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Abstract 

Rice (Oryza sativa L.) is the staple food of over half the world population. 

However, the nutritional quality of rice proteins is not optimal due to their deficiency 

in lysine, an essential amino acid cannot be synthesized by humans and must be 

obtained in the diet. An amino acid unbalanced cereal-based diet can affect the 

efficiency of converting plant to animal protein. Therefore it is necessary to enhance 

the lysine content of rice proteins in order to improve the nutritional quality of rice 

grains. 

By genetic engineering, two types ofhigh-lysine rice were successfully generated 

by integration of a lysine-rich protein (LRP) gene from winged bean and also by 

additional copies of lysine richer glutelin protein gene. The lysine content of rice seed 

protein was significantly enhanced (by up to 58% over the wild type). But the 

deposition and expression profiles of the recombinant proteins and their corresponding 

effects on other rice proteins remain unsolved. Before large-scale application of these 

approaches to improve the nutritional quality of rice seed proteins becomes possible, 

systematic analysis of the transgenic LRP rice in regard to the expression of the LRP 

gene and extra copies of glutelin gene is prerequisite. 

In this study, two transgenic rice lines expressing the fusion of a heterologous 

LRP with glutelin and additional copies of glutelin gene (Gtl) were systematically 
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analyzed. The variations between the proteomes of developing rice seeds of wild-type 

and transgenic lines were first examined through proteomic approach, while the 

endosperm cells of the transgenic rice were observed and the depositions of the fusion 

protein as well as the storage proteins were studied via Transmission Electron 

Microscopy (TEM). 

In total, 35 protein spots showing altered intensity in 2-D SDS-PAGE were 

identified by MS/MS. In the LRP/glutelin transgenic rice (FB rice), six extra spots of 

the LRP fusion protein with the same molecular weight but differed in isoelectric 

points were found. In the glutelin-added transgenic rice (GT rice), glutelin precursor 

and acidic subunits were found to be higher in abundance as compare with the wild 

type. In both types of rice, the chaperone binding protein (BiP) and protein disulphide 

isomerase (PDI) showed enhanced expression while the amounts of other storage 

proteins (prolamin, globulin and albumin) decreased significantly. 

T E M study revealed the appearance of morphologically altered protein bodies 

(PBs) in the rice endosperm of the engineered rice seeds. In FB rice, the 

glutelin-containing PB (PB-II) remained morphologically unchanged but the 

prolamin-containing PB (PB-I) disappeared. A new type of PB harboring prolamin and 

LRP-fusion protein was readily observed. In GT rice, PB-I was fiised with some 

smaller glutelin-containing PBs while PB-II was fused with smaller 
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prolamin-containing PBs. 

Combining the proteomic analysis and electron microscopic observation, the 

results provide information at molecular and subcellular levels in the changes caused 

by introducing recombinant proteins into rice. This information suggests that the 

synthesis of foreign proteins in abundance may alter the process of protein body 

formation in transgenic rice. In addition, the expression of abundant recombinant 

proteins may induce ER stress so the chaperones BiP and PDI are actively expressed to 

cope with the unfolded proteins while the expression of other storage proteins is 

inhibited under the effect of unfolded protein response. As a result, the native 

storage-protein sorting and trafficking process is distorted and the protein body 

formation is affected. 
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摘要 

稻米是世界半數以上人口的主要食物與營養的來源，然而稻米中的營養品 

質卻未能達致平衡，賴氣酸是稻米營養平衡的第一限制性因數。賴氨酸是一種 

必需氣基酸，即不能在人體中被製造，而需要從食物中吸收。這種氧基酸的不 

平衡性會影響植物蛋白向動物蛋白轉化的有效性，因此提高賴氨酸的含量能有 

效改進稻米的營養價値。 

透過基因工程技術’兩種含有高賴氨酸蛋白的水稻已經成功產出，第一種 

方法是來將源於四梭豆的一個高賴氣酸蛋白質（Lysine-rich protein, LRP)基因 

轉化到水稻，另一方法則是把加強水稻中較富於賴氨酸的谷蛋白基因（Gtl)的 

表達，從而顯著提高水稻種子蛋白中的賴氣酸含量，藉此改良稻米的營養品質。 

然而，在這種高賴氨酸基因水稻能被廣泛生產及食用之前，對轉基因植物進行 

綜合的以及詳細的分析是必需的。 

本硏究利用兩種不同的高賴氨酸水稻作爲實驗硏究材料’對表達高賴氨酸 

(LRP)與谷蛋白融合蛋白及表達高谷蛋白的轉基因植株進行了系統分析。首 

先我們利用蛋白質組學的方法’比較兩種高賴氨酸水稻與未轉化水稻的成熟中 

的水稻種子的蛋白質組，從而找出其中的差異。另外，我們亦透過穿透式電子 

顯微鏡（Transmission Electron Microscope，TEM)觀察轉基因水稻的種子內的胚 

乳細胞，找出異源蛋白和貯藏蛋白在胚乳細胞中的貯存情況。 
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透過雙向凝膠電泳（2D-PAGE)和串聯質譜（MS/MS)技術，共有三十五 

個蛋白被發現其表達模式有所改變。在表達高賴氨酸與谷蛋白融合蛋白的轉基 

因植株（FB)中’我們找出了六個代表高賴氨酸與谷蛋白融合蛋白的蛋白質點。 

它們擁有相同的分子量，但等電點是不同的。而在谷蛋白的轉基因植株(GT) 

中，谷蛋白的前驅蛋白和酸性亞基卻被發現其表達量有所提高。在這兩種高賴 

氨酸水稻中’屬於伴護蛋白（chaperone)的結合蛋白（binding protein, BiP )和 

二硫鍵異構酶(protein disulphide isomerase, PDI)的表達量都有所提高，而其他 

的貯藏蛋白（即醇溶蛋白、球蛋白和白蛋白）的表達量卻大幅下降。 

利用穿透式電子顯微鏡觀察水稻種子的胚乳細胞，發現轉基因水稻種子的 

蛋白體的結構有所改變。在FB水稻中，儲存谷蛋白的蛋白體-II(proteinbody-II) 

沒有改變，而儲存醇溶蛋白的蛋白體-I (protein body-I)卻不見了。取而代之， 

一種新的蛋白體被發現，它同時貯存了醇溶蛋白和高賴氛酸蛋白。在GT水稻 

中，蛋白體-I的表面被發現和一些儲存了谷蛋白的小型蛋白體相連，而蛋白體-II 

的表面和一些儲存了醇溶蛋白的小型蛋白體相連。 

本硏究綜合蛋白質組學和穿透式電子顯微鏡的技術，在分子水平和細胞水 

平上找出異源蛋白在水稻體內表達時所產生的影響。硏究結果顯示在轉基因水 

稻中，高表達量的異源蛋白有機會改變蛋白體的形成過程。這是因爲當大量異 

源蛋白在細胞中被表達時，未折疊的蛋白在內質網上增多，弓丨起內質網應激(ER 

stress)，從而引發未折®蛋白反應（Unfolded Protein Response，UPR)，伴護蛋白 
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BiP和PDI的表達量因此被提高去處理那些未折暨的蛋白；同時，其他的貯藏 

蛋白的表達量則被減低°結果，在轉基因水稻的胚乳細胞中，原本的貯藏蛋白 

的分配和運輸途徑也受到影響，蛋白體的形成也因而改變。 

XV 



Table of Contents 

THESIS/ASSESSMENT COMMITTEE i 

STATEMENT FROM AUTHOR ii 

ACKNOWLEDGEMENTS iii 

ABSTRACT 

TABLE OF CONTENTS xi 

LIST OF FIGURES xvi 

LIST OF TABLES xviii 

LIST OF ABBREVIATIONS xix 

CHAPTER 1. GENERAL INTRODUCTION 

CHAPTER 2. LITERATURE REVIEW 4 

2.1 Nutritional quality of rice 4 

2.1.1 Classification of seed proteins 4 

2.1.2 Amino acid composition of rice proteins 5 

2.1.3 Other nutritional components of rice 6 

2.2 Rice seed storage proteins 

2.2.1 Properties and classification of seed storage proteins 7 

2.2.2 Composition and stucture 9 

2.2.2.1 Glutelin 9 

2.2.2.2 Prolamin 10 

2.2.2.3 Albumin and globulin 12 

2.2.3 Synthsis, assembly and deposition of rice seed storage proteins 13 

. xi 



2.2.3.1 Storage protein folding and assembly in the ER 14 

2.2.3.2 Storage protein transport and protein body formation 16 

2.2.3.3 Protein bodies and their distribution in endosperm 18 

2.3 Transgenic approaches to improve the nutritional quality of rice seed 

proteins 19 

2.3.1 General introduction 19 

2.3.2 Attempts to improve the nutritional quality of seed proteins 20 

2.3.3 Rice grain quality improvement by genetic engineering 22 

2.3.3.1 Increase in the lysine content of rice endosperm 22 

2.2.3.2 Other examples of rice nutritional quality improvement 25 

2.3.4 Expression of recombinant protein in transgenic plants 26 

2.3.5 Effects of recombinant proteins on the high-lysine rice 27 

2.4 Proteomics 28 

2.4.1 General overview 28 

2.4.1.1 Two-dimensional polyacrylamide gel electrophoresis for proteome 

analysis 29 

2.4.11 Protein visualization 32 

2.4.1.3 Computer-aided image analysis 34 

2.4.1.4 Mass spectrometry-based methods for protein identification 35 

2.4.1.5 Database search 36 

2.4.1.6 Protein sequence database 37 

2.4.2 Plant proteomics 40 

2.4.2.1 Rice proteomics 41 

2.4.2.2 Comparative proteomics 43 

2.5 Hypothesis and objectives 45 

. xii 



CHAPTER 3. MATERIALS AND METHODS 47 

3.1 Materials 47 

3.1.1 Chemicals and commercial kits 47 

3.1.2 Instruments 47 

3.1.3 Softwares 48 

3.1.4 Plant materials 48 

3.2 Methods 49 

3.2.1 Collection of developing rice seeds 49 

3.2.2 Extraction of rice seed proteins 51 

3.2.2.1 Extraction of total protein 51 

3.2.3.2 Extraction of four fractions of rice seed proteins 51 

3.2.3 2D gel electrophoresis 53 

3.2.3.1 Protein precipitation and quantification 53 

3.2.3.2 Isoelectric focusing (lEF) 54 

3.2.3.3 IPG strips equilibration 54 

3.2.3.4 Second-dimension SDS-PAGE 55 

3.2.3.5 Silver staining of 2D gel 55 

3.2.3.6 Image and data analysis 56 

3.2.4 MALDI-ToF mass spectrometry (Matrix Assisted Laser Desorption 

lonization-Time of Flight) 56 

3.2.4.1 Sample destaining 56 

3.2.4.2 In-gel digestion with trypsin 57 

3.2.4.3 Desalination of the digested sample with Zip Tip 58 

3.2.4.4 Protein identification by mass spectrometry and database 

searching 58 

. xiii 



3.2.5 Detection of LRP fusion protein in 2D PAGE 59 

3.2.5.1 2D gel electrophoresis 59 

3.2.5.2 Western blotting using anti-LRP antibody 60 

3.2.6 Antiserum production 61 

3.2.6.1 Purification of glutelin and prolamin proteins 61 

3.2.6.2 Immunization of rabbits and mice 62 

3.2.6.3 Testing of antibody specificity 62 

3.2.7 Transmission electron microscopy (TEM) 63 

3.2.7.1 Sample fixation and section preparation 63 

3.2.7.2 T E M observation 64 

3.2.7.3 Immimocytochemical observation 64 

CHAPTER 4. RESULTS 66 

4.1 Proteomic analysis of high-lysine rice 66 

4.1.1 Extraction of proteins 66 

4.1.2 The proteomic profiles of different storage proteins in developing 

high-lysine rice seeds 67 

4.1.3 Quantitative analysis of protein spots 76 

4.1.4 Proteomic analysis of salt-soluble proteins 79 

4.1.5 Proteomic analysis of alcohol-soluble proteins 81 

4.1.6 Proteomic analysis of salt-soluble proteins 82 

4.1.7 Proteomic analysis of water-soluble proteins 89 

4.1.8 Comparison of changes in expression patterns of specific proteins in 

the high lysine rice 89 

4.2 Antibody production 92 

4.2.1 The production of anti-prolamin and anti-glutelin antibodies 92 

xiv 



4.2.2 The specificity of anti-prolamin and anti-glutelin antibodies 93 

4.3 Transmission electron microscopy observation of rice protein bodies 95 

4.3.1 Morphology of protein bodies in high-lysine rice 95 

4.3.2 Subcellular localization of storage proteins and LRP 98 

CHAPTER 5. DISCUSSION 100 

5.1 Protein profiling of LRP fusion protein and its effects on the expression of 

other proteins 100 

5.2 Over-expression of glutelin and its effects on the expression of other 

proteins 102 

5.3 Formation of malformed protein bodies and deposition of storage proteins 103 

5.4 Relationship between changes in protein expression and the Unfolded 

Protein Response 105 

5.5 Effects oftransgenes on rice grain quality 108 

5.6 Allergenic effects of transgenic rice 109 

5.7 Future perspectives 110 

CHAPTER 6. CONCLUSIONS 112 

REFERENCES 114 

XV 



List of Figures 

Figure 1. Two pathways of seed storage proteins deposition in developing rice 

grains 17 

Figure 2. Two types of protein bodies in developing rice endosperm cells 18 

Figure 3. Overview for analysis of proteomics by mass spectrometry 29 

Figure 4. The transgenes of two high-lysine rice lines 49 

Figure 5. Planting rice materials and collecting developing rice seeds 50 

Figure 6. Developing rice seeds at 5, 10, 15 and 20 DAP 50 

Figure 7. Two-dimensional separation of salt-soluble fraction of proteins ofWT, 

FB and GT seeds at 15 DAF 68 

Figure 8. Two-dimensional separation of alcohol-soluble fraction of proteins of 

WT，FB and GT seeds at 15 DAF 69 

Figure 9. Two-dimensional separation of alkaline-soluble fraction of proteins of 

WT, FB and GT seeds at 15 DAF 70 

Figure 10. Two-dimensional separation of alakaline-soluble fraction of proteins of 

WT, FB and GT seeds at 15 DAF (using pH6-ll IPG strips) 71 

Figure 11 • Two-dimensional separation of water-soluble fraction of proteins of WT, 

FB and GT seeds at 15 DAF 72 

Figure 12. Comparisons of protein spots of salt-soluble fraction in 2D gels after 

silver-staining 80 

Figure 13. Comparisons of protein spots of alcohol-soluble fraction in 2D gels after 

silver-staining 82 

Figure 14. Comparisons of protein spots of alkaline-soluble fraction in 2D gels after 

silver-staining 86 
xvi 



Figure 15. Protein profiles of LRP fusion proteins, glutelin proteins, BiP and PDI 

during FB rice development 90 

Figure 16. Protein profiles of glutelin proteins, BiP and PDI during GT rice seed 

development ..91 

Figure 17. Gel purification of prolamin and glutelin precursor from rice seeds..…92 

Figure 18. Specificity of anti-prolamin and anti-glutelin sera 94 

Figure 19. Electron microscopic observation of developing endosperm at 12 DAF 

from non-transgenic and high lysine rice plants 97 

Figure 20. Immunoelectron microscopic observation of developing rice endosperm 

at 12 DAF from non-transgenic and high lysine rice plants 99 

. xvii 



List of Tables 

Table 1 • The protein and selected essential amino acids composition of eight 

whole-grain cereals (Julian。，1985) and the standard from W H O (1973). 5 

Table 2. Summary of proteins identified by 2D PAGE 74 

Table 3. The relative expression level of individual protein during seed 

development 77 

. xviii 



List of Abbreviations 

A A Amino acid 

Ab Antibody 

A C N Acetonitrile 

BAG Bacterial artificial chromosome 

BiP Lumenal binding protein 

BLAST Basic local alignment search tool 

BSA Bovine serum albumin 

CBB Coomassie brilliant blue 

CHAPS 3-[(3-cholamidopropyl)dimethylainmonio]-l-propanesulfonate 

C H C A a-cyano-2-hydroxycinnamic acid 

CCD Charge Coupled Device 

C-ER Cisternal ER 

Cys Cysteine 

Da Dalton 

DAF Days after fertilization 

D N A Deoxyribonucleic acid 

D V Dense vesicle 

DTT Dithiothreitol 

2D PAGE Two-dimensional polyacrylamide gel electrophoresis 

2D Two-dimensional 

EDTA Ethylenediaminetetra-acetic acid 

ER Endoplasmic reticulum 

FAO Food and Agriculture Organization 

FB Transgenic rice containing LRP gene inserted into basic subunit 

of rice Gtl 

g Gram 

GGPP Geranylgemayl diphosphate 

GluA Glutelin A 

lEF Isoelectric focusing 

GluB Glutelin B 

. x ix 



GT Transgenic rice containing extra copies of Gtl gene 

Gtl Rice glutelin 1 gene 

H C T R HC-toxin reductase 

HPLC High performance liquid chromatography 

hr Hours 

HSP70 70 kDa Heat shock protein 

H V R Highly variable region 

lAA lodoacetamide 

IgE Immunoglobulin E 

IgG Immunoglobulin G 

pi Isoelectric point 

IPG Immobilized pH gradients 

IRRI International Rice Research Institute 

kDa Kilodalton 

LC Liquid chromatography 

LRP Lysine-rich protein 

LR while White London Resin 

M Mole 

MALDI-ToF Matrix assisted laser desorption ionization-time of flight 

M b Mega base pairs 

mg Milligram 

min Minutes 

Met Methionine 

M S Mass spectrometry 

M S D B Mass Spectrometry protein sequence DataBase 

MS/MS Tandem mass spectrometry 

M W Molecular weight 

m/z Mass/charge 

N Nitrogen 

NaOH Sodium hydroxide 

NCBI The National Center for Biotechnology Information 

PAC P1 -derived artificial chromosome 

PAGE Polyacrylamide gel electrophoresis 

XV 



PB-I Protein body-I 

PB-II Protein body-II 

PB-ER Protein body-forming ER 

PBS Phosphate buffered saline 

PBST Phosphate buffered saline with Tween-20 

PDI Protein disulfide isomerase 

PIR Protein Information Resource 

PMF Peptide mass fingerprint 

PSV Protein storage vacuole 

rpm Revolutions per minute 

SDS Sodium dodecyl sulfate 

SP Signal peptide 

TCA Trichloroacetic acid 

T E M Transmission Electron Microcopy 

TFA Trifluoroacetic acid 

TIGR The Institute for Genomic Research 

jxg Microgram 

|il Microliter 

|im Micrometer 

UPR Unfolded protein response 

V Volume 

VAD Vitamin A deficiency 

vhr Voltage hour 

VPE Vacuolar processing enzyme 

V R Variable region 

W H O World Health Organization 

. xxi 



Chapter 1. General Introduction 

Rice is the predominant staple food for over half of the world's population. It 

provides 700 calories/day/person for about 3,000 million people, most of whom live in 

developing countries (FAO, 2003). Since rice is a relatively cheap source of food, it is 

the major food in the developing world and thus serves as a sole source of energy and 

major dietary protein for the population. -

However, while rice provides a substantial amount of dietary energy, it has an 

incomplete amino acid profile and contains deficient amounts of essential amino acids. 

Lysine is the first limiting amino acid in rice protein. The lysine values range from 3.8 

to 4g/16g N in protein of rice, which is lower than the standard (5.5g/16g N) suggested 

by the World Health Organization (WHO). The low-income populations who can only 

effort rice-based diets may suffer from malnutrition. 

Therefore, various approaches including traditional breeding and genetic 

engineering have been used to improve the lysine content in rice. In 2002, our lab has 

successfully produced the high-lysine rice by genetic engineering. Winged bean 

{Psophocarpus tetragonolobus), an edible bean widely consumed in Southeast Asia, 

contains a seed protein rich in lysine (10.8 mol %，7.5 g/16 g N). The construct 

containing the gene encoding winged bean lysine-rich protein (LRP) inserted in the 

basic subunit of glutelin gene was expressed in rice (Liu, 2002) and the lysine content 
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was significantly enhanced (58% increased in total amino acid over the control rice). 

In 2004, transgenic high lysine rice over-expressing lysine-richer glutelin gene was 

also generated (30% increased in total amino acid) over the control rice (Liu, CUHK). 

While lysine enhancement was achieved, initial results revealed that this genetic 

intervention resulted in the accumulation of larger amount of the 57-kDa glutelin 

precursor in both types of transgenic rice in comparison to wild type. Moreover, the 

transgenic rice showed a lower accumulation of other seed storage proteins including 

prolamin and globulin (Liu, CUHK). However, the molecular details and relationships 

between the expression of foreign proteins and native proteins as well as the 

subcellular deposition of the foreign proteins remain unclear. It has been reported 

earlier that high-lysine mutants of maize affected protein synthesis and protein body 

formation (Coleman et al., 1997). However, it is not known whether such a correlation 

also exists in our high-lysine rice. Before the high-lysine rice can be released, 

comprehensive analyses including the expression of LRP/Gtl fusion gene as well as 

extra copy of Gtl gene and their possible effects on other gene traits of the host plant 

are desirable. Recent advancements in proteomics provide opportunities to study 

protein expression of the transgenic rice in a systematic way. 

This project thus focuses on systematic comparison of the composition of protein 

in high-lysine rice lines with the non-transgenic rice through proteomics approach 
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while the solubility and the subcellular localization of the transgenic glutelin-fusion 

LRP in transgenic rice grains will also be investigated. Transmission electron 

microscopic observation of rice endosperm can further elucidate the relationship 

between the expression of recombinant proteins and the subcellular changes in rice 

grain. This study will contribute to our understanding and effort in using molecular 

approach to improve the quality of rice seed proteins in the future. 
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Chapter 2. Literature Review 

2.1 Nutritional quality of rice 

Rice grain quality comprises grain appearance and milling, cooking, and 

nutritional quality. As rice provides a substantial source of dietary protein and energy 

for human consumption, the nutritional quality of rice is directly correlated to the 

quality of human diets. The nutritional value of rice mainly depends on the protein 

content and its amino acid makeup. 

2.1.1 Classification of seed proteins 

Protein is the second abundant component in rice grains. The seed protein content 

of rice ranges from 5 to 12% (Villareal and Juliano, 1978). Based on function, there are 

three main types of proteins: (1) storage proteins, (2) metabolic and structural proteins, 

and (3) protective proteins (Shewry and Casey, 1999). The metabolic and structural 

proteins are essential for the growth and structure of the seed. Many can also be called 

"housekeeping" proteins which are indispensable for all tissues of the plant while 

others are associated with the biochemical pathways of storage product biosynthesis. 

Protective proteins function against attack from pests and microbial pathogens. On the 

other hand, the seed storage proteins are non-enzymatic and have the major purpose of 

providing proteins (nitrogen and sulphur source) required during seed germination and 
4 



development of a new plant. Since metabolic and structural proteins and protective 

proteins only account for a very small amount of the total protein, storage proteins are 

thus the major component of seed proteins. 

2.1.2 Amino acids composition of rice proteins 

The nutritional quality of rice is mainly determined by the amino acid makeup of 

its protein. The protein in rice endosperm is of good quality compared with that of 

other cereal crops, especially the relatively higher essential amino acid lysine content 

(Table 1). However, the lysine content in rice is 3.8 g/16 g N, which is still far behind 

the WHO ' S recommended content (5.5 g/16 g of N) (WHO, 1973). Thus lysine is the 

first limiting amino acid in rice，which may result in nutritional deficiencies for 

humans who depend on rice protein alone as their entire protein requirement 

Improving the protein content of rice will be an important effort. 

Table 1. The protein and selected essential amino acids composition of eight 
whole-grain cereals (Juliano, 1985) and the standard from WHO 
(1973) 

，propertT Brgmrlce 外 Wh^at ̂  Coift '̂ Barley MUiet Sorghtim"孜ŷ、急、公at k W H Q 

Pr�� : in ’ 7.3 10.6 9.8 11.0 11.5 8.3 8.7 9.3 

X T N 2.3 2.5 3.2 2.7 2.7 3.7 4.0 5.5 

3.6 2.8 3.2 2.9 3.2 3.3 3.3 3.6 6.0 
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2.1.3 Other nutritional components of rice 

Apart from seed protein, the nutritional quality of rice is also determined by fibers, 

lipids and micronutrients: minerals and vitamins. Crude fiber in brown and milled rice 

is 0.8 and 0.6%, respectively. Dietary fiber is usually defined as all plant food 

components that are not broken down by enzymes in the human digestive tract. Roth 

and Mehlmen (1978) reviewed the importance of dietary fiber in the maintenance of 

health and in the development of the specific disorders including obesity, diabetes, 

colonic-rectal cancer, and arteriosclerosis. The dietary fiber is highest in the outer bran 

layer of the grain and decreases toward the center. 

Rice lipids are generally classified into nonstarch lipids found in the aleurone 

layer, embryo, and protein bodies of the endosperm and starch lipids, which are 

associated with starch granules (Juliano, 1983). The average lipids content is 0.65% 

and ranging from 0.19-2.73% (Juliano, 1972). Within the endosperm，lipids are 

unevenly distributed, with the highest in the outer layer while decreasing toward the 

center of the kernel (Julinao, 1983). 

The mineral composition of the rice grain depends considerably on the availbility 

of soil nutrients during crop growth and on the diverse sampling and preparation 

(Juliano and Bechtel, 1985). Minerals content is higher in brown rice than in milled 
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rice. Among the microelements, iron and zinc are essential for human nutrition. But 

cadmium is a toxic pollutant which is higher in milled rice than brown rice. 

The concentrations of vitamins are low in rice. Rice contains little or no vitamin 

A，C, or D. Most of the vitamins in rice belong to the water-soluble vitamin B group. 

Vitamin Bl，B6 and E in brown rice are ten times higher than in milled rice, which are 

mainly distributed in aleurone layer, scutellum and embryo. 

2.2 Rice seed storage proteins 

2.2.1 Properties and classification of seed storage proteins 

Despite wide variation in their detailed structures, all seed storage proteins have a 

number of common properties (Shewry et al, 1995): (1) Their synthesis is at high 

levels in specific tissues and at certain developing stages and the process is easily 

influenced by nutritional conditions; (2) They are comprised of several kinds of 

polypeptides with different amino acid composition and physiochemical features. For 

instance, some of which are rich in sulphur amino acids and other of which are poor in 

them. The presence of these groups may allow the plant to maintain sufficient storage 

protein synthesis even in low sulphur availability; (3) All seed storage proteins are 

stored in discrete deposits called protein bodies (PB); (4) All storage protein fractions 

are heterogeneous, which consist of many polypeptides and controlled by multiple 
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gene families; (5) They have no enzymatic activity; and (6) Seed storage proteins 

serve to provide a store of amino acids, nitrogen and sulphur for use during 

germination and seedling growth. 

Seed storage proteins can be divided into four classes according to their solubility 

properties. Albumins are water soluble; globulins are salt soluble; prolamins are 

alcohol soluble; and glutelins are soluble in weak alkali or weak acid (Osbom, 1924; 

Juliano, 1972). The major storage proteins found in rice are the glutelins, which 

accounts for 80% or more of the total seed protein (Juliano, 1972; Villareal and Juliano, 

1978). The remaining 20 % is divided as follows: albumins and globulins, 4-10%; and 

prolamins, 5-10% (Juliano, 1972). However, later studies (Krishnan and Okita，1986; 

Okita et al, 1988) found that significant amounts of prolamin remained associated 

with the glutelin proteins in the glutelin fraction resulting in the underestimation of the 

total amount of prolamin while at the same time overestimating the amount glutelin 

proteins. More recent study showed that glutelins and prolamins comprise about 58% 

and 19% of the total protein in rice seeds (Li and Okita, 1993). 
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2.2.2 Composition and structure 

2.2.2.1 Glutelin 

Glutelin is the main form of storage protein in rice grain, accumulating greatly in 

the middle and late seed development (Yamagata et al., 1982). Despite their general 

insolubility, the rice glutelins share similarity in amino acid sequence, protein 

structure and also synthesis pathway with the IIS globulins of legume (Zhao et a!., 

1983; Wen and Luthe, 1985). 

Glutelin is of three kinds of molecular weight in rice grain, the 57-kDa precursor, 

37-39-kDa acidic subimit (large subunit) and 22-23-kDa alkaline subimit (small 

subunit), of which acidic and alkaline subunit are formed by precursor processing. 

Mature polypeptides all show heterogeneity. For example, the large subunit comprises 

at least 16 polypeptides and the small subunit consists of about 9 polypeptides (Wen 

and Luthe, 1985). Based on the amino acid sequence, the glutelins are classified into 

two subfamilies, designated as A and B subfamily (GluA and GluB). The GluA 

subfamily is composed of at least 4 members, A-1 (or Gt2), A-2 (or Gtl)，A-3 (or Gt3) 

and A-4 (Okita et al, 1989; Takaiwa and Oono, 1991) while the GluB subfamily 

consists ofB-1, B-2, B-3 and B-4 (Masumura et al, 1989). The homology in amino 

acid sequence of members within the same subfamilies is 80-88%, whereas that 

between GluA and GluB members is 60-65% (Takaiwa et al.’ 1991). Analysis of the 

, 9 



deduced amino acid sequences from cDNAs showed that a typical signal peptide is 

composed of 24 AAs in the N-teraiinal of glutelin precursor, which contains a 

conserved leucine-rich hydrophobic core. This signal peptide (SP) plays an important 

role in leading glutelin precursor into the ER and further transporting to lumen of ER 

(Okita et al, 1989; Takaiwa et al, 1991). Seven cysteine-residuals exist in the 

precursor, of which the -122 and -315 positions are responsible for production of 

bisulfate bond between acidic subunit and alkaline subunit. There are 5 variable 

regions (VRs) in the different glutelin precursors; three of them are located in the 

C-terminal of signal peptide (SP), acidic subunit and alkaline subunit, respectively. 

The two others VRs present in the middle of acidic subunit. Highly variable region 

(HVR) is regarded as the optimal position to accept relatively large heterogeneous 

polypeptide sequence, and therefore it might act as the best location to modify this 

kind of protein and improve nutritional quality (Argos et al, 1985). 

2.2.2.2 Prolamin 

In most of the cereal grains, prolamin accounts for a maj or proportion for the total 

grain proteins. However, prolamin is a smaller component of the storage protein in rice. 

Extraction of the prolamin fraction of rice has typically been performed in ethanol 

solutions up to 70%, and Juliano (1972) estimated the prolamin makes up about 5% of 
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the total protein of the rice grain by using this extraction method. However, more 

recent studies found that 55% propan-l-ol was much more effective in the extraction 

of rice prolamins than ethanol (Sugimoto et al, 1986). In addition, Li and Okita (1993) 

estimated that the prolamin content in the line M201 was 18-20% of the total seed 

storage proteins using immunoblots probed with prolamin and glutelin antisera. 

Therefore，the prolamins comprise a much larger proportion of the total storage protein 

fraction than was suggested by earlier studies. 

Three groups of prolamin can be classified on the basis of molecular weight: a 

major polypeptide species of about 13-kDa and two minor species of 10-kDa and 

16-kDa (Ogawa et aL’ 1987; Masumura et al., 1989). The 16-kDa mature polypeptide 

is composed of 130-140 amino acids while its N-terminal of precursor contains a SP 

with 18-19 AAs (Kim and Okita, 1988a; 1988b). The 13-kDa prolamin has at least 7 

polypeptide groups with different A A composition, whose SP in the N-terminal of 

precursor consists of 18-19 AAs (Kim and Okita, 1988a; 1988b; Sha et al, 1996; 

Hibino et al,, 1989). The 10-kDa polypeptide is comprised of 110 AAs and its 

precursor SP is 24 AAs, longer than that of the two others (Masumara et al” 1989). In 

comparison with the protein and D N A sequences, there is 70%-95% homology shared 

in different polypeptides inside the same molecular weight (MW), while the homology 

is low between different M W types. For instance，47% homology is shared between 
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the 13 kDa and 16-kDa prolamin, whereas the 10-kDa polypeptide has no homology 

with the 13-kDa and 16-kDa (Sha et al, 1996). 

Cloning of rice prolamin cDNA and genomic clones revealed that the amino acid 

sequence of rice prolamin does not exhibit significant homology to the prolamins of 

other cereals (Kim and Okita, 1988a; 1988b). Two regions, however, show some 

conservation with other prolamins. Like the prolamins in maize, wheat, rye and barley, 

there is a glutamine-rich octapeptide sequence - Q Q Q C C Q Q L in the middle of the 

sulphur-rich rice prolamins. Moreover, the SP has very strong similarity with the SP of 

the maize zeins (Masumura et al, 1989; 1990). The limited sequence similarity and 

weak immunological cross-reactivity of the rice prolmins and the prolamins of other 

cereals indicates that they possess individual origin in biological evolution. 

2.2.2.3 Albumin and globulin 

Albumin in rice is heterogeneous and contains several polypeptides with 

molecular mass of 14-16 kDa. The precursor of albumin consists of 150-170 AAs and 

a SP with 26-27 AAs in the N-teraiinal. The homology of different polypeptides is 

70-95% (Adachi et al” 1993). 

Reports on rice globulin are rare. Alpha-globulin is the major fraction in rice 

globulin and is controlled by a single gene. Its M W is about 26 kDa. The precursor is 
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composed of 186 AAs and has a SP with 22 AAs in the N-terminal (Shorrosh et al.’ 

1992). 

Some salt-soluble albumin and globulin are considered as rice allergenic proteins 

due to the reactivity with immunoglobulin E (IgE) in sera from patients allergenic to 

rice (Shibasaki et al., 1979; Matsuda et al., 1991). They all belong to 

a-amylase/trypsin inhibitor family (Limas et al, 1990; Izumi et al., 1992; Adachi et 

al., 1993; Alvarez etal., 1995). Their apparent molecular weights are in the 12-16 kDa 

range. 

2.2.3 Synthesis, assembly and deposition of rice seed storage proteins 

Seeds act as strong amino acid sinks when storage proteins are synthesized during 

seed maturation. The storage proteins are deposited in specialized membrane-bound 

organelles called protein bodies, which can avoid interference with other cellular 

processes and protect them against premature breakdown. There are two types of 

protein bodies in rice endosperm. Prolamin mainly exists in the spherical protein body 

(PB-I) (Tanaka et al, 1980). Glutelin and globulin are found in the irregular-shaped 

protein body (PB-II) (Krishnan et al., 1986). Albumin is present in the aleurone 

protein bodies, which differ drastically in composition from the endosperm protein 

bodies (Tanaka et al., 1973). The transport of proteins and their deposition into protein 
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bodies involves complicated processes, whose mechanisms are still incompletely 

understood. To date, it appears that two mechanisms of protein body formation occur, 

which may operate at different times or for different protein types. 

2.2.3.1 Storage protein folding and assembly in the ER 

Seed storage protein (glutelin and prolamin) m R N A s are transcribed in the 

nucleus and then released into the cytosol and localized on the distinct ER membrane 

to synthesize protein. Previous researches found that there are two kinds ofERs exist 

in the endosperm. One is the cisternal ER (C-ER), consisting of a layer of pellicle and 

is distributed in the endosperm cells. Glutelin m R N A s are translated at this kind of ER. 

Another is the protein body-forming ER (PB-ER), which is the place where prolamin 

m R N A is localized (Li et al” 1993a; 1993b). 

After cotranslational cleavage of an N-terminal signal peptide, the nascent 

polypeptides are translocated into the ER lumen for processing. The polypeptides are 

subjected to chaperone-assisted folding, disulphide bond formation, glycosylation in 

specific cases and oligomerization (Li et al., 1993b; MUntz, 1998). 

Studies of other systems demonstrate that two types of ER luminal proteins may 

assist in the processes of protein folding and disulfide bond formation. Molecular 

chaperons of the HSP70/BiP family may facilitate folding by binding transiently to the 
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nascent polypeptides and may also prevent the formation of incorrect inter- or 

intramolecular interactions. In previous study, BiP was found to accumulate in higher 

than normal level in high-lysine maize mutants (Boston, 1991)，possibly due to the 

presence of incorrectly folded zeins. The maize floury 2 mutant is one of the 

well-studied mutant lines with twice the lysine content than the wild-type. The 

mutation is associated with elevated levels of BiP, and a novel 24-kDa polypeptide in 

the zein fraction. The 24-kDa polypeptide is a precursor of a 22-kDa a-zein protein 

with an imcleaved signal peptide. The presence of the signal peptide prevents normal 

folding of the protein. Much higher levels of BiP and malformed protein bodies were 

detected when these maize endosperms were compared with wild-type ones. The 

findings suggested that BiP is responsible for correct protein folding (Coleman et al, 

1995). 

A second group of protein, protein disulfide isomerase (PDI) catalyzes disulfide 

bond formation in storage proteins. In rice esp2 mutants, PDI level is suppressed in the 

accumulation of the glutelin precursor (Takemoto et al, 2002). Electronic microscopic 

observation revealed that esp2 mutants contained normal-appearing PB-II but lacks 

the normal PB-L Instead, numerous small ER-derived PBs were observed. The results 

demonstrated that PDI plays an essential role in the segregation of glutelin precursor 

and prolamin polypeptides within the ER lumen. 
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2.2.3.2 Storage protein transport and protein body formation 

Two routes of protein body formation appear to operate in developing rice 

endosperms, one is from the ER and the other is from protein storage vacuoles via the 

Golgi apparatus (Figure 1) (Krishnan et al, 1986; Miintz, 1998). Glutelin and 

prolamin m R N A s are translated at different areas of the rough-ER, cis-ER and PB-ER, 

respectively. After disulfide linkage formation and trimerization in the ER lumen, 57 

kDa glutelin precursor is transported to the Golgi apparatus. At the trans-Golgi 

cistemae glutelin precursor trimers are sorted into dense vesicles (DV). Glutelin 

precursor is processed into subunits by the vacuolar processing enzyme (VPE) and 

transformed into its deposition-compatible conformation. This occurs in a prevacuolar 

or vacuolar compartment. The latter is finally transformed into protein body II (PB-II). 

On the other hand, transient binding of BiP to nascent prolamin polypeptides 

precedes sorting of prolamin into ER-dervied PB (PB-I). Li et al (1993b) observed 

that many BiP are distributed within PB-I. BiP can bind to prolamin polypeptide to 

form protein complex, which is responsible for translocating prolamin from the 

outside of ER into its lumen, followed by folding in the lumen, assembling, and 

formation of PB-I. The restricted localization of abundance of BiP at the periphery of 

PB-I suggests that BiP functions to retain prolamins in the ER in a competent state 
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until it is deposited onto the protein body aggregate, at which time BiP is released (Li 

et ai, 1993b). 

Glutelin mRNA Prolamin mRNA 
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Figure 1. Two pathways of seed storage proteins deposition in developing 
rice grains. 
PB-I contains prolamin while PB-II is composed of glutelin. The biosynthesis of 
these two PBs is different. PB-I is directly derived from ER membrane while PB-II 
comes from vacuole. Polypeptide trimers of glutelin precursor are secreted outside 
of ER and translocated into vacuole through Golgi apparatus. Inside the vacuole, 
the trimers are processed into small and large subunit, and then folded into 
hexamer, which are accumulated in the vacuole. Finally, these hexamers render the 
vacuole lyses into small pieces to form PB-II. On the other hand, prolamin 
polypeptides aggregate with BiP within the lumen of the ER. The 
prolamin-containing protein bodies (PB-I) are budding-off from ER directly. 
Hypothetical BiP retrieval is indicated. 
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2.2.3.3 Protein bodies and their distribution in endosperm 

The two types of protein bodies in rice endosperm exhibit different morphologies 

(Figure 2). Under transmission electron microscopic observation, protein body I (PB-I) 

is spherical in shape with a clear margin; displays concentric rings; and is smaller in 

size (1-2 ̂ im in diameter) and light in color. Protein body II (PB-II) shows irregular 

shape without a clear margin, and is large in size (2-3 ̂im in size) and with high 

electron density (Bechtel and Pomeranz, 1978; Tanaka et al” 1980; Yamagata et al” 

1982). In the endosperm, the number of protein bodies decreases with the distance 

from the surface of endosperm, and there are few protein bodies in the core of the rice 

kernel. 

llpffl mmm mm 
Figure 2. Two types of protein bodies in developing rice ensosperm cells 
Two morphologically distinct protein bodies (PBs), spherical PB-I with concentric 
strata and irregularly shaped electron-dense PB-II. PB-I contains prolamin and 
PB-II is composed of glutelin and globulin. 
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The rice prolamins are synthesized later than the glutelins during seed 

development (Yamagata et al, 1982). By sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE), storage proteins begin to accumulate in the Koshihikari 

rice endosperm by 5 DAF and these are the two subimits of glutelin (22-23 kDa and 

37-39 kDa) and the 26 kDa globulin. The 10-16kDa prolamin synthesis is first 

detectable at approximately 8-10 days after flowering. Transmission electron 

microscopy and sucrose density gradient centrifugation of the starchy endosperm also 

showed that PB-II is formed earlier than PB-I. At 7 DAF, the protein bodies are mainly 

PB-II with some PB-I, and PB-I increases only gradually from 10 DAF onward 

(Yamagata et al, 1982). 

2.3 Transgenic approaches to improve the nutritional quality 

of rice seed proteins 

2.3.1 General introduction 

Seed storage proteins of cereal crops meet the major dietary protein requirement 

of over half of the world population. According to FAO estimate, plant sources 

provide 65% of the world supply of edible protein, of which 47% is from cereal grains, 

and the remaining 35% comes from animals. Cereals provide the cheapest sources of 

energy and protein to meet requirements for people in developing countries. However, 
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plant protein sources differ from animal sources in terms of the incomplete amino acid 

composition. Seed proteins in general are deficient in some essential amino acids, 

especially lysine and tryptophan in cereal proteins. As human beings cannot 

synthesize essential amino acids, complementing the essential amino acid profiles by 

consuming other sources of food is necessary. Non-staple foods such as fruits, 

vegetables，animal products and pulses are rich in micronutrients and proteins. 

However, such non-staple foods are simply too expensive to be eaten by the poor with 

low purchasing power. 

Demand of non-staple foods in developing countries is growing faster than the 

demand for cereals, but supply is still considerable low and prices are still high. 

Increasing the productivity of non-staple foods through agricultural research is much 

more expensive than increasing the productivity of staple foods due to the large 

number of non-staple foods involved. Therefore, different efforts have been put to 

modify the cereal crops until its amino acid composition matches the balanced amino 

acid composition recommended by W H O for human diet. 

2.3.2 Attempts to improve the nutritional quality of seed proteins 

Because of the important values of seed storage protein and its A A composition, 

increasing their contents especially lysine is the key point in grain nutritional quality 

20 



improvement. Creation and selection of protein mutants is the major method to 

improve the grain nutritional quality by traditional breeding (Kumamaru et al.’ 1988; 

Ogawa et al., 1989). However, the limitations of this method include: low efficiency 

of mutant selection, the accompanying undesirable traits (lida et al., 1993; Schaeffer 

and Sharpe, 1990)，and its minor effects on protein and lysine content enhancement. 

In recent years, the rapid progress in molecular technologies provides more 

effective ways to improve the grain nutritional quality. Generally there are several 

approaches for improving the nutritional quality of seed proteins by recombinant D N A 

techniques, which include modification of protein sequence to elevate essential amino 

acid content, overexpression of elite homogeneous protein genes，transformation and 

overexpression of elite heterogeneous protein genes, synthesis of novel protein gene, 

and increase of free amino acid content (Beach and Ballo, 1992; Sun et al, 1992; 1993; 

Mattews and Hughes, 1993; Habben and Larkins, 1995). After the first transgenic 

approach to improve methionine content of seed proteins by Altenbach et al (1987; 

1989)，there has been a large flow of literature on these approaches. Various plant 

species such as com (Wallace et al, 1988; Ohtani et al.’ 1991), potato (Tu et ah, 1998)， 

soybean (Kho and Lumen, 1988; Saalbach et al. in 1994)，wheat (Singh et al” 1993)， 

and tobacco (Shaul and Galili, 1992) have been reported in nutritional quality 
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improvement. There are also studies aiming at improving the rice grain nutritional 

quality. 

2.3.3 Rice grain quality improvement by genetic engineering 

2.3.3.1 Increase in the lysine content of rice endosperm 

Compared with other cereals, rice is relatively low in protein content. At the same 

time, lysine is the first limiting essential amino acid in rice for human consumption. Of 

the major four storage proteins, glutelin contains relatively higher proportion of lysine 

but prolamin and albumin are low in lysine. PB-I containing prolamin is more difficult 

to be digested and absorbed by human than PB-II with glutelin. Furthermore, some 

members of the albumin and globulin fractions belonging to the a-amylase/trypsin 

inhibitor family are allergens to sensitive people (Alvarez et al, 1995). Therefore, 

glutelin is considered to have higher nutritional value than other storage proteins 

(Tanaka et al, 1975; Ogawa et al” 1987). 

To enhance the nutritional quality of rice grains, there are several feasible 

strategies: 1) to increase glutelin and decrease prolamin content; 2) to reduce albumin 

and globulin synthesis to diminish allergenic proteins in rice; 3) to enhance lysine 

content and to improve amino acid balance through regulation of key enzymes involve 

in lysine biosynthesis pathway and transformation with lysine-rich protein (Gao et al” 
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2001; Liu, 2002). 

Zheng et al (1995) transformed rice with a gene encoding the seed storage 

protein, P-phaseolin, from the common bean {Phaseolus vulgaris L.) and found that 

p-phaseolin could be normally expressed and accumulated in the rice seeds under the 

control of the rice Gtl promoter and was localized in PB-II. P-phaseolin has a 

relatively high lysine content of 6 mol% and the P-phaseolin protein was expressed as 

4% of the total salt-soluble protein in the transgenic rice grains. Later, a lysine rich 

protein (LRP), containing a high percentage (over 10 mol%) of essential amino acid 

lysine, was cloned from winged bean (Sun et al, 1998). This LRP gene was 

transformed into Arabidopsis and rice respectively and the lysine content of the 

transgenic seeds was significantly increased as a result of stable accumulation of this 

foreign protein (Cheng, 1999; Liu, 2002). 

Foreign proteins could be highly expressed through fusion protein technique. 

Hoffman et al (1988) first transformed a fusion gene, with a 45-bp sequence rich in 

methionine residues insertion into the (3-phaseolin gene, into tobacco. Only 0.2% of 

the fusion protein at the level of normal protein was accumulated in the transgenic 

seeds. This low expression is probably due to the insertion sequence that may have 

destabilized the phaseolin trimers，resulting in the degradation of the modified 

phaseolin. Liu (CUHK, 2002) made use of the fusion protein approach by inserting the 
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LRP cDNA into the coding sequence of glutelin Gtl structural gene, in frame, at three 

different regions, the acidic subunit, the basic subunit, and both subunits, resulting in 

three categories of chimeric fusion genes: Gt::LRP(A), Gt::LRP(B) and Gt::LRP(AB). 

These three transgenic rice lines are named FA, FB and FAB, respectively. The fusion 

proteins were highly expressed in transgenic seeds. The level of increase of lysine 

content in total amino acids could reach up as high as 58% in FB line when comparing 

with that of the wild type. Besides, several fusion polypeptides with abnormal sizes 

were detected in the seeds of transgenic plants of FA and FB lines, indicating that the 

fusion polypeptides might undergo unusual post-translational excision, while normal 

polypeptide of the fusion protein was observed in the FB line. Therefore FB line was 

selected for further study. 

As glutelin is regard as more nutritious than prolamin in rice seeds because 

prolamin is low in lysine and is less digestible, another construct carrying the 

lysine-richer glutelin gene (Gtl) gene cloned from rice itself was transformed. 

Overexpressing glutelin in rice endosperm also improved the lysine concentration in 

rice protein (-30% increased in total AA) (Liu, CUHK). 

Comparing the two methods in our lab, the increase in lysine content in Gtl/LRP 

fusion transgenic line (FB) is higher than that in Gtl transgenic line (58% vs 30%). In 

both transgenic lines, extra copies of glutelin gene were introduced so that the lysine 
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content in both lines increase. In the FB line, LRP gene is inserted into the basic 

subimit of glutelin, this further increase the lysine content as the lysine content in LRP 

is even higher than that of glutelin. 

2.3.3.2 Other examples of rice nutritional quality improvement 

One of the examples is the production of p-carotene (provitamin A) in rice 

endosperm. Vitamin A deficiency (VAD) is a condition which afflicts millions of 

people in developing countries, especially children and pregnant women. Each year, it 

is estimated that V A D causes blindness in 250,000 to 500,000 malnourished children 

(WHO, 2004). Unlike photosynthetic tissues, rice endosperm contains neither 

p-carotene nor its carotenoid precursors (Burkhardt et al, 1997). By genetic 

engineering, three p-carotene biosynthesis genes, phytoene synthase, phytoene 

desaturase, and lycopene cyclase were introduced into rice genomes (Ye et al, 2000). 

The enzymes are expressed in rice endosperms so that geranylgemayl diphosphate 

(GGPP) could be converted into p-carotene and the rice grains became golden colour, 

with 1.6 mg/100 g endosperm of carotenoid in the transgenic seeds. 

Besides, iron deficiency is considered the most serious micronutrient 

malnutrition problem in developing countries since approximately 2-5 billion people 

are affected at different levels (McPhail and Bothwell, 1992). Milled rice contains a 
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very low concentration of iron (0.2 to 2.8 mg/100 g endosperm). The iron content in 

rice might be enhanced by genetic engineering. It can be increased by expressing a 

protein called "ferritin" that stores iron in rice. Goto et al (1999) transferred the 

ferritin gene isolated from soybean into rice and obtained a three-fold increase in iron 

concentration. The transgene was driven by the glutelin promoter GluB-1, and 

therefore it was exclusively expressed in the endosperm. In 2001，Lucca et al. were 

able to increase the iron content by twofold through expressing a ferritin gene from 

Phaseolus vulgaris. However, most of the iron was accumulated in aleurone cells 

which are lost during decortication, and therefore other strategies are necessary to 

enrich iron content in the endosperm of rice seeds. 

2.3.4 Expression of recombinant protein in transgenic plants 

Today, knowledge about subcellular localization of recombinant proteins in 

transgenic plants is still limited. Zheng et al (1995) transformed a storage protein gene 

of p-Phaseolin from bean into rice using the rice Gtl gene promoter. Results showed 

that p-Phaseolin was located in rice PB-II. Bagga et al (1995) transferred a 15 kDa 

zein into tobacco and found that this protein was accumulated in a novel PBs in seeds. 

Recently, Yang et al (2003) demonstrated that the human lysozyme coding sequence 

driven by rice glutelin promoters and signal peptides was expressed and the protein 
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accumulated in the rice PB-II. In addition, a transgenic line producing high lysozyme 

expression level exhibited morphologically different protein bodies with an 

unbalanced composition of lysozyme and native storage proteins. The study suggested 

that the high-level expression of recombinant protein distorted the trafficking and 

sorting of native storage proteins during rice endosperm development. 

2.3.5 Effects of recombinant proteins on the high-lysine rice 

After the production of high-lysine rice in our lab, initial studies were carried out. 

In general, the grain quality of transgenic rice remains similar to the wild type, except 

there was a notable increase in the chalkiness of the FB and GT rice. Besides, the two 

transgenic lines also share some other similar properties which are not present in wild 

type, which include glutelin precursor accumulation and repression of other seed 

storage proteins' expression. The fusion protein construct FB was found down regulate 

to most of the storage protein genes (including prolamin and globulin). Furthermore, 

the expression of chaperones BiP and PDI at both R N A and protein level was 

significantly enhanced in FB and GT transgenic plants. However, the more detailed 

effects of the transgenes on other genes, the localization of the recombinant proteins 

and their trafficking pathway have yet to be investigated. 
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2.4 Proteomics 

2.4.1 General overview 

Proteomics is playing an increasingly important role in scientific research. The 

best definition of proteomics is "any large-scale protein-based systematic analysis of 

the entire proteome or a defined sub-proteome from a cell, tissue, or entire organism" 

(Speicher, 2004). It originated in the mid-1990s due to two key enabling advances, 

availability of complete genome sequences and mass spectrometry advances that 

allowed high-sensitivity identification of proteins. Proteome analyses can be broadly 

categorized into three types of studies: quantitative protein profile comparisons, 

analysis of protein-protein interactions, and compositional analysis of simple 

proteomes or subproteomes such as organelles or large protein complexes. 

There is a broad range of technologies used in proteomics, but the central 

paradigm is the use of 2-D gel electrophoresis (2D PAGE) followed by mass 

spectrometry (MS). In 2D PAGE, proteins are separated by isoelectric point (pi) in the 

first dimension and with molecular weight in the second dimension (O'Farrell, 1975). 

The individual proteins are subsequently removed from the gel and prepared, then 

analyzed by M S and searched of databases to determine their identities and 

I 

characteristics. Fig 3 shows an overview of proteomics. 
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Figure 3. Overview for analysis of proteomics by mass spectrometry. 
MALDI-ToF: Matrix-assisted laser desorption-ionization-time of flight 
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Zivy and de Vienne (2000) pointed out that proteomics play a linking role 

between genomics, genetics and physiology. In recent years, more and more 

researchers are interested in functional genomics research on sequenced genes, 

therefore proteomics is becoming a field in great demand with a large impact on plant 

biology. Proteomics is the next logical step after genome sequencing, but analysis of 

proteomes is much more complicated and challenging than sequencing a genome. 

2.4.1.1 Two-dimensional polyacrylamide gel electrophoresis for proteome 

analysis 

The first requirement for proteome analysis is the separation, visualization and 

analysis of the complex mixtures containing as many as several thousand proteins 

obtained from whole cells，tissues or organisms. Two-dimensional polyacrylamide gel 

electrophoresis (2D PAGE) is the core technology for separating complex protein 

mixtures. It was first developed by O'Farrell in 1975. In this technology, proteins are 

separated according to their isoelectric points (pi) in the first dimension and molecular 

weights in the second dimension. 

The analysis begins with the solubilization of proteins from samples of interest 

using nonionic and zwitterionic detergents. This step converts the native sample into a 

suitable physicochemical state for isoelectric focusing (lEF) while preserving the 
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native charge and molecular weight of the constitute proteins. During solubilization 

procedure, it is most important to minimize protein modifications which might result 

in artifactual spots on the 2D gel. In addition, the impurities, such as lipids, salts, 

polysaccharides and nucleic acids that can interfere with the 2D PAGE separation 

should also be removed in this step. Therefore, solubilization of sample is one of the 

most critical factors for successful protein separation by 2D PAGE. 

Sample preparation is followed by lEF using carrier ampholytes or immobilized 

pH gradients (IPG) to form the pH gradient. The technique of IPG is most commonly 

used as the first dimension. It offers high resolution and great reproducibility for lEF 

(Bjellqvist et al, 1982). IPGs are based on the principle that the pH gradient is 

generated by a limited number (6-8) of well-defined chemicals (the ‘Immobilines’） 

which are co-polymerized with the acrylamide matrix. 

Prior to the second dimension separation, the IPG strips are equilibrated in SDS 

equilibration buffer to allow the separated proteins to interact fully with SDS so that 

they can migrate properly during subsequent SDS PAGE. In addition, urea and 

glycerol are added to the equilibration buffer to reduce electroendosmotic effects 

which otherwise results in reduced protein transfer from the first to the second 

dimension. After an equilibration of the proteins, the resulting focused bands are 

separated according to size using traditional polyacrylamide gel electrophoresis 

. 31 



(PAGE) technique. 

2.4.1.2 Protein visualization 

After 2D PAGE, the separated proteins have to be visualized. There are various 

proteins staining methods include organic dyes (e.g. Coomassie blue), silver-staining, 

reverse staining with metal cations (e.g. zinc imidazole), fluorescence staining or 

labelling, and radioactive isotopes, using autoradiography, fluorography, or 

phosphor-imaging. Choosing of a specific protein stain emphasizes on high sensitivity 

(low detection limit), high linear dynamic range (for quantitative accuracy), 

reproducibility, and compatibility with protein analysis procedures, such as MS. 

Coomassie brilliant blue (CBB) staining methods have found widespread use for the 

detection of proteins on 2DE gels, because of its ease of use and compatibility with 

most subsequent protein analysis and characterization methods such as MS. 

Coomassie blue dye is capable of detecting as little as 0.2-0.5 pg protein per spot, but 

this is considerably less sensitive than silver staining or fluorescence detection (Patton, 

2000). Hence, typically no more than a few hundred protein spots can be visualized on 

a 2D gel by CBB staining, even if milligram amounts of protein have been loaded onto 

the gel. CBB in colloidal dispersions (Neuhoff et al, 1988) and modifications 

(Candiano et al., 2004) have been reported to be more sensitive than the classical CBB 
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stain, but are still less sensitive than the majority of chemical stains employed in 2D 

PAGE for proteomics. Silver staining methods (Oakley et al, 1980; Merril et al, 1984) 

are many times more sensitive than CBB. The detection limit is as low as 0.1 ng 

protein per spot. However, silver staining methods are less reproducible than CBB 

stains due to the subjective endpoint of the staining procedure which makes them less 

suitable for quantitative analysis. Silver staining method using aldehyde-based 

fixatives/sensitizers is the most sensitive one, but prevent subsequent protein analysis 

(e.g. by MS) due to protein cross-linkage. If aldehydes are omitted in the fixative and 

in the subsequent gel impregnating buffers (except in the developer), microchemical 

characterization by PMF is possible. Several silver staining protocols compatible with 

mass spectrometry have been published (Shevchenko et al, 1996; Mortz et al., 2001). 

Due to the shortcomings of organic dyes for visualization and quantification of 

proteins, fluorescent detection of proteins has gained popularity for proteome analysis. 

Two major approaches for the fluorescent detection of proteins on 2D gels are 

currently practiced. These are: (i) pre-electrophoretic derivatization of proteins with 

fluorophores prior to the lEF，such as the cyanine-based dyes (Unlu et al, 1997) which 

is commercially available as CyDyes (Amersham Biosciences), and (ii) 

post-electrophoretic labeling after SDS-PAGE, by intercalation of fluorophores into 

the SDS surrounding the proteins, such as SYPRO Ruby (Berggren et al, 2002). 
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Fluorescent staining methods have a comparatively wide linear dynamic range (>10^) 

and are relatively easy to perform. Furthermore, most fluorescent staining procedures 

are compatible with subsequent protein identification methods such as MS. 

2.4.1.3 Computer-aided image analysis 

One of the key objectives of proteomics is to identify the differential expression 

between control and experimental samples run on a series of 2-D gels. That is, the 

protein spots have changed in abundance (increased or decreased in volume). Once 

these gel features have been found, the proteins of interest can be identified using MS. 

This goal is usually accomplished with the help of computer-aided image analysis 

systems (Dowsey et al, 2003). The typical sequence for image analysis is the 

following: (i) digital image acquisition, once the gel has been stained, the image can be 

digitized with flat-bed scanners, laser scanners, Charge Coupled Device (CCD) 

cameras or Fluor Imagers, depending on the protein visualization method used. Image 

normalization and background subtraction are also performed; (ii) spot detection and 

quantification; (iii) gel matching, i.e. an initial user guided pairing of a few spots 

between the reference and sample gels. The sample gel is then warped to align the 

landmarks and the rest of the spots were subjected to automatic pairing; (iv) 

identification of differentially expressed spots; (v) data presentation and interpretation; 
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and (vi) construction of 2D gel database. To analyze and document the separated and 

identified proteins, image analysis is essential. A number of software packages are 

available including the most widely used, such as ImageMaster 2D Platinum 

(Amersham Pharmacia Biotech, Sweden), Phoretix 2D Advanced (Nonlinear 

Dynamics Inc, USA), MasterScan (Scanalytics, USA), Melanie 3 (GeneBio, 

Switzerland; http://www.genebio.com/Melanie.html) and PDQuest (Bio-Rad 

Laboratories, USA). 

2.4.1.4 Mass spectrometry-based methods for protein identification 

Mass spectrometry (MS) techniques for proteome analysis are roughly divided 

into two major categories, peptide mass fingerprinting (PMF) or tandem mass 

spectrometry (MS/MS). Peptide mass fingerprints are the fastest method for 

identifying proteins recovered from 2D PAGE. The basic principle of this technique 

compares the measured peptide masses from MALDI-TOF spectra, and compares 

them against calculated peptide masses from database entries. Every protein results in 

a unique set of peptide masses after cleavage with a specific protease. Depending on 

the mass accuracy and mass resolution of the instrument, only a few peptide masses 

are sufficient for reliable protein identification. Analysis of protein by P M F is 

particularly successful with organisms containing simple genomes and few splice 
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variants. With more complex organisms, such as mammals, the probability of 

identifying a protein from PMF is lower and can be subjected to further analysis by 

tandem mass spectrometry. MS/MS data is obtained by analyzing daughter ions 

generated by peptide fragmentation using triple quadmpole, q-TOF, TOF-TOF, or ion 

trap instruments, with MALDI, capillary LC/MS, or nanospray interfaces. 

2.4.1.5 Database search 

For protein identification, search engines were used to search protein sequence 

databases using mass spectrometry data. Generally, there are two types of 

experimental data, one is peptide mass from the digestion of a protein by an enzyme of 

known cleavage specificity, and the other is using tandem mass spectrometry (MS/MS) 

data from one or more peptides. Algorithms are developed for protein identification 

based upon correlating experimental data with calculated peptide masses or fragment 

ion mass values, derived from proteins existing in sequence databases. A score (or 

ranking) is calculated to provide a measure of fit between the experimentally derived 

and calculated peptide masses. If the "unknown" protein is present in the sequence 

database, then the aim is to pull out the correct entry. If the sequence does not contain 

the unknown protein, then the aim is to identify those entries which exhibit the closest 

homology, often equivalent proteins from related species. By using an appropriate 
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scoring algorithm, the closest match can be identified. 

Several search engines were capable for protein database searching, such as 

M A S C O T (Perkins et al, 1999) (http://www.matrixscience.com/), SEQUEST (Eng et 

al, 1994) (http://fields.scripps.edu/sequest/), ProFound (Zhang and Chait，2000) 

(http://prowl.rockefeller.edu/) and Protein Prospector (Clauser et al” 1999) 

(http://prospector.ucsf.edu). 

The most commonly used algorithms for mass spectrometry based protein 

identification are M A S C O T and SEQUEST. M A S C O T is based on the M O W S E 

algorithm (Pappin et al, 1993) that uses the normalized distribution frequency of 

peptides in the sequence database. It supports all three types of search, including: PMF, 

sequence query, and MS/MS fragment ions search. SEQUEST can only use data from 

MS/MS fragmentation spectra of un-interpreted peptide. A cross-correlation function 

is calculated between the measured fragment mass spectrum and the proteins in the 

database. It is used to score the proteins in the database. 

2.4.1.6 Protein sequence database 

Protein sequence databases are also very crucial for protein identification since 

different databases contain different protein sequences. The commonly used protein 

sequence databases are listed below. 
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NCBInr 

NCBInr is a comprehensive, non-identical protein and nucleic acid database 

maintained by NCBI (the National Center for Biotechnology Information) for use with 

their search tools BLAST and Entrez. The entries in the protein database, nr, have been 

compiled from GenBank CDS translations, PIR, SWISS-PROT, PRF, and PDB. NCBI 

has made strong efforts to cross-reference the sequences in these databases in order to 

avoid duplication. 

MSDB 

M S D B (Mass Spectrometry protein sequence DataBase) is a non-identical protein 

sequence database maintained by the Proteomics Department at the Hammersmith 

Campus of Imperial College London. M S D B is designed specifically for mass 

spectrometry applications. 

Swiss-Prot 

SWISS-PROT is a curated protein sequence database which strives to provide a high 

level of annotations (such as the description of the function of a protein, its domains 

structure, post-translational modifications, variants, etc), a minimal level of 

redundancy and high level of integration with other databases. It has been maintained 

collaboratively by the Department of Medical Biochemistry of the University of 

Geneva and the E M B L Data Library (now the E M B L Outstation of The European 
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Bioinformatics Institute - EBI). 

PIR 

The PIR (Protein Information Resource) database was initiated at the National 

Biomedical Research Foundation (NBRF) as a collection of sequences for the study of 

evolutionary relationships among proteins. The database is now an international 

collaboration of three data centers: the NBRF, the Munich Information Center for 

Protein Sequences (MIPS), and the Japan International Protein Information Database 

(JIPID). The three centers cooperate to produce and distribute a single database of 

'wild-type' protein sequences. 

The TIGR rice genome annotation database 

The TIGR Rice Genome Annotation Database (http://www.tigr.org/tdb/e2kl/osal/) 

(Yuan et al, 2003) provides sequence and annotation data for the 12 rice 

chromosomes. This is a downloaded protein database which can be added into the 

M A S C O T search engine to conduct the local protein database search. The 

pseudomolecules (virtual contigs) were constructed for each of the rice 12 

chromosomes by resolving discrepancies between overlapping BAC/PAC clones, 

trimming the overlap regions at junction points in which the gene models are least 

disrupted, and linking the unique sequences to form a contiguous sequence. 
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2.4.2 Plant proteomics 

Proteome analysis is becoming a powerful tool in the functional characterization 

of plants. In fact, two-dimensional electrophoresis techniques were established early 

on for barley (Gorg et al, 1988; Hurkman and Tanaka, 1988; Flengsrud and Kobro, 

1989). Due to the development of sensitive techniques of mass spectrometric protein 

analysis and the acquisition of genome sequence information, proteome approaches 

open up new perspectives to analyze the complex functions of model plants and crop 

species at different levels. Within the past few years, a number of plant proteome 

studies have been published, some of them more descriptive, exploring global patterns 

of proteins present in a given tissue, organelle, or stage of development, including 

barley seed (Kristoffersen and Flengsrud, 2000)，wheat grain endosperm (Skylas et al” 

2000), maize leaves (Porubleva et al, 2001), Arabidopsis mitochondria (Millar et al, 

2001)，rice leaf, root and seed (Koller et al., 2002) and Arabidopsis chloroplast 

envelope membrane proteins (Ferro et al., 2003). Apart from these, proteomic 

analyses of plant organs or tissues were also applied to investigate the responses to 

developmental changes or environmental factors on protein patterns and to compare 

lines with different genetic backgrounds. Wheat endosperm protein populations were 

compared at two developmental stages (Vensel et al, 2005), which provided insight 

into biochemical events taking place during grain development and highlight the value 
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of proteomics in characterizing complex biochemical processes. Grain filling and seed 

maturation are also important processes that intensively studied in crop plants. 

Proteome analysis of the changes in proteins that occur during seed development of 

barley (Finnic et al, 2002) identified some proteins which are involved and related 

them to the processes known to be taking place in the seed. Proteins in rice caryopses 

are essential to development and grain quality. A group of researchers (Lin et a/., 2005) 

not only profiled the protein expression patterns during rice caryopsis development, 

but also found some proteins associated with grain quality especially in a high 

temperature environment. These results could benefit the understanding of functions 

of rice caryopsis proteins and improvement of rice grain quality under temperature 

stress. 

2.4.2.1 Rice proteomics 

During the past couple of years, researchers have made great efforts to the study 

of rice proteome and remarkable progress has been made. Rice is an excellent model 

plant among the monocotyledonous cereal crops species as it has a relatively small 

genome (the rice genome is 440 Mb, the maize genome is 2500 M b while that of 

barley is 4900 Mb), and it is suitable for efficient genetic analysis and transformation. 

The completion of the genome sequence of the rice two major cultivars, japonica type 
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and indica type (Goff et al., 2002; Yu et al.’ 2002), and subsequent prediction of the 

protein complement provide researchers with a unique opportunity to study globally 

expressed protein profiles in a given tissue. Several studies have dealt with mapping of 

proteomes for complex samples from rice, such as embryo and endosperm (Komatsu 

et al, 1993); root (Zhong et al., 1997); cultured suspension cells (Komatsu et al., 

1999); anther (Imin et al, 2001); and leaf sheath (Shen et al.，2002). Tsugita et al 

(1994) have systematically analyzed rice proteins from 9 tissues and 1 organelle (leaf, 

stem, root, germ, dark germinated seedling, seed, bran, chaff, callus and chloroplast). 

A total of 4892 proteins was resolved, of which 137 protein spots were analyzed, and 

among them 56 proteins were sequenced. Besides, a systematic proteomic analysis of 

rice root, leaf, and seed tissues was obtained by application of both 2-D gel 

electrophoresis and HPLC-tandem mass spectrometry. Based on both methods, the 

identification of 2528 unique proteins (6296 peptides) was achieved (Koller et al., 

2002). The analysis of proteins from rice chloroplasts was the first organelle proteome 

work (Tsugita etal., 1994). The proteomes of Golgi apparatus, mitochondria and other 

subcellular compartments have also been studied (Mikami et al, 2001; Heazlewood et 

al, 2003). Other rice proteome studies were performed to identify embryo proteins 

(Woo et al.’ 2002) and to monitor the consequences of metal stress treatments 

(Hajduch et al, 2001). The difference between the proteome of transgenic rice calli 
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over-expressing FiC7gene, the homolog of maize HC-toxin reductase (HCTR) and that 

of wild type rice was compared (Takahashi et al.’ 2005). Proteome analysis of cultured 

cells over-expressing YKl showed the up-regulation of several stress-related proteins, 

which enriched the knowledge to the genetic engineering of plants with a novel gene 

transfer. 

The construction of rice proteome databases is also a great effort in rice proteome 

studies. The proteome reference maps of rice anthers were constructed according to 

the SWISS-2D PAGE standards, and are made available for public access by the 

authors at http://semele.anu.edu.au/2d/2d.html (Imin et al” 2001). The extensive 

proteomic data generated by Koller et al” 2002 on metabolic pathways in rice，are 

available as supplemental information on the PNAS website (www.pnas.org). The 

Rice Proteome Database (http://gene64.dna.affrc.go.jp/RPD/) is the first detailed 

proteome database to provide extensive information on at least 21 2D PAGE reference 

maps from rice tissues and subcellular compartment (Komatsu et al, 2004). Rice 

etioplast protein identifications and related data were integrated into a database that is 

available at http://www.plprot.ethz.ch/ (von Zychlinski et al, 2005). 

2.4.2.2 Comparative proteomics 

Comparative proteomics have been advanced in recent years with the hope to find 
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differences between two or more samples or treatments. Several studies have 

investigated changes in proteomes involving in green versus etiolated rice shoots 

(Komatsu et al” 1999)，rice leaf and leaf sheath following a jasmonic acid treatment 

(Rakwal and Komatsu, 2000), Arabidopsis seed germination and priming (Gallardo et 

al, 2001; 2002), cell wall and extracellular matrix proteins from elicitor-treated 

Arabidopsis cell suspension cultures (Ndimba et al., 2003), senescing white clover 

(Thfolium repens) (Wilson et al, 2002), and rice after mechanical wounding of the leaf 

sheath (Shen et al, 2003). However, reproducibility generally has been made cursorily 

in the studies. In addition, rigorous and quantitative clustering methods in comparative 

studies have not been evaluated and exploited. Until recently, using the de-etiolated 

(greening) of maize chloroplast as a model system, a general protocol that can be used 

to generate high quality, reproducible data set for comparative plant proteomics was 

developed (Lonosky et al, 2004). 
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2.5 Hypothesis and objectives 

The transgenic high lysine rice was successfully generated few years ago in our 

laboratory. On the basis of the previous studies, it becomes clear that there is an 

accumulation of glutelin precursor and chaperones BiP and PDI, while most of the 

storage proteins are suppressed. However, there is no study on the details of these 

changes and the correlations and possible impacts between the expression of 

recombinant proteins and the corresponding down regulated or enhanced host proteins. 

Based on the literature reviews and our previous study, the hypotheses of this study 

are: 

(1) The expression of recombinant proteins promotes the expression level of 

some native proteins, such as BiP and PDI to cope with the increase in 

unfolded proteins. 

(2) The expression of recombinant proteins down regulates the expression of 

other native proteins such as seed storage proteins possibly due to ER 

stress. 

(3) The expression of recombinant proteins affects the deposition of storage 

proteins, leading to changes in the morphology of protein bodies in rice 

endosperms. 
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To test the hypotheses, the transgenic high lysine rice, FB and GT lines, will be 

used as study materials. Patterns of any differently expressed proteins will be studied 

by proteomic approach. The maturing seeds from 5, 10，15 and 20 days after 

fertilization (DAF) will be collected and used in the study. 

The morphology of protein bodies and the subcellular localization of the 

recombinant proteins, prolamin and glutelin will also be studied as a result of or in 

relation to the integration of the LRP and extra Gtl genes into the rice plants. 

This research will provide useful information to understand the molecular and 

cellular events involved in the maturation of high-lysine rice seeds, in our effort to 

enhance the grain quality. 
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Chapter 3. Materials and Methods 

3.1 Materials 

3.1.1 Chemicals and commercial kits 

Most chemicals used in this project were of analytical grade and purchased from 

Sigma-Aldrich Chemical Co. (USA), Amersham Bioscience (Sweden), Roche 

Diagnostics Corporation (USA), Bio-Rad Laboratories, Inc (USA) or Invitrogen 

Corporation (New Zealand). The enzyme trypsin used in peptide digestion was from 

Promega Biotech Co., Ltd (USA). The 13 cm IPG strips of pH 3-10 and pH 6-12 and 

corresponding IPG buffer (pH 3-10 and pH 6-11) were purchased from Amersham 

Bioscience (Sweden). Western blot analysis was carried out using A U R O R A western 

blot chemiluminescent detection kit (USA). The glutaraldehyde, LR white resin, 

goat-anti-Rabbit IgG, goat-anti-Mouse IgG and uranyl acetate used for transmission 

electron microscope (TEM) observation were purchased from Electron Microscopy 

Sciences (USA). 

3.1.2 Instruments 

Protein gel electrophoresis was carried out using electrophoresis apparatus and 

power supply purchased from Bio-Rad Company (USA). The Ettan DALTtwelve 

Large Format Vertical System for second-dimension SDS-PAGE was come from 
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Amersham Bioscience (Sweden). The freeze dry system [China scientific (HK) Ltd] 

was used to dry the deveoping rice seeds. The EttanTM IPGphor^^ Isoelectric 

Focusing System from Amersham Bioscience was used for first-dimension isoelectric 

focusing (lEF). MALDI-ToF/ToF mass spectrometry was carried out using the 4700 

Proteomic Analyzer from Amersham Biosecience. Transmission electron microscope 

(JEM-1200 EXII，JEOL LTD, Japan) was used for T E M study. 

3.1.3 Softwares 

Mass spectrometry analysis was carried out using the 4700 Explorer™ Software 

while database searching was by the GPS Explorer™ software (Applied Biosystems,, 

USA). Image analysis was carried out using ImageMaster 2D Platinum, Version 5.00 

(Amersham Biosciences, Sweden). 

3.1.4 Plant materials 

Two lines of high-lysine rice, named FB and GT lines were analyzed in this study 

(Fig. 4). They were constructed and developed previously by Dr. Q.Q. Liu (2002). 

Both of them are japonica rice variety wuxiangjing 9 (武香粳 9 號).The T3 

homozygous generations of transgenic plants were used for the analysis. 

In FB line, extra copies of Gtl glutelin gene with LRP insertion in the basic 

. 48 



subimit of glutelin gene were present. In GT line, extra copies of Gtl glutelin gene 

were present (Figure 4). The lysine contents increased in total amino acid of the FB 

and G T lines were 58.35% and 29.74%, respectively (Liu, CUHK). 

LRP 

LRP/glutelin 
fUsion (FB) Gtl precursor SP Acidic subimit Basic subimit NOS 

Gtl (2.0 kb) 
Gtl (GT) Gtl precursor SP| Acidic subimit | Basic subimit | 3,UT 

Figure 4. The transgenes of two high-lysine rice lines. 
FB: The LRP gene was inserted into the basic subimit of Gtl gene. GT: An extra 

copy of Gtl gene was transformed. These genes were constructed and inserted into 

the super binary vector pSB130 for plant transformation (Liu, CUHK). 

3.2 Methods 

3.2.1 Collection of developing rice seeds 

The rice plants (FB, GT and WT) were grown in the green house of the 

Department of Biology, CUHK. At the onset of flowering, the seed coats were marked 

with colour marker pens. Rice seeds were collected at 4 time points, 5，10, 15 and 20 

days after flowering (DAF) (Fig. 5 and 6). These time points are representative in the 

developmental process of rice seeds. All the harvested seeds were immediately 

wrapped in aluminium foil paper, frozen in liquid nitrogen and then stored into -80。C 

freezer until needed. Besides, some developing seeds at 11 to 13 D A F were collected 

and used in electron microscopic studies. 
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Figure 5. Planting rice materials and collecting developing rice seeds 
Panels (A) Three lines of rice (FB, GT and WT) were grown in the same container; 
(B) The growing rice; and (C) The florets were labeled with colour marker pens. 

；[0 DAF 

4 ^ I I I I 
15 DAF 20 DAF 

D 

» • 雄 I I I 
Figure 6. Developing rice seeds at 5，10，15 and 20 DAF. 
Panels (A) Seed collected at 5 DAF (milky stage): the contents of the caryopsis are 

first watery but later turn milky in consistency; aleurone layer is developed; the 

embryo sac becomes filled with endosperm cells; and protein body appears; (B) 

Seed collected at 10 DAF (dough stage): cell division is essentially completed and 

the size of the starch granule increases most rapidly; and the milky portion of the 

grain turns into hard dough; (C) Seed collected at 15 DAF (yellow stage): the 

panicle colour changes from green to yellow; dry matter is accumulated; 

compound starch granule gains the maximum size; and potassium, calcium and 

manganese are accumulated rapidly; and (D) Seed collected at 20 DAF (mature 

stage): differentiation of embryo is fully completed and the grain is mature, fully 

developed, hard, and has turned yellow. 
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3.2.2 Extraction of rice seed proteins 

3.2.2.1 Extraction of total protein 

Extraction of total protein was carried out following the procedure of Yamagata 

(1982). The dried mature rice seeds of FB, GT and W T were grounded into fine 

powder with small mortars and pestles. For each sample, 0.05 g fine powder was used. 

Total protein extraction buffer (750 |il) containing 125 m M Tris-HCl, pH 6.8, 4 M 

urea, 4% SDS, and 5% P-mercaptoethanol was added and extracted by shaking at 

1,400 rpm at 25°C for 1 hr. The extract was centriftiged at 18,000 xgina microfuge at 

4°C for 20 min. The supernatant was recovered as much as possible without disturbing 

the precipitate and transferred to a new Eppendorf tube. The total protein extracts were 

stored at -80。C until used. 

3.2.2.2 Extraction of four fractions of rice seed proteins 

The rice seeds of FB，GT and WT, respectively, were collected at four developing 

stages (5,10,15,20 DAF) and freeze dried for 48 hr before protein extraction. Dry rice 

seeds were hand milled to remove the husks and were ground into fine powder using 

mortar and pestle. Proteins of different solubility were extracted from rice seeds 

according to Chrastil (1994). It consists of using four extraction buffers to extract 

different kinds of seed protein successively. This method could simplify the protein 
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mixture for better characterization in 2D PAGE. For each sample, 60 mg of seed 

power was used. Nine hundred microlitres of double-distilled water were added and 

water-soluble proteins were extracted with shaking at 1,400 rpm at 25°C for 1.5 hr. 

After centrifiiged at 18,000 x g at 4°C for 10 min, the supernatant was recovered as 

much as possible without disturbing the precipitate. The precipitate was used for 

extraction of salt-soluble proteins, by mixing with 900 ̂il 0.05M NaCl and shaking at 

1,400 rpm at 25。C for 1.5 hr. The mixture was centrifiiged at the same conditions as 

described above. The upper phase was recovered into a new Eppendorf tube. 

Nine-hundred microlitres 60% n-propanol was added into the retained precipitate. 

This was followed by shaking at 1，400 rpm at 25。C for 1.5 brand centrifliging at 4。C at 

18,000 X g for 10 min. The supernatant was retained as alcohol-soluble protein fraction. 

Finally, the precipitate was shaked with 900 |il 0.02N NaOH to obtain the 

alkaline-soluble protein fraction. After extraction, the water-soluble proteins were 

further purified by dialysis using the Slide-A-Lyzer 2K Dialysis Cassette (Pierce 

Chemical Company). The samples were dialyzed for 2 hat room temperature with 600 

ml of double distilled water. The ddEbO was discarded and replaced with fresh dcffibO 

for additional 2 h. The ddHzO was replaced again and dialyzed overnight at 4°C. The 

dialyzed protein solution was transferred to a new Eppendorf tube and centrifuged at 
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18,000 X g at 4°C for 10 min. The supernatant was collected. All the protein samples 

were stored at -80®C until used. 

3.2.3 2D gel electrophoresis 

3.2.3.1 Protein precipitation and quantification 

2D PAGE was performed according to the manufacturer's instructions 

(Amersham Biosciences, Sweden). The four fractions of protein extracts were 

concentrated by adding 4 volumes of precipitating solution [pure acetone, 0.3% 

dithiothreitol (DTT)] for 2 h at -20。C. After centrifuged at 18,000 x g at 4。C for 10 min, 

the supernatant was decanted and the white pellet was dried by vacuum. Finally, the 

pellet was resuspended in appropriate volume of rehydration solution containing 8 M 

urea, 4% (w/v) CHAPS, 0.5% (v/v) carrier ampholyte, 40 m M DTT, and 0.002% 

bromophenol blue. The concentrations of protein dissolved in the rehydration solution 

were estimated with the Bicinchoninic Acid Protein Assay Kit (Sigma, USA), using 

bovine serum albumin (BSA) as standard. Five microlitres of protein sample were 

10-fold diluted, 1 ml of working color reagent (reagent A: reagent B, 50:1) was added 

and incubated for 30 min at 37 °C. At last，the absorbance of each sample and standard 

was read at 562 nm. 
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3.2.3.2 Isoelectric focusing (lEF) 

Proteins were mixed with 250 ̂il rehydration solution including 8 M urea, 0.5% 

CHAPS, 0.2% DTT, 0.5% IPG buffer (pH3-10), 0.002% bromophenol blue and 

shaked at 1,400 rpm at 25。C for 1.5 hr and centrifuge at 4°C at 18,000 x g for 10 min. 

The supernatant was applied into the strip holder and the IPG strip was positioned in 

the strip holder. The IPG cover fluid was overlaid on the IPG strip to minimize 

evaporation. The first-dimension isoelectric focusing was performed by rehydration 

for 8 hr, followed by holding at 30 volt for 6 hr, 500 volt for 30 min, 1000 volt for 30 

min, and then 3000 vhr, 4000 vhr and finally lEF at 6000 vhr. After lEF，the IPG strips 

were stored in individual glass test tubes at -80。C until used. 

3.2.3.3 IPG strips equilibration 

Before carrying out the SDS-PAGE，the IPG strips in individual tubes were 

equilibrated for 20 min with 7.5 ml equilibration buffer containing 50 m M Tris-HCl, 

pH 8.8，6 M urea, 30%(v/v) glycerol, 2%(w/v) SDS, 0.002%(w/v) bromophenol blue 

and 75 mg DTT (freshly prepared) and followed by 20 min in 7.5 ml equilibration 

buffer with 187.5 mg iodoacetamide (lAA) instead of 75 mg DTT. These treated IPG 

strips were ready for the second-dimension SDS PAGE. 
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3.2.3.4 Second-dimension SDS PAGE 

The second-dimension SDS PAGE was run on a 12% polyacrylamide gel using 

the PROTEAN II XL Vertical Electrophoresis Cells (Bio-rad). The equilibrated IPG 

strips were inserted down to contact the gel slab. This was followed by sealing the IPG 

strips using agarose sealing solution [SDS electrophoresis buffer (25mM Tris-base, 

192 m M glycine, 0.1% SDS), 0.5% agarose, 0.002% bromophenol blue]. The 

second-dimension SDS PAGE was performed under 80 W at room temperature until 

the dye front was approximately 1 m m from the bottom of the gel. 

3.2.3.5 Silver staining of 2D gel 

The gels were silver stained according to the following procedures. All steps 

were performed with gentle shaking of the staining tray. The gels were first fixed with 

fixation solution (40% ethanol, 10% acetic acid and 50% distilled water) for 60 min. 

Then the gels were immersed in sensitizing solution (30% ethanol, 6.8% sodium 

acetate, 0.2% sodium thiosulfate) for 60 min. This was followed by washing the gels 

with distilled water three times, for 20 min every time and silver reaction in a 0.25% 

silver nitrate solution for 30 min. After rinsed them two times (1 min each time) the 

gels were developed in developing solution (2.5% sodium carbonate, 0.148% 

formaldehyde) until appropriate protein spots were found. The gels was then 
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transferred to the stop solution (1.5% Na2-EDTA) for 30 min and washed with distilled 

water two times, 10 min every time. Finally, the gels were preserved in preservation 

solution including 8.7% glycerol. 

3.2.3.6 Image and data analysis 

The stained 2D gels were scanned by 2D ImageScanner (Amersham Biosciences, 

Sweden). The spots were automatically detected by the software ImageMaster 2D 

Platinum, Version 5.00 (Amersham Biosciences, Sweden) with manual check. To 

compare the spots in different gels, the corresponding spots were automatically 

matched in all gels by ImageMaster with manual check. The spot quantity was 

expressed as its volume and automatically normalized as a percentage of the total 

volume of all the spots present in a gel by ImageMaster. Scatter plot analysis was done 

by the ImageMaster. 

3.2.4 MALDI-ToF mass spectrometry (Matrix Assisted Laser Desorption 

lonization-time of Flight) 

3.2.4.1 Sample destaining 

The available spots were excised from the silver staining gels with sterilized knife. 

Each protein spot was cut into small pieces and put into a new microtube, immersed in 
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40 mixture solution (30 m M potassium ferricyanide: 100 m M sodium thiosulphate, 

1:1). Once the dark stain had been removed, the spots were washed with distilled water. 

The protein spots were then equilibrated in 200 m M ammonium bicarbonate 10 min 

for 2 times. 

3.2.4.2 In-gel digestion with trypsin 

The destained protein spots were dehydrated with 25 |il acetonitrile (ACN) 3 

times, for 10 min each time and dried in speed vacuum (Gene Co. Ltd.) for 5 min. 

These spots were rehydrated with 10 |il trypsin in buffer (40ng/ul trypsin in 50 m M 

ammonium bicarbonate) and incubated on ice for 30 min. More 50 m M ammonium 

bicarbonate was added to cover the hydrated spots and digested at 30。C for overnight. 

In the second day, 20 \i\ 50 m M ammonium bicarbonate was added into the digested 

spots and sonicated for 10 min with ultrasonic cleaner [China Scientific (HK) Ltd.]. 

Then 20 of the second extraction buffer [ACN: 5% trifluoroacetic acid (TFA),1:1] 

was added and sonicated for 10 min again. After transferring the supernatant into a 

new 1 ml microtube, extraction was repeated for 2 more times with the second 

extraction buffer and 1 time with 10 |il acetonitrile. The supernatant extracts were 

combined and finally dried with speed vacuum. 
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3.2.4.3 Desalination of the digested sample with Zip-Tip^^ 

The vacuum-dried sample was resuspended in 10 pi 0.1% TFA. The Zip Tip 

CI8 (Millipore) was wetted by aspirated 10 \i\ wetting solution (50% ACN) into the tip 

and dispensed to waste for twice. The wetted Zip Tip was equilibrated by aspirating 10 

equilibration solution (0.1% TFA) into the tip and dispensed to waste twice. After 

binding the sample into Zip Tip by aspirating and dispensing 10 cycles, the Zip Tip 

was washed with 10 ̂il washing solution (0.1% TFA) by aspirating and dispensing into 

waste for 5 times. At last, the digested peptides were eluted with 2 |il elution solution 

(50% ACN, 0.1 % TFA) by aspirating and dispensing for 5 times in a clean 1 ml 

microtube. 

3.2.4.4 Protein identification by mass spectrometry and database searching 

After desalting with Zip Tip, 0.5\i\ of the peptide solution were spotted on the AB 

4700 proteomics analyzer plate and incubated at room temperature until air dried. 

Then 0.5 \i\ C H C A (a-cyano-hydroxycinnamic acid) solution was overlaid on the 

dried sample as a matrix. After matrix was air dried the target plate was loaded into the 

AB 4700 Proteomics Analyzer. Protein identification was done with ToF/ToF Optics. 

The mass spectrometry was used in positive ion reflector mode to generate a mass 

spectrum of the peptides in each sample. The software was used to process the mass 
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spectra and identify proteins by searching against the integrated NCBI non-redundant 

database and TIGR rice database (http://www.tigr.org/tdb/e2kl/osal/). The following 

parameters were used for database searching with the MALDI-ToF peptide mass and 

MS/MS data: monoisotopic mass accuracy; max 0.2 Da mass error; one missed 

cleavage using trypsin; iodoacetamide modified Cys and oxidation of Met as partial 

modifications. MS/MS was performed on all samples and the spectra were interpreted 

with the aid of GPS Explorer™. Only identification results with an expectation score 

below 0.05 (>95% confidence) were considered as positive identifications. MS/MS 

was performed on all samples and the spectra were interpreted with the aid of GPS 

Explorer. 

3.2.5 Detection of LRP fusion protein in 2D PAGE 

3.2.5.1 2D gel electrophoresis 

The appearance of LRP-fusion protein on 2D gel could be confirmed by Western 

blotting using anti-LRP antibody. The total protein extracts of FB and W T rice were 

precipitated by TCA/acetone precipitation method. Four volumes of precipitating 

solution (10 % TCA, acetone,and 0.3% DTT) was added and kept for 2 hr at -20°C. 

After centrifuged at 18,000 x g at 4°C for 10 min, the supernatant was decanted and the 

white pellet was washed by adding 200 |xl of pure acetone with 0.3% DTT for 1 hr at 
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-20®C. After centrifuged, the supernatant was decanted and the white pellet was dried 

by vacuum and then was resuspended in rehydration solution. The subsequent steps 

were the same as those mentioned in part 3.2.3 except the IPG strips used this time 

were 7 cm with pH 3-10. Thus the steps in isoelectric focusing was shortened: 

rehydration for 8 hr, followed by holding at 30 voltages for 6 hr, 500 voltages for 30 

min, 1000 voltages for 30 min and then 3000 vhr and finally 4000 vhr. 

The proteins in the IPG strips were separated by 12% polyacrylamide separating 

gel and a 4% polyacrylamide stacking gel. Electrophoresis was run with 40 voltages 

for stacking gel and 100 voltages for separating gel. After about 4 hr electrophoresis, 

the SDS-PAGE gels were removed from gel tank and prepared for Western blot 

analysis or stained with silver staining solution. 

3.2.5.2 Western blotting using anti-LRP antibody 

After separated by SDS PAGE, the proteins were transferred onto nitrocellulose 

memberane using BioRad Trans-blot electrophoretic transfer cell. Western blot 

analysis was performed according to A U R O R A western blot chemiluminescent 

detection system. Nitrocellulose membrane with the binding proteins was washed for 

5 min with PBST (Ix PBS with Tween 20) and blocked for 90 min with blocking 

buffer containing Ix PBS and 0.2% A U R O R A blocking reagent. After blocking, the 
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membrane was incubated with LRP-specific antiserum (LRP antibody : blocking 

buffer, 1:5000) (provided by H.W. Wong, CUHK) for 1 hr with shaking. The 

membrane was washed by PBST for 2 times, 15 min for each time. This was followed 

by reaction with 1:5000 (v:v) anti-rabbit alkaline phosphate conjugate (GIBOCOL) 

blocking for 1 h and washing with PBST for 2 times, 15 min for each time. Finally, 

LRP was detected using A U R O R A chemiluminescent system. 

3.2.6 Antiserum production 

3.2.6.1 Purification of glutelin and prolamin proteins 

Glutelins and prolamins from 2 g rice flour were extracted according to previous 

method. The protein from the supematants was precipitated separately in 4 volumes of 

pure acetone with 0.3% DTT for 2 hr at -20°C. After centrifugation at 18,000 x g at 4°C 

for 10 min, the supernatant was removed and the pellet dissolved in 10 ml solvent 

buffer (125 m M Tris-HCl, pH 6.8，4 M urea，4% SDS, and 5% p-mercaptoethanol). 

One millilitre of concentrated proteins was fractionated on 12% SDS-PAGE gel. Three 

duplicate gels were performed to obtain more fractionated proteins. Gel slices 

containing 57-kDa glutelin precursors, and the 13-kDa prolamins were excised and 

stored at -20°C until they were macerated and used as antigens. 
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3.2.6.2 Immunization of rabbits and mice 

The excised gels of prolamin or glutelin were mashed with minimal amount of 10 

m M Tris-HCl, pH 7.5，in small mortar and pestle. The purity and quantity of the 

purified proteins were checked by SDS-PAGE, using BSA as standard. Approximately 

the concentration of prolamin polypeptides and glutelin prolepetides were 2 pg尔 1 and 

0.8 respectively. Antibodies to the gel-purified prolamins and glutelin 

precursors were raised in rabbit and Balb/C mice, respectively. One rabbit and five 

mice were prepared by the Laboratory Animal Service Center (CUHK). For the initial 

immunization, Freund's complete adjuvant (Sigma, USA) was mixed with the proteins 

and the contents were injected into the animals. One hundred micrograms of prolamin 

polypeptides for rabbit and 10 ̂ ig of glutelin precursors for mice were used in each 

injection. Three more booster injections were given with the antigens and incomplete 

Freund's adjuvant (Sigma, USA) at two-week intervals. The animals were terminated 

and blood samples were collected one week after the third booster injection. The blood 

samples were allowed to clot for 1 hr at room temperature, and were centriftiged at 

3000 X g at 4°C to remove the blood cells. The recovered sera were stored at -20°C. 

3.2.6.3 Testing of antibody specificity 

Western blotting was performed to determine the specificity of the anti-serum. 
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Ten microlitres wild type total protein extracts (〜10 |ig) was mixed with equal volume 

of 2X sample loading buffer (40% sucrose, 0.125M Tris-HCl, pH 6.8, 2% SDS, 2 m M 

EDTA，0.01% bromophenol blue and 1% p-mercaptoethanol) and treated at 99°C for 

10 min. The treated samples were spinned down and loaded into the wells of 1.0 m m 

slab SDS-PAGE gel. After separated by SDS PAGE, Western blot analysis was 

performed using A U R O R A chemiluminescent system. The glutelin-specific antiserum 

and prolamin-specific antiserum were used as the primary antibody while the 

corresponding anti-mouse and anti-rabbit alkaline phosphate conjugates were used as 

the secondary antibody. The specificity of anti-glutelin and anti-prolamin was thus 

detected. 

3.2.7 Transmission electron microscopy (TEM) 

3.2.7.1 Sample fixation and section preparation 

Immature seeds (11-13 DAF) of FB, GT and W T rice were cut into half with a 

razor blade and the portion without the embryo was immediately fixed overnight at 

4°C with 0.1% gluteraldehyde and 4% paraformaldehyde buffered at pH 7.0 with 0.1 

M sodium phosphate. The fixed samples were rinsed three times in 0.1 M sodium 

phosphate buffer, 15 min each and then dehydrated at room temperature by a series of 
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ethanol concentrations as follows: incubated 30%, 50% and 70% ethanol, respectively, 

for 10 min. This was followed by 85%, 95% and twice of 100% ethanol for 20 min 

incubation. Tissues were then incubated in a gradually increasing concentration of 

white London Resin (LR white), starting with 1:3, 1:1 and 3:1 (v:v) LR white to 

ethanol for 1 hr each time, and with 100% LR white overnight at 4°C. Incubation in 

pure LR white was repeated once for 4 hr, after which the tissues were put in gelatin 

capsules for 24 hr at 60 to polymerize. Ultrathin sections were cut by Reichert 

Ultracuts microtome and mounted on grids. 

3.2.7.2 TEM observation 

The grids were floated on a drop of uranyl acetate stain for 30 min. The grids 

were then rinsed with distilled water 3 times, 1 min for each wash, and allowed to air 

dry. Microscopical observations were carried out with a transmission electron 

microscope (JEM-1200 EXII). 

3.2.7.3 Immunocytochemical observation 

The samples were fixed, dehydrated, embedded and cut as mentioned previously. 

Rice sections mounted on grids were incubated in 60 TBS blocking buffer with 3% 

BSA for 30 min at room temperature, followed by hybridization with 60 jil primary 
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antibody (1:30 LRP antiserum in Ix TBS with 1% BSA and 0.1% Tween 20) for 1 h at 

room temperature. Nonspecifically bound antibodies were removed by washing the 

section three times using Ix TBS buffer, 5 min each time. Then the secondary antibody, 

goat anti-rabbit polyclonal serum conjugated to 15 nm of gold particle, in 1:30 dilution, 

was incubated with the sections for 45 min at room temperature. Finally, the grids were 

washed 3 times, 5 min for each wash, in IX TBS and 2 min in distilled water and then 

allowed to air dry. The grid was stained with uranyl acetate stain for 30 min. The grids 

were than rinsed with distilled water 3 times, 1 min for each wash, and allowed to air 

dry before viewing under the TEM. 

In double labeling, the procedures were unchanged except 60 \i\ of the reaction 

buffer (Ix TBS with 1% BSA and 0.1% Tween 20) containing the primary antibody of 

anti-glutelin from mouse and anti-prolamin from rabbit was added to the section and 

co-incbated for 1 h. Thirty microlitres of the reaction buffer containing 1:30 dilution of 

secondary antibodies conjucated with gold particles (10 nm for anti-rabbit serum and 

15nm or 25 nm for anti-mouse serum) was added to the sections and these were 

incubated for another 1 hr. 
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Chapter 4. Results 

4.1 Proteomic analysis of high-lysine rice 

In the present study, two types of high-lysine rice, FB and GT lines, and wild type 

rice were used as experimental materials for the profiling study. To assess changes in 

the transgenic rice proteome during seed development, we performed 

two-dimensional SDS-PAGE on proteins of developing rice seeds from four time 

points, 5，10, 15 and 20 DAF. These time points are representative in the 

developmental process of rice endosperm (Duan, 2003). 

4.1.1 Extraction of proteins 

Seed storage proteins were initially classified into four categories according to 

their solubility properties by Osborne (1924). The four classes are albumins 

(water-soluble), globulins (saline-soluble), prolamins (alcohol-soluble), and glutelins 

(alkaline/acid-soluble). In this study, the four classes of proteins in every 

developmental stage of rice seeds under study were extracted according to their 

solubility properties. The extraction procedure not only differentiated various 

categories of proteins occurring in seeds but also simplified the protein mixture for 

characterization. 
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4.1.2 The proteomic profiles of different storage proteins in developing 

high-lysine rice seeds 

After sequential protein extractions, the four fractions of proteins from the four 

developmental stages of rice seeds were used for 2D PAGE. All four fractions of 

proteins were resolved in pH 3-10 gels. Additionally, the proteins extracted by weak 

alkaline were resolved in pH 6-11 gels. The 2D gels of 15 DAF were used as the 

reference maps for comparison. A total of sixty 2D SDS-PAGE gels was established 

for the three rice lines at four developing stages to study the effects of recombinant 

proteins on rice proteome. For each gel, the proteins expressed differently from the 

wild type rice were identified by MS/MS. Fig. 7-10 show the representative images of 

2D gels of rice proteins. In order to obtain a reliable result from 2D images for 

quantitative analysis, the rice samples collected from each developing stage were 

extracted at least twice for protein and three replicate 2D gels were run for each sample. 

Silver-stained spots from each developing stage were statistically counted using 

ImageMaster 2D Platinum, Version 5.00. To discard experimental variations in 2-D 

gels between different rice lines and the different stages, the volume of each spot was 

automatically normalized to the percentage of total volume of all the spots present in a 

gel by ImageMaster 2D Platinum, Version 5.00. 
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The proteins whose abundance varied in high-lysine rice were identified and 

summarized in Table 2. The proteins were identified first by PMF and then confirmed 

by MS/MS. There were several criteria for protein identification. At least four 

different predicted peptide masses need to match the observed masses for an 

identification to be considered valid. The mass accuracy should be less than 0.2 Da, 

and protein coverage should be higher than 10%. And only identification results with 

expectation scores above 54 (>95% confidence) were considered as positive. The last 

criterion is that in addition to technical repeats, at least two biological repeats were 

carried out. Combining the PMF and MS/MS results could lead to more reliable 

protein identification. For each identified protein, we have provided the spot ID, 

accession number, protein name, calculated pl/MW, experimental pI/MW, protein 

coverage, protein score and functional classification of the protein. 
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4.1.3 Quantitative analysis of protein spots 

Quantitative analysis of the protein spots varied in high-lysine rice was also 

carried out. For each seed developmental stage, the 2-D PAGE gels were analyzed 

with Imagemaster 2D Platinum, Version 5.00. The spot quantity was expressed as its 

volume and automatically normalized as a percentage of the total volume of all the 

spots present in a gel by ImageMaster. The expression of seed proteins were 

summarized in Table 3. The symbols “+，++, +++，++++ & +++++” correspond to the 

relative expression level ranging from，0.1-2, 2.1-5, 5.1-10, 10.1-15 to 15.1 or above 

(% volume), respectively. The symbol"-" means that a protein spot was not detected. 

At each developmental stage, the gels from three independent samples were used to 

quantitatively measure the proteins. 
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Table 3. The relative expression level of individual protein during seed 
development. 

WT - + + + + + + + + + + 
1 19 kDa globulin precursor FB - - + + + + 

CT - + + + 
WT + + + + + + + + + + + + + + 

2 19 kDa globulin precursor FB + + + + + + + + + 
GT + j j - + + + + + + 

“ WT " + + + + + + + 
3 Allergen RA5B precursor FB + + 

GT - + + + 
“ Wf I + +++ +++ 

4 Allergen RA5B precursor FB + 十 

GT - - + + 

Z • • ^ - + + + ~ 

5 r ^ s �ninljjbi^r FB + + 
(Bowman-Birk) 

1 - - + + 
WT - + + + + + + + + + + + + 

6 Hypothetical protein FB - + + + + + + + + + 
GT - ^ + + + + 
WT - + + + + + + + + + + + + “""“ 

7 Hypothetical protein FB - + + + + + + + + + 
GT - j j - + + 

“ wf - + ~ + + + + 

8 13 kda prolamin FB - + + 
GT - - + + 

— WT + + + + + + + + + + + + + + 
9 13 kda prolamin FB + + + + + + + 

GT + jj； + + + + + + 
W "++ + + + + + + + + + + -I-

10 13 kda prolamin FB + + + + + + 
GT + + - t^ + + 
wf + + +++ +++ 

11 13 kda prolamin FB - + + + 
GT ； + + + 
WT + + + + + +T+ 

12 13 kda prolamin FB - + + + 
GT - + + + 
— ； - +T+ 

13 13 kda prolamin FB - + + + 
GT - + + + 
WT + + + + + + + + 

14 Prolamin 7 FB + + + + + 
GT + + + + 
WT + + + + + + + + + + + + + 

15 Prolamin 7 FB + + + + + + + + 
GT + ^ + + 

16 Glutelin FB - + “ + + + + 
17 Glutelin “ FB - “ + + 一 + + + + 
18 Glutelin II precursor ^ + h ^ + + + + + + + 
19 Glutelin II precursor ^ + + + — + + + + + + + 
20 Glutelin II precursor ^ + + + + + + + — + + + 
21 loiutelin | FB | + + + + + + + 
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- 寂 纖 , 爆 f e 〜 4 l O I 3 & r 厂 “‘D适-‘、‘20窗~ 
P � ， ， WT - + + + + 

22 Endosperm lumenal pB + + + + + + + + + + + 
— b i n d i n g protein ^ . + + + + + + + + + 

^ + + + ~ 
23 Protein disulfide FB + + + + + + + + + + + 

—isomerase OT + + ++ + + + + 
“ WT - I + + + + + + 

24 Glutelin FB - - + + + + + + 
GT - + + + + + + + + + + + + + 

“ WT - I + + 
25 Glutelin FB + + 

GT + ++ 
WT - + + + + + 

26 Glutelin FB + + 
GT + + + + + + + + + + + 

preprolglutelin (AA -24 to WT " + + + 
27 476) [Oryza sativa FB + ++ ++ 

(japonica cultivar-group)] GT - - _ _ 
WT + T + + + + + + + 

28 Glutelin FB + + + + + + + + 
GT + + + + + + + + + + + + + 

preprolglutelin (AA -24 to WT + + + ~ + + 
29 476) [Oryzasativa FB + + + + + + + 

(japonica cultivar-group)] GT - + + + 
“ WT + + + + + + + + + + 

30 Glutelin II precursor FB + + + + + + + 
GT + + + + + + + + + + + + 

preprolglutelin (AA-24 to WT + + + + + + + + + 
31 476) [Oryza sativa FB + + + + + + + + + 

(japonica cultivar-group)] GT + + + + 
WT + + + + + + + + + + 

32 Glutelin FB + + + + + + + + 
GT + + j j - + + 
WT + + + + + + + + + + + + 

33 Glutelin FB + + + + + + + + + + + + 
GT + ^ j j - + + 

1 7 7 7 WT + + T + + + + + + T + + 
� G l u t e l i n t̂ n , , , 34 FB + + + + + + + + + + + + 

GT + + + 
WT + + + + + + + + + + + + + 

35 Glutelin FB - + + + + + + + + + 
[ I GT I + + + + 

The symbols “+，++，+++, ++++ & +++++，’ correspond to the relative expression level 

ranging from, 0.1-2, 2.1-5, 5.1-10,10.1-15 to 15.1 or above (% volume), respectively. 

The data was obtained from computer analysis. The symbol “-，，means that protein 

spot was absent. 
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4.1.4 Proteomic analysis of salt-soluble proteins 

Salt-soluble proteins were extracted with 0.5 N NaCl. From 2D PAGE, seven 

proteins out of more than 248 proteins are clearly with lower abundance in the 

transgenic lines as compared with the wild type line (Fig. 7 regions a & b; Fig. 12A & 

B). These proteins are designated as proteins spot 1-7. By MS/MS, spot 1 and 2 were 

identified as the 21-kDa precursor of 19-kDa globulin (Table 2). In 2D gels, they show 

almost the same molecular weight, 22.8 kDa, but with different pi points, namely 5.55 

(protein 1) and 5.75 (protein 2). In wild type seeds, they were accumulated relatively 

slowly from 5 to 10 DAF; but increased rapidly thereafter. In FB and GT seeds, they 

were expressed at a low level throughout their maturation and their expression levels 

were quite similar. 

Proteins 3 and 4 were identified as allergen RA5B precursor while protein 5 was 

trypsin inhibitor (Table 2). All of them are allergen-related proteins in rice and are rice 

albumins even though they were present in salt-soluble fraction. Their molecular 

weights are 15.7，15.8 and 14.6 kDa, respectively, and their pis ranged from 7.5 to 7.6. 

The expression of the allergenic proteins was first detected at 10 D A F and reached the 

peak level at 15 DAF and remained high until maturity in wild type seeds. For FB and 

GT during seed development, they were expressed in a much lower level, especially in 

GT seeds. The protein spots 6 and 7 are hypothetical proteins whose functions are still 
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Figure 12. Comparisons of protein spots of salt-soluble fraction in 2D gels 
after silver-staining. 
Panels (A) Spots 1 and 2 are 19 kDa globulin precursor with lower accumulation 

level in the FB and GT rice seeds than in the W T seeds; and (B) Spots 3, 4 and 5 

are allergenic proteins. They show reduced expression level in the FB and GT 

rice seeds than in the W T seeds. Spots 6 and 7，with reduced expression level, are 

of unknown function. 
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unknown (Table 2). They are abundance in W T seeds but less in FB and GT seeds. 

4.1.5 Proteomic analysis of alcohol-soluble proteins 

Alcohol-soluble proteins were extracted with 60% n-propanol. In rice seeds, 

only prolamins are soluble in alcohol-water mixtures so only around 20 protein spots 

were observed on the gel in this fraction. When compared the transgenic lines with the 

wild type by 2D PAGE, we found eight protein spots, designated as 8-15, all showed 

lower level of accumulation in both FB and GT lines (Fig. 8 region c and Fig. 13). All 

of the polypeptides were identified as the members of prolamin family by MS/MS 

(Table 2). Their pis range from 6.7 to 7.5. From the 2D gels, spots 8 and 9 have 

molecular weight of about 15 kDa while spots 10 to 15 with molecular weights of 13.2 

to 14 kDa. In both FB and GT seeds, the expression of prolamins 9，10 and 15，was 

detected at 5 D A F while 13，14 at 10 DAF and 8, 11 and 12 at 15 DAF. Their 

expression levels were quite low. In wild type seeds, prolamins 9, 10, 13, 14 and 15 

were accumulated at 5 D A F while prolamins 8, 11 and 12 at 10 DAF. They showed a 

common expression pattern of increasing level throughout the maturation and reached 

the peak level at 20 DAF. The accumulation of prolamins in W T seeds was much 

higher than that in FB and GT seeds. 
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Figure 13. Comparisons of protein spots of alcohol-soluble fraction in 2D 
gels after silver-staining. 
Spots 8，9，10,11，12，13,14 and 15 are prolamin polypeptides. When compared 
to the W T seeds, all of them show a decreasing accumulation in the FB and GT 
rice seeds during seed development. 

4.1.6 Proteomic analysis of alkaline-soluble proteins 

Alkaline-soluble proteins including glutelin were extracted with 0.02N NaOH. 

Among the more than 156 protein spots on the gels we found some variations in 20 of 

them are individually designated as proteins 16-35. Proteins 16-21 were only detected 

in FB rice seeds (Fig. 9 region d; Fig. 14A). By MS/MS, they were identified as 

glutelin (Table 2) and considered as the lysine-rich protein (LRP) fusion polypeptides. 

They had an apparent molecular mass of 70.5 kDa, which is consistent with the 
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theoretical value of LRP fusion protein (74 kDa). This fusion protein contains the LRP 

(17 kDa) inserted into the basic subunit of glutelin precursor (57 kDa). 

Immunoblotting was also performed to confirm the LRP fusion protein identity by 

anti-LRP antibody (Fig. 14A). The LRP fusion proteins were first detected at 5 DAF 

and the expression level increased greatly from 10 to 15 DAF and then slowed down 

from 15 to 20 DAF. 

In Fig. 9 region e, two spots exhibited marked increase in intensity in the 

transgenic rices when compared to the wild type rice. They were identified as BiP 

(spot 22) and PDI (spot 23)，both involving in protein folding/sorting (Table 2). The 

experimental molecular weight of BiP is 74.3 kDa with a pi of 5.3 which are coincided 

with the calculated ones. The experimental molecular weight of PDI is 63.5 kDa but 

the calculated M W is 33.38 kDa. This is because PDI is always in dimmer form, 

linking by intermolecular disulphide bond. In the wild type seeds, PDI appeared at 5 

DAF and was expressed stably until maturation while BiP appeared at 10 DAF and 

was accumulated until maturation (Fig. 14B). The accumulation of BiP and PDI is 

greater in FB and GT seeds when compared to W T seeds. In FB and GT seeds, BiP and 

PDI were expressed from 5 DAF and the amount of these two proteins increased 

drastically after 10 DAF. In FB seeds, the expression of BiP and PDI declined 
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somewhat during 15 to 20DAF. Temporally, their expression patterns are similar to 

that of the LRP fusion proteins, spot no. 16-21 (Fig. 14A). 

In Fig. 9 region f, a spot (# 24) showed extremely high intensity in the 2D-gel of 

GT rice seeds. It was identified as the glutelin precursor (Table 2). Its size is 53.1 kDa 

with pi of 8.3. Judging by the spot intensity, the amount of glutelin precursor is much 

greater in GT seeds than in FB and W T seeds (Fig. 14C). In GT rice, the glutelin 

precursor appeared at 10 DAF while it was detected at 15 D A F in W T and FB seeds. 

In the 2D-PAGE analysis, the acidic subunits can be separated into 23 spots with 

molecular weights ranging from 31 to 34 kDa and pi ranging from 5.8 to 7.6. Among 

the 23 spots(Fig. 9 region g)，10 spots changed in their expression in transgenic lines. 

They are designated as spots 25 to 34 (Table 2; Fig. 14D). The polypeptide of spot 25 

was expressed and accumulated at a higher level in GT seeds but at a much lower level 

in W T and FB rice. Likewise, the polypeptides of spots 26, 28 and 30 were of high 

amount in GT rice. They were first expressed at 5 D A F and their accumulation level 

rose to the highest level at 15 DAF and remained in the later developing stage. From 

the results, polypeptides 25,26，28 and 30 should be encoded by Gtl gene so that their 

expression was greatly enhanced in GT rice. In the W T and FB samples, spots 26, 28 

and 30 were expressed at a much gentle pattern during maturation. On the other hand, 

the accumulation of some acid subunit polypeptides was inhibited in GT seeds. Spots 
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27 and 29 were hardly found in the 2D gels while spots 31，32，33 and 34 were 

expressed at a lower level. 

The 2D PAGE was also carried out using pH 6-11 IPG strips. It is because the 

basic subunits of glutelin could not be separated in pH 3-10 IPG strips. In figure 10 

region h，a spot was found with a weaker expression in GT rice when compared to wild 

type rice. By MS/MS, it was identified as glutelin. The apparent molecular weight of it 

on the 2D gels is 19.8 with pi 9.9. It is thus considered as the basic subunit of glutelin. 

The expression level of glutelin basic subunit was quite similar in W T and FB rice 

while that of GT rice was shown to be down-regulated. 
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Figure 14. Comparisons of protein spots of alkaline-soluble fraction in 2D 
gels after silver-staining. 
Panels (A) Protein spots 16-21，appeared in FB rice seeds only, are identified as 

glutelin by MS/MS sequencing. From their molecular weights and western blot 

analysis using anti-LRP antibody, the protein spots are regarded as the 

LRP-fusion protein; (B) Spots 22 and 23 are endoplasmic lumenal binding 

protein (BiP) and protein disulfide isomerase (PDI), respectively. Both of the 

spots are accumulated at higher levels in FB and GT lines corresponding to the 

W T line; (C) In GT rice seeds, spot 24, identified as glutelin precursor, shows an 

obvious increase in its expression during seed development; (D) In GT rice seeds, 

four spots, 25，26,28 and 30，increase significantly in abundance with respsect to 

the W T and FB rice seeds, while the expression of other proteins 27, 29, 31, 32 

and 33 are down-regulated in GT sample; and (E) Spot 35, the glutelin basic 

subunit, shows lower expression level in GT rice seeds when compared to W T 

and FB rice. 
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4.1.7 Proteomic analysis of water-soluble proteins 

Water-soluble proteins were extracted with distilled water. Albumins belong to 

this group of proteins. From the gels，there are no significant differences in the 

accumulation levels of water soluble proteins in both FB and GT transgenic lines and 

the wild type (Fig. 11). 

4.1.8 Comparison of changes in protein expression patterns of specific 

proteins in the high-lysine rice 

After 2-D gel electrophoresis, quantitative analysis of the protein spots was 

performed, as mentioned in 4.1.3. The expressions of proteins were also compared by 

graphical method according to the results of quantitative analysis to elucidate their 

changes after the insertion of foreign genes (Fig. 15 & 16). The graphs will be 

discussed in the discussion part. 
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Figure 15. Protein profiles of four proteins, LRP fusion, glutelin, BiP and PDI, 
during FB rice seed development. 
The four proteins exhibit similar expression patterns during seed development, 

including LRP fusion protein, glutelin acidic subunits encoded by Gtl gene, BiP and 

PDI. 
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Figure 16. Protein profiles of glutelin proteins, BiP and PDI during GT rice 
seed development. 
The four proteins exhibit similar expression patterns during seed development, 

including glutelin acidic subunits encoded by Gtl gene, glutelin precursor, BiP and 

PDI. 
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4.2 Antibody production 

4.2.1 The production of anti-prolamin and anti-glutelin antibodies 

Anti-prolamin and anti-glutelin antibodies were produced for finding out the 

distribution of prolamin and glutelin in developing rice protein bodies. Total prolamin 

and glutein fractions were extracted from mature wild type rice seeds and were 

separated by SDS-PAGE. The bands of 13 kDa prolamin and 57 kDa glutelin 

precursor (Figure 17A) were excised from the surrounding gel and macerated. The 

purity of the gel-eluted prolamin and glutelin was confirmed by SDS-PAGE (Figure 

17B) and used in rabbit and mice immunization. 

g Purified Purified 
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75-mmm 75-im '^S 产 ‘ ， 、 
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Figure 17. Gel purification of prolamin and glutelin precursor from rice 
seeds. 
Panels (A) The proteins of prolamin fraction and glutelin fraction were resolved 

in 12% SDS-PAGE and stained in Coomassie brilliant blue; and (B) The purified 

prolamin and glutelin precursor were separated in SDS-PAGE and stained in 

Coomassie brilliant blue. The positions of 13 kDa prolamin and 57 kDa glutelin 

precursor are indicated by arrows. Key: M: Precision Plus Protein Dual Color 

Standards (Bio-Rad). 
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4.2.2 The specificity of anti-prolamin and anti-glutelin antibodies 

One rabbit and five mice were immunized with prolamin and glutelin as the 

antigens, respectively. Western blotting using the anti-sera was carried out to test for 

their specificity. The antisera of anti-prolamin and anti-glutelin were diluted to 1:1000 

and 1:5000，respectively. 

The immunoblot results (Fig. 18) reveal that the rabbit antiserum against 13 kDa 

prolamin can react with both 10 kDa and 13 kDa-prolamin of the total proteins of 

mature rice seeds. For the anti-glutelin from mouse #1，it appears to reacted with the 

57 kDa glutelin precursor, 37-38 kDa acidic subunits and 23-25 kDa basic subunits. 

The anti-glutelin antisera from mice #2 to #4 also gave the same reaction pattern as 

mouse #1. 
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Figure 18. Specificity of anti-prolamin and anti-glutelin sera. 
Total rice seed protein (20 |ag) was resolved in 12% SDS-PAGE and blotted onto 

nitrocellulose membrane. Blots were detected using anti-serum of prolamin or 

glutelin as primary antibody and corresponding alkaline phosphatase conjugated 

anti-rabbit IgG or anti-mouse IgG as secondary antibody. Key: M: Precision Plus 

Protein Dual Color Standards (Bio-Rad). 
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4.3 Transmission electron microscopy observation of rice 

protein bodies 

4.3.1 Morphology of protein bodies in high-lysine rice 

Prolamin and glutelin are accumulated in rice as major storage proteins. They are 

stored in two separate compartments, PB-I (prolamin) and PB-II (glutelin), in the rice 

endosperm. Prolamin-containing PB-I is spherical, with a diameter of about 1-2 |im, 

and exhibits concentric rings of varying electron density. Glutelin is deposited in 

PB-II which is irregularly shaped, about 2-3 ̂ im in diameter and of highly uniform 

electron density. Yang et al (2003) demonstrated that high expression of human 

lysozyme gene fused with rice glutelin led to formation of morphologically altered 

protein bodies. In this project, electron microscopic observation of developing rice 

endosperm revealed that both transgenic lines exhibited morphologically-changed 

protein bodies (Fig. 19). In the wild type rice, two types ofPBs, PB-I and PB-II, can be 

readily distinguished (Fig. 19A). Fig. 19B shows the types of PB observed in FB rice. 

Normal-appearing PB-II, but not PB-I can be seen. Instead，a new type of PB appears. 

This new PB has an irregularly shaped structure that with size varied from 0.5 ̂im to 2 

^m in diameter. It has higher electron density at the outer part while lower at the inner 

part and the whole PB is full of cracks (Fig. 19C). Many ribosomes are observed on 

the outside of new type of PB. On the other hand, in GT rice, both PB-I and PB-II 
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change in their morphology (Fig. 17D). For the spherical PB-I, the lamellar structure 

surrounding the PB becomes uneven. Several small inclusion bodies (0.1 ̂irn to 0.5 

|im in diameter), which have the same electronic density as PB-II, are bound to the 

peripheral of PB-I. Besides, the irregularly shaped PB-II appears normal, but the 

peripheral also bound with some small inclusion bodies that have the same electron 

density as PB-I. 
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Figure 19. Electron microscopic observation of developing endosperm at 
12 DAF from non-transgenic and high lysine rice plants. 
Panels (A) Two types of normal protein body (PB-I and PB-II) in the endosperm 
cells of a wild-type plant; (B) A new type of protein body full of cracks (arrows) 
is found instead of PB-I in the endosperm cells of the FB rice while normal PB-II 
is observed; (C) The new type of protein body is full of cracks. It has higher 
electron density at the outer part while lower at the inner part; and (D) Portion of 
an endosperm cell of the GT rice, showing some small inclusion bodies with high 
electron density (arrows) are fused to PB-I while some small inclusion bodies 
with low electron density (arrowheads) are fused to PB-II. Bar = 500 nm 
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4.3.2 Subcellular localization of storage proteins and LRP 

To obtain direct evidence for the localization of glutelin and prolamin 

polypeptides in the high lysine rice protein bodies, immimocytochemical studies were 

conducted using the antibodies for glutelin and prolamin. In all three types of rice, 

anti-glutelin antibody was co-incubated with anti-prolamin antibody in the 

immuno-reaction. Futhermore, LRP is a salt soluble protein which is localized in the 

cytosol of winged bean (Liu, CUHK). Where does LRP go when it is fused with glutelin 

and expressed in rice? In order to investigate the deposition of LRP fusion protein in FB 

transgenic seeds, Anti-LRP was also used. Results show that in wild-type rice, the 

prolamin is localized in circular shaped protein bodies (PB-I) while the glutelin in 

irregular shaped protein bodies (PB-II) (Fig. 20A). In FB rice，prolamin is localized in 

the new type of protein body (Fig. 20B) only. The signal for anti-glutelin antibody 

could be observed in PB-II and also in the new type of protein body. Figure 20C 

showed that LRP is distributed throughout all protein-body types. This means that the 

LRP fusion protein is targeted to both PB-II and the new PB. In GT rice, prolamin is 

deposited in PB-I and smaller inclusion bodies with low electron density. Glutelin is 

deposited in PB-II and in smaller inclusion bodies with high electron density (Fig. 

18D). 
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Figure 20. Immunoelectron microscopic observation of developing rice 
endosperm at 12 DAF from non-transgenic and high lysine rice plants. 
Panels (A) In W T rice, prolamin is localized in PB-I (10 nm gold, arrows). 
Glutelin is localized in PB-II (25 nm gold, arrowheads); (B) In FB rice, prolamin 
was localized in the new type of PB (10 nm gold, arrows). Glutelin is localized in 
PB-II and the new type of PB (15 nm gold, arrowheads); (C) Both PB-II and the 
new type of PB are labeled by the anti-LRP antibodies (10 nm gold, white arrows) 
in FB rice; and (D) In GT rice, prolamin is deposited in PB-I and small inclusion 
bodies with low electron density (10 nm gol4 arrows). Glutelin is deposited in 
PB-II and small inclusion bodies with high electron density (25 nm gold, 
arrowheads). Bar = 200 nm 
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Chapter 5. Discussion 

5.1 Protein profiling of LRP fusion protein and its effects on the 

expression of other proteins 

In the present study rice endosperm proteins of transgenic rice were profiled by 

2D PAGE, and differentially expressed proteins were analyzed by tandem mass 

spectrometry. In FB line, LRP fusion protein is produced. In GT line, more glutelin 

precursor and acidic subunits are synthesized. Generally, after the insertion of 

LRP-fusion protein or extra copies of Gtl gene, the expression of other storage 

proteins including albumin, globulin and prolamin are suppressed while that of BiP 

and PDI are enhanced. 

In FB rice, the LRP fusion protein consists of multiple spots with slightly 

different isoelectric points (pi) on 2D gels, but with the same apparent molecular 

weight. The pattern of multiple identifications of a single protein occurred from a 

series of spots with the same molecular weight but slightly different pi could be the 

result of post-translational modification, by phosphorylation (Cash et al., 1999) or 

deamidation (Sarioglu et al” 2000). Another possible cause is that these patterns could 

be artefacts of the acetone precipitation process (Antelmaiin et al； 2001). Further 
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detailed analyses are required to reveal the subtle changes in the charge of the 

polypeptide. 

The deposit of LRP fusion protein was initiated at 5 DAF, peaked at 15 DAF, and 

declined at 20 DAF in FB rice. This protein profile is similar to that of the Gtl gene 

(spots 25,26,28 and 30) (Fig. 15) which appears that the accumulation patterns of the 

introduced fusion protein and the native Gtl protein under the same Gtl regulatory 

sequences remain similar. From the expression profile, there is a slightly decrease in 

the accumulation of LRP fusion protein during 15 to 20 DAF. The possible reason is 

that the protein pattern of the LRP fusion protein on the 2D gels is affected by the 

accumulation of other proteins. Since equal protein was loaded for 2D PAGE, when 

the other alkaline-soluble proteins accumulate significantly at the latest stage, the 

proportion of LRP fusion protein in that fraction would decrease so that the amount of 

LRP fusion protein appears declining from 15 to 20 DAF. 

The accumulation of BiP and PDI in rice endosperm also changes in the FB rice 

(Fig. 15). Their expression profiles are up-regulated when compared with the W T rice 

while their patterns are similar to that of the LRP fusion proteins. This suggests that 

the production of LRP fusion protein in rice endosperm may be correlated with the 

expression of chaperones BiP and PDI. 

On the other hand, the accumulation of several storage proteins, including two 
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proteins which belong to globulins, three 14-16 kDa allergenic proteins and eight 

polypeptides of prolamin are down-regulated during grain development in FB rice. 

5.2 Over-expression of glutelin and its effects on the expression 

of other proteins 

In GT rice, Gtl gene was over-expressed. The results of 2D PAGE of the 

alkaline-soluble fraction show that the accumulation of the four polypeptides (spot 25, 

26，28 and 30) of glutelin acidic subunits are significantly enhanced during grain 

development when compared with the W T rice (Fig. 16). At the same time, the six 

polypeptides of acid subunits are repressed in GT rice development. In addition, the 

accumulation of glutelin precursor is dramatically increased in GT rice over wild-type. 

In wild-type rice endosperm, glutelin precursor is proteolytically cleaved to form 

acidic and basic subunits, resulting in low amounts of the precursor form. In GT rice, 

as extra copies of Gtl genes are inserted to the rice genome, the amount of glutelin 

precursor is perhaps too high to be fully processed into the mature forms so that high 

intensity of protein spot of glutelin precursor appeared in the 2D gels. Moreover, the 

amounts of BiP and PDI are also up-regulated when compared with W T rice and their 

accumulation patterns are the same with that of the polypeptides of Gtl gene. This 

indicates that the production of extra glutelin protein in rice endosperms is correlated 
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with the accumulation of chaperones BiP and PDI. 

Same as the FB rice，prolamin, globulin and albumin fractions are 

down-regulated in GT rice. The results of protein profiling of the high-lysine rice 

support the notion that expression of recombinant proteins especially storage proteins 

in abundant amounts will in turn suppress the expression of other storage proteins. 

5.3 Formation of malformed protein bodies and deposition of 

storage proteins 

The induction of recombinant proteins in the transgenic rice also accompanies 

changes in protein body morphology. In normal endosperm, prolamin and glutelin are 

synthesized on the ER, translocated into the ER lumen and then deposited in two 

morphologically distinct compartments, PB-I and PB-II, respectively. Prolamin in the 

ER lumen is packaged to form PB-I, whereas the glutelin precursor is transported first 

to the Golgi and then to a protein storage vacuole, where glutelin precursor is 

proteolytically cleaved to form acidic and basic subunits. The protein storage vacuole 

eventually forms PB-II. 

From the E M study, in contrast to the wild-type protein bodies, the circular PB-Is 

were not observed in FB rice at all. Instead, a large number of novel PBs which were 

irregular in shaped, full of cracks and of varied size were observed in addition to 
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normal PB-II. Many ribosomes were observed on the outside of the new type of PB, 

suggesting that these PBs were derived from ER. By immunocytochemical study, 

anti-prolamin antibody labeled the new type of PB while anti-glutelin antibody and 

anti-LRP antibody were labeled both PB-II and the new type of PB in the transgenic 

rice seeds. On the basis of these, the new type of PB thus contains a mixture of proteins, 

including prolamin, LRP fusion protein and possibly the glutelin. Theoretically, since 

LRP-fusion protein gene includes the glutelin promoter, signal sequence and coding 

sequence, the protein should be localized to PB-II only. But the observation that the 

LRP-fusion protein was also located in other type of PB is contrary to our expectation. 

The results demonstrate that the expression of LRP-fusion protein affects the protein 

trafficking pathway. 

In GT rice, both PB-I and PB-II could be observed but also with morphological 

changes. For the spherical PB-I, the lamellar structure surrounding the PB became 

uneven. Several small inclusion bodies, with high electronic density, bound to the 

peripheral was of PB-I. Besides, though the irregularly shaped PB-II appeared normal, 

its peripheral also bound with some small inclusion bodies low in electron density. 

Through immunocytochemical study, prolamin was found to deposit in PB-I as well 

as the small inclusion bodies with low electron density while glutelin in PB-II and the 

small inclusion bodies with high electron density. 
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5.4 Relationship between changes in protein expression and the 

Unfolded Protein Response 

The present study shows that the morphology of protein bodies alters in both 

types of transgenic rice. The prolamin and glutelin precursor polypeptides within the 

ER lumen may not be separated normally in the high-lysine rice endosperm. One 

possible mechanism, the Unfolded Protein Response (UPR) may have accounted for 

the changes. UPR is a cellular response to the ER stress. Under stress conditions, 

proteins in the ER may misfold and accumulate into aggregates. To prevent the 

accumulation of unfolded proteins, the ER initiates the UPR system, which is a unique 

signal transduction pathway that activates the transcription of BiP chaperones. 

Increased amount of BiP is synthesized to bind to the misfolded proteins and assists 

proper folding. UPR also mediates the up-regulation of other genes that encode 

ER-resident proteins including other chaperones and disulphide-bond forming 

enzymes such as PDI. The subsequent reactions down-regulate the expression of 

storage proteins which can alleviate the ER stress (Bertolotti et al, 2000; Schroder 

and Kaufman, 2005). 

In previous studies, the existence of UPR was proven in esp2 rice mutant. Large 

amount of glutelin precursor in esp2 endosperm associated with the increased amounts 

of BiP and reduced levels of prolamin (Kumamam et al., 1988)，symptoms of UPR in 
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esp2 endosperm. Such a condition has also been observed in the maize floury-2 mutant 

in which the accumulation of abnormally processed zein proteins mediated the 

elevated levels of BiP and PDI (Boston et al” 1991; Coleman et aL, 1995; Li and 

Larkins, 1996). 

The results of the present study support that UPR occurred in the high-lysine rice 

endosperm. In FB rice, LRP-fusion protein is expressed while in GT rice, glutelin is 

over-expressed. In both cases，the increased amounts of protein entering ER lead to 

stress condition in ER which triggers the UPR. This then enhances the expression of 

protein folding enzymes and affects the genes in the secretary and ER-associated 

protein degradation pathways, leading to the down-regulation of the storage proteins 

transporting and processing through the secretory pathway. In this project, the 

accumulation of BiP and PDI was found greatly increased in the FB and GT rice. 

Furthermore, the reduction in storage proteins including prolamins, globulins and 

albumins accumulation was also observed. Both findings support the occurrence of 

UPR in the FB and GT transgenic rice. 

The observed changes in protein body morphology in two types of high-lysine 

rice also imply that ER stress occurs when the ER is overloaded with recombinant 

protein. Yang et al. (2002) reported that the morphological changes in protein bodies 

in rice endosperm are due to the high lysozyme expression. The high-level expression 
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of recombinant protein distorts the trafficking and sorting of native storage proteins in 

rice endosperm and affects the normal protein-body formation. 

The FB rice has a pronounced effect on PB-I formation and no apparent effect on 

PB-II. One explanation for this biased LRP-mediated effect on only PB-I is that the 

glutelin and prolamin have overlapping but distinct profiles of gene expression. 

Glutelin is expressed at an earlier stage of seed development, in contrast to the 

prolamin, which is preferentially expressed during latter stages (Yamagata et al, 

1986). Hence, substantial amounts of glutelin and LRP-fusion protein have already 

been synthesized and packaged into PB-II before the onset of prolamin accumulation. 

When the synthesis of prolamin starts, ER stress is caused as the ER is overloaded with 

glutelin, LRP-fusion protein as well as prolamin. Although the LRP fusion protein is 

driven by the Gtl promoter/ GT signal peptide and the glutelin protein with its sorting 

signal, it was found to localize not only in PB-II but also in the new type of PB. It is 

possible that the LRP-fusion protein aggregates with prolamin in the ER, distorting 

PB-I formation and causing cracks to appear in the new type of PB in FB rice. 

For GT rice, it seems that PB-I and PB-II bind together at their early developing 

stage. However, how do the novel types of protein bodies originate and form remains 

to be studied. 
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5.5 Effect of transgenes on rice grain quality 

Rice grain quality is integrational characteristics including milling quality, 

appearance quality，cooking and eating quality, and nutritional quality. Each of them 

has its own parameters. According to previous studies, the T3 transgenic rice lines of 

FB and GT that we used in the present study showed a high degree of chalkiness (Liu, 

CUHK). A similar case was observed in floury-2 maize. The 24 kDa a-zein gene of 

floury-2 maize contained a site mutation so it could not be properly processed to form 

a 22 kDa a-zein. Subsequently, the 24 kDa a-zein was anchored to the ER membrane 

and remained on the surface of the protein body, resulting in the formation of 

asymmetrical and malformed PB and starchy endosperm (Coleman et al, 1995; 

Coleman et al, 1997). As LRP/glutelin fusion construct (FB) was strongly expressed 

in the transgenic rice seeds, it is possible that the abundant LRP/glutelin fusion protein 

could not be processed and folded properly in ER lumen, disrupting the normal 

development of the protein bodies and leading to higher chalkiness endosperm. As 

chalkiness lowers the appearance, cooking and eating quality of rice, it is necessary to 

make further studies of the chalkiness of the FB endosperm. And understanding the 

mechanism causing increased chalkiness in the high-lysine rice may allow its 

reduction and removal. The quality protein maize (QPM) gives us a good example to 

restore a vitreous kernel for the high lysine opaque2 {o2) maize through breeding 
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(Prasanna et al, 2001; Gibbon et al., 2003). Currently our lab is crossing the FB rice 

with hybrid rice varieties, aiming at selection of high yielding and high-lysine hybrid 

rice lines, with low chalkiness. With further understanding of the molecular events 

involving in over expression of LRP-fusion protein and glutelin, such as UPR and 

their effect in protein trafficking and protein body formation, we may be able to tackle 

the problem of chalkiness with biotechnological approach as well. 

5.6 Allergenic effects of transgenic rice 

The first reported allergens in rice were 14-16 kDa proteins which were detected 

using sera from patients allergic to rice (Matsuda etal, 1991). A 16 kDa protein was 

later recognized as a major rice allergen. This protein has significant amino acid 

homology to barley trypsin inhibitor and wheat alpha amylase inhibitor (Izumi et al., 

1992). Symptoms reported in rice-allergic individuals include abdominal cramping 

and similar pain, nausea, vomiting, rhinitis, rhinoconjunctivitis, asthma, contact 

urticaria, angioedema and anaphylaxis. There have been several attempts to produce 

hypoallergenic rice. Rice products of reduced allergenicity have been developed by 

specifically hydrolyzing or reducing allergenic proteins using protease, alkali, and 

ultra-high pressure treatment (Yamazaki & Sasagawa，1997). Some rice products of 

reduced allergenicity were proven to be effective for individuals hypersensitive to rice 
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and with atopic dermatitis (Watanabe et al, 1990). Furthermore, transgenic rice lines 

with reduced expression levels of the 14-16 kDa allergens are under development. 

From our proteomic results, the amount of allergen proteins at around 14 to 16 kDa 

were found dramatically decreased in the transgenic FB and GT rice when compared 

with that of wild type. This suggested that the high-lysine rice not only contains higher 

nutritional quality but can also reduce the allergenic effects on the patients. 

5.7 Future perspectives 

The effects of inserting LRP-fusion protein construct or extra copies of glutelin 

gene into rice genome were studied in the research. The next step is trying to alleviate 

the ER stress so that the protein sorting and trafficking process will not be affected or 

less affected by the expression of foreign proteins. Leborgne-Castel et al. (1999) 

over-expressed BiP in tobacco and alleviated ER stress caused by environmental 

factors. It is significant that the endosperm cell can adapt to aggregate and place the 

recombinant protein in storage form. Therefore, it will be of great interest to elucidate 

the pathway of recombinant protein trafficking in rice endosperm (wild type and 

transgenic), and to determine whether a membrane delimits the small protein bodies, 

and if such a membrane is derived from the ER, the Golgi apparatus or transport 

vesicles. We do not know if the ER stress in our case could be alleviated with 
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increased chaperone expression, but further studies to our understand how 

recombinant protein expression affects native protein trafficking during endosperm 

development should contribute to our effort of using genetic intervention for crop 

improvement. 
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Chapter 6. Conclusions 

This study attempts to comprehensively evaluate the protein profiles of the 

transgenic rice plants expressing the LRP/Gtl fusion genes and Gtl genes. From the 

results of proteomic analysis, the two transgenic lines share some similar properties 

which are not present in wild type: 

1. In salt-soluble fraction, the accumulation of two globulin proteins are 

down-regulated during grain development in FB as well as GT rice. Three 

allergenic proteins of albumin nature are also reduced significantly in 

accumulation in both FB and GT rice with reference to W T rice. 

2. In alcohol-soluble fraction, the levels of eight polypeptides of prolamin are 

down-regulated in both transgenic lines when compared to W T line. 

3. In alkaline-soluble fraction, the levels of chaperone proteins including BiP and 

PDI are increased in FB and GT lines with respect to W T line. 

There are also some findings that are specific to only one transgenic line: 

1. In FB rice, the LRP fusion protein are appears at 5 DAF, peaks at 15 DAF, and 

declines at 20 DAF, as revealed by 2D SDS-PAGE. 

2. In GT rice, for the alkaline-soluble protein fraction, glutelin precursor and the 

four polypeptides of glutelin acidic subunits increase in protein level during grain 
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development, when compared with W T rice. At the same time, six polypeptides 

of acid subunits are also down regulated in GT rice during development. 

T E M study showed that the FB rice contains normal-appearing 

glutelin-containing PB-II, but lacks the prolamin-containing PB-I. Instead, a new type 

of protein body irregular in shape and full of cracks can be observed. Both the 

LRP-fusion protein and prolamin are deposited in the novel protein body. In addition, 

changes in morphology of PB-I and PB-II occur in the GT rice. Small protein bodies 

can be seen to fuse with the surface of normal protein bodies. While PB-I fuses with 

smaller glutelin-containing PB, PB-II fuses with smaller prolamin-containing PB. 

On the basis of the results, we have shown that the expression of recombinant 

proteins alters the native protein expression level. The LRP fusion protein or extra 

glutelin in ER could trigger the Unfolded Protein Response in transgenic rice 

endosperm. The elevated levels of chaperones, BiP and PDI demonstrate the presence 

of the UPR. More BiP and PDI are expressed to deal with the accumulated proteins in 

ER. The UPR also suppresses the expression of other storage proteins to alleviate the 

ER stress, which agrees with our results that the expression of other storage proteins 

including albumin, globulin and prolamin were down-regulated. Furthermore, the 

expression of recombinant proteins affects the deposition of storage proteins, 

changing the morphology of protein bodies in rice endosperms. 
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