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Abstract 

Traffic monitoring has been a major component of Intelligent Transport Systems (ITS). 

In many ITS around the world, cameras have been installed on the road to monitor the 

traffic condition. In Hong Kong, differing from most of the current systems, a sequence 

of discrete pictures instead of video is captured. In this thesis a static image-based 

traffic monitoring system is developed. Several methods based on edge detection are 

proposed to estimate the number of vehicles on the road. It is less computational 

demanding than video processing and yields reasonable results on tracking changes of 

traffic condition by analyzing a time series of these static images. 
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摘要 

基於靜態圖像的交通監察系統 

交通監視是智能運輸系統一個主要部分，世界各地許多智能運輸系統都利用安裝 

在路邊的攝錄機，拍攝影片以評估交通情況。而香港有別於大多數當前的系統， 

以攝取間斷圖片序列代替影片。在這論文中，我們開發一個基於靜態圖像的交通 

監察系統，利用幾種以邊緣檢測技術爲基礎的方法，估計路上的車輛數量。比較 

起影片圖像處理，靜態圖像處理的計算需求不高，並能透過分析一系時間序列的 

圖片，合理地評估隨著時間變動的交通狀況。 
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Introduction 1 

Chapter 1 Introduction 

Traffic surveillance technologies have been one of the major components in road traffic 

management systems and traveler information systems all over the world. Traffic 

congestion can bring about significant economic loss to travelers due to time wasted in 

waiting. The problem is of growing concern to international cities with their growing 

population and increased motorization. Such cities rely on responsive road traffic 

surveillance systems in order to manage heavy traffic, detect traffic incidents and 

provide traffic guidance. Advances in technologies provide the means to collect latest 

traffic data in a large transport network that can support the building and solving of 

complicated traffic models as well as collecting latest traffic data in a large transport 

network. 

Many Intelligent Transportation Systems (ITS) provide road traffic information 

on the Internet as a part of its traveler information system. There is a trend towards the 

collection of real-time traffic data by video image systems with CCTV installed along 

roads. In spite of the increasing popularity of using CCTV for road traffic surveillance 

in different aspects such as travel time estimation and traffic safety enforcement; such a 

scheme is computational demanding as it requires continuous robust processing of tens 

of frames per second. Yet systems often aim at providing up-to-date traffic condition 

for the public before traveling rather than tracking drivers who exceed the speed limits. 

In such cases, analyzing a series of static pictures for monitoring traffic condition taken 

at less frequent intervals is a cost-effective alternative. Provision of less-frequently 
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updated static pictures relieves the usage of bandwidth in the internet, and reduces 

computational effort for analyzing images as well. Some cities like London', Leicester] 

in the UK, and New York City^ in the US have installed still picture cameras on the 

road for traveler's information through the internet. 

Taking Hong Kong as an example, the need for the development of Intelligent 

Transportation System was well recognized. Hong Kong's roads are among the most 

heavily used in the world, with over 520 000 vehicles on 1 928 kilometers of roads. 

There are about 270 licensed vehicles for every kilometers of road. With growing 

population and continuous development, road traffic management has become a great 

challenge. The currently implemented ITS in Hong Kong includes several management 

systems such as Area Traffic Control Systems, Traffic Control and Surveillance 

Systems and Automatic Toll Collection System etc. In the website of the Transport 

Department Hong Kong^ CCTV video clips are provided for several major roads in 

urban areas serving as traffic monitors. On the other hand, static pictures are also 

provided from more than 100 cameras installed on major roads all over the city. 

Nonetheless, current static image-based traffic monitoring in Hong Kong and 

other cities mentioned provides merely one snapshot of the road. There is room for 

improvement upon still-imaged-based traffic monitoring. For instance, traffic condition 

can be identified from the image automatically with machine-learning techniques. In 

this way traffic condition can be tracked using a time series of such images not only for 

traveler's information but understanding road traffic dynamics. The trend of traffic 

‘http://www.bbcxo.uk/london/travel/jamcams/camloco/camlist.shtml 
2 http://www.northlight-images.co.uk/cameras.html 
3 http://nyctmc.org/ 
4 The website of Road Traffic Infromation Services for Hong Kong: 
http: //traffic, td. gov. hk/SwitchCenter. do 

http://www.bbcxo.uk/london/travel/jamcams/camloco/camlist.shtml
http://www.northlight-images.co.uk/cameras.html
http://nyctmc.org/
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conditions over a time interval will definitely be more informative than only a single 

value at one single time-point about the traveling speed or travel time. 

In this thesis, the potential of using periodically captured still images for 

automatic road traffic condition monitoring is investigated. The proposed system is able 

to leam the image patterns from collected images and identify the traffic condition in 

terms of number of vehicles on the road, and hence traffic density. Training data is 

required which are collected photos with manually-counted number of vehicles on the 

road. It will be shown that the changes in traffic condition can be tracked by analyzing 

a sequence of pictures over time. 

The thesis is organized as follows. Chapter 2 introduces the studies on real time 

traffic data estimation, in particular techniques related to image-based road traffic 

surveillance, either by continuous image sequences from video or discrete static images. 

Chapter 3 introduces the framework of the proposed system and details about the 

learning methods. Chapter 4 shows experimental results for different learning methods 

and analyzes their performances. The strengths, weaknesses and potential of this system 

will be discussed in Chapter 5. 
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Chapter 2 Literature Review 

The following review discusses traffic data collection methods, especially vision-based 

traffic monitoring. These image processing techniques provide the referential 

framework for our proposed systems. 

2.1 Traffic data collection methods 

Traffic data collection is one of the core components in every ITS because all strategic 

planning and operations management of traffic are based on traffic information. 

Real-time traffic measurements such as speed, volume, occupancy are the target values 

to be estimated using different detection techniques. Inductive-Loop detectors are one 

of the most common devices. When a vehicles passes over the detector, signals are 

induced inside; therefore, the flow (the number of vehicles passing per unit time) and 

occupancy (the percentage of time that a unit length of road is occupied by vehicles) 

data can be directly estimated. By determining or assuming a mean vehicle length, the 

traveling speed and thus travel time can be estimated (see [1], [2] and [3]). Using only 

one single-loop detector on a road and assuming a fixed mean vehicle length have some 

limitation, and can be problematic when estimating speed as discovered by [1]. In 

recent years, installing two detectors at each end of a road segment has also been tried, 

since individual speed can be directly estimated from the time delay between sensing 

by the two detectors. Effort has been paid on vehicle reidentification techniques, 

referring to techniques that identify the same vehicle from signals at two detectors. 
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Advanced sensing technologies such as Automatic Vehicle Identification (AVI) are 

possible which requires installation of additional hardware. Indeed RFID technologies 

have been used by companies like TransCore^ as an alternative to loop detectors for 

vehicle reidentification. RFID readers are installed on the roads instead of loop 

detectors and tags are attached to vehicles so as to detect the vehicles. Besides, [4] 

makes use of dual-loop detectors, a kind of more advanced detector that explicitly tells 

the arrival time and leaving time of a vehicle on that detector. It matches vehicles by 

rough estimation of vehicle length. Some try using only the traditional single loop 

detector (see [5], [6] and [7]). [5] does not re-identify vehicles but estimates traveling 

speed from a vehicle's signal waveform. [6] uses cross-correlation of the flow at the 

upstream and downstream detectors, placed 0.5 miles apart, to estimate the travel time 

between the two. [7] assumes the travel time between two detectors can be regarded as 

drawn from the same probability distribution, and estimate the distribution from the 

cumulative upstream and downstream counts. Recent new technological developments 

include vehicle probes ([8]) and laser-based detection ([9]), and machine vision 

technologies, which has emerged with various advantages. 

The advantage of vision-based traffic monitoring systems lays in its wide area 

detection capabilities. Many systems analyze traffic data collected with Closed Circuit 

Television (CCTV) cameras, usually mounted on roadside poles at heights from 5 to 15 

meters. Once calibrated, the coordinates of the image can be mapped to the 

corresponding locations in actuality. This allows the efficient detection of spatial traffic 

5 TransCore is a company that provides advanced traffic management systems (ATMS). It implements 
automatic vehicle identification(AVI) by RFID technologies. Its homepage is on 
http://www.transcore.com/ 

http://www.transcore.com/
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parameters such as density, queue lengths, and speed variation at different positions on 

the road, which cannot be easily obtained by conventional loop devices. In addition, 

vehicle recognition with video provides ancillary information such as lane changing 

behavior, vehicle trajectories and car following behaviors which facilitate traffic flow 

analysis, speed enforcements and road safety monitoring [10]. There exist some 

variations of vision-based traffic-monitoring systems from literature in which CCTV 

are not installed at fixed position on road side. [11] proposes an aerial video monitoring 

method, meaning video taken from an airborne platform, though such methods are not 

as popular. 

Existing comercial solutions for traffic monitoring systems includes Traficon, 

which measures traffic data as well as detects incidents by video image processing. On 

the other hand ILog provides traffic management solutions that consolidates different 

sources like cameras, sensors and database for traffic analysis. Its graphical user 

interfaces enables real-time traffic monitoring and on-screen interaction with data 

sources and signaling equipments. These solutions show that traffic monitoring is 

currently combining different techniques for accurate estimation. Static image-based 

traffic monitoring can be one of the new techniques integrated to these latest systems. 

2.2 Vision-based traffic monitoring techniques 

Most vision-based traffic-monitoring techniques depend heavily on the continuity of 

video images. Although it is possible for the human eye to roughly judge road traffic 

conditions from a single photo, the same task for a machine becomes too hard to be 
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accomplished effectively as it lacks the capability to "understand" road features and 

recognize vehicles without detecting moving objects. Nevertheless, a few studies have 

proposed methods that can avoid directly recognizing moving objects. For example, [12] 

analyzes colors of an imaginary line across the lane of the road, and determines whether 

some objects pass through that line, using a neural network methods based on the 

history of the pixel colors. For this step, continuous video is not needed. Unfortunately, 

background differencing techniques (to be introduced in Section 2.2.2) are needed, 

which in turn depends on continuous video again. In short it is difficult to estimate the 

traffic condition without continuous video frames. Yet these studies shed some light to 

tackling the current problem. The following review are presented from two aspects, 

vehicle tracking approaches and image processing techniques related to vision-based 

road traffic monitoring. 

2.2.1 Vehicle tracking approaches 

In road traffic monitoring, the video acquisition cameras are usually installed at fixed 

position above the ground to obtain a view on the passing vehicles on the road. With a 

stationary camera view, the position of roads and lanes in the image can be well defined 

by on-site surveying and calibration during the installation of the camera. Spatial 

differences (of colors) and temporal changes of features are considered in object 

recognition. 
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Region-based tracking 

This is an explicit way of feature extraction directly recognizes the whole moving 

vehicle. The method identifies a 'blob', a region in the picture, associated with each 

vehicle and tracks its movement along the time series. These blobs are extracted by 

background differencing techniques. A background image is synthesized and updated 

continuously with image sequences. It is a background in the sense that there are no 

vehicles in the image. Any differences between the current frame and the background 

can only be attributed to vehicles. Therefore absolute differencing the two yields a 

“difference image” in which only blobs of vehicles remain. [13] reports that 90% of the 

vehicles were correctly detected and tracked. Simple classification of vehicles into two 

classes by blob dimensions was achieved also. However occluded vehicles may be 

grouped together as a large blob, mistaken as one large vehicle. 

Active Contour tracking 

This is similar to region based tracking but the boundaries of a vehicle, known as active 

contours, rather than the whole blob are considered. In [14] the contours are extracted 

with blobs from background differencing and frame differencing (to be introduced in 

Section 2.2.2). Similarly, the problem of vehicle occlusion may occur such that a 

contour includes more than one vehicle inside. 

Model-based tracking 

Studies like [15] classify vehicles by matching between the straight edges in the 

moving blob and 2D projection of predefined 3D model edge segments. It requires all 
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3D models of different vehicles to detect all vehicles. Clearly, this is not usually a 

feasible prerequisite due to extensive efforts in making 3D model for ALL possible 

vehicles. Again vehicle occlusion can ruin this approach. 

Feature-based Tracking 

Instead of recognition of the whole vehicle, some vehicle features are tracked. [16] 

detects different vehicle features in daylight and night-time. In daylight moving objects 

are recognized by frame-differencing algorithm. It aims at finding pixels with their 

color varying among 3 consecutive frames. When a vehicle is moving, the color of 

pixels at the peripheral of the vehicle varies along the frames, forming a hollow shape 

in differencing consecutive frames. These pixels with varying color are grouped or 

clustered into vehicles. Similar features are adopted in [17] too. At night, pairs of 

headlight moving in parallel direction are extracted as representation of vehicles. In 

[18], 'comer' features, which are defined as regions in the gray level intensity image 

where brightness varies in more than one direction, are tracked along the time frame as 

features of vehicles. Comers, which were tracked offset by the same spatial translation 

in every frame towards the exit region of the image, are grouped into a vehicle. The 

paper reports good accuracies in velocity estimation, but exhibits relatively larger error 

in flow rate and density estimation due to the difficulties in grouping 'comers'. 

Feature-based tracking is capable of withstanding vehicle occlusion because 

partially occluded vehicles may still show some of their features unblocked for tracking. 

Nevertheless grouping feature units to vehicles are the major difficulties to deal with. 
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Applying this approach to our problem is feasible only if the movement of feature units 

can be traced with frequent enough image updating, say, 1 picture per second. 

Vehicle passing detection 

An alternative to object tracking by extracting object features is to select some 

reference points on the road in the image, and determine whether a vehicle is passing 

through the reference points in the current frame. [12] selects an imaginary line across a 

lane on the road as the reference points. It applies background differencing, and then 

builds a fuzzy neural network to analyze the pixel values on the line. By determining 

whether the line is covered by vehicles in each frame, number of vehicles passing 

through the line is counted and covering time is measured. Thus flow and occupancies 

can be measured. The estimation of speed then requires additional information about 

average vehicle length. 

This method seems not to rely heavily on continuous image sequences. 

However, the core of this method lies in background update and background 

subtraction, which requires very frequent collection of background colors due to 

varying illumination condition and changing weather. In addition, the number of 

vehicles passing through the line cannot be counted without video. 

2.2.2 Image processing techniques 

The following two techniques are the most popular ones in effective tracing of moving 

objects from videos. They are usually adopted for vehicle tracking. 
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Frame differencing techniques 

Frame differencing refers to pixel-by-pixel subtraction of pixel colors between two 

consecutive image frames. Consider a moving object that displaces a little between two 

frames, differences of colors occur at the peripheral of the vehicle. They appear as 

edges in the difference image. This is why the techniques are sometimes referred to as 

“moving edge" detection. [16] and [17] employ this technique. This technique suffers 

from slow moving traffic because no edge may form. Moreover colors of vehicle may 

affect the clarity of moving edges formed. Partial vehicle occlusions may lead to 

confusing edge patterns. 

Background differencing techniques 

Background differencing techniques has gained popularity in moving object tracking. 

Besides vehicle identification, other video-based monitoring uses the same techniques 

such as tracing the ball in soccer match monitoring, tracing the body movement in 

video conferencing or broadcasting. It performs well especially when the view of the 

video clips stay fixed for long period of time, fitting the situation of many traffic 

monitoring video cameras. Further studies such as [19] and [20] show that even vehicle 

shadows can be separated from vehicle bodies. 

Background differencing techniques consists mainly of image segmentation, 

and background modeling. Image segmentation is the process to distinguish foreground 

object, ie. moving objects, from background. The current frame is subtracted (absolute 

difference) by the background image pixel by pixel, resulting in a "difference image". 

The operation can be described by equation (1) where Pi(x,y) is the pixel value at 
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coordinate (x,y) of image i, and pBG(x,y) is that of background image BG. Moving 

objects cause color pixel differences between current frame and background image, 

leading to a high pixel value in the difference image (pciifference(x,y)). Background objects, 

in contrast, remains similar color in current frame and background image, so the 

difference value is small. Therefore thresholding is usually applied on the difference 

image. It segments the image into patches of foreground and background objects by 

considering the magnitudes of pdifference(x,y). A binary image (black and white image) is 

obtained after thresholding. 

Pdifference >0 = |Pi O,少）—PBC jOj (^) 

\ (white p i x e l ) 朴 
力二 1 . ,、 . . (2) [0 (black pixel) otherwise 

The simplest way of thresholding is to decide a threshold value T such that pixel values 

larger than T in the difference image are regarded as foreground. Its mathematical 

representation is shown in equation (2). Note that higher T weakens the capability of 

object detection but lower Tmay falsely regard camera noise as foreground object. [13] 

determines a threshold value by considering the peak of the image histogram but in a 

rough manner. Other examples such as [21] and [22] use image histogram shapes or 

distribution to determine T. [23] estimates the standard deviation of camera noise and 

obtains T (denoted as THBD in that paper) by the standard deviation multiplied by 2.5. 

Considering that foreground objects occur as blobs in difference image, [24] 

sets a smaller T for pixels adjacent to foreground pixels because they are more likely to 

be foreground pixels but a larger Tfor pixels adjacent to background pixels. This shares 

the same concept with hysteresis thresholding which is sometimes used in edge 
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detection. In hysteresis thresholding, two threshold T] and T2 are used (Ti>T2) such that 

each foreground object must contains at least one pixel with value larger than T! and all 

other pixels with value larger than T2. The popular Canny Edge Detector ([25]) has 

included this thresholding step. Obviously considering neighboring pixels is more 

computationally expensive. An exhaustive survey on thresholding techniques can be 

found from [26]. 

The background modeling defines how to estimate and update the background 

image. Frequent update of background is needed since illumination condition on the 

road changes frequently due to weather and sunlight, causing changes in background 

colors. Common approaches in background modeling are first segmenting the image 

into foreground and background, and then use the pixels classified as background to 

update the background image. In background estimation, [14] uses Kalman filters to 

track the evolution of pixel colors along a time series. If historical values of pixels can 

be stored, background can be estimated as median value of each pixel location of all the 

frames in the buffer ([27]), assuming that for each pixel the background color occupies 

more than half of all frames in the sequence. [20] and [28] assume that the pixel value 

of foreground (vehicles), background (static objects) or even shadows of vehicles (as 

distinguished from vehicle bodies) each follows a distribution. Mean and standard 

deviation of each distribution are then estimated and updated. 

For updating the background image, a simple model like exponential smoothing 

can be used ([13], [14]). Some techniques consider the history of colors of a pixel. For 

instance, [23] updates a pixel as background only if the frame difference value is 
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persistently lower than a threshold THFD for consecutive several frames. [29] 

investigates the performance of different background estimation techniques. 

The accuracy of vehicle tracking with background differencing techniques are 

usually less promising in traffic jams. Consider that image segmentation requires an 

accurate background image so that background and foreground objects can be 

distinguished by pdifference(x,y) using (2). Under heavy traffic condition, the road is 

constantly covered by vehicles and motions are slow, thus no up-to-date background 

color is available. This leads to either contamination of the background image with 

vehicle colors or unchanged background since congestion, which is outdated with 

respect to the latest light condition. Inaccurate background image causes large values of 

Pdifference(x,y) for all pixcls, making foreground and background hardly distinguishable. 

The problem is serious if the background update is not frequent enough relative to 

changes of background colors. For example a pixel is covered by moving objects for 

only next 2 frames, where frame update period is 2 minutes. Then the background color 

of the pixel becomes as outdated as 4 minutes before. Together with the problem of 

vehicle occlusion in traffic jams, high traffic density is unfavorable to background 

differencing techniques. 
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Chapter 3 Methodology 

In this chapter, the framework of our system is introduced and the methods of 

estimating the number of vehicles from each image are discussed in detail. In order to 

avoid confusion, some terms are defined and explained first. 

Terms: 

Pixel: A point in the image. Its location is denoted by coordinates (x,y). The 

origin (0,0) of the image coordinates is at the top-left comer of the 

image. 

Pixel value: The value representing the color of the pixel. Each pixel has a pixel 

value. In a grayscale image, pixel value 0 means black color. Higher 

pixel value refers to brighter gray color of the pixel. In a binary image, 

or usually called black & white image, there are only two possible pixel 

values: 0 for black and 1 for white. 

Grayscale image: An image with gray colors ranging from black to white. In this thesis, 

grayscale image are all implied to be 8-bit grayscale image, meaning that 

there are 2^=256 possible pixel values: 0 to 255 from black to white. 

Sobel image: The resultant image after applying Sobel Edge Detector^ to a grayscale 

image. In the input image, difference in color of a pixel from its 

neighboring pixel causes outline of objects to be seen. Therefore these 

6 Sobel Edge Detector is one of the popular edge detection operators in image processing. The details of 
its operation can be found in Appendix A. 
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pixels, colored differently from it neighbours, are regarded as edges. In a 

Sobel image (which is a grayscale image also), edges exist as bright 

lines in contrast to the dark background. Larger inter-pixel color 

difference in the input image causes brighter edges and thus with higher 

pixel values in the Sobel image. 

Edge image: The image after processing with the Edge Detection module. It is an 

8-bit grayscale image since edges in the edge image are of various 

brightness. 

Edges: Bright pixels in the Sobel image and edge image, with relatively high 

pixel values. Each pixel is not clearly distinguished as belonging to edge 

or non-edge until a process called thresholding is applied. 

Binary image: An image with only two pixel values: 0 for black and 1 for white. It is 

commonly called "black and white image”. 

Thresholding: A process that distinguishes each pixel in an image as either black or 

white based on its pixel value. The resultant image is a binary image. 

With respect to an edge image, it distinguishes each pixel as either an 

"edge pixel" (white) or a "non-edge pixel" (black). 

3.1 Solution Concept 

Our static image-based traffic-monitoring system deviates from many studies of the 

image based vehicle recognition in that static photos are collected as input instead of 

continuous video data. In order to apply our methods, we assume that the camera is 
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installed at a fixed position above the ground and is aimed along the road in the 

direction of travel. In this perspective, vehicles far from the camera can be occluded by 

vehicles closer to the camera. It is also assumed that the road is straight. In our system, 

consecutive images are collected every 2 minutes, forming a sequence of images. The 

relative large time interval between two consecutive pictures makes the tracking of 

moving object impossible. Therefore we cannot directly estimate the traveling speed 

and flow of the road by tracking a particular vehicle. Instead the number of vehicles in 

the image is estimated from each image, which is used as an indicator of traffic density. 

The question we have to answer is "what features can be found from the image to 

in order to identify vehicles?" Although there is no video clips available, a sequence of 

pictures are provided which share the same background. Therefore by some image 

processing, it is possible to distinguish between background features and moving 

vehicles. The main concept of our method is identifying vehicles on the road by finding 

edges of vehicles. When a vehicle is on the road, differences in colors between the 

peripheral of vehicles and the ground, as well as difference in colors within the vehicle 

image, can be detected as edges. Similarly edges are found for the outlines of roads and 

trees too, but in contrast to vehicle edges, they occur at the same position in almost all 

the images. Therefore we can identify edges which exist at the same position in most 

images as background features and those exist in single images as moving vehicle 

features. In this sense we can use background differencing techniques to identify edges 

corresponding to vehicles. 
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In this thesis, 3 methods to process the edges are proposed in order to estimate the 

number of vehicles in each image. Combining these three methods is also experimented 

in our study. 

3.2 System Framework 

Feature Extraction Module 
； (Sobel Edge Histogram / 

Image i Edge Detection Edge Image E(i) Horizontal Line Detection / 
(8bit grayscale) — Module , 編 nr一口丨。、一 Block Detection I 

(8bit grayscale) combined Learning) 
• i 

Background image BG(i) 
(8bit grayscale) 

^ Background ，‘ 
1 update Module No. of vehicles 

Image i: The 丨出 image in the image sequence 
BG(i): Background image after updating with image i 
E(i): Edge image after processing image i with edge detection module 
Fig. 3.1 Framework of the proposed method 

The system framework is shown in Fig.3.1. The edge detection module and background 

update module constitute the modified background differencing technique. In the Edge 

Detection Module, edge detection is applied to the acquired image. Edges of moving 

vehicles and also edges of static features like roads and streetlamps are detected. On the 

other hand the background image is constructed in Background Update Module so that 

it contains edges of only static features but not those of vehicles. After that, edges of 

static features are cancelled out by subtracting the image after edge detection with the 

background, but those of vehicles remain. The resultant image is then sent to Feature 



Methodology 19 

Extraction module. For convenience of following discussion, this resultant image after 

Edge Detection Module is called an "edge image’，. 

There are two reasons for using modified background differencing techniques. 

Firstly, edges of moving vehicles and of static features can only be separated with 

background differencing techniques. Secondly, as explained in Section 2.2.2, an 

accurate background image cannot be estimated if the image update is not frequent 

enough. The major problem is that the color of the road changes quickly under different 

illumination conditions. Therefore we resort to update the edge features. Edges of the 

road remain relatively stable for long time. So less frequent update of background 

image is required if edges is updated instead of colors. 

After extracting the edges, three different ways of abstractions of the edge 

features is experimented to estimate the number of vehicles on the road, namely Sobel 

Edge Histogram, Horizontal Line detection and Block detection. From the former to the 

latter higher-level details are recognized and more computation are required. We will 

see if higher-level details extraction leads to more accurate estimation of number of 

vehicles. Sobel Edge Histogram simply considers the frequencies of pixels of different 

pixel values in the edge image. Horizontal Line Detection counts number of horizontal 

straight edges on the road and find the linear relationship between number of horizontal 

edges and number of vehicles. Block detection explicitly determines the location of 

each vehicle by considering the spatial distribution of edges on the road. 

The process of each component in the system is explained as follows. 
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3.2.1 Edge Detection Module 

We now describe the details of the Edge Detection Module. 

Grayscale _ ^ Sobel Edge __^ Background __^ Masking _ ^ Edge Image 
Image Detection Subtraction (Grayscale) 

Fig. 3.2 Procedures of Edge Detection module 

320x240 pixels； 8-bit： 75K 320x240 pixels, 8-bit： 75K ^ ^ ^ ^ ^ ^ ^ ^ ^ 

MM 
E ^ a ^ ^ ^ B s：： /： :： ：:: - j s jxi o E m ^ ^ e ^ v 
320x240 pixels; 8-bit; 75K i: 320x240 pixels, 8-bit; 75K 

^ m . 1 1 
Fig. 3.3 Image through Edge Detection Module. 
(a) Acquired Grayscale Image i. (b)Image after Sobel Edge detection: Sobel(i). (c) Edge Image after 
background subtraction: Sub(i). (d) Final Edge image after masking: E(i). 

When an up-to-date image is acquired, Sobel Edge Detection is first applied to find all 

the edges in the image. The Sobel image is obtained, which is then subtracted by the 

background edge image pixel by pixel. The background edge image, looking like the 

pictures in Fig.3.5, is a grayscale image that contains only edges of background features. 

Let us denote image i as the 产 collected image in the image sequence. The image 
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subtraction is represented by equation (3) where BG(i) is the current background image, 

Sobel(i) is the current Sobel Image and Sub(i) is the resultant edge image. Absolute 

sign is not taken in subtraction. This is because our background subtraction is operated 

based on edge detection. For edges of moving objects, they exist only in single image 

and the corresponding position in the background image should have no such edges. 

Therefore edges of moving objects must be of higher pixel value than the 

corresponding position in the background image. 

Pi(x,y): pixel value of pixel at coordinates (x,y) in image 1. 

Psub(i)(x,y) =max(psobei(i)(x,y)-pBG(i)(x,y) ’ 0 } (3) 

Subtraction cancels out edges of static features because they occur in the same position 

of both current frame and background image. In contrast edges of vehicles exist only in 

the current frame and thus remain after subtraction. In the next step the area outside of 

the selected road in the image is masked out (Fig. 3.3d). The mask is drawn manually. 

Fortunately the camera view is fixed, so that the mask can be established once and for 

all for each camera. The result is an edge image Eft). 

In our study, Sobel Edge detector is chosen among different common edge 

detectors. Generally, Canny edge detector ([25]) is recognized as the optimal edge 

detector according to several criteria, and it achieves especially good performance in 

localization to accurately mark edges, and minimizing the number of responses to a 

single edge, ie. only one-pixel thick for one edge. However Sobel edge detector shows 

stronger response to edges to give thicker edges. Thicker edges enable us to identify 

straight edges and regions densely distributed with edge pixels more easily. This favors 
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the processing in Horizontal Line Detection method and Block Detection method. Other 

examples using Sobel edge detector in vehicle detection includes [17], [30]and [31]. 

The description of the operation of Sobel Edge detection is provided in Appendix A. 

3.2.2 Background Update Module 

The Background Update Module constructs a background image which contains only 

static features like road markings, streetlamps and building structures. The edges in 

background image remain relative stable with respect to the time in terms of location 

and brightness, but they do changes slowly with different illumination. A clear example 

is shown in Fig.3.4, where a horizontal line on the road is obvious at night due to 

reflection of streetlamp lights but is unclear in daylight. It is therefore essential to 

update the background periodically. 

320x240 pixels; RGB; 300K 320x240 pixels; 8-bit, 75K mm 
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m a i ^ ^ ^ w ： � -jpixij 么 J i l l 
！ S ^ l f g ^ ^ ^ ^ � � ,320x240 pixels; 8-bit： 75K 

Fig. 3.4 Example background edge images. 
(a) An example image at noon, (b) An example background image at noon, (c) An example image at 
night, (d) An example background image at night. 

When a new image is acquired, the background image is updated by exponential 

smoothing. Let BG(i-l) be the background image, and C be the current estimate of 

background, then the updated background image BG(i) is estimated as follows: 

Pc(x ,y ) -Min {Psobei(i)(x,y), Ps�bei(i-i)(x,y)} (4) 

PBG(i)(x,y)= ( l-a)PBG(i- i)(x,y)+ a P c ( x , y ) (5) 

Let the 产 image be the latest acquired image. Pi(x,y) refers to pixel value at coordinates 

(x,y) of the latest image in the sequence and a is a learning rate parameter between 0 

and 1. The equation (4) estimates the current background. The aim of using the 

minimum function is to remove edges that exist in only in one single image. These 

edges with high pixel values that exist only in one image are probably due to moving 

objects. Fig. 3.4a illustrates that vehicle edges on one Sobel image are absent in the 

corresponding location of another Sobel image, so a minimum function picks the darker 

color(lower pixel value) as output, canceling out the vehicles edges in such a way. 
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Since it is possible that a pixel is occupied by vehicle edges for two consecutive 

pictures, false edges may be extracted in using equation (4). Therefore C is not directly 

adopted as the background. Instead it is used to update the background image by 

exponential smoothing, as described by equation (5). An initial background is needed 

for exponential smoothing. To obtain the initial background we can directly use image 

C, but start running the background update module for tens of pictures before the first 

picture to be studied in the sequence. Fig. 3.5 demonstrates how images are processed 

in the Background Update Module. 

_ I 320X240 pixels. 8-bit： 75K 320x240 pixels, B-bit, 75K 

_•麵 
a) Sobel(i) Sobel(i-l) Current EstimateC 

O E S f f l S ^ ^ ^ M V x j j m g g l ^ ^ ^ ^ ※ 、 - - 丨 w 叫 I E g g i g g a i g i g g y f - 、 j n j x i ! 
320k240 pixels' 8-t3lt 75K 320x240 pixels: 8-bit: 75K 330)f240 pixels; 8-bit: 75K 

mMm 
b) Old background BG(i-l) Current Estimate C New Background BG(i) 
Fig. 3.5 Image through Background Update Module. 
(a) Illustration of Equation 4. (b) Illustration of Equation 5. 

In equation (5), a higher a implies a more responsive update to the current 

estimate of background while a lower a tends to keep the background stable. Yet 

consider that smaller learning rate can reduces the effect of false edge formation in 

equation (4), but larger learning rate may contaminate the background. Therefore a low 
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value of a is preferred. In order to choose the value of a, an experiment was conducted 

to compare the performance of Sobel Edge Histogram Method (to be introduced in 

Section 3.2.3.1) with several values of a. Sobel Edge Histogram Method is chosen 

among other methods because it utilizes the edge image, after background subtraction, 

the most directly and should be the most sensitive to the effectiveness of the 

background update module. As a result a=0.05 is found to have the lowest mean 

absolute error (MAE). Nevertheless the differences of MAE using various a values are 

less than 0.2 from the lowest MAE, showing that fine tuning of a is not critical to the 

performance of our system. Therefore extensive testing of other a value is omitted. 

Details of the experiment can be found from Table 6 of Appendix C. 

3.2.3 Feature Extraction Modules 

The Feature Extraction Modules receives the edge image from the Edge Detection 

Module and estimate the number of vehicles in the image. In this section, we describe 

three approaches of extracting edge features for the estimation. Data mining techniques 

are used and thus training data is needed. This is a set of images with known number of 

vehicles, which is counted manually. Combining the 3 approaches is also experimented. 

3.2.3.1 Sobel Edge Histogram 

The image histogram of an edge image can be used to estimate the number of vehicles 

on the road. When the number of vehicles on the road increases, the number of edges 

increases. And the image histogram changes too. The image histogram of an image 
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gives the tally of the number of pixels of different colors in the image. In an 8-bit 

grayscale image, there are 256 pixel values representing 256 gray colors. The frequency 

hE(v) of each pixel value v in an edge image E is defined by equation (6). When there 

are more vehicles on the road, there are more edges. Thus more pixels are brighter. 

Then the distribution of pixel values in the histogram shifts to higher values (brighter 

pixels have higher pixel value). An illustration can be found in Fig.3.5a and b. 

or equivalently 

Z 1, where v=0, 1, 2, . . 2 5 5 . (6) 
{{x,y)\pE{x,y)=v} 

In order to find the mapping between hsfv) and the number of vehicles, the Sobel Edge 

Histogram method builds a 3-layer feed-forward neural network(FNN)^ for predicting 

the number of vehicles. In the input layer, there are 256 input nodes. Each node 

represents a hE(v) value in the Sobel Edge histogram constructed from the edge image. 

The hidden layer processes the input values with nonlinear functions (sigmoid function 

in our case) to give the output value. The output layer contains only one node 

representing the number of vehicles in the image. Because this is a neural network 

approach, training samples are required. These are a set of photos with the number of 

vehicles in the image counted manually. Detailed setting of the neural network is 

provided in Appendix B. 

7 A "feed-forward" neural network means a network that units in one layer are only connected to those 
in the next layer. In the 3-layer neural network, the 3 layers are connected from input layer, hidden layer, 
to output layer. Details about the neural network are provided in Appendix B. 
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m B E i ^ ^ K I ' ： ； ! H B E S a i ^ ^ f c i L , ‘ ^ x j 
320x240 pixels； 8-bit： 75K ； 320x240 pixels： 8-bit, 75K 
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Histogram of two edge images 

• L - - 2 vehicles 
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(b) 
Fig. 3.6 Relationship between number of vehicles and histogram. 
(a) Edge image of picture with 2 vehicles (b) Edge image of picture with 13 vehicles (c) 
Corresponding image histogram of Edge Images in (a) and (b) 

It is easily noticed as illustrated by Fig. 3.7 that vehicles in front of the camera are 

larger, thus their edges are longer. This makes the histogram based prediction easily 

fooled by position of vehicles from the camera. In order to balance the effect of 

vehicles at different distances from the camera, the frequencies hE(\0 have to be 

adjusted. We assume that the lengths of the edges are proportional to the width of the 

road at different distances from the camera. Hence, the tally given by one pixel is 1 

divided by width of the road, w(y), instead of being 1. The equation is given as follows: 
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width of the road on road y, measured in pixels 

而 X where v=0,1,2,...,255 (7) 
{{x,y)\PEix,y)=v) H y ) 

To distinguish the 2 ways of calculating hE(v), we call this modified method, which 

calculates hE(v) with equation (7), the Proportionate Sobel Edge Histogram. The 

previous method, which calculates hE(v) with equation (6), is called the Simple Sobel 

Edge Histogram. 

3 2 0 ^ 4 0 pixels; 8-bit; 75K 320x240 pixels. 8-bit, 75K 

fsliil H M 
a) b) 
Fig. 3.7 Edge image with different lengths of edges due to location of vehicles 
(a)Grayscale Image. (b)Corresponding edge image 

3.2.3.2 Horizontal Line Detection 

Horizontal Line Detection aims at estimating the number of vehicles by counting the 

number of horizontal edges given by vehicles in the edge image. It is assumed that the 

number of vehicles is linearly related to the number of horizontal lines found on the 

road as suggested by the plots in Fig. 3.8e. The exact form of this linear relationship is 

determined by regression on a set of "training images". 
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Implicitly it is assumed that the direction of traveling is towards (or away from) 

the camera. Therefore these horizontal lines on the road are actually vehicle edges, not 

road markings or any other objects. In case the direction of camera's view makes an 

angle with the direction of traveling, then vehicle edges are not necessarily "horizontal" 

with respect to the image. Yet we can rotate the image so that the vehicle edges are 

horizontal again. Before going into details, the procedure is summarized and illustrated 

in Fig. 3.8. 

Procedure: 
L Use thresholding to distinguish each pixel in the edge image as either edge or 

non-edge 
2. For each row in the image with least consecutive n edge pixels, identify a 

horizontal line (n=I/3 of width of the lane on the row y in the image) 
3. Count the number of horizontal lines. (If two horizontal lines are found on 

adjacent rows and one line is merely one pixel above or below the other, then 
they are counted as one line only) 

4. Estimate the number of vehicles from number of horizontal lines with trained 
linear regression model 

H S M ^ ^ ^ I.：.,：：-. 遍 圳 HBHESiS：…� .loi xi 
320x240 pixels. 8-bit： 75K 320x240 pixels, 8-bit; 75K 
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320X240 pixels； 8-bit； 75K 

C ) ^ 

No. of vehicles against No. of horizontal Lines 

y = 0.3537x- 1.3354 

：̂  iigiitntnŵ  • 
Q —‘ 1 1 1 I I 

0 10 30 ^ 4 0 50 60 70 
Number oi Lines 

e) 
Fig. 3.8 Image through Horizontal Line Detection. 
(a) Grayscale image, (b) Taylor-made edge image, (c) Edge image after thresholding, (d) Edge 
image with only horizontal lines detected, (e) Linear regression built from one sample of 600 
images 

The following explains the details of this method. Horizontal Line Detection starts with 

an edge image, but only horizontal edges are considered. Therefore there is a little 

modification to the Sobel Edge detection in the Edge Detection Module. Originally the 

pixel value for each pixel in the Sobel Image is calculated using equation (9), where Gx 

and Gy represent the magnitude of differences in color across the horizontal and 

vertical direction respectively. In this method, however, the pixel value is calculated 

with equation (8), merely considering color differences across the vertical direction. 
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^IH^J^I (8) 

G\: •YJGX^G/ (9 ) 

As a result, the tailor-made edge image is obtained, showing mainly horizontal edges. 

The next step is applying thresholding to the edge image. Unimodal thresholding of [22] 

is chosen among other thresholding techniques with the following consideration. In the 

edge image, a large amount of dark pixels are present while there are few bright pixels 

(with high pixel value). As a consequence, there is only one significant peak in the 

histogram (shown in Fig.3.6b). This is referred to as an unimodal shape of the 

histogram, and is exactly the assumption made in [22]. A binary image is the result with 

edges pixels in white and non-edges pixels in black. 

Then horizontal lines are identified from the binary image. There is a 

requirement on the lengths of the lines: let n be the minimum length of an identified 

horizontal line measured in pixels, n must be approximate to the width of a vehicle 

because we aim at vehicle edges. By inspection of the edge images in our study, n is set 

to one third of width of a lane (measured in pixels) as an approximation. As the width 

of a lane closer to the camera appears wider in the image but narrower for farther 

position, we express n in (11) for each row y with the help of w(y), the width of the 

road at y-coordinate value y. In short, we examine each pixel row y in the image, and 

identify a horizontal line with at least n consecutive pixels along the row. 
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w(y) : width of the road on row y, measured in pixels 
r : number of lanes on the road 

"W( y) 
width of one lane (measured in pixels)= (10) 

r 
width of one lane 

3 

二宇 (11) 
3r 

Finally the number of lines is counted. Sometimes two identified lines are on adjacent 

row and one line is directly below (one pixel below) the other, then they are regarded as 

one line only. In training the module, the number of horizontal lines is used to build a 

linear regression model with the number of vehicles as output variable (shown in Fig 

3.8d). In operation, the regression equation is used directly to estimate the number of 

vehicles from the number of horizontal lines. 

3.2.3.3 Block Detection 

In the edge image, not only are there edges on the peripheral of a vehicle, but also 

edges inside the area occupied by it due to edges from window frames or logos. In 

contrast there are no edges in the uncovered road area in the image (except edges due to 

road markings, which are mostly cancelled out after background subtraction in the Edge 

Detection Module). Therefore vehicles are located in regions densely distributed with 

edges in the image. 

Block Detection tries to estimate the location of a vehicle by finding a region 

more densely distributed with edge pixels than neighboring region. It considers all 

rectangular blocks anchored by every pixel in the image, and determines if the block 

represents a vehicle. The size of the block considered is determined by the position of 
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its anchoring pixel and is pre-set to be the size of an average vehicle. For each block, 

we compute its edge density. The block is determined to be representing a vehicle if its 

edge density is higher than that of neighboring blocks, or in other words, the block 

location is at a local maximum of edge density. However if two possible blocks are as 

close together, and as within one vehicle length of each other, they are considered the 

same vehicle. The procedures is summarized as follows and illustrated in Fig. 3.9. 

Procedure: 
1. Threshold the edge image to binary image 
2. Estimate the "edge density" of block B(x,y) on every location (x,y) 
3. Find local maxima of edge density (blocks with higher edge density then 

neighboring blocks) and identify it as a vehicle 
4. Group local maxima which are within one vehicle length and width from each 

other, as they are recognized as the same vehicle. 
5. Count number of vehicles detected mmm 

(a) (b) (c) 
IPCggĝ ^̂ ^̂ ĝl；； ,; jDj xj j^EEESl^^^^^S^^"�’ -leĵ si .̂jnixjl 

j 

• • • 
(d) (e) (f) 
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Fig. 3.9 Image through Block Detection. 

(a) Grayscale image (b) Edge image (c) Binary image after thresholding (d) Visualization of 
density(x,y) (e) Local maxima of density(x,y) (f) Local maxima of density(x,y) after grouping (g) 
visualization of located vehicles (blocks in white and vehicle edges in gray) 

The steps of Block Detection are more complicated than other methods. It first 

distinguishes each pixel in the edge image as either "edge" or ‘‘non-edge,，by 

thresholding of the edge image. Same as Horizontal Line detection, unimodal 

thresholding is used. In the second step, for every possible location of a vehicle on the 

road, a block is constructed in the size of an average vehicle and its edge density is 

calculated. Let (x,y) be the location of bottom left comer of a vehicle, a block B(x,y) is 

the region in the image covered by the vehicle. As shown in Fig. 3.10, the B(x,y) is the 

region to the top right of pixel (x,y). Parameters h and k are defined as follows to 

express the dimension of B(x,y), which is equivalent to vehicle width by vehicle height. 

On the other hand, the edge density of a block B(x,y), denoted density(x’y), is defined 

as the proportion of edge pixels to total number of pixels in the block. Equation (14) 
shows the calculation of density(x,y). 
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h : average vehicle width, in fraction of width of a lane on the road 
k : average vehicle height, in fraction of width of a lane on the road 

average vehicle width (in {width of one lane) 

巡 ） 

r (12) 
w ( y ) 

average vehicle height (in pixels)=/ : (^—) (13) 
r 

, . , � n o . of edge pixels in block B(x,y) 
density(x, y) 二 

total no. of pixels in block B(x,y) 
x+hw{y)/r y 

= - 丄 P � i , j � W h e r e = f if P - e l (i,j) is edge pixel 
[hw{y)Ir][kw{y)Ir] [0 otherwise 

x+hw{y)l r y 

Z Z POJ) 
_ j=y-kw{y)/r / 1 

~ hk[w(y)f 

厂 、 ‘ ~ W i d t h s and heights of B(x’y) are 
/ proportional to the road width in the image 

/ at different distance from the camera 

k*w(y)/r个 ~ I ^ ^ ^ 
，， Point (x，y) in blue and 

K • ^ Block B(x,y) in dark gray 
/h^w(y)/r _ 

Fig. 3.10 Rectangular block construction for each pixel on the road 

As a result, a 2D array of density(x,y) is formed with index x and y. Visualization of the 

density array is shown in Fig. 3.9c. In the third step, we determine block B(x，y) to be 

representing a vehicle if its edge density is the highest among its neighboring blocks. In 

other words the locations of vehicles are local maxima of edge density. This is based on 

consideration that a block covering the whole vehicle has higher edge density than 
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neighboring blocks covering only part of the vehicle. Nevertheless local maxima do 

exist even there are no vehicles on the road, though with low density. Hence, there must 

be a threshold value t such that only if density(x,y)>t, it is regarded as a vehicle. 

In addition, one vehicle may cause more than one local maximum in the density 

array, thus local maxima are grouped in the fourth step. Consider a vehicle found in 

block B(x,y). There cannot be another vehicle in the region within one vehicle length 

and width from the block's location, otherwise two vehicles would be too close and 

clash. We denote this region as A(x,y). Then any local maximum of density(x,y) in 

region A(x,y) are regarded as from the same vehicle. Therefore in this step, we scan 

from the bottom of the image to the top, correspondingly from near side of the road to 

the far side. For each local maximum density(x,y) larger than t, any other local 

maximum in A(x,y) is erased. At last the number of vehicles can be counted. 

The dimension of A(x,y) is defined below using equations (15)-(17), with the 

help of Fig. 3.11. Let (x/,少/) be the left-bottom comer of an identified vehicle. An 

imaginary line (dotted line in Fig. 11) is drawn as the left side of the vehicle with 

x-coordinates Xc(y). (15) requires the imaginary line to be parallel to the traveling 

direction on the road surface. (16) finds 少2 such that interval [yi.yi] represents the 

average vehicle length I on the road. (17) confines y-coordinates of A(x,y) to be one 

vehicle length from yj, and x-coordinates to be one vehicle width left and right from Xc. 
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Local maximum (Xi,yi) in spot / • 
Region A(xi,yi) in quadrilateral / • • 
Block B(xi,yi) in rectangle / / 

/ • Erased local maximum 
/ • vehicle / in red spot 

Left Side of the road I vehicle length/=£ 

z ^ Imaginary line: left side of vehicle 
r / 1 1 j (dotted line) 

/c(y)-XL(y)/ J 一 T J 一 

r / w ( y ) f j Bottom-left corner of the located 
/ / 一 vehicle 

^ J 
Fig. 3.11 Notations of variables in the image 

XcfyJ ： the x-coordinates of the left side of located vehicle 
xifyj : the x-coordinates of left side of the road on row y in image coordinates 
y2 : the y-coordinates of the rear end of vehicle 
d(y) : the actual distance along the traveling direction represented by a pixel on row 

y in image coordinates, in meters per pixel 
I : the average vehicle length, in meters 

l = r d ( y ) d y (16) 

A(x,,y,) = \(x,y) {y, < y < y,) A(\X-x^(力| < (17) 

. V 厂 / J 

In Block Detection method, some parameters are needed and obtained as follows. w(y) 

is measured in pixels and thus is observed from the image, h and k can be determined 

by collecting average actual widths and heights of vehicles and width of the road. In our 

case h=k=i/2. /，average vehicle length, is usually assumed in most research literature 

but can be possibly found from the Transport Department. However,少2 and Xc(y) are 
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calculated based on d(y), which requires a calibration. The method proposed by [17] is 

used, which approximate d(y) as a linear function of y-coordinates of the picture. The 

length (in pixel) of a moving vehicle is measured in each frame to estimate d{y) by 

(18) (Fig. 3.12). In our case, moving vehicles are not available. But the lane dividing 

lines, whose length of each segment remains constant along the road, are used instead 

of vehicles to calibrate d(y). 

� length of vehicle(in feet) , i � � 
di^y) = ( 1 8 ) 

length of vehicle(in pixels) 

The threshold t in the third step is determined by experiment. Indeed if t is too high, 

vehicles may be ignored and this leads to underestimation of number of vehicles. If t is 

too low, even little road markings may be identified as vehicles and overestimation 

occurs. Both lead to large error of estimation. Therefore we can experiment different 

values of t to "training" images and find one which minimizes the mean absolute errors. 

M A E of balanced 600samples 

y coordintes of centroid 02 0.4 0.6 (u 
of the object threshold t 

a)' b) 
Fig. 3.12 Estimation of d(y) and threshold t 
(a) Estimation of d(y) by linear regression, (b) Finding optimal t 
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3.2.3.4 Combined Learning 

The above learning methods are all based on edge detection but treat the spatial 

distribution of edges in different ways. While one method may prevail over another in 

some situation, each method may have its own strength. In order to gain advantage of 

different methods, combining all methods is experimented. The above learning models 

are trained separately at first, and give their individual prediction values. Then another 

learning model is built on top of these predictions. The input parameters are predictions 

from individual models and the output feature is the number of vehicles. 

A piecewise linear regression model is chosen as the learning model based on 

the following consideration. It is conjectured that the accuracy of each method varies 

with different traffic conditions. For example, the block detection method probably 

demonstrates the same weakness as region based vehicle tracking based on background 

differencing techniques. During heavy traffic, vehicle occlusion causes difficulties in 

identifying vehicles separately. Therefore it is possible to divide the sample into several 

pieces. For each piece prediction is made as a linear combination of individual 

predicted values. The coefficient in each piece of linear curve reflects the relative 

accuracies of prediction for different traffic condition. Therefore a tree-based piecewise 

linear model is built. 

An example of the tree-based piecewise linear model is shown in Fig. 3.13. The 

WEKA package provides the implementation of this model. The model is named M5 

Tree Model. It firstly builds a decision tree to minimize the intra-subset variation of the 

class value (the number of vehicles in our method) down the branch. Then linear 
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regressions is constructed on each leaf of the tree. The details of M5 Tree Model can be 

found from [32] and [33]. 

Cars : predicted values of combined learning 
pSobel : predicted values from Proportionate Sobel Edge Histogram method 
PH-Line : predicted values from Horizontal Line Detection method 
pBlock : predicted values from Block Detection 

If(psobei<=8.413) 
Cars = 0.4695 尔psobei+ 0.2442 本pH-Line+ 0.2919 泳pBlock - 0.1528 

else 
Cars = 0.715 尔psobei+ 0.1419 *pH-Une +0.0128 本pBiock+ 1-997 

Fig. 3.13 An example M5 Tree built in training combined model 
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Chapter 4 Experiments and Evaluation 

In this chapter experiments are conducted to evaluate the performance of the static 

image-based traffic monitoring system. Unfortunately no similar studies are available 

for comparisons because our measurement, the number of vehicles, is different from 

others. 

4.1 Setup and Data Collection 

Images are collected from the website of the Traffic Department of Hong Kong^. Two 

lanes on the bridge over Waterloo Road towards the south are the target for traffic 

density estimation. To prepare the pool of training data, sequences of photos were 

collected at different time periods between 17 Sept 05 and 13 Feb 06 by downloading 

one photo every two minutes. Considering that headlights of vehicles in night condition 

may cause different image patterns of edges, sampling, model training and testing of all 

methods are conducted separately for daylight condition and night condition. Based on 

the consideration of headlights, a picture is classified as night photo if all vehicles have 

switched on headlights in the image. Separation is done manually only in this stage 

because the aim is merely comparing the performance under two conditions. In spite of 

lacking automation, according to the mentioned rule, it is usually easy to find one 

picture among a sequence of pictures as the dividing case between day and night. 

Picture by picture inspection is not necessary. 

8 http://traffic.td.gov.hk/selection_c.htm 

http://traffic.td.gov.hk/selection_c.htm
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Since the traffic condition is dominated by free traffic everyday, random 

sampling may reduces prediction power for heavy traffic. Yet accurate information in 

heavy traffic is probably more important to drivers than free traffic. Therefore balanced 

sampling is used, trying to improve predicting accuracies. It is also compared with 

random sampling to investigate the effect of sampling method on the prediction 

accuracy for different traffic condition. To obtain a balanced sample, the photos are 

divided into three groups: 0-4 vehicles, 5-10 vehicles, 11-20 vehicles. Each sample 

contains the same proportion of pictures belonging to each group. In random sampling 

photos are randomly drawn from the pool. Image processing and implementation of 

learning methods are implemented with Java including Image J 1.36 package^ and 

Weka 3.3 package. The program runs on Windows platform of a PC with CPU at speed 

2.8GHz and memory of 1GB. 

4.2 Evaluation Criteria 

The objective of this system is to estimate the traffic condition in terms of number of 

vehicles on the road, which is an indicator of traffic density. The true value of the 

number of vehicles in each image is obtained by direct manual counting. Four methods, 

namely, Simple Sobel Edge Histogram, Proportionate Sobel Edge Histogram, 

Horizontal Line Detection and Block Detection all require training with labeled 

samples. 10-fold cross validation is used for evaluating the learning methods as the 

sample size is relatively small compared with the number of distinct values in 

9 ImageJ is an open source package for JAVA programming which provides tools for image processing. 
It can be found from the website : http://rsb.info.nih.gov/ij/ 

http://rsb.info.nih.gov/ij/
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prediction (0 to 20 vehicles). Mean absolute errors (MAE) and root mean square errors 

(RMSE) are used as common measurements of error of numerical predictions. The 

formulae are shown in equation (19) and (20) where pi and a, represents the predicted 

number of vehicles and actual number of vehicles (by manual counting) for each 

instance i respectively. 

Z 。， 

飽五=each instance 丨 (19) 
no. of instances 

Z ( A - “ � 2 

服 见 = � 卜 ― n e e 丨 ( 2 0 ) 
V no. of instances 

To obtain a percentage measurement, mean absolute percentage error (MAPE) is 

commonly used. However zero values exist in a,, actual number of vehicles, which is a 

denominator in calculation of MAPE in equation (22). Therefore MAPE is not a valid 

in our evaluation. A simpler measure is used instead, percentage mean absolute error 

(PMAE). We define PMAE in equation (21) as MAE divided by average number of 

vehicles per instances of the sample. Zero PMAE refers to absolutely accurate 

prediction and 100% PMAE means that MAE is as large as the average number of 

vehicles in the sample. Moreover the accuracies of prediction may vary with traffic 

condition, so error measurements will be also calculated separately for each of 3 groups 

of photos mentioned before (0-4, 5-10 and 1 l-20vehicles). 

P M A E = m ( 2 1 ) 
a 

z ^ 
TL yf 4 T̂T" each instance i “/ /on� 
MAPE = (22) 

no. of instances 
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4.3 Experimental Results 

Observation of the experiments results are explained in this section, while the 

numerical data from our experiments are provided in Appendix C for convenience. 

4.3.1 Comparing overall accuracies 

The overall accuracies of prediction by different methods are measured at first. Fig. 4.1 

shows the MAE at different sample sizes (150, 300, and 600 instances) by each learning 

method using balanced sampling. In overall, Proportional Sobel Edge Histogram 

performs the best among the individual learning methods. Its mean absolute error is 

1.23 at sample size=600. Horizontal line detection makes slightly larger error. For 

Simple Sobel Edge Histogram, its error at sample size=150 is 1.85, larger than any 

other individual methods. But with larger sample size its error is close to that of 

Horizontal Line Detection and Proportionate Sobel Edge Histogram. Surprisingly 

Block Detection does not perform stably. Its error is 2.16 at sample size 300 in spite of 

scoring 1.44 at sample size 150, and the overall error is the highest except sample 

size=150. The next section(4.3.2) will help us understand its strange performance. On 

the other hand, we can see the advantage of combining methods, scoring 0.95 when 

sample size is 600, about 0.28 lower than Proportionate Sobel Edge Histogram. 

It is observed that the decrease of error from sample size 300 to 600 is generally 

less than the reduction from 150 to 300, except Block detection that behaves strangely. 

For example the MAE of combined learning scores 1.91, 0.96 and 0.95 for sample size 

150，300 and 600 respectively. This suggests that further increase in sample size will 

hardly reduce the error significantly. 
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The patterns of RMSE and PMAE in Fig. 4.2 and 4.3 respectively are similar to 

those of MAE. The PMAE shows a slight increase for sample size 300 to 600. This is 

probably due to smaller average number of vehicles in the sample ( a =6.83 and 5.97 for 

sample size 300 and 600 respectively) only. 

The lowest percentage error at sample size 600 among the individual methods is 

20.6% of the Proportionate Sobel Edge Histogram. Combining methods reduces the 

error further to 16.0%. For convenience of the comparisons in later parts, MAE will be 

used as the only measurement. 

Mean Absolute Error against balanced sample size 
2.5 

2 ~ • ~ Simple Sobel 

叫 5 一 Prop, sobel 

I ^ … •…H - L i n e 

1 — X Block 

0.5 Combined 

0 ‘ ‘ 

150 � 3 0 q � • 600 
Sample Size 

Fig. 4.1 MAE against sample size (balanced sample) 
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Root Mean Square Error against balanced sample size 

3 - V X I • Simple Sobel I 

2.5 - I Prop. Sobel 

S 2 - ^"^^^^^^^Irrriiiti^ I H-Une 

_ 1.5 - N I I ^ ~ B l o c k 

1 - I Combined 

0.5 - ‘ 

0 ‘ ‘ ^ 

150 300 600 

Sample Size 

Fig. 4.2 RMSE against sample size (balanced sample) 

Percentage Mean Absolute Error against balanced 

35.0% sa_]e s i z e _ ^ 

3Q 0% - K ~ • ~ Simple Sobel 

25.0% - — 一 Prop. Sobel 

1 20.0% - 、 ^ … • • • - H - L i n e 

, 1 5 . 0 % - ^ ^ - 一 — B l o c k 

10.0% [ I- Combined 
5.0% -

0 . 0 % ‘ ‘ 

150 。 3pO。. 600 
Sample Size 

Fig. 4.3 PMAE against sample size (balanced sample) 

4.3.2 Accuracies for different traffic conditions 

In this section, errors are broken down by photo groups according to number of 

vehicles on the road. This reveals the variation in performance in different traffic 

conditions which cannot be observed from overall MAE and RMSE in Fig. 4.1 and 4.2. 

Fig.4.4 shows the MAE of each photo group by different learning methods 

using a sample of size 600. We can see the MAE increases with increasing number of 
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vehicles. This trend can be explained by vehicle occlusion. When a vehicle is occluded 

by another, only part of its edges is visible in the image. The farther away a vehicle is 

from the camera, the larger a part is occluded. Therefore when there is heavy traffic, we 

can hardly count the vehicles far from the camera by finding their edges, thus all 

methods using edge image fail to estimate the number of vehicles accurately. An 

interesting point is that this trend is magnified in block detection, which depends 

heavily on the spatial distribution of edge pixels in the image. When vehicle occlusion 

occurs, the area between two vehicles may be more densely distributed with edges than 

areas of either vehicle. It is possible to identify one vehicle rather than two in this case. 

We can imagine an extreme case that every falsely identified vehicle corresponds to 

two or even three actual vehicles on the road. Indeed it was found that the maximum 

predicted value by block detection is 12, far lower than the maximum number of 

vehicles (19) in the sample. 

Nevertheless, the error of block detection at the free traffic group (0-4 vehicles) 

is almost half of other individual methods. This verifies that finding local maxima of 

spatial density of edge pixels is a good way to directly identify vehicles when vehicles 

are clearly separated in the image. In brief, block detection is strong in free traffic but 

weak in dense traffic. Unfortunately the magnitude of error in dense traffic is too large 

to be overcome, causing an unstable overall performance as noticed in Fig.4.1. 

Since the error of Simple Sobel Edge Histogram is consistently larger than the 

Proportionate version, it is omitted in later comparisons. 
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M A E grouped by number of vehicles(sample size=6〇0) 

6 r 1 

5 - • — - - H • 0 - 4 

4 - • - - - - I 0 5-10 

_ 3 - ---- • J ! • 11-20 

T M r ™ r ™ r - M r ^ I 

Q LZ/HI__1_—VjLmKk_I_—uL/tKk_I_I—V!ZmKlk___I__——YZM/k__i 
Simple Prop. Sobel H-Line Block Combined 

Sobel Methods 

Fig. 4.4 MAE grouped by the number of vehicles for sample size 600 

4.3.3 Comparing balanced sampling and random sampling 

Balanced sampling requires some additional effort in preprocessing compared with 

random sampling. It is worthwhile to investigate whether balanced sampling is justified 

than random sampling. Therefore we compare the differences in prediction accuracy by 

two methods. The balanced sample of size 600 is compared with two random samples 

of size 600 and 14000 respectively. From Fig. 4.5, the error for free traffic is lower with 

random sampling, but for dense traffic the error of random sampling is larger. The 

differences in accuracy are reflected by the fact that a road is occupied by free traffic 

for most of the time. Instances of free traffic dominates the random sample and thus 

random sampling fails to provide enough proportion of dense traffic training data. Our 

random sample of 600 photos contains only 20 pictures that belong to the group 11-20. 

In addition, a larger data set of size 14000 was considered (Fig. 4.6). In this sample, 

172 pictures belong to the group 11-20. The characteristics of results remain the same. 

This shows that the small proportion of heavy traffic data, rather than small number 
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of heavy traffic instances, causes the low accuracies in prediction for photos that 

contain a large number of vehicles. 

M A E : balanced sampling vs random sampling(sample size=600) 

6 [ ^ 1 • Prop. Sobel (balanced) 
5 - —_ — p o . i 

I • Prop. Sobel (random) 

4 l i I • H-Line (balanced) 
pj ' � / j \ 
< 3 - 昌；-乡 I H-Une (random) 

2 J ^^ I B Block (balanced) 
EL Fra r | r | I S Block (random) 

卜 r U F t r . r i ：! M I 钱 _ I 曰 Combined (balanced) 
� l _ _ i l • 丨 删 1 | | | | _ 瞧 ^ C o m b i n e d ( r a n d o m ) 

0-4 1 5-10 1 . 1 11-20 ‘ 

number oi vehicles 

Fig. 4.5 MAE of random sample and balanced sample (sample size=600) 

M A E : balanced samplmg(size=600) vs random samplmg(size=14000) 

7 厂 - “ - - — - - — - - — ！ • Prop. Sobel (600 balanced) I 

6 — — — — 丨 • Prop. Sobel (14000 random): 

5 - P^ • H-Line (600 balanced) 
_ 4 - E V 专 曰 H-Line (14000 random) 

3 — j ' � / …I • Block (600 balanced) 
2 - _ r l =：= r S l 0 Block (14000 random) 
； 1 1 _ 1 _ 1 ^ Combined (600 balanced) 

^ H Combined (14000 random) 
0-4 5-10 11-20 

number of vehicles 

Fig. 4.6 MAE of balanced sample (size=600) and random sample (size=14000) 

On the other hand the MAE for combined learning is observed in Fig. 4.5. In 

group 0-4，balanced sampling results in slightly higher MAE of about 0.25 (0.61 and 

0.37 for balanced sampling and random sampling respectively), but in group 11-20, 
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balanced sampling leads to more significantly lower MAE of about 0.6 (1.46 and 2.06 

for balanced sampling and random sampling respectively). This shows that using 

balanced sampling, the improvement in accuracy for heavy traffic is greater than the 

reduction in accuracy for free traffic. Thus balanced sampling is preferred over random 

sampling. 

To conclude from above observations, balanced sampling is essential to the 

system to reduce the errors of prediction. Otherwise the predictive power for dense 

traffic can diminish significantly. 

4.3.4 Comparing day and night conditions 

This part tests whether the accuracy of prediction are affected by night conditions. A 

day sample and a night sample of equal sample size (600) are used for comparison. 

From Fig. 4.7, the MAEs for night conditions are generally higher than day condition. 

The source of this difference can be found by examining the edge images. At night, 

vehicles switch on headlights. Circular edges of headlights can be found in the edge 

image. However headlights show large contrast to the environment. This makes the 

outline of vehicles, being relatively in low contrast, unclear in the edge image. 

Moreover, reflection of headlights on the road show up more at night, which may give 

rise to additional edges in the edge image. 

Proportional Sobel Edge Histogram simply leams the relationship between 

edges patterns and traffic condition, thus it is comparatively less affected by differences 

in the edge pattern. But horizontal line detection demonstrates significant difference for 

night condition. MAE increases from 0.84 to 1.86 for group 0-4, and from 2.27 to 3.80 
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for group 11-20. The distortion of edges causes horizontal lines to be blurred as 

distinguishing features of vehicles at night (Fig. 4.8). This suggests that headlights may 

be better vehicle features than horizontal lines in identifying vehicles at night. For 

Block Detection, local maxima of edge densities are still locations of vehicles so that 

the MAE for group 0-4 is similar for both day and night condition. But under heavy 

traffic, it is not working at all. Combining methods again improves the performance. 

M A E : Day vs Night (sample size二6〇〇） 

9 r —“——“、••— I • Prop. Sobel (day) 

8 : 2IIZIIZ _ _ I Z I Z r " 今 I • Prop. Sobel (night) 
5 i I • H-Line (day) 

< 5 - F ^ I 目 H-Lme(mght) 

4 - I _ 1 B Block (day) 

\ : — ^ r l i i _ ^ i ^ Block (night) 

1 r m M … r l p i ^ ^ f S n % I M Combined (day) 

o i m _ r ^ ‘ l _ _ l ‘ l _ _ _ i H Combined (night) 

0-4 5-10 11-20 
number of vehicles 

Fig. 4.7 MAE of balanced sample under day and night condition 

画篇xy � 遍 i s j • 麗 E S ^ � � 
320x240 pixels: 8-bit; 75K 320x240 pixels: 8-bit; 75K mm 

Fig. 4.8 Image under night condition 
(a) Grayscale image (b) Edge image with circular edges rather than horizontal edges 
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4.3.5 Testing on time-series of images 

In the following experiment, it is tested whether the system can track the change in 

traffic condition over time. Two time-series of images are selected from the collected 

data. Each contains a sequence of more than 60 images, equivalent to 120 minutes, 

including free-traffic and congested-traffic conditions. The number of vehicles in an 

image is predicted by combined learning built with a balanced sample of size 600, and 

plotted in Fig. 4.9 and Fig. 4.11. The 5-period moving average for both predicted and 

actual values are also plotted in thick trend lines in Fig. 4.10 and Fig. 4.12. 

As seen from the figures, the true value of the number of vehicles fluctuates. 

This shows the deficiency of merely showing one picture for traveler's information as 

provided by current system in Hong Kong. One single picture can mislead travelers due 

to large deviation of number of vehicles from the trend. A trend line is probably more 

suitable for traveler's information. Moreover, it is observed that predicted values and 

true values follow the same trend. Predictions successfully track the changes in traffic 

condition for both day and night conditions. 

Prediction by combined model trained with balanced sample (size=600) 

20 -— 一 —……一—…、…«、,、— —•^、…~—…….、.——-、“•-一—�—W.�————； 

^ 八 A , Vehicles | 

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 

Time (2-minute interval) 

Fig. 4.9 Time series of day condition 
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Prediction by combined model trained with balanced sample (size=600) 
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Fig. 4.10 Time series of day condition with moving average trend lines 

Prediction by combined model trained with balanced sample (size=600) 
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Fig. 4.11 Time series of night condition 
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Prediction by combined model trained with balanced sample (size=600) 
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Fig. 4.12 Time series of night condition with moving average trend line 
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Chapter 5 Analysis 

In this chapter the strengths and weaknesses of the several methods introduced in this 

thesis are discussed and analyzed, together with sample edge images. This helps us to 

understand the potential and pitfalls of these methods. 

5.1 Strengths and Weaknesses 

5.1.1 Sobel Edge Histogram 

This is the simplest method in terms of computation and level of image details. It does 

not explicitly identify any describable features of the vehicles. Surprisingly, the 

Proportionate Sobel Edge Histogram is the most adaptive to different edge patterns. 

Under night conditions, it is still the most accurate prediction method. From section 

4.3.1, it is seen that, even with as small a sample size as 150 instances, it is almost the 

most accurate one. The better result of Proportionate Sobel Edge Histogram over its 

simple version (Simple Sobel Edge Histogram) proves that weighting the frequencies of 

histogram can help reduce errors due to different apparent sizes of vehicles in the 

image. 

The drawback of this method lies in its lack of understanding of edges. Vehicles 

in front of the camera appear larger in the image. This does not only lengthen the edges 

of vehicles, but also leads to additional edges of other details of vehicles such as logos 
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or shapes on the vehicle. Without further processing of edges, these additional edges 

lead to over-estimation of vehicles. Fig. 5.1b shows an example. 

霞 醫 乂 J S l x J M ^ M M — T T S T ^ 
320x240 pixels, 8-bit . 75K 320x240 pixels； 8-bit； 75K 

fc , 1 " " " " m p ' i k rn^'U ^>��i 效 

痛 _ 
• 隱 • • • • • • • I I 丨丨'13 m m m m m ^ ^ m i u t m -丨n因 
320x240 pixels, 8-bit, 75K 320x240 pixels; 8-bit; 75K mm 

Fig. 5.1 An example of larger vehicle with many edges in front of camera 
(a)Grascale image (b) Edge image (c) Horizontal lines detected (d) Blocks detected 

5.1.2 Horizontal Line Detection 

This model indeed starts from the idea of identifying features from vehicles occluded 

by others. Straight lines should be the features that every vehicle has. Different shapes 

and logos will be eliminated in counting straight edges. Leamt with linear regression, a 

small balanced sample can be good enough to achieve reasonable accuracy. However， 

there is little room for improvement with increasing sample size. From Fig.5.2, the 
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number of lines per vehicle shows large variance. Fig. 5.1c shows 8 lines detected from 

a bus in front of the camera but only 3 lines from the farthest vehicle. This variance is 

not controlled by sample size. So the ultimate accuracy of this method is limited by the 

variance of number of lines per vehicle. At night the situation becomes worse because 

straight lines become unclear in the picture due to headlights. 

No. of H-Line VS No. of vehicles No. of H-Line VS No. of vehicles 

(sample size=150) (sample size=6〇0) 

25 r — 一 “ “ 一 一 一 一 一 2 5 _ i n i | i i i _ i i i i i i i i | | p i i i i i i | l i r / ^ 

Number of vehicles ^ ^ Number o? vehicles ̂^ ^^ 

Fig. 5.2 Number of horizontal lines against number of vehicles for two sample size (150 and 600) 

5.1.3 Block Detection 

This model is similar to many region based vehicle tracking techniques (Section 2.2.1). 

The only difference is that edges are used instead of a whole blob because our modified 

background differencing method works on edge features. Extensive computation is 

unavoidable because calculating edge density for each pixel is required. Its accuracy is 

superior compared with other methods in free traffic. 

However we can see the problem that a local maximum of edge density in the 

image does not necessarily represent the correct location of a vehicle, especially in 

heavy traffic. For example, when a vehicle is occluded by another, the edge density of 



Analysis 57 

the area between two vehicles is probably the highest. Block detection then falsely 

identifies a vehicle somewhere between two vehicles instead of identifying two 

vehicles at their correct locations. This false location of vehicle could cause incorrect 

grouping of local maxima in the next step. The problem is magnified for closely packed 

vehicles, as misplacement of one vehicle can cause a miss or misplacement of the next. 

As a consequence, serious problem of under-estimation appears in heavy traffic. On the 

other hand over-estimation may originate from identifying more than one block from a 

large vehicle. Since an average vehicle length is assumed in grouping local maxima, a 

large vehicle may be long enough to have two blocks identified as shown in Fig.5.Id. 

This is particular troublesome for roads with mixed usage, that is , used by both private 

cars and trucks. 

5.1.4 Combined Learning 

Methods that combined models incur high computational cost because processing of all 

the individual models is required. Of course the errors are the smallest among all 

learning methods. Section 4.3.2 shows that for each group of vehicles, the MAE for the 

considered method is almost the lowest among other methods. This reveals that a 

combination model is able to take advantage of block detection for free traffic and that 

of Proportionate Sobel Edge Histogram for heavy traffic. 
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5.1.5 Overall Framework 

All models show a common characteristic in prediction, which is giving larger errors in 

prediction for images with a larger number of vehicles. This reveals the limitation of 

using edge detection for traffic estimation, that is, vehicles occlusion. Edges of some 

vehicles are blocked by other. Therefore edges increases relatively slowly with the 

number of vehicles in busy traffic than in free traffic. Fortunately Proportional Edge 

Histogram method makes use of neural network to find the non-linear relationship 

between edges and number of vehicles that reduces the estimation error to the minimum. 

In fact most of other video based systems using background subtraction techniques 

should be weak in tackling this problem, but some may not need to face this because 

tracking moving objects from video can choose to deal with only vehicles in front of 

the camera. Of course they fail also for congested traffic where all vehicles are closely 

packed together and moving slowly. 

Fig. 5.1 demonstrates another problem of the system, variation of vehicle type 

and size, which is not addressed in our approach. As shown in the pictures, larger 

vehicles like trucks and buses display more edges and lead to overestimation of number 

of vehicles. Unfortunately it is far more difficult to identify vehicle types in static 

image than in video. Yet consider that the "vehicles per km" measurement of density 

fails to express the effect of different vehicle size to actual traffic density. Therefore 

some studies calculate density as "passenger car units(pcu) per km", where pcu 

increases with vehicle size. This means larger vehicles lead to higher traffic density. 

From this point of view, overestimation of number of vehicles due to larger vehicle size 
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can possibly give us more accurate density estimation, though this needs further 

experiments to justify. 

Last but not least, the system has lower computation requirement than video 

based traffic monitoring systems. Only off-line training of models in our system is 

computationally demanding. On-line operation processes a picture every two minutes, 

and processing of each picture takes as short time as less than a second in our testing 

platform. Yet estimated trend always lags actual change of traffic condition because 

estimation relies on collected data. If more frequent collecting of images is possible, 

says, one picture per several seconds, the time lag can be reduced. This enables 

real-time monitoring or even management of traffic. For example, if busy traffic is 

detected in a region, traffic signals can be coordinated to prevent drivers from 

encountering a long string of green lights towards the region. This practice discourages 

high volumes of traffic by inducing delay yet preventing congestion. 

5.2 Future Research 

5.2.1 Static image based monitoring combined with other traffic 
monitoring approaches 

As analyzed in Section 2.2.1, moving object tracking may still be subject to failure 

under congested traffic. Background update in video-based monitoring may fail as the 

road is continuously covered by vehicles, preventing updated background colors to be 

captured. In addition vehicle occlusion causes to error in identifying vehicles. Our 

system which is based on static picture is able to function properly even when motion 
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tracking fails. The system can still estimate the traffic density even the traffic is busy. 

Moreover, by combining different sources of traffic monitoring, the mapping between 

the number of vehicles from our system and traveling speed and travel time from video 

or loop detectors can be found. This may further allows estimation of traffic speed, flow 

and density from only static images. For packages like ILog traffic management tools, 

one more source of traffic estimation means more reliable traffic analysis. 

5.2.2 Horizontal Line Detection as tracked features of vehicles 

From related literature, it is found that features of vehicles can be basic units of moving 

object tracking. Section 2.2.1 introduces some features such as comer points or 

headlights of vehicles. Horizontal Line can be vehicle features as well, sharing the 

advantage that a partly occluded vehicle can be recognized as some of its features can 

be still found. Furthermore, Horizontal Line could be better features than others in 

daylight conditions. For example, reflection on the roads at night may cause false 

recognition by additional comer points and light spots. But using horizontal line 

detection reduces this probability. This is because in this method the direction of 

straight edges detected are perpendicular to the direction of the road. Non-vehicle 

objects may lead to different edges on the road but seldom exhibit such straight edges. 

5.2.3 Application in aerial image-based system 

As the limitation of this system is vehicle occlusion, a lower error rate can be expected 

if this problem can be avoided. The aerial image-based system suits this case because 

images are taken almost 90 degrees down from the sky to the road. Satellite images like 
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those provided by Google Earth are similarly applicable. Using satellite images, one 

snapshot may be used to monitor several roads in a region. Moreover, they can be 

applied to highways in remote areas where installation of cameras and connection to a 

data network is difficult. 
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Chapter 6 Conclusion 

In this thesis, a static image-based traffic-monitoring system is proposed. The system is 

capable of analyzing the traffic condition from static pictures collected at a fixed view. 

Not only can the number of vehicles be identified, which is an indicator of traffic 

density, but also the trend of traffic condition can be estimated by studying a time series 

of images. Edges in the images are extracted as the key features to identify the 

existence of vehicles. Several learning methods are experimented to investigate the 

relationship between edges and traffic condition. Using a combined learning model, the 

mean absolute error errors with balanced sample size 600 are 0.95 vehicles for day 

condition and 1.4 vehicles for night condition. The accuracy is mainly limited by the 

occlusion of vehicles which is also faced by video-based monitoring system. Yet our 

framework can be applied to systems without such problem such as aerial image-based 

traffic monitoring; in which case, better performance can be expected. Moreover this 

system may be integrated with other systems such as video-based monitoring and loop 

detector-based monitoring for more accurate estimation of traffic parameters. If more 

frequent update of images is allowed, our system can even facilitate real-time traffic 

control by estimating the current traffic condition.. 
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Appendix A Sobel Edge Detection 

The procedure for Sobel Edge Detection are shown as follows given a grayscale image. 

1. The image undergoes convolution, a kind of image processing techniques using the 
following convolution kernels Kx and Ky, which are 3 by 3 matrices. The resultant 
values Gx and Gy represents the magnitude of color differences across the 
horizontal direction and vertical direction respectively. The mathematical 
representation of the convolution is given by equation (23a) and (23b). 

1-1 I 0 + 1 1+1 1+2 1+1 

0 ~ 0 0 0 ^ 

0 +1 ~ ^ 

Kemal Kx for Kema Ky for 
calculating Gx calculating Gy 

p(i,j)\ pixel value at coordinate (i，j) of the input image. 

G从i, 灶 p ( i + + \)Kx{k,/) (23a) 

G；^,’, J) = H P(i + + \)Ky(k, /) (23b) 
k = \ /=1 

2. In the Sobel image, the pixel value G(i,j) of each pixel (i，j) is calculated using the 

following equation: 

G{U j) 二 ylGx{i,jf + Gy{i,jy 

For pixels surrounded by differently colored pixels, their G(i’j) are large. As a result, 

edges have high values of G(i’j) in the Sobel image, appearing as bright lines in the 

image. In contrast non-edges occur as dark regions in the Sobel image. 



Appendix B Neural Network Setup 67 

Appendix B Neural Network Setup 

The neural network for Sobel Edge Detection Module is the commonly used 

feed-forward multi-layer neural network, trained with backpropagation method. There 

are 3 layers in our neural network: input layer, hidden layer and output layers. In the 

input layer, there are 256 nodes, each with input values from Sobel Edge Histogram 

hE(v) for each pixel value v. In the middle layer, a sigmoid function, denoted f(Ij) below, 

is used to implement non-linear mapping between input values and output values. In the 

output layer there is only one node with its output value representing the number of 

vehicles in the picture. Each node in input layer is connected to nodes in the hidden 

layer, which are in turn connected to the output layer node. Using 10-fold 

cross-validation evaluation, 10% of the instances belong to test set. Out of the 

remaining 90%, 80% are training set data and 20% are validation set. The training 

procedure is described as follows: 

Ij : value input to node j 
Oj : value output from node j 
u',y : weight of connection from node i to node j 
0, : bias value of node j 
V : true number of vehicles (normalized to be between -1 and 1) 
En-丨:error of node j in hidden layer 
I : learning rate between 0 to 1, parameter 
n : stopping threshold of training 

1. hE(\0 is extracted from one instance in training set data. In the input layer 256 

histogram values, each h£(v) are fed into 0丨 of each input node. Then by calculating 

Oj and I, of each node (both hidden layer and output layer) with the following 

equations, Oj of the node in output layer is obtained as the predicted value: 

O 丨 = f o r input layer nodes 
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IJ = h + Oj for hidden layer and output layer nodes, 

where I are nodes in the previous layer 

O. = / ( / )=——^-7- for hidden layer and output layer nodes 
l-he 丨 

( f ( I j ) is known as sigmoid function) 

2. Error of prediction is estimated for each node: 

Errj二Oj(l-Oj) (y-Oj) for output layer node 

Err. = O丨(1 — O . £ > r � for input and hidden layer nodes, where k 

are nodes in the next layer 

3. The errors are used to update the weight and bias values: 

Wij^Wij+(I)ErrjOi 

OrOj^OJErrj 

4. The above steps are repeated using instances from training set until there is no 

reduction in error predicting the validation set for consecutive c number of cycles. 

Tuning of parameters 

Wij and Oj are initialized to 0 for every training. Clementine, a well-known data mining 

package, is used to determine the number of nodes in the hidden layer by pruning 

method. The pruning method first constructs a network with large number of hidden 

layer nodes. Then it tries to reduce the number of nodes and finds one which yields the 

best result. After that c and I are tuned by trying different values. Values of I tested 

include 0.1 to 0.9 for every interval of 0.1. c is tested from 50 to 500 (cycles) for every 

interval of 50. In our case the number of nodes in hidden layer is 20, and /=0.3, c=250. 
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Appendix C Numerical Results 

Table 1 MAE for different sample size (balanced sampling) 
Sample size (Day) Sample size (Night) 

Sample size 150 300 600 150 300 600 

Simple Sobel Edge Histogram 1.84953 1.49603 1.41407 2.03038 1.88197 1.66030 

Proportionate Sobel Edge Histogram 1.56093 1.33089 1.22844 2. 03003 1.79354 1. 62276 

Horizontal Line Detection 1. 56093 1.45793 1.36953 2. 54428 2.63887 2.54856 

Block Detection 1.43725 2. 16000 1.86000 3.68667 3.69667 3. 70000 

Combined Learning 1.90667 0. 95771 0.95455 1.69821 1. 53708 1.40072 

Table 2 RMSE for different sample size (balanced sampling) 
Sample size (Day) Sample size (Night) 

Sample size 150 300 600 150 300 600 

Simple Sobel Edge Histogram 2.43230 2.08293 1.8867 3.04172 2.44674 2. 27587 

Proportionate Sobel Edge Histogram 2. 12535 1.81092 1. 71161 3.07356 2.31124 2.22656 

Horizontal Line Detection 2. 12535 2.04652 1.99550 3. 29909 3.39453 3.29931 

Block Detection 2. 00647 3. 28634 2.96142 5. 46077 5. 30566 5. 38609 

Combined Learning 2. 94845 1. 37284 1. 36881 2. 57495 2. 38007 2. 00191 

Table 3 PMAE for different sample size 
Sample size (Day) Sample size (Night) 

150 300 600 150 300 600 

Simple Sobel Edge Histogram 28.08% 21.90% 23.69% 29.28% 27.24% 24.08% 

Proportionate Sobel Edge Histogram 23. 70% 19.49% 20. 58% 29. 28% 25. 96% 23. 54% 

Horizontal Line Detection 23. 70% 21. 35% 22.94% 36. 70% 38.19% 36.96% 

Block Detection 21. 82% 31.63% 31. 16% 53. 17% 53. 50% 53. 66% 

Combined Learning 28. 95% 14. 02% 15. 99% 24. 49% 17. 90% 20. 31% 
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Table 4 MAE grouped by number of vehicles (Day Samples, balanced sampling and random 
sampling) 

I Simple Sobel I Proportionate L . ~ L . . [ I “ “ 
^ , 0 , 1 -n, Horizontal Block Combined 
Edge Sobel Edge , . ^ • r^ , 

Line Detection Detection Learning 
Histogram Histogram 

Balanced Sampling (size=600) 

Group 0-4 1. 05947 0 .91720 0 .84128 0 .44095 0 .61937 

5-10 1.41409 1.18748 1.38499 1. 28500 1. 0066 

11-20 1.92851 1.82599 2 .26735 5 .11644 1.46635 

Random Sampling (size=600) 

Group 0-4 0. 68977 0. 61779 0. 55770 0. 40509 0. 45436 

5-10 1. 36722 0 .97804 1.09237 1. 34722 0. 96722 

11-20 1.89755 2 .15969 3 .14729 5.35294 2 .10310 

Random Sampling (size二 14000) 

Group 0-4 0 .67713 0 .48973 0 .47409 0. 40201 0. 37164 

5-10 1. 91013 1. 49874 1.18163 1. 30830 1.20850 

11-20 2. 58293 2 .17209 4 .55090 5 .94521 2.05765 

Table 5 MAE grouped by number of vehicles (Day and Night) 
I Simple Sobel I Proportionate ^ . ^ , Z T T L “ “ 

S h 1 •pfi Horizontal Block Combined 
TT. TT. Line Detection Detection Learning 
Histogram Histogram 

Day Sample (size二600) 

Group 0-4 1. 05947 0. 91720 0. 84129 0 .44095 0. 61937 

5-10 1.41410 1. 18749 1. 38499 1. 28500 1. 00663 

11-20 1.92852 1.82600 2 .26735 5.11644 1.46635 

Night Sample (size=600) 

Group 0-4 0. 94359 1. 00063 1. 85839 0. 5400 0. 70809 

5-10 1.84871 1. 76750 1. 98912 2. 1400 1. 51207 

11-20 2. 18861 2. 10015 3.79818 8 .4200 1. 98200 

Table 6 MAE with different background update parameter a 
In this test different values of a are used in background update module and the performance of 
Proportionate Sobel Edge Histogram is evaluated using a balanced sample of 600 pictures. "a=0" refers 
to no update at all after constructing the first background image. 
Value of a *no background subtraction 0 0. 02 0. 05 0. 1 

~MAE I 1.522 I 1.452 1.434 1.278 | 1. 384 
*In "no background subtraction", no background image is constructed and background subtraction is not 
applied in the Background Detection Module. 
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