State Circuits Conference, Digest of Technical Papers, $42^{\text {nd }}$ ISSCC, IEEE International, 1996, Page(s): 48-49
[4] Chung-Yu Wu; Shuo-Yuan Hsiao, "The design of a $3-\mathrm{V} 900-\mathrm{MHz}$ CMOS bandpass amplifier," Solid-State Circuits, IEEE Journal of, Volume: 32 Issue: 2, Feb. 1997, Page(s): $159-168$
[5] Duncan, R.; Martin, K.W.; Sedra, A. S., "A Q-enhanced active-RLC bandpass filter," Circuits and System II: Analog and Digital Signal Processing, IEEE Transactions on, Volume: 44 Issue: 5, May 1997, Page(s): 341-347
[6] De Muer, B.; Itoh, N.; Borremans, M.; Steyaert, M., "A 1.8 GHz highly-tunable low-phase-noise CMOS VCO," Custom Integrated Circuits Conference, 2000. CICC, Proceedings of the IEEE 2000, Page(s): 585-588
[7] Sato, A. Ohara; Y. Ogawa; M. Suzuki, "Lock-in amplifier with autotracking bandpass filter," Review of Scientific Instruments, Volume: 67, November 1996, Page(s): 4021-4022
[8] J. H. Scofield, "Frequency-domain description of lock-in amplifier," American Journal of Physics, Volume: 62, February 1996, Page(s): 129-133
[9] Rofougaran, A.; Chang, J.Y. -C.; Rofougaran, M.; Abidi, A.A., "A 1 GHz CMOS RF front-end IC for a direct-conversion wireless receiver," Solid-State Circuits, IEEE Journal of, Volume: 31 Issue: 7, July 1996, Page(s): 880-889
[10] J. Craninckx; M. Steyaert, "Wireless CMOS frequency synthesizer design," Kluwer Academic Publishers, $1^{\text {st }}$ Edition, 1998, Page(s): 6-8
[11] L. Lessing, "Man of High Fidelity: Edwin Howard Armstrong," a biography, New York: Bantam Books, 1969
[12] Jan Crols; Michel S. J. Steyaert, "A signle-chip 900 MHz CMOS receiver front-end with a high performance low-IF topology," Solid-State Circuits, IEEE Journal, Vol. 30, No. 12, December 1995
[13] Abidi, A. A., "Direct-conversion radio transceivers for digital communications," Solid-State Circuits, IEEE Journal of, Volume: 30 Issue: 12, Dec. 1995, Page(s): 1399 - 1410
[14] Rudell, J.C.; Ou, J. - J.; Cho, T. B.; Chien, G.; Brianti, F.; Weldon, J. A.; Gray, P. R., "A $1.9-\mathrm{GHz}$ wide-band IF double conversion CMOS receiver for cordless telephone applications," Solid-State Circuits, IEEE Journal of, volume: 32 Issue: 12, Dec. 1997, Page(s): 2071 - 2088
[15] Thomas H. Lee, "The Design of CMOS radio-frequency integrated circuits," Cambridge University Press, 1998
[16] Kimura, K., "An MOS four-quadrant analog multiplier based on the multitail technique using a quadrtail cell as a multiplier core," Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on, Volume: 42 Issue: 8, Aug. 1995, Page(s): $448-454$
[17] Ramirez-Angulo, J.; Ming-Shen, S., "The folded Gilbert cell: a low voltage high performance CMOS multiplier," Circuits and systems, 1992, Proceedings of the $35^{\text {th }}$ Midewest symposium on 1992, Page(s): 20-23 vol.1
[18] Seugwook Lee; Changsik Yoo; Wonchan Kim; Hyun-Kyu Ryn; Wonchul Song, " 1 GHz COMS down-conversion mixer," Consumer Electronics, ISCE 97, Proceedings of 1997 IEEE International Symposium on 1997, Page(s): 125-127
[19] Crols, J.; Steyaert, M. S. J., "A 1.5 GHz highly linear CMOS downconversion mixer," Solid-State Circuits, IEEE Journal, Volume: 30, Issue: 7, July 1995, Page(s): 736-742
[20] G. Giustolisi; G. Palmisano; G. Palumbo; T. Segreto, "1.2-V CMOS op-amp with a dynamically biased output stage," Solid-State Circuits, IEEE Journal, Volume: 35, NO. 4, April 2000
[21] G. Fraello; G. Palmisano, "Low voltage folded-mirror mixer," Electronics Letters, Voluem: 33, No. 21, $9^{\text {th }}$ October 1997
[22] G. Glustolisi; G. Palmisano; G. Palumbo; C. Strano, "A novel 1.5-V CMOS mixer," VLSI, Proceedings of the $8^{\text {th }}$ Great Lakes Symposium, 1998, Pages(s): 113-117
[23] Tsuneo Tsukahara; Masayuki Ishikawa; Masahiro Muraguchi, "A 2 V 2 GHz Si-bipolary direct-conversion quadrature modulator," Solid-State Circuits Conference, IEEE International, 1994
[24] Chan, C.F.; Hok-sun Ling; Choy, O. "A one volt four-quadrant analog current mode multiplier cell," Solid-State Circuits, IEEE Journal of, Volume: 30 Issue: 9, Sept. 1995, Page(s): 1018-1019
[25] Chi-Hung Lin; Ismail M.; Pimenta T., "A 1.2 V micropower CMOS class-AB V-I converter for VLSI cells library design," Circuits and Systems, Proceedings, 1998 Midwest Symposium, 1999, Page(s): $364-367$
[26] Lin, C. -H.; Ismail, M., "Design and analysis of an ultra low-voltage CMOS class-AB V-I converter for dynamic range enhancement," Circuits and Systems, ISCAS '99, Proceedings of the 1999 IEEE International Symposium, Volume: 2, 1999, Page(s): $21-24$
[27] Mohammed Ismail; Terri Fiez, "Analogy VLSI: Signal and Information Processing," McGraw - Hill, Inc., 1994
[28] Stephen A. Maas, "Microwave Mixer," Artech House, Inc., 1986
[29] Gonzalez, Gillermo, "Microwave transistor amplifiers: analysis and design," Prentice Hall, 1984, Page(s): 141-152
[30] Andrew N. Karanicolas, "A 2.7-V 900-MHz CMOS LNA and mixer," Solid-State Circuits, IEEE Journal, Vol. 31, NO. 12, December 1996
[31] Ari Vauhkonen; Esa Tarvainen, "Inductors allow low-voltage performance for IC mixers," Electronics, Circuits and systems, 1998 IEEE International Conference, Volume: 1, 1998, Page(s): 329-332
[32] P. J. Sullivan; B. A. Xavier; W. H. Ku, "Low voltage performance of a microwave CMOS Gilbert cell mixer," Solid-State Circuits, IEEE Journal, Vol: 32, No. 7, July 1997
[33] Jacob Pihl; Kare Tais Christensen; Erik Bruun, "Direct downconversion with switching CMOS mixer," Circuits and Systems, ISCAS 2001, The 2001 IEEE International Symposium, Volume: 1, May 2001, Page(s): 117 -120
[34] Leonard A. MacEachern; Eyad Abou-Allam; Lan Wang; Tajinder Manku, "Low voltage mixer biasing using monolithic integrated transformer de-coupling," Circuits and Systems, ISCAS 99, Proceedings of the 1999 IEEE International Symposium, Volume:2, 1999

CUHK Libraries

00387180?

[^0]: ${ }^{(1)}$ Excluded the DC blocking capacitor

[^1]: ${ }^{(1)}$ Excluded the DC blocking capacitor

