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Abstract of thesis entitled: 

Stereo Matching on Objects with Fractional Boundary 

Submitted by XIONG Wei 

for the degree of Master of Philosophy 

at The Chinese University of Hong Kong in May 2007 

Stereo matching and digital matting are two most basic and im-

portant topics in computer vision. Conventional stereo match-

ing problem assumes the color constancy on the corresponding 

opaque pixels in the stereo images. However, when the fore-

ground objects with the fractional boundary are blended to the 

scene behind using unknown alpha values, due to the difference 

of the spatially varied disparities for different layers, the color 

constancy does not hold any more. On the other side, when the 

color of background scene is close to the foreground object, con-

ventional digital matting methods are always failed to achieve 

the alpha matte correctly without any other cues. This disser-

tation focuses on introducing digital matting method into stereo 

matching framework to improve the performance of both these 

two cases. 

This dissertation first includes a basic survey of state-of-art 

narrow-band stereo matching and digital matting. To tackle the 
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fractional stereo matching problem, we introduce a probability 

framework constraining the correspondences of the pixel colors, 

disparities, and the alpha values in different layers, and propose 

an automatic optimization method to solve a Maximizing a Pos-

terior (MAP) problem using Expectation-Maximization (EM), 

given the input of only a narrow-band stereo image pair. Our 

method naturally encodes the effect of occlusion in the formula-

tion of layer blending without a special detection process. The 

depth map on the fractional area can be greatly improved us-

ing the optimized foreground and background color. Based on 

the relationship developed between the image pair, better alpha 

matte results can also be achieved. We demonstrate the efficacy 

of our method using difficult stereo images where comparisons 

with state-of-art techniques are also given. 
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論文題目： 

在具有複雜邊界的物體上的立體匹配 

論文摘要： 

立體匹配和景象萃取是電腦視覺領域中最基本並且也是最重要的兩個 

課題。傳統的立體匹配問題通常假設在立體圖像對之間，對應的象素顏 

色恆定不變。然而,當我們考慮照片中具有複雜邊界的前景物體時，它 

的邊界顏色會以未知的混和比例和背景顏色混和。由於不同層次在不同 

的圖片中具有不同的空間位置，因此在複雜的邊界上象素的顏色將不再 

徑定不變。另一方面，當前景物體的顏色和背景場景的顏色過於接近的 

時候，如果沒有別的線索引入，常規的景象萃取的方法通常無法正確恢 

復前景物體和背景在每個象素上的混和比例値。本論文著重於將景象萃 

取的方法引入立體匹配的框架’從而同時提高這兩者的工作性能° 

本論文首先包括一個對目前流行的立體匹配和景象萃取方法的基本調 

查。爲解決在複雜邊界上的立體匹配問題，我們引進了一種基於槪率論 

的框架。其中包含了不同層次上的對應象素的顏色，空間差距，以及混 

和比例。同時’基於期望最大化方法(EM)，我們提出了一個自動優化方 

法來解決這個建立在窄差距立體匹配圖像對上的最大後驗槪率(MAP)的 

問題。我們的方法自然的涵蓋了立體匹配中的遮擋問題。在優化後的前 

景和背景顏色的基礎上’在複雜邊界上求得的深度圖的結果可以得到很 

大的改善。同時利用建立在立體圖像對上的關係，我們可以求得更加精 

確的混和比例。我們用高難度的立體匹配圖像對來展示我們方法的有效 

性。另外，我們也展示出我們的方法和現有流行的科學方法之間的比較。 
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Chapter 1 

Introduction 

Stereo matching has been an essential research topic in computer 

vision, and has made rapid and significant progress in recent 

years [20, 26，30]. Most conventional two-frame stereo matching 

approaches compute disparities and detect occlusions assuming 

that each pixel in the input image has a unique depth value. 

However, this representation has large limitations in faithfully 

modelling objects with fractional boundaries where pixels are 

blended to the scene behind with different depth values. Directly 

applying previous stereo matching methods on the ubiquitous 

hairy objects may produce problematic disparity results. One 

example is shown in Fig. 1.1 where the input images (a) and 

(b) contain a hairy fan in front of a background with similar 

colors. Directly applying the stereo matching method proposed 

in [20] generates problematic disparity result (c) along the fan's 

boundary without considering color blending. 

Recent development on stereo matching algorithms partially 
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L J H H M S f y H H i m 
⑷ _ _ _ _ _ w 

_ _ _ 
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• r ^ H f ' B i r 

B 膠 匪 
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Figure 1.1: A stereo image pair containing a hairy object, (a) and (b) Input 

stereo images containing a hairy fan. Notice that the colors of tiie background 

scene and the hairy fan are similar, (c) Stereo matching result, from Sun's 

method [20). Because of the color blending, the assumption of color constancy 

is violated along the boundary of the fan, making the result problematic, (d) 

The stereo matching result obtained from our approach. The hairv structure 

is successfully preserved, (e) The computed alpha matte of the fan using our 

method, (r)-(li) Magnified regions of the results. 
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generalizes the above assumptions and introduces the trans-

parency constraints. Szeliski et al. [23] proposed to solve the 

stereo matching problem with opacity using multiple input im-

ages where the color and transparency refinement are formulated 

as a non-linear minimization problem. However, their method 

has difficulties to deal with objects containing thin and long 

hairs or with complex alpha matte given a small number of in-

put images. Later on, assuming a binary reflection map model, 

Tsin et al. [26] proposed to estimate the front translucent and 

rear background layers using graph cut. The pixel colors are 

further computed by iteratively reducing a difference energy in 

multi-frame configuration. This method is not applicable on ob-

jects with general fractional boundary. Both of the above meth-

ods require multiple input images in order to obtain satisfactory 

disparity maps. 

In this dissertation, taking the input of only a narrow-band 

stereo image pair shot in a scene where the hairy objects are in 

front of a background scene, we solve the stereo matching prob-

lem by neatly formulate the estimation of alpha values, dispar-

ities, and pixel colors in a probability framework and robustly 

using Expectation-Maximization method. Unlike most previ-

ous stereo matching approaches defining a color correspondence 

for each pixel in image pairs, in our method, the color corre-

spondences are established on the blended layers respectively. 

The two processes of transparency optimization and disparity 

estimation boost each other, effectively reducing the possible 
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errors when they are performed separately. We show the dis-

parity maps and the alpha matte computed using our approach 

in Figure 1.1 (d) and (e) respectively. The comparison of the 

disparities are illustrated in (f) and (g). Even from the trans-

parency point of view, our method also outperform the previous 

natural image matting techniques. A detailed comparison will 

be given later in this paper. 

Our method also contributes a nice implicit formulation of 

pixel occlusion. In conventional stereo matching, since each 

pixel has at most one disparity value, the occlusion needs to be 

modelled separately for pixels having no correspondences [20 . 

In our approach, any pixel in the layer of the scene behind the 

hairy objects can be partially occluded, entirely occluded, or un-

occluded according to the degree of transparency, which can be 

naturally encoded using the alpha values without special treat-

ment. 

The rest of the dissertation is organized as follows. Chapter 

2 reviews previous work on stereo matching and digital image 

matting. A brief introduction of the Expectation-Maximization 

algorithm is also given. We define our model and give notations 

in chapter 3. The initialization step of our system is explained 

in chapter 4, and the detailed optimization process is described 

in chapter 5. In chapter 6, we show our experimental results 

and compare with other state-of-art methods. This dissertation 

will be concluded in chapter 7. 
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• End of chapter. 



Chapter 2 

Background Study 

Summary 

This chapter gives a brief survey of the state-of-art 

methods in stereo matching and digital image mat-

ting. An algorithm introduction of the Expectation-

Maximization method is also included. 

This work is related to the research on dense stereo match-

ing and digital image matting. The Expectation-Maximization 

method is used for the optimization step. 

2.1 Stereo matching 

There have been many methods developed to solve the conven-

tional stereo matching problem. Middlebury College has devel-

oped an official stereo vision research page [3] to publish sample 

stereo image pairs and rank the results from different methods. 

6 
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And a survey on the two-frame stereo matching can be found in 

17 . 

Markov Random Field (MRF) is widely used in stereo match-

ing to constrain the energy minimization problem with the smooth-

ness energy function [10, 22, 8, 20]. Most of these methods solve 

the MRF by either Belief Propagation (BP) [5] or Graph Cut 

1]. In [10], a method related to expansion move algorithm is 

used to find the local minimum of an energy function. Sun et 

al. [22] introduced an MAP estimation on depth and pixel occlu-

sion situations. The system is further refined in [20], where a 

symmetric system combining a soft constraint on segmentation 

is developed. [30] proposed a Hierarchical loopy Belief Propaga-

tion algorithm to refine the results on occluded and low-texture 

areas. [31] developed a new MAP formulation on both depth 

map and MRF parameters. Rather than user defining the pa-

rameters, their system introduced an EM framework to estimate 

the parameters and the depth map iteratively. Computed depth 

result on pixels with high confidence will have stronger influence 

on their neighbors. Graph Cut method is applied to compute 

the optimal value. [4] segments the two input frames into small 

patches. Graph Cut is also used to find the disparity and oc-

clusions embedded in the patches with the symmetric mapping. 

24] compares the performance of Graph Cut and Belief Prop-

agation on a set of images, and concludes that, in general, the 

results produced by the two algorithms are comparable. 

The above methods are not proposed to solve the stereo 
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matching problem with color blending because of the dispar-

ity ambiguities. Szeliski and Golland [23] first proposed to solve 

stereo matching with boundary opacity or matting effect. The 

visibility is computed through re-projection, where color and 

transparency refinement are formulated as a non-linear mini-

mization problem. Wexler et al. [28] compute alpha mattes and 

estimate layers from multiple images with known background in-

formation. [26] estimates depth with the consideration of layer 

overlapping. It uses nested plane sweep with refinement from 

graph cut. The attenuation factors for color blending at reflect-

ing areas are constant. In [7] [33], to get a better result for view 

synthesis, boundary matting along depth discontinuities are per-

formed after the initial disparities computed. The mistakes due 

to color blending will not be further corrected. Besides, [32 

computes the alpha contribution on overlapping regions among 

segments. A more accurate optical flow estimation can then be 

achieved. 

2.2 Digital image matting 

Natural image matting is to separate the blended pixels by com-

puting the foreground, background and the alpha matte respec-

tively given a natural input image. Using trimaps, Bayesian 

Matting [2] and Poisson Matting [19] estimate the foreground 

and background colors by collecting samples. Wang and Co-

hen [27] introduced an optimization approach based on Belief 
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Propagation to estimate the alpha matte without trimaps. In [11], 

Levin et al. proposed a closed form solution to solve the mat-

ting problem given the user input of a few strokes. The work 

is further improved in [12], where spectral analysis is performed 

to separate the image into components. Unsupervised matting 

results can be got by selecting the components group with the 

best matting cost. To enhance the performance of video mat-

ting, Joshi et al. [9] used an autofocus system to first determine 

pixel relationships among multi-images. Based on the variation 

of the related pixels, they form trimap and compute alpha mat-

tes in real-time. Sun et al. [21] use a pair of flash/no-flash images 

to extract mattes. Because the relationship between the image 

pair brings more constraints into the system, their trimaps can 

be automatically generated and the results are further improved 

from previous methods. However, all these methods cannot be 

directly applied to stereo matching without the consideration of 

the correspondence of colors and alpha values in input images. 

2.3 Expectation Maximization 

EM is an iterative optimization method to estimate some un-

known parameters 0, given some known measurement data U 
and taking consideration on some hidden variables J. In regular 

EM, the target of optimization is always an MAP problem for 

6 marginalizing over J: 
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e* = argmax ^ P((7, J, 0) (2.1) 

- J e r 

The EM algorithm alternates between estimating the un-

knowns 0 and the hidden variables J. Instead of estimating 

the exact value of J, the EM algorithm tries to estimate the 

distribution of J, for a best estimation of B under all possi-

ble condition. One of the earliest papers in EM is by Hartley 

in 1958 [6]. Wu [29] discussed the convergence properties of 

the EM algorithm. It indicates that if the likelihood function 

is unimodal and a certain differentiability condition is satisfied, 

then any EM sequence converges to the unique maximum like-

lihood estimate. Another insightful explanation of EM is in 

terms of lower-bound maximization [13] [16]. The explanation 

indicates that the E-step can be interpreted as constructing a 

local lower-bound to the posterior distribution, whereas the M-

step optimizes the bound, thereby improving the estimate for 

the unknowns. 

EM algorithm is widely used in computer science researches. 

The K-Means clustering problem and the formation of mixture 

models, especially the Gaussian Mixture Model (GMM) [15], are 

some well-known examples. Besides, EM is also used in some 

medical imaging related works, for instance, the reconstruction 

of emission tomography (ET) images [14:. 
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• End of chapter. 



Chapter 3 

Model Definition 

Summary 

This chapter gives out our novel model definition, which 

includes foreground and background color, alpha value 

and foreground and background disparities. 

Conventional two-frame dense stereo matching approaches es-

timate depth value by estimating the correspondence of pixels 

in the input image pair. In this dissertation, we also use two 

images C and CT in different viewing positions, and assume 

that the reference image (7 and the matching image C饥 are 

rectified [25]. Conventionally, for a pixel {x,y) in CT and its 

corresponding pixel [x', y') in C爪 with disparity d, we have 

x' = x + d,y' = y. (3.1) 

The stereo matching problem is formulated as the estimation of 

12 
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disparity d using the color constancy on the matched pixels in 

a scene with Lambertian reflectance: 

= + (3.2) 

In our problem definition, to model the color blending between 

the objects with hairy boundaries and the scene behind, we as-

sume that each input image contains a foreground object F in 

front of a background scene B, both having Lambertian re-

flectance. The pixels in the background can be unconcluded, 

partially occluded, or entirely occluded by F according to the 

degree of transparency. Applying the equation of alpha blend-

ing, the blended color in each pixel is formulated as 

y) = a\x, y)F\x, y) + {I - y))B\x, y), (3.3) 

where k G {r，m}. Accordingly, in our stereo model, instead of 

defining a single disparity d for each pixel in the input images, we 

introduce disparities dJ and (f for latent pixels in foreground F 
and background B respectively. This definition largely increases 

the flexibility of our method to model occlusions. Hence, for 

each latent foreground pixel F''{x,y) (or the background pixel 

in (7"，applying d/ (or d^), we can obtain a matched 

pixel y) (or B 爪 y ) ) in C饥，where 

= B^oo + cty). (3.4) 
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Moreover, since there are measurable discontinuities in depth 

between the foreground objects and background scene. The oc-

clusion between them can be nicely formulated using equation 

3.3 according to the corresponding alpha values without another 

explicit occlusion detection process: 
• 

a{x, y) = 1 B{x, y) is entirely occluded, 

< 0 < a{x,y) < 1 B(x,y) is partially occluded, ‘ (3.5) 

a[x, y) = 0 y) is not occluded. 
V 

Table 3.1: Mean Square Deviation on Alpha in two frames 

Include a G {0,1} 

Mean Square Deviation Pixel Number 

Bear 0.00038764 957600 

Box 0.00037437 720766 

Not include a G {0,1} 

Mean Square Deviation Pixel Number 

Bear 0.013788 26922 

Box 0.03524 || 4136 

Using a narrow-band camera setup, most transparency of 

foreground may remain invariant fore corresponding foreground 

pixels. As shown in fig 3.3, only transparency of the pixels on 

the boundary of foreground object may have a little change via 

images. Fortunately, the differences of alpha between the corre-

sponding pixel pairs of two frames are also small. Fig 3.2 shown 

a hairy bear toy and a box with smooth boundary. Comparing 
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the alpha matte got from the left and right view, the fig 3.2(c) 

and (f) show the difference in their alpha matte distribution, 

which are very similar. We manually align the two views and 

compute the mean square deviation (MSD) of the alpha values. 

As shown in table 3.1, the MSD of the alpha value is very low. 

Even we only consider the pixels on the boundary, i.e, discarding 

those totally opaque(a = 1) or transparent (a = 0) pixels, the 

MSD of the alpha value is still within a low level. Our model 

is also validated using our real data experiment. As shown in 

figure 6.8，the MSD error between the alpha matte extracted 

from our model and ground truth is only 0.00062. So, to take 

consider on this cue, we apply soft constraints, which will be 

discussed in chapter 5.2, on transparency of foreground corre-

sponding pixel pairs. Specifically, if a foreground pixel {x, y) in 

(7 is matched to {x + d^, y) in (7爪,we have 

+ (3.6) 

Based on this soft constraint, we can build relationships on 

transparency value between the image pair. Since the digital 

matting problem is always over-constrain, the relationship can 

further contributes in the reduction of ambiguities, which leads 

to an improvement on the alpha matte result. 

In the rest of the dissertation, for simplicity, we use subscripts 

p,p + d/, and p + d^ to denote pixel in {x, y), (a; + d/, y), and 

[x + (f, y) respectively. Substituting Equation 3.2 and 3.4 into 
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Equation 3.3, we obtain the following two equations for each 

corresponding pixel pair in the input images: 

/ C； = apF; + (1 - ap)B;, 
(3.7) 

We show one example in Fig. 3.1 where two corresponding 

foreground pixels are blended by different background pixels due 

to the disparity differences. In Equation 3.7, there are unknowns 

pr, pm,召r,召m，^r ĝ d̂ to be estimated given input C and 

(7饥.F^ and F爪 are corresponding foreground pixels. With-

out loss of generality, we optimize F'' in our method. F饥 , as 

a complement in stereo configuration, is computed by mapping 

the foreground pixels in C to C爪 using the computed dispari-

ties. We estimate a饥,B'' and B爪 separately in a symmetric 

manner. It guarantees that the unmatched background pixels 

due to the occlusions are appropriately handled, which in turn 

improves the estimation of the disparities and foreground pixels. 

In what follows, without special annotation, we will use F to 

denote Thus, substituting Equation 3.4 into Equation 3.7, 

C『+df can be rewritten as 

二《女 " Fp + (1 - (3.8) 

• E n d o f chap ter . 
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^ H b t 

d L u ^ • F 
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Figure 3.1： Color constancy on blended pixels. Given the input stereo image 

pair as shown, the semi transparent pixels C and C，hi the hair are blended 

by the foreground and the background. Since C and (，are matched in 

foregi-ound layer with disparity (P, they have similar foreground color F arid 

alpha value q , & However, the partially occluded background pixels'are 

different as shown in B^ and B"\ 
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• • • • 
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ni((«r«nce ot Alpha Dtsinbulion in figure PEAR Drff̂ rence of Alpha Distribution tn tigur— Q0)< 

3000 --- - • , ‘ - n 600| • . 

I — I pixel number from 丨eft 丨mag— | | pix l̂ number from m miagJ L 
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Alpha distnbiMion AJpha distribution 

(e) (f) 

Figure 3.2: Alpha distribution. (a),(b) Left view of a typical hairy toy bear 

and a pink box. (c)’(d) The alpha matte of (a) and (b). (e),(f) The difference 

of alpha distribution between the left and right image of (a) and (b). 
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a b c a , b ， e . 

Figure 3.3: Different cases of alphas. a,b,c are pixels in image C and a' b，（•， 

are their corresponding foreground pixels in image C"'. Due to t he different 

position of the yellow foreground object under narrow-band camera assuinp-

tioii, the transparency of the pixels on the boundary,i.e., pixel b and b', may 

have a little cliarige. However, most pixels will remain opaque (pixel a and 

a，）or totally transparent (pixel c and (.,). 

I 



Chapter 4 

Initialization 

Summary 

This chapter specifies the initialization step of our algo-

rithm. 

4.1 Initializing disparity 

We initialize a single disparity dp for each pixel p in images 

C and C饥 using the previous stereo matching method [20 . 

However, some disparities are mistakenly computed due to the 

lack of consideration on color blending. Similar to [30], we form 

the confidence map, as shown in figure 4.2 (a), by computing 

the color-weighted difference for each pixel in C and C爪.For 

each pixel p, we first define a iV x iV window N{p) centered at 

p. Typically, N is set to be 3 or 5. The weight of pixel s G iV(p) 

2 0 
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應 _ _ 

⑷ (b) (c) 

1 i M I 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 

⑷ (f) 

Wi 
(g) 

Figure 4.1: Work flow, (a) The input reference image, (b) The initial dispar-

ity map computed using [20]. ((.) The computed confidence map. 'Reliable' 

pixels are marked darker, (d) The initially computed disparity histogram 

The two fitted Gaussiaiis are also shown, (e) Initial trimap conipuied (f) 

Initial alpha values computed using 1,he trimap in (e). (g) Final computed 

disparity map using our iterative optimization method. 
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is defined on both color and spacial difference: 

wP = exp{-Xc\\Cs - Cpf - Xs{{xs - Xp)^ + {y, ~ yp)'^)) 

(4.1) 

Denote the pixels in N{p) are si, S2, Sjva, defined by their 

position. Similarly, … , a r e the corresponding pixels in 

the window centering at the matching pixel p' = p + d^ in C"". 

So the color-weighted difference for p and p' is defined as: 

D(P,的 二 ^ ^ ^ ^ ^ ——； (4.2) 

E 
1=1 

Pixels with large color-weighted difference here are more likely 

in the color-blending region or with mistakenly computed dis-

parities. So they are given a low confidence on the reliability of 

their disparities computed initially. We set a threshold Td here 

to pick out those pixels and mark them as 'unreliable'. 

Notice we require two initial disparities for each pixel for 

foreground and background respectively. With a set of more 

reliable disparities here, we then compute the histogram of the 

disparities. Since we assume that there's a distance gap between 

the background and the foreground, it is possible to partition 

the histogram into two disjoint segments. In extreme cases, for 

instance, all the foreground colors blending with background 

objects, most pixels will be labelled as 'unreliable' at first and 
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the initial distribution of the disparities will be totally unre-

liable. Fortunately, these kind of cases seldom happen in our 

real world. In most cases, we can assume that we have enough 

reliable disparity samples for statistics. Thus, cues on the dis-

parities of the foreground objects and background scenes can 

be approximately gained from the initial histogram. For ro-

bustness, we fit the histogram into a two-component Gaussian 

mixture model. The parameters of the two Gaussians for fore-

ground and background are denoted as {d^.crdf} and {<i石 

respectively. They also will be used later to form likelihoods on 

foreground and background disparities. One example is shown 

in Figure 4.1 (b). Then we use the Bayes classifier to partition 

the histogram 

‘ d is in foreground a^/) > N{h{d);J\ cr办） < 

d is in background N{h{d)] dJ, a^i) < 释 ⑷ ; 

where h{d) the value of the dth bin in the histogram. For each 

pixel p, if the initialized dp is classified as the foreground dispar-

ity d;, then we set dp to be the background disparity Gaussian 

mean (f, and vice versa: 
( 

dp dp is in foreground 
4 = \ — (4.3) 

df dp is in background 

dP dp is in foreground 

4 = . (4.4) 
dp dp is in background 
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4.2 Initializing alpha matte 

We use Bayesian Matting [2] method to solve the matting prob-

lem initially on both images. However, this method requires 

a trimap to indicate whether one pixel in the input images is 

definitely foreground (a = 1), definitely background (a 二 0), 

or unknown. We generate trimaps for each image in following 

steps. 

Firstly, note that Equation 4.3 and 4.4 produce a binary seg-

mentation in input images according to whether dp = d^ or 

dp 二 dtp. The disparity of the pixels around the segmentation 

boundaries are obviously unreliable since these pixels are more 

likely to be mixtures of foreground and background. We then au-

tomatically select all these boundary pixels, and dilate them by 

2 to 15 pixels to form an initial 'unknown' region in the trimap. 

All other pixels are then marked as 'foreground' or 'background' 

due to their initial disparities. 

Secondly, we take consider on the pixels marked as 'unreli-

able' at the previous step. Since the color blending situation 

caused between background objects or between foreground ob-

jects may also be included in the 'unreliable' pixel set, we discard 

those pixels which have no connection with the 'unknown' re-

gion and set the rest into 'unknown'. Two initial trimaps on C 

and C饥，as shown in Figure 4.2, are thus created. 

Based the trimaps, the foreground background 召…)，and 

alpha matte a(o) are automatically computed using Bayesian 
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H l r l P l 
⑷ （b) (c) 

Figure 4.2: The formation of trirnap. (a) The confidence map based on 

initia] disparity computed, (b) Build triinap based on confidence map and 

disparity map. Pixels along the segmentation boundaries of the foreground 

and background are marked in orange. The 'unreliable' pixels are marked 

ill red and blue. Note the blue pixels are those caused by the self occlusion 

by foreground object or background scene. They will be discarded from the 

final triinap. ((:•) The final trimap. 

Matting in the two input images. Of course, since the initial 

matting is performed separately in two images, there are in-

evitable errors, as shown in Figure 4.1(d). 

• E n d o f c h ap t e r . 



Chapter 5 

Optimization 

Summary 

This chapter gives out our optimization step on the 

MAP problem using the EM algorithm. The E step 

for the expectation of probabilities on foreground and 

background disparities and the M step for the optimal 

foreground and background color as well as alpha matte 

are iteratively performed. The final result is computed 

on a MRF based on the optimized parameters. 

In this chapter, we describe our optimization method to solve 

the fractional stereo matching problem formulated in Equation 

3.7 and 3.8. 

Given the observation U = we separate the un-

knowns into a parameter set 9 = {F, 5 爪 , a ^ } and hid-

den data J 二 {d/, d^}. In this section, we aim at estimating the 

26 
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parameters using Expectation-Maximization 

B* = argm|Lx:logP(", e) 

= a r g m a x l o g ^ P([/, J ,e) , (5.1) 
Jer 

where J^ is the domain of J. After we have obtained the op-

timized parameters, we compute an optimal J combining the 

spatial smoothness constraint. 

5.1 Expectation Step 

In iteration n + 1, given the estimated 0("")，for each pixel p, 

we compute in this step the expectation of Pp{d^ = = 

cfcie⑷，where di,d2 G { 0 , 1 , L ^ } . Ld is the maximum 

disparity. Since d/ and (f are statistically independent, we have 

=E 叫 d/ = = d20-\u)) 

二 五二山|e⑷ , [ / ) )E ( i ^p (c /、d2|e⑷ , t / ) ) . (5.2) 

In what follows, we describe the expectation computation on d/ 

and (f respectively. 
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5.1.1 Computing E{{Pp{d^ = ⑷,U)), 

The conditional probability d/ is formulated using Bayes' theo-

rem: 

(X U) • P^idfjU). (5.3) 

According to Equation 3.7, ideally, the corresponding foreground 

pixels in two images should have the same pixel color: 

- (1 - 哪 二 c/piC:拟-(1 - ( 5 . 4 ) 

Thus, we define the probability • ⑷ , B 爪⑷ , d ^ , U ) as 

the color similarity of corresponding foreground pixels in both 

input images 

(乂 B—), a ( � f , U) 

= - (1 - a;⑷)B;⑷) 

- 臂 + " - ( 1 - ( 加 ， (5.5) 

where /?/ is a weight. 

models prior probability of df from initial input 

images. In the initialization step to be discussed in section 4 

we model all disparities from the foreground and background 

pixels using two Gaussian distributions respectively. Thus we 
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formulate the probability 

Pp 咖=N{df;W,a,f)=去 exp(一 (5-6) 

where d/ and a a! are the mean and variance of the foreground 

disparity Gaussian introduced before. The expectation for the 

disparity value of each foreground pixel p can be written as 

參 丨 作 ) ) 二 (5.7) 

di 

Since we have only a few levels for di, the computation of the 

above formula is easy. 

5.1.2 Computing E肌 ( c f i = c/2|e⑷,U)). 

For the background disparities, we can formulate the probability 

as 

oc B—), B—�, c/^⑷） 

oc /U伊⑷),a+)’a_)|cA[/) • Pp{d'\U) (5.8) 

where the matching probability …,5饥⑷,q；”⑷,a爪⑷ |^， 

is different from the foreground counterpart in Equation 5.5 due 

to the possibility of been occluded for any background pixels. 

Thus, we define the probability on background color matching 



CHAPTER 5, OPTIMIZATION 30 

adapting to the alpha values: 

Pp(B—�, a—)，a爪�U) 

=exp{-P,{l — a》…)[(1 - - C i f + C i P ] ) 

(5.9) 

where jSb is a weight similar to that defined in Equation 5.5, 

a二必 in C饥 is the corresponding alpha value to a^ in C^ for the 

same background pixel, and P is set to give penalty when the 

value of c/̂ l̂ b is close to 1, i.e., the background pixel p + d ” s 

largely occluded by the foreground in image 

To understand the definition of Equation 5.9, let us analyze 

two extreme situations. On one extreme, if a^ and both 

approach 0, it means that both the corresponding background 

pixels Bp and B二) are not occluded. Their color differences, 

with a large probability, measure if the two pixels are matched. 

On the other extreme, if either or a二办 approaches 1, one or 

both background pixels are occluded. Thus, the color difference 

IBp - B^^bll is not reliable. 

The definition of Pp(d^ll7) is defined in a way similar to Equa-

tion 5.6 using initially estimated Gaussian distribution described 

in section 4: 

Fp(d'll/) = = ("。2::)2). (5.10) 

Integrating the above two probability definition, the expectation 
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on (f can be computed as 

di 

5.2 Maximization Step 

After the expectation computation, we maximize the expected 

complete-data log-likelihood w.r.t. J given the observation U\ 

e(奸 1) 二 argm|^E_P(J|G)(、[/)logP(e|J’"） 

Jer 

=argmj ix ^ P(J|e⑷，U) logP(J, [/|G)P(e) 
Jer 

=argmax ^ P(J|e⑷，U){L{J, U\e) + 12) 

Jer 

where L(.) is the log likelihood L(.) = logP{'). L(9) is further 

expanded to 

L{e) (X L{a^) + L{a^) + L{F) + L{B^) + L(B，. （5.13) 

It is noted that 尸(J|€)("), U) 

is already computed in the Expec-

tation step. Using Equations 3.4, 3.7 and 3.8, we define 
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+ \KufFp + (1 - -

+ 7』B; - Br+』2)/24 

+ - <+」2exp(-||C; -

• (5.14) 

where era is the standard deviation of the Gaussian probabil-

ity distribution centered at C [2]. The first two term of the 

definition measures the error due to the color composition equa-

tions 3.7. The third term measures the color distance of two 

corresponding background pixels. The last term of the defi-

nition is the soft constraint we applied on transparency. We 

use the difference of the origin pixel values, C; and 二#，to 

be the reference here. Once the difference is large, the corre-

sponding foreground pixels are more unlikely to have the same 

transparency here. Here and are nonnegative weights for 

adjustment in the log likelihood. 

Similar to the methods proposed to solve the natural image 

matting problem [2，27], we estimate the foreground color, al-

pha value, and background color likelihoods for each pixel by 

first collecting samples from the neighboring pixels. Then we 

model these samples using single Gaussian or Gaussian mixtures 

for background and foreground respectively. In what follows, 
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for simplicity, we describe our method using a single Gaussian 

model. The formulation and optimization using Gaussian mix-

tures are similar. 

For each pixel p, denoting the constructed Gaussian models 

for foreground color as {Fp, E^^^}, we obtain 

L{F) = 购 = E - i ^ p - W^fI^F, — (5.15) 
p p 

Similarly, we obtain the definitions of L[B饥)and L{a): 

LiB') = E L�BI�二 E - -母)/2，k e {r, m}, 
p p 

(5.16) 

L(a^) ^ ^ L K ^ ) = e {r,m}. (5.17) 

p V (^i 

For better explanation, we define 

/ (e ) = 巧 ⑷ , u ) { L [ j , u\e) + L(e)}. (5.18) 
Jer 

Given all above definitions of probabilities, our target is to find 

a best unknown set 0 to minimize /(9). One observation here 

is that in / , each F, B or a value may only have cross-terms 

with the unknowns on the same scanline. So we can optimize 

them scanline by scanline. Like the traditional digital matting 

methods [2] [21], we optimize a and {F, B} iteratively. 



CHAPTER 4. I N I T I A L I Z A T I O N 34 

5.2.1 Optimize a, given {F,B} fixed 

When {F, B} are fixed, given the width of image W, for each 

scanline y, the problem turns to be finding 

X* 二 arg rmn/(X), X = [o ’̂", � � . . . ’ a^y, a。,...，a'^J^ 

(5.19) 

Note here the unknowns and are sparsely nested, so 

it's still a multi-variable non-linear optimization problem. The 

Hessian Matrix of function f{X) can be written as: 

• 2 臉 “ 卜 。 叫 (5.20) 
-̂10 Zii • — 

Here Zij a,YeWxW matrices. Denote p = Pp{d^ = ⑷，U), 

pbpk = Pp{d^ 二 /c|Q⑷，U). We define 

pik 二 lik = 0， when k i [0, Ld\ (5.21) 
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And matrix Zij can be written as: 

ZooiiJ) = 丨 < +�Fp - B;f �—BD/ai 
df 

+27aexp(-||C； - = {hv] (5.22) 

Zn{i.j) 二 〜YA-d�A\I々八Fp一— B?)^(JF“! - B � l 
df 

+27.exp(-||C,- - p = {i,y] (5.23) 

d/ = db = j - i , p = { i , y Y (5.24) 

d； = db = j — i,:p={i,y、, (5.25) 

where 5ij is the Kronecker delta. It can be seen that Z is a 

strictly symmetric diagonally dominant real matrix with positive 

diagonal entries, which is proved to be positive definite. So the 

function f{X) is convex. We can take partial derivatives on 

f{X) with respect to X, and set them to be zero to compute 

the a for global minimum. For the scanline y, the equation can 

be written as: 

- n F" 1 
Ĝoo Goi Hq 

X = ， (5.26) 
<̂ 10 Gn Hi 

— 」 L -
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Here Goo, Goi, Gio and Gn a^veWxW matrix: 

GooiiJ) 二 5”TAAfMp + � - B ; n F p — B;)/al 
df 

+27«exp(-||C； - C;[,ff/2al)},p = {i,y} (5.27) 

df 

+27aexp(-||C7 - C ; — � | V 2 a抓 p = {i,y} (5.28) 

d^ = d' = j-i,p = {i,y}, (5.29) 

d； = db = j- i , : p =、i,y、. (5.30) 

And Ho, Hi are VF x 1 vectors: 

‘Ho( i ) = + {F, - B;Y{C； - B;)/al 

< 丑 1⑷ 二 T ^ p f “ f + � F p _ 舶 - B ^ ^ n c r B⑶cjD， 
. df 

p = {hy} 

(5.31) 

a"" and a^' can be directly computed by solving the linear 

equation set 5.26. 
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5.2.2 Optimize {F, B}, given a fixed 

Similarly, the pixel color {F, B^, B^} can also be computed by 

scanline. We define 

V 二 [F;B;;B『]; (5.32) 

where 

Fy = [Fîy； F2,y\...; Fw,y\ (5.33) 

B； = (5.34) 

B 『 = • . . ; 召 { j y (5.35) 

Fij, Blj and B^j are 3 x 1 vectors represents the foreground 

and background color at pixel {ij}. Then the Hessian Matrix 

of /(V) is also can be proved to be positive definite. So we take 

partial derivatives on f with respect to V, and also set them to 

be zero to compute {F, B^}. For each scanline y, we have: 

Aoo Mo 

Aio All Ai2 V - Ml , (5.36) 

A20 A21 A22 M2 
— " J L • 
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And Auv can be written as: 

• • 

ai'i ai’2 ... ai'w 

a2'l ^2,2 ... 2,IV 
^uv = {0,1,2} (5.37) 

• • • . , • • • • 

• _ • 蠢 

a^'i ... a所恢 
_ • 

a îis are 3 X 3 matrices: . 

df 

=知 —�)"喊， v = {i,y} 

<2 = - d/ = j-i, P = {i, y} 

^10 =知 P = {hy} 

aif = 似 { ( 1 - 《 ) 2 + 75)}//7^ + 2云;1), 

«12 = 乂 d b 二 j _ i, p = {i,y} 

二 P二 — df = j — i, p=仏 y} 

^21 = db = j _ i, P = {i,y} 

== % ( { ( ! - + 7B} / / a2 p=�i,y� 

And Mo, Ml and M2 can be written as: 

Mu = {0,1,2} (5.39) 
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Figure 5.1: The likelihood error is decreasing in iterations for the example 

shown in Figure 1.1. 

where M: are 3 x 1 vectors: 

^^ - $ pL.八 HC; + 々拟 /crl + 对J；、, P = {i,y} 

Ml = + P =仏：好.40) 

Here / is a 3 x 3 identity matrix. Then given the linear equation 

set 5.36, the F, B' and B饥 can be solved directly. 

Using the estimated a ⑷声 ) a n d ⑷ to be good initializa-

tions, the above optimization processes on {a,,, a"^} and {F, B' B^} 
are iteratively performed until convergence. 
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We plot in Figure 5.1 the likelihood error, 

e 二—叩。g^SiS^W (5.41) 

for the example shown in Figure 1.1. It is decreasing in itera-

tions. 

5.3 Computing Final Disparities 

After the optimization using the EM described, we obtain the 

estimated parameters 0* and a probability distribution of the 

hidden data d/ and (f. Similar to the classical stereo matching 

algorithm, we form a MRF on images and define an energy, 

which integrates a data term and a smoothness term [20], to 

minimize: 

= Edid'^p, + (5.42) 

where k G {/, b}. Es{d'') is the smoothness term defined similar 

to that in [20]， 

Es{d') = Y^ (5.43) 
s,t,teN{s) 

And Ed{d̂ \U, 6*) is the data term 

Ed{d'\U, = log P ( 4 二 d’e*，u). (5.44) 
p 
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We use Belief Propagation to minimize the energy and compute 

the final optimal disparities. A summary of our whole algorithm 

process is described in algorithm 1. 

Algorithm 1 Whole work flow 

1. Compute initial disparity map using Sun et al. method [20]. 

2. Compute initial trimap. 

(a) Compute Confidence map and marked out 'unreliable', pixels. 

(b) Form two-component Gaussian mixture for foreground and back-

ground disparities based on reliable pixels. Initialize the fore-

ground and background disparities. 

(c) Select pixels on the boundary of foreground and background pix-

els. Take consideration on 'unreliable' pixels and then form the 

trimap. 

3. Perform Bayesian Matting [2]. Get î (o)，5(o),a(o). 

4. Perform EM algorithm iteratively till converge for 0 and J. 

(a) E-step. Compute expectation of dJ and d̂  given fixed 

and a⑷ . 

(b) M-step. Compute a, F and B iteratively to maximize the log-

likelihood given computed expectation J. 

5. Form a MRF and integrate the smoothness term. Use BP to minimize 

the energy and compute the final disparities. 

• E n d o f c h ap t e r . 



Chapter 6 

Experiment Results 

Summary 

This chapter gives shows our results on challenging ex-

amples. Some quantitative comparisons between our 

method and other state-of-art methods are also shown. 

We have shown one difficult example in Figure 1.1. Since in 

our approach, each pixel has at most two disparities, only for 

visualizing the hairy object boundary, we construct the blended 

disparity map similar to the color blending 

d ; - = + (1 - ap)dl, (6.1) 

which has already been used in Figure 1.1 (d) and 4.1 (e). Due 

to the complexity of the EM algorithm, it take a Pentium(R) 

3.20GHZ CPU, 1GB RAM computer more than 1 hour to com-

pute the result. 

Figure 6.1 shows another difficult example where two stereo 

42 
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images contain a toy bear with long hair, (a) and (b) are two 

input images, (c) is the disparity result using the method in [20], 

which obviously causes errors around the object boundary, (d) 

and (e) are our blended disparity map and alpha matte through 

optimization. The complex alpha structure is preserved. 

Our approach can also be applied to the traditional stereo im-

age pairs to improve the object details. We show the "Tsukuba" 

example in figure 6.6. In our experiments, the lamp is automat-

ically segmented as the foreground objects since it has largest 

disparities. We show our optimized alpha matte and extracted 

foreground in (b) and (c) respectively. Note that the boundary 

of the extracted lamp is smooth and natural. Using the op-

timized alpha matte, we compute the disparities and compare 

them with those generated in [4] and [20] in 6.6 (d-f) using the 

following formula to reduce the two disparities for each pixel to 

one: 

.refine 4 2 0 . 5 

= ‘ (6.2) 

[ 4 0.5 

Obviously, our result has clearer boundary of the lamp. In 

fig 6.6(h), we show our improvement along the boundary of the 

lamp comparing with Sun et oTs method [20]. The evaluation 

result from the Middlebury Stereo Vision Page, figure 6.5, has 

also shown the advantage of our method, especially at pixels near 

depth discontinuities. Even though the evaluation discards a set 
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of occluded pixels when compare to the ground truth, which are 

precisely recovered via our method, our result still outperforms 

among all recent methods. 

Table 6.1: Alpha matte difference comparison of synthetic examples 

Bayesian [2] Wang & Cohen [27 

Bear 0.02424 0.02801 

Girl 0.01555 “ 0.01552 

Levin et al. [11] Our Method 

Bear 0.00516 0.00349 

Girl 0.00345 0.00258 

Besides, our method can also produce better matting results 

comparing to previous single natural image matting methods. 

In figure 6.2 and 6.3, we first compare our method with two 

state-of-art natural image matting methods [2, 27, 11] in the two 

synthetic 'bear' and 'girl' examples. The MSD errors between 

the alpha matte got from different methods and the ground truth 

is listed in Table 6.1, and plotted in figure 6.4. 

In figure 6.7，we compare our result with the matting methods 

27, 11] on the difficult "fan" example. The background has 

complex patterns and similar colors as the foreground, which 

make the foreground and background color estimation unstable. 

In (b) and (c), it is observable that the background patterns are 

mistakenly estimated as the foreground. Our result in (d) has 

less errors in the alpha matte thanks to the stereo configuration 

and the joint optimization. 
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Another example is shown in figure 6.8. In (e), the result 

got using Sun et al. [20] contains visible errors on the boundary 

region. Our result (f) successfully fixed those parts due to the 

consideration of alpha matte. The ground truth of the alpha 

matte is got using the blue screen method [18]. The MSD error 

between our result and the ground truth is only 0.00062218. 

• E n d o f chap te r . 
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H I H B ^ I R H ! 
⑷ ^ 

『 • H P 臂 
(c) (d) (e) 

(f) (g) (h) 

Figure 6.1: Bear example, (a) and (b) The input stereo images, (c) Stereo 

matching result using Sun's method [201. ((1) The blended disparity map 
computed from our method. The structures are well preserved, (e) The 

alpha matte coinputed from our approach, (f)-(li) Magnified regions in ((.), 

(d), and (e). ‘ 
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H i n 
(a) (b) 

n n 
( c ) ( c i ) 一 

F ^ F ^ • ⑴ 
(e) ⑴ " ^ C (j) 

n n s 
(g) (h) ⑴ 

Figure 6.2： The synthetic example 'bear', (a) Input left view, (b) Initial 

disparity got from [20]. (c) Our disparity map combining with alpha matte, 

(d) Grouiid truth of alpha matte, (e) Alpha matte got from Bayesian mat-

ting [2]. (f) Alpha matte got from Wang and Cohen method [27]. (g) Alpha 

matte got from Levin et al method [11]. (li) Our alpha matte result, (i)-(l) 

Side-by-side comparison on the magnified region. 
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_nn 
(a) (b) (c) 

(J) (k) (1) (m) (n) (o) 

nnn 
⑷ (f) 

n n n 
(g) (h) (i) 

顯 (P) ^ (CO ^ , ) 

Figure 6.3: The syiiilietic example，girl’, (a) Input left view, (b) Grouiid 

truth of alpha matte, (c) Alpha matte got from Bayesian matting [2], (d) 

Alpha matte got from Wang arid Cohen method [27). (e) Alpha matte got 

from Levin et al method [11]. (f) Our alpha matte result, (g) Ground 

truth of disparity, (li) Initial disparity got: from [20], (i) Our disparity map 

combining with alpha matte, (j)-(r) Magnified regions in (a)-(i), respectively. 
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0.03 I 1 • I 

I 1 j j l ^ H Our method 

^ H B Levin et al. 

0.025 • ^ ^ I iWang and Cohen -

H ^ l Bayesian 

I 
I n i • • 

„_il.l II 
bear girl 

Figure 6.4: Quantitative evaluation of alpha matte results. 



CHAPTER 6. EXPERIMENT RESULTS 69 

Algorithm Tsukuba 

all untex. disc. 

Sym.BP+occl. [27] 0.97 3 0.28 4 5.45 3 

Patch-based [36】 0.88 2 0.191 4.95 2 

Segm.-based GC [23] 1.23 7 0.29 6 6.94 8 

Graph+segm. [29] 1.39” 0.28 4 7.17io 

GC + mean shift [34] 1.134 0.48io 6.38 5 

Segm.+glob.vis. [25] 1.30 9 0.48” 7.50i3 

Belief prop. [3] 1.155 0.42 8 6.31 4 

GC+occl. [2b] 丨：Ll§6 0.23 2 6.71 6 

OUR METHOD 0.88 1 0.25 3 4.92 i 

Figure 6.5: The quantitive comparison result for the stereo image 

pair "Tsukuba". Data got from the Middlebury Stereo Vision Page： 

“http://cat.middlebury.edu/stereo/". 

http://cat.middlebury.edu/stereo/
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•B i l ls 
(a) (b) W (d) 

M M P H I M H 

SSSilS 
(e) ⑴ （g) (h) 

i mS “ • ^ 
• i Z ^ • s r ^ i k z i ^ 

(i) (j) (k) (1) (m) (n) 
Figure 6.6： The lamp from the stereo image pair "Tsukuba". (a) Input 

reference image, (b) The alpha matte of the foreground lamp computed 

from our method. The boundary is natural, (c) The extracted foreground, 

(d) Ground truth, (e) Result from the patch-based method [4). (f) Result 

of symmetric stereo matching [20]. (g) Our optimized disparity map. The 

lamp boundary has large improvement comparing to (d) and (e). (li) Our 

improvement along the lamp boundary from (f). Pixels marked in red are the 

errors fixed by our method, (i)-(ii) Side-by-side comparison on the magnified 

regions. 
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幽 _ 
h H 
^ ^ ^ ^ ^ ^ (e) 

^ ^ ^ ^ ^ (f) 

(g) 

⑷ （h) 

Figure 6.7: Comparison of the alpha matte, (a) Input reference image. The 

background and foreground have similar colors. The patterns of the back-

ground are also complex, (b) Result from the method in [27]. (c) Results 

from the method in [11]. (d) Our method is automatic, and does not re-

quire any user input, (e)-(h) The magnified regions for comparison. Notice 

that, within the green rectangle, result (f) and (g) mistakenly take the back-

ground pattern into foreground while our method produces a satisfactory 

alpha matte. 
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r : 遍 ： : : - 」 r ^ i i j 
(a) (b) 

P ^ f c j ^ ^ J 
^ , _ (d) 

释 F W 1 
� — ( s ) 

”、:‘•！ ••• 

(h) (i) ⑴ 

Figure 6.8: Bear example, (a) and (b) The input stereo images, (c) Fore-

ground object with a blue screen background, (d) Ground truth of alpha 

matte got from blue screen method [18]. (e) Stereo matching result us-

ing Sun's method [20]. (f) The blended disparity map computed from our 

method. The structures are well preserved, (g) The alpha matte computed 

from our approach, (h)-(j) Magnified regions in (e), (f), and (g). 



Chapter 7 

Conclusion 

In this dissertation, we have proposed a novel approach to solve 

the stereo matching problem on objects with fractional bound-

ary using two-frame narrow-band stereo images. Each pixel, 

with the definition of the layer blending, is assumed to be blended 

by two latent pixels with different disparities. We have defined a 

probabilistic model constraining the colors, disparities, as well as 

the alpha mattes on the two input images, and designed an op-

timization method using Expectation-Maximization to robustly 

estimate all parameters. Results on a set of images and quanti-

tative comparisons are given out. 

As described before, although our method has achieved im-

provements in handling general boundary transparencies in stereo 

matching using an image pair, there are still problems unsolved. 

For example, our method only considers two layers, i.e., back-

ground and foreground. Then our method can only focus on 

refining the boundary of the foreground object, but not all the 

54 
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objects in the image. We expect that if more stereo images are 

given, our model can be extended to handle more layers. Be-

sides, our recent method need a textureful background scene to 

achieve a good separation of foreground and background. Us-

ing the method shown in [12] to separate the image into matting 

components may also be a good choice. These will be considered 

in future. 

• End of chapter. 
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