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摘要 

隨著國際互聯網絡應用日漸普及，文字標案的數目與日俱增，要從數目 

應大的文件集中，檢索某一文件標案，是一件需時費力的工作，自動化 

文件歸類是現今的主要技術，幫助我們整理大量的文件集。 

在這篇論文中，我們研究了新的總學習模式應用在自動化文件歸類 

上。總學習的主旨是合併現存各種分類法的優點進行歸類工作，從而 

改善分類表現，我們就此模式提出了三種新方法，它們分別是線性結 

合法，文件特性總學習法，以及兩者結合之新方法。 

線性結合法的特質是可替我們對各種分類方法在不同類別的相對表 

現作估計而進行演繹。在線性結合法的架構下，我們提出了三種不同 

的策略，這些策略爲決定各種分類方法在 終的分類判斷中所佔的相 

對重要性提供了一套準則。 

我們所提出的第二種總學習法，是結合了多元回歸分析法及，收集 

各類別獨有的文件特性。通過學習類別獨有的文件特性以及各分類法 

的分類族差兩者之間的關係，我們可預測各種分類法的表現，基於獲 

得的預測表現，這新方法便可爲每一個文件類別建議採用指定的分類 

法進行文件歸類。 

通過結合線性結合法及文件特性總學習法，我們進一步提出第三種 

薪新的總學習歸類法。這方法可以在爲每一種分類法決定相度比重因 
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數的同時，更可考慮類別獨有的文件特性。決定比重因數而收集文件 

特性的好處，是可對各文件類別特質有了综合性了解，從而使各分類 

方法的相對重要性更眞實地反映出來。 

我們利用了兩個現實大文件集進行了實驗。實驗結果顯示我們所提 

出的總學習歸類法，在不同方向的比較下，較其他現存的單一分類法 

更優勝。 
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Abstract 

With the increasing use of the Internet, the volume of textual document 

collection is also increasing rapidly. Given a huge volume of text data, it 

certainly takes considerable amount of time and effort to retrieve a piece 

of document from the collection. Automatic text categorization is a major 

technique to organize a large document collection. 

In this thesis, instead of making refinement for particular classification 

algorithms, we conduct research on new approaches for meta-learning models 

of automatic textual document categorization. Meta-learning techniques aim 

to combine and unify the strength of existing component classification algo-

rithms in order to obtain an improved overall classification performance. We 

have investigated three meta-learning approaches for automatic text catego-

rization, namely, the Linear Combination approach (LC), the Meta-learning 

Using Document Feature characteristics (MUDOF), and MUD0F2. 

The Linear Combination approach can distill the characteristics of how 

we estimate the relative merit of each component algorithm for different 

categories. Under the linear combination framework, LC, we propose three 

different strategies, which are used for determining the relative contribution 

of the component algorithms towards the final classification decisions. 
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We propose our second new meta-learning approach, MUDOF, for text 

categorization, based on multivariate regression analysis, by capturing cate-

gory specific document feature characteristics. By learning the relationship 

between categorical feature characteristics and the classification errors of 

different algorithms, classification performance of each component algorithm 

are predicted. Based on the predicted performance, the approach is able to 

recommend the most ideal component algorithms for each category. 

By incorporating MUDOF into Linear Combination framework, we fur-

ther propose the third meta-learning approach, MUD0F2. MUD0F2 can 

derive the relative weight factors for each component classification algorithm 

with proper consideration of categorical document feature characteristics. 

By capturing the document feature characteristics for the determination of 

weight factors, the relative contribution of each component classification al-

gorithm can be truly reflected with the more comprehensive knowledge of 

the nature of a category. 

Extensive experiments have been conducted on two large-scale, real-world 

document collections, namely, the Reuters-21578 and the OHSUMED corpus. 

Results show that our proposed approaches demonstrate overall better clas-

sification performance over individual component algorithms under different 

perspectives of evaluation. 
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Chapter 1 

Introduction 

In this chapter, we first give the problem definitions of automatic textual doc-

ument categorization. Then, we present the motivation of our meta-learning 

approach for the task. We summarize our major studies and contributions 

of our research. Finally, the organization of this thesis will be outlined. 

1.1 Automatic Textual Document Categoriza-

tion 

Electronic mails, news articles, books, journals or technical manuals, are all 

examples of textual documents, or text data, that we discuss in our work. 

With the increasing use of the Internet, the volume of textual document 

collection is also increasing rapidly. Given a huge volume of text data, it 

certainly takes considerable amount of time and effort to retrieve a piece of 

document from the collection. 

One way to organize a large document collection is to conduct docu-

1 



ment categorization. Typically, there is a set of category labels which are 

pre-defined in advance. The task of document categorization is to assign 

a number of appropriate categories to each textual document. To conduct 

document categorization, the full context of the textual documents have to 

be understood before assigning appropriate categories. 

Traditionally, this task is performed manually by domain experts. Each 

incoming document has to be analyzed by the expert based on the content 

of the document. However, performing manual document categorization ob-

viously involves a great deal of time and human effort. As a result, the aim 

of automatic textual document categorization is to classify textual documents 

into appropriate categories automatically. 

The goal of automatic text categorization is to construct a classification 

scheme, or called a classifier, from the training data set by means of machine 

learning. A classifier captures the context and nature for a category by us-

ing a training data set. A training data set contains sample documents and 

their corresponding categories. Specifically, there is a classification scheme 

learned for each category during the training phase. After completing the 

whole training phase, each category is associated with a different classifica-

tion scheme which is used for categorizing future documents automatically. 

Figure 1.1 depicts the major tasks involved in an automatic textual docu-

ment categorization system. The purpose of the Document Pre-processing 

Task is to convert a document into an internal representation which can be 

processed in the system. The purpose of the Classification Learning Task is 

to learn a classification scheme from training documents. Each category is 

associated with one classification scheme. The purpose of the On-line Clas-
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sification Task is to decide the category membership for the new documents 

based on the learned classification schemes. 

Automatic Document Categorization from Text Database 

——^——I 
I On-line / 

I 1~| y , -
I n New Documents Classification ^ ^ ‘ -o-

Task \ 
丄 Document | 二 | 
^ ^ Pre-processing A \ 

Document Task \ 
Collection Training | “ ( \ \ 

, Classification \ \ 
Documents Classification \ I 

^ Learning ^ \ I 
Task n Schemes I \ j 

"L Category 

Labels 

Training Documents with 
Manually Assigned Category Labels 

Figure 1.1: The framework of a generic automatic document categorization 

system 

1.2 Meta-Learning Approach For Text Cate-

gorization 

A variety of classification algorithms have been proposed in the informa-

tion retrieval (IR) community. Most of the newly refined and proposed ap-

proaches are reported to demonstrate classification improvement over exist-

ing algorithms. Yet, they are developed based on a single paradigm to solve 

the categorization problem. Indeed, some recent work [22, 20, 19, 25, 3, 2 
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suggesting that further improvements in classification performance can be 

achieved by combining multiple evidence from more then one classification 

algorithms. Such method of combining various classification models to tackle 

the classification problem is collectively called meta-learning approach. 

Instead of making refinement to particular classification algorithms, the 

aim of meta-learning approach for text categorization is to unify and com-

bine the strength of different algorithms in order to achieve an overall better 

classification performances over individual classification models, or compo-

nent classifiers. Studies of meta-learning techniques in the IR literature 

is not uncommon, but those of applying the technique specifically on text 

categorization are all based on simple linear combination of several basic 

algorithms. 

The general framework of meta-learning approach for text categorization 

is similar to the traditional text categorization algorithm as described previ-

ously, except the classification scheme to be constructed during the training 

phase. Instead of using only one algorithm, meta-model learning involves 

more than one categorization algorithm. Under the approach, classification 

schemes that have been separately learned by different algorithms for a cate-

gory, are combined together in a certain way, to yield one single meta-model 

classification scheme. Given a document to be categorized, the meta-model 

classification scheme can be used for deciding the document membership for 

the category. As a result, each meta-model classifier for a category is the 

combined contributions of all the involved algorithms. Figure 1.2 depicts the 

major tasks involved in an automatic textual document categorization system 

using meta-learning technique. Notice that the Document Pre-processing 
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Task and is the same as that of generic automatic document categorization 

system as depicted in Figure 1.1. However, instead of involving only one sin-

gle Classification Learning Task, employing meta-learning approach involves 

several Classification Learning Tasks. Each of them is performed by a par-

ticular classification algorithm. The component classifiers are combined to 

yield the Meta-Classification Schemes, which are used for classifying the new 

documents. The On-line Classification Task is also designed to be fitted into 

the meta-learning framework. 

Automatic Document Categorization from Text Database 

——：——I / M 
I On-line / y ,, 

I I New Documents Classification ^ ^ 
o- O" z I 

_ Task \ 
七 Document | | 

Pre-processing Training classification I \ 
Document Task Docurnems Learning Task 1 N . \ 
Collection ： ] ^ \ , 

^ 一 Classification _ _ ^ Meta-Classification \ I 
\ Learning Task 2 \ i 

\ Schemes \ I . 

X ^ J _ ^ \ ' 
I I Classification / 、 

i Learning Task n 

Category 

Labels 

Training Documents with 
Manually Assigned Category Labels 

Figure 1,2: The meta-learning framework for automatic document catego-

rization system 
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1.3 Contributions 

We have conducted research on new approaches for meta-learning models 

of automatic textual document categorization. We investigate the Linear 

Combination approach (LC) by distilling the characteristic of how we esti-

mate the relative merit of each component algorithm for different categories. 

Based on this idea, we propose three different strategies for the Linear Com-

bination approach. The approach makes use of limited knowledge in the 

training document set. To address this limitation, we propose a second 

meta-learning approach, called Meta-learning Using Document Feature char-

acteristics (MUDOF). By incorporating MUDOF into Linear Combination 

framework, we further propose MUD0F2 to tackle the text categorization 

problem. The major contributions are summarized as follows: 

• The linear combination approach can distill the characteristics of how 

we estimate the relative merit of each component algorithm for different 

categories. Under the linear combination framework, LC, we propose 

three different weighting strategies, which are used for determining the 

relative contribution of the component algorithms towards the final 

classification decisions. 

• We propose our second meta-learning approach, MUDOF, for text cat-

egorization, based on multivariate regression analysis, by capturing 

category specific feature characteristics. By learning the relationship 

between categorical document feature characteristics and the classi-

fication errors of different algorithms, the approach can predict the 

classification performance of each component algorithm. Based on the 
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predicted errors, the approach is able to recommend the most ideal 

component algorithms for each category. Experimental results confirm 

that capturing categorical document feature characteristics helps to 

improve the overall classification performances. 

• By combining both LC and MUDOF approaches, we further propose 

the third meta-learning approach, MUD0F2. Different from the Linear 

Combination approach, MUD0F2 can derive the relative weight fac-

tors for each component classification algorithm with consideration of 

categorical document feature characteristics. By capturing the docu-

ment feature characteristics for the determination of weight factors, the 

relative contribution of each component classification algorithm can be 

truly reflected with the more comprehensive knowledge of the nature 

of a category. Experimental results show that MUD0F2 can not only 

improve the classification performances of the component algorithms, 

but also largely improve the Linear Combination under the Weighting 

Strategy Based On Utility Measure. 

1.4 Organization of the Thesis 

The thesis starts to present a survey on the existing approaches for automatic 

document categorization and several representative meta-learning algorithms 

in the literature in Chapter 2. The pre-processing of textual documents into 

internal representation is described in Chapter 3. In Chapter 4, a generalized 

version of Linear Combination approach is presented in details. Chapter 5 

describes the new meta-learning approach called MUDOF. By incorporat-
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ing MUDOF into the Linear Combination approach, we present another new 

meta-learning approach called the MUD0F2 in Chapter 6. Chapter 7 de-

scribes the experimental setup for the evaluation of our proposed approaches. 

Chapter 8 shows the experimental results after our extensive runs of exper-

iments with our analysis. Chapter 9 gives the conclusions and the future 

work. 
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Chapter 2 

Related Work 

In this chapter, we present the representative related work of automatic tex-

tual document categorization and also meta-learning approaches. 

2.1 Existing Automatic Document Categoriza-

tion Approaches 

Rule-based learning approaches are one of the early techniques that are con-

sidered to have good performance to tackle the problem of text categoriza-

tion. 

An early work performed by Apte et al. [1] adopted a decision tree 

learning technique to learn a classifier in the form of a decision tree. By using 

optimized rule-based induction methods, the technique can derive category 

assignment rules automatically from samples of documents to be classified. 

The identified classification patterns are applied on text categorization. 

Cohen and Singer [5] employed the RIPPER approach, a rule learning 
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algorithm, and developed the sleeping experts algorithm which is based on 

a multiplicative weight update technique for text categorization. Both algo-

rithms allow the context of a word to influence how the presence or absence 

of that word will affect a classification decision. Their work confirms that 

building classifiers that capture contextual information can increase general 

classification performance. 

Tan [40] has recently introduced the use of predictive self-organizing neu-

ral networks for classification of textual documents. The approach incorpo-

rates the rule-insertion mechanism which can integrate the domain specific 

knowledge into the on-line classification task in order to achieve improved 

classification performance. 

Koller and Saliaiiii [17] explored hierarchical categorization of (locuiiKMits 

hy (•oiiibiiiiiig probabilistic framework and reduction of f(�atm’(�space. Mainly. 

th(�approach l)r(�aks the classification pr()l)l(�m into a set ()f sinall(�r classifica-

tion tasks. At (�a(.h (IcH-isioii point of. th(�hi(uarchy, a (.lassifier is constructed 

l)V a learning algorithin. Each of th(�dassifirns arr (_()iistni(.t(�(l lms(�d on t h(�ir 

own srt of n�l(�Yant (catures. 

S i m i l a r w o r k h a s l)(、(、ii i)(、if()nn(、(l b y W a n g (、t a l . [43]. w h o at t ( ' i i i p t (H l t o 

b u i l d h i r i a r r h i r a l (,lassifi(、rs u s i i i ^ c l a ss p i o x i i n i t y . B y ( • (H i s i d c r i i i ^ t h r closc-

n(、ss o f (Vat u r r s t o w a r d s a t a r g c l c l a ss a n d l )v r o i i s t n i r t i i i g a j i^ lohal c l a s s i f i e r 

c a i r y i n g g l o b a l i n f o r m a t i o n a c r o s s c lasses , ^ o o d c l a s s i f i c a t i o i i j ) r r f ' ( ) r n w u i r r is 

OI)S(M"vim1. 

Y a i i g a n d C h u t ( 、 [ 1 7 ] i ) r " i H>s r ( l a s l a t ist i c a l a p p r o a c h k n o w n as L i n e a r 

L o a s t S q i i a i v s F i t ( I . L S F ) w h i c l i c.^t i i n a t c s t he l i k e l i h o o d o f t h e a s sDc i a l i o n s 

h e t w o o n ( l o c u i n o n t t ( T n i s a n d (.;U(、’î ()i-“、s v i a a l i n e a r p a r a i i i c t r i c i i i o f l c l . 
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Inference-based Bayesian approach, a widely studied and consistently 

showing good classification performance, is another popular learning algo-

rithm that is applied on text categorization. 

Lam et al. [23] attempts tackle this problem using Bayesian network 

approach, which is an improved approach over the Bayesian independence 

classifiers. The use of Bayesian network can eliminate the assumption that 

the feature terms are independent to a category and a document. 

Meretakis et al. [31] examined text categorization methods, including 

support vector machines (SVM) and Bayesian extensions of Naive Bayes 

Classifier, and compared the tradeoff between accuracy, scalability to large 

data set and large feature sizes. The study shows that the Bayesian extension 

to Naive Bayes can achieve good tradeoff between high classification accuracy 

and scalability to large document collections and large feature sizes. 

McCallum and Nigam [29] investigated and compared the classification 

performances of two models of Naive Bayes approach for text categorization. 

Empirical results show that the multinomial model uniformly performs better 

than the multi-variate Bernoulli event model. The findings confirm that cap-

turing word frequency information in document can achieve more satisfactory 

classification performance with traditional Bayesian network approach. 

Recently, Nigam et al. [33] introduced a classification algorithm for learn-

ing from both labeled and unlabeled documents based on the combination 

of Naive Bayes classifier and iterative algorithms for maximum likelihood 

estimation with incomplete data. The study demonstrates that unlabeled 

documents do contribute to the overall better classification performance. 

Linear classifiers are another learning technique that demonstrate good 
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classification performance and ease of implementation. 

Lewis [27] explored two linear classifiers, namely the Widrow-Hoff (WH) 

algorithm and the exponentiated-gradient (EG) algorithm proposed by Kivi-

nen and Warmuth, for the text categorization problem. Binary decision on 

the relevance of a document against a category is made by considering the 

similarity between the document's feature vector and the classifier, or the 

weight vector, of the category, with respect to a threshold. Results show 

that both WH and EG algorithms demonstrates better classification perfor-

mance than Rocchio. 

The K-Nearest Neighbor (KNN) approach is a well-known technique that 

is simple, yet achieve very good classification performance over some tradi-

tional classification algorithm. There have been a lot of published studies 

reporting the robustness of KNN, and a lot of improved variants have been 

proposed recently. 

Yang [44] developed an algorithm known as ExpNet which derives from 

the k-nearest neighbor technique, an instance-based classification approach. 

ExpNet achieves good categorization performance on large document corpora 

such as the Reuters collection and the OHSUMED collection. 

In a recent work, Yang [46] further proposed several improved variants of 

original KNN classification algorithm for event tracking. The new variants 

of KNN can successfully reduce the error rate significantly on several topic 

detection and tracking document collections. 

Han [10] also proposed the weight adjusted KNN classification method, a 

new KNN approach based on a greedy hill climbing technique. By combining 

two performance optimization techniques, the new approach outperforms 
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C4.5, RIPPER and Naive Bayes in computational time and classification 

performance. 

Instead of constructing one single classifier for each category, Lam and Ho 

21] propose the use of generalized instance set (GIS) approach to construct 

a set of generalized instances for each category. By combining the technique 

of KNN and linear classifiers, GIS shows better classification performance 

over existing KNN and two linear classifiers, namely the WH and Rocchio 

algorithm. 

Support vector machines (SVM) is a relatively new learning algorithm 

proposed by Vapnic [42]. The approach is based on the Structural Risk 

Minimization principle. SVM aims to learn a hyperplane which can linearly 

separate documents into either the class of belonging to a category or the 

class that does not belong to the category. In various recent studies, SVM 

demonstrate a better performance over other existing text categorization 

algorithms. 

Joachims [14], as well as, Yang and Liu [48] compared SVM with KNN 

and Naive Bayes classifier. Both results show that SVM outperforms both 

KNN and Naive Bayes classifier. 

Dumais et al. [7] compared SVM, decision trees, Bayesian network and 

Naive Bayes approaches on the Reuters collection. Results show that not 

just SVM's classification performance is better than other methods. 

Karypis and Han [15] explored a method of supervised dimensionality 

reduction algorithm, which leads to increased document categorization and 

retrieval performance over C4.5, KNN and SVM. Adding their proposed con-

cept indexing approach, SVM can outperform KNN on a Reuters corpus. 
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Application of SVM on classifying email as spam or nonspam has also 

been studied by Drucker et al. [6]. The study shows that SVM can have good 

performance in terms of accuracy and shorter training and classification time 

when compared with Rocchio linear classifier. 

2.2 Existing Meta-Learning Approaches For 

Information Retrieval 

In machine learning community, a lot of different methods on meta-learning, 

or multi-strategy learning, have been proposed. 

Boosting method, one of the meta-learning strategies proposed recently, 

combines the weak hypotheses, which are sequentially learned by the same 

learning method, called the weak learner. At each iteration of a boosting 

method, a weak hypothesis is learned by taking into account how the weak 

hypotheses, that are learned in the previous iterations, perform on the train-

ing documents. Weights will get incrementally higher for those document 

examples that are hard to learn. The weak learner will concentrate on those 

documents due to the increased weight in the succeeding iterations, which 

helps to find the final highly accurate classification rule. After a specific 

number of iterations, a final hypothesis is obtained by combining all the 

weak hypotheses. The final hypothesis is then used to classify the unseen 

documents. 

AdaBoost, a commonly studied boosting algorithm, is proposed by Fre-

und and Schapire [9] to solve binary classification problems. Two variants are 
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proposed based on AdaBoost to make it able to handle classification prob-

lems. The work shows that there exists an error bound for the algorithms, 

which guarantees its classification performance. Theoretical proof has been 

done in the study. However, empirical evidence of the algorithms on text 

categorization is not given. 

Based on AdaBoost, Schapire and Singer [37] proposed a new family of 

boosting algorithms for text categorization. Their work shows that their 

variants of AdaBoost achieve very satisfactory classification performances 

over Rocchio and Naive Bayes. 

Sebastiani et al. [38] recently proposed an improved boosting algorithm 

based on AdaBoost for text categorization by generating a set of, rather than 

only one single, weak hypotheses at each iteration of the boosting process. 

The set of hypotheses are combined by simple arithmetic mean to produce 

the weak hypothesis for that iteration. Results are compared with the vari-

ants proposed by Schapire and Singer [37], showing that the new method 

demonstrate a better classification performances. 

Iyer et al. [13] investigated the behavior of RankBoost [8] on different 

ranking functions for the weak hypotheses in the context of document rout-

ing. 

Boosting algorithms combine weak hypothesis into one single final hy-

pothesis by using a weak learner. This combination of evidence obtained by 

multiple runs is based on a single learning method. Evidence combined is 

generated by the same algorithm of the same type. 

Recently, there have been many studies which relax the restriction of 

combining evidence generated by one single classification method. Instead of 
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considering only one algorithm's evidence, several meta-learning work have 

proposed to combine the evidence of predictions learned by algorithms, which 

are of different nature and types. 

Bartell et al. [2] proposed a method that can automatically combine the 

estimates of multiple retrieval systems in order to search for the optimized 

parameter values. A standard vector-space retrieval system and a phrase 

identifier are combined in a linear model to obtain the overall estimate for 

document ranking problems. The objective of the optimization is to find 

parameter values such that the system can rank documents in a correct 

order. 

Belkin el at. [3] combined a number of different query combinations of 

TREC topics into one single compound query for the information retrieval 

problem. Combination of the ranked lists of several retrieval results is ap-

plied. Results show that both combination of query representation and com-

bination of ranked lists demonstrate overall better retrieval performance over 

both single query representation and single ranked list. 

In addition to empirical findings, Lee [25] has also analyzed that im-

provements can be achieved with evidence combination since different runs 

might retrieve similar sets of relevant documents but retrieve different sets 

of nonrelevant documents. 

Kivinen and Warmuth [16] has provided a theoretical work about the 

use of loss function on combining predictions from a set of on-line learning 

algorithms. The loss function is used for measuring the discrepancy between 

an expert's predictions and the actual observation. A weight is assigned for 

each expert, and at each iteration, the weights are updated with respect to 
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the observed performance of that expert. 

Voting is another common technique that aims to combine multiple ev-

idence of different learning algorithms into a single prediction. Individual 

learning algorithms produce their own prediction for a particular learning 

task. The final prediction is made based on the majority vote for the pre-

diction by all the algorithms. Specifically, a binary prediction is assumed to 

be a correct classification if the majority of classifiers predict for the binary 

prediction. 

Voting can be divided into simple voting and weighted voting, while sim-

ple voting can be regarded as a special case of weighted voting. Contribu-

tions of different classifiers are considered to be equal under simple voting. 

For weighted voting, individual classifier is associated with a weight, which 

reflects the amount of its contribution of prediction towards the final predic-

tion. 

Littlestone and Warmuth [28] proposed the weighted voting algorithm for 

constructing a compound algorithm. The theoretical work assumes that the 

component classifiers make binary predictions. They have proved that there 

exists an upper bound for the number of mistakes the algorithm would make. 

The upper bound is proved to be a number that is smaller than the number 

of mistakes the best component classifier would make. 

Chan and Stolfo [4] presented their evaluation of simple voting and meta-

learning on partitioned data, through inductive learning. Particularly, they 

propose the use of an arbiter and a combiner strategy for the task of meta-

learning. An arbiter is learned by all involved classifiers, and an arbitration 

rule is generated. The arbitration rule can affect the final prediction when 
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breaking tie for the majority of vote, or the majority of classifiers do not 

agree. A combiner is used for coalescing the predictions from the involved 

classifiers by learning the relationship between the predictions they made 

and the correct prediction. 

Ting and Witten [41] demonstrated the effectiveness of stacked general-

ization for combining different types of learning algorithms. Stacked general-

ization breaks the learning task into some low-level models and a high-level 

model. Low-level models are those general classification algorithms, which 

produce individual predictions on training data. These predictions, includ-

ing the corresponding true classifications, are combined to form a new set 

of data, which is regarded as a new classification problem, for a learning 

algorithm, the high-level model. 

Sohn [39] conducted studies on meta analysis of classification algorithms 

used for pattern recognition in the aspect of data mining. The proposed 

meta-model could predict expected classification performance of individual 

algorithms as a function of data patterns. 

Nigam and Ghani [32] reported the co-training method of improving clas-

sification performance. Classifiers are separately trained by using a set of 

labeled documents. The classifiers are used for determining the confidence 

of a document belonging to a class. Such document is added to the set of 

labeled document of that class. The classifiers are applied to predict the 

class membership for the new documents. The predictions are finally com-

bined together. However, its satisfactory experimental results rely on the 

independence of feature data sets split. 

Kumar et al. [18] proposed a hierarchical multiclassifier system to perform 
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hyperspectral data analysis. Ho [11] analyzed the complexity of classification 

problems using decision trees and nearest neighbour, and showed that depen-

dences of classifiers' behaviour on data characteristics exist. Hull at al. [12 

examined various combination strategies in the context of document filtering. 

Learning algorithms included Rocchio, nearest neighbor, linear discriminant 

analysis and neural net. Averaging strategies are studied and results show 

that overall filtering performance is improved. 

Recently, there are meta-learning methods have been proposed specifically 

for text categorization domains. 

Larkey and Croft [24] reported improved performance, by using new query 

formulation and weighting methods, in the context of text categorization by 

combining three classifiers linearly, namely k-NN, relevance feedback and 

Bayesian independence classifiers. Combination is based on either rank or 

scores of component classifiers. Improved performance is reported, however, 

the disadvantage of the proposed combination strategy rests on its manual 

calibration of the weight for each component classifier during combination. 

Yang et al. [45] proposed the Best Overall Results Generator (BORG) 

system to reduce the variance of performance due to the lack of representative 

validation data sets in the Topic Detection and Tracking (TDT) domain. 

BORG combines classification methods linearly, using simple equal weight for 

each classifier. Classification methods employed in BORG are Rocchio, kXX 

and Language Modeling. The proposed combination strategy is a special 

case of equal weighting under linear coiiibiiiatioii strategy. 
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2.3 Our Meta-Learning Approaches 

Most of the mentioned meta-learning approaches specifically for the task of 

text categorization mainly combine the classification decisions of different 

algorithms, without significant justification of the relative merit of using 

different component algorithms for different categories. Moreover, they are 

restricted with the involved component algorithms and model setting. 

To tackle the inefficiency of the proposed methods, we introduce three 

different meta-learning approaches for text categorization, namely, the linear 

combination approach, the meta-learning using document feature character-

istics, and the combination of these two approaches. 

The Linear Combination approach can distill the characteristics of how 

we estimate the relative merit of each component algorithm for different cate-

gories. To determine the relative contribution of each component algorithms 

towards the final classification decisions, three different weight determining 

strategies are introduced. Different from the related work of meta-learning 

methods mentioned previously, our linear combination is not restricted to 

the involved number nor type of component classification algorithms. 

By using document feature characteristics, our meta-learning approach, 

MUDOF, can automatically recommend an appropriate classification algo-

rithm for each category, based on multivariate regression analysis by cap-

turing category specific feature characteristics. Categorical feature charac-

teristics are the descriptive summary about the specific nature and other 

specialties about a particular category. By learning the relationship between 

classification errors of different algorithms, and the categorical feature char-
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acteristics, it is hoped that the efficiency of classifying documents for a cat-

egory by a certain classification algorithm can be estimated. According to 

the estimated performance, the approach can recommend the most suitable 

algorithm for each category. Using categorical document feature characteris-

tics for recommending suitable classification algorithms has not been studied 

before. This approach is also not restricted by the number nor type of com-

ponent classification algorithms. 

The third approach is the combination of the other two proposed meta-

learning methods. By incorporating MUDOF technique into the Linear Com-

bination approach, MUD0F2 can derive the relative weight factors for each 

component classification algorithm with consideration of categorical docu-

ment feature characteristics. By capturing the document feature character-

istics for the determination of weight factors, the relative contribution of 

each component classification algorithm can be truly reflected with the more 

comprehensive knowledge of the nature of a category. 
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Chapter 3 

Document Pre-Processing 

To conduct text categorization, we have to pre-process the textual documents 

into internal representation before constructing classifiers and perform the 

on-line classification. In this section, we discuss some background of pre-

processing of text documents and the classification scheme learning strategy. 

3.1 Document Representation 

The classification system first extracts indexes or identifiers which can charac-

terize the documents. Identifiers are basically words or phrases in the content 

and they can be used to represent the document. This indexing process is a 

pre-processing step before the system conducts document classification. In 

the past, indexing was mostly performed by subject experts, or some by well 

trained persons with experience in assigning content descriptions. However, 

manual indexing is very time consuming. Besides, indexing experts may in-

troduce unwanted variability and uncertainties that may adversely affect the 
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classification result and retrieval effectiveness. An alternative approach is 

based on automatic indexing [36, 34]. The main steps are described below: 

1. Use a table, called the stop-word list, to eliminate common function 

words (eg. and, of, an, but, the, etc.) from the text documents. 

2. Each of the remaining words is reduced to a word-stem form so that 

all words exhibiting the same stem are represented in the same way 

(eg. the words “analyze", “analyzes", and "analyzing" are all reduced 

to the stem analy). 

3. Compute the term frequency fi j for all stemmed words Tj in each doc-

ument Di. 

As a result, each document is represented by a term vector of the form 

Di 二 (flii, ai2,…，din) 

where the coefficient a认 represents the weight of the term Tk in document 

A -

These coefficients can be either binary or numeric. For the binary repre-

sentation, dik is set to 1 when the term Tk is present in document Di, and 

0 when this term is absent. For numeric representation, the value of aik is 

determined from the effectiveness of this term to represent the document. 

Different kinds of numeric term weighting scheme have been proposed. One 

common method is the term-frequency method [35]. In this method, the 

value of aik is represented by the term frequency, fik, which is the number of 

occurrence of the term Tk in the document Di. Thus we have 
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^ik — fik 

Another kind of representation is the inverse document frequency method 

30，35]. In this method, we need to obtain the inverse document frequency, 

/fc, of a term Tk which is defined as: 

, 1 N h = log — dk 

where N is the number of documents in a collection and dk is the number 

of documents in a collection in which the term Tk occurs. The weight aik is 

determined by: 

(Hk — fik^k 

Once a document is represented as a vector, the similarity between docu-

ment Di and Dj, SIM{Di, Dj), can be calculated in a number of ways. One 

popular method is the inner product as follows: 

n 

SIM{Di, Dj) = aik . djk 
k=l 

The similarity coefficient is in principle unbounded, it is customary in most 

applications to use normalized similarity coefficients whose values vary be-

tween 0 and 1 when the vector elements are nonnegative. We adopt cosine 

coefficient as shown below: Cosine coefficient: 

yYlk=l ^ik ^jk 
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= {ai l , a i 2 , a i r i l ^ i • [cn, C 1 2 , C i ^ ] } 

D2 = ( 2 2 2 , • • • ， : [ C 2 I , C 2 2 , .••， 

Dt — { ttil, at2 5 • • • ? Ôtn I Lt ： [Cti, Ct2, • • •, Ctm] } 

Figure 3.1: Internal representation of training documents collection 

Some advantages of the vector representation are the model's simplicity, 

the ease with which it accommodates weighted terms, and its ability to rank 

the retrieved documents. 

3.2 Classification Scheme Learning Strategy 

To tackle the automatic classification problem, we make use of a machine 

learning technique which discovers classification knowledge or scheme, for 

each category, from a collection of training examples. Each example consists 

of a document and a set of manually assigned categories. Using the above 

representation, the training document collection can be represented as shown 

in Figure 3.1. 

In Figure 3.1, a ĵ denotes the weight of term Tj in document Di and Li 

denotes the set of labels assigned to document Di. The value of cij indicates 

if category Cj is assigned to document D” The distribution of values of c 

are probably different from each other for different D, since each document 

can belong to any subset of the available per-defined categories, t is the total 

number of documents in the training document collection and n is the total 

25 



number of indexed terms. 

The classification scheme learning problem can be decomposed into sub-

problems related to individual categories. Since a fixed set of pre-defined 

categories is known in advance, we can learn a separate classification scheme 

for each category from the training document collection. After the classi-

fication schemes of all categories are discovered, they can be used together 

in the on-line classification module to decide a set of categories for a new 

document. Suppose the total number of pre-defined categories is m, and m 

= I / i 丨二 I I = … = I 丄n，where | | denotes the cardinality of x. For 

a document Di and a particular category Cj, the value of Cij is defined as: 

f 

1 if A e Q 
Cij 二 < 

0 if A i c ] 
V 

With the above representation, Li is therefore a collection of values of 1 and 

0, depending on whether the document Di belongs to a category. 

For example, if only documents Di and Dt in the training collection 

belong to the category Cj, then a particular representation of Figure 3.1 will 

be expressed as shown in Figure 3.2. 

Using this training document collection, we can apply machine learning 

techniques to construct a classifier automatically for each category. Each 

term is regarded as a feature, and so each document is represented as a fea-

ture vector. After all categories have been learned, we have m classification 

schemes available for each classification algorithm. Each incoming new doc-

ument is first converted into a system readable format and then matched 
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Di = { a i l , a i 2 ， ： [Cii, Ci2, ".，Cij—1,1，Cij+i, ...，Ci肌]} 

D2 = ^ ^ 2 2，• . •， : [C21, C22, •••，C2j_i, 0, C2j+1, ..., C2m]}" 

Dt = {^a? •••5 (^tn\Lt ： [ctl, Ct2： Ctj-1, 1, Qj+1： Qm]} 

Figure 3.2: An example of internal representation of training documents 

collection 

against each classification scheme. Each classification scheme outputs either 

a binary or weighted decision. Under our different proposed meta-learning 

approaches, these decisions are combined in various ways before making the 

final classification decision. Similar steps are repeated for each category and 

the system finally assigns a set of categories to each document. 

Figure 3.3 shows a piece of sample document in Reuters-21578 document 

collection. The details of Reuters-21578 document collection will be given in 

Section 7.1. The documents are in SGML format. Each document starts with 

an "open tag" of the form < REUTERS . . . � a n d end with an "close tag" 

of the f o r m � / R E U T E R S � . The list of topic categories for the document 

are enclosed by the t a g s � T O P I C S � a n d � / T O P I C S � . If categories are 

present, each of them are delimited by the tags < D > and < / D > . The main 

text of the document is enclosed by the tags <BODY> and < / B O D Y > . The 

sample document shown in Figure 3.3 can be represented as: 

D 二 \^CLfiguri ^registi .••，1 ^show L . Cy^g — oU ——1, Clinseed 一 1，•••，CŷJiedt — } 
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where figur, regist and linoil are the stemmed words selected from the 

document, while veg — oil, linseed and wheat are the subset of pre-defined 

category labels in the document collection. 

28 



<REUTERS TOPICS="YES" LEWISSPLIT="TRAIN" CGISPLIT="TRAINING-SET" 

0LDID="5549" NEWID="6"> 

<DATE>26-FEB-1987 15:14:36.41</DATE> 

<TOPICS><D>veg—oil</D><D>linseed</D><D>liii—oil</D><D>soy—oil</D> 

<D>sun-oil</D><D>soybean</D><D>oilseed</D><D>corn</D> 

<D>sunseed</D><D>grain</D><D>sorglmm</D><D>wlieat</D></TOPICS> 

<PLACES><D>argentina</D></PLACES> 

<PEOPLE></PEOPLE><ORGS></ORGS><EXCHANGES></EXCHANGES><COMPANIES></COMPANIES> 

<TEXT> 

<TITLE>ARGENTINE 1986/87 GRAIN/OILSEED REGISTRATIONS</TITLE> 丨 

<DATELINE> BUENOS AIRES, Feb 26 - </DATELINE> 

<BODY>Argentine grain board figures show crop registrations of grains, 

oilseeds and their products to February 11, in thousands of tonnes, 

showing those for future shipments month, 1986/87 total and 1985/86 

total to February 12， 1986, in brackets: 

Bread wheat prev 1,655.8, Feb 872.0， March 164.6, total 2,692.4 (4,161.0). 

Maize Mar 48.0， total 48.0 (nil). 

Sorghum nil (nil) 

Oilseed export registrations were: 

Sunflowerseed total 15.0 (7.9) 

Soybean May 20.0, total 20.0 (nil) 丨、 . i:丨 L. 
丨ill 

The board also detailed export registrations for subproducts, as follows, I' 

SUBPRODUCTS |：：, 

Wheat prev 39.9， Feb 48.7， March 13.2， Apr 10.0， total 111.8 (82.7). 

Linseed prev 34.8， Feb 32.9， Mar 6.8， Apr 6.3， total 80.8 (87.4). 

Soybean prev 100.9, Feb 45.1, MAr nil， Apr nil, May 20.0， 

total 166.1 (218.5). 

Sunflowerseed prev 48.6， Feb 61.5, Mar 25.1， Apr 14.5， total 149.8 (145.3) 

Vegetable oil registrations were : 

Sunoil prev 37.4, Feb 107.3, Mar 24.5, Apr 3.2， May nil, 

Jun 10.0, total 182.4 (117.6). 

Linoil prev 15.9, Feb 23.6, Mar 20.4， Apr 2.0， total 61.8, (76.1). 

Soybean oil prev 3.7， Feb 21.1, Mar nil, Apr 2.0, May 9.0, 

Jun 13.0， Jul 7.0， total 55.8 (33.7). 

</BODY></TEXT> 

</REUTERS> 

Figure 3.3: A sample document in the Reuters-21578 document collection 
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Chapter 4 

Linear Combination Approach 

This chapter presents the overview and the algorithm framework of one of our 

proposed meta-learning approach, Linear Combination. Particularly, three 

different weighting strategies are proposed. We also compare the approach 

with some of the existing proposed methods of combining classifiers for text 

categorization. The comparison shows that the existing proposed methods 

are indeed special cases of one of the three weighting strategies under our 

Linear Combination approach. 

4.1 Overview 

There have been some research conducted to tackle the problem of text cat-

egorization by meta-learning techniques. As mentioned in Section 1.2, the 

goal of the meta-learning approach is to unify and combine the strength of 

the existing classification algorithms in order to achieve better overall clas-

sification performance. 
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A very simple method of combining the evidence of more than one classifi-

cation algorithms is the majority voting as described in Section 2.2. However, 

giving the same amount of consideration for each involved component clas-

sifier when making the final classification decision may be undesirable, as 

what it does for majority voting. It is because we do not have a prior knowl-

edge of the classification performance of each individual classifier towards a 

classification problem. For example, if a particular algorithm performs rela-

tively worse, compared with other component classifiers, when predicting the 

membership of a certain category for documents, the general belief is that 

the influence of this algorithm to the final predictions of class membership 

should be less, or given little consideration, in order not to downgrade the 

overall classification performance. 

A better approach to combine the evidence of different algorithms should 

be able to reflect and distill the characteristic of how we estimate the relative 

merit of each component algorithm for different categories under text catego-

rization. Inspired by this idea, therefore, we propose the Linear Combination 

(LC) approach, that allows adjustment of influence, or the contributions, of 

the component classifiers towards the final prediction of class membership 

for incoming documents. 

Figure 4.1 depicts the general framework of our linear combination ap-

proach for a particular category. Component classifiers are individually con-

structed by some learning algorithms for a particular category. The learning 

algorithms are not bound to be same type nor same nature. Confidence scores 

of class membership for each incoming document are calculated by each com-

ponent classifier and generate its own scores distribution. For each document, 
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the component scores are combined by a linear combination scheme and it 

yields the final scores distribution. Based on this new scores distribution, 

documents associated with confidence scores higher than a threshold value, 

t, are classified as a member of the category. One important issue is the 

weighting strategy used in the linear combination scheme. We investigate 

three different weighting strategies in our research. 

Relevance Scores for Documents 

Classiflers for Category i 

(Classifier j refers to Algorithm j ) / … 
/ D o c m - S /" \ 

( V 
\ Linear Combination 

Classifier 1 \ , c Combined Relevance 
。广 r \ of Relevance Scores 

V ) � Doc r - S ., w.̂  \ Scores for Documents 

/ 、、、！ 
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li i, / , ‘ w/." 
I -h ‘ f I ij 
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A 

Figure 4.1: The framework of applying linear combination technique for a 

particular category 

The following sections present the detailed algorithm of our proposed lin-

ear combination approach. Particularly, three different weighting strategies 

determining the contributions of the component classifiers are described. 
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4.2 Linear Combination Approach - The Al-

gorithm 

We first present a general linear combination approach. Consider a particular 

category i. The contribution of each individual component algorithm j to the 

final meta-model classification decision is represented by a weight factor wij. 

Suppose there is a document m which is to be categorized. Instead of using 

the relevance score calculated from a single classification scheme of a partic-

ular category, the linear combination approach calculates a combined score 

which is the weighted sum of contributions of all component algorithms in 

a linear fashion. Suppose there are n component algorithms. The combined 

score for m is computed by Equation 4.1. 

n 

《 • 6 二 (4-1) 

where 57̂；隱6 is the final combined relevance score for m in the category i. 

Sl^ is the score calculated between rn and the classifier learned by algorithm 

j for category i. The value of is the weight factor, or the contribution, of 

the classifier to the score and J2�=i ^tj is equal to 1. 

If the final combined score for m is larger than the threshold value set 

for a category, that category is assigned to m. Figure 4.1 depicts the overall 

framework of the linear combination approach To rcflect the significance of 

contribution by different classifiers for a category, various strategies can be 

employed to determine the weight in Equation 4.1). We have proposed 

three weighting strategies under this linear combination approach, to study 

the categorization performance differences. 
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4.2.1 Equal Weighting Strategy 

The first strategy, called LCI, is an equal weighting scheme. Under this 

scheme, the weight of all classifiers are the same, as indicated in Equation 4.2. 

As a result, the contribution of each classification algorithm to the final 

combined score for m is equal. 

= = — = — < = - for all z (4.2) 
/ b 

4.2.2 Weighting Strategy Based On Utility Measure 

The second strategy, called LC2, determines the weights based on utility 

measure from training. Under this strategy, the relative contribution, w" ,̂ of 

a classification scheme, which is constructed by algorithm j for category z, to 

the final combined score for document m, depends on the performance, Uij, of 

the learned classifier in the training phase. The relationship between the con-

tribution of the classifier and its categorization performance, is represented 

as a function indicated in Equation 4.3. 

< = / � (4.3) 

where function f is expressed in terms of Uij, which is the utility score ob-

tained by the classifier. 

The function / is a transformation function from certain utility scores to 

corresponding contribution weights. The transformation is restricted by the 

condition that � e q u a l s to 1. Conceptually, a well-performed classifier 

constructed by an algorithm should be given a heavier weight than the others 

during the score combination. In our investigation, we adopt the function f 
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as shown in Equation 4.4. 

�?] = /K) = for 1< J <n (4.4) 

We make use of a set of documents, called tuning set, obtained from a 

subset of the training set to calculate Uij. Specifically, Uij is the classification 

performance of the tuning set using the classification scheme constructed by 

algorithm j for category i. 

4.2.3 Weighting Strategy Based On Document Rank 

Our third strategy, called LC3, determines the contribution weights of the 

involved component algorithms, based on the rank of scores, S巧 for docu-

ment m. The scores for document m are first ranked across the component 

algorithms. By mapping from the rank to a set of pre-determined weight 

factors using the function g, a particular weight, say Pd, is assigned to the 

corresponding algorithm as its contribution in the final combined score for 

m. The idea of this strategy is illustrated in Equation 4.5. 

�？；二 P(i 二 for , Pn} and l < j < n (4.5) 

where Pd is one of the Ji pre-determined weights, and is the rank of 

score of ni by algorithm j under category i. g is a mapping function from 

the rank B]'- to the assignment of the weight P^ for the document m. For 

example, if the score rank is the second highest among other classifiers 

and so its value is equal to 2. then the weight assigned to algorithm j for the 

combination with other classifiers for document m in cat ego r}' i is P]-
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4.3 Comparisons of Linear Combination Ap-

proach and Existing Meta-Learning Meth-

ods 

Our proposed linear combination approach is a more general and formal-

ized version of some existing meta-learning methods for text categorization, 

namely, the simple majority voting, BORG proposed by Yang et al. [45] and 

the restricted combination method proposed by Larkey and Croft [24 • 

4.3.1 LC versus Simple Majority Voting 

As described in Section 2.2, the final classification prediction for simple ma-

jority voting is made based on the plurality of vote for the prediction by 

all the involved component algorithms. Indeed, this combination approach 

is a special case of our generalized linear combination approach with equal 

weighting strategy. 

For example, by simple majority vote, if there are three, out of five, clas-

sifiers voting for the class membership of a category i for a document m, then 

that document is believed to belong to that category since more than half 

(3/5 = 0.6 > 0.5) of the component algorithms agree with the predictions. 

In this case, 0.5 is a fixed threshold for the category under consideration, 

and 0.6 is treated as the final confidence score for the document. Since the 

final score is larger than the threshold, the document is assigned with the 

category label. 

We attempt to show that simple majority voting is a special case of equal 
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weighting strategy. Consider that each individual algorithm's vote can be 

represented as a real discrete value. The vote carries the score value of 1 if 

the algorithm vote for a prediction of class membership, and 0 if otherwise. 

Also, we assign an equal and real-valued weight for each algorithm's vote, 

and the summation of these weight should be equal to 1. Consequently, 

CO巧=1/n. The threshold t is set to 0.5. Returning to the previous example, 

if we use the notations introduced in Section 4.2: 

n = 5 and S^ 二 S^ = Sg = 1 and S]^ 二 Sg = 0 

Also, we assign an equal and real-valued weight for each algorithm's vote, 

and the summation of these weight should be equal to 1 as shown below: 

, , r n _ m _ m _ m _ m _ 1 _ n 9 
� n —� —� i3 — — ^25 — ^ — U-� 

Then, the value of the final confidence score under our linear combination 

approach can be calculated by Equation 4.6 

= 0.2 * 1 + 0.2 * 1 + 0.2 * 1 + 0.2 * 0 + 0.2 * 0 = 0.6 (4.6) 

Since > 力，category i is assigned to document m. The trivial and 

simple proof shows that majority voting can indeed be considered to a special 

case for our proposed generalized Linear Combination method with equal 

weighting strategy. 
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4.3.2 LC versus BORG 

We have briefly described the work of BORG in Section 2.2. In order to 

improve the consistency of statistical classifiers when lacking representative 

validation sets under the TDT domain, BORG combines each classifier by 

simple summation. Specifically, the scores of documents in each experimental 

run of each classifier are first normalized by the mean and standard devia-

tion of the scores. The normalized scores of each document for each classifier 

are then summed together. The final combined scores for all documents are 

finally re-normalized in the same way to produce the final scores. Such sim-

ple summation can therefore be considered to be the case of equal weighting 

strategy under our Linear Combination approach, since the individual com-

ponent scores are summed together without considering the relative contri-

butions. Therefore, each algorithm is regarded to contribute equally {u^ 二 ̂  

for all categories and classification algorithms) towards the final predictions. 

4.3.3 LC versus Restricted Linear Combination Method 

The linear combination method proposed by Larkey and Croft [24], as intro-

duced in Section 2.2 is a restricted version of our generalized Linear Com-

bination approach. Their work mainly studied the combination of KNN, 

Bayesian Independence Classifiers and Relevance Feedback (n 二 3). Studies 

of using additional component algorithms during combination has not been 

given. The associated weight for each component algorithm is manually 

tuned, which may not be able to uncover the robustness of the linear combi-

nation approach. 
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Instead, our generalized linear combination approach can flexibly adapt 

to different number of component algorithms. In addition to manual as-

signment of associated weight for each algorithm, our method can also au-

tomatically assign weight for each component algorithm according to the 

preliminary classification performance, under the Weighting Strategy Based 

On Utility Measure (LC2) and the Weighting Strategy Based On Document 

Rank (LC3). 
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Chapter 5 

The New Meta-Learning Model 

- M U D O F 

Most existing meta-learning approaches for text categorization are based on 

linear combination of several basic algorithms. The linear combination ap-

proach makes use of limited knowledge in the training document set. To 

address this limitation, we propose a meta-model approach, called Meta-

learning Using Document Feature characteristics (MUDOF), which employs 

a meta-learning phase using document feature characteristics. Document fea-

ture characteristics, derived from the training document set, capture some 

inherent category-specific properties of a particular category. This approach 

aims at recommending a suitable algorithm automatically for each category. 

Hence, different algorithms may be employed for constructing classifiers for 

different categories. Specifically, the relationship between the document fea-

ture characteristics and the predicted classification error of a classification 

algorithm is learned by using the technique of multivariate regression anal-
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ysis. Based on the relationship, it can make automatic recommendation of 

algorithms for different categories. As a result, our MUDOF approach com-

bines the evidence of predicted classification errors of different algorithms by 

regression analysis on document feature characteristics. 

5.1 Overview 

While the improvements reported by most of the previous studies of differ-

ent approaches on text categorization were evaluated based on several single 

overall performance scores calculated by different utility measures, however, 

performance comparisons, on category-by-category basis, between different 

algorithms are seldom investigated. We observe that, though a particular 

algorithm may obtain a better overall performance in different single per-

formance scores, it is not guaranteed that its performance is the best for 

particular categories, when compared with other algorithms. In fact, given 

a certain category, the classification performance varies with the choice of 

algorithms. This can be attributed to the fact that algorithms perform dif-

ferently for a certain category, which exhibits specific nature or different 

characteristics from other categories. If an algorithm, of less capable in clas-

sification performance, for a particular category, can be replaced by another 

efficient algorithm, an overall better classification performance can be further 

increased. 

Motivated by such observations, we propose MUDOF, a novel approach 

of the meta-learning framework for text categorization, based on multivari-

ate regression analysis, by capturing category specific feature characteristics. 
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Different from existing categorization methods, instead of applying one sin-

gle method for all categories during classification, this new meta-learning 

approach can automatically recommend a suitable algorithm during train-

ing, from an algorithm pool, for each category based on the category specific 

statistical characteristics and multivariate regression analysis. We employ 

a meta-learning approach by learning the relationship between the feature 

characteristics and the classification errors by conducting multivariate regres-

sion analysis for each algorithm on each category. The learned relationship 

is expressed by sets of parameter estimates, based on which, suitable classi-

fication algorithms are recommended for the categories. Document feature 

characteristics, derived from the training set of a particular category, can 

capture some inherent properties of that category. The problem of predict-

ing the expected classification error of an algorithm for a category, therefore, 

can be interpreted as a function of these feature characteristics. In summary, 

our proposed MUDOF approach consists of three key components, namely 

categorical document feature characteristics, classification errors and a mul-

tivariate regression model. Figure 5.1 shows the overview of our proposed 

approach. The following sections will present the details of these three key 

components. 

5.2 Document Feature Characteristics 

Document feature characteristics, derived from the training set of a particular 

category, can capture some inherent properties of that category. They are 

the statistics that can be regarded as the descriptive summary for documents 
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Figure 5.1: An overview of the meta-model approach for text categorization 
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belonging to a certain category. 

Study on term feature selection has been done [49] to reduce the dimen-

sionality of feature space aggressively. The study concentrates on selecting 

useful and informative term features by various means. However, selecting 

useful feature terms is limited to capture the contextual information only, 

while other aggregate or higher level characteristics a category exhibits may 

not be revealed. Instead of merely capturing the contextual information of a 

category, our MUDOF approach also consider the general nature or specific 

characteristics for the documents belonging to a category. These character-

istics, collected on category basis, are not necessarily directly related to the 

context of a document of a category. We believe that, capturing the specific 

characteristics in addition to the contextual information of each category, 

can help revealing the relationship between the document feature charac-

teristics and the classification performance of different algorithms applied. 

Some examples of document feature characteristics are given below: 

1. PosTr: The number of positive training examples of a category. 

2. AvgDocLen: The average document length of a category. 

A complete list of document feature characteristics used in our investigation 

is given in Section 7.4. 

5.3 Classification Errors 

Classification errors directly reflect the classification performance of classi-

fiers against a category. The general belief is that an algorithm is considered 

to perform better if it has a smaller classification error when compared with 

other classifiers solving the same classification problem. Given the same set 

of documents, different algorithms can be used for training the corresponding 
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classifiers for a particular category. As the constructed classifiers are differ-

ent, therefore, different classifiers generally demonstrate different ability of 

predicting the class membership for a category. 

Existing classification algorithms attribute significant classification errors 

to the imperfect quality of a classifier. In addition to the quality of classi-

fiers, our MUDOF approach relates the classification errors of an algorithm 

to the appropriateness of classifying documents for a category that exhibit 

specific characteristics. In general, if a classification algorithm can handle 

the classification task better for certain types, or categories, of documents, 

the predicted classification error for the algorithm should be the smallest 

among the others, and so the algorithm should be recommended to handle 

the classification of future documents for the categories. As the classification 

errors are directly related to which algorithm is applied, they are fitted into 

the regression model as dependent variables under our MUDOF approach. 

5.4 Linear Regression Model 

Regression analysis is a statistical technique for modeling and investigating 

the inherent relationship between two or more variables. For example, the 

prediction accuracy of a stock price may be considered to be related to the 

time frame of the history data that is available for making the prediction. 

Regression analysis can be applied to build a mathematical model to predict 

the accuracy at a given time frame level in the form as shown in Equation 5.1. 

y = + + e (5.1) 
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The model shown in Equation 5.1 is called the simple linear regression 

model, in which there is only one response variable, or the dependent vari-

able, Y, and only one regressor, or the independent variable, x. fis are the 

regression coefficients, or the parameter estimates, that depicts the relation-

ship between the independent variable and dependent variables, e is the 

random error term. The term linear is used because Equation 5.1 is a linear 

function of the unknown parameters. 

To construct the regression model, we have to collect a number of obser-

vations (xi,yi), (X2，y2),…，{^n^yn) and express them as Equation 5.2. The 

value of PQ and � c a n be estimated by using the method of least squares es-

timation. The final estimated regression model is expressed as Equation 5.3. 

We can use the estimated regression model to make future prediction of the 

value of y by fitting a given value of x into the model. 

队二 A) + * 而 + ei i = (5.2) 

y = + (5.3) 

Multiple linear regression model is a more generalized regression model 

in which more than one independent variables are included in the regression 

model as shown in Equation 5.4. 

y = A) + A * + * 2：2 + • . . + A * r/c + e (5.4) 

Similar to simple linear regression, least squares estimation is also used to 

construct the regression model, except that multiple regression model now 
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involves more than one independent variables during the estimation. The 

final estimated model is expressed in the form as shown in equation 5.5 

f = ft + * xi + * A + … + A * ta； (5-5) 

Multiple linear regression model, or multivariate regression analysis, is 

usually used for making predictions for problems which involve more than 

one factors that contribute to the final predictions. W e choose to employ 

multivariate regression analysis for our M U D O F approach since documents 

belonging to a category usually exhibits more than one particular nature or 

specialties. Therefore, considering more than one document feature char-

acteristics for each category when making algorithm recommendations can 

capture the more complete and useful information of each category. 

5.5 The MUDOF Algorithm 

In M U D O F , we make use of categorical document feature characteristics and 

classification errors. In particular, we wish to predict the classification error 

for a category based on the feature characteristics. This is achieved by a 

meta-learning approach based on regression model, in which, the document 

feature characteristics are the independent variables, while the classification 

error of an algorithm is the dependent variable. W e further divide the training 

collection into two sets, namely the training set and the tuning set. Two sets 

of feature characteristics are collected separately from these two data sets. 

Statistics from the training set are used for parameter estimations. Together 

with the estimated parameters, the feature characteristics from the tuning set 
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are used for predicting the classification error of an algorithm for a category. 

The algorithm with the minimum estimated classification error for a category 

will be recommended for that category during the on-line classification, or 

validation phase. 

Consider the ith category. Suppose we have several component classifi-

cation algorithms. Let Cij be the classification error of the training set on 

the jth algorithm. Classification errors will first undergo a logistic trans-

formation to yield the response variable, or the dependent variable, for the 

met a-mo del. Precisely, the transformation is given in Equation 5.6. 

Vij = In (5.6) 
i — Cij 

where i/ij is the response variable. This transformation ensures that the 

response variable is in the range of 0 and 1. The response variable, yij is 

related to the feature characteristics by the regression model, as shown in 

Equation 5.7. 

= ^ + + (5.7) 
k=l 

where Ff is the kth feature characteristic in the zth category. The num-

ber of document feature characteristics used in the meta-model is p. /3�is 

the parameter estimate for the A:th feature, by using the algorithm j. Cij 

is assumed to follow a Gaussian distribution N{0,"uar[e�.Based on the 

regression model above, the outline of meta-model for text categorization is 

given in Figure 5.2. 
A 

Step 1 to 9, in Figure 5.2, aim to estimate a set of betas {Pj), the pa-

rameter estimates of the feature characteristics in the regression model, for 
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each individual algorithm. In Step 2, an algorithm, with optimized param-

eter settings, is picked from the algorithm pool. By repeating Steps 3 to 

7, the algorithm is applied on training and tuning examples to yield classi-

fication errors of the classifier for all categories. Documents in timing set, 

as shown in Step 5，are used for obtaining the classification performance, 

and so the classification error, of a trained classifier for each category. A 

set of betas, belonging to the algorithm being considered, can be obtained 

by fitting all classification errors of the categories, and their corresponding 

feature characteristics in the training set, into the regression model. After 

Step 9, there will be n sets of estimated parameters, the betas, each of which 

corresponds to the relationship between the classification performance of a 

c()mp()nc、nt classification algorithm and the document feature characteristics. 

These estimated parameters are then used for the subsequent steps. 

The predictions on the classification errors of the iiivolvrd algorithms 

ai.(、mad(、from Stops 10 to 16. In Step 12, one algorithm with the same 

optimized i)aram(、t(、r settings as in Step 2, is pickcd from the algorithm pool. 

Tlu、c()ir(\sp()ii(ling sot of l)(、tas of the s(、k、(.t(、d algorithm, together with th(、 

IVaturo charac-toristICS of a category in th(、tuning s(、t, will Ik、fiU(、(l into the 

r(、ĵn、ssi(m in()(l(、l, in Stop 13. to giv(、th(、（estimated classification errors of the 

algorithill on tlu、ratrgoiy. D(、(.isi()ns, about which algorithm will 1)(、appli('(l 

oil th(、(•at(\«2;()rv. ai(、based on the pr(、(li(‘t(,(l iiiiniiinini classification errors 

ill Stop 14. Aft(、r St(、i) IG, classification algoritlmis arc rr(.()iinn(”i(l(、d for 

catrgorios, and tlu、i.(、r()iniii(、ii(l(、(l al.ûoritliiii will l)r applied t() each ratrgorv 

(luring tlu、oii-lino classification, or validation. 

The robustness of tho m(、ta-m()(lrl approarh rests ()n its full\- aiit(jiiiatif 
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estimations. The whole process, from parameter estimation to recommending 

algorithms for categories, is fully automatic. The operation of our meta-

model approach is carried out as usual, except that different algorithms will 

be applied to the categories, instead of applying a single algorithm on all 

categories as what is commonly done in other approaches. 
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Input: The training set TR and tuning set TU 

A n algorithm pool A and categories set C 

1) Repeat 

2) Pick one algorithm ALGj from A. 

3) For each category Ci in C 

4) Apply ALGj on TR for Ci to yield a classifier CFij. 

5) Apply CFij on TU for Ci to yield classification error Cij. 

6) Take logistic transformation on Cij to yield yij for later parameter estimation. 

7) End For 

8) Estimate 湾（/c=0,l,2，...,p) for ALGj by fitting y幻 and if (in TR) 

into the regression model. 

9) Until no more algorithms in A. 

10) For each category Ci in C 

11) Repeat 

12) Pick one algorithm ALGj from A. 

13) Estimate the classification error Cij by fitting and corresponding Fj" (in TU) 

into the regression model. 

14) If Cij is minimum, recommend ALGj for Ci as the output. 

15) Until no more algorithms in A. 

16) End For 

Figure 5.2: The MUDOF algorithm 
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Chapter 6 

Incorporating MUDOF into 

Linear Combination approach 

After studying our two proposed meta-learning methods, namely the Linear 

Combination approach and M U D O F in Chapter 4 and Chapter 5 respec-

tively, we present an approach for further improving the Linear Combination 

approach. W e first discuss the motivation behind our proposed method and 

then introduce the overall framework of the approach in details. 

6.1 Background 

Combining classification evidence by different linear combination approaches 

as mentioned in Section 2.2 demonstrate that classification performance can 

be improved by considering the classification decisions of different component 

algorithms before making the final prediction. Our first proposed approach 

is Linear Combination approach which is a more generalized version of other 
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existing linear combination strategies. Instead of regarding each component 

classifier's classification decisions as equal, our proposed approach is able to 

reflect and distill the characteristic of how we estimate the relative merit of 

each component algorithm for different categories under text categorization. 

Specifically, the contribution of each individual component classification al-

gorithm is reflected by a weight factor, which is determined based on a clas-

sifier's preliminary classification performance available. If the preliminary 

classification performance of an algorithm is better than the others, then 

we have a ground to believe that the classification decisions made by such 

algorithm during on-line classification should be given more consideration 

towards the final decision to be made. 

In addition to combining multiple evidence of different classification al-

gorithms under linear combination approach, considering the specific nature 

and knowledge of characteristics about a category is also beneficial to the 

improvement of classification performance. As shown in Figure 4.1, the final 

output for linear combination approach is a combined distribution of confi-

dence scores related to the relevance of documents to a class membership, 

without considering the complete knowledge associated with a category. W e 

believe that, by capturing useful information of categorical document feature 

characteristics and integrating them into the Linear Combination approach, 

better classification performance should be observed. 

Our proposed second approach is M U D O F which employs a meta-learning 

phase using document feature characteristics which are collected on category 

basis and therefore can capture some inherent properties of each category. By 

learning the relationship between categorical document feature characteris-
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tics and classification errors by multivariate regression analysis, the approach 

can recommend the most suitable algorithm for each category. The relation-

ship learned between document feature characteristics and classification er-

rors can be used for calculating the predicted classification errors of different 

classification algorithms. The one with the smallest predicted classification 

error is recommended for a category. As a result, the M U D O F approach is 

able to learn a more comprehensive knowledge of a category before making 

the algorithm recommendation. 

Since our M U D O F approach can recommend classification algorithms for 

each category based on the learned relationship between document feature 

characteristics and classification errors, the technique indeed can be inte-

grated into our proposed Linear Combination approach, so that the com-

bination of the two approaches results in a new method called M U D 0 F 2 . 

Specifically, in M U D 0 F 2 , we would like to derive the relative weight factors 

for each component classification algorithm with proper consideration of cate-

gorical document feature characteristics. By capturing the document feature 

characteristics for the determination of weight factors, the relative contribu-

tion of each component classification algorithm can be truly reflected with 

the more comprehensive knowledge of the nature of a category. 

6.2 Overview of MUDOF2 

M U D 0 F 2 integrates the technique of M U D O F and the Linear Combination 

approach. Instead of recommending one single classification algorithm for 

each category, M U D 0 F 2 now considers and combines the classification de-
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cisions across all component classification algorithms. There are two major 

steps involved in M U D 0 F 2 . The first step is to employ a modified M U D O F 

approach to generate a matrix of estimated classification performances. The 

second step is to employ our proposed Linear Combination approach to com-

bine the individual confidence scores of different classification algorithms to 

yield a final confidence score belonging to a class membership for a document. 

The original M U D O F approach is modified so that it can output the matrix 

of estimated classification performances. Figure 6.1 depicts the framework 

of M U D 0 F 2 . Similar to the framework introduced in Section 5.1, we employ 
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Figure 6.1: An overview of M U D 0 F 2 

a meta-learning approach by learning the relationship between the feature 
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characteristics and the classification errors by conducting multivariate re-

gression analysis for each algorithm on each category. However, instead of 

recommending one single algorithm from the algorithm pool, M U D 0 F 2 pre-

dicts the classification errors, and so the classification performances, for each 

classification approaches against each category and form a matrix of esti-

mated classification performance. The scores matrix consists of performance 

scores which are estimated by considering the categorical document feature 

characteristics. 

Recall that in our Linear Combination approach, we have proposed three 

weighting strategies as discussed in Section 4.2. Each of the proposed strate-

gies has a different perspective on the contributions of the involved com-

ponent classifier towards the final classification decisions to be made. To 

incorporate the consideration of document feature characteristics in order to 

learn a more comprehensive knowledge about the nature of a category, we 

enhance the Linear Combination approach by making use of the estimated 

performance scores matrix to determine the weight factors, or the relative 

contributions, for each component classification approach. Particularly, the 

Weighting Strategy Based On Utility Measure as proposed in Section 4.2.2 

is employed to determine the weight factors. The weight factors calculated 

with the estimated scores matrix are used for combining the classification de-

cisions. The weight factors correspond to those u as depicted in Figure 4.1. 

It should be noted that, since the Equal Weighting Strategy as introduced 

in Section 4.2.1 regards the contribution of each component classification al-

gorithm as equal, performance obtained after integrating the additional step 

of generating estimated scores matrix into the original Linear Combination 
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approach should be identical to the results that would have produced by using 

the original Linear Combination approach. As a result, the Equal Weighting 

Strategy is not employed. 

Besides, the Weighting Strategy Based On Document Rank as proposed 

in Section 4.2.3 is concerned with individual ranks for each document under 

different classification algorithms. Since M U D O F concerns with document 

feature characteristics and classification errors on a category basis instead 

of individual document ranks, the Linear Combination approach with the 

Weighting Strategy Based O n Document Rank is not useful after being inte-

grated with the additional step of predicting classification performance based 

on categorical document feature characteristics. As a result, the Weighting 

Strategy Based On Document Rank is not employed. 

In summary, M U D 0 F 2 integrates our M U D O F and our Linear Combi-

nation approach particularly with the Weighting Strategy Based On Utility 

Measure. W e would like to study the effect on the classification performances 

by combining the classification decisions of different classification algorithms 

and by capturing the inherent properties of each category, with the available 

categorical document feature characteristics. 

6.3 Major Components of the MUDOF2 

The key components of the modified approach include categorical document 

feature characteristics, classification errors, a multivariate regression model 

and relative weight factors. 

Under the approach, categorical document feature characteristics are col-

57 



lected in a similar way as our proposed M U D O F approach as described in 

Chapter 5. The document feature characteristics are collected on a category 

basis and therefore they are regarded as descriptive summary for documents 

belonging to a certain category. 

Classification errors of different classification algorithms are also collected 

on category basis. Different classification algorithms can be employed to con-

struct the corresponding classifiers for each category. Due to the different 

nature of different classifiers, they usually demonstrate different classification 

performance for the same category. Instead of recommending one single algo-

rithm of minimum predicted classification error for a category, this modified 

approach considers the predicted errors of all involved component classifica-

tion algorithms. According to the predicted classification errors, an estimated 

classification performance scores matrix is constructed. The matrix is used 

for calculating the relative weight factors for each component classification 

algorithm for linear combination. 

The multivariate regression model used is the same as that proposed for 

M U D O F in Section 5.5. It serves the function of learning the relationship 

between the categorical document feature characteristics and the classifica-

tion errors of different classification algorithms. The set of parameter es-

timates calculated are regarded as the learned relationship. Based on this 

relationship, the classification errors are predicted and a matrix of estimated 

classification performance of different classification algorithms is generated. 

The estimated classification performance is therefore derived by capturing 

the inherent properties of each category based on the learned relationship. 

Based on the generated matrix of estimated classification performance 
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and the Weighting Strategy Based O n Utility Measure as proposed in Sec-

tion 4.2.2, the relative weight factors for each component classification algo-

rithm are calculated on category basis. The relative weight factors represent 

the relative contribution of the classification decisions of individual classi-

fiers towards the final classification decision. The weight factors are used for 

combining the confidence scores of documents across the involved component 

classification algorithms to yield a final combined score, which is then used 

for determining if a category label should be assigned to the document with 

respect to a threshold. 

It should be noted that the weight factors derived under this modified 

approach are of different nature from that determined in Section 4.2.2. In 

Section 4.2.2，the weight factors are determined based on the preliminary 

classification performance of the component classification algorithms only. 

In addition to the classification performance, under M U D 0 F 2 , the weight 

factors are determined with consideration of documents' specific nature and 

characteristics of each particular category. As a result, the weight factors are 

incorporated with more comprehensive knowledge of the properties of each 

category. 

6.4 The MUDOF2 Algorithm 

M U D 0 F 2 combines the classification decisions of all involved component 

classification algorithms based on the estimated classification performance, 

instead of recommending one single classification algorithm for each category 

as proposed in our M U D O F approach. To achieve this, we mainly follow the 
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modified framework of M U D O F and integrate with the Linear Combination 

approach. M U D 0 F 2 involves two major steps. The first step is to gener-

ate a matrix of estimated classification performance of different algorithms 

against each category. The second step is to determine the relative weight 

factors associated with each component classification algorithm for the linear 

combination of classification decisions. 

To take the advantage of considering categorical document feature char-

acteristics when determining the relative weight factors for each component 

classification algorithm, we make use of categorical document feature char-

acteristics and classification errors. Similar to M U D O F approach, we wish 

to predict the classification error, and so the classification performance for a 

category based on the document feature characteristics. This is achieved by 

a meta-learning approach based on regression model, in which, the document 

feature characteristics are the independent variables, while the classification 

error of an algorithm is the dependent variable. W e divide the training col-

lection into the training set and the tuning set. Two sets of feature charac-

teristics are collected separately from these two data sets. Statistics from the 

training set are used for parameter estimations. Together with the estimated 

parameters, the statistics from the tuning set are used for predicting the 

classification error of an algorithm on a category. Instead of recommending 

the algorithm with the minimum estimated classification error for a category 

during the on-line classification, the approach now considers the estimated 

classification performance of all classification algorithms and generate a ma-

trix consisting of all the estimated classification performance. 

Suppose there are m categories and n algorithms, the estimated perfor-
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mance matrix P is expressed as a m * n matrix as shown in Equation 6.1. 

( \ 
Uii Ui2 • • . Uij • • . Uin 

U21 U22 • • . U2j . • • U2n _ 

P 二 （6.1) 
• • • • 
• • • • 
• • • • 

^ Uffil 以m2 • • • 以mji . • • 以mn 

where uij refers to the estimated classification performance, a particular el-

ement inside P, for classification algorithm j against category i. 

The matrix is then used for determining the relative weight factors of the 

component classification algorithms for the linear combination of classifica-

tion decisions. Particularly, we employ the Weighting Strategy Based O n 

Utility Measure as proposed in Section 4.2.2 to calculate the weight factors. 

During the on-line classification, confidence scores of a class membership for 

a document are combined across all the involved component classification 

algorithms with the use of pre-determined relative weight factors. The final 

combined confidence scores are used for determining the class membership 

for the document with respect to a determined threshold value. 

Consider the ith category. Suppose we have several component classifica-

tion algorithms. The classification error, ê j, of the training data set on the 

jth algorithm is first obtained by Equation 6.2. 

eij = 1 一 Uij (6.2) 

where Uij is the estimated performance of the algorithm j against category 

i in the performance matrix shown in Equation 6.1. The classification error 

will then undergo a logistic transformation to yield the response variable, or 
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the dependent variable, for the meta-model as shown in Equation 6.3. 

(6.3) 

where yij is the response variable. The response variable, yij is related to the 

feature characteristics by the same regression model as M U D O F , as shown 

in Equation 6.4. 

的 + 对 + (6.4) 
k=l 

where Ff is the kth feature characteristic in the zth category. The num-

ber of document feature characteristics used in the meta-model is p. fi�is 

the parameter estimate for the kth feature, by using the algorithm j. Cij 

is assumed to follow a Gaussian distribution N({),var[eij)). Based on the 

regression model above, the outline of meta-model for text categorization is 

given in Table 6.1. 

Input: The training set TR and tuning set TU 

An algorithm pool A and categories set C 

1) Repeat 

2) Pick one algorithm ALGj from A 

3) For each category Ci in C 

4) Apply ALGj on TR for Ci to yield a classifier CFij 

5) Apply CFij on TU for Ci to yield classification error eij 

6) Take logistic transformation on Cij to yield yij for later parameter estimation 

7) End For 

8) Estimate (A;=0，l，2，…,p) for ALGj by fitting yij and i f (in TR) 
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into the regression model 

9) Until no more algorithms in A 

10) For each category Q in C 

11) Repeat 

12) Pick one algorithm ALGj from A 

13) Estimate the classification error eij by fitting 玲 and corresponding Fj" (in TU) 

into the regression model 

14) Calculate estimated classification performance uij based on eij 

15) Insert Uij into the estimated performance matrix P 

16) Until no more algorithms in A 

17) End For 

18) Output the final estimated performance matrix P 

19) For each category Ci in C 

20) Calculate the relative weight factors cuij for all algorithms j based on the Uij in P 

21) End For 

Table 6.1: The MUD0F2 algorithm 

Steps 1 to 9 in Table 6.1 is exactly the same as the corresponding steps 

from Steps 1 to 9 shown in Figure 5.2. They aim to estimate a set of betas 

{Pj), the parameter estimates of the feature characteristics in the regression 

model, for each individual algorithm. Specifically, each algorithm with opti-

mized parameter settings, is picked from the algorithm pool as indicated in 

Step 2. The classification errors, and so the preliminary classification per-

formance, of each individual component classification algorithm against each 

category are obtained by repeating Steps 3 to 7. By fitting all classifica-
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tion errors of the categories, and their corresponding set of document feature 

characteristics in the training set, into the regression model as shown in Step 

8，n sets of estimated betas are obtained after Step 9. 

A matrix of the estimated classification performance of the involved al-

gorithms are made from Steps 10 to 18. In Step 12, one algorithm with the 

same optimized parameter settings as in Step 2, is picked from the algorithm 

pool. The corresponding set of betas of the selected algorithm, together with 

the feature characteristics of a category in the tuning set, will be fitted into 

the regression model in Step 13，to give the estimated classification errors of 

the algorithm on the category. In Step 14, the predicted errors are converted 

to estimated classification performanace, which is then inserted into the per-

formance matrix as indicated in Step 15. Similar steps are repeated for each 

category. The final estimated classification performance matrix is given as 

the output as shown in Step 18. The estimated classification performance 

in the matrix is then used for determining the relative weight factors for the 

component classification algorithms in the remaining steps. 

From Steps 19 to 21, the relative weight factors for the component classi-

fication algorithms are calculated on category basis. The adopted weighting 

strategy is the Weighting Strategy Based On Utility Measure as proposed 

in Section 4.2.2. Under the strategy, those algorithms believed to demon-

strate better classification performance during on-line classification will be 

associated a larger value of the weight factor proportionally. A larger weight 

factor for a classification algorithm increases the contribution of the algo-

rithm's decisions towards the final combined confidence scores during the 

linear combination approach. 
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After calculating the relative weight factors for each component classifi-

cation algorithms, the approach proceeds by following the same framework 

as Linear Combination proposed in Section 4.2. Particularly, each compo-

nent classification algorithm constructs a classifier for a certain category. 

Confidence scores showing the degree of relevance of each new document to 

the category is produced by each classifier. The scores are combined under 

our proposed framework Linear Combination with the use of the determined 

weight factors. Based on the final combined score, the document is deter-

mined to belong to a category if the combined score is larger than a threshold 

value. 
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Chapter 7 

Experimental Setup 

W e have implemented our proposed meta-learning approaches, and exten-

sive experiments have been conducted to verify their performance. In this 

chapter, the details of our experimental setup is given. 

7.1 Document Collection 

The Reuters-21578 collection contains Reuters newswire articles in 1987. 

The documents were assembled and labeled with categories by experts from 

Reuters. There are 21,578 documents in this collection. Each document 

has been assigned to categories related to financial topics. Some categories 

appear in many documents while some categories appear in very few doc-

uments. The collection is divided into a training document collection and 

a testing document collection according to the "ModApte" split̂  commonly 

iThe "ModApte" split results in a total of 12,902 documents to be used in the exper-

iments. The remaining 8,676 documents are not used as they have not been classified by 

human indexer. 
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used as a benchmark data [7, 38, 48], and we select the 90 categories which 

have at least one document in both the training set and the testing set. The 

split results in a total of 9,603 training documents and 3,299 testing docu-

ments 2. As our proposed meta-learning models require a tuning set, we fur-

ther divided the training collection into training set of 6,000 documents and 

3,603 tuning documents. For each category, we used the training document 

collection to learn a classification scheme. Tuning documents are used for 

obtaining the preliminary classification performances, which are fitted into 

our proposed meta-learning models to determine the ways to combine the 

classification evidence of different component classification algorithms. For 

example, based on the obtained preliminary performance, the weight factors 

of different classification algorithms are determined under our Linear Combi-

nation approach. Also, based on the obtained preliminary performance, we 

can calculate the classification errors. By combining the classification errors 

and categorical document feature characteristics, the parameter estimates for 

the multivariate regression model can be found and the classification errors 

can be estimated under M U D O F and M U D 0 F 2 . To evaluate the effective-

ness of the learned scheme, we used the scheme to classify documents in 

the testing document collection and compared the result with the manual 

classification. 

The O H S U M E D collection is a bibliographical document collection devel-

oped by Hersh and his colleagues at the Oregon Health Sciences University. 

2Other studies may refine the Reuters-21578 corpus by further eliminating those doc-

uments that do not belong to those 90 categories, resulting in 7,769 training documents 

and 3,019 testing documents. 
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W e used 50,216 documents in 1991 which have abstracts. There are total 

14,626 distinct main headings appeared in the O H S U M E D records. In our 

experiment, we chose the set of 119 M e S H categories from the heart disease 

categories. These 119 M e S H heart disease categories were extracted by Yang 

from the April 1994 (5th Ed.) U M L S C D - R O M , distributed by the National 

Library of Medicine. The document collection is split, resulting in a total of 

38,478 training documents and a total of 11,738 testing documents. Simi-

lar to the Reuters-21578 corpus, the training documents in the O H S U M E D 

collection are further split into one training set and one tuning set. The 

training set contains 33,478 pieces of documents which are used for learning 

classification schemes for the categories. The tuning document set contains 

5,000 pieces of documents for obtaining the preliminary classification per-

formances. The remaining testing documents are used for evaluating the 

meta-learning models. The O H S U M E D corpus is difficult to learn for a good 

classifier since the documents are very noisy. 

7.2 Evaluation Metric 

To measure the performance, two common evaluation metrics are used, namely 

the micro-averaged recall and precision break-even point measure (MBE) and 

the macro-averaged recall and precision break-even point measure (ABE). 

These evaluation metrics have been widely used in text categorization exper-

iments [7, 14, 29；. 

For a particular category, the effectiveness of the classification can be 

illustrated by a contingency table as follows [26]: 
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Expert Says Yes Expert Says No 

System Says Yes q r q + r 

System Says No s t s + t 

q + s r + t q + r + s -^t 

where q is the number of documents belonging to the category and assigned 

to the category (true positive); r is the number of documents not belonging 

to the category but assigned to the category (false positive); s is the number 

of documents belonging to the category but not assigned to the category 

(false negative) ； t is the number of documents not belonging to the category 

and not assigned to the category (true negative) • Some common effectiveness 

measures can then be defined in terms of these values: 

(recall) R = -7~-~r 
{q + S) 

(precision) P 二 ]-r 
� ) (g + r) 

Recall is the proportion of documents belonging to the category that the 

system successfully assigns to the category. Precision is the proportion of 

documents assigned to the category by the system that really belong to the 

category. An ideal classification system would have both recall and precision 

equal to 1. However, perfect recall can be achieved by a system that puts 

every document in the category, while perfect precision can be achieved by a 

system that puts no documents in the category. Therefore, just using either 

recall or precision does not provide a fair evaluation to system. 

In micro-averaged recall and precision break-even point (MBE) measure, 

the total number of false positive, false negative, true positive, and true 
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negative are computed across all categories. These totals are used to compute 

the micro-recall and micro-precision. Then we use the interpolation to find 

the break-even point where the micro-recall and micro-precision are equal. 

In macro-averaged recall and precision break-even point (ABE) measure, 

the number of false positive, false negative, true positive, and true negative 

are computed for each category. Based on these totals, the recall and preci-

sion break-even point is calculated for each individual category. Then simple 

average of all those break-even points is taken across all the categories to 

obtain the final score. 

In order to evaluate the meta-models in different perspectives, we adopt 

the following aspects of measure based on M B E and ABE: 

1. All MBE. Aspect of measure computes the M B E for all of the cate-

gories in a document collection. 

2. All ABE: Aspect of measure computes the A B E for all of the cate-

gories in a document collection. 

3. Top 10 ABE: Aspect of measure computes the A B E for the ten most 

frequent categories, which are those categories with top-ten number of 

positive training documents. 

4. Other ABE: Aspect of measure computes the A B E for the remaining 

categories (less frequent categories) other than the top-ten frequent 

categories. 

Both All MBE and Top 10 ABE measures favour more frequent cate-

gories, which are those categories with more available training examples. 
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While All ABE and Other ABE measures are more capable of revealing the 

classification performance for less frequent categories, which are those cate-

gories with less available training examples. 

7.3 Component Classification Algorithms 

Six component classification algorithms have been used in our meta-model 

approaches. They are Rocchio, W H , K N N , S V M , GISR and G I S W , with op-

timized parameter settings. Each of these algorithms exhibits certain distinc-

tive nature: Rocchio and W H are linear classifiers, K N N is an instance-based 

learning algorithm, S V M is based on Structural Risk Minimization Principle 

42] and both GISR and G I S W [21] are based on the generalized instance 

approach. 

Different values of parameters have been tried on each algorithm to en-

sure that the most optimized parameters setting is used for each component 

classification algorithms. For the Reuters-21578 corpus, the values of r] tried 

for the Rocchio algorithm included 0.0, 0.5，0.6, 0.7, 0.8, 0.9, 0.95, 1.0. The 

values of k tried for the K N N algorithm in this corpus were 30，50, 70, 100, 

150，300, 500, 550，600. For the O H S U M E D corpus, the values of rj tried 

for the Rocchio algorithm included 0.0, 0.4, 0.45’ 0.5，0.55, 0.6, 0.65, 0.7, 

0.75, 0.8，0.85, 0.9, 0.95, 1.0. The values of k tried for the K N N algorithm 

included 50, 100，150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 

750，800. 
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7.4 Categorical Document Feature Charac-

teristics for MUDOF and MUDOF2 

In M U D O F , eight document feature characteristics are used in our regression 

model as independent variables: 

1. PosTr: The number of positive training examples of a category. 

2. PosTu: The number of positive tuning examples of a category. 

3. AvgDocLen: The average document length of a category. Document length refers 

to the number of indexed terms within a document. The average is taken across all 

the positive examples of a category. 

4. AvgTermVal: The average term weight of documents across a category. Average 

term weight is taken for individual documents first. Then, the average is taken 

across all the positive examples of a category. 

5. AvgMaxTermVal: The average maximum term weight of documents across a 

category. Maximum term weight of individual documents are summed, and the 

average is taken across all the positive examples of a category. 

6. AvgMinTermVal: The average minimum term weight of documents across a 

category. Minimum term weight of individual documents are summed, and the 

average is taken across all the positive examples of a category. 

7. AvgTermThre: The average number of terms above a term weight threshold. The 

term weight threshold is optimized and set globally. Based on the preset threshold, 

the number of terms with term weight above the threshold within a category are 

summed. The average is then taken across all the positive examples of the category. 

8. Avg Top Info Gain: The average information gain of the top m terms of a category. 

The information gain of each individual term is calculated for each category and 

ranked. The average is then taken across the top m terms with highest information 
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gain. 

m 

G ⑴ = 尸 “ C i ) + 
2=1 

m 

Pr{t)Y^Pr{Ci\t) log Pr(Ci\t) + 
i=l 
m 

Pr{t) Pr{Ci\i) \0gPr{Ci\r) (7.1) 
2=1 

T w o sets of normalized feature characteristics are collected separately 

from the training set and the tuning set. As illustrated in Step 8 and Step 13 

in Figure 5.2，the feature characteristics from these two data sets serve differ-

ent purposes in M U D O F and M U D 0 F 2 : feature characteristics from training 

set are used for obtaining the preliminary classification performance based 

on which parameters are estimated, while feature characteristics from tuning 

set are used for predicting classification errors, base on which algorithms are 

recommended for each category. 

73 



Chapter 8 

Experimental Results and 

Analysis 

Extensive experiments have been conducted on two real-world document col-

lection, namely, the Reuters-21578 corpus and the O H S U M E D collection. 

The experiments are set up as mentioned in Chapter 7. The results are 

summarized and evaluated based on the M B E and A B E measures as de-

scribed in Chapter 7.2. More details of experimental results are shown in the 

Appendix A for the Reuters-21578 corpus, and in the Appendix B for the 

O H S U M E D corpus. 

8.1 Performance of Linear Combination Ap-

proach 

Under the Linear Combination Approach, we have proposed three different 

weighting strategies in order to combine the classification decisions of differ-

74 



ent classification algorithms linearly. The three strategies are Equal Weight-

ing Strategy (LCI), Weighting Strategy Based On Utility Measure (LC2) 

and Weighting Strategy Based On Document Rank (LC3). Experiments are 

run by using these three weight strategies. 

Table 8.1 shows the macro-averaged recall and precision break-even point 

measure for the ten most frequent categories using the Reuters-21578 doc-

ument corpus. Among the three strategies, the Weighting Strategy Based 

On Utility Measure is the best. Also, both Equal Weighting Strategy and 

Weighting Strategy Based On Document Rank outperform all other compo-

nent classification algorithms. 

Table 8.2 summarizes the performance of the Linear Combination ap-

proach with different weighting strategies in different perspectives of measure. 

Classification performances are compared between the three strategies and 

the individual component classification algorithms. Based on Table 8.2, the 

corresponding percentage improvement of the Linear Combination approach 

over existing component algorithms is shown in Table 8.3. 

Table 8.3 shows the percentage improvement of the Linear Combination 

approach over existing classification algorithms. Among all the component 

classification algorithms, the classification improvement of Linear Combina-

tion approach over Rocchio is the largest, with over 10% in all aspects of 

measure. When compared with the classification performance achieved by 

S V M and K N N , the Linear Combination approach also shows satisfactory 

classification improvement. The table shows that the overall improvement 

for more frequent categories {All MBE and Top 10 ABE) is more significant 

than that of less frequent categories. Wlien compared with W H and GISW, 
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Linear Combination approach demonstrates little inferior performance for 

less frequent categories. This may be attributed to the fact that the relative 

contributions of certain component classification algorithms are not truly 

affected during the classification for the Reuters-21578 document collection. 

C A T II R O I W H I K N N || LCI LC2 LC3 

II 0.829 0.870 0.859 11 0.947 0.947 0.949 

corn 0.614 0.867 0.690 0.846 0.853 0.867 

crude 0.793 0.853 0.823 0.860 0.860 0.860 

earn 0.956 0.969 0.956 0.979 0.979 0.978 

grain 0.803 0.887 0.820 0.896 0.897 0.896 

interest 0.702 0.749 0.712 0.790 0.796 0.794 

money-fx 0.582 0.718 0.674 0.763 0.764 0.758 

ship 0.800 0.860 0.800 0.884 0.883 0.883 

trade 0.732 0.763 0.740 0.792 0.797 0.784 

wheat 0.713 0.839 0.727 0.825 0.839 0.825 

Top 10 A B E “ 0.752" 0.838 0 . 7 ^ 0.858 0.862 

C A T II S V M GISR G I S W || LCI LC2 LC3 

0.931 0.932 0.909 11 0.947 0.947 0.949 
corn 0.832 0.867 0.885 0.846 0.853 0.867 
crude 0.871 0.813 0.869 0.860 0.860 0.860 
earn 0.980 0.959 0.962 0.979 0.979 0.978 
grain 0.917 0.804 0.910 0.896 0.897 0.896 
interest 0.619 0.758 0.745 0.790 0.796 0.794 
money-fx 0.717 0.681 0.756 0.763 0.764 0.758 
ship 0.845 0.825 0.872 0.884 0.883 0.883 
trade 0.715 0.714 0.788 0.792 0.797 0.784 
wheat 0.820 0.825 0.875 0.825 0.839 0.825 
Top 10 A B E II 0.825 0.818 0.857 || 0.858 0.862 0.85i 

Table 8.1: Comparison of Linear Combination approach with existing com-
ponent classification algorithms based on macro-averaged recall and precision 
break-even point measures of the ten most frequent categories in the Reuters-
21578 corpus. 

Table 8.4 shows the macro-averaged recall and precision break-even point 

measure for the ten most frequent categories using the O H S U M E D document 
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M E A S U R E II R O I W H I K N N LCI LC2 LC3 

All M B E II 0.776 0.820 0.802 11 0.860 0.861 0.858 

All A B E 0.578 0.649 0.607 0.647 0.649 0.644 

Top 10 A B E 0.752 0.838 0.780 0.858 0.862 0.859 

Other A B E 0.556 0.625 0.585 0.621 0.622 0.617 

M E A S U R E I S V M GISR G I S W || LCI LC2 LC3 

All M B E II 0.841 0.830 0.845 11 0.860 0.861 0.858 

All A B E 0.640 0.625 0.655 0.647 0.649 0.644 

Top 10 A B E 0.825 0.818 0.857 0.858 0.862 0.859 
Other A B E || 0.617 0.601 0.630 || 0.621 0.622 0.617 

Table 8.2: Comparison of classification performance of Linear Combination 

approach with existing component classification algorithms under different 

perspectives of measure for the Reuters-21578 corpus. 

II R O W H 
I I LC1(%) LC2(%) LC3(%) I I LC1(%) LC2(%) L C 3 ( ^ 

All M B E II 10.825 10.954 10.56711 4.878 5.000 4.634 
All A B E 11.930 12.284 11.419 -0.254 0.062 -0.709 
Top 10 A B E 14.096 14.628 14.229 2.387 2.864 2.506 
Other A B E || 11.691 11.871 10.971 || -0.640 -0.480 -1.280 

II K N N II S V M 
II LC1(%) LC2(%) LC3(%) II LC1(%) LC2(%) L C 3 { % y 

All M B E II 7.232 7.357 6.983 11 2.259 2.378 2 . 0 2 1 ^ 
All A B E 6.621 6.958 6.134 1.025 1.345 0.564 
Top 10 A B E 10.000 10.513 10.128 4.000 4.485 4.121 
Other A B E || 6.154 6.325 5.470 || 0.648 0.810 0.000 

I I GISR II G I S W 
LC1(%) LC2(%) LC3(%) II LC1(%) LC2(%) L C 3 ( % r 

All M B E 3.614 3.735 3.37311 1.775 1.893 1 . 5 3 8 ^ 
All A B E 3.452 3.779 2.980 -1.270 -0.958 -1.721 
Top 10 A B E 4.890 5.379 5.012 0.117 0.583 0.233 
Other A B E | 3.328 3.494 2.662 || -1.429 -1.270 -2.063 

Table 8.3: Percentage improvement of the Linear Combination approach over 
existing component classification algorithms under different perspectives of 
measure for the Reuters-21578 corpus. 
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corpus. Among the three strategies, the Equal Weighting Strategy shows the 

best performance. Also, Weighting Strategy Based O n Utility Measure and 

Weighting Strategy Based On Document Rank outperform all other compo-

nent classification algorithms. 

Table 8.5 summarizes the performance of the Linear Combination ap-

proach with different weighting strategies in different perspectives. Perfor-

mances are compared between the three strategies and the individual com-

ponent classification algorithms, and the corresponding percentage improve-

ment of the Linear Combination approach is shown in Table 8.6. 

Table 8.6 shows the percentage improvement of the Linear Combination 

approach over existing classification algorithms. Similar to the case of us-

ing the Reuters document collection, among all the component classification 

algorithms, the classification improvement of the Linear Combination ap-

proach over Rocchio is the largest, with over 10% in all aspects of measure. 

When compared with the classification performance achieved by S V M and 

K N N , the Linear Combination approach also demonstrates good classifica-

tion improvement. In general, when compared with the case of using the 

Reuters corpus, the Linear Combination approach achieves much significant 

improvement for the O H S U M E D corpus. 

8.2 Performance of the MUDOF Approach 

Our M U D O F approach aims to predict a classification error of a certain 

classification algorithm for a category based on the the categorical document 

feature characteristics with the use of a regression model. The learned re-

78 



"CAT II R O I W H I K N N || LCI LC2 LC3 

Angina Pectoris 11 0.344 0.536 0.454 11 0.485 0.490 0.490 

Arrhythmia 0.541 0.575 0.536 0.580 0.572 0.595 

Coronary Arteriosclerosis 0.267 0.356 0.218 0.400 0.400 0.385 

Coronary Disease 0.466 0.540 0.552 0.579 0.572 0.582 

Heart Arrest 0.638 0.609 0.580 0.638 0.629 0.638 

Heart Defects, Congenital 0.493 0.678 0.543 0.667 0.678 0.657 

Heart Diseases 0.225 0.222 0.139 0.310 0.310 0.310 

Heart Failure, Congestive 0.436 0.602 0.552 0.603 0.586 0.586 

Myocardial Infarction 0.781 0.811 0.789 0.812 0.818 0.809 

Tachycardia 0.684 0.582 0.684 0.684 0.684 0.684 

" ^ p 10 A B E II 0.488 0.551 0.505 || 0.576 0.574 0.574 
S V M GISR G I S W || LCI LC2 L C T " 

Angina Pectoris 11 0.449 0.516 0.598 11 0.485 0.490 0.490 
Arrhythmia 0.432 0.584 0.572 0.580 0.572 0.595 
Coronary Arteriosclerosis 0.356 0.311 0.445 0.400 0.400 0.385 
Coronary Disease 0.502 0.556 0.565 0.579 0.572 0.582 
Heart Arrest 0.543 0.638 0.609 0.638 0.629 0.638 
Heart Defects, Congenital 0.644 0.534 0.610 0.667 0.678 0.657 
Heart Diseases 0.190 0.197 0.222 0.310 0.310 0.310 
Heart Failure, Congestive 0.493 0.556 0.602 0.603 0.586 0.586 
Myocardial Infarction 0.750 0.832 0.799 0.812 0.818 0.809 
Tachycardia 0.608 0.700 0.633 0.684 0.684 0.684 
"Tbp 10 A B E I 0.497 0.542 0.566 || 0.576 0.574 0.574 

Table 8.4: Comparison of Linear Combination approach with existing com-
ponent classification algorithms based on macro-averaged recall and preci-
sion break-even point measures of the ten most frequent categories in the 
O H S U M E D corpus. 
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M E A S U R E R Q I W H I K N N || LCI LC2 LC3 “ 

All M B E II 0.504 0.552 0.534 11 0.591 0.582 0.591 
All A B E 0.442 0.484 0.466 0.510 0.501 0.511 

Top 10 A B E 0.488 0.551 0.505 0.576 0.574 0.574 

Other A B E || 0.436 0.474 0.460 || 0.501 0.490 O.SOS 

M E A S U R E II S V M GISR G I S W || LCI LC2 LC3 

All M B E II 0.539 0.575 0.583 11 0.591 0.582 0.591 

All A B E 0.485 0.496 0.483 0.510 0.501 0.511 

Top 10 A B E 0.497 0.542 0.566 0.576 0.574 0.574 
Other A B E 0.484 0.490 0.472 || 0.501 0.490 0.502 

Table 8.5: Comparison of classification performance of Linear Combination 
approach with existing component classification algorithms in different per-
spectives of measure for the O H S U M E D corpus. 

R O II W H 
LC1(%) LC2(%) LC3(%) II LC1(%) LC2(%) L C 3 ( ^ 

All M B E 17.262 iKA76 17.26211 7.065 5.435 7 . 0 6 5 ^ 
All A B E 15.385 13.348 15.611 5.372 3.512 5.579 
Top 10 A B E 18.033 17.623 17.623 4.537 4.174 4.174 , 
Other A B E 14.908 12.385 15.138 || 5.696 3.376 5.907 

K N N II S V M 
LC1(%) LC2(%) LC3(%) II LC1(%) LC2(%) L C 3 { % y 

All M B E 10.674 8.989 10.67411 9.647 7.978 9.647 
All A B E 9.442 7.511 9.657 5.155 3.299 5.361 
Top 10 A B E 14.059 13.663 13.663 15.895 15.493 15.493 
Other A B E 8.913 6.522 9.130 || 3.512 1.240 3.719 

GISR II G I S W 
LC1(%) LC2(%) LC3(%) II LC1(%) LC2(%) LC3(%r 

All M B E II 2.783 1.217 2.783 11 1.372 -0.172 1.372 
All A B E 2.823 1.008 3.024 5.590 3.727 5.797 
Top 10 A B E 6.273 5.904 5.904 1.767 1.413 1.413 
Other A B E | 2.245 0.000 2.449 || 6.144 3.814 6.356 

Table 8.6: Percentage improvement of the Linear Combination approach over 
existing component classification algorithms under different perspectives of 
measure for the O H S U M E D corpus. 
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lationship is expressed in the form of a set of parameter estimates for each 

component algorithm. Table 8.7 shows the sets of parameter estimates of 

the component classification algorithms for the Reuters-21578 corpus. Based 

on these parameter estimates and the corresponding feature characteristics, 

on category basis, the estimated classification errors of different algorithms 

against different categories can be obtained. 

Besides of comparing the classification performance of the M U D O F ap-

proach against individual classification algorithms, we also set up the ideal 

combination of algorithms as another benchmark for our M U D O F approach. 

To set up the ideal combination of algorithms (IDEAL), we manually select 

the best algorithms for each category according to their real classification per-

formances. Since IDEAL consists of the best algorithms for each category, it 

represents the theoretical perfect improvement could be achieved under the 

framework of choosing one algorithm for each category. In short, IDEAL 

sets an upper bound for the amount of improvement that can be made under 

M U D O F approach. Table 8.8 shows the classification performance achieved 

by both M U D O F approach and the IDEAL combination for the ten most fre-

quent categories. Items in bold are those algorithms correctly recommended 

by M U D O F . Our results, show that M U D O F can identify the ideal algo-

rithms for 56 categories out of the total 90 categories in the Reuters corpus, 

with an accuracy of over 62%. When neglecting the ten most frequent cate-

gories, M U D O F can still identify the ideal algorithms for 50 categories out of 

the 80 less frequent categories, also with an accuracy over 62%. The results 

show that M U D O F can demonstrate consistent performance of algorithm 

recommendation in the Reuters-21578 corpus. 
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Table 8.9 shows the comparison of performances, under different aspects 

of measure, between M U D O F and the IDEAL combination over other com-

ponent algorithms. Based on the utility measures as shown in the table, we 

look into how much improvement the meta-model M U D O F (M+(%)) has 

achieved within the improvement bound (!+(%)) set by the ideal combina-

tion (IDEAL) in Table 8.10. 

In Table 8.10, among all other algorithms, the classification improvement 

made by either M U D O F (M+(%)) or the IDEAL combination (!+(%)) over 

Rocchio is the largest, more than 10% on average in most aspects of measure. 

Improvement made by M U D O F over K N N is also significant, it is more than 

5% in all aspects. Our M U D O F approach can even make improvement for 

less frequent categories in the Reuters corpus. For example, the approach 

achieves a considerable amount of improvement for less frequent categories 

over G I S W and W H , both of which demonstrate better classification per-

formance than the Linear Combination approach using the same document 

collection. 

Table 8.10 also reveals that the improvement made by M U D O F over in-

dividual component algorithms is impressive when considering the improve-

ment bound set by the ideal combination (!+(%)). Improvement achieved 

by M U D O F within the improvement bound of the ideal combination ( M + 

// + (%)) is presented in the table. When compared with Rocchio and K N N , 

the meta-model has attained more than 50% of the improvement bound in 

all aspects of measure. As for All M B E measure, M U D O F can also achieve 

from more than 20% to more than 70% of the improvement bound for most 

of the component algorithms. 
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"l^tures II R O I W H K N N S V M GISR G I S W " 

PosTr [1 14.011 25.408 20.882 24.903 27.232 32.065 

PosTu -6.038 -18.348 -8.390 -11.036 -20.316 -24.198 

AvgDocLen 1133.713 1879.174 786.264 1198.236 1099.567 1525.261 

AvgMaxTermVal 0.868 5.697 -4.168 -5.171 1.400 3.845 

AvgMinTermVal -24.885 -54.505 -27.211 -28.588 -48.487 -62.657 

AvgTermVal 54.972 87.502 36.261 49.658 68.046 81.286 

AvgTermThre -1123.324 -1860.777 -778.078 -1189.399 -1085.458 -1505.405 

AvgTopInfoGain -31.395 -31.682 -41.838 -50.206 -42.711 -39.972 

Intercept || -13.674 -24.452 -6.866 -9.712 -16.157 -21.879 

Table 8.7: Parameter estimates for categorical document feature character-

istics of different algorithms for the Reuters-21578 corpus. 

Table 8.12 shows the classification performance achieved by both M U D O F 

approach and the IDEAL combination for the ten most frequent categories 

with the O H S U M E D document collection. Items in bold are those algorithms 

recommended by M U D O F correctly. Our results show that the M U D O F can 

identify the ideal algorithms for 44 categories out of the total 81 categories in 

the O H S U M E D corpus, with an accuracy of over 54%. When neglecting the 

ten most frequent categories, M U D O F can also identify the ideal algorithms 

for 42 categories out of the 71 less frequent categories, with an accuracy over 

59%. Unlike the case of using the Reuters corpus, the performance difference 

for frequent and less frequent categories leads to the fact that M U D O F can 

demonstrate more consistent performance of algorithm recommendation for 

less frequent categories in the O H S U M E D corpus. 

Table 8.13 shows the comparison of performances, under different as-

pects of measure, between M U D O F and the IDEAL combination over other 

component algorithms. Table 8.14 shows how much improvement M U D O F 

(M+(%)) has achieved within the improvement bound (!+(%)) set by the 
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C A T II R O I W H I K N N M U D O F IDEAL 

II 0.829 0.870 0.859 0 . 9 0 9 G I S W GISR 

corn 0.614 0.867 0.690 0.885 G I S W G I S W 

crude 0.793 0.853 0.823 0.853 W H S V M 
earn 0.956 0.969 0.956 0.980 S V M S V M 

grain 0.803 0.887 0.820 0.910 G I S W S V M 
interest 0.702 0.749 0.712 0.745 G I S W GISR 
money-fx 0.582 0.718 0.674 0.756 G I S W G I S W 

ship 0.800 0.860 0.800 0.872 G I S W G I S W 
trade 0.732 0.763 0.740 0.788 G I S W G I S W 
wheat 0.713 0.839 0.727 0.875 G I S W G I S W 

Top 10 A B E II 0.752 0.838 0.780 || 0.857 0.863 

C A T II S V M GISR G I S W || M U D O F IDEAlT 

0.931 0.932 0.909 11 0 . 9 0 9 G I S W GISR 
corn 0.832 0.867 0.885 0.885 G I S W G I S W 
crude 0.871 0.813 0.869 0.853 W H S V M 
earn 0.980 0.959 0.962 0.980 S V M S V M 
grain 0.917 0.804 0.910 0.910 G I S W S V M 
interest 0.619 0.758 0.745 0.745 G I S W GISR 
money-fx 0.717 0.681 0.756 0.756 G I S W G I S W 
ship 0.845 0.825 0.872 0.872 G I S W G I S W 
trade 0.715 0.714 0.788 0.788 G I S W G I S W 
wheat 0.820 0.825 0.875 0.875 G I S W G I S W 

Top 10 A B E 0.825 0.818 0.857 || 0.857 0.863 

Table 8.8: Comparison of the M U D O F approach with existing component 
classification algorithms based on macro-averaged recall and precision break-
even point measures of the ten most frequent categories in the Reuters-21578 
corpus. 
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M E A S U R E II R O I W H I K N N || M U D O F IDEAL 

All M B E II 0.776 0.820 0.802 1 1 0 . 8 4 7 0 . 8 6 8 

All A B E 0.578 0.649 0.607 0.659 0.692 

Top 10 A B E 0.752 0.838 0.780 0.857 0.863 

Other A B E || 0.556 0.625 0.585 || 0.634 0.670 

M E A S U R E II S V M GISR G I S W || M U D O F IDEAL 

All M B E II 0.841 0.830 0.845 1 1 0 . 8 4 7 0 . 8 6 8 
All A B E 0.640 0.625 0.655 0.659 0.692 

Top 10 A B E 0.825 0.818 0.857 0.857 0.863 
Other A B E |[ 0.617 0.601 0.630 || 0.634 0.670 

Table 8.9: Comparison of classification performance of the M U D O F approach 

with existing component classification algorithms under different perspectives 

of measure for the Reuters-21578 corpus. 

R O II W H “ 

M + ( % ) !+(%) M+/I+(%) II M + ( % ) !+(%) M + / I - f W " 

All M B E 9.149 11.856 77.168 11 3.293 5.85456.252 
All A B E 14.014 19.723 71.054 1.603 6.691 23.958 
Top 10 A B E 13.963 14.761 94.594 2.267 2.983 33.881 
Other A B E || 14.029 20.504 68.421 || 1.440 7.200 21.521 

II K N N II S V M . 
II M + ( % ) !+(%) M+/I+(%) II M + ( % ) !+(%) M+/I+(%) 

All M B E II 5.611 8.22968.186 11 0.713 3.21022.212 
All A B E 8.606 14.045 61.274 2.906 8.059 36.059 
Top 10 A B E 9.872 10.641 92.773 3.879 4.606 84.216 
Other A B E || 8.376 14.530 57.646 || 2.755 8.590 32.072 

II GISR II G I S W 
II M + ( % ) !+(%) M+/I+(%) II M + ( % ) !+(%) M+/I+T%r 

All M B E II 2.048 U l S U ? m 11 0.237 2.7228.707 
All A B E 5.378 10.655 50.474 0.568 5.604 10.136 
Top 10 A B E 4.768 5.501 86.675 0.000 0.700 0.000 
Other A B E [| 5.491 11.481 47.827 || 0.635 6.349 10.002 

Table 8.10: Improvement of classification performances of M U D O F (M+(%)) 
and the ideal combination (!+(%)) over individual classification algorithms, 
and improvement achieved by M U D O F within the improvement bound set 
by the ideal combination (M+/I+(%)) for the Reuters-21578 corpus. 
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ideal combination. 

Table 8.14 shows a similar trend as the case of using the Reuters document 

collection that, among all other algorithms, the classification improvement 

made by either M U D O F (M+(%)) or the ideal combination (!+(%)) over 

Rocchio is the largest, with more than 10% improvement on average, in most 

aspects of measure. Improvement made by the M U D O F over K N N is also 

significant, it is more than 5% in all aspects. Similar to the case of using 

the Reuters document collection, our M U D O F approach continues to make 

improvement for less frequent categories. For example, the approach achieves 

much more significant improvement for less frequent categories {All ABE and 

Other ABE) over G I S W and W H , which demonstrate better classification 

performance when compared with the Linear Combination approach using 

the same document collection. 

Table 8.14 also reveals that the improvement made by M U D O F over 

individual component algorithms is also satisfactory when considering the 

improvement bound set by the ideal combination (!+(%)). Improvement 

achieved by M U D O F within the improvement bound of the ideal combina-

tion ( M + // + (%)) is presented in the table. When compared with Roc-

chio, K N N and S V M , the meta-model has attained from more than 10% to 

over 50% of the improvement bound for all aspects. As mentioned before, 

M U D O F demonstrates better performance for less frequent categories than 

the frequent categories in the O H S U M E D corpus. Furthermore, the mea-

sure of All M B E is largely affected by the performance of the more frequent 

categories. As a result, M U D O F demonstrates less efficiently under the mea-

sures of All M B E and Top 10 A B E measures when compared against certain 
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component algorithms. 

"^tures R O W H K N N S V M GISR G I S W — 

PosTr 897.924 767.279 1024.344 781.367 975.184 1392.322 

PosTu -375.800 -262.152 -350.087 -275.610 -390.509 -517.932 

AvgDocLen -10.998 -8.059 -10.500 -12.998 -13.366 -4.635 

AvgMaxTermVal -17.268 -10.773 -17.242 -2.479 -14.526 -11.238 

AvgMinTermVal 197.000 96.996 237.458 135.631 173.697 143.398 

AvgTermVal -109.754 -76.440 -119.414 -108.587 -114.186 -76.139 

AvgTermThre -22.035 -3.982 -23.841 10.275 -14.462 -9.987 

AvgTopInfoGain -654.789 -736.868 -851.010 -718.994 -755.422 -1162.992 

Intercept 28.493 17.962 28.902 14.659 27.097 17.118 

Table 8.11: Parameter estimates for categorical document feature character-

istics of different algorithms for the O H S U M E D corpus. 

8.3 Performance of MUDOF2 Approach 

M U D 0 F 2 aims to derive the relative weight factors for each component 

classification algorithm with consideration of categorical document feature 

characteristics. By capturing the document feature characteristics for the 

determination of weight factors, the relative contribution of each component 

classification algorithm can be truly reflected with the more comprehensive 

knowledge of the nature of a category. Table 8.15 shows the classification 

performance of M U D 0 F 2 for the ten most frequent categories. It shows that 

M U D 0 F 2 achieves a better classification performance than any individual 

component classifiers for the ten most frequent categories. 

Table 8.16 summarizes and compares the classification performance of 

M U D 0 F 2 and Linear Combination approach using the Weighting Strat-

egy Based On Utility Measure, over the component algorithms. M U D 0 F 2 
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"CAT R O I W H I K N N || M U D O F | IDEAL 

Angina Pectoris 0.344 0.536 0.454 11 0.598 G I S W G I S W 

Arrhythmia 0.541 0.575 0.536 0.536 K N N GISR 

Coronary Arteriosclerosis 0.267 0.356 0.218 0.356 S V M G I S W 

Coronary Disease 0.466 0.540 0.552 0.502 S V M G I S W 

Heart Arrest 0.638 0.609 0.580 0.580 K N N GISR/RO 

Heart Defects, Congenital 0.493 0.678 0.543 0.644 S V M W H 

Heart Diseases 0.225 0.222 0.139 0.190 S V M R O 

Heart Failure, Congestive 0.436 0.602 0.552 0.602 G I S W G I S W / W H 

Myocardial Infarction 0.781 0.811 0.789 0.799 G I S W GISR 

Tachycardia 0.684 0.582 0.684 0.608 S V M K N N / R O 

"Top 10 A B E 0.488 0.551 0.505 || 0.542 0.585 

"CAT S V M GISR G I S W || M U D O F IDEAL 

Angina Pectoris 0.449 0.516 0.598 11 0.598 GISW G I S W 
Arrhythmia 0.432 0.584 0.572 0.536 K N N GISR 
Coronary Arteriosclerosis 0.356 0.311 0.445 0.356 S V M G I S W 
Coronary Disease 0.502 0.556 0.565 0.502 S V M G I S W 
Heart Arrest 0.543 0.638 0.609 0.580 K N N GISR/RO 
Heart Defects, Congenital 0.644 0.534 0.610 0.644 S V M W H 
Heart Diseases 0.190 0.197 0.222 0.190 S V M R O 
Heart Failure, Congestive 0.493 0.556 0.602 0.602 GISW G I S W / W H 
Myocardial Infarction 0.750 0.832 0.799 0.799 G I S W GISR 
Tachycardia 0.608 0.700 0.633 0.608 S V M K N N / R O 
"Top 10 A B E 0.497 0.542 0.566 0.542 0.585 

Table 8.12: Comparison of the M U D O F approach with existing component 
classification algorithms based on macro-averaged recall and precision break-
even point measures of the ten most frequent categories in the O H S U M E D 
corpus. 
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M E A S U R E II R O I W H I K N N M U D O F IDEAL 

All M B E II 0.504 0.552 0.534 0 . 5 6 1 0 . 6 0 7 

All A B E 0.442 0.484 0.466 0.501 0.560 

Top 10 A B E 0.488 0.551 0.505 0.542 0.585 
Other A B E [| 0.436 0.474 0.460 || 0.495 0.557 

M E A S U R E S V M GISR G I S W || M U D O F IDEAL 

All M B E 0.539 0.575 0.583 1 1 0 . 5 6 1 0 . 6 0 7 
All A B E 0.485 0.496 0.483 0.501 0.560 

Top 10 A B E 0.497 0.542 0.566 0.542 0.585 
Other A B E 0.484 0.490 0.472 0.495 0.557 

Table 8.13: Comparison of classification performance of the M U D O F ap-

proach with existing component classification algorithms under different per-

spectives of measure for the O H S U M E D corpus. 

11 R O W H 
II M + ( % ) !+(%) M+/I+(%) II M + ( % ) !+(%) M + / I + ( ^ 

All M B E II 11.31020.437 55.340 11 1.630 9.96416.364 
All A B E 13.348 26.697 50.000 3.512 15.702 22.368 
Top 10 A B E 11.066 19.877 55.670 -1.633 6.171 -26.471 
Other A B E || 13.532 27.752 48.760 || 4.430 17.511 25.301 

I I K N N II S V M — 
M + ( % ) !+(%) M+/I+(%) II M + ( % ) !+(%) M+/I+(%) 

All M B E 5.056 13.670 36.986 11 4.082 12.616 32.353 
All A B E 7.511 20.172 37.234 3.299 15.464 21.333 
Top 10 A B E 7.327 15.842 46.250 9.054 17.706 51.136 
Other A B E || 7.609 21.087 36.082 || 2.273 15.083 15.068 

I I GISR G I S W 
M + ( % ) !+(%) M+/I+(%) M + ( % ) !+(%) M + / l T ( % r 

All M B E -2.435 -43.750 -3.774 4.117-91.667 
All A B E 1.008 12.903 7.813 3.727 15.942 23.377 
Top 10 A B E 0.000 7.934 0.000 -4.240 3.357 -126.316 
Other A B E 1.020 13.673 7.463 4.873 18.008 27.059 

Table 8.14: Improvement of classification performances of M U D O F (M+(%)) 
and the ideal combination (!+(%)) over individual classification algorithms, 
and improvement achieved by M U D O F within the improvement bound set 
by the ideal combination (M+/I+(%)) for the O H S U M E D corpus. 
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achieves an overall better classification performance over all existing compo-

nent classification algorithms in most aspects of measure. Also, it improves 

the Linear Combination approach for most of the perspectives of evaluation. 

Table 8.17 compares the percentage improvement made by M U D 0 F 2 

and Linear Combination approach. Results show that, under various as-

pects of evaluation, M U D 0 F 2 demonstrates improvement of classification 

performance over the component algorithms, except G I S W which performs 

marginally better than M U D 0 F 2 under A B E measures. The improvement 

of classification performance achieved by M U D 0 F 2 is most significant when 

compared against Rocchio, followed by K N N and S V M . There is more than 

10% of improvement under all measures when compared against Rocchio, 

and more than 7% when compared with K N N . When compared with the 

robust S V M , M U D 0 F 2 can still demonstrate from more than 1% to 4% 

improvement. The improvement of M U D 0 F 2 over individual algorithms is 

more significant and unique for the results of O H S U M E D corpus. 

Moreover, Table 8.17 also shows that M U D 0 F 2 can improve Linear Com-

bination approach in various extents under most aspects of measure. Partic-

ularly, the absolute increase in percentage improvement made by M U D 0 F 2 

over Linear Combination is consistently more than 0.8% under the Other 

A B E measure when compared with all component algorithms. By using 

M U D 0 F 2 , the incremental improvement percentage achieved over the im-

provement made by LC2 against S V M , W H and G I S W is very significant. 

The incremental improvement ranges from more than 60% to nearly 10 times 

of the improvement made by LC2 for the less frequent categories (All ABE 

and Other ABE). Since the measure under the Top 10 A B E is limited to 
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just a small proportion of categories of the whole document collection, and 

therefore, its slightly inferior performances can be offset by the overall in-

creased performances in all other aspects of evaluation, which involves the 

major proportion of the total number of categories. As a result, by adding 

up the combined incremental improvement made by M U D 0 F 2 over Lin-

ear Combination, it can be observed that incorporating Linear Combination 

into M U D O F does help to improve the overall classification performance. 

Much more significant improvement by M U D 0 F 2 over Linear Combination 

is demonstrated by using the O H S U M E D document collection. 

"CAT II R O I W H K N N S V M GISR | G I S W || M U D 0 F 2 

0.829 0.870 0.859 0.931 0.932 0.909 1 1 0 . 9 4 7 ^ 

corn 0.614 0.867 0.690 0.832 0.867 0.885 0.867 
crude 0.793 0.853 0.823 0.871 0.813 0.869 0.863 
earn 0.956 0.969 0.956 0.980 0.959 0.962 0.979 
grain 0.803 0.887 0.820 0.917 0.804 0.910 0.908 
interest 0.702 0.749 0.712 0.619 0.758 0.745 0.785 
money-fx 0.582 0.718 0.674 0.717 0.681 0.756 0.756 
ship 0.800 0.860 0.800 0.845 0.825 0.872 0.878 
trade 0.732 0.763 0.740 0.715 0.714 0.788 0.778 
wheat 0.713 0.839 0.727 0.820 0.825 0.875 0.847 
Top 10 A B E 0.752 0.838 0.780 0.825 0.818 0.857 || 0.861 

Table 8.15: Comparison of the M U D 0 F 2 approach with existing component 
classification algorithms based on macro-averaged recall and precision break-
even point measures of the ten most frequent categories in the Reuters-21578 
corpus. 

By using the O H S U M E D document collection, more encouraging results 

are obtained. Table 8.18 shows the classification performance obtained by 

M U D 0 F 2 over other component classification algorithms. The overall results 

show that M U D 0 F 2 outperforms all other component algorithms for the ten 
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M E A S U R E II R O I W H I K N N M U D 0 F 2 LC2 

All M B E II 0.776 0.820 0.802 1 1 0 . 8 6 3 0 . 8 6 1 

All A B E 0.578 0.649 0.607 0.653 0.649 

Top 10 A B E 0.752 0.838 0.780 0.861 0.862 

Other A B E || 0.556 0.625 0.585 || 0.627 0.622 

M E A S U R E II S V M GISR G I S W || M U D 0 F 2 LC2 

All M B E II 0.841 0.830 0.845 1 1 0 . 8 6 3 0 . 8 6 1 
All A B E 0.640 0.625 0.655 0.653 0.649 

Top 10 A B E 0.825 0.818 0.857 0.861 0.862 
Other A B E |[ 0.617 0.601 0.630 0.627 0.622 

Table 8.16: Comparison of classification performance of the M U D 0 F 2 ap-

proach with existing component classification algorithms under different per-

spectives of measure for the Reuters-21578 corpus. 

II R O II W H 
I I M 2 + ( % ) LC2+(%) I I M 2 + ( % ) L C 2 + ( ^ 

All M B E 11.211 1 0 . 9 5 4 | 5 . 2 4 4 5.000 
All A B E 12.976 12.284 0.678 0.062 
Top 10 A B E 14.495 14.628 2.745 2.864 
Other A B E 12.770 11.871 || 0.320 -0.480 

K N N II S V M 
M 2 + ( % ) LC2+(%) II M 2 + ( % ) L C 2 + " ( ^ 

All M B E 7.606 7 . 3 5 7 | 2 . 6 1 6 2.378^ 
All A B E 7.618 6.958 1.969 1.345 
Top 10 A B E 10.385 10.513 4.364 4.485 
Other A B E 7.179 6.325 || 1.621 0.810 

GISR II G I S W 
M2+(%) LC2+(%) II M2+(%) LC2+"(%r 

All M B E n 3 . 7 3 5 “ [ 1 2 . 1 3 0 1.893 

All A B E 4.419 3.779 -0.348 -0.958 

Top 10 A B E 5.257 5.379 0.467 0.583 

Other A B E || 4.326 3.494 -0.476 -1.270 

Table 8.17: Improvement of classification performances of M U D 0 F 2 
(M2+(%)) and the Linear Combination approach with Weighting Strategy 
based on Utility Measure (LC2+(%)) over individual classification algorithms 
for the Reuters-21578 corpus. 
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most frequent categories. 

Table 8.19 compares the performance obtained by M U D 0 F 2 and Lin-

ear Combination under different aspects of measure. Not only outperform-

ing other component classification algorithms, the results even demonstrate 

much more significant improvement over Linear Combination approach in all 

aspects, including the Top 10 A B E measure. 

Table 8.20 compares the percentage improvement achieved by M U D 0 F 2 

and Linear Combination approach. The results uniquely confirms that the 

combination of M U D O F and Linear Combination approach can not just im-

prove the classification performance over individual component algorithms, 

but also outperforms the Linear Combination approach in all aspects of mea-

sure. When compared with the results obtained by using the Reuters-21578 

document collection, the results for the O H S U M E D corpus demonstrate more 

unique and significant improvement over component algorithms, including 

GISW. Similar to the results for the Reuters-21578 corpus, improvement 

over Rocchio is again the largest for the O H S U M E D collection, having more 

than 18% improvement under all aspects of measure. When compared with 

K N N , the improvement is over 116% to more than 17%. 

Furthermore, based on Table 8.20, we find that the absolute increase 

in percentage improvement for M U D 0 F 2 over Linear Combination is the 

largest for the Other A B E measure, similar to the case of using the Reuters 

corpus, with more than 5% increase when compared with all component algo-

rithms. When considering the incremental improvement percentage obtained 

by M U D 0 F 2 over Linear Combination, the results are more significant and 

unique. Particularly, the incremental improvement of percentage improve-
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ment made by M U D 0 F 2 over Linear Combination against S V M under the 

Other A B E measure is over 400%, while that made by M U D 0 F 2 over G I S W 

under the All M B E measure is nearly 10 times. When compared with GISR, 

the incremental improvement made over Linear Combination approach under 

All A B E measure is over 440%. When compared with K N N , the incremental 

improvement achieved by M U D 0 F 2 ranges from more than 11% to more 

than 83% in different aspects of evaluation. With the unique improvement 

obtained for the O H S U M E D corpus, we can conclude again that M U D 0 F 2 

can not just improve the individual component algorithms, but also improve 

the Linear Combination approach. 

C A T II R O I W H I K N N S V M GISR G I S W || M U D 0 F 2 

Angina Pectoris 11 0.344 0.536 0.454 0.449 0.516 0.598 1 1 0 . 4 9 5 ^ 

Arrhythmia 0.541 0.575 0.536 0.432 0.584 0.572 0.580 

Coronary Arteriosclerosis 0.267 0.356 0.218 0.356 0.311 0.445 0.400 

Coronary Disease 0.466 0.540 0.552 0.502 0.556 0.565 0.582 

Heart Arrest 0.638 0.609 0.580 0.543 0.638 0.609 0.638 

Heart Defects, Congenital 0.493 0.678 0.543 0.644 0.534 0.610 0.667 

Heart Diseases 0.225 0.222 0.139 0.190 0.197 0.222 0.357 

Heart Failure, Congestive 0.436 0.602 0.552 0.493 0.556 0.602 0.602 

Myocardial Infarction 0.781 0.811 0.789 0.750 0.832 0.799 0.812 

Tachycardia 0.684 0.582 0.684 0.608 0.700 0.633 0.684 

Top 10 A B E II 0.488 0.551 0.505 0.497 0.542 0.566 || 0.582 

Table 8.18: Comparison of the M U D 0 F 2 approach with existing component 
classification algorithms based on macro-averaged recall and precision break-
even point measures of the ten most frequent categories in the O H S U M E D 
corpus. 
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M E A S U R E R O I W H I K N N M U D 0 F 2 LC2 

All M B E 0.504 0.552 0.534 0 . 5 9 7 0 . 5 8 2 

All A B E 0.442 0.484 0.466 0.523 0.501 

Top 10 A B E 0.488 0.551 0.505 0.582 0.574 

Other A B E 0.436 0.474 0.460 || 0.515 0.490 

M E A S U R E S V M GISR G I S W || M U D 0 F 2 LC2 

All M B E 0.539 0.575 0.583 1 1 0 . 5 9 7 0 . 5 8 2 

All A B E 0.485 0.496 0.483 0.523 0.501 

Top 10 A B E 0.497 0.542 0.566 0.582 0.574 
Other A B E 0.484 0.490 0.472 || 0.515 0.490 

Table 8.19: Comparison of classification performance of the M U D 0 F 2 ap-

proach with existing component classification algorithms under different per-

spectives of measure for the O H S U M E D corpus. 

R O W H 
M 2 + ( % ) LC2+(%) M2+(%) LC2+(%y" 

All M B E 18.452 15.476[18.152 5.435^ 
All A B E 18.326 13.348 8.058 3.512 
Top 10 A B E 19.262 17.623 5.626 4.174 
Other A B E 18.119 12.385 8.650 3.376 

K N N - S V M 
M2+(%) LC2+(%) II M2+(%) L C 2 + W " 

All M B E 11.798 8.98911 10.761 7.978 
All A B E 12.232 7.511 7.835 3.299 
Top 10 A B E 15.248 13.663 17.103 15.493 
Other A B E 11.957 6.522 6.405 1.240 

GISR G I S W 一 
M2+(%) LC2+(%) M2+(%) LC2+"(%r 

All M B E [13.826 1 . 2 1 7 2 . 4 0 1 -0.172 
All A B E 5.444 1.008 8.282 3.727 
Top 10 A B E 7.380 5.904 2.827 1.413 
Other A B E | 5.102 0.000 9.110 3.814 

Table 8.20: Improvement of classification performances of M U D 0 F 2 
(M2+(%)) and the Linear Combination approach with Weighting Strategy 
based on Utility Measure (LC2+(%)) over individual classification algorithms 
for the O H S U M E D corpus. 
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Chapter 9 

Conclusions and Future Work 

9.1 Conclusions 

W e have conducted research on new approaches for meta-learning models of 

automatic textual document categorization. W e investigate the Linear Com-

bination (LC) approach by distilling the characteristic of how we estimate 

the relative merit of each component algorithm for different categories. Un-

der the linear combination framework, we propose three different weighting 

strategies, which are used for determining the relative contribution of the 

component algorithms towards the final classification decisions. Extensive 

experiments have been conducted on two large-scale, real-world document 

corpora, namely the Reuters-21578 document collection and the O H S U M E D 

document collection. Results show that the approach demonstrates improve-

ment of classification performance under different perspectives of evaluation. 

The Linear Combination approach makes use of limited knowledge in 

the training document set. To address this limitation, we propose a novel 
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meta-model approach, called Meta-learning Using Document Feature char-

acteristics (MUDOF). M U D O F makes use of category specific document fea-

ture characteristics and multivariate regression analysis. By learning the 

relationship between categorical document feature characteristics and the 

classification errors of different algorithms, classification errors of each com-

ponent algorithm are predicted. Based on the predicted errors, the approach 

is able to recommend the most ideal component algorithms for each category. 

Experimental results show that the approach can achieve very satisfactory 

accuracy of prediction for the ideal algorithms, and also confirm that cap-

turing categorical document feature characteristics helps improve the overall 

classification performances over other existing algorithms. 

By incorporating M U D O F into Linear Combination approach, we further 

propose the third meta-learning approach, M U D 0 F 2 . Different from the Lin-

ear Combination approach, M U D 0 F 2 can derive the relative weight factors 

for each component classification algorithm with proper consideration of cate-

gorical document feature characteristics. By capturing the document feature 

characteristics for the determination of weight factors, the relative contribu-

tion of each component classification algorithm can be truly reflected with 

the more comprehensive knowledge of the nature of a category. Extensive 

experiments have been conducted on the Reuters-21578 collection and the 

O H S U M E D collection. Results show that M U D 0 F 2 can not only improve 

the classification performances of the component algorithms, but also largely 

improve the Linear Combination under the Weighting Strategy Based On 

Utility Measure. 
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9.2 Future Work 

The performance of our proposed M U D O F approaches for automatic text 

categorization has already been shown to demonstrate improvement of clas-

sification performances. More research can be done to further explore its 

potential classification efficiency. The direction of further studies include the 

followings: 

• More advanced feature characteristics can be collected. Although, per-

formance of M U D O F and M U D 0 F 2 are already significant by using 

our proposed feature characteristics, the predictive accuracy can be in-

creased further with more representative and domain specific document 

feature characteristics. 

• Different regression models can be employed. In addition to the linear 

regression models, other types of regression models can be tried for 

finding the relationship between document feature characteristics and 

the classification errors. 
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Appendix A 

Details of Experimental Results 
for Reuters-21578 corpus 

Category || R O | W H | K N N S V M GISR G I S W || LCI 

II 0.829 0.870 0.859 0.931 0.932 0.909 11 0.947 

alum 0.766 0.766 0.681 0.766 0.765 0.751 0.751 
barley 0.483 0.760 0.552 0.690 0.670 0.898 0.651 
bop 0.525 0.646 0.590 0.689 0.646 0.623 0.656 
carcass 0.703 0.739 0.649 0.649 0.649 0.686 0.703 
castor-oil 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
cocoa 0.920 0.974 0.920 0.974 0.920 0.974 0.950 
coconut 0.833 0.833 0.833 0.833 0.833 0.833 0.833 
coconut-oil 0.292 0.583 0.583 0.292 0.583 0.583 0.583 
coffee 0.913 0.913 0.898 0.913 0.877 0.913 0.913 
copper 0.865 0.865 0.865 0.844 0.865 0.844 0.865 
copra-cake 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
corn 0.614 0.867 0.690 0.832 0.867 0.885 0.846 
cotton 0.732 0.781 0.635 0.683 0.764 0.830 0.732 
cotton-oil 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
cpi 0.386 0.562 0.421 0.621 0.449 0.597 0.491 
cpu 0.750 0.750 0.750 0.750 0.750 0.750 0.750 
crude 0.793 0.853 0.823 0.871 0.813 0.869 0.860 
dfl 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
dlr 0.652 0.748 0.645 0.697 0.734 0.742 0.742 
dmk 0.225 0.225 0.225 0.000 0.208 0.225 0.208 
earn 0.956 0.969 0.956 0.980 0.959 0.962 0.979 
fuel 0.286 0.286 0.367 0.477 0.382 0.550 0.477 
To be cont'd ... 
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Table cont'd ... 

gas 0.446 0.490 0.446 0.743 0.515 0.743 0.724 
gnp 0.723 0.845 0.845 0.873 0.890 0.845 0.873 
gold 0.853 0.820 0.787 0.820 0.820 0.820 0.853 
grain 0.803 0.887 0.820 0.917 0.804 0.910 0.896 
groundnut 0.000 0.000 0.000 0.250 0.000 0.250 0.000 
groundnut-oil 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
heat 0.550 0.550 0.550 0.550 0.550 0.550 0.550 
hog 0.774 0.774 0.774 0.774 0.774 0.774 0.774 
housing 0.675 0.675 0.675 0.675 0.675 0.675 0.675 
income 0.536 0.804 0.670 0.670 0.804 0.670 0.670 
instal-debt 0.750 0.750 0.750 0.750 0.750 0.750 0.750 
interest 0.702 0.749 0.712 0.619 0.758 0.745 0.790 
ipi 0.481 0.881 0.721 0.962 0.721 0.881 0.881 

iron-steel 0.690 0.690 0.737 0.760 0.690 0.690 0.690 

jet 0.000 0.000 0.000 0.600 0.000 0.000 0.000 
jobs 0.605 0.931 0.732 0.745 0.884 0.931 0.884 
1-cattle 0.350 0.350 0.321 0.417 0.350 0.417 0.375 

lead 0.670 0.670 0.670 0.402 0.552 0.552 0.621 
lei 0.875 0.875 0.875 0.875 0.875 0.875 0.875 
lin-oil 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
livestock 0.721 0.735 0.694 0.694 0.801 0.735 0.694 
lumber 0.464 0.464 0.464 0.774 0.464 0.774 0.619 
meal-feed 0.359 0.770 0.564 0.616 0.667 0.718 0.667 
money-fx 0.582 0.718 0.674 0.717 0.681 0.756 0.763 
money-supply 0.515 0.696 0.743 0.754 0.667 0.743 0.772 
naphtha 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
nat-gas 0.525 0.656 0.623 0.656 0.689 0.689 0.656 
nickel 0.750 0.750 0.750 0.750 0.750 0.750 0.750 
nkr 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
nzdlr 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
oat 0.310 0.464 0.310 0.310 0.310 0.464 0.310 
oilseed 0.511 0.716 0.604 0.702 0.674 0.737 0.722 
orange 0.839 0.871 0.784 0.784 0.871 0.871 0.871 
palladium 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
palm-oil 0.764 0.764 0.764 0.764 0.668 0.764 0.764 
palmkernel 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
pet-chem 0.401 0.321 0.401 0.321 0.401 0.401 0.401 
platinum 0.786 0.786 0.786 0.786 0.786 0.786 0.786 
potato 0.875 0.875 0.875 0.875 0.875 0.875 0.800 
To be cont'd ... 
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propane 0.583 0.875 0.583 0.875 0.583 0.583 0.583 
rand 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
rape-oil 0.000 0.000 0.292 0.292 0.000 0.000 0.292 
rapeseed 0.505 0.739 0.528 0.633 0.633 0.844 0.633 
reserves 0.703 0.703 0.703 0.811 0.757 0.703 0.757 
retail 0.375 0.417 0.417 0.417 0.417 0.417 0.417 
rice 0.613 0.826 0.694 0.776 0.735 0.776 0.801 
rubber 0.721 0.851 0.721 0.881 0.721 0.801 0.721 
rye 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
ship 0.800 0.860 0.800 0.845 0.825 0.872 0.884 
silver 0.590 0.826 0.590 0.708 0.590 0.708 0.708 
sorghum 0.477 0.573 0.382 0.550 0.573 0.573 0.550 
soy-meal 0.519 0.816 0.668 0.593 0.574 0.593 0.742 
soy-oil 0.261 0.261 0.252 0.174 0.348 0.174 0.261 
soybean 0.537 0.746 0.602 0.627 0.736 0.746 0.717 
strategic-metal 0.087 0.087 0.087 0.174 0.087 0.087 0.087 
sugar 0.685 0.877 0.795 0.784 0.767 0.822 0.795 
sun-meal 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
sun-oil 0.417 0.417 0.417 0.417 0.417 0.417 0.417 
sunseed 0.367 0.183 0.367 0.171 0.367 0.367 0.367 
tea 0.625 0.675 0.450 0.675 0.675 0.675 0.675 
tin 0.881 0.962 0.881 0.881 0.881 0.962 0.851 
trade 0.732 0.763 0.740 0.715 0.714 0.788 0.792 
veg-oil 0.613 0.720 0.587 0.613 0.553 0.667 0.747 
wheat 0.713 0.839 0.727 0.820 0.825 0.875 0.825 
wpi 0.573 0.668 0.764 0.668 0.764 0.668 0.764 
yen 0.276 0.483 0.536 0.276 0.469 0.402 0.483 
zinc II 0.964 0.890 0.964 0.862 0.890 0.890 || 0.964 
"All M B E II 0.776 0.820 0.802 0.841 0.830 0.845 11 0.860 
All A B E 0.578 0.607 T.640 0.625 0.655 ^ O M f 
Top 10 A B E 0.752 0.838 0.780 "^825 0.818 0.857 1.858 
一Other A B E | 0.556 0.625 0.585 0.617 0.601 0.630 || 0.621 

Table A.l: Complete comparison of Linear Combina-
tion approach under the Equal Weighting Strategy (LCI) 
with existing component classification algorithms based 
on macro-averaged recall and precision break-even point 
measures for the Reuters-21578 corpus. 
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" c a t e g o r y || R O | W H | K N N | S V M | G I S R | G I S W || MUDOF IDEAlT 
II 0.829 0.870 0.859 0.931 0.932 0.909 11 0.947 

alum 0.766 0.766 0.681 0.766 0.765 0.751 0.751 

barley 0.483 0.760 0.552 0.690 0.670 0.898 0.760 

bop 0.525 0.646 0.590 0.689 0.646 0.623 0.646 

carcass 0.703 0.739 0.649 0.649 0.649 0.686 0.703 

castor-oil 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

cocoa 0.920 0.974 0.920 0.974 0.920 0.974 0.974 

coconut 0.833 0.833 0.833 0.833 0.833 0.833 0.833 

coconut-oil 0.292 0.583 0.583 0.292 0.583 0.583 0.500 

coffee 0.913 0.913 0.898 0.913 0.877 0.913 0.913 

copper 0.865 0.865 0.865 0.844 0.865 0.844 0.865 

copra-cake 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

corn 0.614 0.867 0.690 0.832 0.867 0.885 0.853 

cotton 0.732 0.781 0.635 0.683 0.764 0.830 0.781 

cotton-oil 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

cpi 0.386 0.562 0.421 0.621 0.449 0.597 0.518 

cpu 0.750 0.750 0.750 0.750 0.750 0.750 0.750 

crude 0.793 0.853 0.823 0.871 0.813 0.869 0.860 

dfl 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

dlr 0.652 0.748 0.645 0.697 0.734 0.742 0.726 

dmk 0.225 0.225 0.225 0.000 0.208 0.225 0.208 

earn 0.956 0.969 0.956 0.980 0.959 0.962 0.979 

fuel 0.286 0.286 0.367 0.477 0.382 0.550 0.442 

gas 0.446 0.490 0.446 0.743 0.515 0.743 0.629 

gnp 0.723 0.845 0.845 0.873 0.890 0.845 0.873 

gold 0.853 0.820 0.787 0.820 0.820 0.820 0.853 

grain 0.803 0.887 0.820 0.917 0.804 0.910 0.897 

groundnut 0.000 0.000 0.000 0.250 0.000 0.250 0.000 

groundnut-oil 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

heat 0.550 0.550 0.550 0.550 0.550 0.550 0.550 

hog 0.774 0.774 0.774 0.774 0.774 0.774 0.774 

housing 0.675 0.675 0.675 0.675 0.675 0.675 0.675 

income 0.536 0.804 0.670 0.670 0.804 0.670 0.670 

instal-debt 0.750 0.750 0.750 0.750 0.750 0.750 0.750 

interest 0.702 0.749 0.712 0.619 0.758 0.745 0.796 

ipi 0.481 0.881 0.721 0.962 0.721 0.881 0.881 

iron-steel 0.690 0.690 0.737 0.760 0.690 0.690 0.690 

jet 0.000 0.000 0.000 0.600 0.000 0.000 0.000 

To be cont'd ... 
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jobs 0.605 0.931 0.732 0.745 0.884 0.931 0.884 

1-cattle 0.350 0.350 0.321 0.417 0.350 0.417 0.375 

lead 0.670 0.670 0.670 0.402 0.552 0.552 0.621 
lei 0.875 0.875 0.875 0.875 0.875 0.875 0.875 

lin-oil 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
livestock 0.721 0.735 0.694 0.694 0.801 0.735 0.721 

lumber 0.464 0.464 0.464 0.774 0.464 0.774 0.729 
meal-feed 0.359 0.770 0.564 0.616 0.667 0.718 0.718 
money-fx 0.582 0.718 0.674 0.717 0.681 0.756 0.764 

money-supply 0.515 0.696 0.743 0.754 0.667 0.743 0.783 

naphtha 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
nat-gas 0.525 0.656 0.623 0.656 0.689 0.689 0.656 

nickel 0.750 0.750 0.750 0.750 0.750 0.750 0.750 
nkr 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
nzdlr 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
oat 0.310 0.464 0.310 0.310 0.310 0.464 0.310 
oilseed 0.511 0.716 0.604 0.702 0.674 0.737 0.729 
orange 0.839 0.871 0.784 0.784 0.871 0.871 0.871 
palladium 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
palm-oil 0.764 0.764 0.764 0.764 0.668 0.764 0.764 
palmkernel 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
pet-chem 0.401 0.321 0.401 0.321 0.401 0.401 0.401 
platinum 0.786 0.786 0.786 0.786 0.786 0.786 0.786 
potato 0.875 0.875 0.875 0.875 0.875 0.875 0.500 
propane 0.583 0.875 0.583 0.875 0.583 0.583 0.583 
rand 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
rape-oil 0.000 0.000 0.292 0.292 0.000 0.000 0.292 
rapeseed 0.505 0.739 0.528 0.633 0.633 0.844 0.633 
reserves 0.703 0.703 0.703 0.811 0.757 0.703 0.757 
retail 0.375 0.417 0.417 0.417 0.417 0.417 0.417 
rice 0.613 0.826 0.694 0.776 0.735 0.776 0.801 
rubber 0.721 0.851 0.721 0.881 0.721 0.801 0.721 
rye 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
ship 0.800 0.860 0.800 0.845 0.825 0.872 0.883 
silver 0.590 0.826 0.590 0.708 0.590 0.708 0.826 
sorghum 0.477 0.573 0.382 0.550 0.573 0.573 0.573 
soy-meal 0.519 0.816 0.668 0.593 0.574 0.593 0.742 
soy-oil 0.261 0.261 0.252 0.174 0.348 0.174 0.336 
soybean 0.537 0.746 0.602 0.627 0.736 0.746 0.717 
To be cont'd ... 
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strategic-metal 0.087 0.087 0.087 0.174 0.087 0.087 0.168 

sugar 0.685 0.877 0.795 0.784 0.767 0.822 0.795 

sun-meal 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

sun-oil 0.417 0.417 0.417 0.417 0.417 0.417 0.375 

sunseed 0.367 0.183 0.367 0.171 0.367 0.367 0.343 

tea 0.625 0.675 0.450 0.675 0.675 0.675 0.675 

tin 0.881 0.962 0.881 0.881 0.881 0.962 0.881 

trade 0.732 0.763 0.740 0.715 0.714 0.788 0.797 

veg-oil 0.613 0.720 0.587 0.613 0.553 0.667 0.728 

wheat 0.713 0.839 0.727 0.820 0.825 0.875 0.839 

wpi 0.573 0.668 0.764 0.668 0.764 0.668 0.764 

yen 0.276 0.483 0.536 0.276 0.469 0.402 0.483 

zinc II 0.964 0.890 0.964 0.862 0.890 0.890 || 0.964 

"All M B E II 0.776 0.820 0.802 0.841 0.830 0.845 11 0.861 

All A B E 0.578 0.649~ 0.607 0.640 0.625 0.655 

Top 10 A B E — 0.752 0：83^ 0 

"Other A B E || 0.556 0.625 0.585 0.617 0.601 0.630 || 0.622 
Table A.2: Complete comparison of Linear Combination 
approach under the Weighting Strategy Based On Util-
ity Measure (LC2) with existing component classification 
algorithms based on macro-averaged recall and precision 
break-even point measures for the Reuters-21578 corpus. 
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" c a t e g o r y || R O | W H | K N N | S V M | G I S R | G I S W || MUDOF IDEAlT 
II 0.829 0.870 0.859 0.931 0.932 0.909 11 0.949 

alum 0.766 0.766 0.681 0.766 0.765 0.751 0.751 

barley 0.483 0.760 0.552 0.690 0.670 0.898 0.690 

bop 0.525 0.646 0.590 0.689 0.646 0.623 0.656 

carcass 0.703 0.739 0.649 0.649 0.649 0.686 0.703 

castor-oil 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

cocoa 0.920 0.974 0.920 0.974 0.920 0.974 0.920 

coconut 0.833 0.833 0.833 0.833 0.833 0.833 0.833 

coconut-oil 0.292 0.583 0.583 0.292 0.583 0.583 0.583 

coffee 0.913 0.913 0.898 0.913 0.877 0.913 0.913 

copper 0.865 0.865 0.865 0.844 0.865 0.844 0.865 

copra-cake 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

corn 0.614 0.867 0.690 0.832 0.867 0.885 0.867 

cotton 0.732 0.781 0.635 0.683 0.764 0.830 0.716 

cotton-oil 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

cpi 0.386 0.562 0.421 0.621 0.449 0.597 0.491 

cpu 0.750 0.750 0.750 0.750 0.750 0.750 0.750 

crude 0.793 0.853 0.823 0.871 0.813 0.869 0.860 

dfl 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

dlr 0.652 0.748 0.645 0.697 0.734 0.742 0.719 

dmk 0.225 0.225 0.225 0.000 0.208 0.225 0.225 

earn 0.956 0.969 0.956 0.980 0.959 0.962 0.978 

fuel 0.286 0.286 0.367 0.477 0.382 0.550 0.477 

gas 0.446 0.490 0.446 0.743 0.515 0.743 0.745 

gnp 0.723 0.845 0.845 0.873 0.890 0.845 0.873 

gold 0.853 0.820 0.787 0.820 0.820 0.820 0.853 

grain 0.803 0.887 0.820 0.917 0.804 0.910 0.896 

groundnut 0.000 0.000 0.000 0.250 0.000 0.250 0.000 

groundnut-oil 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

heat 0.550 0.550 0.550 0.550 0.550 0.550 0.550 

hog 0.774 0.774 0.774 0.774 0.774 0.774 0.729 

housing 0.675 0.675 0.675 0.675 0.675 0.675 0.675 

income 0.536 0.804 0.670 0.670 0.804 0.670 0.670 

instal-debt 0.750 0.750 0.750 0.750 0.750 0.750 0.750 

interest 0.702 0.749 0.712 0.619 0.758 0.745 0.794 

ipi 0.481 0.881 0.721 0.962 0.721 0.881 0.851 

iron-steel 0.690 0.690 0.737 0.760 0.690 0.690 0.690 

jet 0.000 0.000 0.000 0.600 0.000 0.000 0.000 

To be cont'd ... 
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Table cont'd ... 

jobs 0.605 0.931 0.732 0.745 0.884 0.931 0.838 
1-cattle 0.350 0.350 0.321 0.417 0.350 0.417 0.350 
lead 0.670 0.670 0.670 0.402 0.552 0.552 0.621 
lei 0.875 0.875 0.875 0.875 0.875 0.875 0.875 
lin-oil 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
livestock 0.721 0.735 0.694 0.694 0.801 0.735 0.641 
lumber 0.464 0.464 0.464 0.774 0.464 0.774 0.619 
meal-feed 0.359 0.770 0.564 0.616 0.667 0.718 0.652 
money- fx 0.582 0.718 0.674 0.717 0.681 0.756 0.758 
money-supply 0.515 0.696 0.743 0.754 0.667 0.743 0.783 
naphtha 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
nat-gas 0.525 0.656 0.623 0.656 0.689 0.689 0.656 

nickel 0.750 0.750 0.750 0.750 0.750 0.750 0.750 
nkr 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
nzdlr 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

oat 0.310 0.464 0.310 0.310 0.310 0.464 0.310 
oilseed 0.511 0.716 0.604 0.702 0.674 0.737 0.722 
orange 0.839 0.871 0.784 0.784 0.871 0.871 0.871 
palladium 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
palm-oil 0.764 0.764 0.764 0.764 0.668 0.764 0.764 
palmkernel 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
pet-chem 0.401 0.321 0.401 0.321 0.401 0.401 0.401 
platinum 0.786 0.786 0.786 0.786 0.786 0.786 0.786 
potato 0.875 0.875 0.875 0.875 0.875 0.875 0.875 
propane 0.583 0.875 0.583 0.875 0.583 0.583 0.583 
rand 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
rape-oil 0.000 0.000 0.292 0.292 0.000 0.000 0.292 
rapeseed 0.505 0.739 0.528 0.633 0.633 0.844 0.633 
reserves 0.703 0.703 0.703 0.811 0.757 0.703 0.757 
retail 0.375 0.417 0.417 0.417 0.417 0.417 0.417 
rice 0.613 0.826 0.694 0.776 0.735 0.776 0.776 
rubber 0.721 0.851 0.721 0.881 0.721 0.801 0.721 
rye 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
ship 0.800 0.860 0.800 0.845 0.825 0.872 0.883 
silver 0.590 0.826 0.590 0.708 0.590 0.708 0.708 
sorghum 0.477 0.573 0.382 0.550 0.573 0.573 0.531 
soy-meal 0.519 0.816 0.668 0.593 0.574 0.593 0.668 
soy-oil 0.261 0.261 0.252 0.174 0.348 0.174 0.261 
soybean 0.537 0.746 0.602 | 0.627 0.736 0.746 0.717 
To be cont'd ... 
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Table cont'd ... 

strategic-metal 0.087 0.087 0.087 0.174 0.087 0.087 0.087 
sugar 0.685 0.877 0.795 0.784 0.767 0.822 0.795 
sun-meal 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
sun-oil 0.417 0.417 0.417 0.417 0.417 0.417 0.417 
sunseed 0.367 0.183 0.367 0.171 0.367 0.367 0.367 
tea 0.625 0.675 0.450 0.675 0.675 0.675 0.675 
tin 0.881 0.962 0.881 0.881 0.881 0.962 0.881 
trade 0.732 0.763 0.740 0.715 0.714 0.788 0.784 
veg-oil 0.613 0.720 0.587 0.613 0.553 0.667 0.702 
wheat 0.713 0.839 0.727 0.820 0.825 0.875 0.825 
wpi 0.573 0.668 0.764 0.668 0.764 0.668 0.733 
yen 0.276 0.483 0.536 0.276 0.469 0.402 0.483 
zinc 0.964 0.890 0.964 0.862 0.890 0.890 || 0.964 

"All M B E II 0.776 0.820 0.802 0.841 0.830 0.845 11 0.858 

All A B E 0.578 0.607 0.640 0.625 0.655 """0644" 

"Top 10 A B E — 0.752 j j ^ 

—Other A B E | 0.556 0.625 0.585 0.617 0.601 0.630 || 0.617 
Table A.3: Complete comparison of Linear Combination 
approach under the Weighting Strategy Based On Docu-
ment Rank (LC3) with existing component classification 
algorithms based on macro-averaged recall and precision 
break-even point measures for the Reuters-21578 corpus. 
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"category || RO | WH | KNN | SVM | GISR | GISW || MUDOF IDEAlT 
0.829 0.870 0.859 0.931 0.932 0.909 0 M 9 0 . 9 3 2 

alum 0.766 0.766 0.681 0.766 0.765 0.751 0.766 0.766 

barley 0.483 0.760 0.552 0.690 0.670 0.898 0.898 0.898 

bop 0.525 0.646 0.590 0.689 0.646 0.623 0.623 0.689 

carcass 0.703 0.739 0.649 0.649 0.649 0.686 0.739 0.739 

castor-oil 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

cocoa 0.920 0.974 0.920 0.974 0.920 0.974 0.974 0.974 

coconut 0.833 0.833 0.833 0.833 0.833 0.833 0.833 0.833 

coconut-oil 0.292 0.583 0.583 0.292 0.583 0.583 0.583 0.583 

coffee 0.913 0.913 0.898 0.913 0.877 0.913 0.913 0.913 

copper 0.865 0.865 0.865 0.844 0.865 0.844 0.844 0.865 

copra-cake 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

corn 0.614 0.867 0.690 0.832 0.867 0.885 0.885 0.885 

cotton 0.732 0.781 0.635 0.683 0.764 0.830 0.830 0.830 

cotton-oil 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

cpi 0.386 0.562 0.421 0.621 0.449 0.597 0.597 0.621 

cpu 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 

crude 0.793 0.853 0.823 0.871 0.813 0.869 0.853 0.871 

dfl 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

dlr 0.652 0.748 0.645 0.697 0.734 0.742 0.742 0.748 

dmk 0.225 0.225 0.225 0.000 0.208 0.225 0.225 0.225 

earn 0.956 0.969 0.956 0.980 0.959 0.962 0.980 0.980 

fuel 0.286 0.286 0.367 0.477 0.382 0.550 0.477 0.550 

gas 0.446 0.490 0.446 0.743 0.515 0.743 0.743 0.743 

gnp 0.723 0.845 0.845 0.873 0.890 0.845 0.845 0.890 

gold 0.853 0.820 0.787 0.820 0.820 0.820 0.820 0.853 

grain 0.803 0.887 0.820 0.917 0.804 0.910 0.910 0.917 

groundnut 0.000 0.000 0.000 0.250 0.000 0.250 0.000 0.250 

groundnut-oil 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

heat 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 

hog 0.774 0.774 0.774 0.774 0.774 0.774 0.774 0.774 

housing 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 

income 0.536 0.804 0.670 0.670 0.804 0.670 0.670 0.804 

instal-debt 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 

interest 0.702 0.749 0.712 0.619 0.758 0.745 0.745 0.758 

ipi 0.481 0.881 0.721 0.962 0.721 0.881 0.881 0.962 

iron-steel 0.690 0.690 0.737 0.760 0.690 0.690 0.690 0.760 

jet 0.000 0.000 0.000 0.600 0.000 0.000 0.600 0.600 

To be cont'd ... 
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Table cont'd ... 

jobs 0.605 0.931 0.732 0.745 0.884 0.931 0.931 0.931 
1-cattle 0.350 0.350 0.321 0.417 0.350 0.417 0.350 0.417 
lead 0.670 0.670 0.670 0.402 0.552 0.552 0.402 0.670 
lei 0.875 0.875 0.875 0.875 0.875 0.875 0.875 0.875 
lin-oil 0.500 0.500 0.500 0.500 0.500 0.500 ‘ 0.500 0.500 
livestock 0.721 0.735 0.694 0.694 0.801 0.735 0.735 0.801 
lumber 0.464 0.464 0.464 0.774 0.464 0.774 0.774 0.774 
meal-feed 0.359 0.770 0.564 0.616 0.667 0.718 0.770 0.770 
money-fx 0.582 0.718 0.674 0.717 0.681 0.756 0.756 0.756 
money-supply 0.515 0.696 0.743 0.754 0.667 0.743 0.743 0.754 
naphtha 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
nat-gas 0.525 0.656 0.623 0.656 0.689 0.689 0.689 0.689 

nickel 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 
nkr 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
nzdlr 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
oat 0.310 0.464 0.310 0.310 0.310 0.464 0.464 0.464 
oilseed 0.511 0.716 0.604 0.702 0.674 0.737 0.737 0.716 
orange 0.839 0.871 0.784 0.784 0.871 0.871 0.871 0.871 
palladium 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
palm-oil 0.764 0.764 0.764 0.764 0.668 0.764 0.764 0.764 
palmkernel 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
pet-chem 0.401 0.321 0.401 0.321 0.401 0.401 0.321 0.401 
platinum 0.786 0.786 0.786 0.786 0.786 0.786 0.786 0.786 
potato 0.875 0.875 0.875 0.875 0.875 0.875 0.875 0.875 
propane 0.583 0.875 0.583 0.875 0.583 0.583 0.875 0.875 
rand 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
rape-oil 0.000 0.000 0.292 0.292 0.000 0.000 0.000 0.292 
rapeseed 0.505 0.739 0.528 0.633 0.633 0.844 0.739 0.844 
reserves 0.703 0.703 0.703 0.811 0.757 0.703 0.703 0.811 
retail 0.375 0.417 0.417 0.417 0.417 0.417 0.417 0.417 
rice 0.613 0.826 0.694 0.776 0.735 0.776 0.826 0.826 
rubber 0.721 0.851 0.721 0.881 0.721 0.801 0.881 0.881 
rye 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
ship 0.800 0.860 0.800 0.845 0.825 0.872 0.872 0.872 
silver 0.590 0.826 0.590 0.708 0.590 0.708 0.708 0.826 
sorghum 0.477 0.573 0.382 0.550 0.573 0.573 0.573 0.573 
soy-meal 0.519 0.816 0.668 0.593 0.574 0.593 0.593 0.816 

soy-oil 0.261 0.261 0.252 0.174 0.348 0.174 0.261 0.348 
soybean 0.537 0.746 0.602 0.627 0.736 0.746 0.746 0.746 
To be cont'd ... 
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Table cont'd ... 

strategic-metal 0.087 0.087 0.087 0.174 0.087 0.087 0.087 0.174 

sugar 0.685 0.877 0.795 0.784 0.767 0.822 0.822 0.877 
sun-meal 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
sun-oil 0.417 0.417 0.417 0.417 0.417 0.417 0.417 0.417 
sunseed 0.367 0.183 0.367 0.171 0.367 0.367 0.183 0.367 
tea 0.625 0.675 0.450 0.675 0.675 0.675 0.675 0.675 
tin 0.881 0.962 0.881 0.881 0.881 0.962 0.962 0.962 
trade 0.732 0.763 0.740 0.715 0.714 0.788 0.788 0.788 
veg-oil 0.613 0.720 0.587 0.613 0.553 0.667 0.667 0.720 
wheat 0.713 0.839 0.727 0.820 0.825 0.875 0.875 0.875 
wpi 0.573 0.668 0.764 0.668 0.764 0.668 0.668 0.764 
yen 0.276 0.483 0.536 0.276 0.469 0.402 0.402 0.536 
zinc II 0.964 0.890 0.964 0.862 0.890 0.890 || 0.890 0.964 
"All M B E 0.776 0.820 0.802 0.841 0.830 0.845 11 0.847 0.868 

All A B E 0.578 0.607 ' o I W 0.625 0.655 ^659 0 . 6 9 ^ 
"Top 10 A B E - 0.752 " ^ 3 8 0.780 ~0.825 0.818 “ 0.857 57857 0.863— 

"Other A B E || 0.556 0.625 0.585 0.617 0.601 0.630 || 0.634 0.670— 
Table A.4: Complete comparison of M U D O F approach 
( M U D O F ) and the ideal combination of algorithms 
(IDEAL) with existing component classification algo-
rithms based on macro-averaged recall and precision 
break-even point measures for the Reuters-21578 corpus. 
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"category || RO | WH | KNN | SVM | GISR | GISW || MUDOF IDEAlT 
II 0.829 0.870 0.859 0.931 0.932 0.909 110.947 

alum 0.766 0.766 0.681 0.766 0.765 0.751 0.751 

barley 0.483 0.760 0.552 0.690 0.670 0.898 0.737 

bop 0.525 0.646 0.590 0.689 0.646 0.623 0.689 

carcass 0.703 0.739 0.649 0.649 0.649 0.686 0.703 

castor-oil 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

cocoa 0.920 0.974 0.920 0.974 0.920 0.974 0.974 

coconut 0.833 0.833 0.833 0.833 0.833 0.833 0.833 

coconut-oil 0.292 0.583 0.583 0.292 0.583 0.583 0.583 

coffee 0.913 0.913 0.898 0.913 0.877 0.913 0.913 

copper 0.865 0.865 0.865 0.844 0.865 0.844 0.865 

copra-cake 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

corn 0.614 0.867 0.690 0.832 0.867 0.885 0.867 

cotton 0.732 0.781 0.635 0.683 0.764 0.830 0.764 

cotton-oil 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

cpi 0.386 0.562 0.421 0.621 0.449 0.597 0.552 

cpu 0.750 0.750 0.750 0.750 0.750 0.750 0.667 

crude 0.793 0.853 0.823 0.871 0.813 0.869 0.863 

dfl 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

dlr 0.652 0.748 0.645 0.697 0.734 0.742 0.734 

dmk 0.225 0.225 0.225 0.000 0.208 0.225 0.225 

earn 0.956 0.969 0.956 0.980 0.959 0.962 0.979 

fuel 0.286 0.286 0.367 0.477 0.382 0.550 0.442 

gas 0.446 0.490 0.446 0.743 0.515 0.743 0.858 

gnp 0.723 0.845 0.845 0.873 0.890 0.845 0.873 

gold 0.853 0.820 0.787 0.820 0.820 0.820 0.853 

grain 0.803 0.887 0.820 0.917 0.804 0.910 0.908 

groundnut 0.000 0.000 0.000 0.250 0.000 0.250 0.000 

gro 皿 dmit-oil 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

heat 0.550 0.550 0.550 0.550 0.550 0.550 0.550 

hog 0.774 0.774 0.774 0.774 0.774 0.774 0.774 

housing 0.675 0.675 0.675 0.675 0.675 0.675 0.675 

income 0.536 0.804 0.670 0.670 0.804 0.670 0.670 

instal-debt 0.750 0.750 0.750 0.750 0.750 0.750 0.750 

interest 0.702 0.749 0.712 0.619 0.758 0.745 0.785 

ipi 0.481 0.881 0.721 0.962 0.721 0.881 0.881 

iron-steel 0.690 0.690 0.737 0.760 0.690 0.690 0.690 

jet 0.000 0.000 0.000 0.600 0.000 0.000 0.000 

To be cont'd ... 
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Table cont'd ... 

jobs 0.605 0.931 0.732 0.745 0.884 0.931 0.865 
1-cattle 0.350 0.350 0.321 0.417 0.350 0.417 0.417 
lead 0.670 0.670 0.670 0.402 0.552 0.552 0.621 
lei 0.875 0.875 0.875 0.875 0.875 0.875 0.875 
lin-oil 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
livestock 0.721 0.735 0.694 0.694 0.801 0.735 0.694 
lumber 0.464 0.464 0.464 0.774 0.464 0.774 0.619 
meal-feed 0.359 0.770 0.564 0.616 0.667 0.718 0.718 
money-fx 0.582 0.718 0.674 0.717 0.681 0.756 0.756 
money-supply 0.515 0.696 0.743 0.754 0.667 0.743 0.783 
naphtha 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
nat-gas 0.525 0.656 0.623 0.656 0.689 0.689 0.689 
nickel 0.750 0.750 0.750 0.750 0.750 0.750 0.750 
nkr 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
nzdlr 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
oat 0.310 0.464 0.310 0.310 0.310 0.464 0.310 
oilseed 0.511 0.716 0.604 0.702 0.674 0.737 0.737 
orange 0.839 0.871 0.784 | 0.784 0.871 0.871 0.839 
palladium 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
palm-oil 0.764 0.764 0.764 0.764 0.668 0.764 0.764 
palmkernel 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
pet-chem 0.401 0.321 0.401 0.321 0.401 0.401 0.387 
platinum 0.786 0.786 0.786 0.786 0.786 0.786 0.786 
potato 0.875 0.875 0.875 0.875 0.875 0.875 0.875 
propane 0.583 0.875 0.583 0.875 0.583 0.583 0.583 
rand 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
rape-oil 0.000 0.000 0.292 0.292 0.000 0.000 0.292 
rapeseed 0.505 0.739 0.528 0.633 0.633 0.844 0.633 
reserves 0.703 0.703 0.703 0.811 0.757 0.703 0.757 
retail 0.375 0.417 0.417 0.417 0.417 0.417 0.417 
rice 0.613 0.826 0.694 0.776 0.735 0.776 0.817 
rubber 0.721 0.851 0.721 0.881 0.721 0.801 0.721 
rye 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
ship 0.800 0.860 0.800 0.845 0.825 0.872 0.878 
silver 0.590 0.826 0.590 0.708 0.590 0.708 0.826 
sorghum 0.477 0.573 0.382 0.550 0.573 0.573 0.573 
soy-meal 0.519 0.816 0.668 0.593 0.574 0.593 0.668 
soy-oil 0.261 0.261 0.252 0.174 0.348 0.174 0.261 
soybean 0.537 0.746 0.602 0.627 0.736 0.746 0.717 
To be cont'd ... 
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Table cont'd ... 

strategic-metal 0.087 0.087 0.087 0.174 0.087 0.087 0.087 

sugar 0.685 0.877 0.795 0.784 0.767 0.822 0.795 
sun-meal 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
sun-oil 0.417 0.417 0.417 0.417 0.417 0.417 0.417 
sunseed 0.367 0.183 0.367 0.171 0.367 0.367 0.367 
tea 0.625 0.675 0.450 0.675 0.675 0.675 0.675 
tin 0.881 0.962 0.881 0.881 0.881 0.962 0.881 
trade 0.732 0.763 0.740 0.715 0.714 0.788 0.778 
veg-oil 0.613 0.720 0.587 0.613 0.553 0.667 0.720 
wheat 0.713 0.839 0.727 0.820 0.825 0.875 0.847 
wpi 0.573 0.668 0.764 0.668 0.764 0.668 0.764 
yen 0.276 0.483 0.536 0.276 0.469 0.402 0.469 
zinc 0.964 0.890 0.964 0.862 0,890 0.890 || 0.964 
"All M B E II 0.776 0.820 0.802 0.841 0.830 0.845 11 0.863 

All A B E 0.578 0.64^ 0.607 0 . ^ 0.625 0.655 0.653 

Top 10 A B E 0.752 0.838~ 0.780 0 . ^ 0.818 0.857 0.861 

"Other A B E |[ 0.556 0.625 0.585 0.617 0.601 0.630 || 0.627 
Table A.5: Complete comparison of M U D 0 F 2 approach 
(MUD0F2) with existing component classification al-
gorithms based on macro-averaged recall and precision 
break-even point measures for the Reuters-21578 corpus. 
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Appendix B 

Details of Experimental Results 
for OHSUMED corpus 

Category || RO | WH | KNN SVM GISR GISW || LCI 
Angina Pectoris 0.344 0.536 0.454 0.449 0.516 0.598 11 0.485 
Angina Pectoris, Variant 0.238 0.583 0.238 0.222 0.292 0.229 0.229 
Angina, Unstable 0.725 0.870 0.772 0.783 0.870 0.783 0.870 
Aortic Coarctation 0.816 0.964 0.742 0.742 0.890 0.862 0.816 
Aortic Subvalvular Stenosis 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Aortic Valve Insufficiency 0.528 0.633 0.633 0.633 0.739 0.739 0.633 
Aortic Valve Stenosis 0.517 0.387 0.517 0.565 0.452 0.387 0.502 
Arrhythmia 0.541 0.575 0.536 0.432 0.584 0.572 0.580 
Atrial Fibrillation 0.452 0.710 0.387 0.646 0.581 0.646 0.581 
Atrial Flutter 0.641 0.881 0.641 0.851 0.774 0.881 0.801 
Bradycardia 0.477 0.573 0.477 0.382 0.573 0.668 0.668 
Bundle-Branch Block 0.826 0.708 0.826 0.826 0.708 0.788 0.788 
Carcinoid Heart Disease 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Cardiac Output, Low 0.076 0.069 0.091 0.071 0.074 0.000 0.081 
Cardiac Tamponade 0.573 0.668 0.477 0.668 0.477 0.668 0.668 
Cardiomyopathy, Congestive 0.372 0.558 0.491 0.512 0.465 0.512 0.547 
Cardiomyopathy, Hypertrophic 0.422 0.528 0.317 0.211 0.528 0.486 0.422 
Cardiomyopathy, Restrictive 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Chagas Cardiomyopathy 0.450 0.750 0.250 0.750 0.750 0.750 0.750 
Cor Triatriatum 0.750 0.750 0.750 0.750 0.750 0.750 0.750 
Coronary Aneurysm 0.464 0.155 0.619 0.619 0.619 0.155 0.464 
Coronary Arteriosclerosis 0.267 0.356 0.218 0.356 0.311 0.445 0.400 
Coronary Disease 0.466 0.540 0.552 0.502 0.556 0.565 0.579 
Coronary Thrombosis 0.377 0.445 0.415 0.453 0.377 0.415 0.445 
Coronary Vasospasm 0.171 0.367 0.183 0.367 0.550 0.514 0.550 
Coronary Vessel Anomalies 0.464 0.583 0.774 0.774 0.929 0.619 0.619 
Double Outlet Right Ventricle 0.000 0.000 0.625 0.000 0.000 0.000 0.000 
Ductus Arteriosus, Patent 0.875 0.875 0.875 0.583 0.875 0.875 0.875 
To be cont'd ... 
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Table cont'd ... 
Ebstein's Anomaly 0.750 0.750 0.750 0.750 0.750 0.750 0.750 
Eisenmenger Complex 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Endocarditis 0.183 0.367 0.183 0.183 0.171 0.367 0.183 
Endocarditis, Bacterial 0.621 0.552 0.552 0.737 0.621 0.760 0.621 
Endomyocardial Fibrosis 0.292 0.000 0.000 0.292 0.000 0.292 0.292 
Extrasystole 0.268 0.268 0.402 0.134 0.381 0.134 0.268 
Heart Aneurysm 0.310 0.155 0.464 0.438 0.292 0.155 0.464 
Heart Arrest 0.638 0.609 0.580 0.543 0.638 0.609 0.638 
Heart Block 0.422 0.292 0.422 0.528 0.422 0.528 0.528 
Heart Defects, Congenital 0.493 0.678 0.543 0.644 0.534 0.610 0.667 
Heart Diseases 0.225 0.222 0.139 0.190 0.197 0.222 0.310 
Heart Failure, Congestive 0.436 0.602 0.552 0.493 0.556 0.602 0.603 
Heart Murmurs 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Heart Neoplasms 0.536 0.402 0.536 0.268 0.402 0.381 0.536 
Heart Rupture 0.550 0.367 0.367 0.550 0.550 0.367 0.550 
Heart Rupture, Post-Infarction 0.500 0.250 0.500 0.500 0.500 0.250 0.500 
Heart Septal Defects 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Heart Septal Defects, Atrial 0.583 0.583 0.583 0.583 0.800 0.583 0.583 
Heart Septal Defects, Ventricular 0.438 0.464 0.464 0.438 0.464 0.464 0.464 
Heart Valve Diseases 0.207 0.483 0.276 0.414 0.469 0.483 0.483 
Kearns Syndrome 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Long QT Syndrome 0.583 0.583 0.875 0.583 0.875 0.583 0.583 
Mitral Valve Insufficiency 0.414 0.483 0.402 0.621 0.483 0.621 0.621 
Mitral Valve Prolapse 0.292 0.583 0.583 0.583 0.583 0.583 0.583 
Mitral Valve Stenosis 0.515 0.707 0.572 0.686 0.629 0.743 0.686 
Myocardial Diseases 0.345 0.402 0.276 0.276 0.276 0.207 0.414 
Myocardial Infarction 0.781 0.811 0.789 0.750 0.832 0.799 0.812 
Myocarditis 0.155 0.310 0.464 0.464 0.464 0.464 0.464 
Pericardial Effusion 0.550 0.550 0.550 0.367 0.550 0.550 0.550 
Pericarditis 0.183 0.183 0.183 0.550 0.550 0.367 0.550 
Pericarditis, Constrictive 0.550 0.733 0.550 0.514 0.550 0.367 0.550 
Pulmonary Heart Disease 0.583 0.875 0.583 0.583 0.583 0.583 0.583 
Pulmonary Valve Insufficiency 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Pulmonary Valve Stenosis 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Rheumatic Heart Disease 0.250 0.267 0.267 0.292 0.292 0.000 0.583 
Shock, Cardiogenic 0.590 0.590 0.590 0.590 0.472 0.590 0.590 
Sick Sinus Syndrome 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Tachycardia 0.684 0.582 0.684 0.608 0.700 0.633 0.684 
Tachycardia, Atrioventricular Nodal Reentry 0.225 0.196 0.225 0.225 0.225 0.225 0.225 
Tachycardia, Ectopic Atrial 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Tachycardia, Ectopic Junctional 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Tachycardia, Paroxysmal 0.619 0.464 0.464 0.619 0.619 0.619 0.619 
Tachycardia, Supraventricular 0.586 0.668 0.537 0.716 0.683 0.716 0.683 
Tetralogy of Fallot 0.583 0.583 0.583 0.533 0.583 0.583 0.583 
Transposition of Great Vessels 0.225 0.417 0.450 0.450 0.450 0.225 0.450 
Tricuspid Valve Insufficiency 0.183 0.343 0.171 0.367 0.183 0.367 0.183 
Tricuspid Valve Stenosis 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
To be cont'd ... 
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Table cont'd ... 
Truncus Arteriosus, Persistent 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Ventricular Fibrillation 0.297 0.445 0.371 0.431 0.297 0.431 0.445 
Ventricular Outflow Obstruction 0.417 0.417 0.417 0.833 0.417 0.417 0.417 
Wolff-Parkinson-White Syndrome 0.675 0.625 0.675 0.675 0.675 0.675 0.675 
Myocardial Reperfusion Injury 0.489 0.489 0.534 0.400 0.489 0.578 0.523 
Torsades de Pointes || 0.750 0.750 0.750 0.750 | 0.750 0.750 || 0 . ^ 
All MBE II 0.504 0.552 0.534 0.539 0.575 0.583 11 0.591 
All ABE "“ 0.442 " o M T 0.466 0.485 0.496— 0.483 —0.510 
Top 10 ABE 0.488 0.55T" 0.505 0.542 0.566 "1).576 
Other ABE || 0.436 0.474 0.460 0.484 0.490 0.472 || 0.501 

Table B.l: Complete comparison of Linear Combination approach 
under the Equal Weighting Strategy (LCI) with existing compo-
nent classification algorithms based on macro-averaged recall and 
precision break-even point measures for the OHSUMED corpus. 

116 



"Gregory 11 RO | WH | KNN | SVM GISR GISW || LC 厂 

Angina Pectoris 0.344 0.536 0.454 0.449 0.516 0.598 11 0.490 
Angina Pectoris, Variant 0.238 0.583 0.238 0.222 0.292 0.229 0.229 
Angina Unstable 0.725 0.870 0.772 0.783 0.870 0.783 0.870 
Aortic Coarctation 0.816 0.964 0.742 0.742 0.890 0.862 0.816 
Aortic Subvalvular Stenosis 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Aortic Valve Insufficiency 0.528 0.633 0.633 0.633 0.739 0.739 0.633 
Aortic Valve Stenosis 0.517 0.387 0.517 0.565 0.452 0.387 0.517 
Arrhythmia 0.541 0.575 0.536 0.432 0.584 0.572 0.572 
Atrial Fibrillation 0.452 0.710 0.387 0.646 0.581 0.646 0.581 
Atrial Flutter 0.641 0.881 0.641 0.851 0.774 0.881 0.881 
Bradycardia 0.477 0.573 0.477 0.382 0.573 0.668 0.668 
Bundle-Branch Block 0.826 0.708 0.826 0.826 0.708 0.788 0.500 
Carcinoid Heart Disease 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Cardiac Output, Low 0.076 0.069 0.091 0.071 0.074 0.000 0.078 
Cardiac Tamponade 0.573 0.668 0.477 0.668 0.477 0.668 0.668 
Cardiomyopathy, Congestive 0.372 0.558 0.491 0.512 0.465 0.512 0.558 
Cardiomyopathy, Hypertrophic 0.422 0.528 0.317 0.211 0.528 0.486 0.422 
Cardiomyopathy, Restrictive 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Chagas Cardiomyopathy 0.450 0.750 0.250 0.750 0.750 0.750 0.750 
Cor Triatriatum 0.750 0.750 0.750 0.750 0.750 0.750 0.750 
Coronary Aneurysm 0.464 0.155 0.619 0.619 0.619 0.155 0.500 
Coronary Arteriosclerosis 0.267 0.356 0.218 0.356 0.311 0.445 0.400 
Coronary Disease 0.466 0.540 0.552 0.502 0.556 0.565 0.572 
Coronary Thrombosis 0.377 0.445 0.415 0.453 0.377 0.415 0.453 
Coronary Vasospasm 0.171 0.367 0.183 0.367 0.550 0.514 0.550, 
Coronary Vessel Anomalies 0.464 0.583 0.774 0.774 0.929 0.619 0.729 
Double Outlet Right Ventricle 0.000 0.000 0.625 0.000 0.000 0.000 0.000 
Ductus Arteriosus, Patent 0.875 0.875 0.875 0.583 0.875 0.875 0.500 
Ebstein's Anomaly 0.750 0.750 0.750 0.750 0.750 0.750 0.750 
Eisenmenger Complex 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Endocarditis 0.183 0.367 0.183 0.183 0.171 0.367 0.183 
Endocarditis, Bacterial 0.621 0.552 0.552 0.737 0.621 0.760 0.621 
Endomyocardial Fibrosis 0.292 0.000 0.000 0.292 0.000 0.292 0.292 
Extrasystole 0.268 0.268 0.402 0.134 0.381 0.134 0.268 
Heart Aneurysm 0.310 0.155 0.464 0.438 0.292 0.155 0.310 
Heart Arrest 0.638 0.609 0.580 0.543 0.638 0.609 0.629 
Heart Block 0.422 0.292 0.422 0.528 0.422 0.528 0.528 
Heart Defects, Congenital 0.493 0.678 0.543 0.644 0.534 0.610 0.678 
Heart Diseases 0.225 0.222 0.139 0.190 0.197 0.222 0.310 
Heart Failure, Congestive 0.436 0.602 0.552 0.493 0.556 0.602 0.586 
Heart Murmurs 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Heart Neoplasms 0.536 0.402 0.536 0.268 0.402 0.381 0.536 
Heart Rupture 0.550 0.367 0.367 0.550 0.550 0.367 0.367 
Heart Rupture, Post-Infarction 0.500 0.250 0.500 0.500 0.500 0.250 0.500 
Heart Septal Defects 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Heart Septal Defects, Atrial 0.583 0.583 0.583 0.583 0.800 0.583 0.583 
To be cont'd ... 
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Table cont'd ... 
Heart Septal Defects, Ventricular 0.438 0.464 0.464 0.438 0.464 0.464 0.464 
Heart Valve Diseases 0.207 0.483 0.276 0.414 0.469 0.483 0.483 
Kearns Syndrome 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Long QT Syndrome 0.583 0.583 0.875 0.583 0.875 0.583 0.583 
Mitral Valve Insufficiency 0.414 0.483 0.402 0.621 0.483 0.621 0.621 
Mitral Valve Prolapse 0.292 0.583 0.583 0.583 0.583 0.583 0.583 
Mitral Valve Stenosis 0.515 0.707 0.572 0.686 0.629 0.743 0.780 
Myocardial Diseases 0.345 0.402 0.276 0.276 0.276 0.207 0.345 
Myocardial Infarction 0.781 0.811 0.789 0.750 0.832 0.799 0.818 
Myocarditis 0.155 0.310 0.464 0.464 0.464 0.464 0.438 
Pericardial Effusion 0.550 0.550 0.550 0.367 0.550 0.550 0.550 
Pericarditis 0.183 0.183 0.183 0.550 0.550 0.367 0.550 
Pericarditis, Constrictive 0.550 0.733 0.550 0.514 0.550 0.367 0.550 
Pulmonary Heart Disease 0.583 0.875 0.583 0.583 0.583 0.583 0.583 
Pulmonary Valve Insufficiency 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Pulmonary Valve Stenosis 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Rheumatic Heart Disease 0.250 0.267 0.267 0.292 0.292 0.000 0.583 
Shock, Cardiogenic 0.590 0.590 0.590 0.590 0.472 0.590 0.590 
Sick Sinus Syndrome 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Tachycardia 0.684 0.582 0.684 0.608 0.700 0.633 0.684 
Tachycardia, Atrioventricular Nodal Reentry 0.225 0.196 0.225 0.225 0.225 0.225 0.225 
Tachycardia, Ectopic Atrial 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Tachycardia, Ectopic Junctional 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Tachycardia, Paroxysmal 0.619 0.464 0.464 0.619 0.619 0.619 0.619 
Tachycardia, Supraventricular 0.586 0.668 0.537 0.716 0.683 0.716 0.683 
Tetralogy of Fallot 0.583 0.583 0.583 0.533 0.583 0.583 0.583, 
Transposition of Great Vessels 0.225 0.417 0.450 0.450 0.450 0.225 0.450 
Tricuspid Valve Insufficiency 0.183 0.343 0.171 0.367 0.183 0.367 0.183 
Tricuspid Valve Stenosis 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Truncus Arteriosus, Persistent 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Ventricular Fibrillation 0.297 0.445 0.371 0.431 0.297 0.431 0.445 
Ventricular Outflow Obstruction 0.417 0.417 0.417 0.833 0.417 0.417 0.417 
Wolff-Parkinson-White Syndrome 0.675 0.625 0.675 0.675 0.675 0.675 0.675 
Myocardial Reperfusion Injury 0.489 0.489 0.534 0.400 0.489 0.578 0.489 
Torsades de Pointes 0.750 0.750 0.750 0.750 0.750 0.750 0.750 
All MBE II 0.504 0.552 0.534 0.539 0.575 0.583 11 0.582 “ 
All ABE 0.442 0.484 0.466 0.485 0.496— 0.483 0-501 
Top 10 ABE 0.488 0.505 0.497 0.542 0.566 1 . 5 7 4 

-Qther ABE || 0.436 0.474 0.460 0.484 0.490 0.472 || 0.490 
Table B.2: Complete comparison of Linear Combination approach 
under the Weighting Strategy Based On Utility Measure (LC2) 
with existing component classification algorithms based on macro-
averaged recall and precision break-even point measures for the 
OHSUMED corpus. 
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- ^ t e g o r y 11 RO | WH | KNN | SVM | GISR GISW || LC3~ 
Angina Pectoris ~ 11 0.344 0.536 0.454 0.449 0.516 0.598 11 0.490 
Angina Pectoris, Variant 0.238 0.583 0.238 0.222 0.292 0.229 0.229 
Angina, Unstable 0.725 0.870 0.772 0.783 0.870 0.783 0.870 
Aortic Coarctation 0.816 0.964 0.742 0.742 0.890 0.862 0.816 
Aortic Subvalvular Stenosis 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Aortic Valve Insufficiency 0.528 0.633 0.633 0.633 0.739 0.739 0.633 
Aortic Valve Stenosis 0.517 0.387 0.517 0.565 0.452 0.387 0.517 
Arrhythmia 0.541 0.575 0.536 0.432 0.584 0.572 0.595 
Atrial Fibrillation 0.452 0.710 0.387 0.646 0.581 0.646 0.581 
Atrial Flutter 0.641 0.881 0.641 0.851 0.774 0.881 0.801 
Bradycardia 0.477 0.573 0.477 0.382 0.573 0.668 0.668 
Bundle-Branch Block 0.826 0.708 0.826 0.826 0.708 0.788 0.826 
Carcinoid Heart Disease 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Cardiac Output, Low 0.076 0.069 0.091 0.071 0.074 0.000 0.081 
Cardiac Tamponade 0.573 0.668 0.477 0.668 0.477 0.668 0.668 
Cardiomyopathy, Congestive 0.372 0.558 0.491 0.512 0.465 0.512 0.558 
Cardiomyopathy, Hypertrophic 0.422 0.528 0.317 0.211 0.528 0.486 0.422 
Cardiomyopathy, Restrictive 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Chagas Cardiomyopathy 0.450 0.750 0.250 0.750 0.750 0.750 0.750 
Cor Triatriatum 0.750 0.750 0.750 0.750 0.750 0.750 0.750 
Coronary Aneurysm 0.464 0.155 0.619 0.619 0.619 0.155 0.464 
Coronary Arteriosclerosis 0.267 0.356 0.218 0.356 0.311 0.445 0.385 
Coronary Disease 0.466 0.540 0.552 0.502 0.556 0.565 0.582 
Coronary Thrombosis 0.377 0.445 0.415 0.453 0.377 0.415 0.453 
Coronary Vasospasm 0.171 0.367 0.183 0.367 0.550 0.514 0.550, 
Coronary Vessel Anomalies 0.464 0.583 0.774 0.774 0.929 0.619 0.875 
Double Outlet Right Ventricle 0.000 0.000 0.625 0.000 0.000 0.000 0.000 
Ductus Arteriosus, Patent 0.875 0.875 0.875 0.583 0.875 0.875 0.875 
Ebstein's Anomaly 0.750 0.750 0.750 0.750 0.750 0.750 0.750 
Eisenmenger Complex 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Endocarditis 0.183 0.367 0.183 0.183 0.171 0.367 0.183 
Endocarditis, Bacterial 0.621 0.552 0.552 0.737 0.621 0.760 0.621 
Endomyocardial Fibrosis 0.292 0.000 0.000 0.292 0.000 0.292 0.292 
Extrasystole 0.268 0.268 0.402 0.134 0.381 0.134 0.381 
Heart Aneurysm 0.310 0.155 0.464 0.438 0.292 0.155 0.417 
Heart Arrest 0.638 0.609 0.580 0.543 0.638 0.609 0.638 
Heart Block 0.422 0.292 0.422 0.528 0.422 0.528 0.486 
Heart Defects, Congenital 0.493 0.678 0.543 0.644 0.534 0.610 0.657 
Heart Diseases 0.225 0.222 0.139 0.190 0.197 0.222 0.310 
Heart Failure, Congestive 0.436 0.602 0.552 0.493 0.556 0.602 0.586 
Heart Murmurs 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Heart Neoplasms 0.536 0.402 0.536 0.268 0.402 0.381 0.536 
Heart Rupture 0.550 0.367 0.367 0.550 0.550 0.367 0.550 
Heart Rupture, Post-Infarction 0.500 0.250 0.500 0.500 0.500 0.250 0.500 
Heart Septal Defects 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Heart Septal Defects, Atrial 0.583 0.583 0.583 0.583 0.800 0.583 0.583 
To be cont'd ... 
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Table cont'd ... 
Heart Septal Defects, Ventricular 0.438 0.464 0.464 0.438 0.464 0.464 0.464 
Heart Valve Diseases 0.207 0.483 0.276 0.414 0.469 0.483 0.483 
Kearns Syndrome 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Long QT Syndrome 0.583 0.583 0.875 0.583 0.875 0.583 0.800 
Mitral Valve Insufficiency 0.414 0.483 0.402 0.621 0.483 0.621 0.621 
Mitral Valve Prolapse 0.292 0.583 0.583 0.583 0.583 0.583 0.583 
Mitral Valve Stenosis 0.515 0.707 0.572 0.686 0.629 0.743 0.629 
Myocardial Diseases 0.345 0.402 0.276 0.276 0.276 0.207 0.402 
Myocardial Infarction 0.781 0.811 0.789 0.750 0.832 0.799 0.809 
Myocarditis 0.155 0.310 0.464 0.464 0.464 0.464 0.464 
Pericardial Effusion 0.550 0.550 0.550 0.367 0.550 0.550 0.550 
Pericarditis 0.183 0.183 0.183 0.550 0.550 0.367 0.550 
Pericarditis, Constrictive 0.550 0.733 0.550 0.514 0.550 0.367 0.550 
Pulmonary Heart Disease 0.583 0.875 0.583 0.583 0.583 0.583 0.583 
Pulmonary Valve Insufficiency 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Pulmonary Valve Stenosis 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Rheumatic Heart Disease 0.250 0.267 0.267 0.292 0.292 0.000 0.267 
Shock, Cardiogenic 0.590 0.590 0.590 0.590 0.472 0.590 0.590 
Sick Sinus Syndrome 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Tachycardia 0.684 0.582 0.684 0.608 0.700 0.633 0.684 
Tachycardia, Atrioventricular Nodal Reentry 0.225 0.196 0.225 0.225 0.225 0.225 0.225 
Tachycardia, Ectopic Atrial 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Tachycardia, Ectopic Junctional 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Tachycardia, Paroxysmal 0.619 0.464 0.464 0.619 0.619 0.619 0.619 
Tachycardia, Supraventricular 0.586 0.668 0.537 0.716 0.683 0.716 0.683 
Tetralogy of Fallot 0.583 0.583 0.583 0.533 0.583 0.583 0.533, 
Transposition of Great Vessels 0.225 0.417 0.450 0.450 0.450 0.225 0.450 
Tricuspid Valve Insufficiency 0.183 0.343 0.171 0.367 0.183 0.367 0.183 
Tricuspid Valve Stenosis 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Truncus Arteriosus, Persistent 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Ventricular Fibrillation 0.297 0.445 0.371 0.431 0.297 0.431 0.445 
Ventricular Outflow Obstruction 0.417 0.417 0.417 0.833 0.417 0.417 0.417 
Wolff-Parkinson-White Syndrome 0.675 0.625 0.675 0.675 0.675 0.675 0.675 
Myocardial Reperfusion Injury 0.489 0.489 0.534 0.400 0.489 0.578 0.445 
Torsades de Pointes 0.750 0.750 0.750 0.750 0.750 0.750 0.750 
All MBE II 0.504 0.552 0.534 0.539 0.575 0.583 11 0.591 
All ABE 0.442 0.484 0.466 "5.485 0.496 _ 0.483 0.511 
Top 10 ABE 0.488 0.551 0.505 ~0.497 0.542 _ 0.566 0-574 
Other ABE || 0.436 0.474 0.460 0.484 0.490 0.472 || 0.502 

Table B.3: Complete comparison of Linear Combination approach 
under the Weighting Strategy Based On Document Rank (LC3) 
with existing component classification algorithms based on macro-
averaged recall and precision break-even point measures for the 
OHSUMED corpus. 
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Category || RO | WH | KNN | SVM | GISR | GISW || MUDOF I D E A L ' 
Angina Pectoris — 11 0.344 0.536 0.454 0.449 0.516 0.598 1 1 0 ： ^ 0 . 5 9 8 
Angina Pectoris, Variant 0.238 0.583 0.238 0.222 0.292 0.229 0.222 0.583 
Angina Unstable 0.725 0.870 0.772 0.783 0.870 0.783 0.783 0.870 
Aortic Coarctation 0.816 0.964 0.742 0.742 0.890 0.862 0.742 0.964 
Aortic Subvalvular Stenosis 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Aortic Valve Insufficiency 0.528 0.633 0.633 0.633 0.739 0.739 0.739 0.739 
Aortic Valve Stenosis 0.517 0.387 0.517 0.565 0.452 0.387 0.517 0.565 
Arrhythmia 0.541 0.575 0.536 0.432 0.584 0.572 0.536 0.584 
Atrial Fibrillation 0.452 0.710 0.387 0.646 0.581 0.646 0.646 0.710 
Atrial Flutter 0.641 0.881 0.641 0.851 0.774 0.881 0.641 0.881 
Bradycardia 0.477 0.573 0.477 0.382 0.573 0.668 0.382 0.668 
Bundle-Branch Block 0.826 0.708 0.826 0.826 0.708 0.788 0.826 0.788 
Carcinoid Heart Disease 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Cardiac Output, Low 0.076 0.069 0.091 0.071 0.074 0.000 0.071 0.091 
Cardiac Tamponade 0.573 0.668 0.477 0.668 0.477 0.668 0.668 0.668 
Cardiomyopathy, Congestive 0.372 0.558 0.491 0.512 0.465 0.512 0.491 0.558 
Cardiomyopathy, Hypertrophic 0.422 0.528 0.317 0.211 0.528 0.486 0.211 0.528 
Cardiomyopathy, Restrictive 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Chagas Cardiomyopathy 0.450 0.750 0.250 0.750 0.750 0.750 0.750 0.750 
Cor Triatriatum 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 
Coronary Aneurysm 0.464 0.155 0.619 0.619 0.619 0.155 0.619 0.619 
Coronary Arteriosclerosis 0.267 0.356 0.218 0.356 0.311 0.445 0.356 0.445 
Coronary Disease 0.466 0.540 0.552 0.502 0.556 0.565 0.502 0.565 
Coronary Thrombosis 0.377 0.445 0.415 0.453 0.377 0.415 0.415 0.453 
Coronary Vasospasm 0.171 0.367 0.183 0.367 0.550 0.514 0.367 0.514 
Coronary Vessel Anomalies 0.464 0.583 0.774 0.774 0.929 0.619 0.774 0.929 
Double Outlet Right Ventricle 0.000 0.000 0.625 0.000 0.000 0.000 0.625 0.625 
Ductus Arteriosus, Patent 0.875 0.875 0.875 0.583 0.875 0.875 0.875 0.875 
Ebstein's Anomaly 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 
Eisenmenger Complex 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Endocarditis 0.183 0.367 0.183 0.183 0.171 0.367 0.367 0.367 
Endocarditis, Bacterial 0.621 0.552 0.552 0.737 0.621 0.760 0.737 0.760 . 
Endomyocardial Fibrosis 0.292 0.000 0.000 0.292 0.000 0.292 0.292 0.292 
Extrasystole 0.268 0.268 0.402 0.134 0.381 0.134 0.134 0.402 
Heart Aneurysm 0.310 0.155 0.464 0.438 0.292 0.155 0.438 0.464 
Heart Arrest 0.638 0.609 0.580 0.543 0.638 0.609 0.580 0.638 
Heart Block 0.422 0.292 0.422 0.528 0.422 0.528 0.528 0.528 
Heart Defects, Congenital 0.493 0.678 0.543 0.644 0.534 0.610 0.644 0.678 
Heart Diseases 0.225 0.222 0.139 0.190 0.197 0.222 0.190 0.225 
Heart Failure, Congestive 0.436 0.602 0.552 0.493 0.556 0.602 0.602 0.602 
Heart Murmurs 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Heart Neoplasms 0.536 0.402 0.536 0.268 0.402 0.381 0.402 0.536 
Heart Rupture 0.550 0.367 0.367 0.550 0.550 0.367 0.367 0.550 
Heart Rupture, Post-Infarction 0.500 0.250 0.500 0.500 0.500 0.250 0.500 0.500 
Heart Septal Defects 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Heart Septal Defects, Atrial 0.583 0.583 0.583 0.583 0.800 0.583 0.583 0.800 
Heart Septal Defects, Ventricular 0.438 0.464 0.464 0.438 0.464 0.464 0.464 0.464 
Heart Valve Diseases 0.207 0.483 0.276 0.414 0.469 0.483 0.483 0.483 
Kearns Syndrome 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Long QT Syndrome 0.583 0.583 0.875 0.583 0.875 0.583 0.583 0.875 
Mitral Valve Insufficiency 0.414 0.483 0.402 0.621 0.483 0.621 0.621 0.621 
Mitral Valve Prolapse 0.292 0.583 0.583 0.583 0.583 0.583 0.583 0.583 
Mitral Valve Stenosis 0.515 0.707 0.572 0.686 0.629 0.743 0.743 0.743 
Myocardial Diseases 0.345 0.402 0.276 0.276 0.276 0.207 0.207 0.402 
Myocardial Infarction 0.781 0.811 0.789 0.750 0.832 0.799 0.799 0.832 
Myocarditis 0.155 0.310 0.464 0.464 0.464 0.464 0.464 0.464 
Pericardial Effusion 0.550 0.550 0.550 0.367 0.550 0.550 0.367 0.550 
Pericarditis 0.183 0.183 0.183 0.550 0.550 0.367 0.550 0.550 
Pericarditis, Constrictive 0.550 0.733 0.550 0.514 0.550 0.367 0.514 0.733 
To be cont'd ... 
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Table cont'd ... 
Pulmonary Heart Disease 0.583 0.875 0.583 0.583 0.583 0.583 0.583 0.875 
Pulmonary Valve Insufficiency 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Pulmonary Valve Stenosis 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Rheumatic Heart Disease 0.250 0.267 0.267 0.292 0.292 0.000 0.292 0.292 
Shock, Cardiogenic 0.590 0.590 0.590 0.590 0.472 0.590 0.590 0.590 
Sick Sinus Syndrome 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Tachycardia 0.684 0.582 0.684 0.608 0.700 0.633 0.608 0.684 
Tachycardia, Atrioventricular Nodal Reentry 0.225 0.196 0.225 0.225 0.225 0.225 0.225 0.225 
Tachycardia, Ectopic Atrial 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Tachycardia, Ectopic Junctional 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Tachycardia, Paroxysmal 0.619 0.464 0.464 0.619 0.619 0.619 0.464 0.619 
Tachycardia, Supraventricular 0.586 0.668 0.537 0.716 0.683 0.716 0.716 0.716 
Tetralogy of Fallot 0.583 0.583 0.583 0.533 0.583 0.583 0.533 0.583 
Transposition of Great Vessels 0.225 0.417 0.450 0.450 0.450 0.225 0.450 0.450 
Tricuspid Valve Insufficiency 0.183 0.343 0.171 0.367 0.183 0.367 0.367 0.367 
Tricuspid Valve Stenosis 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Truncus Arteriosus, Persistent 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Ventricular Fibrillation 0.297 0.445 0.371 0.431 0.297 0.431 0.371 0.445 
Ventricular Outflow Obstruction 0.417 0.417 0.417 0.833 0.417 0.417 0.833 0.833 
Wolff-Parkinson-White Syndrome 0.675 0.625 0.675 0.675 0.675 0.675 0.675 0.675 
Myocardial Reperfusion Injury 0.489 0.489 0.534 0.400 0.489 0.578 0.534 0.578 
Torsades de Pointes 0-750 0.750 0.750 0.750 0.750 0.750 || 0-750 0-750 
All MBE II 0.504 0.552 0.534 0.539 0.575 0.583 11 0.561 0.607 
All ABE 0.442 ~0：484 0.466 0.485 0.496 0.483 “ 0.501 一 0.560 
Top 10 ABE 0.551 0.505 0.497 0.542 0.566 “ 0-542 —0.585 
Other ABE || 0.436 0.474 0.460 0.484 0.490 0.472 || 0.495 0.557~ 

Table B.4: Complete comparison of MUDOF approach (MUDOF) and the 
ideal combination of algorithms (IDEAL) with existing component classifica-
tion algorithms based on macro-averaged recall and precision break-even point 
measures for the OHSUMED corpus. 
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Category II RO | WH | KNN | SVM | GISR [ GISW || M U D O ^ ^ 
Angina Pectoris ‘ 0.344 0.536 0.454 0.449 0.516 0.598 11 0.495 
Angina Pectoris, Variant 0.238 0.583 0.238 0.222 0.292 0.229 0.229 
Angina, Unstable 0.725 0.870 0.772 0.783 0.870 0.783 0.847 
Aortic Coarctation 0.816 0.964 0.742 0.742 0.890 0.862 0.890 
Aortic Subvalvular Stenosis 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Aortic Valve Insufficiency 0.528 0.633 0.633 0.633 0.739 0.739 0.633 
Aortic Valve Stenosis 0.517 0.387 0.517 0.565 0.452 0.387 0.517 
Arrhythmia 0.541 0.575 0.536 0.432 0.584 0.572 0.580 
Atrial Fibrillation 0.452 0.710 0.387 0.646 0.581 0.646 0.581 
Atrial Flutter 0.641 0.881 0.641 0.851 0.774 0.881 0.881 
Bradycardia 0.477 0.573 0.477 0.382 0.573 0.668 0.573 
Bundle-Branch Block 0.826 0.708 0.826 0.826 0.708 0.788 0.826 
Carcinoid Heart Disease 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Cardiac Output, Low 0.076 0.069 0.091 0.071 0.074 0.000 0.150 
Cardiac Tamponade 0.573 0.668 0.477 0.668 0.477 0.668 0.668 
Cardiomyopathy, Congestive 0.372 0.558 0.491 0.512 0.465 0.512 0.558 
Cardiomyopathy, Hypertrophic 0.422 0.528 0.317 0.211 0.528 0.486 0.528 
Cardiomyopathy, Restrictive 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

.Chagas Cardiomyopathy 0.450 0.750 0.250 0.750 0.750 0.750 0.750 
Cor Triatriatum 0.750 0.750 0.750 0.750 0.750 0.750 0.750 
Coronary Aneurysm 0.464 0.155 0.619 0.619 0.619 0.155 0.310 
Coronary Arteriosclerosis 0.267 0.356 0.218 0.356 0.311 0.445 0.400 
Coronary Disease 0.466 0.540 0.552 0.502 0.556 0.565 0.582 
Coronary Thrombosis 0.377 0.445 0.415 0.453 0.377 0.415 0.453 
Coronary Vasospasm 0.171 0.367 0.183 0.367 0.550 0.514 0.733 
Coronary Vessel Anomalies 0.464 0.583 0.774 0.774 0.929 0.619 0.619 
Double Outlet Right Ventricle 0.000 0.000 0.625 0.000 0.000 0.000 0.000 
Ductus Arteriosus, Patent 0.875 0.875 0.875 0.583 0.875 0.875 0.875 
Ebstein's Anomaly 0.750 0.750 0.750 0.750 0.750 0.750 0.750 
Eisenmenger Complex 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Endocarditis 0.183 0.367 0.183 0.183 0.171 0.367 0.183 
Endocarditis, Bacterial 0.621 0.552 0.552 0.737 0.621 0.760 0.621 
Endomyocardial Fibrosis 0.292 0.000 0.000 0.292 0.000 0.292 0.292 
Extrasystole 0.268 0.268 0.402 0.134 0.381 0.134 0.402 
Heart Aneurysm 0.310 0.155 0.464 0.438 0.292 0.155 0.417 
Heart Arrest 0.638 0.609 0.580 0.543 0.638 0.609 0.638 
Heart Block 0.422 0.292 0.422 0.528 0.422 0.528 0.528 
Heart Defects, Congenital 0.493 0.678 0.543 0.644 0.534 0.610 0.667 
Heart Diseases 0.225 0.222 0.139 0.190 0.197 0.222 0.357 
Heart Failure, Congestive 0.436 0.602 0.552 0.493 0.556 0.602 0.602 
Heart Murmurs 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Heart Neoplasms 0.536 0.402 0.536 0.268 0.402 0.381 0.536 
Heart Rupture 0.550 0.367 0.367 0.550 0.550 0.367 0.550 
Heart Rupture, Post-Infarction 0.500 0.250 0.500 0.500 0.500 0.250 0.500 
Heart Septal Defects 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Heart Septal Defects, Atrial 0.583 0.583 0.583 0.583 0.800 0.583 0.875 
Heart Septal Defects, Ventricular 0.438 0.464 0.464 0.438 0.464 0.464 0.464 
Heart Valve Diseases 0.207 0.483 0.276 0.414 0.469 0.483 0.483 
Kearns Syndrome 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Long QT Syndrome 0.583 0.583 0.875 0.583 0.875 0.583 0.583 
Mitral Valve Insufficiency 0.414 0.483 0.402 0.621 0.483 0.621 0.690 
Mitral Valve Prolapse 0.292 0.583 0.583 0.583 0.583 0.583 0.583 
Mitral Valve Stenosis 0.515 0.707 0.572 0.686 0.629 0.743 0.686 
Myocardial Diseases 0.345 0.402 0.276 0.276 0.276 0.207 0.414 
Myocardial Infarction 0.781 0.811 0.789 0.750 0.832 0.799 0.812 
Myocarditis 0.155 0.310 0.464 0.464 0.464 0.464 0.464 
Pericardial Effusion 0.550 0.550 0.550 0.367 0.550 0.550 0.550 
Pericarditis 0.183 0.183 0.183 0.550 0.550 0.367 0.550 
Pericarditis, Constrictive 0.550 0.733 0.550 0.514 0.550 0.367 0.733 
To be cont'd ... 
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Table cont'd ... 
Pulmonary Heart Disease 0.583 0.875 0.583 0.583 0.583 0.583 0.583 
Pulmonary Valve Insufficiency 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Pulmonary Valve Stenosis 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Rheumatic Heart Disease 0.250 0.267 0.267 0.292 0.292 0.000 0.292 
Shock, Cardiogenic 0.590 0.590 0.590 0.590 0.472 0.590 0.590 
Sick Sinus Syndrome 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Tachycardia 0.684 0.582 0.684 0.608 0.700 0.633 0.684 
Tachycardia, Atrioventricular Nodal Reentry 0.225 0.196 0.225 0.225 0.225 0.225 0.225 
Tachycardia, Ectopic Atrial 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Tachycardia, Ectopic Junctional 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Tachycardia, Paroxysmal 0.619 0.464 0.464 0.619 0.619 0.619 0.619 
Tachycardia, Supraventricular 0.586 0.668 0.537 0.716 0.683 0.716 0.683 
Tetralogy of Fallot 0.583 0.583 0.583 0.533 0.583 0.583 0.533 
TYansposition of Great Vessels 0.225 0.417 0.450 0.450 0.450 0.225 0.675 
Tricuspid Valve Insufficiency 0.183 0.343 0.171 0.367 0.183 0.367 0.367 
Tricuspid Valve Stenosis 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Truncus Arteriosus, Persistent 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
Ventricular Fibrillation 0.297 0.445 0.371 0.431 0.297 0.431 0.445 
Ventricular Outflow Obstruction 0.417 0.417 0.417 0.833 0.417 0.417 0.417 

,Wolff-Parkinson-White Syndrome 0.675 0.625 0.675 0.675 0.675 0.675 0.675 
Myocardial Reperfusion Injury 0.489 0.489 0.534 0.400 0.489 0.578 0.489 
Torsades de Pointes || 0.750 0.750 0.750 0.750 0.750 0.750 || 0.750 
All MBE II 0.504 0.552 0.534 0.539 0.575 0.583 11 0.597 
All ABE 0.442 0 . 4 ^ 0.466~ 0.485 0.496 0.483 0.523 
Top 10 ABE “ 0.488 0 . 5 ^ 0.505— 0.497 0.542 0 . 5 ^ 0 . 5 8 2 
Other ABE || 0.436 0.474 0.460 0.484 0.490 0.472 || 0.515 

Table B.5: Complete comparison of MUDOF2 approach (MUDOF2) with ex-
isting component classification algorithms based on macro-averaged recall and 
precision break-even point measures for the OHSUMED corpus. 
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