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Abstract of thesis entitled: 

Quanto Options under Double Exponential Jump Diffusion 

Submitted by LAU Ka Yung 

for the degree of Master of Philosophy in Risk Management Science 

at The Chinese University of Hong Kong in May 2007. 

A B S T R A C T 
A foreign equity option (or quanto option) is a derivative security whose value 

depends on an exchange rate and a foreign equity. In this paper, we study the 

valuation of quanto options when the foreign equity price and the exchange rate 

follow double exponential jump diffusions. Traditionally, it is assumed that the 

diffusion parts of the two state variables are correlated but the Poisson processes 

and the jump sizes are iiidependerit across state variables. Here, we allow the 

two state variables to have common jumps and dependent jump sizes. The jump 

sizes are modelled by a multivariate exponential distribution. Analytical pricing 

foniiulas are obtained for various types of quanto options. We also study the 

analytical tractability of path-dependent quanto options under a joint double 

exponential jump diffusion. Oiir approach ran be applied to options on two 

assets. 
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摘要 

外匯股票期權（或quanto期權）為一種衍生證券，其價值同時取決於匯 

率和外匯股票。這文章中，我們研究qmmto期權的估價，當中外匯股票的價格 

和匯率均遵循雙重指數跳躍擴散過程。傳統上，兩個資産的擴散過程部分會假 

設為相關的，但對應的泊松（Poisson)過程和跳躍幅度卻假設為互相獨立。 

然而，我們容許這兩個相關資産具有共同的跳躍及相關依跳躍幅度。而跳躍 

幅度則由一個多元指數分佈所模型。各樣的quanto期權的可解析定價公式亦 

能夠求出°我們還探討了聯合雙指數跳躍擴散（ joint double exponential jump 

diffusion)過程下，路徑依賴型quant,o期權的解析可處理性。我們這套方法可 

適用於兩種資産的期權。 
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Chapter 1 

Introduction 

With the growth in investments in recent years, the currency translated foreign 

equity options (quanto options) have gained considerable popularity. Qiianto 

options are contingent claims whose payoff is determined by a. financial price or 

index in one currency while the actual payoff is settled in a different currency. 

The payoffs of these quanto options can be structured in a variety of coiiibiiiatioiis 

of foreign asset prices and exchange rates, thereby generating a lot of investment 

and hedging opportunities. Besides using fixed or floating exchange rates, their 

payoff structures can be made more exotic by introducing a barrier or lookback 

feature on either the underlying asset price or the exchange rate or both. The 

wider classes of payoff structures allow investors to hedge a specific risk or pursue a 

particular speculation of international equity investment. Expositions on hedging 

properties of vanilla type quanto options can be found in Reiner (1992) and Toft 

and Reiner (1997). Wong and Chan (2007) apply the concept of quanto lookback 

option for dynamic fund protection in insurance. 

This thesis derives the pricing formulas and examines the pricing behaviors 

of quanto options with path-dependent payoff strurtrn'os using the double ex-

ponential jump diffusion (DEJD) model. Under the Black-Scholes model, path-

dependent quanto option pricing has been studied in Kwok and Wong (2000) and 
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Dai et al. (2004). However, it is well known that both the equity and exchange 

rate exhibit jumps in their values and the Black-Scholes model is inadequate to 

capture this stylized feature. 

It has been a challenging task to extend jump diffusion models to quanto 

options because these options represent a class of options on multiple assets, or 

more specifically on two state variables, the exchange rate and the foreign equity. 

Wc propose a multivariate jump diffusion model to dcscribc the joint dynamics 

of the exchange rate and the foreign asset. The proposed model is analytically 

tractable for path-dependent quanto options and allows common jumps and de-

pendent jump sizes. 

Huang and Hung (2005) investigate quanto option pricing with Levy pro-

cesses. Our approach is significantly different from theirs. Although Huang and 

Hung consider general Levy processes, their method is only applicable to Eu-

ro]：) can quanto options that the payofi" can be icduc'cd into a one dimensional 

problem via a change of probability measure. Their approach cannot be used to 

price path-dependent qiuiiUo options or simple joint quanto options. It is well 

known that Levy processes cannot be used to price path-dependent options an-

alytically. However, using a specific Levy process, the DEJD, such that we can 

obtain an analytical tractable solution for path-dependent options which is able 

to explain market phenomena. 

Jump diffusion model was introduced by Klerton (1976) to the financial 

industry. Koii (2002) first proposed the DEJD and gave an analytical solution 

to plain vanilla options. He showed that DEJD provides a psychological meaning 

for asset movement beyond the diffusion process. Kou and Wang (2004) derived 

analytical solutions for barrier and lookback option with DEJD. Kou et al. (2006) 

improved the computational efficiency by using double Laplace transform. Leib 

(2000) found evidence that the DEJD model of Kou better fits the asset return 
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distributions. 

It is unclear, however, what is the appropriate multivariate process for 

financial assets when both assets are marginally following DEJD. The diffusion 

component can be modeled by a multivariate Wiener process, but the modeling 

of the jump component remains unclear. We assume the financial assets to have 

common jumps from a common Poisson process. When a common jump arrives, 

we use the Marshall and Olkin (1967) multivariate exponential distribution to 

model the joint jump size. We show that this model not only is consistent with 

the marginal DEJD process, but is also analytically tractable and parsimonious. 

We would also like to highlight some mathematical findings of this thesis. 

Ill the valuation of path-dependent quanto options, we often need to calculate the 

(loiiiestic equivalent asset price which is the product of the exchange rate and the 

foreign asset price. If the exchange rate and the foreign asset, marginally follow 

DEJD })rocc\ss. then the dom(;stic cquivaknit asscit should evolve; as a jump ditf\i-

sion process such that the jump size follows a mixture of exponent ial distribution. 

Wo rail this lattor procoss the mixture exponential jump diffusion (A4EJD). The 

distribution of the first passage time of MEJD have not been considered in the 

literature before. We derive the nioinent generating function of the first passage 

time when the domestic equivalent asset reaches its niaxinmm or niinimiim. We 

also discuss the characteristics of the complex roots of a polynomial equation 

derived from the Laplace transform of the distribution. These characteristics are 

crucial for inverting the Laplace transform numerically. 

In the financial perspective, we document that the common jump and de-

pendent. jump sizes have important impact on qiianto option pricing. If we want 

to price path-dependent quanto options, the Marshall and Olkin (1967) multi-

variate exponential distribution is very useful to produce an analytically tractable 

model. 
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The remaining part of the thesis is organized as follows. Chapter 2 sets 

the ground for the thesis by introducing the notions of risk-neutral pricing and 

jump diffusion models. Chapter 3 summarizes results in option pricing with 

DEJD. We stress that the result of turbo warrant is new although it is not the 

major objective of this thesis. Chapter 4 presents the valuation framework for 

European quanto options under the DEJD process. The use of Marshall and Olkin 

(1967) multivariate exponential distribution in modeling common jump sizes are 

introduced therein. Chapter 5 contains the valuation of path-dependent quanto 

options. Several interesting mathematical results concerning the first passage 

time of the MEJD process are obtained. Chapter 6 concludes the thesis. 
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Chapter 2 

Background 

One of the most fundamental elements of derivatives (option) pricing is the no-

tion of risk-neutral pricing theory. Consider a derivative on an asset St- For a 

European style option, the contract holder is entitled to receive a cash income 

determined by the payoff function on the maturity of the contract. We employ 

the usual notation of denoting T as the maturity date and (I)(SV) as the pay-

off function. Derivative pricing means to establish a systematic framework for 

determining the derivative security price at any time prior to the maturity. Risk-

neutral valuation asserts that the present value of a European option, V{t, 5) , is 

related to its payoff function by 

l^(i，S) = e - 吨叩 ) ( S V ) | « F d ， 

where r is the constant risk-free interest rate, J^t is the filtration up to time t and 

Q is the risk-neutral measure. A path-dependent option has a payoff depending 

on the sample path of the underlying asset instead of the terminal value alone. 
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2.1 Jump Diffusion Models 

To better understand risk-neiitral valuation , we need an appropriate probabilistic 

set-up. The dynamic of the asset price {S't}(>o is modeled in a complete proba-

bility space n 二 P ) , where Q is the set of all feasible sample paths 

of {S't}t>o, P is a probability measure, {Tt) is the filtration equipped with the 

cr-algebra T 二（j(UfyJ^t)，which represents the information accumulated up to 

time t > 0. 

Risk-neutral valuation asserts that the present value of a European option is 

the discounted expectation of the option's payoff, where the expectation is taken 

under a risk-neutral measure. Usually, the risk-neutral measure is obtained by 

calibration. The risk-neutral measure Q should satisfy several conditions. First, 

(he risk-iientral measure should be equivalent to the physical probability measure 

P, i.e., P(A) = 0 Q(A) = 0 foi, all A e Tt. Second, all non-dividend paying 

stocks ill the market should be a iiiartingaie with respect to the money market 

account under the measure Q, i.e., E^ [6一',了5̂  = St. As quanto options are 

considered in this thesis, there are two risk-neutral measures for the two currency 

worlds. Denote as the risk-neiitral measure adopted by the domestic currency 

world and Q^ as that adopted by the foreign currency world. 

To allow for general discussions, wc introduce the jiiiiip diffusion model 

under Q without specifying the currency. A jump diffusion model consists of two 

parts: a Wiener process and a compound Poisson process. The Wiener process 

W(t) is a fundamental continuous-time stochastic process that satisfies following 

conditions, 

W{s) - � N ( 0 ， s - 0 , V s > i > 0, 

W{s) - W{t)丄 - M/(̂；)’ y s>t>u>v>0, 

P{\V{0) = 0) = 1. 
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The (homogeneous) Poisson process N{t) is a right-continuous stochastic process 

such that 

N{s) - N{t)�Poi(入(s —i))， y s>t>0, 

N{s) 一 N{t)丄 iV(w) - N{v), y s>t>u>v>0, 

P{N{0) = 0) = 1’ 

where A is the intensity of the Poisson process. Obviously, N{t) is a non-

decreasing process. 

Jinnp diffusion moclols assume that the asset prico St evolves according to 

the stochastic differential equation (SDE): 

= + + (2.1) 

or, equivalently, 

dXt = d log St = ( " - (j2/2) dt + a dWt + ijt dNt, (2.2) 

where St is the asset price at time t, Wt is the Wiener process, fi is the drift, a is 

the volatility of the diffusion component, Nt is the Poisson process with intensity 

A, and ijt = log(V t̂ + l) is the jump size. The Wiener process, Wt, Poisson process, 

Nt, and the jump sizes, { y j , are independent random variables for all t. 

7 



2.2 Double Exponential Jump Diffusion Model 

Merton (1976) first introduced a jump diffusion model in the financial literature. 

He considered the jump size to follow a normal distribution, 

= (2.3) 
v27rcry L � . 

where fy{y) denotes the probability density function (pdf) for the jump size y, 

fly is the mean jump size, and � i s the jump volatility. Using this assumption, 

Merton (1976) derives a closed form solution for European call and put options. 

Unfortunately, it is well known that the Merton model cannot be extended to 

price path-dependent options analytically. 

Koii (2002) proposes a double exponential distribution (DED) for the jump 

size. The probability density function (pdf) of DED is given by 

fy{y) = V • + (1 — v). "2e"2"i{,,<t)}，P e [0’ i]’ m � i , m > o. (2.4) 

We use the notation y � D E D ( p , 771. 7)2) to indicate that y is an DED random 

variable with parameters p, '"1 and 7/2. 

Double exponential distribution has several advantages for financial model-

ing. By the nature of the DED, it is possible to generate heavy-tailed distribution 

and captures the leptokiirtic feature of empirical distributions of asset returns. 

Koii (2002) provides a psychological interpretation for the empirical distribution 

using properties of DED. 

The DEJD model has analytical tractability not only for plain vanilla op-

tions but also for path-dependent options. Kou (2002) and Kou and Wang (2004) 

derive analytical formulas for vanilla options and path-dependent options under 

the DEJD using Laplace transform. The computational time is typically quick 
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as it only requires less than 2 seconds to obtain an option price. 

As far as jump diffusion models are concerned, the market is incomplete 

so that there are infinitely many possible risk-neutral measures. Although the 

analysis in this paper is general enough for all risk-neutral measures and the de-

termination of the correct measure is beyond the scope of the thesis, we would 

like to select one so that the discussion can be conducted smoothly. Koii (2002) 

characterizes the set of all risk-neutral measures using an equilibrium approach 

with the HARA utility functions. For simplicity, we adopt the risk-neutral mea-

sure consistent with the choice of Mertoii (1976), see Kou (2002) for further 

information. Specifically, choose 

V '/I - 1 '12 + 1 / 

where r is the risk iiee interest rate and other paranieteis are the same as the 

physical process. 

Given the risk-neutral DEJD process, the moment generating function (nigf) 

of Xt can be obtained as 

E[e 队 Î T̂ol = eG(印， 

G � = + — + (2.5) 
\ 2 / 2 

A f ？) "1 + —咖 2 — 1� 

Km - ^ m + 0 ) • 

It will be seen shortly that the mgf plays a key role in deriving various pricing 

formulae in this thesis. 
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Chapter 3 

Option Pricing with D E J D 

It has been indicated in the last chapter that option pricing requires the calcu-

lation of the expected terminal payoff. Under DEJD, direct computations may 

not be possible. Usually, closed-forms can be obtained only for t he Black-Scholes 

(1973) model. Koii and Wang (2004) propose to use the Laplace transform to 

evaluate the expectations. They manage to derive closed-form solutions for the 

Laplace traiisfornis of option prices. Their result includes the valuation of Euro-

pean, barrier and lookback options. This chapter aims at presenting their results. 

It also contains a new result for turbo warrants of Wong and Laii (2007). 

3.1 Laplace Transform 

Laplace transform is a useful integral transform in probability, statistics and 

mathemat ical finance because it is closely related to the moment generating func-

tion of a random variable. Usually, the Laplace transform is operating over a real 

domain. To convert Laplace solutions back into numerical solutions, it is neces-

sary to perform a Laplace inversion. For simple problems, the inversion can be 

clone with the help of a Laplace transform table. In most of the situations, we 

have to do the inversion numerically. The Laplace inversion generally operates 
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over a complex domain. 

Given these facts, we extend some parts of option pricing framework to the 

complex plane. We connect a function f{t) with its Laplace transform F{s) as 

follows. 

F{s) = CtJ(t) 二 r f{t)e-''di, (3.1) 
J-OO 

1 rc+icx) 
m = = — / F(s)eSt ds, (3.2) 

27n Jc—ioo 

where i = s > 0 in (3.1), while s is a complex number (s G C) in (3.2). 

The integral transform in (3.1) defines the Laplace transform and the Broniwich 

integral in (3.2) defines the Laplace inversion. 

Usually, f{t)：况—况 is a real-valued function and hence F{s) is real. 

However, the inverse traiisfonn (3.2) is preformed over the complex plane so that 

it is necessary to extend the function F{s) to the complex plane analytically. To 

equip this, we recall an important expression of an elementary function on the 

complex plane, 

ê r+i?/ = e工（COS y + i sin y), x, y G 飛. 

The path integral in (3.2) is the Broniwich contour on the complex plane, c is a 

sufficiently large real number that all singularities of F(s) are located in the left 

of the vertical line 况(2) 二 c, where 况(2) denotes the real part of the complex 

number z. In addition, a singularity 2* of a function F(s ) means a complex 

number such that F{z*) is divergent or undefined. 

Though the closed-form of inverse Laplace transform (3.2) is generally un-

available, numerical Laplace inversion provides efficient and accurate numerical 

results. We introduce a numerical Laplace inversion of Petrella (2004) here. Ap-
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plying the trapezoidal rule to (3.2), with As = ih, we have 

f ( t ) = ^ ^ + = ^ F(c + ihk)e脑、 
k= — oo k=—oo 

For a real-valued function f(t), F(s) is a conjugate function defined on the com-

plex plane, i.e., F(s) = F(s). Substituting h — -n/t into 

e 脑=e 厂冗！ = cosikm) + isin(A;7rO = 

the series becomes 

•,⑴=?[罕+ 字如小 
^ L 2 ^ V f / . 

It can be shown that the discretization error is of so that the infinite 

s(Ti(�s gives an arcmato losnlt for a suffid(mtiy larso real iiiinibcr c. 

As the infinite series happens to be an alternating series, we can implement 

the Elder summation to increase the speed of convergence. Consider the average 

of partial siiins, 

/⑴华+£丨—作+字力-’ 
I I ^ ‘ V c / 

where 

• 

(—1广， 0< k< 72, 
H/；- = — 一 (3.3) 

( - 1 广 E S " " ' C r 击，n + l<k< n + m, 
\ 

n and m are sufficiently large integers and ^ are coefficients of the binomial 

series. 

In a higher dimensional case, we repeat the inversions and the general siim-

12 



mation formula is given by 

f(ti, • • • ’ tji") 

— . . . A„;s.„"^(Sl’ …，^n) 
1 rcn-fioo 厂 ei+ioo 

(�7n) Jcn-ioc Jci-ioo 
h . 户 t j C j OO ；X 

= j = 々 二 E … ^ ： 作 1 + 人 ) e ^ W c “ 
k,i = —00 = —00 

丄丄丄艺J L = - o o A:, = -oc \ t] h J _ 

where F{-) has no singularity on the domain {(" : Re((") > Ci, . . . ,Re(C) > c„}. 

The last equality follows by letting hj = ir/tj, for j .—— 1 , 2 , . . . , n. Certainly, 

we can implement the Eiiler summation by replacing ( — ' ^ j by ！！"̂ V̂V'̂Jĵ  

defined in (3.3) with = Wj;^. 

3.2 European Option Pricing 

We now demonstrate how Laplace transform is used in option pricing. The pricing 

representation of a European call is given by: 

The closed-form of the expectation is not available under DEJD model. Thus, 

Koii (2002) considers the Laplace transform of the price. Let k = — log K. 

13 



Consider the Laplace transform with respect to k. Therefore, 

C{k) = E[max(SV — e-i,’0)|jS]， 
roo 

左 ， c P � ] = / e-^'mSr - dk, 
J —OO 

-roo -
=E - e-^) dk Tt , 

.J -log St _ 

= 丨 ？ = ^ ^ — — - , 况 ( O > 0 . (3.4) 

The second equality follows from the Fvibini's theorem. By the mgf derived in 

(2.5), we obtain the analytical solution. Finally, we take inverse Laplace transform 

ill (3.4) at C = — log K to obtain the option price. 

For a European put option, the pricing representation is given by: 

e-',(了—OE外iifcix(A' -

Let k = log(/v) and P{k) = E[iiia.x(e—" — Consider the Laplace 

transform of the option with respect to k, 

一 ⑴ 丨 c - C + 1 G(-C+i)(T-O 
W O l ^ g f ^ f C ( C - I ) - 鲁 1. 

Again, the option price can be computed by taking inverse transform in (3.4). 

In the general case, this method can be applied to European options under Levy 

processes (see Cont and Tankov, 2004a). 

3.3 Barrier Option Pricing 

Unlike a European option, the payoff of a path dcpondoiit option, such as lookback 

and barrier options, depends on the sample path of the underlying asset until 

maturity. 
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Kou and Wang (2004) solve lookback and barrier option pricing problems 

under DEJD. They consider the first passage time that the underlying asset value 

breaches a barrier level. The first passage time(s) are defined in the following way, 

( 

<B = Soe''} for So > B, 
tb ：二 

mf{t\St >B = S'oe''} for So < B. 
V 

We use an iip-and-in call (UIC) option to illustrate the pricing framework 

although other barrier options can be valued using the same approach. The 

UIC option holder will knock-in a call option if the underlying asset price passes 

through a specified upward barrier level. The payoff function is given as follows 

{St -八')+l{T"<'r}， 

where 1{.4} is the indicator function for the event A. Hence, the present value of 

the UIC option is, 

UIC(A:,T) = - e - ' r i { r , < T } ] . 

Kou, Petrella and Wang (2004) apply a double Laplace transform to the option 

price with respect to T and k: 

C,.c [Cr,.\JlC{k,T)] 
POO roc 

= e-(�-“"e-'’TE(印•ST — e — 了 . 
J —oo J —rjc 

召(+1 1 / 7h \ 
= 7 7 7 — T T - — — — � I 1 � { A { r + a ; b ) — — - + + , 

QC + ljr + a-GiC + l) V rji-C-l J 
where 

M^-M � >6}]’ 
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Xt = \og{St/So) as defiend in (2.2) and b = log(i?/So). 

Kou and Wang (2003) derive the analytical solutions for A{z-, b) and B{z] b) 

for 6 > 0 under DEJD, 

i U - b) = ( 二 ⑵ 愁 2 ) (e-̂ ^^M — e-"^^-) ’ (3.5) 

B(z- b) = — " - b P i , , + V2+32.Z -b02,z (3 6) 

where (3�z and (32,z are positive real roots of the equation G{J3�= 2 and G[f3) is 

the mgf defined in (2.5). Kou and Wang (2003) show that, for z > 0, the equation 

G{fi) — z has exactly four real roots, namely Pi，z, /知，之’ ,"3’二 and f � ’ z , where 

-OO < Oi’: < 12 < < 0 < p2,z < m < A, . < (3.7) 

As the equation G(,d) = z can be converted into a polynomial equation of degree 

4，there is a closed-form solution for the roots. It. is therefore possible to extend 

the closed-form solution to a complex domain for inverting the Laplace transform. 

3.4 Lookback Options 

The price of a floating strike lookback put (LP) option is given by 

- T � / \ “ 
LP = e E max M, max St — S t , 

. V y J 

where M is the realized maximum asset value, T is the option's maturity and r 

is the constant risk-free interest, rate. 

Consider the Laplace transform of LP with respect to T, 

r . pi_ "^广：“+‘人 , sH '^ 'Ba M So 

j — 十 A / , 九 ’ a + r a ’ 
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where 

A ( m - A , a- f r ) , ^2 ,Q+r 卩 C^2,ci+r — m ) A , a + r 广 / , x /.. ^ n 
= o 1 ’ Ba = o i ’ Ca = (a+r)7]i(/^2.f>+r-Pl,Q+r)-

P l , a + r —丄 A^2，a+r"—丄 

Therefore, the lookback option price can be computed via an efficient Laplace 

inversion method. The proof can be found in Kou, Petrella and Wang (2005). 

3.5 Turbo Warrant 

Results ill the previous two subsections are well known. In this subsection, we 

present a new result taken from Wong and Lau (2007), in which we derive an 

analytical solution for turbo warrant using Laplace tmnsforai. The pricing for-

mula requires us to carry out a triple Laplace inversion. Using properties of turbo 

warrants, we manage to reduce the computational buiden of the triple Laplace 

inversion and calculate turlx) wairaiit prices within a second. 

Turbo warrants first appeared in Germany in late 2001. A more interesting 

situation appears when the barrier is set to be strictly in the money and a rebate 

is paid if the asset price passes the barrier. The rebate is usually calculated ac-

rording to an oxotic option payoff. At the end of February 2005, Sodcto Goncralo 

(SG) listed the first 40 turbo warrants on the Nordic Growth Market (NGA'I) and 

Nordic Derivatives Exchange. During February 2005, the turbo warrant trading-

revenue was 31 million kronor, 50% (31/55) of total NGM trading revenue of 

55 million kronor. In June 2006, the Hong Kong Exchange and Clearing Lim-

ited (HKEx) introduced callable bull/bear contracts (CBBC), which are actually 

turbo warrants. There are two types of CBBC: N and R. The N-CBBC pays no 

rebate when the barrier is crossed whereas the R-CBBC pays an exotic rebate, 

see HKEx (2006). 

Turbo warrants are attractive because it is believed that their prices are 
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lower than their vanilla counterparts and are much less sensitive to the implied 

volatility. Thus, investors can simply bet on upward or downward movement of an 

asset with a lower cost and minimal volatility risk. This view is however based 

on the Black-Scholes asset price dynamics, the volatility of which is constant. 

Eriksson (2005) derives explicit solutions to turbo call and put warrants that are 

listed by SG using the Black-Scholes model. Wong and Lau (2007b) consider 

currency turbo warrants with mean reversion. The rebate of the turbo call (put) 

warrant is the difference between the lowest (highest) recorded stock price during 

a pre-specified period after the barrier is hit and the strike price. Therefore, the 

rebate can be viewed as a non-standard lookback option. These turbo call and 

put options are essentially the R-CBBC in Hong Kong. Eriksson (2005) points 

out that, a turbo warrant is a lot less sensitive to the change in volatility than 

that of its vanilla, counterpart. 

When stochastic volatility is taken into account, Wong and Chan (2007b) 

find (hat. turbo warrants can be very sensitive to the change in the shape of 

the volatility smile, contrasting the result of Ericsson (2005) using the Black-

Scholes model. In fact, Wong and Chan (2007b) find that the sensitivity is 

model-dependent. Under the CEV model, a turbo warrant is more sensitive to the 

parallel shift of the volatility smile than its vanilla counterpart but the sensitivity 

to the change in skewness is similar. For the fast mean-reverting model stochastic 

volatility model, a turbo warrant is less sensitive to the change in volatility smile 

than its vanilla counterpart. For a two-scale volatility model, a turbo warrant 

can be more sensitive to the change in the volatility surface than a vanilla option. 

Besides the stochastic volatility effect, it has been well documented that 

.jump risk in asset price is an important factor for explaining the volatility smile, 

especially for short-term contracts. As there are no results on pricing turbo 

warrants under jump-diffusion, we investigate the turbo warrant pricing under 
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the DEJD. 

A turbo call warrant pays the option holder {St — /()+ at maturity T if 

a specified barrier B > K has not been passed by ST at any time prior to the 

maturity. Denote Tf, as the first time that the asset price crosses the barrier B, 

i.e., Tb = inf{i| St < B = ^oe^}. If Tb < T, then the contract is void and a new 

contract starts. The new contract is a call option on = imn.r,^<t<n+h St, with 

the strike price A', and the time to maturity h. 

More precisely, the turbo call option can be expressed as 

TC{t, S) = e-^^E, [{ST - /()+l{r,,>n] + E. [ e — 咖 - . (3.8) 

It can be recognized from (3.8) that a turbo call warrant price can be decomposed 

into two parts. The first part resembles a down-and-out call (DOC) option, with 

a zero rebate, and the second part is a down-and-in lookback (DIL) option. We 

now define: 

D O C ( � , 5 ) = e—了E, [ (5t — A')+1{.„>t}]， （3.9) 

DIL(i, 5, h) = Et [e一咖'+")(.,< - K)-'l{r,.<T}] , (3.10) 

such that TC = DOC + DIL. It is important to notice that Koii and Wang 

(2003, 2004) and Koii et al. (2005) have developed a general pricing framework 

for barrier options. The pricing of DOC option can then be obtained through their 

approach. However, the pricing of the DIL option embedded in turbo warrants 

appears to be new in the literature and the derivation is not an obvious extension 

of any other path-dependent options. 

The following lemma will be useful for a later computation. Let b = 

\og{B/SO) which is negative as the barrier level B is smaller than the current 

asset value SQ. 
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L e m m a 3.1 

r]2\P2,z - 0\,z) 

P2,z 一 Pi,2 P2,z — m,z 

where "2 is a parameter of the jump distribution in (2.4) and and are 

the roots defined in (3.7). 

Proof The proof is similar to the one in Koii and Wang (2003) but we consider 

6 < 0 in the present case. 

Define 
f 71 e - 山 + 72e-制力，.x > b. = ’ 

1, X < 6, 
\ 

with both 61 and /?2 being negative, and constants 71 and 72 to be determined 

later. Denote infinitesimal generator of a jump-diffusion process X,, as 

1 广 
Au{x) := iiu'ix) + -(T'^U"{X) + a y [u{x + y) — u(y)jfv(y)d(y), 

where f y ( y ) is the pelf of the jump size for a general jump distribution. Specif-

ically, we substitute the double exponential distribution (2.4) in the expression. 

Simple algebra shows that 

2 / 2 \ 

Applying the Ito lemma to the process {e~^hL{Xt)}, we find that the process 

M(t) = - / - zu{Xs))ds, 
./o 
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is a local martingale with M(0) = w(0). If Au{Xs) — zu(Xs) — 0, then we have 

n(0) 二 E A / � = E [ e — : (一M X m J ] — as t — oo. 

The limit is closely related to the function A{z; b). Thus, it is our goal to cleter-

niine the solution of the equation: 

Au{Xs) 一 zu{Xs) = 0. 

Solving the equation gives 

G{3,) - z = 0 ’ 3k <0 

7 i — T + 7 2 = 1, 
m + A m + 

71 + 72 = 1， by coritiniiily of u{x). 

This allows us to solve for the values of 71 arid 72, and to obtain 

E[e-咖')/{”,<oc}] 二 决;+，’—.: 一 (3.11) 

Using a similar idea, we define 

= < 0, a - 2 j < X < a, 

1’ X < a — y, 
\ 

where y > 0. The infinitesimal generator applying to v{x) gives 

2 / 2 \ 

k=l \ k=l 十 Pk J 
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We construct a local martingale through the process {e~ '̂'v{Xt)}： 

八 ftrvTh 
M{t) = e-冲 An^M^C 认 J — / e-'\Av{Xs) — zv{X,))ds, 

Jo 

where it can be easily shown that I{a-Xr^>y}) = lim^^oo EM(t) = M ( 0 ) = 

v(0) if Av{Xs) — zv{Xs) = 0. The limit here is exactly the function A{z-, b) if we 

set a = b. Solving the equation, we arrive at 

G{,3k) - z = 0. ,3k < 0 

”'2 * "2 — 卿 

7i + 72 = 0, by continuity of ？;(x) at x = b. 

Thus, the values of 7i and 7‘J are then obtained from the above equations. 

By taking limit y —> 0+ and setting a = b, we have 

The expression of A{z\ b) is given in the Lemma, 3.1. For the function B{z\ 6), it 

is clear that 

= E [ e - 咖 - E [ e - 咖 , ) J � 

二 E[e-咖 ')/{„,〈乂}卜 A M ) . 

Using the expression of b) and (3.11), we obtain the solution of B{z\ b) as in 

Leiiiina 3.1. • 

With the help of Lemma 3.1, it is possible to derive the pricing fonmila for 
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a turbo warrant. 

Theorem 3.1 

CuAe' - 'DILiT^S.KJi )} = ^ 〒 产 ” E [min�粥"6'丫'((+1)]， 

provided that Xq = 0 and the two expectations can be computed by using another 

two Laplace transforms: 

Cr.^E = ^ A{T + A;b)^^ ^ ^ + B{r + A-,b)， 

r F「川iTi _ 1 (C + m’0(r ]2 + (hj3) 
:"’/?匕 mino<f,</ie — — —~~— —— r ~ r 

L - - � 3 成 J — … ( C + l - A . " ) 

- Mic, +1 - fkpY 

Therefore, ike triple Laplace transform for the DIL option respect to k, T and h 

is the •product of above two expressions and ((二”. Specifically, 

CH,(3C.T,aCk,^{e'"DIL{T, 5, A', h)} 

B … [ i ( r + a ; 6)772 A, , ' 

L ^72(̂ 2,/i — V C + i - " i ’ " C + i-"2，" J \， 

where 

A{z-,b) := E[e—/{5r<B}l = E[e— 

B{z;b) = E[e— 

Proof By the Fubini's theorem, we have the following calculation: 

“’({er"DIL} = r e-^'E fe-��"/{,,,叨（m；；, - 6-�)+] dk 
J —CO L � 

• foo -
=E e - � , 例 / { r < - e - ” � � ' . d k 

• J — 0 0 _ 
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� � m ; e - ( " e - _ ” ° ° 1 

- 《 十丄- -m' ' , 
I" 丁;）J 
f 
_ { ' ’仍 C(C + 1)_ 

= ， (3.12) 

where Tr,, is the information accumulated up to time n . Substituting m^^ = 

into (3.12)，we have 

= ^ ( ^ E E [ m m o 叱 ( 乂 广 � ] 

where we have used the locally independent property of the DEJD model in the 

second line and the stationary property in the last line. 

Consider the Laplace transform of the first expectation. 

� T . a {E } = 厂 [ e - 仍 • S 乂 d T 
J —OO 

./•乂 1 
=E e-rr„g-a(r„+t)5C+l ^̂  

Jo ‘ . 

= - E 
a 丁'' J 
B �� 779 1 

=——A{r + a - b ) + + • 
« [ ."‘2 + C + 1 _ 

For the second expectation, we let Xk = mmQ<t<kXt < 0，and do the following 
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'h -I 

- 切 C(C + 1) _ 

= ^ ( ^ E , (3.12) 

where J^r,, is the information accumulated up to time 丁b. Substituting m ) , , = 

^• r , ,minow"e(XT, ,+ , -� into (3.12), we have 

A:’小r"DIL} 二 ^ ^ ^ E [e-�"/{T, ,邻E [ � i m i n o 叱 , 

= E [ m i n 。 仍 广 

= ^ ( ^ E E [ m i n o 化 ， 

where we have used the locally independent property of the DEJD model in the 

second line and (he stationary property in the last line. 

Consider the Laplace transform of the first expectation. 

roo 

J — OO 

.J -oc . 
-roc -

=E g-rr„g-a(r,+05^+1 ^^ 
Jo '' . 

a ”，J 

= — \ A { r + a-b)'4—- + B{r + a;b) • 
« L 7/2 + C + 1 . 

For the second expectation, we let x^ = mmQ<t<h^t < 0, and do the following 
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calculation. 

r 1 /"O 
E min eX“C+i) = E |e工'“(十”]=/ e败+” d[P{xh < y)] 

-0诉" � L � 人 � 0 

=[e"((+i)尸
(
工"< -(C + 1) [ … < y) dy 

fO 
= 1 - ( C + 1) / e郝、P(^Ty 化 dy. 

J-OO 

We then consider the Laplace transform: 

r rO 1 /"O r r � “ 
“ 八 丨 ey((+”P(TySh)dy�= j J e-"'P{ry < h) dh^ dy 

= f e"((+” r e , [ P{Ty e ds) dh dy 
J-OO Uo Jo � 

「广 OO roc “ 

= / e>"((+�/ / P{Ty e ds) du dy, h = s + u 
J-OO Uo Jo J 

A) r roQ poo -
= / e"((+” / e-^'P{Ty e ds) / e—历'du dy 

J-OO L 九 7o J 

= / � e " ( ( + ” [E [ e - ' � / " ] dy. 
J-OO 

As = A{z\b) + B(z;b), we have 

�e掀+”E dy 
J —OO 

= 广 I M m + /^ i , / j )c"(^H-/ j� ,�_ A，/jfa + 伪 ’ , 拟 ( L Y 

7-00 (^2,/3 - Php) 'n2{P2,P - A,/?) � ‘ 
= 02,咖 2 + A./?) + (hp) 
- n 2 { p 2 . i i - + 1 一 — mi/32,fi - + 1 - ihfi)‘ 

After recognizing ；C/j’卢{1} = we obtain an expression for Ch^pE e工"((+”] as 

shown in the Lemma. • 

From Theorem 3.1, the DIL option can be valued via a triple Laplace inver-

sion. Appendix A presents a numerical triple Laplace inversion using the Euler 
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summation, where we have reduced the computational burden using properties of 

the expectations in Theorem 3.1. More specifically, the computation is reduced 

to an order similar to that of the double Laplace inversion proposed by Petrella 

(2004). 

3.6 Numerical Examples 

Numerical examples are used to show that the analytical solution implemented 

with the triple Laplace inversion is efficient and accurate. We compare our nu-

merical results with the Monte Carlo (MC) simulation. The simulation for jump 

diffusion models is classic, see Chapter 10.4 of Chan and Wong (2006). It is found 

from the MC siimilalioii that the approximated turbo price converges slowly with 

the time stq), At. For instance, when we run the siniiilatioii with r = 5%, q = 0%, 

n = 0.3, A = 2.0, 7/1 = 25, 7/2 = 20, p = 0.6, T = 1.0, So = 100, B = 95 and 

h = 1/24. the numerical result is converging to a stable value when the At is 

approaching to zero. However, the approximated value is not close enough to 

the true value with At — 10—5 and 40,000 sample paths. Figure 3.1 plots the 

t,iu,ho warrant price against the time step. The points marked V，at At — 0，are 

produced by the Richardson extrapolation using the four data points marked '0'. 

When the extrapolated value is compared to the simulated price with At = 10—5, 

tlio difForonro is around 0.03 for all strike priros. Thus, wo will iiso the warrant 

price prodiicecl from the Richardson extrapolation as the benchmark to verify our 

analytical solution. 

We check the performance of the analytical solution implemented with the 

triple Laplace inversion in Table 4.2. The AlC option price is obtained from the 

Richaidsoii extrapolation bailed 011 the MC siiimlatioiis with At = 10—5, 5 x 10"^, 

25 X 10—5，0.001 and 0.005. It can be seen that using inverse Laplace transform 

(ILT) pioduccs results consistent with the MC siiimlatioii. The diffciciico bc-
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Figure 3.1: MC Estimates and Extrapolation 

Strike (/v) 81 84 87 90 一 

Time ⑷ ILT ^ M ^ ILT _ MC ILT MC ILT iMC 
1 week 17.179 17.202 14.235 14.260 11.347 11.371 8.708 8.731 

2 weeks 16.073 IG.lOO 13.199 13.227 10.508 10.535 8.241 8.265 

1 month 14.685 14.714 12.041 12.070 9.713 9.739 7.865 7.887 

2 months 13.209 13.242 10.952 10.983 9.050 9.076 7.580 7.603 

3 months 12.399 12.439 10.397 10.432 8.733 8.761 7.450 7.474 

Table 3.1: Simulation vs. Analytical Solution 

tweeii two approaches increases when the value of h increases. This is because 

the discretization error of the realized minimum asset price, after the barrier is 

crossed, accumulates with the value of h. The MC simulation is then biased 

upward once the h is getting large. We would like to stress that computing one 

option price only takes about 0.6 seconds using the triple Laplace transform. This 

computational time is remarkably efficient and useful for calibration. 

As volatility smile can be partly explained by a jump diffusion model, we 

examine the sensitivity of turbo warrants to the volatility smile through examin-

ing the sensitivity to the jump parameters. Specifically in the DEJD model, we 

are interested in the change in turbo price with respect to the marginal change in 
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Figure 3.2: Sensitivity Analysis 

A, r/i, 7/2 and p. If implied volatility is insignificant to turbo pricing, then it should 

be the case that a turbo warrant is much less sensitive to the jump parameters 

than its vanilla counterpart. 

Figure 3.2 plots the turbo and vanilla call prices against jump parameters. 

In all cases, we fix the strike price at 90 and vary the barrier level for the turbo 

warrant. It can be seen that the turbo warrant is much less sensitive to the 

jump arrival rate A when compared with the vanilla call option. However, the 

sensitivities to the mean parameters 771 and 772 are similar to those of the vanilla 

option. The turbo warrant is more sensitive to the skewness parameter p. It 

is reasonable as the the skewness of the asset distribution greatly affects the 

likelihood of falling into the knock-in region. In general, the vanilla call option 

is more sensitive to the jump parameters but is not very significant. Hence, the 

jump risk cannot be ignored in the valuation of turbo warrants. 

Finally, we discuss the difference between the diffusion model and the jump 
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Figure 3.3: Comparing BS and DEJD Turbo Prices 

diffusion model in pricing turbo warrant. Figure 3.3 plots the BS turbo price 

and DEJD turbo price against the barrier level using the parameters: r = 5%, 

q = 0%, a = 0.3, A = 5.0, = 10，"2 = 10, p = 0.5, T = 1.0，SQ = 100，K = 90 

and h = 1/24. Since a turbo call warrant requires the barrier level to be larger 

than the strike price, we plot the graph for the barrier level being larger than 90. 

It can be seen that the price difference can be quite large. For instance, when the 

harrier is set to 95, the price difference is 0.66 while the turbo price is in between 

8 and 9. Thus, the pricing error is larger than 7.3%. When the barrier level gets 

closer to the strike price, the difference is even larger. Given that the turbo price 

can be computed within a second, it is worth to include the DEJD turbo price in 

practice. 
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Chapter 4 

Quanto Options under D E J D 

This chapter can be considered as the starting point of the key part of this 

thesis. We consider option contracts where the payoff depends on two financial 

quantities: exchange rate, Ft, and foreign equity, St, According to the DEJD 

model, the marginal dynamics of the t,wo quantities, exchange rate and foreign 

equity, should be consistent with (2.1). Specifically, 

dS 
= l^is dt + as dWs + YsdNu 

dF 
— = I - I F dt + CTP dWp + y> clN'Z. 
r 

To model the covariation of the two stochastic processes, we introduce the de-

pendent structure in 3 manners: the joint Wiener process, common jump arrivals 

Poisson processes and correlated jumps sizes. 

For the joint Wiener process {VVs, Wjr), the changes of Wp), i.e. (AVK5, AWF) 

for a time interval At, follows a bivariate normal distribution with mean [0 0]' 

and variance-covariance matrix 

( 1 A 
A力 ， 

1 � V 
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i.e., E[dWsdWF\ = pdt. We assume that P{Ws{0) = 0，Wf{0) = 0) = 1. 

The dependent structure between Poisson processes can be modeled by 

using a common jump arrival Poisson process. Let N be the Poisson process 

recording the number of common jumps such that Ni = N s + N and N2 = N p + N . 

We assume that the Poisson processes Ns, Np and N are independent and have 

intensities A^, A^ and A, respectively. 

In other words, we consider the joint asset dynamic of St and Ft as follows. 

JO 
=叫 dt + ds dWs + Ys dNs + Ys dN, (4.1) 

dF 
—=FIFDT + CTJ. dWp + YF dNp + YF dN, ( 4 . 2 ) 

where H 5 and Wp are Wiener processes with correlation coefficient p, fis and 

fiF are the drifts of the foreign equity and the exchange rate to be determined 

later, as is the volatility of S, fX/,’ is the volatility of F , In(>5- + 1) and ln(YF + 1) 

are the jump sizes, and Ns, •ZV/: and N are independent Poisson processes with 

intensities A5, A/r and A respectively. We allow jump sizes Ys and Yp to be 

dependent random variables. The joint distribution of (y^, y » will be specified 

in Section 4.2. 

4.1 Domestic Risk-neutral Dynamics 

As quanto options are traded in domestic currency, we concentrate on the pro-

cesses of S and F under the domestic risk neutral measure, Q^. Let B^ denote 

the domestic bank account and Bf the foreign bank account. Therefore, 

dBd , dBf , 
= Td at and = 7’/ dt, 

^d Bf 
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where r^ is the domestic interest rate and 77 is the foreign interest rate. If 

a domestic investor deposits to the foreign bank account, her position can be 

described as FBf. The dynamics of her position is given by 

" ( f f 力 = [ j i F + T f ) (it + ap dWF + Yf^ dNp + Yp dN. 
FBf 

Under Qd, F B ^ / B ^ is a martingale. Therefore, 

fLF = r , - Tf - (A^ + A)E(y^), (4.3) 

which completes the process (4.2). 

Under Qd, consider the process of S 

=购 dt + as dWg + Ys dNi + Ys dNd, (4.4) 

where ",5 is a constant, Wg is a Wiener process in 

Q'\ and TV! and iV" are 

independent Poisson processes in Q''. If the investor purchases the foreign asset, 

the dynamic of her domestic position, S* = FS, calculated using (4.2) and (4.4) 

becomes 
dS* _ dS dF 些 ！ 

= ( / i s + Mf + PCTSCJF) dt + {as dWg + ap dWF) (4.5) 

+ Ys {dNi + ciN"^) + y> {dNp + ciN) + YSYF dNclN'^. 

As S* can be viewed as a domestic asset, S*/B^ is a martingale under Q^. Hence, 

+ + p(7s(yF 
=U - (As + X)EiYs) - {Xp + X)E{Yp) — XE{YsYf). (4.6) 
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Putting (4.6) and (4.3) together, 

/.is = 77 - pcrscTF - (As + A)E(y5) - AE(y5>F)- (4.7) 

Using (4.2) and (4.1)，we obtain 

fjQ* 

二 (rd - (A5 + mi^s) + (Af + + po-sajr) dt + as dWs 

+ ap dWp + Ys {dNs + dN) + [dNp + dN) + YsYp dN, 

which is consistent with (4.5) and (4.6) if the following equalities hold, 

pcTp dt + clWs = dWg, 

dNs = clN玄, (4.8) 

A dt + dN = dNd. 

Hence, the processes of S and S* under Q^ are respectively (4.4) and (4.5) with 

N ( � i V | , W'̂  defined in (4.8) and fis defined in (4.7). 

4.2 The Exponential Copula 

Let YS 二 + 1) and IJF = ln(y/r + 1). According to DEJD, the marginal dis-

tributions of ys and yp are double exponential distributions (DED). Specifically, 

we assume that ys �DED(ps，r/若’'"幻 and yp � D E D ( P f ， 戒 w h e r e the pelf 

is given in (2.4). However, one can separatel}^ consider upward and downward 

jumps so that the one-sided jump sizes are exponentially distributed. In other 

words, we use the following decomposition: 

{ys, VF) 二 （站，^F)l{as>0, aF>0} + (_径’略)l{as.<0’ ar>0} (4.9) 

+ (-略-略)l{as.<0’ ap<0} + (站,-^F)l{as>0, aF<0}’ 
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where the superscript i of 65 and hp represents the z-th quadrant of the ys-yr 

plane, i.e., i = 1,2, 3 and 4. In addition, we denote 

pi := P八ys >0, yF> 0), 

/ ：= P八ys < 0’ VF > 0), 

：= Pr(2/s < 0, yp < 0)， 

p" ••= P小Js > 0, VF < 0). 

The random variables bg and follow exponential distributions for all 

i 二 1 ,2 ,3 and 4. Let us concentrate on bg and b)r for a fixed i. As common 

jumps and dependent jump sizes are allowed, the joint distribution for bg and b]r 

should be specified such that their marginal distributions are univariate exponen-

tial distributions. 

We employ the Marshall and Olkin (1967) copula for exponential marginals: 

PT{bs > u, bp > v) = exp {—ifgU — ifpV — i]i max(n, v)) . (4.10) 

Marshall and Olkin (1967) showed that the joint distribution of (4.10) leads 65. 

and Iff.，to follow exponential marginals with parameters ifg + vji and 7]}, + rji 

respectively. Hence ys and 你 are marginally degenerated to double exponential 

distributions if the following conditions are satisfied: 

''Is + '11 = .4 + m = Vs^ 

Is + m = vs + m = vi, 

Vf + = IF + V2 = VF^ 

VF + m = HF + V4 = VF-

There are some nice properties of this multivariate exponential distribution. For 
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instance, the joint density function can easily be obtained as, 

MU, v) = (4 + U > V, 

fi{u,v) = + "ihie—”i’u-("i^+”,>’ u<v, 

Mu, V) = —外 u = v, 

where 外）is the Dime delta function. It shows that the random variables has 

a mass density along the line u 二 v, which contributes the correlation structure 

between them. To show this, observe that the first two expressions are trivial con-

sequences of direct differentiation. For the last expression, evaluate the following 

probability, 

= e x p [—ifst — rfjA — i]i max(^, t)) 

- e x p � — r f s � t + A) - - mcix(i + A, t)) 

- e x p ( _ 7 “ 一 "jr(力 + A) — i]i max(力，t + A)) 

+ exp ( - r fs ( t + A) - rjir(t + A) - 77̂  niax(^ + + A)) 

二 [1 _ + g-(7?jr+77/)A + g-(»7̂ .+r;jr+7?,)A . 

Hence 

A(t,t) = lim ^ Pi-ib^ e(t,t + e(t,t + A]) 
A—0 
lim —e~^''s+''F+Vi)t N _ — ^+7；,)A + ^-{n's+n'r+m)^ 

A-.0 L . 

二 Hm ^ [inh + m) + + r/,) - ( . r ,�+ + r/,)] 
二 e — _ 外 
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Given the pdf, the moment generating function (mgf) is then derived as 

料 ） = 明 ） + E ( e 4 + 料 � 尸 } ) + E ( e � 如 料 似 ） 

= ( 4 + " 她 

(喊 + ”i — + VF + a - ！3) 
+ i^lF + mWs (4 11) 

("jr + m - p) (r/̂  + vir + m - « - ‘ 
+ - _ _ - J h 

Vs + VF + Vi - « -

4.3 The moment generating function 

The mgf (4.11) of the multivariate exponential distribution of Marshall and Olkin 

(1967) leads to the mgf of (F t , ST), which is defined as E(S^^F^). The expectation 

can be taken under either Q^ or Q! depending on the problem of interest. 

Consider A � = h i St/Si) and Y,. = InFt/Fo. Applying Ito's lemma on (4.1) 

and (4.2) yields 

dXt = = + + + (4.12) 

dYt = d\ogF = fly dt + fT/r ciVVp + ijp dNp + ijf dN, (4.13) 

or, equivalently, 

N{R) 

XT = fixT + + ys,i + YS^^ (4.14) 
1=1 k=i 

NF{T) N{T) 

YT = I^YT + APWP + Y . YJRJ + ^ yj^)’ （4.15) 
.7 = 1 A.-1 

where ys 二 + 1), ijf = IhCVf + 1), ^dWsdWp] = pdt, E[Ay = A5, 
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E[NF] = A^, E[iV] = A and 

fix = ^ s - 4/2 = r f - pascJF - {Xs + X)E{Ys) - AE(y5») — 4/2, 

Î Y = fiF - 4 / 2 = r d - r f - (AF + A)E(yF) - (^1/2. (4.16) 

Theorem 4.1 If the exchange rate and the foreign equity price follow DEJD, 

then the moment generating function is given by 

Et exp(G(a，/3;"x’"r)(r-”）， 

where 

G(a’";".Y，"y) ：二 Oif.ix + PI-Iy + + '^padasdr + 0^(7%] (4.17) 

+AsE[e(奶 -1] + ApEfe办F _ i] + 计彻厂 - I j . 

The expected values in (人.U) can be calculated using the identity, 

E[e'川 

= ^ i ({'>i\ + >n>i I (4+'丨作li I A 
— ^ + 4 + ^iC^ - (-id + V' - 4 + rf — til3 ' J , 

where ()"i = ()4 = — = 1 and 62 = (̂ 3 = £3 = £4 = — 1. 

Proof Consider the following calculation, 

alogS'T + /51ogFT = aXt + ^Yt + {a/Jx + - i) 

+ a a s iPVs(T) - Ws(t)] + 3(JF [VV>(T) - � ] 
Ns{T) NfiT) N{T) 

+ ys’i + ‘(3 E 肿’E 卜:vi')+ . 
i=Ns{t) j=NF{t) k=N{t.) 
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We then directly substitute the above expression into the mgf so that 

E ^a \og ST+13 \og FT' 

= E E g Tncrs [I'Vs(T)-M��]+/?印[M/fCO-wxO]-

x E e�=Ns�t�ys,i E g 卢 ⑴ 奴 厂 j E e^人，⑴卜'办+历斤J 

- 1 � � ( k ) , ,, (A-)l -
x E 尸⑴"厂"̂ lAAOrj E 二 州 s 

=57 Ffe—X +i3fJY){T-t) ̂ {a^ al.+2pa0as (Tf +"2 碎） 

x E [E[e""s’]AA^s] E 产外]E [E[e叫计々卯产v. 

= S ^ i f ' 入 了 - � e ( " 2 作 墓 e x p [XsiT - 0(E[e'哪]—1)] 

X exp [A/r(T - 0(E[e办Fj — 1)] exp [A(r - — i ) : . 

It is now easy to identify that 

G(a，,3) = a^ix + pf-iy + ^ ( a V ^ + 2paPas(Jp + p'^a^) 

_ i j + ApEfe办厂-1] + A E [ e 。 y 5 、 + 办 F — i ] . 口 

4.4 European Quanto Options 

We now apply Laplace transform to value four types of quanto options. 

4.4.1 Floating Exchange Rate Foreign Equity Call 

The first one, perhaps the simplest one, is the floating exchange rate foreign 

equity call. The payoff is, 

CFI{T) = Frmax(SV 一 /�7，0)， 
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where Kj is specified in terms of foreign currency. The present value of this 

option can be calculated as 

Cfi(t, S, F) 二 E?" [ e - � F : r m a x ( 5 T - /(/’ 0): 

= E ? " [ ㈱ 斤 max(办— A), 0 ) . 

As Cfi{t, S, F)/{FBf) is a martingale under Q-̂ , we have 

Cfi{t,S,F) = Ef [口召么 F r m ^ x i S r - ’ (4.18) 

which implies that the Raiidon-Nikodym derivative is given by 

^ = FTBj{T)/Ba{T) 
clQd ,, — FtBj{t)/Ba{t) , h J 

where Tt is the filtration up to lime I. From (4.18), we recognize that 

S,F) = Fx C{U S- K f , rv, g = 0)， 

where C(/, 5; A'/, 77, q) is the vanilla call price with the strike price K； and the 

foreign interest rate 77. As we assume that the foreign asset pays no dividend, the 

dividend yield q is set to zero. From (4.1), we know that the process of S under 

Q! follows DEJD so that the standard call option pricing formula derived by Koii 

and Wang (2004) can be applied. For such a floating exchange rate foreign equity 

option, we see that the correlation between two Wiener processes, the common 

jumps and dependent jump sizes have no impact on the option price. The reason 

is that the present value of this option is not affcctcd by the future fluctuation of 

exchange rate. 

Here we provide the analytical solution for vanilla call under DEJD in do-

mestic measure. 
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Theorem 4.2 If the foreign equity and the exchange rate follow (4-2) and (4-1) 

respectively, then the floating exchange rate foreign equity call price is given by 

�S'C+i F . 
Cfi[t,S,F) = e-r'^-t�q;\ ^ ^ ^ ^ exp (G(C + 1,1； Mx, ^y){T - t)) ’（4.20) 

where G(a, j3] fix.l-Ly), A^x and fiy are defined in (4-17) and (4.16) respectively. 

Proof Consider the Laplace transform on (4.18): 

4 c [e”,一Ocv,(�’ 5, F)] = r e - ( 唯 ⑵ - e—”+]收 
J -OO 

=E^" \FT r {Sre-^' — e - _ � k 
. . / - In S -

= E Q " [ 叫 

Under Qd, the processes of S and F are defined in (4.4) and (4.2), respectively. 

Applying Ito's lemma on In S and In F with respect to (4.4) and (4.2), the drifts 

are easily obtained. • 

4.4.2 Fixed Exchange Rate Foreign Equity Call 

The fixed exchange rate foreign equity call option is also known as standard 

quanto call option, which gives the holder the right to purchase a foreign asset 

with a fixed exchange rate on the expiration date of the contract. The payoff 

function takes the form: 

CfUT) = Fonmx{ST-Kf.O). 

The present value of this option has the representation: 

Cf,At, S, F) = 了—叱 [ m a x (和 - / v / , 0)], 
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which implies that 

CfiAt, S, F) = Fox C{t, 5; K f , g), (4.21) 

q = rj -Td- pcTsap -

where C{t, Kj, rv, is the vanilla call option price with strike Kj using the 

domestic interest rate r^ and the pseuclo dividend yield q. As the process of S 

under follows DEJD as shown in (4.4), the pricing formula for C(/：, 5; A'/, Td, q) 

can be obtained using the result of Kou and Wang (2004). To understand the 

pseuclo dividend yield q, we consider the drift, /也 of S under Q^ defined in (4.7). 

The drift can be written as 

�is = vd - {Xs + A)E(.4<,-) + ["�’ - t.d + {Xs + X)E{As)] • 

Under all non-dividend paying a.ssets have drift r(i — {Xs + A)E(.4s’）so that 

the remaining term can be regarded as the pseuclo dividend yield induced by the 

foreign interest rate r j and fluctuation of the exchange rate F . The fluctuation 

comes hoiii the volatility of the diffusion coiiipoiieiit and the jump size when 

common jumps occur. Here, we see that common jumps and dependent jump 

sizes have a significant impact on standard qiianto options. 

T h e o r e m 4.3 If the foreign equity and the exchange rate follow (4-2) and (4-1) 

respectively, then the floating exchange rate foreign equity call price is given by 

Cfi从 S, F) = e-r"(了-0/：厂! exp (G(C + 1，0; /…"yK^T - t)) , (4.22) 

where G{a, Hx^fh'), "x and fiy are defined in and (4-16) respectively. 

41 



Proof Similarly, consider the Laplace transform on (4.22): 

[e'-'^^'^-'^CMt, S, F)] = r e - ( 人 _ e—^+jdA; 
J —oo 

r 厂 oo -
二 E^" Fo / iS re -^ ' - e-((+i)勺ci/c 

. J - In S . 

= F � 叫 碎 • 

4.4.3 Domestic Foreign Equity Call 

The third common quanto option is the call option on foreign equity denominated 

ill domestic currency. The payoff is, 

Cd{T) = max{FTST-Ki,0), 

where the strike price A:/ is set in terms of domestic currency. We write the 

pricing representation as 

Cd{t,S,F) = [max(5;-/C/,0)l, (4.23) 

where the process of S* = FS is obtained in (4.5) in which S* does not follow 

DEJD. There is no existing result for the pricing this product which needs to be 

derived. 

Let k == — In Ka and C^x be the Laplace transform operator with respect 

to k. The following theorem gives the pricing formula for the domestic foreign 

equity call in terms of Laplace inversion. 

T h e o r e m 4.4 If the foreign equity and the exchange rate follow (4-2) and (4-1) 

respectively, then the domestic foreign equity call price is given by 

「cc+i /?C+i “ 
CS ,S ,F、= e-r,i、T-t、c-A + 1) exp(G(C + 1,C+ 1;姊 / " ' ) (『_ 0)(朱24) 
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where G{a, f3] (.lx, /^y), l-tx and /ly are defined in (4-^V o/nd 4.16 respectively. 

Proof Consider the Laplace transform on (4.23): 

/•oo 

•/ —OO 

= E ^ " [ r - e—(�+”k)dk 

= E l 鄰 

The expectation can be computed as 

E " [ (勒 ( + 1 ] = EQ"[確+1/^7(+1] = � exp(G(C+ 1 .C+ l;"x，"Y')(r-力)）， 

which is t he mgf defined in Theorem 4.1. We remind that /z,y is t he drift of In 5 

and fly tliat of In F. Under Q'^, the processes of S and F are defined in (4.4) and 

(4.2) icspcctivcl}'. Applying Ito's lemma, on In S and In F with respect to (4.4) 

and (4.2), the drifts are easily obtained. • 

4.4.4 Joint Quanto Call 

The joint quanto call option gives the holder the right to purchase a foreign 

equity with exchange rate no less than a predetermined rate. Specifically, the 

payoff function is. 

C.,{T) = max(FT, Fq) max(SV - 0). 

Even when jumps disappear in the model, the pricing formula involves the bi-

variate normal distribution function, see Kwok and Wong (2000). Unlike the 

preceding quanto options, it is impossible to reduce the valuation of the joint 

quanto option to a one dimensional problem. We now obtain an analytical for-
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miila for the joint quanto call under DEJD, which is new. 

Theorem 4.5 If S and F follow DEJD under Q'^, then the joint quanto call 

price is 

x e - ( 了 - � + CV“口，F)’ （4.25) 

where / = — In FQ, k = — In Kj, CFIX{t, S, F) is the standard quanto call obtained 

in (4.21) and the function G can be found in (人.IK). 

Proof The joint quanto call can be fully replicated by a portfolio of a double 

call and a standard quanto call. To see this, we write the payoff as 

Cj{T) = max (F t - Fo, 0) max(SV -八'/，0) + Fo max(5V - A), 0). 

The standard quanto call has pricing formula, Cfix obtained in (4.21). It remains 

to determine the double call. 

Consider a double Laplace transform on the future value of double call as 

�f，6Ck’(i { e ^ " [max(Fr - e—�0) max(SV — 0)] } 
二 厂 厂 e-“e-"^,EQ"[(F:r — — e-”.] dkdf 

J —OO J —oc 
r roo poo “ 

= E Q " / - e’+dk / e - ’ T -
.J-OO J-oc -

—r?Q'' [ cC + l / 7 r f + l 1 1 I 

where the mgf has been established in Theorem 4.1. • 

The joint quanto call is numerically more sophisticated than standard quanto 

products as it requires the computation of the double Laplace inversion. Fortu-

nately, the numerical double Laplace inversion is very efficient. The time for 
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obtaining an option price is less one second. An algorithm for the double Laplace 

inversion is shown in Section 3.1. 

As a summary, we list the results in Table 4.1. It can be seen that European 

quanto options can be priced using Laplace transform and the mgf between St 

and Ft. 

Option Type Payoff Pricing Formula 
Floating FX Quanto FT{ST — K)+ I ^^e^lC+i.DCT^^ 

Fixed FX Quanto FO{ST — K)+ e — r , | ^ ^ ^ e G ( ( + i ’ o ) ( T - ( ) 

Domestic Quanto {FTST - /()+ e - 厂 | ^ ^ | ^ 6 � ( ( + 1 ’ ( + 1 ) ( “ | 

^ J o i n t Q u a n t o ^ max(FT, Fo){St - /()+ C]:垃⑴’糾)(了-0j 

Table 4.1: List of Pricing Formulae of European Style Options 

4.5 Numerical Examples 

We demonstrate the implementation of European quanto option pricing under 

DEJD model. To simplify matters, we only consider an upward-jump model, 

i.e., 二 1’ = =尸4 = 0. Set: S 二 100, F = 1, u = 5%, ly = 3%, 

(7s = 0.3, (TP 二 0.1, p = 0.8, As 二 5, A尸 二 2，A 二 5, = 10, r]], = 15, rj^ = 25, 

•lis = Vs + "1 = 35 and ."/r = rjp + r产=40. 

The results of using Laplace inversion are compared with Monte Carlo sim-

ulations. We use strike prices (/(): 85, 90, 95, 100 and 105, and the time to 

maturity T equals to 1/4 and 1/2. Table 4.2 shows the result for the floating 

quanto and Table 4.3 shows that of the domestic quanto. The third and the 

sixth columns report the simulation time for 1,000,000 scenarios. The valua-

tion time takes about 0.001 second on average for Laplace inversion, and takes 

about 5 seconds for Monte Carlo simulation. Therefore, the analytical solution 
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Strike(/() 3 months 6 months 
“ ILT MC SD~ time ILT MC SD time 

^ 12.8729 12.8612 0 . 0 1 3 7 1 5 . 4 6 9 2 15.4801 0 . 0 2 0 0 f l f 
95 9.5627 9.5623 0.0116 5.77 12.4663 12.4778 0.0177 7.67 
100 6.8698 6.8648 0.0106 5.95 9.9059 9.9178 0.0151 8.02 
105 4.7807 4.7807 0.0083 5.83 7.7695 7.7836 0.0139 7.82 

Table 4.2: Simulation vs. Analytical Solution: Floating FX Quanto 

Strike(A') 3 months 6 months 
“ ‘ ILT MC S"^ time ILT 一 MC SD time 

^ 14.7604 14.7484 0 . 0 1 7 0 ^ 18.4338 18.4478 0 . 0 2 5 5 f W 
95 11.7077 11.7092 0.0161 5.77 15.6550 15.6666 0.0223 7.67 
100 9.1352 9.1311 0.0141 5.95 13.2140 13.2197 0.0196 8.02 
105 7.0218 7.0249 0.0123 5.83 11.0928 11.1066 0.0188 7.82 

Table 4.3: Simulation vs. Analytical Solution: Domestic Quanto 

is coiiiputatioiially more cHiciciit and real time calibration bocoiiics possible. 

In terms of accuracy, Table 4.2 and Table 4.3 both show that the Monte 

Carlo price and the analytical price are close to each other, verifying numerically 

that our solution is correct and contains no error from calculation and computa-

tion. 

As seen from the pricing formulas, the fixed FX quanto and domestic quanto 

option are sensitive to the common jump and the dependent jump size. We would 

like to examine the impact of the common jump intensity A and the common size 

distribution to the prices of these two options. Figure 4.1 plots the option price 

against jump parameters. The top two graphs of Figure 4.1 correspond to the 

fixed FX quanto with Fq = 1, by varying the common jump intensity A and 

the dependence rate r/ (fixing ijs = ijs + ''产 and rjr =丨丨]r + r/)’ respectively. The 

bottom two correspond to the domestic quanto with varying A and respectively. 

It is interesting to notice that the parameter 77 indicates the "correlation" of the 

jump sizes when a common jump occurs. 

It is seen from Figure 4.1 that both options are increasing with the A. 
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Therefore, the options are more expensive if the investor expects common jumps 

for the FX and equity markets. When the jump direction is more likely to the 

same for the foreign asset and the exchange rate (or 7] is small), the option price 

will be higher. It is intuitively reasonable because we only consider upward jumps. 

When both assets are likely to jump up at time same time, it is expected that 

the terminal values are likely to be higher and hence increases the option price. 

K=95 

10, to, - - K:100 
、- ---K-M5 

9 9 

8 8 

卜 … - 一 ------一 i … … 一 
6 6 

5 “ “ “ “ 5 ’ . � � _ . � 
4' “ ‘ ‘ 
0 10 20 30 40 10 15 20 25 30 

)• .1 
16| 1 14, 1 

Z - - - Z - 一 1 2 ' . � . - - 1 - � 

10 ^ ‘ ^ - ~ — — . . . 

广 • •• - . “ 、 
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1 e' 
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Figure 4.1: Sensitivity Analysis of Fixed FX Quanto and Domestic Quanto 
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Chapter 5 

Path-Dependent Quanto Options 

We have investigated the valuation of European foreign equity options under 

DEJD. This chapter is devoted to path-dependent options. We concentrate on 

contracts that the payoff depends on the first passage time. It will be shown that 

the DEJD process is analytically tractable for both barrier and lookback foreign 

equity options if the joint exponential distribution of Marshall and Olkin (1967) 

is used to model the joint jump sizes when common jumps appear. 

5.1 The Domestic Equivalent Asset S* 

Before deriving the pricing formula for path-dependent quanto options, it is help-

ful to look closely at the dynamic of S; first. Form the relation shown in (4.5) 

dS； _ dStFt — clSt dFt d^d^ 
~W = 而 = " ： ^ + + 

we can easily conclude that the dynamic of S^ is governed by a jump-diffusion 

process. Therefore, we follow Kou's methodology on domestic foreign equity and 

we first obtain the jump sizes distribution with lemma 5.1. 

Lemma 5.1 Suppose ys and yp follow the joint double exponential distribution 
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using the Marshall and Olkin (1967) copula, then the probability density function 

(pdf) ofY = ys + yF takes the form 

5 5 

My) = + P2J2 + m y ) . 
1=1 j=l 

where d(-) is the Dime delta function. The proof and the values of Pi, P2, Ps, q^ 

7" Qj and YJ please refer appendix E. 

Lemma 5.1 enables us to derive the probability density function for the jump 

size of S*. As the jump component of d In S* is ys dNs + VF dNp + {IJS + IJF) dN, 

we can write it in an alternative way as Y dN. Conventionally, we must take out 

the events with jump size 0 from the Poisson process. Thus, the resulting Poisson 

process N has the intensity A = A^ + A/r + A(Pi + Po) and the jump size Y follows 

a mixture of exponential distributions. The pdf of Y takes the form: 

My)=知⑷+字油)+ 脚 " 0 ) 
A A A - 5 -

= 年 P S " 如 - 吻 + 字 例 》 + Q^i；^'^' 1{.>0} (5.1) 
.^ A ^ j=\ . 

+ - 仍 如 红 + - P^Y^FFE''^" + T尸2 E qH冲 l{y<0}. 
_ A X ^ j=i 

To allow a general discussion, we consider dXt — d In S* = // dt + a dW + 

Y (IN’ where the intensity of the Poisson process Nt is X and the pdf of the jump 

size, fv iy ) , is a mixture of exponential distributions, 

n M 

fviy) = 办 视 + • 〜 > 0, (5.2) 
i=l j=l 

where n and m are the numbers of upward and downward jumps components 

respectively, J]-Li Pi 二 E二 i 办二 1，Pu + Pd = 1, Pu,Pd ^ [0,1] and > 0. 

Wo call this now model the mixture exponential jump diffusion (MEJD) mo del. 
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5.1.1 Mathematical Results on the First Passage Time of 

the Mixture Exponential Jump Diffusion Model 

Lemma 5.2 For any sufficiently large real number a, the equation G{P) — q has 

exactly n + 1 positive real roots and m + 1 negative real roots. 

Proof As G{,d) is a rational function, it is analytic, on the complex 

plane except for the singularities at {”“—�_} for i = 1, 2’...，n, j = 1,2,..., m. 

Denote Gi{3) := G{,d) - X K f ^ � f o r i = 1，2’... ’ n. Then 3 > 0 s.t. Gi{f3) 

is continuous and bounded on the interval [rji — 6i, Tji + In other words, 

3 |/i|’ < DC, such that 

k < Gi{3) < Ui, Vde hi — Si, i]i + d�]. 

Consider the first case in which XPuPi > 0. We have 

liiii G{3) = lim Gi{(3) + XPuPi-r^ = G i � + XPuPi lim ^ — +oo. 

P-^vt L P - Vil 0 + 工 

and 

G{jn + Si) = Gi(”i + Si) + X P u i h . 丄 — < Ui + XPuPi f ••= Ci. 
I/"?: I Oi) — Tji Ui 

By the Intermediate Value Theorem, V (v G [q, oo), 3,6 6 ("“ '"i + 而]such that 

G{f3) = a. For the second case in which XPuPi < 0，we have 

lim G{P) = lim ICii^) + XPuPi-r^] = G i � + XPuPi lim 化— + 0 0 ’ 
/ 3 l � " - 7 " � a；才 a； 

and 

G{r)i - 6i) = Gii'm - 6i) + XPuPi —.:"、— < 均 + \>^PuPi\f •= Q. 

50 



Hence, V a 6 [cj, oo), 3p € {rji, ？/j - (5̂ ] such that G{,3) = a. Combining two cases, 

we know that, V Ck G [q, oo), 3p € [rji 一 Si, ly + such that G{,d) = a. 

Using similar arguments, there are Cj and dj such that V o： G [dj, oo), 

6 [—Kj — Cj, —Kj + Cj] such that G{,d) = a. 

It is easy to see that 

lim G(p) — +00. 
土 oo \ , 

For 7] > max{/7i}, G{P) is continuous on the interval [77, oc). Hence V ce > G(j]), 

G{fi) = (Y has at least one real root on the interval [77，oc). Similarly, V k. < 

min{/vj} and a > G{—K), G{/3) = a has at least one real root on the interval 

(—00, — K,]. 

Let c = max{cj, dj, G{t)), G{—k)}. The previous analysis shows that, the 

equation G{p) = a > c has at least, one real root on each of the intervals [77,:— 

6i, i)i + d",], [—Kj — Cj, —fxj + Cj], ["’ 00) and (—00’ 一/tj. Thus, there are at least 

m + 11 + 2 real roots. However, the equation G{/3) = a can be transformed into 

a polynomial equation of degree m + n + 2. By the Fundamental Theorem of 

Algebra, it must have exactly m + n + 2 roots so that there must be exactly one 

real root lying on each of the intervals. Hence, there are n + 1 positive roots and 

m + 1 negative roots. • 

Lemma 5.3 Let G^^a) = 0k be the inverse (k^'^-root finding) function of the 

equation G{I3) = := {z € C|况(2) > 0} and C" := {z G 况(2) < 0}. Then, 

either G 厂 C C+ or G厂 i(C+) c C" holds. 

Proof We start by showing that G-^{C+) C C+ UC—• Consider G{P) = a and 

= 0. Then, 

况⑷ 二 = I一,3) I = |E[e丄Y]| < E [|e斯 I] = E [e叫外” = E [e"] = e". 
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We conclude that 况 = 0 况(a) < 0. The equivalent statement is that 

况(a) > 0 况("）+ 0. Hence, G — C C+UC". 

As G{j3) is a rational function, the equation = a can be transformed 

into a polynomial equation of (3 with coefficients being continuous functions of a . 

Harris and Martin (1987) prove that the roots of a polynomial over complex plane 

vary continuously as a function of the coefficients and the inverse mapping is a 

homeoniorphism with the quotient topology. Therefore, are continuous 

functions for all k = 1’ 2 , . . . ’ + m. + 2 and should map a connected domain onto 

a connected set. 

As C U C—’ we must have G厂i(C+) C C+ U C". We highlight 

that C+ and C一 are two connected subsets of C, but C+ and C~ are separated. 

Because is a continuous function, it. should be that either G厂i(C+) C or 

C C- holds. The proof is completed. • 

T h e o r e m 5.1 There is a positive real number c such that the equation G{P) = a 

has exactly n + m + 2 complex roots for all > c, a： G C. In addition, there are 

n + 1 complex roots with positive real parts and m + 1 complex roots with negative 

real parts. 

Proof By Lemma 5.2, G{f3) = a has exactly n + l positive real roots and 771 + 1 

negative real roots for all real number a > c. Consider G厂i(a) = pk such that 

l3k > 0 ior k = 1,2,... ,n + 1 and (3k < 0 for k = n + 2’ + 3 , . . . ’ n + m. + 2. By 

Lemma. 5.3, we can extend the domain of G一i(a') to C+ such that 

G 厂 — C + for k = l , 2 , . . . , n + l , 

G厂 1 : 一 C— for k = n + 2,n + 3,...,n + m + 2. 
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i.e. G{3) = ck € C"̂  has exactly n + m+ 2 complex roots (3k, where j3k € C+ for 

A; = 1,2, ...,72 + 1 and (3k G C" for /c = n + 2，n + 3 , . . . ’ n + 77i + 2. The proof is 

then completed. • 

Lemma 5.2 and Theorem 5.1 constitute the building blocks for deriving the 

moment generating function of the first passage time(s). 

L e m m a 5.4 Let r̂  = inf{i|Xt > b} for b > X[), where Xt follows the mixture ex-

ponential jump diffusion process. Suppose the equation G{P) 二 a has no multiple 

roots, then for any a E C with a large positive real part, 

( 

V + I -v, t < h 
E [ e - � < o c } ] = h � ‘ -

1， X > b. 

E = 0’ .r = b, 

1, 3； > b. 
\ 

where pi ’s are the n + 1 roots of the equation G{,d) = a with ^{Pk) > 0, a n d � 

and 7/^. are respectively the solutions of the systems of linear equations 
f 

< = 1 , i 二 l ’ 2 ’ . . . n ， 

En+1 1 

k=i 7fc = 1 ’ 

and 

< = 1 , 2 = 1,2，…n, 

、 n : ; 7 . = 0. \ 

Proof Please refer to Appendix D. • 

Lemma 5.5 Let 丁仅=inf{^|yYt < a} for a < X^, where Xt follows the mixture ex-

ponential jum.p diffusion process. Suppose the equation G{,6) = n has no multiple 
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roots, then for any a E C with a large positive real part, 

1, X < a, 
\ 

E [ e - 叩 = 0’ a: = a, 

1, X < a, 
\ 

where f3k are the m + 1 roots of the equation G{f3) = a with 况 < 0, and 7人-， 

are respectively the solutions of the systems of linear equations 

< EI 'LV •；tta = 1 z = l ,2，— . m， 

E771+1 ^ 1 

Ik = 1-
\ 

and 

Em+l K, 1 1 o 
k=i = 1 ’ ^ = 

\ E K； 7 . = 0 . 

Proof The proof is similar to that of Lemma 5.4 and hence is omitted here. • 

5.2 Quanto Lookback Option 

We are now ready to derive the analytical pricing formula for the lookback option. 

Lookback option payoff contains an extreme value of the underlying asset over a 

period of time. Under the Black-Scholes model, the pricing of quanto lookback 

options has been discussed by Dai et al. (2003). There are many different payoff 

structures for quanto lookbacks. For instance, the floating exchange rate foreign 

equity lookback put option has the payoff: FT{MQ —ST), where M^ = sup{SV|0 < 

T < t} is the realized maximum asset value from time 0 to t. The fixed exchange 
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rate foreign equity lookback put has the payoff: Fo{M^ — ST)- These two quanto 

lookback options are relatively simple to price because the foreign equity price 

St follows DEJD under both Qf and Q^ as shown in Chapter 3. Thus, the 

change of measure technique developed in Chapter 4 can be applied to transform 

the problem into a standard lookback option pricing problem under DEJD. The 

result of Koii and Wang (2004) can then be used directly. 

Unfortuiicitcly, in pricing of domestic foreign equity lookback put, the payoff 

is Mq^ — 57 where A/q^ = sup{S'*|i < r < T}, it is a mathematically challenging 

task and has not boon considered boforc. The difficulty comos from the fact that 

the jump component of the domestic equivalent asset {FS) is no longer double 

exponentially distributed, it follows a mixture of exponential distributions. To 

the best of our knowledge, this is the first study to consider path-dependent 

option pricing under mixture exponential jump diffusion. 

According to Wong and Kwok (2003), a model-free representation for the 

domestic foreign equity lookback put can be written as 

M o ’ = 厂 P(M；^ > y)dy + M*' - 巧 . ( 5 . 3 ) 

ly 叩' . 

It is clear that the key to valuing the lookback option is to determine the cumu-

lative distribution fimction (cdf) for the future maximum value of the domestic 

equivalent asset. To derive the cdf, we need the following results. 

Theorem 5.2 Suppose S* follows a mixtuTe exponential jump diffusion process. 

Then the price of the lookback put option on S* is given by 

L P 祝 M � , 二 e - ' ’ ( � 卜 A l ^ g 1 ( f f - 1 } + K - E [ 柳 ] ’ 

where (3k are the n + I roots of the equation G{p) = a with 况(j3k) > 0 for all 

a G C+ and�are defined in Lemma 5.4-
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Proof Let M^ = I n X t = InS； and y = logy. Consider the Laplace 

transform of the integral f ^ , , > y)dy with respect to the maturity T, 

CT,O I 厂 P(M广 > y)dy \ 

roc roo「foc ‘ 

= / > y)]e'dy = / / e^di� 
J M * q J M ^ U O . 

= � E l e l〜 二 L「受、e-秘-Xt�e^di) 
J吨 ^ ^ J吨tt 

= i f � 二 i P � {SlY' 
—1 a A： — 1 广厂 

By Theorem 5.1, G C+ are the roots of the equation G(/i) = (v and 7人-are 

solved according to Lemma 5.4. Using (5.3), the proof is completed. • 

Theorem 5.2 gives an analytical solution to lookback put option under the 

mixture exponential jump diffusion process. To implement the pricing formula, 

the complex roots of the polynomial equation G{(3) = a are solved numerically, 

roots with positive real parts are identified and a numerical Laplace inversion 

cilgorithiii is carricd out to obtain the option price. There is an efficient built-

in function in MATLAB to solve complex roots for a polynomial equation. We 

employ the Laplace inversion algorithm proposed by Petrella (2004) to compute 

the option price. 

Remarks: 

1. When the Laplace transform is applied to a function, it is usually assumed 

that the variable cv is a positive real number. In such a situation, Theorem 

5.2 still holds as Pk becomes a positive real roots of the equation G[fJ) = a 

for k = 1,2’ …，n + 1 and sufficiently large a . Lemma 5.2 ensures that 

there are exactly n + 1 positive real roots. We consider (v 6 because 
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an efficient Laplace inversion algorithm works with the complex domain by 

extending a to a complex number with a positive real part. In fact, our 

consideration is more general. 

2. If S* follows DEJD, i.e. n = m = 1, the equation G{P) = a has exactly 

4 real roots for a sufficiently large positive a , see Lemma 5.2. In such a 

situation, there is a closed-form solution for the polynomial equation of 

degree 4 and Theorem 5.2 reduces to the pricing formula of Kou and Wang 

(2004). However, our result is more general. The approach of Kou and 

Wang (2004) requires the analytical form of quadratic polynomial roots 

and then extend them to the complex domain. Our approach only needs 

to identify roots with positive real parts. This enables us to generalize the 

pricing formula to the case of ??,+77?,+2 > 4, where is no closed-form solution 

for the corresponding polynomial equation. 

3. For the domestic foreign equity lookback put option, we have S* = SF 

which does not follow DEJD in general. Lemma 5.1 asserts that S* follows 

a mixture exponential jump diffusion process. Theorem 5.2 can infer the 

corresponding pricing formula. 

5.3 Quanto Barrier Option 

Barrier options are no longer regarded as exotic options as their trading volume 

is higher than their vanilla, counterparts in certain option markets. The barrier 

is often provided on the foreign asset {S) for floating and fixed exchange rate 

foreign equity options or on the domestic equivalent asset {FS) for the domestic 

foreign equity options. When there is a barrier provision on the foreign asset, the 

valuation is simple because it only requires a change of the probability measure, as 

being done in Section 3，and then applies the barrier option pricing mechanism 
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for the single asset case. We stress that St follows DEJD under both Q了 and 

Q". Using DEJD process, the barrier option pricing formula for single asset 

options has been derived by Kou and Wang (2004). The challenge arises in 

the valuation of domestic foreign equity options with a barrier provision on the 

domestic equivalent asset, because the domestic equivalent asset does not follow 

the DEJD process but a mixture exponential jump diffusion model, see (4.5). 

To illustrate the ideas, we consider the up-ancl-in domestic foreign equity 

call, whose payoff is given by 

UICd(T) = max(5TFT — K,0)l{r„<T}. 

where the strike price K is in domestic currency and 

r " = < H}. 

The pricing representation is given by 

UICd(0,5,F) = e-，、'TEQ"[(得—e-”+l{T"<T}]， (5.4) 

where the process of S* = FS is obtained in (4.5). The following theorem sum-

marizes the pricing formula of the barrier option. 

Theorem 5.3 If S and F follow DEJD under Q'^, then the up-and-in domestic 

foreign equity call is 

U I C d ( 0 ， S * ， 丑 ） = 叫 ( ( “ 糾 二 ( … ， ； ( 5 . 5 ) 

where k = —\n K. 
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Proof We take a double Laplace transform to the representation (5.4), 

[Tfi已[\JIC,{0,S,F,H)] 

= 厂 厂 e - ( A v � r e - [ ( S ^ - e - ” + ] l { T „ � ” d f c d T 
Jo J-oo 

r f沈 / r ^ \ -

「 广 OO C*C+1 

1 「广oo 1 

二 ^ ^ E Q ' i I e - (糾、 " (〜 )欢。T ' 
1 � r 沈 -

= ^ ^ E Q ( 丨 . / o e -一 ) ( � " ) E Q【丨[路二 収’ 

= , 1 � E Q " (奸r")(了'+T")«s;V^iEQ''[(>ST,/%)*(+i|^F�]dr 
C(C + i) L./0 _ 

二 1 fQ'' ^-(0+ro)TH C*C+1 Q-{0+r,,)T'̂ G(C+\,(:+l)T' ,J./ 
一 c(c + i) [• Jo ‘ . 
= 1 I rQ''�e_("+r'/)T" c*c+n n 
— C ( C + l ) ^ y + r . - G ' ( C + l,C + l) L n, J-

To implement the pricing formula given in Theorem 5.3, we have to deter-

iiiirie the expectation E^'' e - ( "付•^广 , w h i c h can be decomposed into two 

parts, 

{E [e—(叫印 + E 冲}] } , 

where is a random variable representing the overshot, see Koii and Wang (2004). 

The first expectation can be computed using Lemma 5.4，but the computation of 

the second expectation requires the random variable x to have the memoryless 

property. It can be seen from (4.5) that the common jump component in dlnS* 

is (a_s’ + a/r) dN, which, according to Lemma 5.1, follows a mixture of exponential 

distributions. The memoryless property is not always guaranteed for a mixture 

of exponential distributions. The following theorem gives a useful case when 

the quanto barrier options admit an analytical solution using the double Laplace 
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transform. 

Theorem 5.4 When the distribution of the aggregate jump size, f{y), takes the 

following form, 

‘ 「 1 

�� Pu E i = i Pili^"^'-' l{v>0} + for lower barrier, 
/ ( ' " ) = �� 1 

+ Pd E j = i l{y<o}，for upper barrier, 
\ L J 

where X̂JLj Pi = X^J î Qj = 1； + ̂rf = 1； Pu, Pd e [0, Ij and 7，飞 > 0, we have 

E = H ‘ { E + ； ^ ^ ^ E [e'-^l^s；^//}] }， 

where H and T are the barrier level and the stopping time respectively, the -positive 

sign '+ ‘ is used for a positive overshot and ‘-’ for a negative overshot. 

Proof When the condition is satisfied, the overshot (x) at stopping time (r) is 

exponentially (7) distributed. Thus, the expectation E [e一仰 5 " ; � c a n be calcu-

lated using the iiienioryless property of the exponential distribution. Following 

Koii and Wang (2004), the formula (5.6) is easily established. • 

Under the condition of Theorem 5.4, the UIC option price on S* can be 

obtained through the use of Laplace transform. The Laplace transforms of the 

expectations E[e一机 1(5•；=")] and E [ e — c a n be evaluated by Lemmas 

5.4 and 5.5. By substituting (5.6) into Theorem 5.3, the quanto barrier option 

can be valued using a numerical Laplace inversion. 

There are situations in which the condition of Theorem 5.4 holds. For 

instance, when either the exchange rate or the foreign asset has no upward jumps, 

the aggregated upward jump is exponentially distributed. In this situation, an 

iip-barrier option can be valued through Theorem 5.3. If we assume the upward 

jumps of the exchange rate and the foreign asset follow the same exponential 
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distribution, then the condition also holds. For other cases in which both upward 

and downward jumps are a mixture of exponential distributions, the memoryless 

property is lost however and Theorem 5.3 may not be useful. 

Apparently quanto barrier option pricing is more difficult than the quanto 

lookback option pricing. The major reason is that barrier option pricing requires 

the joint distribution of the first passage time and the underlying asset value; 

whereas, lookback option pricing only requires the distribution of the first passage 

time. 

To value discrete quanto barrier and lookback options, Borovkov and Novikov 

(2002) a,1.1(1 Petrella and Kou (2004) find that the Laplace transforms of discrete 

barrier and lookback options can be calculated recursively using Spitzer's for-

iiiiila. This method can be applied to a general class of Levy processes if the 

following two conditions are satisfied. First, the characteristic (or moment gen-

erating) function of the process is available. Second, the analytical solution of 

the correspoiicling European option price is available. Generally, the Laplace 

transform can be applied to compute the European option price under general 

Levy processes. For the joint DEJD with the Marshall and Olkin (1967) copula, 

the moment generating function and formulas for European quanto options are 

obtained in Section 4. 

5.4 Numerical results 

We demonstrate the implementation of the analytical solution for a lookback 

option under MEJD. Similar to Chapter 4，we use the following parameters: 

S 二 100, F = 1, u = 5%, ?7 二 3%, cjs = 0.3, gf = 0.15, p = 0.6’ A5 = 5, Xf = 2, 

A = 5 = 20, 7/)r = 15, = 25’ rjs = ifs + ’f = 45 and riF = Vf + “丄=40. 
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Realized ILT Extrapolated MC 
Maximun (M) values 

At 0.0005 0.002 — 0.01 0.0厂 

19.599 19.2803 19.114 18.619 17.472 15.326 
110 21.004 20.7518 20.617 20.215 19.292 17.630 
115 23.163 22.9706 22.863 22.541 21.811 20.527 
120 25.950 25.8078 25.723 25.469 24.897 23.920 
125 29.248 29.1426 29.077 28.880 28.440 27.706 
130 32.953 32.8768 32.826 32.675 32.341 31.796 

Table 5.1: Simulation vs. Analytical Solution: Lookback Option under MEJD 

After transforming the moment generating function of S* 二 SF, we have 

G{f3) 二 -0 .4442/3+0.4080^y+12 ( 1 . 0 4 1 7 ^ ^ ^ ^ + — 0 . 2 5 0 0 ^ ^ ^ ) . 

Therefore, the equation G{(3) = a is equivalent to a polynomial equation of degree 

five. The roots cannot be solved analytically and the method of Kou and Wang 

(2004) fails. Using our approach, the roots are obtained numerically through the 

subroutine "roots" provided by MATLAB. Then, we identify positive roots and 

use Lemma 5.4 to calculate the required parameters for Theorem 5.2. 

Table 5.1 shows the numerical result for floating strike lookback put, with 

the realized maxiinuin ranging from 105 to 130. The analytical solution is com-

pared with Monte Carlo simulations. We stress that the Monte Carlo price is bi-

ased downward because the simulation records maximum values in discrete time 

points but the option is assumed to be monitored continuously. To reduce the 

bias, we use the Richardson extrapolation to estimate the continuous lookback 

price. 

From Table 5.1, we see that the inverse Laplace transform (ILT) provides 

a high quality of estimate for the lookback option price. All the ILT prices are 

close to the MC prices The ILT is typically efficient as it only takes 0.02 seconds 

to obtain an option price while Monte Carlo simulation requires more than 20 
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minutes. 
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Chapter 6 

Conclusion 

In summary, we propose a multivariate jump diffusion model for (.he joint move-

ment of the exchange rate and a foreign equity. In the diffusion component, the 

iiiiiltivariate Wiener process is used. For the jump component, we consider a 

common Poisson process for the two assets. The jump sizes of t he two assets 

are jointly modeled by the Marshall and Olkiii (1967) nmltivariate exponential 

distribution. We show that this model maintains the analytical tractability for 

European quanto options and path-dependent quanto options. 

We derive analytical solutions to several European quanto options, quanto 

lookback options and quanto barrier options using Laplace transform. As the 

domestic lookback equity call option price depends on the moment generating 

function of the first passage time that the domestic equivalent asset reaches its 

maximum’ the process for the domestic equivalent asset is shown to be mixture 

exponential jump diffusion and we obtain an analytical expression for the moment 

generating function using the Laplace transform. To perform inversion of the 

Laplace transform, we have to identify complex roots of a polynomial which is 

derived from the moment generating function. We show that we only have to 

identify roots with a positive (negative) real part for computing the first passage 

time of reaching the maximum (minimum). We prove that these roots exist for 
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all the Laplace parameter a with positive real part. 
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Appendix A 

Numerical Laplace Inversion for 

Turbo Warrants 

First, we write the triple Laplace transform for DIL option as 

>CM/:T，aA-,(er"DIL(T, 5, K, h) = F((C)F。(a，QW- C), 

where 

• = 

彻 ） = 1 [ 二 二 卯、+ a ; 4 

^ . . 二 1 1 C + 1 f M > i 2 + 01J3) ( h A m + 
八 ' � ) — P L m(02’f3 - \ C + i - 3 � � C + i - ,丞’" J . • 

The analytical solution of expression of DIL is given by 

/Ci-j-ioc rC2~hioo rc-s+ioo ^x(;~\-ya-\-zf3 
/ / - — O F ^ i P , C) dc. dp d(：. 

.1 —zoo J C2—loo J C3—ix �•^TTl) 

where Ci, C2, C3 are arbitrary positive real numbers, such that there is no singu-

larity on the domain {Re(C) > Ci,Re(a‘）> c-2, Re(/?) > C3}. 
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Specifically for the present case, we have the alternating series, 

711 712 na 
^ E E E (-1)力+'+2+^^3Fc(GJi^«(�2，GjF"W3，(ii)’ 

where ^ = 

The order of number of terms is 几3), here we can reduce the order 

by factorization. Since Laplace transform has a nice property that F{z) = F(z), 

we can simplify the expression. Specifically, 

n 1 712 打3 

^ E E E (-1)力 + 油 

711 712 713 
二 4 £ E (-1)力•出3 柳 丨 ) 恤 2 ’ � 躺 3 ’ C i J 

712 

3 2 - 叩 
—1 112 ns 

+ A E E 

ni 712 打 3 
= t (-1)力州〒((C.,i)Fa.(a.知 如 C力） 

jl=l .；二)二一•？.3 =—卯 

+ AFC(CO) E E (-l”2+^^3F“(�2’<�)M"j3，C0) 

ni —712 —"3 

+ I ] E ( - { ^ h > ) W h > ) 
jl = l i2 =''12 73= 3̂ 
{ 711 713 I 

= 2 R e ^ £ E ( - 1 ) 力 出 尸 / 3 ( " j 3 ， U 
( jl-l j2=—n-2j3 = _n3 J 

712 713 

+ AF^iCo) E E ( - 1 户仏，C� )FV"_;3，CO) 
j2 = - j3==-"3 

ni ( n-z 713 1 

jl=l [ j2 = -n2 J Lj3=-n3 J J 
n2 713 

+ AF^iCo) E E ( - 1 户FA/5)3，CO). (A.l) 
]2 = -112 j3 = ~n3 

Notice that and are no longer conjugate functions with 

respect to q and ,d respectively, unless Cji is real. Thus, we cannot simplify the 
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two summations in the first line of (A.l). For the last term, we can fortunately 

simplify it as follows, 

112 n2 
二 （ - 1 户 F j a ' b C o ) = Co) + 2 Co)], 

32—-n2 72=1 
713 n3 

E 急 Co) = Ffs{,3o.(:o) + 2Y^{-iyme[FM,,Co)]. 
j3=-n3 i3=l 

To implement the Euler summation, we consider partial sums of the series, 

and aggregate the partial sums by binomial coefficient weights. The final result 

is 

7ll+7»l 712+7712 ns+nili 

^ E E E 丨讽3肌1)尸無2.Gi)聰”c.n)"iM3， 
—711 —7ni .)；2 = — "2— 川2 = —”3—川3 

where U) is defined in (3.3) with = W}^. 

After similar operation, we have the following summation fornnila, 

711+川 1 ( no+m'i 713+7/13 ^ 
2A E VVj.Re F^OJ E Wj^aj^Q,) ^'^hmPj-s^Ch) > + 

• n • 
712 + ̂ 2 n2+川 3 

AF^iQ,) F«(a(),C()) + 2 [ H/hRe[F„(a)2，Co)] î MA)’Co) + 2 ^ W/)3Re[i<>(/?j3，Co)]. 
j2 = l j3 = l 

- • 

Here the order of number of terms becomes 0{ni{n2 + ns)). In our computation, 

m = 500, mi = 250, n�=m2 = 25 and 77.3 = m-s = 25. 
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Appendix A 

The Relation Among Barrier 

Options 

By no-arbitrage argument, we have 

UlC + UOC = C = Die + DOC, 

UIP + UOP = P = DIP + DOP, 

where UIC stands for up-and-in call, UOC for up-and-out call, DIG for down-and-in 

call, DOC for down-and-out call, UIP for up-and-in put, UOP for up-and-out put, DIP 

for down-and-in put and DOP for down-and-out put. 

For Die option, the payoff at maturity is given by 

DIC(A:,T) = - e-")+l{TB<r}]’ B < So. 

Similarly, we have 

Ck,c [CT,aDIC{k,T)] 

= 二 ) … 丄 ( C + 1 ) 卜 如 ) � 〈 例 丨 ； ； ^ + E K ( - ) � 一 丨 ) • 
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For UIP/DIP option, let k = log{K), the payoff at maturity is given by 

UIP(A:，r) = — B > So, 

DlP(k,T) = e-^'^E^lie' — B < So-

Laplace transforms are given by 

r?—C+i 1 / \ 

二 ) . " � ( - … ) X + E [ e - ( 咖 ) 尉 ] ) . 

The general form of the expectations can be found in Section 3. 
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Appendix C 

Proof of Lemma 5.1 

Proof We derive the convolution of as and ap on each quadrant 

fy fy/^ 1 y y 
fy{y\as>0,aF>0) = / fi{u,y-u)du+ / + 

Jy/2 Jo 2 2 2 
二 I ("j + " ” " i I 7广） 

—V'；} + "1 - 4 nl + "1 - "i . 

"；+ - 4 + "1 - “} ’ —. 

‘ 

�h(u，y + u)du，y > 0, 

fyivlas < 0’ a/T > 0) = ,。乂 ^(w, u) du, ij = 0, 

�/o^ /2(y + U, u) du, y < 0, 

‘纖e-(”?+"�’ y > 0, 

=< ^^？？^彻)， y =… 

. 耀 e ( 械 ’ " < o . 

广 ry/‘^ 1 y y 

fy{]j\as < 0,aF < 0) = J ^^fs{u,y-u) du + J^ /3(w’ y - w) dw + 一 ( 5 ’ - ) 
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= / ivf + i f y j j I (4 + I 
- V vi + - V2 ''i + — 2 y 

+ 一 vi + 773 - 7]f " 一 

f � M y + U,u) du, y > 0, 

fy{ij\as>0,aF <0) = I^f4{u,u)du, y = 0, 

� f ^ f4{'U,y + u) du, IJ < 0, 

= < ； 彻 ) ， h •， 

Then we combine the terms by using following identity 

fyiij) = p'fy{y\as > 0,a/r > Q) + p^fyiv^s < 0, a/r > 0) 

< ( W < 0 ) > 0,“厂 < 0 ) , 

5 5 
fy{y) = Pi E + P2E q h ’ ’ � < 0 � + my). 

2=1 j—l 

where A’(.）is the Dirac delta function and 

u _ 2 fivl + n'hl , + I " 1 � 
一 P v\ + 4 + \n \ + — 十 + — r,}十 Y j ‘ 

Û _ u _ 1 Vl 

, — „ 2 — 4 '/2 
- v l + vl + v'^ 5 — + +…， 
= 3 2 / (vf + I ("• + "3)"? I 
_ Vl + vi + W i + 'f - 4 4 + - l i 2 y ‘ 

^d - „3 — - 7 ) 3 — 2 1 — 
- ^ vf + v'- nr 3— ^ 4 + n'-vr 

rd — „2 V2 d —— 4 Vl 

72 



= = " “ . " I , 7 [ % 2 + " 2 ， = + 

7f = ' , “ f +"1,72" = ."? + ."3，li = 4 + rj\ = + = 4 + 

= “1，2’3’4’5. 

The jump process of 5* = SF is {as dNs + a^ dNp + {as + aF)dN}, which can 

be reduced to {ydN}. Therefore the jump process dN has intensity X = Xg + Xp + 

X{Pi + P2) and y follows a mixture of distribution, which is given by 

m = 字 / 淑 ) + 字 + 
A A A 

=^Psri^e-^^y + 字 + 令Pi E (l^^e-寸0 l{,)>o} 

A A A 

+ ^ ( 1 - + ^ ( 1 - PFWh''^' + E l { y < 0 } 
.;=i J 

7 7 
二 沙、+ Pd^qjKje 明 

i=l j=l 
Here, 

>?i = m = ？?5' '17 = 

Ki = 7f, K6 = r]i, K.7 = 

Pu^^PS + ^PF+^^Pl, 
二 智 ( 1 — + 守(1— 

(力二楚’卯 =念 ( 1一⑷’ "7=乾(1一即)’ 

for i = 1,2,3,4 and 5. 
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Appendix A 

Proof of Theorem 5.4 and 5.5 

The main idea is to construct a martingale on the process E [ e — 而 = x ] . We 

first define the infinitesimal generator 

2 
C'u{Xt) = + ^Xi"{Xt) + + y) -

=fiAXt) + + [u{Xt + y) — uiXt)]f{y) dy. 

Proof of Theorem 5.4: 

Proof Applying Ito's lemma to the process we construct a local mar-

tingale with M (0) = m(Xo), 

, ftAn 
M{t) = e�((八”'M^^tArJ - / + C'u{Xs)) ds. 

Jo 

Suppose -au{Xs) + C'u{Xs) = 0, we have 

n(Xo) = EM{t) = E[e-"(队” 'MXmtJ] = E[e—+')1{^^,,<^}]， as i — oo. 
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Appendix A 

Proof of Theorem 5.4 and 5.5 

The main idea is to construct a martingale on the process = a-]. We 

first define the infinitesimal generator 

2 

C'u{Xt) = im'iXt) + + + y) - it.{Xt)] 
cr2 广 

=不）+ -TTu'iXt) + A / [u{Xt + y)- •u{Xt)]f{y) dy. 
^ J-oo 

Proof of Theorem 5.4: 

Proof Applying Ito's lemma to the process {e~^'-u{Xt)}, we construct a local mar-

tingale with M(0) = u(Xo), 

, . / - ' A t , , 

M(t) = 八 八 丁 J - / e - " s ( - c m ( X � + JC'U(X,)) ds. 
Jo 

Suppose -ftw(Xs) + C'u{Xs) = 0’ we have 

= EM{t) = E [ e - 冲 八 八 J ] = as t — oo. 
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The solution of C'u{x) - au(a:) = 0 is given by the form 

n+l 

k=l 

For X < b, 

£'u(x) 
n+ l 1 n+l 

= " E Ifhe普的 + y Z 7成2e-,".(“） 
A:=l k=l 

rb—x poc 
+H / + + ？/) - u{x)]fY{y) dy 

J-oo Jb-x 
n+l �广“71+1 

= E 我-+ 一成)e-�“b-a：) + A / Y ^ k y — fyiy) dy 
k=i 丄 ly-x /c=i 

/•oo / " + l \ • 

+ / fY{y)dy 

7J + 1 , n+l 

= E 7办成,+ 全力De-似“）+ A ^ 拟却[(e/^A). - 1)1{1.<“}] 
k=l fc=l 

( 71 + 1 \ n 

+A 1 P , ； 
V A,-l / i=l 

n+ l 「 1 1 

= Y ^ l k I'Pk + ^cr'^ftl + - e-似“） 
k=i • 

/ 71+1 \ n 
+A 1 _ ； 鮮 - ⑷ 工） 

V k=l J i=l 

= V Ik G(M - _ . 
k=i \ i=i V 办 / / 

11 ( n+l \ 

+AP,, 1 — 拟“） 
1=1 \ /C=l / 

7 1 + 1 n / 72 + 1 \ 

k=l i=l \ k=l ”广叫 J 

Therefore, 

n+ l n / n+l \ 

C'u{x)-au{x) = X>[Gm’)-a]e—+ ^^厂”八1 , 
k=\ i=i \ k=i —丨知) 
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with boundary conditions 

J 1, x > b , 
u{x)= < 

0, X —> -00. 

By Theorem 5.1’ G{P) = a has exactly n + 1 roots s.t. (3 G C+. With the continuity 

condition, the solution of C'u{x) - au{x) = 0 is given by: 

G{Pk) - oc = 0, ^iPk) > 0, 
71+1 

71+1 

= 1 
k=\ 

By a similar argument, we can solve the solution of E î,}] by changing the 

boundary condition as follows: 

1, X > b, 

I'i-r) 二 0，a- = b’ 

0, X —> —OO. 

And the value of is obtained by solving the following of system of linear equation 

n+1 
y^7A： ^ = 1’ z = 1,2,. . . n, 
fct ni-Pk 

n + 1 
= 0. • 

k=\ 

Proof of Theorem 5.5: 

Proof The proof is similar to that of Lemma. 5.4. here we just outline the difference, 

again we construct a local martingale with M (0) = 'u(Xo), and finally it leads the 

integral equation 

C'u{x) — au{x) = 0. 
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The solution is given by the form 

m+l 
= ^ 一胁-气 x>a. 

k=l 

Then for x > a, 

m+l m / m+l \ 
C'u{x)-au{x) = 7 A : [ G ( A ： ) - • - 拟 " — 工 � ( � - 工 ） 1 — J ] I k - ^ ’ 

A:=l j=i V k=i � • + � 

with boundary conditions 

0, X —> +00, 
u{x)= 

1, X < a. 

By Theorem 5.1, G{i3) = a has m + l roots s.t. [3 G C~. The solution is shown 

as lemma 5.5. 

Similarly, the solution of 'u{Xo) = £[6-咖')1{_丫丁和}] is followed by the boundary 

conditions 
f 

0, X +00, 

n[x) = < 0, a: = a, • 

1, X < a. 
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