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Abstract 

In this thesis, a framework which integrates an efficient Graph-Based Alterna-

tive Wiring ( G B A W ) technique and state-of-the-art Multi-level hypergraph 

partitioner (hMETIS-Kway) for multi-way circuit partitioning is proposed. 

Moreover, the routability of Hyper-Universal Switch Box is examined by recon-

figuring the switch-box architecture of well-known Field-Programmable Gate 

Arrays (FPGAs) router V P R . 

Efficient circuit partitioning is gaining more and more importance with 

the increasing size of modern circuits. Conventionally, circuit partitioning is 

solved without altering the circuit by modeling a circuit as a hypergraph for 

the ease of applying graph algorithms. However, there exists rooms for fur-

ther improvement on even optimum hypergraph partitioning results, if logic 

information can be applied for circuit perturbation. Such logic transformation 

based partitioning techniques are usually more complicated and harder to for-

mulate. A multi-way partitioning framework which can couple any hypergraph 

partitioner is presented. This framework gives a novel logic perturbation tech-

nique for further improvement over very excellent partitioning results. This 

approach can integrate with any graph partitioner. Experiments on 2-, 3-, 

4-, and 5-way partitionings for various circuits of different sizes from M C N C 

benchmarks were performed. The experimental results showed that this par-

titioning approach can achieve a further 15% reduction in cut size for 2-way 

partitioning with an area penalty of only 0.33% over existing state-of-the-art 

graph partitioner. 
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An F P G A switch box is said to be universal (hyper-universal) if detailed 

routing can be performed on all possible surrounding 2-pin (multi-pin) net 

topologies which satisfy the global routing density constraints. A switch box 

is optimum if it is hyper-universal and the switches inside is minimum. It has 

been shown that if the net topology is restricted to 2-pin nets, then a 2-D (4-

way) switch box can be built to be universal with only 6W switches, where W 

is the global routing channel density. A previous work has constructed a for-

mal mathematical model of this optimum design problem for switch boxes with 

arbitrary dimensions, and given a scheme to produce hyper-universal designs 

with less than 6.7W switches for 4-way F P G A switch boxes. The investigation 

of the most common 4-way switch box case is presented, and gives new theo-

retical results followed by extensive experimental justification. It is shown that 

such an optimum switch box can be built with a very low number of additional 

switches beyond 6 W for today's practical range of low W (e.g. just 6W plus 

1 or 2 additional switches for W up to 7). Even for arbitrary large PF, the 

bound can be shown to be under 6MW. To make experimental comparison, 

experiments are conducted by running today's published best F P G A router 

V P R on large benchmarks for the popular disjoint structure and the proposed 

designs. The results are quite encouraging. 
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摘要 

作者：張澤松 

本論文主要對快速「基於圖像可替換線檢驗算法」和著名多層超圖分割規劃法所結合建成的 

結構，以及對新提出的「超全體開關盒」在著名的現場可編程門陣列佈線程序器的可佈線性 

作出硏究。 

由於有電路的數目大大増加’所以分割規劃需要更有效率的算法。首先，電路會被造型成超 

圖，然後利用圖算法去解決電路分割規劃問題，而且當中沒有對電路作出修改。如果把電路 

的邏輯資料作出電路擾亂’即使是 佳的超圖分割規劃結果仍然可獲得改進。這種基於邏輯 

轉換分割規劃法的技術通常是比較複雜，而且很困難用公式表示出來。本論文介紹一個可以 

和任何超圖分割規劃法結合的多路分割規劃法結構。這結構提供一個新穎的電路擾亂技術並 

從極好的分割規劃結果中獲得改進。這方法更可以和其他圖分割規劃器結成一體。二路、三 

路、四路和五路的超圖分割規劃實驗在不同大小的基準電路上’把實驗結果和著名的圖分割 

規劃法在二路分割結果上的比較，這分割規劃方法可以取得百分之十五的分割成本減少，但 

只是増大了百分之零點三三的面積°實驗結果證明了這多層超圖分割規劃法和圖像可替換線 

檢驗算法的共同合作效力。 

在現場可編程門陣列中，全體「超全體」的開關盒是指能夠令所有兩端腳「多端腳」線在乎 

合全局佈線密度限制的情況下，都能詳細地佈線出來。—個 優良的開關盒必須是「超全體 

的」以及使用的切換線數目爲 少。當網絡拓樸被局限於兩端腳時，只需要用六倍全局佈線 

通道密度(簡稱「密度」）的切換線便可建成一個兩維「四向」的超全體的開關盒。一個早前 

的硏究已經把數學模型去解決超全體開關盒在任何維數的 優化問題，而且，還有提出了一 

個少於六點七倍密度的切換線的超全體開關盒設計在四向的現場可編程門陣列的開關盒上。 

本論文介紹了 普遍的四向開關盒的硏究和新理論性的結果及其廣泛的實驗證明。而且一個 

佳的開關盒只需要很少數目的附加切換線在現今實際 少的六倍密度上(例如：在佈線路線 

密度等於七的時候，只需要在六倍密度上加一至兩條附加切換線）°甚至在大的佈線路線密度 

上，切換線的上限只低於六點三四倍的密度。爲了作出比較’選擇現今發表了 佳的現場可 

編程門陣列的佈線器，這個新設計及解體的開關盒分別在大型的基準電路上作出實驗和比 

較，而且結果令人鼓舞。 
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Chapter 1 

Introduction 

1.1 Motivation 

Integrated Circuit (IC) technology has evolved for many times from Small 

Scale Integration (SSI) to Very Large Scale Integration (VLSI). ICs are widely 

used in computers, electronic devices and even implantation of human body. 

According to Moore's law, the capacity of a chip is doubled for every 18-24 

months of the previous chip as shown in Figure 1.1. Due to the huge number 

of components of circuit design, it is not practical for designer to repeat the 

fabrication process. As a result, Computer-Aided Design (CAD) tools [SW96 

are developed for physical design which is one of the critical step in VLSI 

design cycle. The goal of physical design is to fit the design into a compact 

area for fabrication. Physical design is a very complex process and thus it 

is broken into many different stages from partitioning to routing. The netlist 

extraction by layout synthesis, design verification and validation check are also 

performed on the layout during physical design stage. This thesis addresses 

the two important steps of physical design, partitioning and routing especially 

for Field-Programmable Gate Arrays (FPGAs). 

In the era of deep sub-micron, many problems arise and designers have to 

tackle them such as the domination of interconnect delay, failure to meet timing 

requirement and insufficient rout ability on different devices. By considering 

1 



Chapter 1 Introduction 2 

wm •搬 mm i 細 , 
i { ) f i 

！ i ； : , - 5 0 0 

9U«V> —-„l …-
I I ； 'Ji'fUU 

: i S 转 
1M i 丨 丨 J 广‘'îrtstirrr ^ 
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Figure 1.1: Moore's Law vs Industrial C P U size (from Intel) 

more circuit information in the physical design stage, we can improve the over-

all performance, get a better utilization of chip area, better yield and reduce 

the cost. The idea behind is to apply Alternative Wiring techniques [EC95] in 

order to remove some wires along the critical path, or replace some wires in 

congested area with those in uncongested area. Alternative wire allows adding 

and removing wires inside the circuit without changing the circuit functionality. 

Thus, it can explore a large degree of freedom in many different physical design 

problems, such as logic optimization [EC95], circuit partitioning [CLMS95] and 

timing optimization [EEOU96 . 

The idea of VLSI circuit partitioning is to divide a circuit into smaller sub-

circuits (clusters). The objective is to minimize the interconnection between 

clusters with balance constraints. Due to the increase of the VLSI design com-

plexity, circuit partitioning is getting more and more crucial. The system may 

consist of several hundred million transistors and most of the algorithms in 

physical design cycle and logic synthesis can not handle such large problem 

size or become ineffective. As a result, circuit partitioning becomes the first 

step in physical design cycle. A large system becomes smaller manageable 

components which can be solved in a top-down hierarchical design methodol-

ogy. The feasibilities of placement, floorplanning, global routing and detailed 

routing also depend on the quality of the partitioning solution. 

Nowadays, in deep sub-micron VLSI design, the interconnection delays 
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dominate the gate delays. A larger die size means a longer routing delay on 

chip. A n effective partitioning algorithm becomes the fundermental key to 

improve system performance. There are many different approaches to tackle 

this partitioning problem including move-based approaches, geometric rep-

resentations, combinatorial formulations and clustering approaches [AK95b . 

Recently, a new trend is to integrate existing partitioning algorithms with 

multi-level approach [ZSC96, KAKS97]. Most of the algorithms model the 

circuit as graph (hypergraph) and seek for optimal solution. However, these 

methods do not consider the logic function of the circuit, that is the function 

performed by each node. 

Alternative wiring is a technique to transform a circuit into another but 

functionally equivalent circuit. It can be well-used for post-layout logic syn-

thesis, logic optimization and other C A D problems. Graph Based Alternative 

Wiring ( G B A W ) is newly introduced and it is very efficient in identifying al-

ternative wires. This motivates the integration of G B A W technique for circuit 

partitioning. 

Nowadays, logic designers have several good logic devices to realize the dig-

ital logic functions. These devices include Small-Scale Integration (SSI) chips 

such as 7400 series, Application-Specific Integrated Circuits (ASICs) and Pro-

grammable Logic Devices (PLDs) such as Simple PLDs (SPLDs), Complex 

PLDs (CPLDs) and Field-Programmable Gate Arrays (FPGAs) [BFRV92； • 

With the huge logic resources, short turn-around time and user-programmability, 

F P G A s are easy for logic designer to modify their sophisticated design and re-

duce the manufacturing time. After the first emergence into market, F P G A s 

have been continuously growing and in the leading place amongst other logic 

devices. A typical F P G A composes of three major components: logic modules, 

routing devices and Input/Output (I/O) devices. Routing resources compose 

of pre-fabricated wire segments and programmable switches (switch-box). 
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Switch modules are the most important components of the routing re-

sources in F P G A s . Programmable switches usually have high resistance and 

capacitance, and they consume large amount of area [ea88, ea89]. Thus an ex-

cessive number of switches means a slower and larger design. Higher routability 

means a smaller number of tracks to complete the design routing and reduces 

the size of F P G A . As a result, it is desirable to investigate the routability of 

switch-box for a better area performance design. 

The rewiring technique can also be applied to layout-driven logic synthesis. 

G B A W technique is able to locate alternative wires such that the congested 

wire can be removed, thus the whole design can become routable within the 

smaller number of tracks. 

1.2 Aims and Contribution 

There are two main parts in this thesis: circuit partitioning by using logic 

perturbation technique and F P G A routing employing Hyper Universal Switch 

Box (HUSB). 

Firstly, the identifying alternative wiring power of the G B A W is further 

improved by introducing new rewiring patterns. The comparison of logic op-

timizations between famous ATPG-based R A M B O and augmented G B A W 

is also presented. Based on new rewiring technique, logic optimizations on 

M C N C benchmark circuits are successfully conducted and the integration of 

G B A W with the well-known multi-level graph partitioner (hMETIS-kway) is 

also done. The results showed that it is possible to obtain an improved parti-

tioning result from near optimal solution. 

Secondly, the construction and mathematical model of Hyper Universal 

Switch Box (HUSB) are given. Further investigation of the quality of H U S B 

is done by giving new theoretical results and adopting efficient F P G A router 

V P R which is used to generate experimental justification. A n encouraging 
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result over the comparison between the popular disjoint structure (XC4000) 

and the proposed designs is obtained. 

Our proposed design flow for F P G A s has two stages. In the first stage, the 

interal switch-box architecture is modified in order to achieve high routability. 

In the second stage, the rewiring engine G B A W will be integrated into the 

whole F P G A design flow which is not yet completed. 

1.3 Thesis Overview 

This thesis is organized as follows. Chapter 2 presents the background of 

physical design. Chapter 3 introduces the alternative wiring engine ( G B A W ) 

and shows the comparison between R A M B O and G B A W on logic optimization. 

Chapter 4 discusses the new approach to further improve the partitioning 

solution by hMETIS-kway. Chapter 5 addresses the quality of F P G A routing 

result by V P R with enhanced H U S B (H'USB). Finally, Chapter 6 concludes 

this thesis and discusses the future works. 



Chapter 2 

VLSI Design Cycle 

A simple VLSI design cycle starts from system specification of a VLSI chip 

and ends as a tested and packaged chip. The design flow involves architectural, 

functional, logic, circuit design and the last step before fabrication is physical 

design which collects the net-list information of a circuit into layout. At the 

beginning of the VLSI design process, the user can get the specifications for the 

size, speed, power and the functionality of the VLSI system [She98, Mic94]. In 

the next step, the VLSI designers are required to design a system which meet 

all these constraints. Nowadays, the Hardware Design Language (HDL) such 

as V H D L and Verilog are commonly used in VLSI design. H D L language are 

used to express the circuit and timing information for simulation and verifica-

tion. Since the design scale is large and it is impossible to design by hand, the 

Computer-Aided Design (CAD) tools become crucial and widely used for a fast 

and correct design. The typical design flow is shown in Figure 2.1. Logic syn-

thesis is a step to translate the register transfer level (RTL) of a digital system 

to the gate net-list information. In the other words, logic synthesis is applied 

to the extraction from R T L language and deals with the logic optimization, 

testability and verification. In physical design step, there are many C A D tools 

developed for automatic layout, design rule check and extraction [She98]. A 

tested VLSI chip will be available after all these complex stages. 

6 
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System ^ VLSI system information 

Specification 

1 r 

High-level ^ VHDL or Verilog descriptions 

Design 

1 r 

Logic ^ generate optimal logic netlists 

Synthesis (minimum delay, area, power) 

Physical ^ Automatic layout tools. 

Design design rule checker, extractors 

Fabrication ^ F r o m Wafer to circuit 

1 r 

A Tested ^ ship to market 

Chip 

Figure 2.1: The Path to Silicon Chip 

2.1 Logic Synthesis 

Logic synthesis enables the mapping from R T L level to an optimized gate-level 

description. The generated description must fit the functional specification and 

user constraints. It basically begins with logic optimization and provides an 

efficient implementation to a high quality silicon chip. With the aid of C A D 

tools, the circuit designers are allowed to work at higher levels of abstraction 

and easily modify their design. Logic synthesis tools such as "Synopsys" not 

only reduce the logic but also perform timing analysis, technology mapping 

and ensure the testability of the generated net-list. In the process of logic 

synthesis, it aims at: 

• minimizing the layout chip area. 

• minimizing the critical path delay. 

• maximizing the testability such that all test vector can be found. 
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2.1.1 Logic Minimization 

Logic synthesis are usually divided into two-level synthesis (PLA) and Multi-

level synthesis [BHSV90]. Therefore, many optimization methods are devel-

oped and can solve the problem in reasonable computation time. The algo-

rithms include the minimization of don't cares [BBH+88], global flow [BT91], 

O B D D representation [Bry86] and rewiring techniques [CE93, WLFOO] which 

change the original circuit net-list information. 

2.1.2 Technology Mapping 

Technology mapping [Keu87] is the process to translate the abstract descrip-

tion such as H D L languages into a hardware description by using a specific 

technology. The result is a mapped circuit. Therefore, one description lan-

guage can be mapped into different architectures by varying the technology 

mapping library. 

2.1.3 Testability 

The circuit which cannot provides a complete single stuck-fault test vector 

is called an untestable circuit. Testability is an important criteria for circuit 

design, otherwise the fabricated chip cannot locate the fault wire. 

2.2 Physical Design Synthesis 

Physical design is also called as layout phase which is the process to determine 

the exact location for the logic devices and the interconnection between differ-

ent devices. Physical design is a complex process and it can be broken down 

into several steps which are shown in Figure 2.2. Many research groups focus 

on each of the sub-steps in order to obtain high performance design [She98 . 
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The cost of fabrication is very high, therefore the objective for physical design 

is to produce a layout with small area, few defects and high yield. 

Circuit 
Design 

} r 
I 

Physical I  
Design ^ ^.^. . 

Partitioning 
1  I 
I  

Floorplanning 
Sc Placement 

1  
I I  

Routing 
1  
I 
1 

Compaction 
1  

I 
I  

Extraction & 
Verification 

I I 
J  
} r 

Fabrication 

Figure 2.2: VLSI Physical Design Cycle 

2.2.1 Partitioning 

Partitioning is the first step in physical design owing to the increase of prob-

lem size. Many of the algorithms in the latter steps become infeasible, thus 

partitioning breaks the original problem into small sub-problems and solves 

eventually. The output of partitioning is a set of clusters which contains a 
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set of logic gates, and the interconnections between clusters. In Figure 2.3, it 

shows a good and a bad bi-partitioning. The partitioning result for the good 

one is reduced from 9 to 1. 

s-働 
Cut \ Z Cut 

interconnections 

Bad bisection Good bisection 

Figure 2.3: Example of Bi-partitioning 

2.2.2 Floorplanning & Placement 

The objective of floorplanning is to arrange the components of an IC in order 

to have a compact layout. The two floorplans show in Figure 2.4 are slicing 

and non-slicing floorplan. Slicing floorplan can be recursively cut horizontally 

or vertically but non-slicing cannot. In the placement stage, the block to be 

placed are layouted and have pin assignment. After placement, the IC will 

have minimum area such that the interconnections between modules can be 

completely routed. Since a packed placement solution does not guarantee a 

routable design, the placement step is usually taken again after routing. 
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Slicing floorplan Non-slicing floorplan 

Figure 2.4: Example of Floorplanning 

2.2.3 Routing 

In order to connect the wires between blocks, routing step is usually done in 

two steps as the global routing and detailed routing. Global routing will specify 

the region used for detailed routing and detailed routing will determine the 

exact location for each connection. It aims at shorter wire length and less 

resources used. Figure 2.5 shows a failure channel routing example. 

Terminals 

\ 2 3 3 4 
fH it • • • # 
• congestion 
i ----- 二-----------' Z 

_ o ^ \ / i 1 � 
4 \ / 1 2 0 

Trunks 

Figure 2.5: Example of Channel Routing 
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2.2.4 Compaction, Extraction & Verification 

Compaction is a step to reduce the chip's total area and signal delay between 

modules of the circuit. Example of x-y coordinate compaction is shown in 

Figure 2.6. The circuit extraction step [BB91] consists of determining the 

circuit connectivity and calculating various electrical parameters such as re-

sistances and capacitances. The last step before fabrication is to verify the 

design passing all the design rule. 

/ 
/ 

, B 
A A B 

/ / 
/ / 

/ / 
/ / t t 

’ , 

Before Compaction After Compaction 

Figure 2.6: Example of Compaction 

2.2.5 Physical Design of FPGAs 

The time-to-market for even ASIC chip is unacceptable for many applications, 

therefore the short turn-around time of F P G A s takes advantage and gain more 

popularity. Since the most of the physical design algorithms are inapplicable in 

FPGAs, the C A D tools development of F P G A s are separated from others. For 

example, the traditional channel routing algorithm [SW96] cannot be applied 

to FPGAs. It mainly consists of three areas: partitioning, placement and 

routing. 



Chapter 3 

Alternative Wiring 

3.1 Introduction 

Alternative wiring technique has a wide range of applications such as circuit op-

timization [CE93，EC93, EC95, C M S C 9 6 , CvGLMS99], partitioning [CLMS95； 

and F P G A synthesis [CCWMS94b，CCWM97]. Alternative wiring refers to the 

reconstruction of circuit while keeping its functionality intact by addition and 

removal of wires. A wire in a circuit is redundant if its addition and removal 

does not change the functionality of the circuit. The concept of alternative 

wiring is to add a redundant wire to the circuit that in turn will make another 

wire become redundant and its removal would lead to some useful circuit trans-

formation for certain objectives. Due to the wide range of application, many re-

search groups are working on the efficiency of locating alternatives wiring. The 

traditional rewiring tools apply Automatic Test Pattern Generation (ATPG)， 

Implication analysis [KSM97] and Recursive learning [KP94] techniques in or-

der to search alternative wires. However, these kinds of techniques consume 

too much C P U expenditure, and another Graph-Based Alternative Wiring 

technique is proposed to replace the A T P G approaches. 

Consider the circuit given in Figure 3.1(a). This circuit is irredundant. 

By adding a connection from the output of gate g^ to the input of gate Qq 

(shown as a dotted line in Figure 3.1(b)), the functionality of the circuit does 

13 
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not change. In other words, the added connection is redundant. However, the 

addition of the connection causes two originally irredundant wires becoming 

redundant as shown in Figure 3.1(b). After removing these two wires and 

associated gates that either become floating ge or have a single fanin 々 4 and 

g、the circuit can be greatly optimized as shown in Figure 3.1(c). 

c \  
g4 ) 

s  

二 ^ 
f  

(a) irredundant circuit 

c N  
g4 ) 1 

b redundant 

e ^ 1 ^ 

^ redundant :) g ^ — ： 

^ 
f  

(b) adding a redundant wire 

e ^ ^ — — 

- g2 )—' 

c Y ^ J 。2 

: = B — — ^ p 
f — — 

(c) final irredundant circuit 

Figure 3.1: Example of alternative wiring 
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This chapter is organized as follows. The notation and definitions are intro-

duced in Section 3.1. The application of rewiring is presented in Section 3.2. 

In Section 3.3, logic optimization analysis is introduced. The details of Aug-

mented Graph-Based Alternative Wiring are stated in Section 3.4. Followed 

by the discussion on Logic Optimization by using G B A W and experimental 

results are presented in Section 3.5. Conclusion is drawn in Section 3.6. 

3.2 Notation and Definitions 

A combinational circuit can be represented by a Directed Acyclic Graph (DAG) 

where vertices correspond to the primary inputs (PI), primary outputs (P〇) 

and the internal gates of the circuit. PI and P〇 are nodes which have only 

outgoing edges and incoming edges respectively. A n internal node has at least 

two incoming edges and one outgoing edge and is associated with a Boolean 

function. Inverters are not considered as internal nodes, but as polarity of 

edges during logic domain perturbation. In a Boolean network, the in-degree 

of node y, denoted by d- (y), is defined as the number of edges entering y. 

The out-degree of node y, denoted by d+ (y), is defined as the number of edges 

leaving y. A node y is defined by a triplet {op,d~{y),d'^(y)), where op is the 

Boolean operator of y which can be any associative operator like A N D , O R , 

N A N D , or N O R . 

A wire is replaceable if it has at least one alternative wire. A graph con-

figuration D is used to m a p the logic function from a Boolean Network G. 

For each node rii in sub-network S in network G, rii is mapped to a triplet 

{op, Zi, 22) in D where op denotes the operator representing the Boolean func-

tion of rii and zi, i) are non-negative integers. All edges inside S are preserved, 

while the edges outside S are omitted in D. In most cases, h equals d— (jii) 

and Z2 equals d+ (rii). The element of a triplet (op, d-(y), (i+(y)) can also be 

don't care. For the first element, don't care means any operator. For the other 
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elements, don't care can be any positive integers. A configuration is used to 

denote a minimal pattern containing both the target and its alternative wire. 

The mapping is illustrated in Figure 3.2. 5 is a sub-network of G. Di 

and D2 are two mappable configurations of S. A A:-local pattern denotes 

a minimal sub-graph with the distance between the alternative wire and its 

target wire being k. The distance between two wires is defined as the difference 

of maximum path length from any primary input to each of the wires. 

G 
S I 

g. 1 

b — _ _ > n ^ I r ^ 

i 
！ 

(a) Boolean network G and its sub-networks 

(AND,2,1) (AND,2,2) 

Di 
(b) A configuration of S, Dj 

(AND’dc’l) (AND，dc’dc) 

D2 
(c) Another configuration of S, D^ 

Figure 3.2: Configuration of a sub-network 

A wire is defined as a 2-point connection between a pair of source and sink 

nodes. W h e n a larger circuit is partitioned into two sub-circuits, we define the 

wires crossing the partitioning cut line as cut wires, a cut net is also defined as 
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a hyperedge connecting partitions and the cut cost as the number of partitions 

that the hyperedge connects. 

3.3 Application of Rewiring 

Alternative wiring greatly increases the flexibility of a circuit in which the wires 

of the circuit can be altered without changing the circuit functionality. Thus, 

the circuits before and after rewiring are said to be functionally equivalent. As 

a result, alternative wiring provides a wide range of applications in different 

steps of physical design automation. 

3.3.1 Logic Optimization 

As shown in Figure 3.1, the circuit size is reduced by adding and removing 

redundant wires. A smaller circuit containing the same logics always implies 

less resources to spend on each step of VLSI design. Therefore, logic opti-

mization by alternative wiring is always being the frontier of all VLSI design 

problems [CE93 . 

3.3.2 Timing Optimization 

The longest delay path (critical path) usually consists of more than one wire. 

If it is possible to break the critical path with wire which is not on the critical 

path. Alternative wiring technique is used to improve the performance as 

shown in Figure 3.3. The target wire is replaced by other alternative wires 

inside component 1 or 2. By several iterations which break the critical path, the 

longest path might be greatly reduced and high performance gain [EEOU96 

can be achieved. 
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component 1 component 2 
target wire 

I I \ 
I N ,, * • 

z 4 � 
critical / 、、、 

、、 path ‘ 、 \ i \ / 
\ / \ / \ / 1—1 / * \ / 

alternative wire 

Figure 3.3: Example of Timing Optimization by alternative wiring 

3.3.3 Circuit Partitioning and Routing 

Figure 3.4 shows the number of wires along the cut line can be reduced by re-

placing with other wires not in cut set. The application of rewiring over circuit 

partitioning will be further investigated in the next chapter. Rewiring tech-

niques can also be applied to resolve the unroutable F P G A design [ C C W M 9 7 

as shown in Figure 3.5. 

L . target wire , 。 
component 1 ! component 2 

I 

1 • 
� 

z 岸 ^ ����� 

/ � � � 
\ ^ / 、、< 

\ . ！ 
\ / \ / 
LJ cut line / \ / 
alternative wire 

Figure 3.4: Example of Circuit Partitioning 
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target wire 

|\ I I I I I 

_ _ \| _ _ _ _ 

^ •今 --
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I  
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I  

I 

alternative wire 

Figure 3.5: Example of Routing 

3.4 Logic Optimization Analysis 

3.4.1 Global Flow Optimization 

Global Flow Optimization [BT91] allows the reconnection of immediate fanouts 

of a node to the input of other nodes. By modeling the problem as flow graph 

and solving the problem by maxfiow-mincut algorithm, the original circuit 

size can be reduced. As shown in Figure 3.6, one of the node s is picked 

from the circuit and has the following circuit diagram. By proper transfor-

mation [BT91], a flow graph is built and is solved by maxflow-mincut method 

as shown in Figure 3.7. The maxflow-mincut solution is 仍8, gg and gg. As a 

result, the original six connections from s is reduced to three without changing 

the circuit functionality as shown in Figure 3.8. Logic optimization is done by 

constructing the flow graph on every node in the circuit. 
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⑴ 

- 0 . � J > ^ s 

d ^ V - � 

^ LnJ 

r̂ ) 
riJ^ s 

Figure 3.6: Example of Global Flow Optimization 

Figure 3.7: Flow graph for the circuit in 3.6 

3.4.2 OBDD Representation 

In [MKLC89], the Transduction (Transformation and Reduction) method is 

proposed for multilevel logic optimization which allows adding/deleting con-

nections and gate merging. However, the runtime and the memory storage 

exponentially increase when the number of inputs increases. It is because the 

Transduction method uses truth tables to represent the logic function. In or-

der to save C P U time and memory space, the same Transduction method is 

implemented by using Ordered Binary Decision Diagrams ( O B D D ) [Bry86 



Chapter 3 Alternative Wiring 21 

、⑴ 

= = = q nil 

J^^^LJ (。， ^ “ 
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3 j^o [K 
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Figure 3.8: Result of fanout re-connections 

as the data structures for representing the logic functions. O B D D is a com-

pact logic representation and it is a reduced binary decision tree and requires 

less memory than other methods. As shown in Figure 3.9，a logic function 

f = xl ' x2 x3 is represented. 

0 1 

Figure 3.9: O B D D representing f = xl - x2 x3 
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3.4.3 Automatic Test Pattern Generation (ATPG) 

Nowadays, Multi-level logic synthesis becomes more practical than 2-level logic 

synthesis because they represent the majority of circuit designs [HS96]. Multi-

level circuits refer to those circuits have arbitrary number of gates between 

primary input and primary output. 2-level circuits are typically represented 

by S O P or P〇S forms, i.e. A N D plane plus O R plane. There are many 

methods which address the problem of Multi-level minimization such as con-

sidering the don't care set [BBH+88], and Automatic Test Pattern Generation 

(ATPG) [CE93]. A T P G techniques are built upon the fault models. There are 

many possible fault models and most common one is single stuck-at-0/1 fault 

model. If a wire connecting to A N D gate detects a stuck-at-1 fault, then it 

can be removed directly. A T P G will generate a vector for a stuck-at-fault test 

in the circuit. A vector means the zero or one value to all primary inputs. For 

a real circuit, if there exists a fault which is untestable that means there is no 

suitable test vector for such fault. The wire associated with this fault is said 

to be redundant. 

Based on this redundancy test, many A T P G based rewiring tools are pro-

posed. There are two main classes for A T P G tools, they are add-first based 

and target-first based A T P G techniques. Add-first means by adding one or 

some redundant wires into a circuit, some other inredundant wires become 

redundant and thus can be removed. Target-first means first choose one wire 

(target wire) in the circuit. By adding a suitable wire, this target wire becomes 

redundant and can be removed. 

By using SIS package [SSLea92] which developed by University of Califor-

nia, Berkeley, Redundancy Addition and Removal for Multilevel Boolean Logic 

Optimization ( R A M B O ) [EC95] is first proposed. R A M B O creates fault list 

for each node and removes all redundant wires. The objective is to reduce 



Chapter 3 Alternative Wiring 23 

the wire count so as the area of the circuit. R A M B O shows significant im-

provement over combinational and sequential circuit and even better results 

are obtained when incorporate with MIS-II [BRSVW87]. There are many im-

provement works and applications built upon R A M B O such as Perturb and 

Simplify [CMSC96], Rewiring [CGMS96, CvGLMS99] and post-layout in FP-

G A s [CCWM97]. 

3.4.4 Graph Based Alternative Wiring (GBAW) 

Graph-Based Alternative Wire ( G B A W ) is a newly proposed and efficient 

rewiring technique. It models a circuit as a directed acyclic graph (DAG) 

and searches alternative wires by checking graph matching between local sub-

networks and the pre-specified minimal sub-graph configurations. A configu-

ration is a minimal circuit pattern containing alternative wires within a given 

distance. Experiments show that the number of all such local minimal sub-

graph is limited. Most of the alternative wires are located topologically "near" 

to their target wires. It has been shown that about 96% of the closest alter-

native wires [WLFOO] are only 2-edge distant from their target wires. W h e n 

sub-network matches a pattern, G B A W can quickly determine the target wire 

and the corresponding alternative wires. Obviously, if Wr is an alternative wire 

of wt, then Wt is also an alternative wire of Wr. Both Wt and Wr are presented 

in a pattern. But in a sub-network, only one of them exists. In [WLFOO], it has 

shown that by using G B A W as a random perturbation engine, a competitive 

logic optimization result is obtained when comparing to R A M B O while the 

runtime is much reduced. 

0 local pattern 

In G B A W , there are more than 40 patterns for rewiring. These 40 patterns are 

grouped into three main types, 0-local, 1-local and 2-local. A 0-local pattern 
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is the edge distance between the target wire and alternative wire equals zero. 

O n the other words, it means a node substitution for which two nodes having 

the same logic function can be replaced by each other. If the two nodes have 

the same fanins set, they are said to be logically equivalent. Figure 3.10 shows 

the 0-local pattern in G B A W . 

(opi’k’dc) (dc,dc,dc) 

a货 z Z 

(5 
(op3，k，dc) (dc，dc，dc) 

Figure 3.10: 0-local pattern in G B A W 

1 local patterns 

There are three basic 1-local patterns in G B A W as shown in Figure 3.11. The 

bolded wire represents the target wire that can be removed if the dotted wire is 

newly added to the circuit. For example, in case 1.1, the target wire a ^ gi can 

be replaced by a 仍.Note that the operator of gi and 仍 can be changed to 

other logic gates. This change increases the search space of finding alternative 

wires in real circuit, and it reduces the runtime in identifying alternative wires. 

2 local patterns 

The alternative wire is 2-edge far away from the target wire is called 2-local 

pattern. The number of gates inside a 2-local pattern is increased as well as 

the number of possible 2-local pattern. Thus, it is necessary to include more 

2-local patterns into G B A W . In Figure 3.12, three 2-local patterns are shown. 



Chapter 3 Alternative Wiring 25 

AND AND (or NAND) 

\i，dc,1) (̂ clc.dc) 

Gk：： & z：：^ 
� • • � � “ • 

\ 、 z 一 
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(a) Ca se 1-1 ’ op ,=AND , op^ =AND (or NAND); or op^=OR , op2=OR(or N O R ) 

(0Pi’k’dc) 

(b) Ca se 1-2，op^=AND, op^ =AND (or NAND); or o p , = O R , op^^ORCor N O R ) 

a n d a n d (or NAND) 

"̂i，dc，1) (̂ clc.dc) 

G k ： © ：：：：：<$ 
z - Z 

(c) Ca se 1-3’ op^=NOR , opg =NAND (or AND); or op^=NAND, op2=OR(or N O R ) 

Figure 3.11: 1-local patterns in G B A W 

Proof of one 2 local pattern 

In order to maximize the searching power, pattern cluster is proposed to put 

similar patterns together. Currently, 5 clusters are built on top of more than 

30 2-local patterns and the new family members are continuously put into 

G B A W in order to enhance its searching ability. 

In Figure 3.13 below, a ^ gi is the target wire, let 仍 = ( a * x)' where 

X is the other inputs of gi.仍=(仍 * y)' where y is the other inputs of g2. 

g^ = {g2^zy where z is the other inputs of g^. Therefore, gs = 二 

{{a' + x')yyzy = {{a'y + x'yYzY = {{a'yYix'yyzy = (("4)(工之)'.Hence, this 

pattern is constructed and verified. Some other 2-local patterns are shown in 

Appendix B. 
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(N0R’dc’1) (NAND，dc,1) (NOR’dc，dc) 

Gk： O z：：^ 
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�� z 

(a) Case 2-1 

(0R’dc’1) (AND’dc’1) 

Z , , or 
• z " (OR，dc，dc) 

(AND’k’dc) 
(b) Case 2-2 

dc (OR,dc’h) (AND,t,1) (OR’dc’dc) 

• ^ ^ (AND,s’dc) 

(c) Case 2-3 

Figure 3.12: 2-local patterns in G B A W 

3.5 Augmented GBAW 

Owing to the high applicability of alternative wiring technique, many related 

algorithms were published in last decade. Some research groups prefer al-

gorithms based on Automatic Test Pattern Generation (ATPG) to perform 

testing of redundancy since A T P G requires little memory to process large 

circuits. One of the circuit rewiring schemes based on A T P G is the well-

known Redundancy-Addition and Removal for Multilevel Boolean Optimiza-

tion ( R A M B O ) technique [CE93, EC93, EC95]. R A M B O applies ATPG-based 
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G ) r — 

Figure 3.13: Example of one 2-local Pattern Verification 

implication technique to identify redundant wires among a large number of can-

didate wires. It has demonstrated to be very flexible and practical in solving 

various C A D problems. Improvement in efficiency is achieved by eliminating 

unnecessary redundancy check [CvGLMS99, LWBOO] on the same wire but 

since the number of candidate wire for testing can still be large, R A M B O may 

still require a long running time due to the intrinsic exponential time property 

of A T P G algorithms. 

In [WLFOO], a new graph-based technique on identifying alternative wire, 

called Graph-Based Alternative Wiring (GBAW), was first proposed. It first 

models a circuit network as a directed acyclic graph (DAG) and identifies 

alternative wires by performing graph pattern matching between local sub-

graph of the network and the pre-specified minimal sub-graph configurations 

containing alternative wires within a given range limit. Experiments show 

that the number of all such local minimal sub-graph is limited and most of the 

alternative wires are located topologically "near" to their target wires. It has 

been shown that about 96% of the closest alternative wires are only 2-edge 

distant from their target wires. 

G B A W produces a competitive result in finding alternative wire when com-

paring to R A M B O . G B A W not only performs well in searching alternative 

wires but also runs very fast. Experiments show that on average, the C P U 

running time of G B A W is just 1.4% of that of R A M B O . This significant short 
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running time makes G B A W being a potentially considerable different technique 

for identifying alternative wires. The efficiency of G B A W is gained proba-

bly mainly because of its avoidance of running the could-be CPU-expensive 

Boolean implications. And since there exist common alternative-wire patterns 

that repeatedly occurs in the same circuit, it makes the one-time analysis effort 

of pattern based rewiring scheme practical. 

It was also observed that G B A W may not find many 2-edge distant pat-

terns, if it is limited to search the small pre-defined set of minimal configura-

tions like the early version shown in [WLFOO]. Therefore, a much extended 

G B A W scheme is presented, mainly 2-local pattern based, to greatly improve 

the effectiveness of G B A W . By including the concept of pattern cluster, the 

augmented G B A W is kept simple while expanding the pattern family. With 

the refined G B A W , an encouraging result in circuit optimization is achieved 

when using it as a perturbation engine. The refinement and achievement are 

presented in detail in the next section. 

3.6 Logic Optimization by using GBAW 

A much extended Graph-Based Alternative Wiring ( G B A W ) scheme to iden-

tify alternative wires in multi-level logic with promising results is presented. 

By modeling subsets of circuits as minimal graphs and applying purely graph-

based local pattern search technique, more than 40 graph patterns are found 

and they contain alternative wires within 2-edge distance from the target wire. 

Applying proper grouping technique for the similar patterns, the complexity 

of the rewiring technique can be reduced. Experimental results on M C N C 

benchmarks show that the technique is much faster than the ATPG-based 

technique R A M B O with competitive number of alternative wires found. With 

this augmented pattern family of alternative wires, it is able to find 30% more 

alternative wires compared to R A M B O with 75 times speedup on average. 
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G B A W is applied in logic minimization as a perturbation engine and simplify 

the target circuit by SIS algebraic operations. Results show a further re-

duction of 11.1% in literal count compared to applying algebraic operations 

alone. 

Table 3.1 shows the number of target wires which have 2-local alternative 

wires. The results are competitive with R A M B O (98%). For each target wire, 

it may have more than one alternative wire and some of them may be 2-local 

patterns. Since R A M B O uses A T P G techniques in locating the alternative 

wires, and the search space is much larger than G B A W . However, a promising 

result is obtained by G B A W since backward alternative wire can be done while 

current R A M B O does not. 

RAMBO GBAW Searched (%) 
Name (target/alter.) (target/alter.) (target/alter.) 

lo/n lo/IS 100/86 
9sym-hdl 5/6 5/8 100/133 

C1908 42/57 44/44 105/77 
C2670 85/99 83/94 98/95 
C3540 208/297 238/250 114/84 
C432 33/44 40/40 121/91 

C5315 76/113 69/73 91/65 
C6288 3/17 3/18 100/106 
C7552 132/219 76/82 58/37 
C880 27/62 27/27 100/44 
alu2 64/100 54/56 84/56 
alu4 120/198 84/86 70/43 

apex6 72/121 68/70 94/58 
b9_n2 8/10 3/3 38/30 
comp 28/44 17/17 61/39 
des 671/907 795/795 118/88 

duke2 35/64 29/29 83/45 
misex3 50/167 41/41 82/25 

rot 46/75 31/32 67/43 
sao2-hdl 25/38 9/9 36/24 

terml 41/77 27/28 66/36 
ttt2 28/68 10/13 36/19 
x3 71/82 76/76 107/93 

Total 1880/2886 1839/1909 98/66 

Table 3.1: 2-local pattern comparison 

The improved G B A W is implemented on Sun UltraSparc 5 workstation for 

M C N C benchmark circuits and results are shown in Table 3.2. The smallest 

benchmark circuit Bxpl.hlif is shown in Appendix. The speed and the ca-

pability of locating alternative wires between R A M B O and G B A W are also 
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compared. In the table, it is shown that G B A W are able to find 30% more 

alternative wires than R A M B O with only 1.38% C P U time on average. 

original circuit 

Decompose complex gates into 2-input gates 
by using SIS package "map", 
and library "mend . genlib" 

一 - - - - - - - -���� iterate 10 times 
, 、、： 

/f 、̂、 
/ Random perturbation by GBAW �� 

(Different circuits are obtained) \ 
/ * I * 
I j 
I J 
I J I 
\ / 
�� Logic Simplification by SIS package , 
�� (script.algebraic, script.boolean) / 

Best Optimized circuit 

Figure 3.14: The Logic Optimization Process by G B A W and SIS 

To demonstrate the application of the proposed scheme, G B A W is deployed 

in the perturbation and simplification process and depicted in Figure 3.14. In 

this process, G B A W performed some random transformations on the bench-

mark circuits and the network structure of the circuit was changed. Then the 

circuits were minimized by MISII standard script script, algebraic provided in 

SIS package. Before the perturbation using G B A W , the circuits were mapped 

by SIS command map with mcncl.genlih which transforms all the complex 

gates into gates with 2 fanins. For each circuit, the process was iterated 10 

times and all the best results are shown in Table 3.3. The average reduction in 

circuit size is 43.0% compared to the original circuit. W h e n compared to the 

minimization with algebraic script alone, a further 11.1% reduction is achieved. 
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RAMBO RAMBO GBAW GBAW 
Name alt, wires CPU alt, wires CPU 

9sym-hdl 27 1.56 40 0.16 
C1355 185 12.82 250 0.89 
C1908 127 33.52 240 0.68 
C2670 267 83.57 344 1.33 
C3540 569 273.80 816 2.15 
C432 129 10.26 188 0.37 
C499 16 6.05 34 0.6 

C5315 511 155.91 713 2.88 
C6288 1352 361.18 2191 4.18 
C7552 1709 143.95 617 4.2 
C880 151 9.86 239 0.66 
alu2 169 214.71 263 0.84 
alu4 333 270.50 493 1.61 

apex6 239 34.32 377 1.23 
b9_n2 48 1.65 71 0.17 
comp 57 9.18 58 0.21 
des 1468 729.92 2204 8.7 

duke2 157 46.55 281 0.63 
fSlm 49 6.19 65 0.25 
misex 216 124.48 439 0.97 

my_adder 46 1.16 0 0.23 
pclerS 29 1.3 30 0.12 

rot 243 48.04 406 1.1 
sao2-hdl 104 16.86 153 0.39 

terml 106 16.81 169 0.37 
ttt2 68 9.68 133 0.34 
x3 ^ 23.13 ^ 1.2 

Total “ 8639 2657.13 — 11224 — 36.7 
Normalized | 1 | 1 | 1.2992 0.0138 

Table 3.2: Comparison between R A M B O and G B A W 

3.7 Conclusions 

In this chapter, an augmented Graph-Based Alternative Wiring ( G B A W ) scheme 

is presented. Although there are more than 40 patterns included, an attrac-

tive efficiency is still maintained by using proper grouping of pattern families. 

G B A W has forward and backward search capability and can identify alterna-

tive wire efficiently. Experimental results showed that it is capable to find 30% 

more alternative wires comparing with the forward search R A M B O version. 

G B A W has a good coverage of alternative wires with 75 times speedup on 

average. W h e n using G B A W as the perturbation engine and combining with 

SIS algebraic operations, there is a further reduction of 11.1% comparing with 

the results by algebraic operations alone. 
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Circuit Size(lit.)of Size reduction vs. 
Circuit ~^iginal MISII Perturb Original MISII 

^ 172 125 0.468 0.273 
9sym-hdl 232 138 93 0.599 0.326 

C1908 883 582 524 0.407 0.100 
C2670 1444 800 714 0.506 0.108 
C3540 2267 1398 1367 0.397 0.022 
C432 392 296 229 0.416 0.226 
C499 854 559 552 0.354 0.013 

C5315 3282 1970 1875 0.429 0.048 
C6288 5195 3393 3339 0.357 0.016 
C7552 4105 2423 2285 0.443 0.057 
alu2 777 488 474 0.390 0.029 
alu4 1470 921 904 0.385 0.018 

apex6 1417 856 839 0.408 0.020 
b9_n2 208 141 130 0.375 0.078 
comp 270 170 141 0.478 0.171 
des 6655 3915 3766 0.434 0.038 

duke2 676 430 416 0.385 0.033 
f51m 244 169 146 0.402 0.136 

misexS 990 644 593 0.401 0.079 
my_adder 339 304 197 0.419 0.352 

pclerS 174 105 96 0.448 0.086 
rot 1251 797 762 0.391 0.044 

sao2-hdl 439 271 221 0.497 0.185 
terml 439 263 220 0.499 0.163 
ttt2 376 237 203 0.460 0.143 

34614 21442 20211 Average reduction 
Normalized 1 0：58^ 43.0% 11.1% 
Normalized 1 0.9426 

Table 3.3: Results for logic optimization 

It is also observed that R A M B O is still more flexible in locating the maxi-

m u m number of all possible alternative wires, it might be a good approach to 

couple both the advantages of R A M B O and G B A W for various emphasis of 

C A D applications. The future direction is to extend the set of A:-local pattern 

to cover more alternative wires for practical complex gates, extract more quan-

titative analysis of alternative wire pattern distributions for different kinds of 

circuits, which could turn to be useful for new macro library cell designs. More 

efficient algorithm will be developed to choose the suitable alternative wire for 

perturbation and to apply the G B A W technique on other C A D problems such 

as floorplanning and partitioning. 



Chapter 4 

Multi-way Partitioning using 

Rewiring Techniques 

4.1 Introduction 

The objective of circuit partitioning is to divide the circuit into sub-circuits 

such that the size of each component is reasonable and the number of inter-

connections between the components is minimized. As design scale expands, 

partitioning becomes increasingly important to circuit design automation. 

Traditionally, circuit partitioning is done by simply modeling the circuit 

as a graph (or hypergraph). Graph partitioning problems are known to be 

NP-hard [WC91]. A comprehensive survey [AK95b] has presented the recent 

directions of partitioning. Commonly used partitioning algorithms can be cat-

egorized into three classes. The first class strictly abide by the modeling graph, 

with no attempt to change the graph. High quality results have been reported 

by several algorithms which include iterative improvement based [WC91, FM82, 

DD96], clustering based [YCL92], and spectrum (eigenvector) based [HK91, 

ZSC96]. The second class of algorithms may modify the graph through node 

replications [KN91, MW96，EHS97, YW98]. Improvement is achieved by sac-

rificing some area due to node replications. These two classes both perform 

the partitioning task on the graph without considering the logic function of 

33 
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the circuit. The third class [CLMS95, BLSV92, C C M S 9 3 , KBZ94] couples the 

graph domain (nodes and their connections) and logic domain (function per-

form by each node). The tradeoff of improving the partitioning results is the 

expensive computational cost [BLSV92, CCMS93] and may only be applied to 

Field-Programmable Gate Array (FPGA) circuits [KBZ94；. 

Recently, many research works on multi-level partitioning are proposed [HL93a, 

HL93b, KK95c，KAKS97, AHK97b, WA98，KK99]. The general idea behind 

multi-level partitioning is to first cluster the whole problem by some useful 

algorithms to reduce the size, then apply a well-known graph domain parti-

tioner on the coarsened graph to get a good initial solution. The graph is 

then unclustered and a suitable partitioning refinement algorithm is applied in 

order to adjust the cut edge between partitions. The quality and the runtime 

by multi-level partitioning are very encouraging. In particular, Karypis and 

Kumar [KK99] proposes a partitioner called hMETIS-Kway. It first coarsens 

the hypergraph, then recursively bisects the graph into k-parts, followed by un-

coarsening the hypergraph with refinement algorithms. More recent research 

works [CKMOO, CLOOa, CLOOb], in comparison with hMetis-Kway, showed 

that the solution by hMetis-Kway is of high quality that the cut size cannot 

be further reduced greatly. 

Alternative wiring (rewiring) is the technique of adding single or multi-

ple redundant wires or gates to a circuit such that other wires or gates be-

come redundant and thus removable. This logic domain technique has been 

widely used for solving many logic level and physical level design problems 

[CE93, C M S C 9 6 , CLMS95, C C W M S 9 4 a , C C W M 9 7 , CMS94]. Circuit perfor-

mance can be improved by removing a wire on the critical path and adding its 

alternative wire elsewhere. Circuit routability can also be improved by substi-

tuting an unroutable wire in congested area by a routable alternative wire in 

some other circuit part. The cut size of a partition can be reduced by replacing 

the wires crossing the cut line. 
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(a) Partition before applying alternative wiring 

^ ^ O - n 「 。 1 
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(b) Partition after applying alternative wiring 

Figure 4.1: Circuit partitioning by rewiring 

Figure 4.1 illustrates how rewiring can be used to further improve an al-

ready optimum partition result obtained by a typical graph domain partition 

algorithm. The global optimum partition result in the graph domain, with a 

cut size of 3, is shown in Figure 4.1(a). However, by applying the logic domain 

rewiring technique to replace a target wire (thick line) crossing the cut line by 

its alternative wire (dotted line), the cut size can be further reduced to 2 as 

shown in Figure 4.1(b) (without injecting area increase). From this example, 

rewiring can be applied to partitioning to further improve upon even optimum 

solution in the graph domain. Binding the logical domain rewiring technique 

with some graph domain partitioning tool enables a larger room for obtaining 

better results. The rewiring technique can be used either as a greedily guided 

optimization tool, or as a random perturbation tool which allows hill climbing 
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on cut cost functions so as to pull the cost out of some local minima. 

The well-known ATPG-based rewiring technique, R A M B O , is a very pow-

erful technique for identifying alternative wires of a specified target wire for 

a given circuit. This technique has been used for logic perturbations and 

has been integrated with a graph domain partitioning algorithm to produce 

improved partitioning results [CLMS95]. However, as it always selects a non-

negative-gain wire in replacing a target wire and it only considers simple cases 

of adding and replacing one single wire, it is easily trapped in local minima. 

Besides, the ATPG-based rewiring technique, though powerful, tends to spend 

much running time due to the time-consuming Boolean implication operations. 

Moreover, the R A M B O rewiring tool can only handle 2-input gates, therefore 

the benchmark circuits must be somehow pre-processed. 

To investigate the possibility of perturbing the circuit without applying 

any Boolean operations, minimal circuit structures yielding rewiring patterns 

have been studied [WF99, WLFOO]. Based on benchmark circuits, there is 

an observation that the nearest existing alternative wire is quite close to its 

target wire. Therefore these minimal patterns tend to be small and repeatedly 

appeared in a circuit. As a result, instead of applying the ATPG-based logic 

implications repeatedly for a same pattern, the Graph-Based Alternative Wire 

( G B A W ) technique [WF99, WLFOO] employs a more efficient graph pattern 

matching operation to locate alternative wires. The basic idea of G B A W is to 

match the sub-circuit with some "pre-specified" patterns. Rewiring by G B A W 

can be done without doing any logic implication or redundancy check, hence 

it runs very fast. Besides considering the alternative wire which is close to 

the target wire from those small "pre-specified" patterns, distant alternative 

wires can also be located by propagating the matchings in a cascading way. By 

coupling R A M B O and G B A W as the perturbation engine, [WYCOO] proposed 

the bi-partitioning tool R G which also handles the 2-input gates and has a 

larger room for perturbation. 
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To expand the optimization space, the coupling notion is applied between 

graph and logic domain into the GBAW-Partitioner (GP). In graph domain, 

the well-known Fiduccia-Mattheyses (FM) partitioning algorithm [FM82] is 

chosen as the iterative move-based engine for its simplicity. In logic domain, 

an augmented G B A W is applied, which enhances the ability to locate more 

2-local alternative wires, as a greedily guided perturbation engine. In the ex-

periments, near optimum partition results were firstly obtained from the pure 

graph domain partitioner hMetis-Kway. Then the coupling of graph and logic 

domain optimization G P engine, was followed. Note that the logic pertur-

bation process can be coupled with any powerful graph domain partitioning 

tool, and G B A W itself is able to handle patterns with multiple-input gates. 

Experiments on this partition flow for 2-, 3-, 4-, and 5-way partitionings are 

carried out on various M C N C benchmarks ranging from small to fairly large 

circuits. The results show that such a graph-logic domain coupled partition-

ing approach can further cut down the cut size effectively with small C P U 

overhead. The results show that it is a very promising direction for circuit 

partitioning. 

This chapter is organized as follows. In Section 4.2, a brief introduction 

on partitioning algorithm analysis is described. In Section 4.3, the details of 

repartitioning by rewiring is shown. In Section 4.4, experimental results are 

presented. Conclusion is drawn in Section 4.5. 
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4.2 Circuit Partitioning Algorithm Analysis 

The partitioning task is ubiquitous to many subfields of VLSI C A D . One im-

portant practical example of this problem is the placement of the electronic 

components onto printed circuit boards, so as to minimize the number of con-

nections between cards. The components are modeled as the nodes of the 

graph, each circuit connections as edge, and the edge which interconnects be-

tween cards as a cut. Since connections between cards have high cost compared 

to connections within a board, the objective of partitioning in this example is 

to minimize the number of interconnections between cards. 

Partitioning heuristics address the increasing complexity of VLSI design 

systems with million of transistors, have a greater impact on system perfor-

mance since now designs are interconnect-dominated. In current VLSI designs, 

wire delays tend to dominate gate delays, thus poor partitioning results worse 

system performance. 

It is impossible to solve the above problem by exhaustive procedure even 

for small problem size. For example, suppose G has n nodes of size 1 to be 

partitioned into k subsets and each subset has size p, where kp = n. There 

are Q ) ways of choosing the first subset,(〜”)ways for the second and so on. 

Since the ordering of subsets is not important, the number of cases is 

For example, for n = 40, p = 10 (i.e. k = 4), the number of cases are greater 

than 102o. Therefore, any direct approach to finding an optimal solution will 

require an inordinate amount of computation, heuristic methods can produce 

good solutions (possibly even an optimal solution) quickly. In practice, it is 

more preferable to have several good solutions than one optimal one. 

There are several approaches to solve the partitioning problem, such as 

Move-based approaches, Geometric representations, Combinatorial formula-

tions and Clustering approaches [AK95b . 
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The first "efficient" graph bisection heuristic was introduced by Kernighan 

and Lin [KL70] in 1970. It was further improved the time complexity by Fiduc-

cia and Mattheyses [FM82] in 1982. Both famous algorithms K L k F M use 

iterative improvement technique that are based on greedy strategy which start 

with some feasible initial solution and iteratively move to the best (improv-

ing) neighboring solution. The process ends when the algorithm cannot have 

any iterative improvement. The computational complexity of K L and F M are 

O(n^) and 0{n) respectively. K L k F M are both iterative improvement that 

apply move-based approaches. Other move-based approaches are simulated 

annealing, tabu search, genetic algorithm. 

Nowadays, this two famous algorithms are still use in practical applica-

tions. However, many extensions which base on the idea of this two algo-

rithms are evolved afterwards. Such as the Tie-breaking strategies by Kr-

ishnamurthy [Kri84], Sanchis's multi-way partitioning algorithm [San89] and 

Multi-level partitioning [KAKS97；. 

The K L k F M Algorithms are described in Section 4.2.1 and 4.2.2 re-

spectively. Their extensions are briefly presented at the end of Section 4.4.2. 

Geometric representation approaches are discussed in Section 4.4.3. The Multi-

level partitioning is introduced in Section 4.4.4. 

4.2.1 The Kernighan-Lin (KL) Algorithm 

The simplest partitioning problem is to find a minimal-cost partition of a 

given graph of 2n vertices (of equal size) into two subsets of n vertices each. 

K L algorithm is not only able to solve this uniform bisection problem, it also 

provides the basis for solving other general partitioning problems, e.g. larger 

problems, 2-way partitions of the vertices with unequal size. Two-way uniform 

partitioning is first described. Followed by the algorithm of K L and example 

is shown in later section. 
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Two-way Uniform Partitioning 

The algorithm works as follow, it first starts with any initial partition X , Y 

of P. By interchanging the vertices between X and Y, the total cost which 

connecting X , Y can be reduced, where cost Cij define as the cost of vertex i 

connect to vertex j. W h e n the algorithm stops, it always results in a local 

minimum X', Y'. 

Suppose A e X,B e Y is the two initial partition, and final partition 

results m B e X = A e Y = y the problem is to select the correct 

set A,B from X,Y without considering all the possible choices. Suppose x,y 

are vertices in P , an define 工 G X , an external cost E工 and internal cost 

external and internal costs difference D工 and the gain (reduction in cost) are 

Ex — y^^cy Orb 

^x — Y^aeX Cxa 

Dx — Ex Ix 

gain = Dx + Dy — 2cxy 

First, the algorithm computes the D values for all elements of P. Second, 

then it choose the maximum gain from a single interchange where 

9i — Dxi + Dy. — 

All the beginning of a pass, each vertex is unlocked which means it is free 

to be swapped. The vertex becomes locked after moved. K L iteratively swaps 

the pair of unlocked vertices with the highest gain until all vertices become 

locked. Therefore, gi is computed first, with 0Ci,yi locked temporary during 

this pass, and called Then the D values for all elements oi X - xi and 

Y — yi are recomputed. Then, a pair x'^, y'2 from X — x[ and Y -y[ is chosen 

such that g2 = D̂ '̂  + Dy'̂  - I c ^ w is maximum where is not considered. 

Process continue until all nodes have been exhausted, (xg, 2/3),..., (x^, y,̂ ) with 

corresponding 仍，…，彻 . 
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If A = 4，• • . ， B = y�, y'2,..., y'k- Note that some p̂ 's are negative 

and Yli 9i 二 K L choose k which will maximize the partial sum Yli=i 二 

gi = G,UG > 0 means there is a reduction in total cost by swapping A and B 

from X, Y. W h e n G = 0 the algorithm has arrived one of the local optimum 

partition. With different starting partition, the algorithm may reach different 

local optimum solution. 

Pseudo-Code 

The algorithm of K L is briefly shown below: 

• Start with an initial bisection P 二 X, Y. 

• Repeat 

- F o r i = 1 to n/2: 

* Choose a pair of free cells a G X,b e Y 

s.t. exchanging a and b gives the highest gain, gain(a,b). 

* Exchange and lock a and b. 

* Let gi = gain(a,b). 

— F i n d k s.t. G 二 + 仍 H h Qk is maximized and shuffle cells up 

to this k仇 step. 

• End if G 二 0. 

Illustration 

In Figure 4.2 and 4.3, a partition problem is solved by K L algorithm. There 

are totally 2 passes, the partial sum of G is maximized during each pass and 

terminated when equal to zero. In the first pass, the gain of swap{a, d) and 

swap{b, c) equals 2, therefore swap(a, d) is chosen and locked them after moved. 

Other move will result in negative gain. Therefore, the G in the first pass is 
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equal to 2. In the second pass, the process is terminated since the maximized 

partial sum is equal to zero. 

First pass 

Cost = 10 广 Cost = 8 f Cost =10 
/ Locked \ / Locked \ j Locked 

I I Locked Locked ！ Locked 

g(a，c) = -1+3-3+1 = 0 g(b,c) = -4+1-2+3 = -2 
g(a，d) = -1+2-3+4 = 2 
g(b,c) = -1 +4-3+3 = 2 g2 = -2 if we swap (b，c) 
g(b,d) = -1+1-3+3 = 0 
gj = 2 if we swap (a,d) Therefore, G = partial max. of g； = g； = 2 

Figure 4.2: Example of K L algorithm - First pass 

Second pass 

Cost = 8 f Cost =10 f Cost = 8 
/ \ I Locked \ / Locked 

！ Locked ！ Locked Locked ！ Locked 
g(a，b) = -2+3-4+1 = -2 g(d,c) = -1+2-3+4 = 2 pj_�ess 
g(a,d) =-2+1-4+3 = -2 terminated! 
g(c,b) = -2+3-4+1 = -2 g2 = 2 if we swap (d,c) \ 
g(c,d) =-2+1-4+3 = -2 \ 

gj = -2 if we swap (a,b) Therefore, G = partial max. of g; = g! + g! = 0 

Figure 4.3: Example of K L algorithm - Second pass 

4.2.2 The Fiduccia-Mattheyses (FM) Algorithm 

The Fiduccia-Mattheyses algorithm is based on K L algorithm. They intro-

duced their efficient heuristic F M by reducing the time complexity per pass to 
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0{p) where p is the number of terminals in P. The main difference between 

K L and F M are: 1) move only one cell each time, 2) vertices are weighted, 3) 

nets can be multi-terminal, 4) maintain a balanced partition after each move. 

The F M algorithm performs several passes, within each pass each cell moves 

at most once and returns the best solution observed in one pass. It terminates 

when there is no improvement of cost function in a pass. However, F M has 

reduced the time per pass to linear in the size of the vertices. 

A partition P = (X，Y) is balanced iff ⑶ 忠 ^ r for some constant r < 1 

where w{X) is the total size of the cells in X. To preserve balanced partition, 

cell b is able to move only if 

rW — Smax < W � S rW + Smax 

where size of each cell 二 s⑷,W 二 w(JC U Y) = and Smax = 

max{s{i)) is the maximum cell size. 

A special data structure is used for selecting which vertices to be moved 

in order to improve the running time. This structure is Bucket list structure, 

a cell with maximum gain can be found, remove a cell, insert a cell, update 

gain(^) for any cell i, update the M A X G A I N in linear time by using this bucket. 

There are two lists and one for each partition. 

The algorithm starts with a balanced partition which can be obtain by first 

sorting the vertex weight in decreasing order and placing them in X, Y alter-

nately. At the beginning of a pass, the gains for each cell in P are computed 

in linear time, and their value are inserted to the bucket list according to its 

gain. Once the lists are updated, the vertex to be moved is chosen by consid-

ering the maximum gain vertex Xmax in list X , or the maximum gain vertex 

y而 in list Y. Both vertices can be moved only if they do not violated the 

balance condition. Notice that a move may increase the cut-cost but results 

in hill-climbing out of the local minimum. W h e n no more possible move or if 

there are no more unlocked vertices, the pass terminates. 
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During an F M pass, a cell pointing to the M A X G A I N is selected from the 

bucket, and deleted from the linked list. The cell is locked after each move, 

and the gains of unlocked cells incident to the moved cell are updated in the 

bucket. If the bucket indexed by M A X G A I N becomes empty, the M A X G A I N 

will be decreased until it indexes a non-empty bucket. 

Bucket list structure 

F M algorithm uses the special data structure — Bucket List so as to improve 

the time-complexity. The cell to be moved is always selected by the pointer 

which pointed by M A X G A I N . The bucket itself will store different gain value, 

and a linked list will point to the specific bucket slot. This structure looks like 

a comb which can effectively improve the whole algorithm. 

+pmax  

Cell l ^ r ^ l C e l l . . . 
Gain I ——# N - ^ f l # F ^ - ^ 

-pmax " " “ r r i 

1 2 n 

Figure 4.4: Bucket list structure 

Pseudo-Code 

The algorithm of F M is briefly shown below: 

• Start with a balanced partition P = X, Y. 

• Repeat 

- F o r i = 1 to n: 
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* Choose a free cells 6 G X U F 

s.t. moving b to the other side gives the highest gain, gain(b), 

and moving b preserves balance in P. 

* Move and lock b. 

* Let Qi = gain(b). 

— F i n d k s.t. G =仍 + H h gk is maximized and shuffle cells up 

to this k仇 step. 

• End if G = 0. 

Illustration 

The example of F M is shown in Figure 4.5 and Appendix C.l, C.2. The initial 

and final partition are shown in Figure 4.5 with the balanced constant r = 0.5, 

each cell with weight 二 1, total weight of P = 4. Therefore the cell in the 

partition is valid to move only when it satisfies 1 < w{X) < 3. The final 

cut-cost is changed from 10 to 6. 

Cost =10 Cost = 6 
I 

X Y 

Figure 4.5: Example of F M algorithm - Initial k Final 

Extension 1: Tie-Breaking Strategy 

W h e n picking the maximized partial sum G , break ties by looking ahead a 

certain number of steps. E.g. gk 二 gi = 2, and gk = 91+92+93 = 2 - 4 + 4 = 2, 
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the algorithm introduces a look ahead ability into the original F M algorithm. 

At this situation, the algorithm should able to select whether swap one pair of 

cell or three pairs of cell, that can introduce a better solution. 

Extension 2: Multi-Way Partitioning 

Partition into more than 2 clusters. Extend the idea of F M + Krishnamurthy 

and handle multi-way network partitioning and this technique is very useful 

for partitioning a network into a large number of subsets. 

4.2.3 Geometric Representation Algorithm 

Spectral algorithms were first proposed for placement and partitioning by 

Hall [Hal70]. Based on a linear ordering of the vertices using the eigenvec-

tor associated with the second smallest eigenvalue of the Laplacian of a graph, 

a fast bi-partitioning method were developed [HK92]. Consequently, a /c-way 

spectral partitioning algorithm and new A:-way ratio-cut cost function were 

presented in [CSZ94]. Subsequent methods for spectral A;-way ratio-cut par-

titioning include MELO[AY95] and DP-RP[AK95a]. Additional approaches 

of spectral partitioning are presented in [Bar85 . 

The problem of /c-way partitioning can be formulated as below. Given 

a graph with a set of n vertices, V. Each vertex is associated with its size 

attribute. A partitioning of the graph is a division of the n vertices into k 

disjoint, non-empty subsets î i, P2,... , ft such that V = PiU P2U - - -U Pk. 

• The n x n adjacency matrix, A, is composed of entries aij which represent 

the sum of the weights of the edges between vertices i,j. 

• The nxn diagonal degree matrix, D, has entries da equal to the sum of 

the weights of all edges on vertex i. 

• The Laplacian matrix is defined as Q = D — A. 
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• Eh is the sum of the weights of the edges which have exactly one vertex 

in partition h. 

• \\Pf̂\\ is the sum of the sizes of all vertices in partition h. 

• is the n X A: ratio-ed assignment matrix. It represents a solution to the 

partitioning problem. The entry rih has value when vertex i is in 

partition h and 0 otherwise. 

• M is the n X n diagonal matrix whose m a entry represents the size of 

vertex i. 

In [Hal70], Hall shows the (1-D) weighted quadratic placement problem 

can be solved by the eigenvectors of the Laplacian matrix. The total weighted 

squared distance between n points can be express as below. That is what we 

want to minimize 

之 二 2 îj î i — 

and it can be rewritten in matrix notation (quadratic form) as 

minimize z 二 〜 s u b j e c t to x'^ • x = 1 

The minimum eigenvalue Ai 二 0 yields the trivial solution. The second 

smallest eigenvalue A2 is a lower bound on a non-trivial solution to the above 

problem. Based on this idea, Hagen and Kahng [HK92] integrate the two-

way ratio-cut partitioning and spectral method. Figure 4.6 and 4.7 show an 

example of spectral bi-partitioning. 

The A;-dimensional weighted quadratic placement problem consists of find-

ing an n X A; matrix X = [xij], minimizing 

z - \ Eti EL. ELi •ih -工财=trace{X^QX) 
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Lap lac ian Q = D - A 

Q Q 2-1-1 0 
Z / \ - 1 2 - 1 0 

GJ © L �… -

Figure 4.6: A simple graph and its Laplacian 

\ Y ！ • V • 
i r ? j _ I f S l V,厂。.5 C.46 1 V, V3 V, 
iV^l 丨 〇 〇--0.5 ©V, 
I ； J/1 \ ； V2 0.5 0.46 
I 丄 U I � �” 
： ！ / ^ v ^ 丨 V, 0.5 - 0 . 7 3 
i W； W i _/ \ _ ——1 1  
i V2 i i V4 i / \ - 0 . 7 - 0 . 2 - 0 . 4 
‘ • ‘ 1st eigenvector of Q 2nd eigenvector of Q 

Figure 4.7: Result of spectral partitioning and linear ordering of the vertices 

using the second eigenvector 

To avoid the trivial solution of the constraint X'^X = I is used and the k 

eigenvectors of Q corresponding to the smallest k eigenvalues of Q and mini-

mize z. The aim is to optimize the A;-way ratio-cut cost function that is find a 

solution R such that minimize 

Eh 
臓 

By using R and \\Ph\\ which include the actual vertex sizes rather than the 

number of vertices in a partition, the new spectral partitioning incorporates 

vertex size information. By taking vertex sizes into account, the constraint 

rTr r= / is replaced by If MR 二 /• R is matrix which has a single non-zero 

entry in every row and for each column exactly one non-zero value among its 

entries. The generalized spectral partitioning formulation is defined as 

minimize trace{X^QX) subject to X ^ M X = I 

where trace{M) of a square matrix M is the sum of its diagonal entries. By 
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using M = S^S and substituting Q = S-^^QS'^ and 文二 SX, the original 

formulation is transformed to 

minimize trace{X^QX) subject to X^X = I 

which is a standard quadratic assignment problem and can be solved by 

using the L A S O library [PS79]. Below shows an example which incorporates 

the actual vertex sizes information into Laplacian matrix and solve the corre-

sponding eigenvectors. 

� 
,V, V3 

f' Q ~ G / V ‘ 。.2 。.25 V. V3 V. 
j xfy] v: 。'2 〇 0.2--o © V2 
； z 八 I V3 0 .2 0 .3 

\ d； / i © ， 、 - 。 \ 」 I 1 . 
\ V, / V V. / / . \ -0.2 -0.2 

\ z ». 1st eigenvector o fQ 2nd eigenvector of Q 
•广 � ‘ 

A 

Figure 4.8: Result of spectral partitioning by using the modified Laplacian Q 
which incorporates the actual vertex size information 

4.2.4 The Multi-level Partitioning Algorithm 

Recently, many research works on Multi-level Partitioning [BS93, HL93b, KK95c, 

ZCS99, AHK97b, KAKS97, KK99] which first clusters the whole problem by 

some useful algorithm to reduce the size (i.e. in a graph by collapsing ver-

tices and edges). Then, the reduced problem can be solved efficiently by any 

well-known partitioning algorithm. The last step is to do un-clustering while 

applying a suitable partitioning refinement algorithm in order to adjust the cut 

edge between partitions. Figure 4.9 shows the three phases in M P , coarsening 

phase, initial partitioning phase and un-coarsening and refinement phase. 

The first multilevel work is achieved by Barnard and Simon [BS93] in 1993. 

They used a multilevel approach to calculate the eigenvector for the spectral 

partitioning algorithm. Their work has greatly inspired the research group 
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r — ^ r X " " ] 
N l J S i i 

\ ^ Projected partition T 

\ r—) rrn / 
Coarsening Phase \ G2 ( �� I / UnCoarsening and Refinement Phase 

Initial Partitioning Phase 

Figure 4.9: The various phases of the Multi-level graph bisection 

of Hendrickson [HL93b]. Hendrickson and Leland proposed Chaco [HL93a 

in 1993 and it works without the transferring of eigenvectors between lev-

els by instead transferring partitions between levels. Many research works 

and ideas have elaborated and built based on their work. In 1995, the re-

search group of Andrew B. Kahng has presented their work on multilevel 

circuit partitioning M L c and M L ^ where M L c is CLIP-based [DD96] and 

M L f is FM-based implementations. Meanwhile, the research group of Pak 

K. Chan has integrated multi-level scheme with their k-way hypergraph par-

titioning by the use of spectral methods[ZCS99, CSZ94, ZSC96] MKP. The 

algorithm also directly incorporates the vertex size information during the cal-

culation of eigenvalues. Another famous multilevel graph partitioning tools 

M E T I S [KK95b, KK95a, KK95d] was proposed by the group of Vipin Kumar 

in 1995. Their extension works include from bisection to k-way partitioning, 

from graph to hypergraph [KK99], parallel multilevel graph/hypergraph parti-

tioning ParMETIS [KK96] and k-way hypergraph partitioning hMETIS [KK99:. 

These multi-level tools have soon become industry standard due to their su-

perior performance in solving the partitioning problem efficiently. 
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4.2.5 Hypergraph METIS - hMETIS 

Karypis, Aggarwal, Kumar and Shekhar present a new hypergraph-partitioning 

algorithm hMETIS [KAKS97, KK99] that uses the multilevel paradigm. A 

sequence of coarser hypergraphs is constructed first and then applies initial 

partition (directly partition into /imparts), and this A:-way partitioning is pro-

jected back to the original graph with refinement. 

Coarsening Stage 

Coarsening phase leads to a small hypergraph which partitions into /c-parts is 

not significantly worse than directly applies /c-way partitioning on the original 

graph. It also allows local refinement techniques to become more effective, 

and reduce the size of hyperedges. There are three schemes combined together 

to form the coarsening stage of hMETIS, edge coarsening (EC)[AHK97b, 

W A 9 8 , KAKS97], hyperedge-coarsening (HEC)[KAKS97], modified hyperedge-

coarsening (MHEC). 

E C scheme is a heavy-edge maximal matching of the vertices of the hy-

pergraph. The vertices are visited in random order. For each vertex v, all 

unmatched vertices that belongs to the hyperedge incident to v are consid-

ered. The vertex u with highest weight is matched with v. 

In H E C , an independent set of hyperedges is selected and the vertices that 

belong to individual hyperedges are contracted together. The hyperedges are 

first sorted in non-increasing hyper edge-weight order and the hyperedges of 

the same weight are sorted in a non-decreasing hyperedge size order. 

M H E C can reduce the amount of hyperedge weight that is left exposed in 

successive coarse graphs. After applying H E C and the hyperedges to be con-

tracted have been selected, the list of hyperedges is traversed again. For each 

hyperedge that has not yet been contracted, the vertices that do not belong 

to any other contracted hyperedge are matched to be contracted together. 
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The overview of three schemes is in Figure 4.10. 

Edge Coarsening (EC) 

f p 鞭 0 
Hyperedge Coarsening (HEC) 

f p 鞭 Q 
Modified Hyperedge Coarsening (MHEC) 

Figure 4.10: Various hyperedge coarsening schemes 

Initial Partitioning Stage 

T w o algorithms are used for computing the initial partitioning. The first one 

simply creates a random bisection which roughly partition into two parts that 

have roughly the same vertex weight. The second one starts from a randomly 

selected vertex and grows a region around it in a breadth-first fashion until 

half of the vertices are in this region. Since both algorithms are randomized, 

10 initial partitionings at the coarsest graph are obtained. The /c-way initial 

partitioning is computed by the multilevel hypergraph bisection algorithm. 

Un-coarsening and Refinement Stage 

During un-coarsening phase, the coarser hypergraph is projected to the next 

level finer hypergraph, and a partitioning refinement is used. T w o different 

partitioning refinement algorithms are used. First one is F M which repeatedly 
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moves vertices between partitions to improve the cut. The second algorithm 

is Hyperedge Refinement (HER) which moves groups of vertices between par-

titions so that an entire hyperedge is removed from the cut. 

4.3 The GBAW Partitioning Algorithm 

Assume that one pin is used in a partition for a net. The objective of a multi-

way partition is essentially to minimize the number of pins required to connect 

all partitions. Since some of the wires may have alternative wires, by replacing 

some cut wires by their alternative wires that are not cut wires, cut size can be 

reduced. The rewiring process may lead to some new circuit graph, and in turn 

help escaping from local minima led by graph domain partitioning process. 

A perturbation refers to the replacement of a target wire by its alternative 

wires. Figure 4.11 illustrates the gains regarding various perturbations in a 

circuit. In the figure, thick lines represent the target wires and dotted lines 

refer to their alternative wires. As shown in the example, there are positive, 

zero and negative gains. 

The hMetis-Kway [KK99] partitioning tool is used to provide a fast and 

near optimum solution which serves as the initial partition. The well-known 

F M partitioning algorithm [FM82] is selected as the graph domain partitioner 

for its simplicity and efficiency. In fact, any other graph domain partitioner 

can integrate into GP. Then, the rewiring technique G B A W aiming for further 

improvements is applied to perform logic perturbations which include: 

• substituting a wire with its alternative wire. 

• adding a gate and removing some wires. 

• adding one wire to remove other wires. 

• adding two gates to remove other wires and so on. 
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Q ： © S ) © S ^ 

(a) perturbations (b) gain = 2 (c) gain = 1 

s ^ s t e 
^ ^ 

(d) gain = 0 (e) gain = -1 (f) gain = -2 

Figure 4.11: Perturbations and gains 

Figure 4.13 gives the algorithm of GP. The graph domain information of 

the benchmark circuits are first extracted as shown in Figure 4.12. 

During the perturbation process GP, only cut wires will be selected as target 

wires for perturbations. G P first randomly select a cut wire as the target wire. 

Then, G B A W is used to find the alternative wire set SWa of the target wire. 

Finally, among the wire set SWa, the alternative wire with the highest gain 

is selected for perturbation. W h e n the SWa of the target cut wire is empty, 

G P may randomly select another cut wire for another trial. The number of 

iterations is set by m. The number of trials is limited by t times, k is the 

limit of perturbations. These limits serve to set some bounds for some useless 

runs when the total number of alternative wires of all cut wires is zero or very 

small. The main difference of algorithm G P and the algorithm in [CLMS95] lies 

in the condition of perturbations. In [CLMS95], a perturbation is performed 

only when the alternative wire of the selected cut wire has a non-negative gain. 
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Input benchmark circuits 
BLIF file 

Graph domain 
information 

[ logic domain - GBAW '̂-—i i 
I ^ I 
J graph domain - FM ~ i 
； GP I 

} r 

multi-way partitioning results 

Figure 4.12: Extract the Graph domain information for hMETIS-kway 

However, in the experiments, some (hill-climbing) perturbations are allowed 

therefore can increases the chance of obtaining better solutions. A negative-

gain perturbation is also allowed to help escaping some local minimums. O n 

the other hand, the main difference between G P and the algorithm in [WYCOO 

is the perturbation engine used. In [WYCOO], a coupling scheme by R A M B O 

and G B A W (RG) is used. Since R A M B O is limited to 2-input gates circuit, 

R G is unable to handle multi-input gate circuits. By only integrating G B A W 

to GP, the partitioner can effectively locate nearly all the alternative wires of 

the circuit. 
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4.4 Experimental Results 

The algorithm GBAW-Partitioner (GP) was implemented in C and the ex-

periments were conducted on Sun Enterprise E4500 workstation with 8 G B 

memory in a single-processor configuration for circuits of various sizes from 

M C N C benchmarks. The benchmark circuit from M C N C is put at Ap-

pendix. The large benchmark circuits used in ISPD98 [AHK97a] are not ap-

plicable for the experiments due to the lack of logical domain information. 

Since the rewiring engine G B A W [WLFOO] is able to locate alternative wires 

of multiple input gates as well as 2-input gates, thus the circuit SIS [SSLea92 

simplification done by [CLMS95, W Y C O O ] can be skipped. 

Here an example of how G P works below is shown. Taking C35人0 as an 

example, the circuit is firstly partitioned by hMetis-Kway and has a initial 

hypergraph with cost 132. The algorithm of G P then further cut down the 

cost to 112 with the following steps. 

• G P searches all the alternative wires of the wires which lie along the cut 

line and replace them, and the original graph is changed with gain 5. 

• With logically equivalent but different graph, F M easily reduced the cost 

down to 122. 

• Random perturbation of the graph brings another reduction by 2. 

• Again, G P searches along the cut line and reduces the total cost by 5. 

• By switching between graph and logic domain, the cost is reduced to 112 

which is the final result. 

Table 4.1 lists the statistics of alternative wires on the benchmark circuits. 

Column "Circuit" shows the name of the circuit. Column "alt. wire" lists the 

number of alternative wires found in the circuits. Column "CPU" refers to the 

runtime in seconds. From the experimental results listed in Table 4.1, it shows 
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that G B A W can find 30% more alternative wires than R A M B O on average 

with 75 times speedup. The G B A W which include many newly found 2-local 

patterns is now able to locate 98% of the 2-local alternative wires found by 

R A M B O . Therefore, with the enhanced G B A W the unnecessary redundancy 

check by R A M B O can be skipped. 

Circuit RAMBO CtBAW — 
“alt, wires CPU alt, wires CPU 

^ loTr ^ ^ 
9sym-hdl 27 1.56 40 0.16 

C1355 185 12.82 250 0.89 
C1908 127 33.52 240 0.68 
C2670 267 83.57 344 1.33 
C3540 569 273.80 816 2.15 
C432 129 10.26 0.37 

16 ^ ^ ^ 
C5315 511 155.91 713 2.88 
C6288 1352 361.18 2191 4.18 
C7552 1709 143.95 617 4.2 
C880 151 9.86 239 0.66 
alu2 169 214.71 263 0.84 
alu4 ^ 270.50 ^ 1-61 

^ ^732 3 77 1.23 
b9-n2 48 1.65 71 0.17 
comp 57 9.18 58 0.21 

des 1468 729.92 2204 8.7 
duke2 157 46.55 281 0.63 
fSlm 49 6.19 65 0.25 
misex ^ 124.48 439 0.97 

my_adder 46 TAG 0 0.23 
pclerS 29 1.3 30 0.12 

rot 243 48.04 406 1.1 
sao2-hdl 104 16.86 153 0.39 

terml 106 16.81 169 0.37 
ttt2 68 9.68 133 0.34 
x3 ^ 23.13 ^ 1-2 

Total “ 8639 — 2657.13 11224 36 .7— 
"NHT^alized I 1 I 1 I 1-2992 0.013l~ 

Table 4.1: Alternative wire statistics of R A M B O and G B A W 

In the experiments, the tolerance of area imbalance of G P is set to be ±20% 

of the average area in each partitioned block. Therefore the maximal area ra-

tios are 40%:60% and 16%:24% for 2-way and 5-way partitionings respectively. 

In order to explore the graph domain optimization, hMetis-Kway [KK99] was 

firstly run for each circuit. As a result, a nearly optimum partition solution 

was obtained. The next step is to select the best solution applying G P for logic 

perturbation to further improve the quality of the partitioning with A; = 60 

and t = 50. Table 4.2 to 4.5 list the experimental results for the 2- to 5-way 

partitionings respectively. Column "area" lists the area of the sub-circuit in 

terms of the number of gates. Column “#lits，，lists the total number of literals 

of the partitioned circuits. From the results, the area penalties for 2- to 5-way 

are 0.33%, 0.53%, 0.61% and 0.71% respectively. Column "cut cost" lists the 
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total number of cut pins obtained for all partitioned blocks. Column "cut wire" 

lists the number of cut wires of the partitioning. Column "cpu" lists the cpu 

time (in seconds). From the results, they showed that applying logic perturba-

tion can further cut down the cut size of the good partitionings produced by 

purely graph domain based partitioner. The total number of literals is slightly 

increased because of the area cost of the added gates during perturbations. 

14.48%, 10.18%, 9.08% and 9.24% reduction in cut size are obtained for the 

2-, 3-, 4- and 5-way partitionings respectively. The last 2 columns show that 

the quality and C P U of G P are both much better than the results obtained 

by simply running F M for 250 times. 

u A/r 广 250 F M 
Dircuit hMetis-Kway ^ — 

S F i i ~ # U t s c u t c u t C P U ^ # l i t s c u t c u t C P U c u t C P U 

cost wire cost wire cost  
i P f l ~ r a I 30 I 31 0.33 ^ p 8 I f I I 28 1 38 

9sym-hdl 67:74 232 16 8 0.36 64:77 232 10 8 14 10 42 
C1355 331:269 1055 44 35 0.65 338:266 1059 36 35 74 46 266 
C1908 260:256 883 82 55 0.64 271:251 889 62 55 61 62 238 
rofirn 516.527 1444 42 23 0.78 517:531 1449 34 23 112 126 427 
CSsIS e i l e Z Ittr 132 93 1.77 614:663 228O 112 100 357 I8O 692 
C432 119:119 392 44 27 0-46 118:130 402 36 ^ ^ ^ — — J l — 
P4QQ 231-272 ^ 46 47 0 6 ~ 232:272 855 36 47 59 54 214 
§5315 918 1044 ^ 8 2 104 71 1.98 919:1047 3286 100 69 493 234 1232 
§6288 12987:二 i m 80 270 2.33 1309:1561 5209 78 189 960 430 1708 
C7552 1281:1141 4105 18 65 1.93 1286:1142 4111 18 64 727 228 1731 
C880 261:222 780 54 30 0.57 260:234 791 38 30 58 38 200 
alu2 190:232 777 84 93 0.81 190:236 781 80 95 115 88 150 
alu4 428:357 1470 140 106 1.16 438:360 1481 120 1 0 4 _ _ ^ 1 6 0 _ _ 3 2 2 

4357473 14T7 18 H 436:473 1418 16 11 J f 36 370 
bLn2 87:70 208 16 13 0.32 64:93 208 12 10 16 10 41 
romn 93 91 270 6 4 0.32 93:90 269 6 3 35 6 51 
f e r 1727:2112 6655 236 221 3.99 1565:2282 6663 146 331 752 332 2338 
duke2 175:211 676 80 61 0.7 162:233 684 74 72 98 82 128 
f51m 72-65 244 28 32 0.37 77:65 247 26 33 35 26 41 
= 3 2II2I5 990 80 69 0.88 301:250 1003 76 7 0 _ _ 1 4 9 _ _ 7 6 _ _ ^ 
my-adder 1067106 4 2 107:105 339 2 2 22 2 72 
n/ler8 58.72 174 8 14 0.27 58:72 174 8 14 22 8 31 
二 441；383 1251 54 38 0.80 442:384 1253 46 38 95 66 322 
sao2-hdl 136:114 439 26 16 0.47 128:123 440 16 16 31 16 89 
terml 124:148 439 28 14 0.53 130:148 445 24 14 62 28 88 
ttt2 120:107 376 10 11 0.39 102:125 376 8 11 f 8 72 
„3 471-384 1334 22 16 0.84 461:396 1336 20 16 4 40 321 
tooJarge 2161:"l913 7723 318 563 5.58 2162:1917 7728 308 544 699 1210 1995 
Total 45506 1850 | | 45656 1576 | 5476 3658 1 13495 
Average I I I I I +0.33%| -14.48% 

Table 4.2: 2-way partitioning results of hMetis-Kway & F M & G P 

4.5 Conclusions 

In this chapter, a scheme coupling the graph logic domain partitioners to 

explore a larger optimization room of circuit partitioning is proposed. The 

scheme is shown to be very efficient in terms of C P U expenditure and is also 
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Circuit hMetis-Kway GP 250, FM 
i l i i #lits cut cut cpu i l iS # l i t s “ “ cut cut cpu cut cpu 

cost wire cost wire cost 
5xpl 37:43:52 f ^ ^ 1 ~ 5 3 " " " [ T l 0 . 6 7 40:47:50 240 [~49 p^S 
9sym-hdl 43:44:54 232 32 19 0.67 43:44:55 233 22 19 15 20 49 
C1355 217:196:187 1055 84 95 1.19 217:204:189 1065 80 93 157 143 269 
CI 908 148:186:182 883 115 82 1.10 146:191:185 889 98 98 127 134 226 
C2670 400:329:314 1444 85 59 1.34 402:337:312 1452 71 59 119 247 411 
C3540 376:464:423 2267 175 172 2.88 361:506:413 2284 165 224 357 413 664 
C432 67:92:79 392 56 46 0.67 72:95:83 ^ 54 70 67 50 91 
C499 193:169:141 8M 82 M 0 4 195:173:136 ^ ^ 64 62 108 188 
C5315 556:692:714 3282 117 114 3.31 521:709:739 3289 100 122 510 564 1125 
C6288 810:1086:960 5195 148 429 3.98 827:1061:978 5198 165 555 704 712 1697 
C7552 745:923:754 4105 94 129 3.42 750:941:739 4113 86 136 747 490 1271 
C880 139:178:166 780 80 58 1.06 145:182:163 787 61 58 60 103 202 
alu2 124:133:165 777 140 144 1.23 134:143:167 795 127 159 122 152 178 
alu4 230:307:248 1470 214 203 2.06 218:314:268 1489 194 211 231 283 361 
apex6 257:302:349 IIT? 75 47 243:321:358 T i M 6 3 70 223 113 447 
b9_n2 45:53:59 208 21 17 0.51 44:54:60 209 21 17 32 25 52 
comp 57:62:65 270 16 8 0.59 57:62:66 271 14 7 37 20 56 
des 1107:1512:1220 6655 322 342 7.06 1089:1535:1216 6656 236 628 776 657 2761 
duke2 113:147:126 676 128 107 1.18 106:143:154 693 116 112 103 121 162 
f51m 42:53:42 244 58 54 0.68 46:54:44 252 56 62 37 49 51 
misexS 153:209:176 990 128 114 1.50 154:208:192 1006 113 162 157 139 252 
my_adder 80:65:67 ^ 8 4 ^ 79:65:68 339 4 4 23 10 72 
pclerS 41:49:40 174 17 20 0.47 42:49:39 174 15 20 25 15 37 
rot 245:268:311 1251 85 68 1.44 233:272:330 1262 77 77 195 120 368 
sao2-hdl 95:83:72 439 62 46 0.86 95:94:68 446 56 57 65 56 112 
terml 77:88:107 439 54 38 0.88 78:91:108 443 44 38 32 54 111 
ttt2 64:89:74 376 33 34 0.78 66:90:75 380 33 34 55 37 86 
x3 271:262:322 1334 78 65 1.38 276:259:340 1354 67 65 106 130 419 
tooJarge 1562:1198:1314 7723 779 976 10.46丨 1606:1201:1284 7740 747 1096 734 1761 2 6 ^ 
Total 45506 3339 1 45748 2999 5914 6761 14370 
Average +0 .53%丨 -10 .18% 

Table 4.3: 3-way partitioning results of hMetis-Kway & F M & G P 

quite capable in bringing further improvements on good partition results pro-

duced by well-known partitioner hMetis-Kway. Without the integration with 

R A M B O , the input circuits is no longer limited to 2-input simple gate circuits. 

Experiments on 29 M C N C benchmark circuits for 2- to 5-way partitionings are 

conducted, and obtained further cutsize reductions from 14.48% to 9.24% upon 

the good results produced by hMetis-Kway. Moreover, the partitioning quality 

and C P U expenditure of G P are both better than running F M for 250 times. 

As G P can be integrated with any newly developed powerful graph partitioner, 

this partitioning scheme should be very practical and useful for many partition 

tasks. 
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C i r c u i t h M e t i s - K w a y GP 250 F M ~ 
iTii #lits cut cut cpu i l i i # l i ts " " " cut cut cpu cut cpu 

cost wire cost wire cost  
5xpl 34:27:31:40 [ ~ 6 3 0 . 6 8 38:29:29:39 239 p ^ 
9sym-hdl 36:38:31:36 232 48 26 0.80 37:40:32:32 232 29 26 16 26 52 
C1355 174:158:130:138 1055 110 90 1.59 164:164:125:165 1073 96 108 166 185 305 
C1908 122:125:126:143 883 137 114 1.53 126:128:121:149 890 114 126 67 184 259 
C2670 262:257:262:262 1444 125 82 1.75 264:251:274:262 1452 91 114 122 274 481 
C3540 324:285:356:298 2267 245 211 3.36 337:280:378:281 2278 230 286 385 458 791 
C432 65:53:63:57 392 75 62 0.95 72:55:70:56 407 67 73 71 66 107 
C499 122:148:116:117 ^ ^ 77 0 6 123:150:112:120~ 856 81 81 131 145 218 
C5315 532:511:460:459 3282 201 152 3.91 537:510:461:461 3289 192 161 523 633 1325 
C6288 627:670:856:703 5195 186 582 4.52 627:678:842:716 5200 210 585 482 848 2051 
C7552 537:605:647:633 4105 66 153 4.37 511:634:648:638 4114 44 153 388 732 1551 
C880 108:113:136:126 780 82 58 1.33 109:123:138:123 790 69 121 124 107 230 
alu2 101:128:96:97 777 178 171 1.51 99:126:103:111 794 171 193 128 190 212 
alu4 162:197:204:222 1470 285 240 2.35 157:191:224:236 1493 257 308 123 352 452 
apex6 233:200:261:214 1417 75 45 EM 231:209:276:208“ 1433 65 77 233 139 555 
b9_n2 41:48:35:33 208 36 23 0.76 46:43:36:35 209 32 23 17 31 58 
comp 48:43:47:46 270 14 8 0.91 47:44:47:46 270 12 8 20 28 62 
des 938:1160:947:794 6655 359 515 7.51 889:1144:953:864 6665 295 713 774 716 3322 
duke2 116:95:96:79 676 159 127 1.33 113:82:115:89 698 147 137 112 158 183 
f51m 37:35:36:29 244 67 67 0.75 41:39:36:28 251 65 68 40 63 55 
misexS 157:138:132:111 990 188 177 1.70 160:149:143:107 1006 169 192 166 180 295 
my_adder 52:54:52:54 ^ 12 6 cTsi 52:53:52:55 339 6 6 24 23 81 
pclerS 30:28:33:39 174 24 25 0.57 31:28:32:39 174 22 25 26 20 40 
rot 193:191:208:232 1251 98 75 1.86 187:193:210:240 1256 93 91 205 166 457 
sao2-hdl 75:60:63:52 439 93 60 1.08 69:64:73:51 446 76 60 35 74 117 
terml 67:56:67:82 439 59 36 1.14 77:57:69:85 454 55 37 68 68 118 
ttt2 54:66:59:48 376 51 44 0.85 55:69:60:49 382 46 46 59 48 94 
x3 191:193:236:235 1334 78 52 1.86 190:196:249:244 1358 71 111 225 164 504 
tooJarge 862:1059:964:1189 7723 1041 1345 11.58| 823:1082:961:1221 7736 999 1685 756 2206 3281 
Total 45506 4250 45784 3864 5523 8342 17308 

Average | | | | +0.61%丨-9.08% 丨 丨 丨 I 

Table 4.4: 4-way partitioning results of hMetis-Kway & F M & G P 

Circuit hMetis-Kway GP . | 250. FM 
i^Fii #lits cut cut cpu aTea # l i t s c u t cut cpu cut cpu 

cost wire cost wire cost  
5xpl 26:21:23:31:31 1 ~ 7 8 [ ~ 7 1 0 . 8 9 23:22:32:29:31 f ^ P ^ 
9sym-hdl 32:30:24:24:31 232 57 31 0.96 32:27:28:25:30 233 33 31 16 35 55 
C1355 142:113:100:130:115 1055 122 97 1.95 142:115:95:144:123 1074 109 110 175 222 369 
C1908 91:111:93:117:104 883 153 111 1.70 84:118:84:123:112 888 119 131 72 206 313 
C2670 221:221:174:207:220 1444 133 95 2.26 186:229:195:217:229 1457 106 135 129 314 578 
C3540 214:258:223:307:261 2267 312 268 4.07 224:239:237:301:284 2288 265 341 206 551 990 
C432 42:46:43:59:48 392 80 74 1.25 47:48:41:57:57 404 77 88 75 73 126 
C499 107:104:85:103:104 ^ 107 ^ 1745 111:101:81:108:105 ^ 93 102 138 173 245 
C5315 371:315:370:497:409 3282 244 193 4.92 372:315:383:471:428 3289 232 268 558 706 1650 
C6288 517:496:525:651:667 5195 222 601 5.21 508:498:532:659:669 5204 241 601 820 876 2340 
C7552 568:504:396:533:421 4105 152 169 4.84 554:528:388:504:447 4095 135 220 787 836 1901 
C880 104:95:82:111:91 780 104 84 1.58 107:91:86:107:100 787 94 157 131 155 293 
alu2 71:78:79:95:99 777 209 198 1.92 67:93:88:89:99 791 192 228 130 227 245 
alu4 150:127:143:183:182 1470 310 291 3.05 147:130:171:181:173 1487 279 375 129 399 554 
apex6 205:205:148:157:193 TU7 132 ^ 2 ： ^ 206:206:199:145:171 1436 125 112 249 165 656 
b9_n2 25:30:28:39:35 208 36 27 0.84 24:29:33:39:39 214 36 32 36 39 65 
comp 39:42:30:41:32 270 24 15 0.97 30:42:31:42:38 269 20 15 21 36 73 
des 682-711:683:919:844 6655 484 382 10.03 667:699:667:954:889 6692 386 564 785 689 4246 
duke2 73:70:71:94:78 676 175 148 1.69 88:77:65:89:89 696 164 168 115 183 217 
f51m 27:21:24:35:30 244 81 78 0.93 32:30:21:27:32 249 77 86 39 76 59 
misexS 86:103:111:133:105 990 216 215 2.23 95:96:127:107:129 1006 203 276 173 240 364 
my adder 52:41:41:39:39 16 8 0 2 51:41:42:39:39 339 10 8 26 30 87 
pclerS 26:22:24:28:30 174 29 29 0.68 27:25:25:24:32 177 26 30 28 27 48 
rot 145:147:150:209:173 1251 127 97 2.20 160:151:142:197:190 1266 121 123 217 184 543 
sao2-hdl 63:51:45:43:48 439 109 74 1.46 61:60:46:44:48 448 97 93 66 93 145 
terml 66:55:48:56:47 439 71 44 1.34 66:58:45:65:55 453 66 59 71 79 146 
ttt2 46:55:35:45:46 376 59 58 1.15 47:53:36:51:45 383 56 72 62 65 112 
x3 193:190:136:152:184 1334 122 91 2.23 193:195:170:139:199 1375 112 171 243 173 605 
tooJarge 1003:851:661:782^7^ 7723 1221 1477 14.62| 975:879:723:765:743 7734 1159 1806 802 2503 4 4 7 ^ 
Total 45506 5185 4 5 8 2 8 4 7 0 6 6309 9324 21563 

Average | I I I +0.71% 丨 - 9 . 24% 丨 丨 丨 I 

Table 4.5: 5-way partitioning results of hMetis-Kway & F M & G P 



Chapter 4 Multi-way Partitioning using Rewiring Techniques 61 

Algorithm GP (best—partition, m, k, t ) { 
searchJ-imit = 0; 
n_perturbations = 0; 
curr_partition = best-partition; 
last—part it ion = best—partition; 
for i=l to m { 

while((n_perturbations < k) && (exit == fa l se ) ) { 
search-limit = 0; 
while(searchJ-imit < t ) { 

search_limit ++; 
randomly select a cut wire Wt ； 

use GBAW to find a l l alternative wires SWa for Wt； 

if {SWa = = M 
searchJ-imit ++; 
continue; 

}else 
break; 

} 
if (SWa = (t>H 

pick alternative wire Wi with the largest gain; 
replace Wt with Wi in curr_partition. 
c u r r - p a r t i t i o n = F M ( c u r r _ p a r t i t i o n )； 

n_perturbat ions = n_perturbation + 1; 
if (cost (curr_partitioii) < cost (last—partition)) 

last-partition = curr_partition; 
} 
for each wire w{ 

use GBAW to find a l l alternative wires SWa for w; 
do random perturbation on SWa in curr.partition; 

c u r r _ p a r t i t i o i i = F M ( c u r r _ p a r t i t i o n )； 

if (cost (curr_partition) < cost (last—partition)) 
last-partition = curr .partition; 

} } } 
Figure 4.13: Algorithm of GBAW-Partitioner (GP) 



Chapter 5 

Optimum FPGA Switch-Box 

Designs - HUSB 

5.1 Introduction 

Field Programmable Gate Array (FPGA), a kind of Very Large Scale Inte-

grated (VLSI) circuit, consists of an array of pre-fabricated functional blocks 

and wire segments with user-programmability of logic and routing resources. 

Because of their fast turn-around time and economic manufacturing cost for 

low volume designs, F P G A s have been used in a great amount of digital equip-

ments. F P G A technologies are commonly classified into three major categories: 

(1) Look-Up-Table (LUT), S R A M based (2) multiplexer, channel organized 

and anti-fused, and (3) LPLD, E P R O M based. In this chapter, the study 

of the optimum routing structure problems for the popular L U T and S R A M 

based two-dimensional (2-D) F P G A s is presented. The architecture of an in-

dustrial product of this type is described in [AR95, alt90, BFRV92, C W W 9 6 ] . 

The importance of routing resource issues in F P G A s is never over-emphasized. 

In commercial F P G A products, the routing resource consumes most of the chip 

area, and is responsible to most of the circuit delay. A typical 2 - D F P G A 

architecture is shown in Figure 5.1. The functional blocks (or logic cells) are 

marked by L, which are separated by vertical and horizontal channels. There 

62 
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Figure 5.1: The architecture of a 2D F P G A . 

are W (called channel density) prefabricated parallel wire segments running 

between each pair of adjacent L-cells in both vertical and horizontal channels. 

The wire segments in a vertical (or horizontal) channel are aligned into W 

vertical (or horizontal) tracks; each track within a channel is assigned an in-

teger in {1,..., W} as its track ID. There are C-boxes in the channel between 

adjacent L-cells. A Switch Box (S-box), located at each intersection of a verti-

cal and horizontal channels, contains programmable switches to connect wire 

segments running from its surrounding C-boxes. 

W h e n an F P G A is used to realize a specified Boolean function, the pins 

used to realize the Boolean function are partitioned into groups (called nets). 

Then the pins in each group are connected together to form a real net by using 

available wire segments and switches in both C-boxes and S-boxes; different 

nets are disconnected. The latter process is referred to as a routing. Con-

ventionally, the routing process is divided into two subsequent steps, global 

routing and detailed routing, although there is no absolute need for doing 

routing in these two phases. In this chapter, the term of global routing is 

used to specify the connection topologies for all nets. The detailed routing 

decides the exact assignment of wire segments and switches used to materi-

alize the complete routing. As the connectivity within C-boxes is complete, 
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the routability of the entire chip is fully dependent on the structure and con-

nectivity of the S-boxes [AR95, BFRV92, C W W 9 6 , LW95, P W W Y 9 2 , WC94， 

W M S 9 7 , W T M S 9 4 , W T M S 9 6 ] . As the routing resource is relatively expen-

sive in F P G A chips, it is clearly desirable to design switch boxes (S-boxes) 

with maximized routability and minimum number of programmable routing 

switches. 

A n F P G A switch box is said to be hyper-universal if detailed routing can 

be performed on all possible multi-pin net topologies which satisfy the global 

routing density constraints. The switch-box is optimum if it is hyper-universal 

and the switches inside is minimum. 

It has been shown that if the net topology is restricted to 2-pin nets, then 

a 2-D (4-way) switch box can be built to be universal with only 6W switches, 

where W is the global routing channel density. As the routing resource is rel-

atively expensive in F P G A chips, searching for optimum switch box designs is 

clearly a topic with both theoretical challenges and immense commercial silicon 

reduction values. In [FLWOO], a formal mathematical model of this optimum 

switch box design problem for arbitrary dimensions has been constructed. It 

gave a scheme to produce hyper-universal designs with less than 6.7W switches 

for 4-way F P G A switch boxes. In this chapter, further investigation of this 

most common 4-way switch box case is done, and give new theoretical results 

followed by extensive experimental justifications. The results seem to be quite 

attractive and show that such an optimum switch box can be built with a very 

low number of additional switches beyond 6 W for today's practical range of 

low W's. If the number of switches of an optimum 4-way switch box with a 

density of W will be presented as e(4, W), then e(4, W) = 6W for W being 2, 

3，or 5; e(4, VT) - 6W + 1 for W = 4; e(4，6) < = 6W + 2, and e(4, 7) 6W 

+ 1. For arbitrary large W's, the bound can be shown to be under 6.341^. 

To make an even experimental comparison, V P R [BR97] which is today's best 
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published F P G A router is selected for large benchmarks on the popular Dis-

joint F P G A switch box structure and the proposed designs. The results are 

quite encouraging. 

This chapter is organized as follows. Section 5.2 gives definitions of routing 

architectures. Section 5.3 introduces different F P G A routing algorithms and 

makes comparison. The switch-box analysis is described in Section 5.4. For 

completeness, some basis previous results on S-box designs, a decomposition 

property of global routings and terminology will also be mentioned in Section 

5.5. In Section 5.6，new results for optimum or hyper-universal S-boxes are 

provided. Section 5.7 shows the experimental results and conclusion is drawn 

in Section 5.8. 

5.2 Background and Definitions 

5.2.1 Routing Architectures 

The routing resources of F P G A consist of programmable components and wire 

segments. Since the number of switches in an F P G A is proportionally increase 

with the area and delay penalty, there is basically a trade-off between routabil-

ity and the performance for routing modules in F P G A . There are two main 

modules, switch-module and connection-module in F P G A . 

Switch-block Architecture 

In [RB91], the flexibility of the switch-block and connection block are studied. 

The number of programmable switches between a terminal and others inside 

a switch-box is represented by Fs as the flexibility of a switch-box. A switch 

module with flexibility of 3 is shown in Figure 5.2 which means each pin inside 

the switch-box is connected to three other pins. A large flexibility means a 

large number of choices. Only switch-box allows the change of channel in the 
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overall routing process. 
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Figure 5.2: A Switch module with = 3 

Connection-Module Architecture 

As shown in Figure 5.3, there are two wire segments from the logic box to the 

connection box. The connection box allows the connection for each edge on 

the wire segment. In Figure 5.4 which sourced from [RB91], the percentage of 

completion to successfully route the BNRE circuit is plotted versus the change 

in Fc on different Fg. It showed that for large switch-box, the increase in F。 

does not greatly improve the routability. 

2 1 0 

0 
〇 Logic Logic 

Block K——�卜- Block 
1 — K  

1 

C o n n e c t i o n B l o c k w i t h F。 = 2 

Figure 5.3: A Connection module with Fc = 2 
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Figure 5.4: Percentage of completion versus Fc for the circuit B N R E 

5.2.2 Global Routing 

In the phase of global routing, the routing algorithms will generate a "loose" 

route for each net, that means it is assign the routing regions for each net. For 

example, in Figure 5.5, there are two possible global route for the connection 

from the middle left logic box to the right logic box. The global routing 

algorithm will determine the best or the shortest net without going into the 

detail of the routing modules. 

5.2.3 Detailed Routing 

In the phase of detailed routing, the algorithms will find the actual geometric 

and physical wire for real connection. The exact layout will be produced after 
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L --r-- L ::C：： L 

L —::c：： L ::C：： L 

L IZ::C：： L ::C：： L 

Figure 5.5: Example of Global Routing in F P G A 

detailed routing. For example, in Figure 5.6, if the upper global route is 

selected, then the detailed routing algorithm will go further and determine the 

connection inside switch. 

L L ::C：： L 

L ::c：： L ::C：： L 

3:：::= s s 三:::::= 

L --r-- L ::c：： L 

Figure 5.6: Example of Detailed Routing in F P G A 
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5-3 FPGA Router Comparison 

5.3.1 CGE 

In [BRV92], a new detailed routing algorithm which called Coarse Graph Ex-

pansion (CGE) and designed for F P G A is introduced. The algorithm supports 

different kinds of F P G A architecture. Since the wire segments in F P G A s are 

pre-placed, there exists competition between the same wiring segments when 

applying routing algorithm. Thus, C G E applies 2 phases to ensure the 100% 

routing on the industrial circuits. It can also optimize the routing delays for 

some critical paths. 

Example of Global route from (2,2) to (4,4) 
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A. . - L ^ - jyiFM^H^i^ hwmfr - - L = Logic Blcok 

—W 4V IT w 
• 丨 J : : C = Connectioii Blcok 

3. .LgJTTTT. TTT：-i^.TTTT. .g. rTTTT s = switch Bicok 
W v V W 4 - V W 
： ： i ： ： pMn pLil M pUt 

2" - - Xj ^ i r C ‘ ‘ i-T ‘ 
‘ ‘ I • * I ‘ 

I I ^ I I I I ‘ ‘ . 
I I « ‘ 

: . • , • channel segment 
• • • _ ‘ 

I I I ' I I j I I I ‘ I 

1 - - f c T ^ - s- - i i i j ^ t i i - zzzzF^-
‘ “ I I < i • 1 * 

• I _ I I I I I I ‘ 

t • • • 

I • • ‘ 

書 • » • » 

- ’ I > j I I I 11 

0- - -L- -t̂- [ZZZ-6-ZZZZ -L-
I I I • 0 1 2 3 4 

Figure 5.7: C G E : The F P G A Model with one Global Route 

The input to C G E detailed routing algorithm is the LocusRoute global 

router [Ros90] which divides multiple-pin nets into 2-pin nets and routes them 

in the shortest distance paths. In the first phase of C G E , it generates a number 

of alternatives for the detailed routing on each global route plus pruning to 

reduce the number of paths. In second phase, there is a simple cost function 
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which is the sum of the costs of its edges used to evaluate which detailed 

routing should be chosen. 

Block Grid coordinates Block Grid coordinates 
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S p 3 , 3 — • s O 9 O 3,3 
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C C n O O 3 . 

1 1 1 1 

^ o - L 6 6 6 6 
Coarse Graph (Global Route) Expanded Graph 

Figure 5.8: C G E : The Coarse Graph and its Expanded Graph 

As shown in Figure 5.7, it shows the F P G A model with a global route from 

grid coordinate (2,2) to (4,4). The coarse graph and its expanded graph are 

also shown in Figure 5.8 and it is graph representation for the alternatives in 

phase 1. 

5.3.2 SEGA 

In [LB93], they address the allocation of wire segments which best match with 

the length of connection such that S E G A is able to obtain better routing result 

than C G E . For example, if there is a connection from (0,0) to (4,4) as shown 

in Figure 5.9, S E G A builds an express edge from (1,0) to (1,3) instead of three 

short segments as shown in Figure 5.10. 

Since S E G A performs the matching between the connections and the wire 

segments length, it provides a high quality routing result and achieves good 

performance. 
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Example of Global route from (0,0) to (4,4) 
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Figure 5.9: S E G A : The F P G A Model with one Global Route 

5.3.3 TRACER 

In [CLWL95], a RAM-based F P G A routing algorithm ( T R A C E R ) is presented. 

T R A C E R basically consists of 2 router, an expansion router plus a rip-up and 

rerouter. The expansion router will use up all the F P G A routing resources 

without considering the connections of other nets. As a result, the existing 

violations are solved by rip-up and rerouter. 

The important issue for rerouter is to choose which net should be ripped up. 

The straight forward approach to select bad net might fall into local minima. 

Therefore T R A C E R does not choose the net causing a lot of violations to rip-

up, but instead there is a score for each net for the selection. The score is 

shown below where a is set by the user: 
scorein,) = a * + (1 — a) * num.violations. 

W h e n T R A C E R is unable to solved all the violation among different con-

gested nets in a certain time, the router will abort automatically. However, 

within feasible time, the T R A C E R will record the feasible solution and find a 

better solution. T R A C E R provides a better solution than C G E and S E G A . 
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Figure 5.10: S E G A : The Coarse Graph with Express Edge 

5.3.4 VPR 

Versatile Place and Route (VPR) [BR97] was introduced in 1997 and is known 

as the best F P G A router nowadays. V P R can place and route an F P G A design 

into different F P G A architectures which is different from other F P G A router. 

The routing algorithm of V P R is based on the Pathfinder negotiated congestion 

algorithm [EMHB95] and it also applies two phases of routing, i.e. shortest 

path routing (Dijkstra's algorithm, a maze router [Lee61]), and ripping-up and 

re-routing. In the Table 5.1 shown below, the comparison between different 

routers with Fc = W and Fg = 3 and the switch-box architectures is Disjoint 

type (XC4000). The inputs are the placement results by Altor [RSV85:. 

Global R o u t i n g L o c u s R o u t e LocusRoute VPR TRACER VPR 
Detailed Routing CGE SEGA SEGA TRACER VPR 

9symml 9 9 7 6 6 
alu2 12 10 8 9 8 
alu4 15 13 10 11 9 

apex7 13 13 10 8 8 
example2 18 17 10 10 9 

k2 19 16 14 14 12 
terml 10 9 8 7 7 

tooJarge 13 11 10 9 8 
vda U U 12 n 10 

Total 123 112 89 85 77 

Table 5.1: Comparison between different F P G A Routers 
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5.4 Switch Box Design 

5.4.1 Disjoint type switch box (XC4000-type) 

The most commonly used Switch-box is XC4000-type which is implemented 

in Xilinx XC4000 family. The architectures are illustrated in Figure 5.11 with 

VF = 3,4. Disjoint means the connection between different track is isolated as 

shown in Figure 5.12. There are totally 3 independent set of connections. 
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(a) Disjoint S-Box when W = 3 (b) Disjoint S-Box when W = 4 

Figure 5.11: XC4000-type Switch-Box Architectures for W 二 3 and 4 
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Figure 5.12: Disjoint relationship between different tracks for W = 3 
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5.4.2 Anti-symmetric switch box 

In Figure 5.13, it shows two different size of anti-symmetric switch with Fs = 3 

which is implemented in [RB91 . 
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(a) Anti-symmetric S-Box, W = 3 (b) Anti-symmetric S-Box, W = 4 

Figure 5.13: Anti-symmetric Switch-Box Architectures for W = 3 and 4 

5.4.3 Universal Switch box 

In [ C W W 9 6 ] a so called Universal Switch Box (USB) structure, which is a 

4-way S-box of density W with 6W switches, has been proposed. However, 

this model only accommodates 2-pin nets, therefore designing a general S-box 

for all kinds of nets is important and necessary. In Figure 5.14, it shows two 

different U S B architectures. 
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(a) USB S-Box, W = 3 (b) USB S-Box, W = 4 

Figure 5.14: Universal Switch-Box Architectures for W — 3 and 4 
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5.4.4 Switch box Analysis 

For 2-D type F P G A , there are six types of connection as depicted in Fig-

ure 5.15. If there are two type 1, two type 2, one type 3 and one type 5 

connections, the possible routing results are shown in Figure 5.16, 5.17, 5.18 

for Disjoint, Anti-symmetric and Universal switch-box respectively. 

,, Type 2 

Tvpe — T v p e 6 

Type 1 

Type ^ J 、 T y p e 5 

Figure 5.15: Six different types of connections 
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Figure 5.16: Example of routing over Disjoint Switch-box 

— ^ / f . .---'k ~/k/]、、、、卜、、A\ ~ 

!\ /" .i, .、\ 、 \ / 
、、‘ 、，、：V' 、‘‘ ’ I 、、、 V V - 、 >： 

\| /•--. i 、、、、/、、、、 :<1 _ 
、、、、、/、、、、、、丨 入-,'" V 丨\ ,'v" 

/ \ \ ./r\ /、、、、-、. \i. .,'、、、、、、、 _/\i 
\ V 父 1 / \ VIA / \r-x-A / 

\ \ / I I \ \|/ � �� , I 十 ' � �� / 
Unroutable Unroutable Unroutable 

Figure 5.17: Example of routing over Anti-symmetric Switch-box 
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From the above figures, the required connection is unroutable in anti-

symmetric switch-box but is is routable in both Disjoint and Universal switch-

box as shown in Figure 5.18. Another example is depicted in Figure 5.19, it 

shows the routability of U S B is higher than Disjoint type because Disjoint S-

box failed to route one type 1, one type 3 and one type 6. From [ C W W 9 6 ] the 

results are put in Table 5.2, U S B has higher flexibility than anti-symmetric and 

disjoint type S-box. A larger routing capacity always means a better routing 

solution, therefore it is necessary to improve the routability. 
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• /r\、‘、、v"" 
A / i、、、、、、八 

八 \ i / A 
、、、.、、、、‘'''i、、、/ 
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Figure 5.18: Example of routing over Universal Switch-box 
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Figure 5.19: Another comparison between Disjoint and Universal Switch-box 

Circuit Fc USB Disjoint Anti-symmetric 
BUSC 9 lO n 10 
DMA 10 11 14 11 
DFSM 10 11 15 11 
BNRE 12 12 14 14 

Z03 14 14 15 U  
Total I - II 58 I 69 I 60 

Table 5.2: Detailed routing result by C G E over different switch-box 
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5.5 Terminology 

The terminology and symbols of graphs are referred to [BM76]. Let G = 

(V(G),E(G)) be a simple graph with vertex set V{G) and edge set E(G). 

V{G)\ (or \G\) and \E{G)\ are denoted as the number of vertices and edges in 

G, respectively. Let S C V{G). denotes the induced subgraph of G by S. 

Vî Vî  …Vii is used to denote the path with consecutive vertices vi^.vi^,..., vî . 

Let W and k be positive integers with A: > 2. In [FLWOO], a (k, P^)-global 

routing is represented as a collection GR = {Ni\i = 1,..., /} of non-empty 

subsets of {1，...，k} such that each element of {1,2,..., k} belongs to exactly 

W subsets of GR. W is called the density of the global routing, and a (A;, W)-

global routing is also called a A;-way global routing with density W. Each 

Ni in GR is referred to as a net of the global routing. Note that a global 

routing GR is a multiple set; two equal sets in GR represent two different nets 

in the global routing. Note also that a net of cardinality n corresponds to an 

n-pin net. For simplicity, 1-pin nets are allowed to ensure that each element 

of {1,2,..., k} appears exactly W subsets of GR. 

Let GRi and GR2 be global routings and m a positive integer. The union 

of GRi and GR2 as multiple set is denoted by GRi + GR2, and mGRi is the 

union of m GRiS. 

Given a global routing a local and mathematical view, further view is taken 

to the track with ID j on the z-th side of an S-box as a vertex vij and a switch 

connecting the track with ID j on the z-th side and the track with ID m on the 

h-th side is an edge VijVm,h- Therefore, any /c-way S-box of density W can be 

represented as a A:-partite graph G on where Vi = {vij\j — 1,..., W } 

and each Vi is an independent set in G^ for z = 1,..., A:. The graph G is called as 

a (k, VF)-design. In particular, a 4-way S-box of density VF is a (4, VF)-design. 

Let G be a {k, PF)-design on (Vi,... ,14). A detailed [k, l^)-routing (or 

shortly detailed routing) of a {k, Vr)-global routing {Ni\i = 1,...,/} in G is a 
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set of mutually vertex disjoint subgraphs {T{Ni)\i = 1..•，of G satisfying: 

(1) T{Ni) is a tree of \Ni\ vertices, and (2) \Vj H V{T{Ni))\ = 1 if j e N“ for 

i = l,..”l. T{Ni) is called a detailed routing of Ni. 

Hyper-universal design 

A hyper-universal (k, VK)-design on (Vi,...，T4) is a (k, ^ )̂-design on (Fi,. • •，V̂ ) 

such that it contains a detailed routing for each (A;, l^)-global routing. For ex-

ample, the complete A:-partite graph on (Vi,..., Vk) (in which, there is an edge 

joining each pair of vertices Vij and with ii ^ i) is a hyper-universal 

(A:, VF)-design. A hyper-universal (A;, T^)-design represents a k-way S-box of 

density W (also called a {k,W) S-box) which can accommodate any {k,W)-

global routings. A (2,4) and a (3,4) design are depicted in Figure 5.20. 

1 2 3 4 

1111 
1 2 3 4 1 2 3 4 

(2,4)- HUSB (3,4)- HUSB 

Figure 5.20: (2,4) and (3,4) design 

Optimum design 

A n optimum {k, VF)-design is a hyper-universal�k, VF)-design with the min-

imum number of edges. Clearly, the number of edges in an optimum (/c, W)-

design is uniquely determined by k and W, which is denoted by e(k, W). 

A global routing is called primitive if it does not contain two unequal nets 

of size 1. If a (Jc, Vl̂ )-global routing GR is not primitive, then the unequal nets 
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of size 1 are combined into nets of size 2 to obtain a primitive (k, PF)-global 

routing GB!. Any detailed global routing of GR' will induce a detailed global 

routing of GR by simply deleting the edges of those one edge trees representing 

the nets of size two in GB! which are obtained by combining the unequal nets of 

size 1 in GR. Therefore, to verify that a (k, Vl^)-design is hyper-universal, it is 

only necessary to show that each primitive global routing is detailed routable. 

This approach depends on a very nice decomposition property of global 

routings. Let GR be a {k, VF)-global routing and GR' be a sub-collection of 

GR. If GR' is a (A;, n)-global routing with n<W, GR' is called a sub-global 

routing of GR. GR is said to be minimal if it does not contain subglobal 

routings. The following result was proved in [FHL . 

Lemma 1 For any integer k with k > 2, there exists an integer f{k) such 

that any k-狐y global routing GR could be decomposed into minimal /c-way 

subglobal routings with densities at most f{k). Moreover, f{k) = A; - 1 for 

k = 2,3,4. 

In [FLWOO], a general reduction technique is developed for designing [k, W) 

S-boxes. 

I. Find f{k) and all k-way minimal global routings. The existence of f(k) 

and the finiteness of the number of minimal k-way global routings are 

guaranteed by L e m m a 1. 

II. Determine p and r such that W = pq + r, p and r are as small as possible 

so that any (/c, VF)-global routing is a union of q subglobal routings of 

density p and a subglobal routing of density r. (Note that as k is fixed 

and each W corresponds to a unique r, it may has more than one r as 

W varies but there are finitely many such r's for all W). 

III. Design a hyper-universal (k,p) S-box Si and a (k,r) S-box S2 with the 
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number of switches as small as possible. Then a disjoint union of q copies 

of Si and an S2 is a hyper-universal (k, W) S-box. 

IV. Design an efficient detailed routing algorithm to detailed-route any A;-way 

global routing in the S-boxes designed in III. 

A n efficient algorithm for IV is given. N o w the 4-way S-box designs will be 

focused. 

For Step 1，Lemma 1 shows that /(4) = 3. For Step 2, [FLWOO] showed 

that any (4, VI^)-global routing can be decomposed as a union of (4,6)-global 

routings and at most 1 (4, r)-global routing for some r 二 1, 2，3,4, 5 and 7. 

The following are all primitive minimal (4, l^)-global routings. 

For Step III, [FLWOO] gave a hyper-universal (4, Vl^)-design F{W) with less 

than 6.71^ switches. 

The goal of this chapter is to further investigate Step III for obtaining 

better (4, i)-designs for i = 3,4 and 6 and a better (4, T^)-design than the 

(4, W)-design F{W) constructed in [FLWOO；. 

The following result was proved in [FLWOO] which will be used in this 

chapter. 

Lemma 2 Let G = ((^1,^2,^3,^4),^) be a hyper-universal (4, VF)-design. 

Then \E\ > 6W. If G is restricted on any two parts, it gives a hyper-universal 

(2, T^)-design. If G is restricted on any three parts, it gives a hyper-universal 

(3, VF)-design. The optimum (2, VK)-design is a perfect matching, and an op-

timum (3, VF)-design is a Hamilton cycle which includes each vertex in the 

graph and forms a circle. Moreover, the optimum (3,4)-design must be a 

Hamiltonian cycle. 
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Gi?卜{{1,2,3,4}} 

碑，1 = {{1,2}, {3,4}} 
碑,2 二 {{1,3}, {2,4}} 
碑 3 二 { { M } , {2, 3}} 

綱 , 1 = {{1},{2,3,4}} 

啤 2 = {{2}，{1,3，4}} 
Gi^“ = {{3},{l,2,4}} 

G 用 1 = {{1,2，3}, {1,2，4}, {3,4}} 

關’2 = {{1，2，3}, {2,3，4}, {1,4}} 

0用，3 二 {{1,2,4}，{2,3，4},{1，3}} 

Gi?f4 = {{M,4}，{2,3,4},{l,2}} 

Gi<5 = {{l,2,3}，{l,3,4},{2,4}} 

啤 6 = {{1，2，4},{1，3,4}，{2，3}} 

爛 , 1 二 {{1，2,3}, {1,4}, {2}，{3,4}} 

G 瑪 2 = {{1,2,4}, {1,3}, {2}, {3,4}} 

G丑• 3 二 {{2,3,4}，{1,4}，{2}, {1,3}} 

啤 4 = {{1,2，3}, {1，4}, {3}, {2,4}} 

5 二 {{1，4,3}, {1,2}, {3}, {2,4}} 

吨 6 二 {{2,4,3}, {1,2}, {3}, {1,4}} 

Gi?2^ = {{2,4,3},{l,2},{4},{l,3}} 

= {{1,4,3}, {1,2}, {4}, {2, 3}} 

啤 9 = {{1,2，4},{1,3},{4},{2,3}} 

Gi^li。= {{l,2,4},{4，3},{l}’{2，3}} 

碑 11 = {{M，3}，{4,2}, {1}，{2,3}} 

G丑•，12 二 {{2,1,3}, {4，2}，{1}, {4，3}} 

吨 1 = {{1，2}，{3,1},{2,3},{4}，{4}} 

綱2 二 {{1,2}, {4,1}, {2，4}, {3}, {3}} 

吨 3 二 {{M}，{4,1}，{3，4}, {2}, {2}} 

碑4 二 {{3,2},{4,3},{2,4},{1}，{1}} 

GRI 二 {{1，2,3}, {1, 2,4}, {3,4，1}, {2,3,4}} 

GRl 1 二 {{1，2，3}, {1,4}, {2,4}, {3，4}, {1, 2,3}} 

GRl^ = {{2,3，4}, {1，2}, {1,3}，{1,4}，{2,3,4}} 

GRi, 二 {{3,4，1}，{2,1}, {2,3}, {2,4}, {3,4，1}} 

GRl, = {{4,1,2}, {3,1}，{3, 2}, {3,4}，{4，1, 2}} 

Table 5.3: Primitive minimal 4-way global routings 
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Figure 5.21: A family of hyper-universal 4-way designs. 

5.6 Hyper-universal (4, Ty)-design analysis 

To design a hyper-universal (4, VF)-design, Step III of the reduction design 

technique mentioned in Section 2 is processed. Figure 5.21 provides a family 

of (4, z)-designs Hi for z = 1,2, 3，4, 5, 6, 7 which are necessary for designing a 

(4, VF)-design for all W according to this technique. Figure 5.22 also shows 

the structure of (4,7)-design Bj on the S-box. In [FLWOO], it showed that Hi 

is an optimum (4, i)-design for i = 1,2. The following lemmas claim that Hi,s 

are hyper-universal or optimum (4, z)-designs for i = 3,4, 5, 6, 7. The prove of 

these lemmas is discussed in this later section. 

Lemma 3 Hi is an optimum (4, z)-design for z == 3,4, 5. 

Lemma 4 Hi is a hyper-universal (4，i)-design for i = 6, 7. 

N o w define G{W) as the following graph: 
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Figure 5.22: Structure of H 7 

disjoint union of h Hq's iiW = 6h, 

disjoint union of (h - 1) Hq's and a î r iiW = 6h+l, 

disioint union of h HqS and a H2 if W = 6/z + 2, 
G{W)= 

disjoint union of h Hq's and a Hs if 二 + 3, 

disjoint union of h He's and a H^ if 二 6" + 4， 

disjoint union of h Hq's and a i/5 iiW = 6h-\-b. 
\ 

By the definition of i = 1,..., 7, it is easy to see that the number of edges 

of F{W) for VF > 1 is 

‘fW if = 

f W - l if W = l(mod 6), 

^ • W - ^ if = 2(mod 6), 

fW -1 if V^ = 3(mod 6), 

f W - l if V^ = 4(mod6)， 

f W - l if ly = 5(mod 6). 
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Theorem 5 For W > 1, G{W) is a hyper-universal (4, VF)-design. 

Proof. 

If = 6/i + 1, then h>l and any (4,6h + l)-global routing GR can be 

decomposed into a union of {h — 1) (4,6)-global routings and a (4, 7)-global 

routing, (sometimes, GR can be decomposed into h (4, 6)-global routings and 

a (4, l)-design. But this does not always happen.) N o w it is easy to see that 

G{6h + 1) contains a detailed routing of GR as G{W) is a disjoint union of 

{h — 1) Hq's and an Hj, and Hq and Hj are hyper-universal (4,6)-design and 

(4, 7)-design, respectively by L e m m a 4. 

Let W = where i ^ 1. Since the densities of minimal 4-way global 

routings are 1, 2 or 3, any (4,6/i+i)-global routing GR can be decomposed into 

h (4，6)-global routings and a (4, z)-global routing for 2 < z < 5. Since G{6h-hi) 

is a disjoint union of h H^s and an Hi, and Hq and Hi are hyper-universal 

(4，6)-design and (4, i)-design, respectively by L e m m a 3, then G{6h-\-i) contains 

a detailed routing of GR. • 

Next the proof of the lemmas 3 and 4 are divided into subsections. For 

simplicity, each vertex of Hi is labeled by only the side label, where the corre-

sponding track belongs to. 

5.6.1 Hs is an optimum (4, 3)-design 

Note that H3 has 18 edges which is the lower bound. Therefore, it is sufficient 

to show that H3 is hyper-universal. It is suffice to show that H^ contains all 

possible (4, 3)-global routings obtained by combining the primitive minimal 

global routings in Table 5.3. All these primitive are depicted in Appendix E. 

Notice that the permutation a =(1,4)(2,3) is an automorphism of 丑3, thus 

it is only necessary to detailed-route GR in H3 where GR is a union of those 

global routings in Table 5.3 which are not isomorphic to each other under a. 

These global routings are shown in Table 5.4. 
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Gi^i 二 {{1，2,3，4}} 

碑 1 二 {{1，2},{3,4}} 

Gi^l2 = {{l,3}，{2,4}} 

0竭,3 = {{1，4},{2,3}} 

叫 1 二 {{1},{2，3，4}} 

碑 , 2 二 {{2}，{1,3,4}} 

Gi??i = {{l，2，3},{l,2,4},{3，4}} 

啤 2 二 {{1，2，3}, {2，3，4}, {1，4}} 

爛 : 3 = {{1,2,4},{2，3’4},{1,3}} 

Gi??,6 = {{l,2,4}，{l,3,4},{2,3}} 

綱 ’ 1 = {{1，2,3}，{1，4}，{2}，{3,4}} 

G均,2 = {{1,2,4}, {1，3}, {2}，{3,4}} 

綱 , 3 = {{2,3,4}, {1，4}，{2}，{1，3}} 

綱 , 7 二 {{2，4,3}, {1，2}, {4}, {1,3}} 

Gi?l8 = {{l,4,3},{l,2}’{4},{2,3}} 

G瑪,9 = {{1,2，4}，{1,3}，{4}, {2，3}} 

Gî•，1 二 {{1,2}, {3,1}，{2, 3}，{4}, {4}} 

二 {{1,2}, {4，1}, {2，4}，{3}, {3}} 

GRI = {{1，2，3}，{1,2,4}, {3,4，1}，{2,3，4}} 

GRl 1 = {{1, 2，3}, {1,4}，{2,4}, {3,4}, {1, 2,3}} 

GRl, = {{3，4，1}, {2,1}, {2, 3}，{2,4}, {3,4,1}} 

Table 5.4: Primitive minimal 4-way global routings which are not a isomorphic 
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1 4 。 。 .1 . 4 , ， . 1 A . ,3 
2i I ^ o 3 2i I • • I • 

3 4 1 2 3 4 1 2 3 4 ^ 1 2 

GR̂ i GÎ 'i GP2.3 

Figure 5.23: Detailed Routing of GR (Case 1) 

Let GR be a (4,3)-global routing which is a union of global routings from 

Table 5.4. 

Case 1. GR G 

A detailed routing of GR is given by Figure 5.23. 

Case 2. GR consists of only density 1 global routings. 

Subcase 2.1. GR does not contain 

In this case, the graph H3 can be partitioned into three subgraphs Gi, G2 

and Gi consists of the lower level, G2 consists of the left of the top and 

second levels and G3 consists of the right of top and second level. Note that 

each subgraph can detailed-route any of {GR\, GR\ 2, GR\ i, GR\ 2}. 

Therefore, it is sufficient to detailed-route GR in H3. 

Subcase 2.2. GR = 3Gi?“s. 

A detailed routing is given in Figure 5.24(a). 

Subcase 2.3. GR contains only one GRl ̂ . 

If GR contains U GR\ 2, then it is possible to detailed-route GRl -^ U 

GR\,2 as shown in Figure 5.24(b)，and if GR contains GR]^^ U GRI 2, and 

the detailed-route G R ^ ̂  U G R I 2 are showed in Figure 5.24(c). Note that the 

unused part in Hs can detailed-route any of {GRl,GRl i, G R \ 2, G R \ 2}-

This proves that GR is routable in H^. 

For those GR,s which do not contain GRI 2 and GRI 2, detailed routings 

in H3 is shown in Figure 5.24(d),(e),(f). 

Subcase 2.4. GR contains two Gî “，s. 

If detailed-route of 2Gi?2,3 is performed as shown in Figure 5.24(g), then 
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p ^ l ~ p ^ l 

——y__o3 : . ‘ [ l 1 4 _ , , 3 2 , , — — o 3 

3 4 1 2 3 4 1 2 3 4 1 2 
(a) (b) (c) 

" ” " “ ^ f ^ ' 

_ _ [ i _ U — 0 3 2,,_[i~L~•丨3 2 , . _ I _ o 3 

3 4 1 2 3 4 1 2 3 4 1 2 
G R ! + G R 2 3 + G R I 1 G R \ + G R 2 3 + G R I , 1 G R �3 + G R ^ ’ 1 + G R 2 . 1 

(d) (e) ffl 

2 、i I4 : [1 [4 … 2 0 — — y - — — " 3 

rTV^' 
3 4 1 2 3 4 1 2 1 1 

2 G R 5 3 2 G R i 3 + G R i 2 2 G R , . 3 G R 3 . 2 
(g) ’ (h) (i) 

Figure 5.24: Detailed Routing for Table 3.2 

the unused top level can detailed-route any of {GR\, GR\ i, GR\ i}. For GR = 

+ GR\,2 or GR 二 2GRl^ + a detailed routing is given by Fig-

ure 5.24(h),(i). 

Case 3. GR contains a minimal global routing of density 2. 

Figure 5.25 shows all detailed routings of density 2 global routings in Fa-

Note that the lower level of H2 is not used in all the routings in Figure 5.25 

and the lower level can be used to detailed-route GR\, GR\ i, GRl GRl i and 

GRl 2- Therefore, detailed-route GR can be done in H3 if GR is a union of a 

density 2 global routing and a density 1 global routing from {GR\, GR\ i, GRl 2, GR\ i, G均 2}. 

A detailed routing of GR in H3 is given in Figure 5.26 when GR is a union 

of density 2 global routing and 

This completes the verification that it is detailed routable in H3 for all 

(4,3)-global routings, and hence H3 is hyper-universal. 

Note that only when GR G {2G均,3 + 瑪 ， 2 , “ + GRl^. GRl^}, it is 

needed for the top level edge {1,4} in the detailed routing. This information 
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2,. I L > 3 21, I I 113 I I -.3 2,. l ^ >3 

k s ^ 
3 4 2 1 2 3 4 2 1 2 3 4 之 1 2 3 4 ^ 1 2 

GRi’i GRl, 2 GRi’3 GRi,6 

M y II- [l 1 4「 "‘ _ y .>3 2 , 1 ‘ 4 ,,3 

3 4 1 2 3 4 2 1 2 3 4 2 1 2 3 4 2 1 2 

GR2̂  GR2’2 GR2,3 GR2’7 

I ‘‘"‘•上4 o3 2 丨 I ^ I I' n3 2 .__1 •丨3 

k t W 
3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 

GRJs GR2,9 GR3,1 GR3’2 

Figure 5.25: Detailed Routing of density 2 Global Routing in Hs 

will be used later. 

5.6.2 H4 is an optimum (4,4)-design 

The first step is to show that H4 is hyper-universal. Let GR be any (4,4)-

global routing which is a union of global routings from Table 5.3. If GR is 

a union of a minimal (4, 3)-global routing and a (4, l)-global routing from 

Table 5.3, the five minimal (4, 3)-global routings can be detailed-routed as in 

Figure 5.27(a). Note that the unused part in H^ is a cycle 1,2,4,3 which 

can be used to detailed-route all the (4, l)-global routings except from 

Table 5.3. If GR contains a a detailed routing of GR in H^ is given in 

Figure 5.27(b). 

N o w assume that GR is a union of two (4, 2)-global routings, then GR is 

routable in H4 as H4 contains two disjoint H2S. 
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2, ) ,,3 1 4 2丨 I J , |3 2 > , , 4 (»3 

k ^ ^ 
3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 

GRi, 1 + GRI 3 GRI 2 + GRI 3 GRI 3 + GR^ 3 GR?, 5 + G^i 3 

2i 丨 I 14 1,3 ： , [1 I4 “”‘‘__I n3 2,,_1 … 

r ? ^ KTV î 
3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 

GR2,, + GRI 3 GR2,2 + GRI 3 GR2' 3 + GRI 3 GR2,7 + GR2, 3 

f̂̂ yr^^ 

r ^ T V ^ K W N k v W 
3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 

GR2, 8 + GR2, 3 GR2, 9 + GR2,3 GR3,1 + GR2, 3 GR3,2 + GR2! 3 
Figure 5.26: Detailed Routing of GR in H^ 

/ T Z l x / T Z ^ K / T z I n ^^Z^f^ 
2 3 2 3 2 I 2. 2 J I 3 2 t：：/ L：：/ t：/ tlZl t：/ 

/T—：\ % —： ^ /T^—：^ Z 3 . 
3 2 3 2 I 3 2 1 ^ 2 J 1 3 2 , L t t ： ^ 
GRi GR2. 1 GR2,2 GR2,3 GR2.4 

(a) 

/ p - K / T Z ^ r z ^ / T l l Z x / T T — ^ K 

丄 3 2 , 3 2 , . 3 2 3 2 I 3 2 

L ： / t ： / t l ： / U l： ^ / t^l 
%—/T—：：\ /T ：^ %—：^ 

3 2 1 3 2 1 3 2 1 3 2 a 2 

L J / t d / L I / t z l / 
GR2,3+GFLi 2 GRU+GR2.3 GI43+G4’4 

(b) 
Figure 5.27: Detailed Routing of GR in EU 
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This proves H ^ is hyper-universal. The fact that H ^ is an optimum design 

follows from the following result which also indicates that the lower bound ^ W 

given in L e m m a 2 is not achievable in general. 

Theorem 6 There is no 3-regular hyper-universal (4,4)-design. A n optimum 

(4,4)-design must have at least 25 edges. 

Proof: Suppose that there is a 3-regular hyper-universal (4,4)-design G. Then 

is a 4-partite graph on (^1,^2,^3,^4)； there is a 4-matching between each 

pair of Fi, Vj for i + j and the induced subgraph of G on each set Vi U Vj U Vm 

� i . ] + m) is a cycle (see Lemma2). Based on these facts, all such 3-regular 

graphs can be constructed. 

It is easy to observe (by relabeling if necessary) that any graph described 

in the above paragraph contains the graph Gi as shown in the Figure 5.28(a). 

Begin from Gi, selection of a matching between Vi and Vs is done so that the 

induced subgraph on Vi U V2 U is a cycle. There are 6 different choices. 
For each of these choices, it is necessary to select a matching between Vi and 

V4 to obtain G so that the induced subgraphs of G on Vi U F2 U V^ and on 

Vi u V3 U V4 are Hamiltonian cycles. Total 23 such graphs are constructed. 

For each of these graph, a (4,4)-global routing is found and it is not detailed 

routable in the graph (see Figure 5.28). As a result, it showed that there is no 

3-regular hyper-universal (4,4)-design. 

5.6.3 Hi is a hyper-universal (4，i)-design for i = 5,6,7 

Note that any (4，5)-global routing is a union of a (4，3)-global routing and a 

(4, 2)-global routing, and H^ contains an H3 and a disjoint H2, therefore, H^ 

is hyper-universal. Also note that H^ has 30 edges which is the lower bound 

of an hyper-universal (4, 5)-design. Therefore,丑5 is an optimum design. 

H7 is a hyper-universal (4, 7)-design is similarly proved. 
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1 2 3 4 

穩 
1 2 3 4 (a) 

_ _ _ _ • •‘ 1 2 3 4 1 2 3 4 1 3 

3GR2 3 +GR2 1 2G< i +2GR2.3 2GR2.1 +2GR2’ 3 

_ _ _ 
1 2 3 4 ^ 1 2 3 1 2 3 4 

2GR1 i+2GR2’3 2GR2 1+2GR2.3 2GR2 2 + 2GR!’3 

'• A •• 1 2 3 4 1 2 3 4 1 f 3 4 

2GR2 2 +2GR1 3 3GRU 1 2 +GR2.1 

_ _ _ _ _ 
'• 1 2 3 4 : 1 2 3 4 1 2 3 4 1 2 3 4̂  1 2 3 4 

i+2GÎ ’3 2GR2 2+2GR2.3 2GÎ .I+2GÎ .3 I+2GÎ .3 _____ 
1•…2.•丄..：* 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

2GR2 2+2GR2 3 i 3 2GR1. ! +2GR2.2 2GR1, 1 +2GR2,2 

_ _ _ _ 
1 2 3 4 1 2 3 4 1 2 3 4 

2GR2 1 +2GR“ 2G 边 1+2GR“ 2GR2’ i +2GR2,2 

_ _ _ _ 
……i-丄.丄-.4-……. 2GR“+2GR“ 2GÎ,,+2GR2,2 2GRii+2GR“ 

Figure 5.28: (4,4)-Global Routing 



Chapter 5 Optimum FPGA Switch-Box Designs - HUSB 92 

The first step to show Hq is a hyper-universal S-box is to prove Hq con-

taining a detailed routing for every (4,6)-global routing. Then, note that the 

permutation a = (1,4)(2,3) is an automorphism of Hq. Therefore, it is nec-

essary to check those global routings which are union of global routings from 

Table 5.4. Let GR be such a global routing. 

Case IGR 二 GRi-\-GR2, where both GRi and GRi are (4，3)-global routings. 

It is easy to see that H^ contains a detailed routing of GR as Hq contains 

two disjoint B^s. 

Case 2 GR = GRi + GR2 + GR3, where each GRi (i = 1, 2,3) is a primitive 

minimal global routings from Table 5.4. 

Let K(i, z + 1) be the subgraph of He which consists of the levels i and 

i + 1. There are three disjoint subgraphs i^(l，2)，i^(3,4) and i^(5,6) of 

Hq. In Figure 5.25, it shows that K{1,2) and i^(5,6) can detailed-route any 

minimal (4, 2)-global routings in Table 5.4. All detailed routing of minimal 

global routing in i^(3,4) are routable. Therefore, there is a detailed routing 

for GR in Hq, and hence He is hyper-universal. 

5.7 Experimental Results 

From the combinatorial analysis shown above, it seems a bit surprising to see 

that an optimum (hyper-universal) S-box can actually be built using only very 

few more switches beyond the widely believed lower bound of 6W. It is also 

interesting to see that there exist H U S B s with switch density of only 6W for 

some W's and the construction of optimum H U S B s seem to hardly possess 

regular scalability which can be observed in the construction of some 4-way 

U S B family. Besides the theoretical analysis, in order to get some experimental 

justification, the experiments adopted the currently known best F P G A router 

V P R [BR97], which is available on the Web. The logic block structure for the 

V P R runs is set to consist of one 4-input L U T and one flip-flop. The input or 
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output pin of the logic block is able to connect to any track in the adjacent 

channels, Fc = W. Inside the switch box, each input wire segment can connect 

to three other output wire segments of other channels, Fs = 3. In appendix 

D , the H U S B s for z = 1,..., 9 are depicted. 
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Routing succeeded with a channel width 彳actor of 11. 

Figure 5.29: The structure of Disjoint S-Box, W = l l 
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Figure 5.30: The structure of H，USB(4,11) (H'USB(4,7) and H，USB(4,4)) 

In order to have an even comparison (partially is also due to the limitation 

of V P R router limiting Fs to 3) with the well-known Disjoint structure, the 

experiments deliberately eliminate the "additional" switches of the H U S B s 

to make the H'USBs have density of 61^, which is the same as Disjoint S-

boxes. Figure 5.29- 5.36 show some S-box structures and routing results of the 

experiments. 
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0 1 2 3 4 0 1 2 3 4 

0 1 2 3 4 0 1 2 3 4 

Figure 5.31: Detailed Routing by using Disjoint S-Box 

As shown in Figure 5.31 and Figure 5.32, there is more degree of freedom for 

H U S B switch-box if detailed routing is carried out from the lower left switch-

box to upper right one. It is because H U S B switch-box allows the router to 

choose track 1 or 2 instead of Disjoint type which only allows routing on track 

1. In Figure 5.33 and Figure 5.34, it shows Disjoint S-box is insufficient to 

route GR\ while H^ provides higher routability. 

In Table 5.5, it showed the comparing results of the number of tracks 

required to route some larger M C N C benchmark circuits [Yan91] by Disjoint 

and the H'USB FPGAs. Overall, the H'USB F P G A s use about 10% less tracks 

than the Disjoint FPGAs. (Beware that since the V P R is a simulated annealing 

based non-deterministic router, the results which produced for Disjoint F P G A s 

could be a bit different to their other reported results.) 
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0 1 2 3 4 0 1 2 3 4 

Figure 5.32: Detailed Routing by using H'USB S-Box 

5.8 Conclusions 

In this chapter, the reduction design technique developed in [FLWOO] in 4-way 

S-box designs is applied. The new (4, W) S-box has at most 6.3W switches 

compared with the previous one which has about 6.6VF switches. Note that, 

according to the new design, a complete database for detailed routings in Hi 

for i 二 2,3,4,5,6 and 7 is built and hence have an efficient detailed routing 

algorithm to detailed-route any (4，VF)-global routing in the S-box G{W). 

One example is provided to show that 6W is not a lower bound of the 

number of switches in an optimum (4, W) S-box for some W while which 

is widely believed to be. This suggests that the newly design G{W) is very 

close to an optimum. Currently, research works on applying this combinatorial 

analysis models for other F P G A routing architecture designs are conducting. 
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j v k k i j v k | \ i M \ l M 
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Figure 5.33: Detailed Routing by using Disjoint S-Box on G R l 

|Va3 4 |Va2 5 「21 6 

薩 
V„ 12 11 V,, 10 

Figure 5.34: Detailed Routing by using Hyper-Universal S-Box on G R l 

一 Disjoint H,USB 
aiui 12 To 

apex2 12 11 
apex4 15 13 
bigkey 8 7 

des 9 8 
diffeq 9 8 
dsip 7 7 

elliptic n n 
ex5p 15 13 

misex3 13 12 
seq 12 12 
spla 16 14 

tseng 8 7 
e64 9 8 

一 Total 156 141 (-9.62%) 

Table 5.5: Channel widths required for different benchmark circuits Fc = 

Fs = 3 
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iTi 5 S m F m r n ffi m ffim^m m i m m 

Routing succeeded with a channel width factor of 8. 

Figure 5.36: Routing result of e64 by using H'USB S-Box, W = 8 



Chapter 6 

Conclusions 

6.1 Thesis Summary 

In this thesis, the physical design flow was first discussed, followed by intro-

ducing the newly proposed alternative wiring tool Graph-Based Alternative 

Wiring (GBAW). Logic optimization and the circuit analysis on performance 

by using G B A W were examined. In Chapter 3, an intensive comparison with 

famous rewiring tool R A M B O was conducted. Experimental results showed 

that G B A W is able to identify alternative wires efficiently and obtained a very 

good logic optimization solution. 

In Chapter 4, the GBAW-Partitioner (GP) was proposed with graph do-

main and logic domain. In the login domain, the logic gate information was 

used by the rewiring technique G B A W in order to alter the circuit so as to 

escape from local minima in graph domain. In the graph domain, the F M algo-

rithm can be replaced by any other partitioner. Experimental results showed 

that the near optimal partitioning result by state-of-the-art Multi-level parti-

tioner hMETIS-Kway can be further improved. Rewiring techniques can be 

applied in many different C A D and VLSI problems such as designs with timing 

constraints and layout-driven constraints. 

In Chapter 5, the architectures of different switch-box architectures and 

routing algorithms were presented. The routability of Hyper-Universal Switch 
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Box (HUSB) was studied and was proved its optimality. Extensive experi-

mental results were done by using the Disjoint S-Box and H'USB on the V P R 

F P G A router. 

6.2 Future work 

6.2.1 Alternative Wiring 

The alternative wires are usually closed to the wire to be removed. More pat-

terns should be located and put into G B A W in order to enhance the searching 

power. However, the performance of G B A W should be put into consideration. 

A good data structure and organization of pattern members should be built 

in order to reduce runtime of G B A W . As a result, careful experiments should 

be conducted and ensure the integrity and performance of G B A W . 

6.2.2 Partitioning Quality 

Partitioning is always the first step in physical design and most partitioning 

algorithms can be transformed or mapped with multi-level approaches. The 

bottleneck of the best partitioning result is the lack of using logic domain 

information. Thus, it is possible to integrate rewiring technique with other 

partitioning algorithms. Improved results are expected. 

6.2.3 Routing Devices Studies 

Higher routability means that the same circuit design can be put into the 

same F P G A with less physical wire segments. It also helps to reduce the heat 

dissipation and total path delay. Nowadays, XC4000 architecture F P G A are 

going to be replaced by newly released Virtex, Virtex-E and Virtex-II FPGAs. 

The next research step in F P G A routing should be the investigation on the 

methods which improve the routing of new FPGAs. 
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Appendix A 

5xpl - Berkeley Logic 

Interchange Format (BLIF) 
.model top 
• inputs i_5_ i_6_ i_3_ i-4_ i_l_ i_2_ i_0_ 
• outputs o 丄 0-2- o_0_ o_9_ o_7_ o_8_ o_5_ o_6_ o-3_ o_4_ 
• default Jnput-arrival 0.00 0.00 
.default-output-required 0.00 0.00 
• default Jnput-drive 0.30 0.30 
.default-output Joad 1.00 
.default-maxJnputJoad 999.00 
.names i_6_ [565] 

0 1 
• names i-0_ [570] 
0 1 
• names i_2_ [571] 
0 1 
• names [565] [570] [571] i_5_ [1079] 
0 — 1 

- 0 — 1 

- 0 - 1 

— 0 1 

.names i-3_ o_8_ 
0 1 
.names [565] [570] o_8- i_5_ [1044] 
0 — 1 

- 0 - 1 

- 0 - 1 

— 0 1 

.names i_l_ [576] 
0 1 
• names [570] [576] [571] [578] 
0 - 1 

- 0 - 1 

- 0 1 

• names i_4_ [563] 
0 1 

.names [563] i_5_ [579] 
0 - 1 

- 0 1 
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• names [578] [579] [1163] 
1- 1 

- 1 1 

• names [1079] [1044] [1163] [581] 
0 - 1 

- 0 - 1 

- 0 1 

.names i_5_ [564] 
0 1 
• names [564] i_4- [586] 
0 - 1 

- 0 1 

• names i_0_ i_2_ i_l_ [592] 
0 - 1 

- 0 - 1 

- 0 1 

.names [586] [592] [1250] 
1 - 1 

- 1 1 

• names i_6_ i-0_ [564] i_2_ [1246] 
0 — 1 

- 0 - 1 

- 0 - 1 

— 0 1 

• names i_6- i-0_ [564] i_l- [1248] 
0 — 1 

- 0 - 1 

- 0 - 1 

— 0 1 

.names [1250] [1246] [1248] [598] 
0 - 1 

- 0 - 1 

- 0 1 

• names [570] o_8_ [576] [583] 
0 - 1 

- 0 - 1 

- 0 1 

• names [579] [583] n_nl01 
00 1 
• names [565] [570] [576] i_5- [1110] 
0 — 1 

- 0 - 1 

- 0 - 1 

— 0 1 

.names i_0_ i-3_ i-l_ [588] 
0 - 1 

- 0 - 1 

- 0 1 

.names [586] [588] [1183] 
1 - 1 

- 1 1 

.names [1110] [1183] [589] 
0 - 1 

- 0 1 

• names [581] [598] n_nl01 [589] n_n47 
0000 1 
• names [563] [565] i_5- [567] 
0 - 1 

- 0 - 1 
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- 0 1 

.names i-4_ [564] i_6_ [1234] 
0— 1 

- 0 - 1 

- 0 1 

.names n_n47 [567] [1234] o_l_ 
0 - 1 

- 0 - 1 

- 0 1 

• names i-6_ i_0_ i_4_ i_2_ [1197] 
0 — 1 

- 0 — 1 

- 0 - 1 

— 0 1 

• names [565] [570] [571] i-4_ [1094] 
0 — 1 

- 0 - 1 

- 0 - 1 

— 0 1 

.names i_6- i-0_ i-4- i_l- [1195] 
0 — 1 

- 0 - 1 

- 0 - 1 

— 0 1 

.names [1197] [1094] [1195] [608] 
0 - 1 

- 0 - 1 

- 0 1 

.names i_0_ i-4_ i-5_ [620] 
0 - 1 

- 0 - 1 

—0 1 

• names [565] [620] n_n95 
00 1 
.names [563] i_6_ [621] 
0 - 1 

- 0 1 

.names [578] [621] n_n96 
00 1 
.names [583] [621] n_n97 
00 1 

.names n_n95 n_n96 n_n97 n_n57 
000 1 
.names [565] [570] o-8_ i-4_ [1097] 
0 — 1 

- 0 - 1 

- 0 - 1 

— 0 1 

.names i_0_ i - l - [571] n_n36 
000 1 
.names n_n36 i-4_ i_3_ i-5_ [1227] 
0 — 1 

- 0 - 1 

- 0 - 1 

— 0 1 

.names i_6_ i - l - i-4- i_5- [1229] 
0 — 1 

- 0 - 1 

- 0 - 1 
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— 0 1 

.names n_n57 [1097] [1227] [1229] [624] 
0 — 1 

- 0 - 1 

- 0 - 1 

— 0 1 

.names [608] [624] n_n53 
00 1 
• names i_2_ i_3_ i_l_ [627] 
0 - 1 

- 0 - 1 

一 0 1 
.names [567] [627] n_nll7 
00 1 
.names [564] [565] [628] 
0 - 1 

- 0 1 

• names [628] i_2_ i_3_ [563] n_nll8 
0000 1 
• names i_6_ i-1- i-5_ [563] n_nll9 
0000 1 
.names n_nll7 n_nll8 n_nll9 n_n56 
000 1 
.names [564] i_6_ [635] 
0 - 1 

-0 1 

• names [635] i_2_ i_4_ i_l_ n_nl23 
0000 1 
.names [565] i.0_ i_5_ i_4_ n_nl24 
0000 1 
.names i_0_ [563] i_5_ [641] 
0 - 1 

- 0 - 1 

- 0 1 

.names i_6_ [641] n_til46 
00 1 
.names n_nl23 n_nl24 n_nl46 n_n54 
000 1 
.names i_6_ i_0_ i_5_ [563] n_nl20 
0000 1 
• names [565] [563] [646] 
0 - 1 

- 0 1 

.names [588] [646] n_nl21 
00 1 
• names [592] [646] n.nl22 
00 1 

.names n_nl20 n_nl21 n_nl22 n_n55 
000 1 
• names n_n53 n_n56 n_n54 n_n55 o_2_ 
0 — 1 

- 0 - 1 

- 0 - 1 

— 0 1 

.names [586] [1203] 
0 1 

• names [565] [576] i_4_ [564] n_nl30 
0000 1 
• names [565] [641] n_nl31 
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00 1 
.names i_6- i-0- i_l- [563] n_nl32 
0000 1 
• names [1203] n_nl30 n_nl31 n_nl32 [308] 
0000 1 
• names i_4_ o_8_ [318] 
00 1 
.names i_2_ [318] i-5_ i_6_ [1100] 
0 — 1 

- 0 - 1 

- 0 - 1 

— 0 1 

.names [308] [1100] [1094] [1097] o_0_ 
0 — 1 

- 0 - 1 

- 0 - 1 

— 0 1 

• names [627] [1276] 
0 1 
.names [1276] i_4_ i-5_ [1225] 
0 - 1 

- 0 - 1 

- 0 1 

.names i_4_ i_5_ i_6_ [1223] 
0 - 1 

- 0 - 1 

- 0 1 

.names [1225] [620] [1223] o_9-
0 - 1 

- 0 - 1 

- 0 1 

• names o_8- i-2_ [1038] 
0 - 1 

- 0 1 

.names [571] i-3. [1065] 
0 - 1 

- 0 1 

.names [1038] [1065] o_7_ 
0 - 1 

- 0 1 

.names i.0_ [576] [571] [667] 
0 - 1 

- 0 - 1 

- 0 1 

.names i-0_ o_8. [571] [669] 
0— 1 

- 0 - 1 

- 0 1 

• names [669] [1067] 
0 1 
• names [570] [571] i_l- [671] 
0 - 1 

- 0 - 1 

- 0 1 

.names o_8_ [671] n_nl39 
00 1 
• names [1067] n_nl39 [262] 
00 1 

• names [570] o_8- iJ2_ [1104] 
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0 - 1 

- 0 - 1 

- 0 1 

.names i_0. i_3_ i_2_ [1106] 
0 - 1 

- 0 - 1 

- 0 1 

.names [667] [262] [1104] [1106] o_5_ 
0 — 1 

- 0 - 1 

- 0 - 1 

— 0 1 

.names i-2_ i_l_ [1212] 
0 - 1 

- 0 1 

• names o-8_ i_l_ [1208] 
0 - 1 

-0 1 

• names [571] [576] i_3- [1216] 
0 - 1 

- 0 - 1 

- 0 1 

.names [1212] [1208] [1216] o_6_ 
0 - 1 

- 0 - 1 

- 0 1 

• names i-5_ [667] [1115] 
1 - 1 

- 1 1 

.names i_6_ [570] [564] i_l_ [1113] 
0 — 1 

- 0 - 1 

- 0 - 1 

— 0 1 

.names [1115] [1110] [1113] [682] 
0 - 1 

- 0 - 1 

- 0 1 

.names [628] [669] n_nll3 
00 1 
.names i_2_ i_l- [683] 
0 - 1 

- 0 1 

.names i-0_ [683] i_5_ o_8- n_nll4 
0000 1 
• names [635] i-0_ o_8_ [571] n_nll5 
0000 1 
.names [682] n_nll3 n_nll4 n_nll5 n_n60 
0000 1 
.names [564] [588] n_nlll 
00 1 
• names [564] [592] n_nll2 
00 1 
• names n_nlll n_nll2 [194] 
00 1 

• names [1044] [194] [698] 
0 - 1 

- 0 1 

• names [564] [583] n_n89 
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00 1 

.names i_6- [570] i-5- i - l . n_n90 
0000 1 
• names [1079] [1080] 
0 1 

.names [698] n_n89 n_n90 [1080] [172] 
0000 1 
.names i_6_ i.0_ i_5_ iJ2_ [1258] 
0 — 1 

- 0 - 1 

- 0 - 1 

— 0 1 

.names [565] [570] [564] [576] n_n87 
0000 1 
• names [564] [578] n_n88 
00 1 
.names n_n87 n_n88 [176] 
00 1 
.names n_n60 [172] [1258] [176] o_3_ 
0 — 1 

- 0 - 1 

- 0 - 1 

— 0 1 

.names [571] [576] i_6- [1218] 
0 - 1 

- 0 - 1 

- 0 1 

• names i_6_ [671] n_n84 
00 1 
.names i-6- i-0_ i-3- [576] n_n85 
0000 1 
.names i-6- [570] i - l - [571] n_nl06 
0000 1 
.names n_n84 n_n85 n_nl06 n_n70 
000 1 
-names [565] [588] n_nl07 
00 1 
.names [565] [592] n_nl08 
00 1 
.names [565] [627] n_nl09 
00 1 
.names n_nl07 n_nl08 n_nl09 n_n69 
000 1 
.names [565] [583] n_nllO 
00 1 
.names i-6- i-2_ i_3_ [576] n_nl42 
0000 1 
• names i_6_ [571] i - l - o_8- n_nl43 
0000 1 
.names n_nllO n_nl42 n_nl43 n_n68 
000 1 
• names [1218] n_n70 n_n69 n_n68 o_4_ 
0 — 1 

- 0 - 1 

- 0 - 1 

— 0 1 

.end 
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Appendix B 

Proof of some 2-local patterns 

The construction of new minimal patterns is a joint work with 

another M. Phil, student, Cliff Chin-Ngai Sze, under the supervi-

sion of Professor Yu-Liang Wu, in the Department of Computer 

Science and Engineering. In this thesis，only partial patterns are 

shown for illustration. 

Pattern 1 

Q ^ ~ — — 

Figure B.l: N e w 2-local pattern 1 

In Figure B.l, a is the target wire, let gi = {a^x)' where x is the other 

inputs of gi. g2 二 where y is the other inputs of g2. Qs = (P2*之)'where 

z is the other inputs of 仍.Therefore, gs = (((a * xYvYz)' = [{a' + x')yyz)'= 

((a^y + x'yyzy = {{a'y)'{x'y)'z)' 二（(々4)(工'2/)么)， 
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0 

Figure B.2: New 2-local pattern 2 

Pattern 2 

In Figure B.2, gs = (((a * xYvYz)' 二（(a' + x'Wz)' 二 ((a/y + x'yYzY = 

((a'yYix'yyzy = ((a + y')(x'y)zy = ((P4)'(工之)' 

Pattern 3 

Figure B.3: New 2-local pattern 3 

In Figure B.3，gs = (((a + x)' + ")' + 2：)' = ((a + x)y' + zy 二、ay' + xy’ + zy = 

{{94) + ocy'-h z)' 

Pattern 4 

Figure B.4: New 2-local pattern 4 

In Figure B.4, "3 = (((arr) + y)' + z)' = ((ar)V + z)' = ((a' + x')y' + z)'= 

{a'y丨 + x'y' + z)' = ((a + y)' + (x + y)' + z)' 二 ( � + {x ^ y)' + z)' 
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Appendix C 

Illustrations of FM algorithm 

In Figure C.l and Figure C.2, it shows 2 pass of F M algorithm on 4 vertices 

with 6 weighted edges. The bucket structure is used to store the intermediate 

value for F M algorithm. The final cost is reduced to 6. 
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First pass 
I selected to move 

^^^^^^^^^^^ 2I ^^^ Bucket X Bu^Y 

M A X G A I N “ » r y i MAXGAIN~•王d | 

” I a I b I / | d T ^ 
Cost = 6 

/ a K cannot move selected to move 

丫 \ Bucket X y Bucket Y / 

^ ^ 2 y 
/ JL MAXGAIN~~"“H b I MAXGAIN~H ^ 

I a I b I cT I d, I 
Cost = 8 , f 

广—•^ 1 I 广 V selected to move 

( V ^ — — — I Bucket X Bucket Y ^ 

/ M A X G A I N ~ ~ M A X G A I N ~ ~ ~ H g =-2 

I a I b I c Id I 

Cost = 6 J f 

/ Y b V 1 Bucket X Bucket Y 

• CT 
M A X G A I N ~ M A X G A I N • 6 - = 2 

I t ^ 稀 J ‘ 
，， . V select to move 

^ \ X 

I a I、b I c Id I 

Cost = 10 ，r  

Y Bucket X Bucket Y 

M A X G A I N — M A X G A I N — ~ g 

X Y , |\ I G � 4 
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Figure C.l: Example of F M algorithm - First pass 



Second pass c�st = 6 ^ ^ ^ 
I ^ ) \ cannot move selected lo move 

入 Bucket X Bucket Y / 

I MAXGAIN~» 6 -——叫 h I MAXGAIN ~• - 2" H d I 
‘ —CO — \ — ^ s 

” I b I d,| 
Cost = 8 

1 • 广 “ ― s e l e c t e d to move 
I Bucket X Bucket Y I 

M A X G A I N ~ m a x g a i n ~ ~ » 2 - ~ H a j > \ c I 

rf] b I c I d I 
Cost = 6 y , 

1 Bucket X Bucket Y 

MAXGAIN» -2-~~•KX/t*----^MAXGAIN~» 6 - " 叫 I g =2 

^ ’ ― 

X . Y select to move / \ 

I a I b I c ^ ^ 
Cost =10 ” 

广 V I 广 \ select to move 
( V ^ - — y Bucket X Bucket Y ^ 

m a x g a i n ~ • K / A maxga i n~ > ~ T ~ - ~H c K g =_4 

卿 , 
l a I b,| c I d I 

Cost = 6 y『 

/ Y T V / Bucket X Bucket Y 

/ J ^ • • 
MAXGAIN~» -2- » 6 - „ =4 

X • Y select to move 

�a I b l̂Trd I G=g,+g,=o 
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Figure C.2: Example of F M algorithm - Second pass 



Appendix D 

HUSB Structures 

In this chapter, the Hyper-Univeral Switch Box (HUSB) Hi for i from 1 to 9 

is shown. For i 二 8, the H U S B is actually built by Hj + Hi, and Hj + Ih 

build Hq. 

• , N • ‘ \ 
• I s 

/ 丨 、 
• 、 

• I \ 
• I N 

/ 丨 、 

/ 1 \\ 
Vn > - ^ 3 1 3 

\丨 / 
\ I , 

\ _ Z N _ Z \ I , 
N , , 

\ • , N I / 
S 丨 / 

Y  
•41 4 

Figure D.l: HI S-Box 
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3 4 
y22 V21   

：^^^ 

/ 、 \ 一 ‘ \ 

‘ 、 、 、 - ’ ’ / 、 、 

( - ‘ 、 、 、 / 、 、 、 

2 V 3 一 , 、 \ 、 、 、 、 / 、、；-Vu 5 
� > � � ' ’ \ � � � / / 
\ '、、、 、 /V Z > 
N 、、、 、 ‘ \ Z / 
‘N 、、、 \ ‘ 、̂̂‘ / 

‘ \ 、 、 、 、 ‘ / 
‘ 、、 � � \ ‘ Z \、 / ‘ 、 "i.'.' 、、 / / \ z'A、、 \ / 

/ 、、广‘、、、 \ , 
/ 、、一‘ ‘ ̂  、、/ 

/ Z � � �\ 、 \ 、 、 ： h � 

1 /、、、、、 / :、 : ,一 6 
、、、 •‘ 、、、、、 
N / 、、 i'' / 

�� • \ ‘ \ / Z / 
� � . , � -" �Y 
V42 
8 7 

Figure D.2: H2 S-Box 

•23 4 V22 5 V21 6 

^ … … / � � � � 
、 ： 、 、 、 、 / 、、、 ‘一--广、 / / 、 / 、、 

一 * � � … ‘ ‘ � ‘ � T7 7 •3—【--- ‘ 、Y • 、、 ‘ —- 一Vu 7 ^^ ‘ � / � I \ / J 
) 、、 I V 、 i 、 / ^ -

、：、’ /、、、、、” 、、JZ' 

� • � � / � � : � � , ' - - - / � � � 
*、、 V N / X / s ； 

: > : � � � �� K� - � - - - ！ � � � 
、、、、\-"A-、、 ’’ 、、、 

y :、-''、,'、、、、 \ / 、、J 
y；、、、/ 、、、、、 、、/ •、、 

/ ' 、、/ 、、、 、 / / N TT Q 

V 一 ” < 乂 >、 8 
2 ！、、 、:、、、 /、、、 

二、 / 、、、 、、、、/ 、、-‘‘ 
/ \ / ��� / , V t V - - \ ‘ % ‘ 

、、 ‘ 、v 八 、、 I ； \ / Z 、、、、‘ 
• 、 • 一 Z N 、 、、‘ 
•‘ 、々‘‘’ ：>'''\ 、、丨、:、、 

‘‘---''''''、、、 Z/、、、、、 ，'、、\ „ , 
… - " / 、、、 / 、、、、、、 ； 9 

1 、、、 / >、’ 、、、、、 
、 ‘ Z 、 ‘ \ ‘ I 

、、 ‘ Z 、、 / V、！ 
^ ^ ^ ^ 
V.3 12 V,, 11 V “ 10 

Figure D.3: H3 S-Box 
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Appendix E 

Primitive minimal 4-way global 

routing Structures 

2 

3 O 1 

4 

Figure E.l: GR\ 

2 2 2 

3 1 3 1 3 1 

4 4 4 

Figure E.2: 
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Figure E.4: GRl,, G对，2, G用,3, GRl,, GRl,, G R l , 
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