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Abstract 

Constraint satisfaction has found successes in many walks of industrial applica-

tions and computer science, such as scheduling, resource allocation, transport 

routing, type checking, diagram layout, among others. Typically, a problem is 

first modeled as a constraint satisfaction problem (CSP)，which is then sub-

ject to a solver based on tree search augmented with constraint propagation 

algorithms. 

There are usually more than one way of formulating a problem as a CSP. 

Channeling constraints connect and combine multiple constraint satisfaction 

models of the same problem to allow constraint propagation information to 

flow among the combined models. We identify five common channeling con-

straints used in the literature for connecting between integer, set, and Boolean 

models, and study how best to realize these channeling constraints in con-

straint programming systems. While the semantics of these constraints is 

simple, their implementations can take on various forms using the primitive 

constraints provided in existing solvers, such as the i f f and the element con-

straints, thus entailing possibly different pruning behavior. There is also the 

possibility of global constraint implementations which enforce generalized arc 

consistency using specialized propagation algorithms. The thesis (1) compares 

the constraint propagation strengths of the different realizations of each of 

the five channeling constraints, which give us useful insights on proposing the 
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best implementations of the five channeling constraints; (2) propose generic 

propagation algorithms for three global constraints specialized for implement-

ing channeling. Experimentation on an extensive set of benchmark problems 

confirms that our proposed algorithms are in general the most efficient among 

all implementation possibilities. 
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摘要 

很多工業應用和電腦科學問題，例如日程安排和工作調度、資源分配、運輸 

路由、類型檢查、圖佈局等，在建模為約束滿足問題後都能成功被解決。一 

般而言，問題首先被建模為約束滿足問題，之後以樹形搜索和限制傳播算法 

為基礎的解難程式來解決。 

通常，每一個應用問題都可以建模為多個約束滿足問題。我們可透過雙 

導向約束來連接和結合同一個應用問題的多個約束滿足問題模型，從而加强 

約束傳播的資訊流動。我們首先認辨五種連接整數模型，集合模型，和布爾 

模型的雙導向約束，之後研究怎樣才能讓雙導向約束在約束編規劃系統中 

得到最佳的實現。儘管雙導向約束的語義簡單，但一般情況下都存在多種 

形式的編寫方法。假如使用約束規劃系統中預設的當且僅當約束和元素約 

束等，就可能導致不同的樹形搜索修剪。又如，我們可編寫全局雙導向約 

束，再以特殊的傳播算法强制執行以達到廣義弧形一致性。在本論文中，我 

們探討編寫各種雙導向約束的以不同形式，比較它們在約束傳播過程中的强 

度，從而洞悉實際中最佳的實施方案；第二,我們設計了三種專為全局雙導 

向約束的實現算法。通過廣泛的實驗，我們證實了方案算法的可行性和高效 

率 0 
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Chapter 1 

Introduction 

Many real-life problems, such as scheduling [DSvH88]，design and configuration 

PS98]，packing and partitioning [Hen92], combinatorial mathematics [SSW99], 

games and puzzles [Smi02] can be modeled as finite domain constraint satisfac-

tion problems (CSPs) [Mac77]. The thesis reports work on a kind of constraint, 

channeling constraint, which is an important line of research in the constraint 

community, especially in redundant modeling [CCLW99]. This chapter first 

gives a brief introduction on constraint satisfaction problems (CSPs) and an 

overview of constraint solving techniques. We then introduce the concept of 

redundant modeling and channeling constraints, and discuss the motivations 

of our research. We also give an overview of the dissertation. 

1.1 Constraint Satisfaction Problems 

Constraint satisfaction problems (CSPs) can be defined, in the sense of Mack-

worth [Mac77]’ as follows: 

We are given a finite set of variables, a finite domain of possible 

values for each variable, and a conjunction of constraints. Each 

constraint is a relation defined over a subset of the variables, limit-

ing the combination of values that the variables in this subset can 
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Chapter 1 Introduction 2 

take. The goal is to find a consistent assignment of values from the 

domains to the variables so that all the constraints are satisfied 

simultaneously. 

Solving CSPs is NP-complete [CLRSOl] in general. Thus, a general solv-

ing algorithm for solving CSPs is bound to require exponential time in the 

worst case. A common way to solve CSPs is by backtracking tree search 

GB65, Gas77, DP87, Nad89] incorporated with local consistency algorithms 

Mon74, Mac77, MM88, Ger95, Ger97]. Backtracking tree search systemati-

cally explores the search space of a CSP by trying each value from the domain 

of each variable, and backtracking if there are any constraint violations. Local 

consistencies are properties, which are local to individual constraints, speci-

fying conditions on checking whether the domains of their constrained vari-

ables are possible to be extended to a solution. Examples include node and 

arc consistencies [Mon74, Mac77], bounds consistency [MS98], generalized arc 

consistency [MM88]，and set bounds consistency [Ger95, Ger97]. Local consis-

tency algorithms enforce these properties, which cause reduction on variable 

domains. During backtracking tree search, removing a value from a variable do-

main means pruning a whole search sub-tree. Therefore, removing non-fruitful 

domain values effectively helps reducing the search space. Some common com-

mercial CSP solvers such as COSYTEC CHIP [COSOl], ECLiPSe [ECL05], 

ILOG Solver [IL099], the CLPFD library of SICStus Prolog [SIC05], and Oz 

Moz04] are based on these constraint satisfaction techniques. 

1.2 Motivations and Goals 

There are usually more than one way of formulating a problem into a con-

straint satisfaction problem (CSP). A useful modeling technique, redundant 
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modeling [CCLW99], is to combine multiple models of the same problem us-

ing channeling constraints [CCLW99], which allow pruning information to flow 

among the sub-models to induce possibly further domain reduction. Various 

studies [FFH+02a，SmiOl, LL06, HSW04] have been conducted on this topic, 

but different authors assume different implementations of the channeling con-

straints and some even do not specify how the constraints are implemented, 

making it difficult to compare the studies. In addition, little attention is paid 

. t o studying the best realizations of channeling constraints in existing solvers. 

Channeling constraints are also constraints, and are subjected to the same 

treatment as other constraints in any tree search based solver augmented 

with local consistency algorithms. Different realizations of the channeling 

constraints using different underlying primitive constraints or a global con-

straint implementation on a certain consistency level all might entail different 

pruning behavior. In the thesis, we identify five common channeling con-

straints for connecting integer, set, and Boolean models, and enumerate how 

these constraints can be realized in existing solvers. We compare the con-

straint propagation strengths of the various realizations of each channeling 

constraint. We study also when and how the channeling constraint imple-

mentations can subsume some of the characteristic constraints resulting from 

certain model combinations. Results from this study give us useful insights 

and suggest the design of an efficient propagation algorithm suitable for im-

plementing global constraints for all five channeling constraints, which is based 

on the notion of propagators. We propose (a) a propagation algorithm for a 

generalized element constraint for both integer and set variables specialized 

for implementing channeling constraints, and (b) a generic propagation algo-

rithm for global constraint implementation of the five channeling constraints. 

Experimentations on an extensive set of benchmarks confirm the feasibility 
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and efficiency of our proposed algorithms. 

1.3 Outline of the Thesis 

The rest of the thesis is organized as follows. Chapter 2 provides the back-

ground to the thesis. We formally define the concept of CSP, classes of variables 

and solutions of a CSP. We then briefly describe some CSP solving algorithms 

including systematic and local search solvers. In particular, we present the 

concept of constraint tightness [WalOl, HSW04], which is a measurement on 

the strength of domain reduction of constraints; and how consistency tech-

niques can be incorporated into backtracking tree search to increase solving 

efficiency. Moreover, some basic graph theories are presented, which are neces-

sary for our algorithms. Chapter 3 formally defines the concept of channeling 

constraints and redundant modeling. Specifically, we categorize five common 

types of channeling constraints, and give examples on each of them. Chapter 4 

discusses the common implementation techniques of channeling constraints in 

existing solvers: CHIP [COSOl], ECLiPSe [ECL05]，SICStus Prolog [SIC05], 

Oz [ M O Z 0 4 ] , and ILOG Solver [IL099]. Chapter 5 compares the constraint 

tightness of each type of channeling constraints among different implementa-

tions. We study also how the channeling constraints interact with the char-

acteristic constraints arising from the particular model combinations. Chap-

ter 6 presents our algorithms and implementations on channeling constraints. 

Moreover, we analyze the inefficiency of some existing channeling constraint 

implementations. Chapter 7 presents experimental results using our proposals. 

Chapter 8 presents a brief review of the related work in channeling constraints. 

We conclude the thesis in Chapter 9 by summarizing our contributions and 

giving possible directions for future research. 



Chapter 2 

Background 

This chapter provides background to the thesis. We first give various defi-

nitions related to CSPs. Then we present constraint solving techniques for 

solving CSPs, which include a brief overview of systematic search and local 

search. In addition, we introduce the concept of constraint tightness which are 

used for comparing different consistency levels on constraints. Last but not 

least, we give some definitions on graph theory which is important for later 

chapters. 

2.1 CSP 

A constraint satisfaction problem (CSP) is a triple (X, D, C), where X = 

{a；!,... Xn} is a set of variables, D = {Dx^,... D^^} is the set of domains 

for each variable containing the possible values for the variable, and C = 

{c i ,…Cm} is a set of constraints. Each constraint c G C is a relation over a 

subset XcQ X oi variables, specifying the allowed combinations of values that 

Xc can take. 

Example 2.1. The n-queens problem 

The n-queens problem (Q(n)) is to place n queens on an n x n chessboard, 

such that no two queens are in the same row, column, and diagonal. We 
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Chapter 2 Background 6 

formulate it as Qr = (JKr, Dxr,Cxr) [SmiOl, CLS06], where each variable n G 

Xr represents the row position of the queen in column i (|Xr| = n) with 

•CVi = {1，...，n}. Cxr contains constraints that ensure each variable 7\ G Xr 

must be (i) in different columns, r̂  ^ r^, VI < z < j < n; (ii) in different 

d i a g o n a l s , � � + i — r). + j and Vi — i ^ Vj — j , VI < z < j < n. Since each 

column must have a queen, values assigned to Xr must be a permutation of 

1 ’ • ••，Tl/ • 

2.2 Classes of Variable 

There are three common classes of variables, namely integer variables, Boolean 

variables, and integer set variables, depending on the types of values in the 

variables' domains. The domain of an integer variable [MS98, IL099] is a set 

of integers. A Boolean variable a; is a special case of an integer variable, where 

Dx = {0 ,1 } . The domain of an integer set variable (or simply set variable) 

Ger94, Ger97, IL099] is a set of integer sets. 

The domain of a set variable x can be huge. When x ranges over all subsets 

of n possible values, = Thus, for ease of manipulation, one of the 

most common ways for representing the domain of a set variable x is by two 

sets, namely the required set and the possible set. The required set RS{x) (or 

sometimes called greatest lower bound) of x contains all values that must belong 

to X, while the possible set PS{x) (or sometimes called least upper bound) of x 

contains all values that can belong to x. Thus, RS(x) C PS{x). The domain 

Dx of a set variable x is defined as Da； = {s | RS{x) C s C PS{x)}. Note that 

RS{x) = f]Dx and PS{x) = U Ac. A variable x is fixed to a value a if and 

only if Dx = {a } , i.e. there is only one value left in Dx. If x is a set variable, 

then it is the situation when PS{x) = RS{x). 



Chapter 2 Background 7 

ri r2 n u 1 2 3 4 
1 I Q I I ci I Q I I 一 

2 ^ C2 Q 
3 ~Q C3 ~Q 
4 一 I Q I ~ ~ C4 I Q I — 
(a) for model Qr (b) for model Qc 

Figure 2.1: A solution of Q(4) 

2.3 Solution of a CSP 

By X I—)• a, we denote an assignment of value a e Dx to the variable x. A 

complete assignment for a set of variables X is a set of assignments, one for 

each variable in X. A solution for a CSP {X, D, C) is a complete assignment 

for X satisfying all constraints in C. 

Example 2.2. The n-queens problem 

A solution s = {ri 3, r2 h 1，厂3 h 4’厂4 h 2} of Q(4) for model Qr is 

shown in Figure 2.1(a). • 

An assignment re i-> a for a variable x can be extended to a solution of a 

CSP if and only if there exists a solution s such that (a; i-^ a) G s. 

Example 2.3. Suppose c is Xi — X2, and D^^ = {1,2}, Dx^ = {2}. Then 

Xi t—> 1 can be extended to a solution of c, but Xi i—̂  2 cannot, since the only 

solution of c is i-^ 1,0；2 ‘―̂ 2}. • 

When an integer (or Boolean) variable x is fixed to a value a, x is assigned 

with a automatically. Similarly, a set variable x is assigned with RS[x) (or 

PS{x)) if X is fixed. 
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2.4 Constraint Solving Techniques 

In general, CSPs are NP-complete [CLRSOl]. Solving CSPs requires exponen-

tial time in terms of problem size in the worst case. There are two general 

classes of algorithms for solving CSPs. The first is systemic search, which 

explores the tree of possible assignments systematically. This can guarantee 

to find a solution (if it exists), or prove that no solution can be found. Thus 

systemic search is sound and complete. A widely used algorithm in this class 

is backtracking tree search [GB65, Gas77, DP87, Nad89], and it usually works 

with consistency techniques [Mon74, Mac77, MM88, Ger95, Ger97], which are 

used to remove infeasible values from variable domains so as to reduce tree 

size. 

Another class of algorithm is stochastic local search [SLM92, DTWZ94, 

CLSOO, ZWOO], which explores the search space of complete assignments in 

heuristic manner. In general this may not find a solution even one exists, or 

prove that the problem has no solutions. Thus local search is incomplete. How-

ever, local search algorithms have been demonstrated to perform efficiently on 

solving some large-scale and difficult CSPs [SLM92, DTWZ94, CLSOO, ZWOO: 

when compared with algorithms based on backtracking tree search. 

Our work focuses on systematic search. In the following, we describe no-

tions and algorithms related to consistenc), techniques, and explain how these 

techniques can be incorporated into backtracking tree search. 

2.4.1 Local Consistencies 

There are different levels of local consistency of a constraint. In this thesis, 

we focus on a few common consistency levels. A constraint c is generalized 

arc consistent (GAC) [MM88] if and only if Va; G Xc^a G D工,工 a can 

be extended to a solution of c. A constraint c is arc consistent (AC) [Mon74, 
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Mac77] if and only if it is GAC and it is binary (|；5(：。|二2). A constraint c is set 

bounds consistent (SBC) [Ger95, Ger97] if and only if Vir G Xc, RS[x) 二 f j S 

and PS(x) = (J'S', where == {ci | a e D̂； and x a can be extended to 

a solution of c}. A constraint c is hybrid consistent (HC) [BHBHW05] if and 

only if for each integer variable x G Xc, Va G D^^ x ^ a can be extended to a 

solution of c, and for each set variable y G Xc，RS(j/) = Q 5 and PS{y) 二 IJ "̂， 

where S = {a \ a E Dy and y ^ a can be extended to a solution of c}. 

Typically AC and GAC are maintained for constraints containing integer 

(and Boolean) variables, while SBC is for constraints containing set variables 

only. 

Example 2.4. Suppose constraint c is Xi < X2, and D î = {2,3,6}, Dx:= 

{1,4，5}. The constraint c is not AC. 

Both 6 € Aci (no value is > 6 in and 1 G D^̂  (no value is < 1 in Dx,) 

cannot be extended to any solution of c. If D^̂  = {2,3} and D^̂  = {4,5} , 

then c is AC. • 

Example 2.5. Suppose constraint c is Xi + X2 =工3，and D^^ = D^z 二 {1 ’2 } , 

Dx3 = {1 ,2 ,3 ,4 ,5} . The constraint c is not GAC. 

Both 1 and 5 in D^^ cannot be extended to any solution of c. If D^̂  二 

{2 ,3 ,4} , then c is GAC. • 

Example 2.6. Suppose constraint c is Xi A 0:2 二 { } , and PS{xi)==尸5*(2：2)= 

{1 ,2 ,3} , and RS{xi) = {2}, RSix2) = {1} . The constraint c is not SBC, 

Both 1 G and 2 G PS{x2) are not in any solution of c. If PS{xi)= 

{2 ,3} and PS{x2) = {1,3} , then c is SBC. • 

By maintaining local consistency for each constraint, infeasible values are 

removed from variables' domains. 



Chapter 2 Background 10 

2.4.2 Constraint Tightness 

Constraint tightness [WalOl, HSW04] is a kind of measurement on the strength 

of domain reduction of constraints with respect to different local consistencies, 

and we will use it for our comparing different constraint implementations. 

Given two sets of constraints A and B, which are defined over a same set of 

variables and set of domains, ^-consistency on A is at least as tight as 少-

consistency on B (written ^a ^ 屯b) if and only if, if all constraints in A are 

少-consistent, then all constraints in B are ^-consistent, ^-consistency on A 

is strictly tighter then 屯-consistency on B (written > 屯5) if and only if, 

少A > 少B but not 屯 B ^ ^A- <l>-consistency on A is as tight as ^-consistency 

on B (written ^a = if and only if, ^ a ^ "^b and 屯 b ^ ^a-

Example 2.7. Given a set of integer variables X = {a；!,..., and we want 

each of them to take a distinct value. We can either impose n{n—l)/2 pairwise 

disequalities i.e. xi + Xj, for 1 < i < j < n; or use a global all-different 

constraint V [Reg94] on X. We have GAC{\/}>AC{^y 

GAC{y} is trivially . Here, we give an example which is A C � but 

not GAC{y}. Let X = {xi, X2,0:3}, and Dx^ = Dx: = Dx^ = {1,2} . There are 

two solutions for each pairwise disequality, while there is no solution for an 

all-different constraint. This is but not GAC[\jy • 

2.4.3 Tree Search 

In this thesis, we assume propagator-based constraint solving, which is a com-

bination of backtracking tree search and constraint propagation. This kind 

of search procedure features interleave of domain reduction and variable de-

cisions. By a variable decision x ^ v, we mean assigning v E D^ to x {i.e. 

making a; f ) if a; is an integer or Boolean variable, and adding v G PS{x) 
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to RS{x) if rc is a set variable, as well as the situation that x is fixed to a 

value V (i.e. Dx = {v}) . By domain reduction x ^ v, we mean removing v 

from Dx if x is an integer or Boolean variable, and removing v from 

if a; is a set variable. In a propagator-based solver, domain reduction is typi-

cally performed by propagators, each of which is attached to a constraint, for 

maintaining the appropriate consistency levels for the particular constraint. A 

propagator p is invoked whenever the domain of a variable in the constraint 

associated with p is changed, which can in turn prune the domains of other 

variables and sparkles a series of chain reaction further invoking other prop-

agator procedures. Such a sequence of domain reduction is called constraint 

propagation, which stabilizes when all variable domains remain unchanged. 

The tree search procedure backtracks when (a) Ac = { } if a; is an integer or 

Boolean variable, or (b) RS{x) g PS(x) if re is a set variable. Search stops or 

backtracks on demand when a solution is found. 

Example 2.8. Q(4) is solved using propagator-based constraint solving with 

natural order for variable decisions. All propagators maintain AC. 

Figure 2.2 shows the resulting search tree. By symmetry, our search tree 

shows the branches for ri h 1 and ri 2 only. Each chessboard represents 

the status of Dxr after an assignment is made (e.g. ri i—> 1).A place in grey 

means no queen should be there (corresponding domain's value is reduced), 

where light grey means the domain's value is reduced by propagators, and 

dark grey means the domain's value is reduced by an assignment. An arrow 

means making an assignment. Since we would like to show major intermediate 

domain changes making by propagators, we use a dash arrow as an index of 

change. Now, we go though Figure 2.2 in detail. 

• First, ri 1 invokes propagators involving ri, they are ri + r̂ , r! + t、一 

2 + 1 and T\ r̂  + z — 1, V2 < z < 4. Propagators of t\ + r̂  cause Ti 1, 
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Figure 2.2: A propagator-based search tree for solving Q(4) 
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and propagators of ri r̂  — z + 1 cause r̂  z, V2 < z < 4. Note that 

some invocations do not cause any reduction effect, e.g. r! — r̂  + i — 1， 

V2 < z < 4, and the chaining invocations related to the newly domains' 

change. This situation always happens in later cases. Therefore, we only 

focus on those invocations that cause domain reduction in the following 

description. 

- T h e n r2 3 invokes propagators of 7̂2 n , r2 ^ — z + 2 and 

厂2 + ri + z - 2, for % = 1,3，4. Propagator of r^ + r^ causes 

� 4 3，propagator of r-i � 3 + 1 causes rs 2, and propagator of 

— 1 causes 7-3 4. Note that Dr^ = { } , and we backtrack 

to try the next value for 

—Now 7*2 4 invokes the same set of propagators involving T2, Prop-

agator of 广2 —厂3 causes ra 4 and propagator o f � 2 r^ + 2 causes 

r4 2. Note that Dr^ = {2 } and Dr^ = {3} , which means that r^ 

is fixed to 2 a n d � 4 is fixed to 3. These invoke propagators involving 

7̂3 and r4. Similarly, once propagator o f � 3 # � 4 一 1 causes rs 2 

(or 厂4 3 depending on the order of invocation), we backtrack. 

• Another branch starts with ri i—̂  2, which invokes the same set of prop-

agators involving ri. Propagators of r\ — 7\ cause n 2, V2 < z < 4, 

propagators of ri - z + 1 cause r̂  z + l , for z = 2,3, and propagator 

of ri ^ r2 + 1 causes 厂2 1. Note that D r � = {4} , which means that T2 

is fixed to 4. This invokes propagators involving r� .Similarly, D â = {1 } 

and then D^̂  = {3} . We reach a solution. • 

Furthermore, by a value v being impossible for x, we mean v ^ D^ if x is 

an integer or Boolean variable and v ^ PS{x) is a; is a set variable. By a value 

V being decided for x, we mean a; = if re is an integer or Boolean variable 
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and V e RS{x) if a; is a set variable. 

2.5 Graph 

(a) a bipartite graph Gb (b) an oriented graph Go 

(c) a perfect matching M (d) augmenting cycles Ci and C2 

Figure 2.3: Examples of four graph definitions 

A graph G = (V, E) consists of a set of vertices V and a set of edges E. 

An edge e is a line joining two vertices Vi,Vj G V; a directed edge e = (Vi, Vj) is 

an ordered pair from vertex Vi to Vj, and e = {vi .vj} represents an undirected 

edge. A directed graph consists of only directed edges, and an oriented graph 

is a directed graph having no symmetric pair of directed edges. A bipartite 
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graph G — (V, E) consists of two disjoint sets X and Y of vertices, where 

X U Y = V, and Ve = {vi ,vj} G E, neither Vi,Vj G X nor Vi, Vj e Y. A 

matching M on a graph C is a subset of edges of G such that Vê  ^ ej G M, 

Ci n Cj = { } . A matching contains all vertices in G is called perfect matching. 

A simple path on a graph G is a sequence of distinct vertices {vi^.vi^,… 

such that {vi^.Vi^},..., are edges of G\ a cycle is a path such that 

Vi�= Vî . An augmenting path or cycle is a simple path or cycle whose edges 

are alternately in M and E — M, given a graph G = (V, E) and a matching 

M. 

Example 2.9. Figure 2.3 shows (a) a bipartite graph Gb, (b) an oriented graph 

Go, (c) a perfect matching M on G^, and (d) two augmenting cycles C�and 

C2 with respect to M and Gb. 

(a) A bipartite graph Gf, = (V, E) consists of two disjoint sets of vertices 

X = { x i , . . . , X4} and Y = {yl,... ,2/4}, where V = X U Y. Vertices in 

X and Y are connected by undirected edges, (b) An oriented graph Go is 

constructed from Gb, by giving a direction for each edge in Gb. (c) A perfect 

matching M = {{a;i,2/i}, {x2,2/2}, {2:3,2/4}, {2:4,2/3}} is shown as bold edges, 

(d) Augmenting cycles Ci = {zi，2/1，工2，2/2’ a : ] and C2 = {3^3,2/4,2:4,2/3,3:3} are 

shown as dash edges. Note that the bold dash edges are M. B 



Chapter 3 

Common Channeling 

Constraints 

In this chapter, we illustrate the relationship between models and channeling 

constraints. We first introduce different ways of modeling given a problem P. 

Then we present the concept of redundant modeling, which use channeling con-

straints to combine more than one model of the same problem P. Moreover, we 

formally define five different forms of channeling constraints. They are int-int 

channeling constraint, set-int channeling constraint, set-set channeling con-

straint, int-bool channeling constraint and set-bool channeling constraint. We 

give various examples on combining different models based on six problems. 

3.1 Models 

Given a problem P. The modeling process consists of determining the set 

X of variables, the corresponding domains D of variables, and the required 

constraints C, resulting in model M = {X, D, C) for P. By considering P from 

different perspectives, we can usually find more than one way of formulating 

P into a CSP. Consider P as the n-queens problem in Example 2.1. We can 

have another model Qc- In Model Qc = {XcDx^^CxJ [SmiOl，CLS06], the 

16 
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queens must be placed in different rows, and each variable q G Xc (integer 

variable) represents the column position of the queen in row i (|Xc| = n) with 

Dci = {1，...，n}. Cxc contains constraints that ensure each variable Ci e Xc 

must be (i) in different columns, Cj Cj, VI < z < j < n; (ii) in different 

diagonals, ĉ  + z Cj + j and C i - i ^ Cj - j , VI < z < j < n. Since each row 

must have a queen, values assigned to Xc must be a permutation of { 1 , . . . , n]. 

Figure 2.1(b) gives a solution of Qc: {ci 2, C2 4, C3 1, C4 1—̂  3}. Qc and 

Qr are said to be redundant with respect to each other, as each of them suffices 

to specify the n-queens problem completely. In the next section, we illustrate 

how to combine different models of a problem by channeling constraints, in 

order to achieve additional constraint propagation. This is called redundant 

modeling [CCLW99 . 

Integer models, set models and Boolean models are CSP models containing 

only integer variables, set variables and Boolean variables respectively. We 

give more examples of modeling in the next section. 

3.2 Channeling Constraints 

Given two models Mx and My of a problem with two disjoint sets of variables 

X and Y respectively, channeling constraints [CCLW99] can be used to join 

Mx and My together by relating X and Y. There is no agreed definition of 

what channeling constraints should look like. Cheng et al. [CCLW99] suggest 

the following general form:^ 

The variable associated with object x of type X has object y of 

type Y as value if and only if the variable associated with y has x 

as value. 
1 Pair-based models need a special form of channeling constraints, proposed by [SmiOl]. 
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For example, we can use the channeling constraint for joining Xr and X � o f 

the n-queens problem: 

Ti = j 分 Cj = i Vr,： G X r ^ C j G Xc 

From the literature, we can find the following five common forms of channel-

ing constraints for connecting models with integer, Boolean, and set variables. 

3.2.1 Int-Int Channeling Constraint (II) 

Suppose X and Y are variables both from integer models. The int-int (II) 

channeling constraint has the following form: 

Xi = j Uj = i \/Xi e X and \/yj G Y 

Example 3.1. Langford's Problem 

This problem L(/c,n), "prob024" in CSPLib [GW99], is to arrange k sets 

of numbers from {1 , . . . n} as a sequence of length s = k x n, such that for 

each number m G { 1 , . . . , n}, there must be m numbers between each pair 

of m,s (there are totally k m's). A particular instance L(3,9) [Mil99] of the 

Langford's problem is as follows: 

A 27-digit sequence includes the digits 1 to 9 three times each. 

There is just one digit between the first two I's, and one digit 

between the last two I's. There are just two digits between the 

first two 2，s and two digits between the last two 2，s,…’ and so on. 

Find all possible such sequences. 

One solution of L(3,9) is 181915267285296475384639743. The following para-

graphs give two possible integer models, Lp and L^, for this problem. 

In Model Lp = {Xp, D^p, C^J [SmiOl, HSW04, CLS06], each variable p力 € 

Xp (integer variable) represents the position of the zth copy of the number j 
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(l^pl = s). Thus Dp., = { 1 , . . . , s } represents the possible positions for this 

number. Cxp contains constraints that ensure the spacing between each pair 

of copies, pij+i = Pi- + 2 + 1, VI < i < n, VI < j < k — 1. Since each 

number needs to take a different position, values assigned to Xp must be a 

permutation of {1,..., 5}, i.e. Pj. + pi…Vli < ji < Im ^ '̂ k in the order of 

11 ? • • • ? Ifc) • • • ) » • • ' 1 ^k• 

In Model La = [SmiOl, HSW04, CLS06], each variable 

di G Xd (integer variable) represents the number at position i (|Xd| = s). Thus 

Ddi = {li，...，Ifc,... ’ ni,…，n^fc} represents the possible numbers at this po-

sition, where ji denote the ith copy of the number j, Cx^ contains constraints 

that ensure the spacing between each pair of copies, di = j i 分 di^(^rn-i){j+i)= 

jm, VI < 2 < 5, VI < j < n, V2 < m < /c, where (z + (m - l){j + 1)) < s; and 

di ^ ji, VI < j < n, V(5 — {k — l){j + 1) + 1) < i < s. Since each position 

needs to take a different number, values assigned to Xd must be a permutation 

of { l i , . . . ’ Ifc’ •.., n i , . . . ，n/c}, i.e. di + dj, VI < z < j < s. 

We can combine these two models by: 

Pi = j 钱 dj = i \fpi G Xp, \fdj e Xd 

Example 3.2. All Interval Series Problem 

This problem A(n), "probOOT" in CSPLib [GW99], is to arrange numbers 

from 1 to n as a sequence of length n, such that the absolute differences between 

every pair of neighboring numbers form the set {1，…，n — 1}. A solution of 

A{4) is 1423. The following paragraphs give two possible models, Ap and A^, 

for this problem. 

In Model Ap = {Xp, Dxp, Cxp) [CLS06], each variable pi G Xp (integer vari-

able) represents the position of the number i (|Xp| = n). Thus Dp. = { 1 , . . . , n } 

represents the possible positions for this number. Choi et al. [CLS06] suggest 
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auxiliary variables V = { f i , . . . , tVi-i} denote the position where the difference 

values 1 to 71 — 1 belong, where Dy. = {I,... - 1}, \/vi G V. Cxp contains 

constraints (i) relate variables in V and Xp, {pi — pj = 1) — iVj-i = Pj) and 

ipj — Pi = 1) — { v j - i = Pi), VI < 2 < j < n, (ii) ensure every pair of positions 

for the difference value are different, Vi ^ VI < i < j < n — 1. Since each 

number needs to take a position, values assigned to Xp must be a permuta-

tion of {l,...，n}，i.e. Pi • Pj, \/l < i < j < n. Furthermore, Choi et al. 

.CLS06] observe the fact that only the numbers 1 and n can give the difference 

of n — 1. Thus, they suggest adding two redundant constraints \pi — Pn\ = I 

and Vn-i = min{pi^pn). 

In Model Ad = {Xd,Dx^,Cxa) [PROl, CLS06], each variable di e X^ 

(integer variable) represents the number at position i = n). Thus 

Ddi = {l，...，n} represents the possible numbers at this position. Choi et 

al. [CLS06] suggest auxiliary variables U = { w i , . . . , Un-i} to denote the dif-

ference between adjacent numbers, where Du^ = {l，...，n — 1}，Vn̂  G U. 

Cxd contains constraints (i) relate variables in U and Ui = \xi — 

VI < i < n — 1 (ii) ensure every differences between adjacent numbers are 

different, Ui ̂  Uj,yi < i < j < n—1. Since each position need to take a num-

ber, values assigned to Xd must be a permutation of {1，..., n} , i.e. di dj, 

VI < 2 < j < n. 

We can channel these two models by: 

Pi = j dj = i V P I G A P , \/dj G Ad 

Moreover, we can add redundant channelling constraints between V and U as 

well: 

Ui= j ^ Vj = i \/ui e U, \/Vj e V 
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weekg�lfer|l 2 3 4 5 61 卜 6 广 | 1 2 3 
1 1 1 2 2 3 3 1 {1,2} {3,4} {5,6} 

2 1 2 1 3 2 3 2 {1, 3} {2，5} {4，6} 

3 1 2 2 3 3 1 3 {1，6} {2，3} {4, 5} 

(a) Gg (b) Gp 
week 1 o o 

group 1 2 Q I 丄 乙 O 
(1,2,3} ( } ( T 一 - 1 2 311 2 T r T ^ 

2 {1} { 2 3 } 1 1 0 0 1 0 0 1 0 0 

3 2 1,3 2 1 0 0 0 1 0 0 1 0 

4 { } {1} { 2 3 } 3 0 1 0 1 0 0 0 1 0 
5 2 1,3 4 0 1 0 0 0 1 0 0 1 

6 {3} {} 1,2 5 0 0 1 1 0 0 1 0 0 
V — - - — — " 丨 6 0 0 1 0 0 1 1 0 0 
(c) ^ 

Figure 3.1: Four equivalent solutions of G(3，2，3) in models Gg, Gp, G^ and 
Gz respectively 

3.2.2 Set-Int Channeling Constraint (SI) 

Suppose X are variables from a set model, and Y are variables from an integer 

model. The set-int (SI) channeling constraint has the following form: 

j e Xi Uj = i yxi e X and Vy^ G Y 

Example 3.3. Social Golfer Problem 

This problem G{g,s,w), "probOlO" in CSPLib [GW99], is to schedule g 

groups of golfers, each group has s golfers, for w weeks social play, such that 

each pair of golfers plays in the same group at most once. There are totally 

n = g xs golfers. A solution of G(3, 2,3) is shown in Figure 3.1. The following 

paragraphs give three possible models, Gg, Gp, and Gw for this problem. 

In Model Gg = (Xg ,Dx , ,Cx , ) [SmiOl, LL06, CLS06]，each variable g � j e 

Xg (integer variable) represents the group number for golfer i in week j = 
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n X w). Thus Dg. . = {1 , . . . represents the possible group numbers. Cxg 

contains constraints that (i) each group must have s golfers, |{a | ga,j = /c, VI < 

a < n]\ = < j < w^'il < k < g, and (ii) each pair of golfers plays in the 

same group at most once, |{a | 识’̂  =力’a，Vl < a < wjl < 1, VI < i < j < n. 

In Model Gp = (Xp ,Bx , ,CxJ [SmiOL LL06, CLS06], each variable pij e 

Xp (set variable) represents the golfer for group i in week j (|Xp| = gxw). Thus 

PS{pij ) = { 1 , . . . , n} represents the possible golfer numbers. Cxp contains 

constraints (i) the cardinality of each p i j G Xp must be equal to s, \pij = 

5, Pi J G Xp, (ii) the groups in each week do not contain the same golfer, 

Pi�k n pj’k = { } , VI < 2 < j < p, VI < /c < It;, and (iii) each pair of golfers 

plays in the same group at most once, |pi，fc 门厂)’/| < 1, VI < z < VI < j < 

yi<k<l<w. 

In Model G^ = (X̂；, each variable Wij G X^ (set variable) 

represents the week for golfer i at group j (|义切| = n x g), thus PS{wij)= 

{1，...，"} represents the possible weeks. Cx^ contains constraints (i) each 

golfer participate exactly once per week, i.e. |Jf=i 川j,i = {1, • •. w}, VI < j < n; 

and Wij n Wi’k = { } , VI < z < n, VI < j < k < g, (ii) each group 

contains exactly s golfer, |{a | j G iCa.i,VI < a < n}| — w, VI < z < p, 

VI < < w, and (iii) each pair of golfers plays in the same group at most 

once, |{a | Vi € {1 ’ . . •，g}，a G {wĵ i fl ti;fc’i)}| < 1, VI < j < /c < n. 

We can combine Gp with Gg by: 

K E P I J GKJ = I VPI’J. G X P , Y G K J E X G 

We can combine Guj with Gg by: 

k e Wij ^ Qi^k = j ^Wij G X^ygi^k e Xg 

Example 3.4. Balanced Academic Curriculum Problem 
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Period 1 ^ ~ 
Course {1 ,4} 

Figure 3.2: A solution of 5(2 ’ 4,3，6,1,3, {2，3’ 3,4} , { � 2 , 1 ) } ) 

This problem B(n,m,a,6, "probOSO" in CSPLib [GW99]，is to 

schedule an academic curriculum by assigning n periods to m courses such 

that the maximum academic load for all periods is minimized. The parame-

ters a and b are the minimum and maximum academic load for each period, 

c and d are the minimum and maximum number of courses for each period, L = 

{/i,…，Im} is a set of courses academic loads, and R = {�n，2，n’i〉，...，�7>’2，�’i�} 

is a set of prerequisite pair�?\2，厂�’1�such that course r � ! must be taken be-

fore course ri’2. An optimal solution of 5(2，4, 3，6,1,3, { 2 , 3 ,3 ,4}， {�2 ,1� } ) is 

shown in Figure 3.2. The following paragraphs give two possible models, Bp 

and Be, for this problem. 

In Model B^ = (X^, D x � C x J [HKW02, CLS06]’ each variable Ci G (set 

variable) represents the course number for period i (|Xc| = n). Thus PS{ci)= 

{1, . . .，m} represents the possible course numbers. Choi et al. [CLS06] suggest 

two sets of auxiliary variables W = {wi, • • •，Wn} and T = { ^ i , . . . , where 

Wi represents the academic load at period i and U represents the number 

of courses at period i. Cx�contains constraints (i) academic load for each 

period is bounded, Wi = J2jeci h and a < Wi < b, \fwi G W, (ii) number of 

courses in each period is bounded, U = |ci| and c < U < d, G T, (iii) 

each course appears once and only once, Ci fl Cj = { } , VI < z < j < n; all 

courses must appear E二丄 U) = m, and (iv) prerequisites must be satisfied, 

e Cj) (n，2 • Cfc), V � n ’ 2 ’ n ’ i � G i?, VI < /c < j < n. 

In Model Bp = (Xp, C x J [HKW02’ CLS06], each variable jh G Xp 

(integer variable) represents the period to which course i is assigned (|Xp| = n). 
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Thus Dp. = {1,…，n} represents the possible period. Same as model B^ 

two sets of auxiliary variables W = {wi^..., Wn} and T = •(亡 i,...,亡 n} are 

added. Cxp contains constraints (i) academic load for each period is bounded, 

Wi = YlpjEXp pj=i and a < Wi < b, \/wi G W, (ii) number of courses in each 

period is bounded, ti = \{pj | pj 6 Xp,pj = z}| and c < ti < d, \/亡i G T, and 

(iii) prerequisites must be satisfied, 3 > Pn’” V�n，2，ri’i�^ R 

We can use the following set-int channelling constraint to combine B � w i t h 

Bp： 

j e Ci^ Pj = i \/ci G Xc, Vpj. e Xp 

3.2.3 Set-Set Channeling Constraint (SS) 

Suppose X and Y are variables both from set models. The set-set (SS) chan-

neling constraint has the following form: 

j e Xi e Uj \/Xi G X and \fyj G Y 

Example 3.5. Social Golfer Problem 

We can use the following set-set channelling constraint to combine Gp with 

Gyj. 

gi�j = j e Wk，i 力 i , j e Xg,\fwk’i e Xy, 

Example 3.6. Steiner Triple Systems Problem 

This problem T(n), "prob044" in CSPLib [GW99], is to find a set of 

m = n{n— l ) / 6 triples, where each triple is subset of {1，...，n}，and each pair 

of triples has at most one common integer. A solution of T(7) is { {1 ,2 ,3 } , 

{1 ,4 ,5} , {1 ,6 ,7} , {2,4,6} , {2,5,7} , {3 ,4,7} ’ {3 ,5 ,6} } . The following para-

graphs give two possible models, Sn and 5p, for this problem. 

In Model Sd = (X^, Dx^^Cx^) [LL06]，each variable di G Xd (set variable) 

represents the z-th triples = m). Thus PS{di) = { 1 , . . . represents 
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Integer Boolean 

工i - 工 j = a 气fc X Zj^k+a) = 1 
Xi -Xj^ a ( E L T 之 X Zj^k+a) = 0 

Xi ^ Xj,\/1 <i<j<m ti = 之 and < 1, VI < / < n 
and (Er=i ti) = m 

= <a<m}\ 

Figure 3.3: Mapping of common integer constraints to Boolean constraints in 
our introduced models 

the possible integers that this triple can contain. Cx^ contains (i) each triple 

(integer set) contains three integers only, \di\ = 3，\fdi G and (ii) each pair 

of triples shares at most one common integer, \di A djl g 1，VI g i < jf g m. 

In Model Sp = {Xp, Dxp.Cxp) [LL06], each variable Pi G Xp (set variable) 

represents a set of triples that contain the integer i = n). Thus PS{pi)= 

{1，...，m} represents the possible triples. contains (i) each triple contains 

three integers only, |{a|i G Pa,Pa ^ 二 3, V l S i S m , and (ii) each pair 

of integers shares at most one common triple, \pi fl Pj \ < 1, VI < i < j < m. 

We can combine Sd and Sp by: 

j e di^i e Pj \fdi e Xa, •巧 G X p 

3.2.4 Int-Bool Channeling Constraint (IB) 

Suppose X = { x } is a variable from an integer model, and Y are variables from 

a Boolean model. The int-bool (IB) channeling constraint have the following 

form: 

X = i yi = I yyi e Y 

All Boolean models in the following examples can be derived from the 

corresponding integer models. Figure 3.3 shows mapping of common integer 
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constraints to Boolean constraints in our introduced integer models, where 

each integer variable Xi with = n correponds to a set of n Boolean 

variables {zi.i,…，Zi^n}- Auxiliary variables ti are introduced whenever appro-

priate. Therefore, we leave out the description of constraints for the following 

Boolean models: The n-Queens Problem, Langford's Problem, All Interval 

Series Problem, Social Golfer Problem, and Balanced Academic Curriculum 

Problem. 

The following paragraphs give five possible Boolean models, L^, Az, Gz, 

and Bg, for each problem respectively. 

In Model Qz = (X^, each variable Zr,c ^ 兄 (Boo l ean variable) 

represents whether there is a queen at row r column c {\Xz\ = v?). The 

combined model with Qr can be channeled by: 

r i = j 公 Zj’i = 1 Vri G Xr^fzj�i G 

The combined model with Qc can be channeled by: 

Ci= j ^ Zi，j = 1 Vci e Xc, V2ij G X^ 

In Model L^ = (X^, each variable Zd,p G Xa (Boolean variable) 

represents whether number d is at position p (IX^I = k"^ x v?). Lz can be 

combined with Lp by: 

j Zij = 1 Vpi G X p ^ Z i j G 

Lz can be combined with Ld by: 

d i = j ^ Zj�i = 1 \fdi e Xd, V^.i G X 之 

In Model A^ = (X^, each variable Zp’d € Xd (boolean variable) 

represents whether number d is at position p (l^^l = n^). Az can be channeled 

with Ap by: 

= j 钱 = 1 Vpi e Xp, yzij e X^ 
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Az can be combined with Ad by: 

di = j 分 Zj,i = 1 Vdi G Xd, yzj^i e X, 

In Model Gz = (X^, Dx^, Cx^), each variable Zi丄k ^ Xz (boolean variable) 

represents whether golfer i plays in group j at week k {\Xz\ = n x g x w). A 

new model can be formed by combining Gg and Gz with: 

9i,j = Zi，k’j = 1 ygij e Xg;izi、k、j G 

In Model B: = {Xz, Dx^.CxJ, each variable Zc^p G Xz (boolean variable) 

represents whether course c is in period p = n x m), Bp and B! can be 

combined with: 

Pi=j^ Zj’i = 1 VPI E Xp, Vzj^i e X, 

3.2.5 Set-Bool Channeling Constraint (SB) 

Suppose X = {rr} is a variable from a set model, and V are variables from 

a Boolean model. The set-bool (SB) channeling constraint have the following 

form: 

iex^Vi^l V?/i e Y 

Again, the following Boolean models can be derived from the corresponding set 

models. Figure 3.4 shows a mapping of common set constraints to Boolean con-

straints in our introduced models, where each set variable Xi with = n 

is corresponding to a set of n Boolean variables {^；么山 . . .，Therefore, we 

leave out the description part of constraint for the following Boolean models: 

Social Golfer Problem, Balanced Academic Curriculum Problem, and Steiner 

Triple Systems Problem. 
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Set Boolean 

( E L i 而’ 0 = 0 
工 = {} ( E L i * = 0 

lULi 而丨 Er=i((EJ=î a)>i) 
|{a|6 E Xa,Xa e X}\ Er=l 之i,b 

Figure 3.4: Mapping of common set constraints to Boolean constraints in our 
introduced models 

There are two set models, Gp and Ĝ；, of the Social Golfer Problem. Thus 

Gp and Gz can be combined with: 

k e Pij ^ Zk,i,j = 1 Vpij G Xp,\/zk�i�j e x^ 

Gyj and Gz can be combined with: 

k E Wi^j Zi’j�k = 1 ^Wij e x^yzij^k e ^z 

The set model Be of the Balanced Academic Curriculum Problem can be com-

bined with its Boolean model Bz by: 

j Zj�i = 1 Vci G Xc^fZj�i e X, 

For the Boolean model Sz = (X^, Dx^.CxJ) of the Steiner Triple Systems 

Problem, each variable Zn,p G Xz (boolean variable) represents whether integer 

n is in triple p (iX^j = v?[n — l) /6). It can be combined with each of the two 

set models, and 5p, of the Steiner Triple Systems Problem to form new 

models. The set-bool channeling constraints between Sd and Sz are: 

j edi 钱 Zj�i = 1 Wdi G Xd, ^Zj^i G 

The set-bool channeling constraints between Sp and Sz are: 

j ^ Pi Zi�j = 1 Vpi G Xp, Wi’j_ G -A：̂  
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3.2.6 Discussions 

Assumptions 

For the definition of II’ SI and SS, we assume for each value a in the domain 

(or possible set) of each variable in X, there must exist a variable in Y cor-

responding to the value a, and vice versa. For example on SI, Vxi G X, Vj G 

PS(xi),yj e Y and Vyi G V,Vj G Dy�Xj € X . For the definition of IB and 

SB, we assume for each value a in the domain (or possible set) of x, there must 

exist a variable in Y corresponding to the value a; and for each variable y�in 

Y, there must exist a corresponding value a in the domain (or possible set) of 

variable x. For example, in IB, Vz G Dx,yi G Y and Vŷ  eY,i e D^. 

Boolean Model via Channeling Constraint 

There are two points to note. First, it is not necessary to define the bool-bool 

channeling constraint (BB), as it just makes two Boolean variables x and y 

equal, i.e. x = y. Second, one might argue that a one-variable model Mx 

in the definition of IB and SB is impractical. In practice, we would have 

a sequence of variables in X = { x i , . . . , and a 2-dimensional array of 

Boolean variables Y = {2/1,1,..., yi�m,…，yn,i,...，2/n，m}, where m is the size 

of the domain of each variable in X, or even a higher dimensional (like the 

Social Golfer Problem). Thus, the IB channeling constraints would usually be 

in the following form: 

Xi= j ^ yij = 1 Vxi e X and \/yij e Y 

We observe this form can be partition into n sets of constraints by each Xi G 

X, and each pair of these sets share no variables at all. Thus, in terms of 

consistency level analysis and discussion on efficient implementation, our IB 

and SB definition are the most basic form for studying. 
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Previous Studies on Channeling Constraint 

II is highly applied and studied [CCLW99, SmiOl, FFH+02b, HSW04, CLS06 . 

SI is used for solving a nurse rostering problem [CCLW99] and the Balanced 

Academic Curriculum Problem [CLS06], and for breaking value symmetry [LL06.. 

SS, IB and SB can be used for breaking value symmetry [FFH+02a, LL06] as 

well. 



Chapter 4 

Realization in Existing Solvers 

In this chapter, we categorize three different ways of expressing channeling 

constraints, namely iff, ele, glo. Furthermore, we discuss the common imple-

mentation techniques of these channeling constraints in existing solvers (CHIP, 

ECLiPSe, SICStus Prolog, Oz, and ILOG Solver), and give concrete exam-

ples on how to channel models Qr and Qc of the n-queen problem in these 

solvers. Our discussion is based on the channeling of two sets of variables, 

X = { x i . . . and Y = {yi.. .ym} of size n and m respectively, which can 

be integer, set or Boolean variables. 

Form iff ele 
II Xi= j yj = i rcy. = i and yx^ = i 
SI j E Xi ^ yj = i i G Xy. and ŷ i = i 
SS j e Xi<^i e Vj i e Xy^ and i G ŷ i 

IB X = i Ui = 1 Vx = and Y ^ x 
SB i G cc yi = 1 Vx = ^ and Y x 

Table 4.1: Two ways of implementing channeling constraints 

31 
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4.1 Implementation by if-and-only-if constraint 

The most common way is to implement the channeling constraint directly 

according to their definitions (see the iff column of Table 4.1) as n x m if-

and-only-if constraints. Most solvers have operators such as #<=> in ECLiPSe 

:ECL05] and SICStus Prolog's CLPFD library (SICStus CLPFD hereafter) 

:SIC05], = in Oz [Moz04], and == in ILOG Solver [IL099], while some solvers, 

such as CHIP [COSOl], need to split a single constraint into a pair of i f - then 

constraints. In the following, when the context is clear, we use iff to refer to 

the n X m if-and-only-if constraints for implementing a particular channeling 

constraint. 

4.1.1 Realization of iff in CHIP, ECLiPSe, and SICStus 

Prolog 

Figure 4.4 shows the realization of models Qr and Qc for the n-queens prob-

lem ill the corresponding solvers, but there is missing channeling constraints 

in line 4. The clause nQueensChannel(i?oi(;s, Cols, N) creates two models 

nQueens{Rows, N) and nQueens(Co/s, N). The clause nQueens{Rows, N) in 

Figure 4.1 is implemented in SICStus Prolog, while the one in Figure 4.2 can 

be used by CHIP or ECLiPSe. The code in Figure 4.7 is the realization of iff, 

in which part (c) can be used by all the three solvers, part (a) is for CHIP 

only, and part (b) is for ECLiPSe or SICStus Prolog. We can use it by adding 

if^(Rows, Cols, 1) in line 4 of Figure 4.4. 

4.1.2 Realization of iff in Oz and ILOG Solver 

Figure 4.5 and Figure 4.6 show two models Qr and Qc for the n-queens problem, 

which is implemented in Oz and ILOG Solver respectively. The corresponding 
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missing channeling constraints in line 17 and line 15 can be filled in by the 

code in Figure 4.8 and Figure 4.9，which are the realizations of iff in Oz and 

ILOG Solver respectively. 

1： nQueens{Rows, N):- > Model Qr 
2: \ength{Rows,N), > set variables 
3: d o m a i n 1 , A^), t> set domains 
4: g e n e r a t e D i a g I 仏 Rows, 1). > generate new variables 7\ — i, 

see Figure 4.3 
5: geneTa,teDi8ig2{Rou)PDiag, Rows, 1). > generate new variables r̂  + i, 

see Figure 4.3 
6: all-different(jRo腐)， > no two queens on the same row 
7: alLdifferent(jRcm;iVZ)iag)’ O no two queens on the same 
8: a\\-d\SeTent{RowPDiag). diagonal 

Figure 4.1: Realization of model Qr (or Qc) by solver SICStus Prolog 

1: nQueens{Rows, N):- > Model Qr 
2: \ength{Rows,N), > set variables 
3: Rows :: 1..7V， > set domains 
4: genemteDiaigl{RowNDiag, Rows, 1). O generate new variables Vi — z, 

see Figure 4.3 
5: generateDiag2(i?oit;PDzap, Rows, 1). O generate new variables + z, 

see Figure 4.3 
6: dlldiSevent{Rows), l> no two queens on the same row 
7: alldifferent (RowNDiag) , > no two queens on the same 
8: alldifferent . diagonal 

Figure 4.2: Realization of model Qr (or Qc) by solver ECLiPSe or CHIP 
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1： generateDiagl([], [],_). > for generation of Xi — i 
2: generatieDiagl([Dl|Ds]，[Xl\Xsl N):-
3: = X I - N, 
4: Nl is Â  + 1, 
5: generateDiagl(Z)s, Xs , A^l). 

6: generateDiag2([l, [],_). [> for generation of Xi-\-i 
7: generateDiag2([Dl|Dsl, [Xl|Xs], iV):-
8: = X)^ + N � 

9: TVlisTV + l, 
10: generateDiagl(Ds, Xs^ Nl). 

Figure 4.3: Clauses generateDiagl and generateDiag2 in Figure 4.1, 4.2 

1: nQiieensChannel(i?oiys, Cols, N)\- > channel two models together 
2: nQueens(i?cm;s，TV)， t> Model Qr, see Figure 4.1, 4.2 
3: nQueens(Co/s, TV), O Model Q � s e e Figure 4.1，4.2 
4: > place channeling constraints here 
5: label ing( [ / / ] , Rows). O label Rows by First Fail heuristic 

Figure 4.4: Realization of channeling model Qr and Qc by CHIP, ECLiPSe, 
and SICStus Prolog 



Chapter 4 Realization in Existing Solvers 35 

1: fun {Queens N} 
2: proc {$ Rows Cols} 
3: LIN = {MakeTuple c N} [> make a tuple with length N 
4: LM\N = {MakeTuple c N} > make a tuple with length N 
5: in 
6: {For 1 N 1 proc {$ / } 
7: lAN.I = I LMIN.I = � I 
8: end} 

9: {FD.tuple rqueens N Rows} 
10: {FD.distinct Rows} l> no two queens on the same row 
11: {FD.distinctOfFset Rows LMIN] > no two queens on the same 
12: {FD.distinctOffset Rows L\N] diagonal 

13: {FD.tuple cqueens N Cols} 
14: {FD.distinct Cols} > no two queens on the same column 
15: {FD.distinctOffset Cols LMIN} > no two queens on the same 
16: {FD.distinctOffset Cols L\N} diagonal 

17: > place channeling constraints here 

18: {FD.distribute ff Rows) D> label Rows by First Fail heuristic 
19: end 
20: end 

Figure 4.5: Realization of channeling model Qr and Qc by solver Oz 
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1: void nqueen(IlcManager& m, Ilcint n) { 

2: IlcIntVarArray rows{m,n,Q,n — 1)， > setup variables for model Qr 
drowl{m,n),drow2{m,n)] 

3: IlcIntVar Array cols{m,n,0,n — 1), l> setup variables for model Qc 
dcoll{m, n), dcol2{m, n); 

4: for (int i = 0; i < n; i + + ) { 
5: drowl[i] = rows[i] — i\ > generate 7\ — i 
6: drow2[i] = rows[i] + r, > generate ri + i 
7: dcoll[i] = cols[i] — i\ > generate Ci — i 
8: dcol2[i] = cols\i] + i\ !> generate Cj + i 

} 

9: m.add(IlcAllDiff(rcm;s)); > no two queens on the same row 
10: m.add(IlcAllDiff(drou)l)); > no two queens on the same 
11: m.add(IlcAllDiff(drow;2)); diagonal 

12: m.add(IlcAllDiff(co/s)); l> no two queens on the same column 
13: m.add(IlcAllDifF((ico/l)); > no two queens on the same 
14: m.add(IlcAllDifT(dco/2)); diagonal 

15: ... l> place channeling constraints here 

16: m.add(IlcGenerate(a;, > label Rows by First Fail heuristic 
IlcChooseMinSizeInt)); 

} 

Figure 4.6: Realization of channeling model Qr and Qc by ILOG Solver 
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1: iffGenerate(_, [],_,_). 

2: iflFGenerate(Xn, [Ym\Ys], M, N):- > generate Xn = m ^ = n, 
3: if = M then Ym# = TV, VI < m < n 
4: if Ym# = N then = M, 
5: M l i s M + l, 
6: iffGenerate(Xn, y s , M l , N). 
(a) Implemented in CHIP 
1: iffGenerate(_, [] ,-，_). 

2: ifFGenerate(Xn, fKmjl^s]，M, N):- > generate Xn — m ym = 
3: Xn* = < = > Ym4 = N, VI < m < n 
4: M l i s M + 1’ 
5: iffGenerate(Xn, Fs, M l , N). 
(b) Implemented in ECLiPSe or SICStus Prolog 

1： iff([]，-’—). 
2: ifr([Xn|Xs],y, N)\- > take out 
3: iffGenerate(Xn, y, 1, N)^ \> generate Xn = m ^ ym = n 

VI < m < n, see (a) and (b) 
4: TVl i sTV+l , 
5: i f f ( X s , y , m ) . 
(c) Implemented in CHIP, ECLiPSe, or SICStus Prolog 

Figure 4.7: Realization of iff, for channeling models Qr and Qc in Figure 4.4, 
which is applicable to CHIP, ECLiPSe, and SICStus Prolog 
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{For 1 N 1 proc {$ / } 
2: {For 1 N 1 proc {$ J] 
3: Row S.I := J = Cols.J := I \>ri 二 j Cj = i 
4: end} 
5: end} 

Figure 4.8: Implemented in Oz, iff for channeling model Qr and Qc in Figure 
4.5 

1: for (int 2 = 0;z < + +) 
2: for (int j = 0; j < n\j + +) 
3: m.add((ro概[i] = = j) = = (coZs[j] = = i)); On = j 分 Cj = i 

Figure 4.9: Implemented in ILOG Solver, iff for channeling model Qr and Qc 
in Figure 4.6 

4.2 Implementations by Element Constraint 

Another common technique uses the element constraint (see the ele column 

of Table 4.1). By Xy., we say that X are the principal variables indexed by 

variables in Y. An element constraint Xŷ  — a, when both X and Y are sets 

of integer variables, has an equivalent meaning as: 

yi = j Xj = a Vj e Dy^ 

An element constraint Xy. = a, when both X is a set of integer variable and Y 

is a set of set variables, has an equivalent meaning as: 

j Xj = a \/j e PS{yi) 

An element constraint a E Xy^, when both X is a set of set variable and Y is 

a set of integer variables, has an equivalent meaning as: 

yi= j a e Xj Vj E D^Vi) 
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An element constraint a £ Xy^^ when both X and Y are sets of set variables, 

has an equivalent meaning as: 

j e yi a e Xj Vj G PS{yi) 

For II’ SI, and SS, there are two set of element constraints, one using X and the 

other using Y as the principal variables. When X are the principal variables, 

we refer to the m constraints as elex' 

Xy. = i y y i € y, for cases when X is a set of integer variables 

i £ Xy., V队 G y, for cases when X is a set of set variables 

Similarly, when Y are the principal variables, we refer to the n constraints as 

eley' 

Vxj — j , VrCj. G X , for cases when y is a set of integer variables 

j G yxj，Vxj G X , for cases when y is a set of set variables 

Thus elex and eley together are equaivalent as iff. For IB and SB, since elex 

can not be realized, we need Boolean mapping constraint Y x\ 

yi = 1 X = i, \/yi G F, for cases when X is a set of integer variables 

= 1 z G X, \/yi e Y, for cases when X is a set of set variables 

To the best of our knowledge, existing solvers support the element con-

straint for integer variables only. CHIP [COSOl], ECLiPSe [ECL05], Oz [Moz04], 

and SICStus CLPFD [SIC05] has an element constraint in form of element (/nc/ex, 

List, Value)^ where Index and Value can be an integer or integer variable, 

and List can be a list of integers or integer variables. The meaning of the con-

straint is that the Index-th. element in List is Value. ILOG Solver [IL099. 

supports a syntax very close to our notation. For example, the constraints in 



Chapter 4 Realization in Existing Solvers 40 

elex can be directly written as x [y [ i ] ] == i. In the next section, we propose 

a generic propagator for a generalized element constraint for both integer and 

set variables specialized for implementing channeling constraints. 

4.2.1 Realization of ele in CHIP, ECLiPSe, and SICStus 

Prolog 

Figure 4.10 shows the realization of ele for CHIP, ECLiPSe or SICStus Prolog. 

We can fill in element Generate Cols, 1) (i.e. eleRows) and element Generate (C7oZs， 

Rows, 1) (i.e. elecois) in line 4 of Figure 4.4 for the missing channeling con-

straints. 

4.2.2 Realization of ele in Oz and ILOG Solver 

Figure 4.11 and Figure 4.12 show the realization of ele for Oz and ILOG Solver 

respectively. We can fill them correspondingly into line 17 and line 15 of Figure 

4.5 and Figure 4.6 for the missing channeling constraints. 

1: elementGenerate(_, [],_). 
2: elementGenerate(X, [ynlFs], N):- [> take out ？/„ 
3: element{Yn,X,N), > Xy^ = n 
4: iV l i s iV + l， 

5: element Generate (X, Fs, A^l). 

Figure 4.10: Code for generating ele for channeling models Qr and Qc in Figure 
4.4 
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1: {For 1 N 1 proc {$ / } 
2: {FD.element Cols.I Rows 1} Orĉ  = i 
3: {FD.element Rows.I Cols 1} oc^. = i 
4: end} 

Figure 4.11: Code for generating ele for channeling models Qr and Qc in Figure 
4.5 

1: for (int z = 0;z < n;z + + ) { 
2: m.add(roif;s[co^s[2]] = = i)\ >rc. = i 
3: m.a,dd(cols[rows [i]] == i)\ = i 

} ^ 

Figure 4.12: Code for generating ele for channeling models Qr and Qc in Figure 
4.6 

4.3 Global Constraint Implementations 

Last but not least, it is also possible to implement each channeling constraint as 

a single global constraint glo by designing specialized propagation algorithms 

to enforce consistency. As far as we know, only implementation for integer 

variables is supported in existing solvers, such as inverse, I lc lnverse , and 

assignment in CHIP [COSOl], ILOG Solver [IL099] and SICStus CLPFD 

SIC05] respectively. Note that I lc lnverse does not enforce GAC, while 

assignment has an argument to control the consistency level. Again, we will 

propose another generic propagator for implementing glo that enforces AC on 

iff for all five channeling constraints. 
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4.3.1 Realization of glo in CHIP, SICStus Prolog, and 

ILOG Solver 

The missing channeling constraints in line 4 of Figure 4.4 and line 15 of Figure 

4.6，can be filled by inveTse{Rows, Cols) in CHIP or assignment(i^oit/s, Cols) 

in SICStus Prolog, and m.add(IlcMyInverse(roi/;s, cols)) in ILOG Solver re-

spectively. 

In the rest of the thesis, we focus on ILOG Solver implementations. 



Chapter 5 

Consistency Levels of 

Channeling Constraints 

In this chapter, we compare the constraint tightness of each channeling con-

straint among different implementations. Where applicable, we study also how 

the channeling constraints interact with the characteristic constraints arising 

from the particular model combinations. For example, II is possible only for 

permutation problems [SmiOl, WalOl, HSW04], and this enforces the charac-

teristic constraint that all variables are different. Our major theorems show 

that except for II, maintaining a higher level of consistency on the entire chan-

neling constraint does not increase the pruning power. We present these in 

five sections, which corresponds to II, SI, SS, IB, and SB. 

In the rest of this section, we are channeling two models Mx and My with 

variables X = { rc i , . . . , Xn) and Y = {y\�…�ym} respectively. We denote 

Sx,Y = X \J Y. The following property is useful in subsequent presentations. 

Property 5.1. Given a set of constraints A^ B, and C, and an 电 - c o n s i s t e n c y 

which can be GAC, SBC and HC: 

1. monotonicity [WalOl, HSW04]. ^ a u b ^ ^ a 

2. fixed-point [WalOl, HSW04]; //歪义二巾丑，then u c=^b u c 

43 
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3. transitivity: If and , then 

4- subsumption: then u u b u c 

Proof. Point 3 is by definition. To pove point 4, means ^a^^a U b-

And by monotonicity, ^a U b'^^a, we have ^a U b- Then by fixed-point, 

we get ^A u c= ^A u B u c- • 

The following lemma is useful in proving theorems concerning SBC. 

Lemma 5.1. Given a constraint c. If both x RS(x) and x PS{x) can 

be extended to a solution of c, Vrc G Xc, then c is SBC. 

Proof. For each x G X^ let 5 = {a | a G D̂ ： and x a can be extended 

to a solution of c}. Thus, RS{x) G 5, PS{X) e S, Recall the property of 

RS{x) C C PS{x), we have Va G 5, RS{x) C a C PS{x). Consequently, 

门 = RS{x) and U = PS{x), and c is SBC. • 

The following corollary of Lemma 5.1, which is useful in proving theorems 

concerning HC. 

Corollary 5.2. Given a constraint c. If for each integer variable x G Xc, 

Va e Dx, X I—̂  a can be extended to a solution of c, and for each set variable 

y G Xc, both y i—>• RS{y) and y h PS{y) can be extended to a solution of c, 

then c is HC. 

5.1 Int-Int Channeling (II) 

Both M x and My are integer models. Since each variable must take exactly 

one value, the II channeling constraint implies the following: (1) variables in 

X take on different values, (2) variables in Y take on different values, and (3) 

m = n = \Dxi\ = \Dy. \ for all z, j G {1，..., n}. The characteristic constraints 
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are thus all-different on X and the same on Y. Therefore, both Mx and My 

are permutation problems [SmiOl, WalOl, HSW04 . 

There are two ways to implement all-different: by a series of pairwise dis-

equalities and by a single global a l l D i f f constraint (V). In the rest of 

the paper, we use the notation "{ex, cc, q/}，，to denote the set of constraints 

in which cx are the characteristic constraints on X, cc is the channeling con-

straint implementation, and cy are the characteristic constraints on Y. For 

example, {V, n, V} means a global a l l D i f f on X plus a global implementation 

of II on Sx,Y and a global a l l D i f f on Y. Note that cx and cy can be empty 

under appropriate context. 

We first prove that ii w.r.t. GAC subsumes global a l l D i f f constraint on 

both models. 

Theorem 5.3. GAC{ii)=GAC^u^i). 

Proof. By Property 5.1.1, GAC{\/^ii;^}^GAC{ii}. To show the reverse by con-

tradiction, suppose S x y is GAC{ii) but not GAC{v,m,v} due to global a l l D i f f 

constraints. W.L.O.G., assume it is not GAC{^) w.r.t. X (a symmetric proof 

can be made on Y). Then 3 a value in the domain of cci, say di, cannot be 

extended to any solution of the global a l l D i f f constraint on X, but 3 a solu-

tion e of ii which contains Xi t—> di. Hence 3 ki ^ /c2, k such that Xk^^k and 

are in e. However yk needs to take values ki and k�by the definition 

of ii, this is a contradiction. • 

Corollary 5.4. GAC{ii)=GAC{aM,b), where a and b can be\f or ^ or empty. 

Proof. We first prove the case of a is — and b is empty. By Theorem 5.3, we 

have GAC{ii}=GAC{v,u,v}, and by Property 5.1.2，we get G^4(7{Aii}=G74(7{Av’ii，v}. 

By Property 5.1.4 and the fact that GAC{\/} > ，we have G74C{#’v’ii’v}= 

iNote that GAC^jt) and A C � are equivalent. 
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G^4(7{v’ii’v}. Thus, by Property 5.1.3, GAC{ii)= Similar proofs can 

be applied to all the other cases. • 

Theorem 5.3 and Corollary 5.4 suggest that all-different (either as global 

a l l D i f f or pairwise disequalities) do not increase the amount of overall domain 

reduction when ii is maintaining GAC. 

Theorem 5.5. AC[iff)=GAC^eie}' 

Proof. First, we show GAC{eie} ^ ^^{iff}- Suppose it is GAC^eie} but not 

AC{iff} . Consider the following two cases: (1) 3 a value a in the domain of 

Xi which makes a constraint c, Xi = j i/j = z to be not AC (2) 3 a value 

a in the domain of yi which makes a constraint c, yi = J•公 Xj = z to be not 

AC. (1) Since it is GAC^eie), a G Da；, implies i G Dy�by eley. H a = j, then 

c must be AC. If a ^ j , we want to show that B b i, such that b G yj, in 

order to make c is AC. Suppose b does not exist, then yj must equal i. By 

elex, Xi must equal j , which contradicts to a ^ j. Thus, c is AC, which is a 

contradiction. (2) Symmetric proof can be made as (1). 

Second, we show AC^ijf) ^ GAC^eie}- Suppose it is AC {iff} but not GAC{eiex}-

Consider the following four cases: (1) 3 a value j in the domain of yi which 

makes a constraint c, Xy. = i from elex, to be not GAC. (2) 3 a value j in the 

domain of yi which makes a constraint c, yxo = from e/ey, to be not GAC. 

(3) 3 a value j in the domain of Xi which makes a constraint c, y^^ == i from 

eley, to be not GAC. (4) 3 a value j in the domain of Xi which makes a con-

straint c, Xy^ — a from elex, to be not GAC. (1) Now we construct a complete 

assignment e of c. First we make e = {i/i ^ j, Xj h i}. Then for each Xk ̂  X 

(xfc + Xj), make e = e U {xk ^ a^}, where dk G Thus e is a solution of 

c, and this is a contradiction. (2) Now we construct a complete assignemtn e 

of c. First we make e = {yi^ j}. We want to show 3 b e Xa, in which b 一 i. 

Suppose b must be i, then Xa must be z, and yi must be a by Xa = i y： = a. 
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This condicts with j G Dy.. Thus, we can make e = e U {xa a}. 

And for the rest of Vk Vb Vî  make e = e U {yk i—> rfjt}, where dk G Dy^. 

Thus e is a solution of c, and this is a contradiction. (3) Symmetric proof can 

be made as (1). (4) Symmetric proof can be made as (2). • 

Prom Theorem 5.5, we know that each constraints in ele w.r.t. G A C is as 

tight as each constraints in iff w.r.t. AC. In the next two theorems, we prove 

two tightness relations between ii w.r.t. G A C and iff w.r.t. AC. 

Theorem 5.6. GAC{ii}>AC{iff}. 

Proof. GAC^ii) is trivially AC{iff). Now we give an example which is AC{iff] 

but not GAC{ii). Let X = {xi,... = {yi, • •. ,2/4}, and = Ar2 = 

{1,2}, Ar3 = = Dy, = Dy, = {1,2,3,4}, Dy, = Dy, 二 {,4}• This is 

AC [iff). But Hi I—> 3, 2/1 4, H 3’ y2 H 4, :c3 1 ’ ：C3 2, 2；4 H 1 and 

x^y-^ 2 cannot be extended to any solution of ii. This is not GAC {ay • 

Prom Theorem 5.6, we know that ii w.r.t. G A C is tighter than iff w.r.t. 

AC. 

Theorem 5.7. GAC{ii}=GAC{y^iff}=GAC{iffy} 

Proof. By symmetry, we prove GAC{ii}= Ĝ 4C{v’近）only. First, we show 

GAC{ii} ̂  GAC{y^iff}. By Theorem 5.6，we have GAC{ii}> AC {iff}. Therefore, 

By Corollary 5.4 and Property 5.1.3，we get GAC{ii}^ 

To show the reverse by contradiction, suppose it is GAC{y^iff} but 

not GAC{ii}. Then 3 a value in the domain of Xi, say di, cannot be extended 

to any solution of ii, but there exists a solution Cx = …，Xi^di^ ...， 

Xn^dn} of the global allDiff constraint on X. Now for each Xj\-̂ dj G e^, 

there must exist j G Dy^, because of 奶’ and we construct Cy = {̂ /di'— 

Note that GAC^iffy and AC^iff-^ are equivalent. 
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••.， Vdn^'^}' Note that {rfi,..., dn} = {1,..., n}, thus e = e^ U Cy is a 

solution of a. This is a contradiction. • 

Corollary 5.8. GAC {a)=GAC{a,c,b} ； where c can be iff, elex or eley； a and 

b can be V or ^ or empty, but with a condition that at least one of a and b 

must be V. 

Proof. W e first prove the case of c = iff, a = V and 6 is —, and other cases of a 

and b can be proved similarly. By Theorem 5.7，we have GAC{ii}= GAC{\/jff}, 

and by Property 5.1.2’ we get By Corollary 5.4 and 

Property 5.1.3, we have =GAC{v,ijy. For c = elex and c = eley, 

by Theorem 5.5, we have AC{iff}= GAC{eiex}= Ĝ 4(7{eZey}，and by Property 

5.1.2，we get GAC{^/^eiex}= GAC{\/eieY} and AC{iffy}= GAC{eiex,v}= 

G AC {eley y}- Then, similar proofs can be made for all the other cases. • 

Corollary 5.8 shows that iff or elex or eley plus a global allDiff constraint 

on either X or y can achieve the same domain reduction as ii w.r.t. G A C . 

Theorem 5.9. [WalOl, HSW04] AC{iff}=AC{j,,iff̂ ：^}. 

Corollary 5.10. GAC{ci}=GAC{a,c2,b}, where cl and c2 can be iff or ele; a 

and b can be + or empty. 

Proof. The cases of cl = c2 = iff is proved by Walsh and Hnich et al. 

WalOl, HSW04]. W e first prove the case of cl = iff, c2 = ele, a is ^ 

and b is empty. By Theorem 5.5, AC{iff}=GAC{eie}- By Property 5.1.2’ we 

have AC{^^iff}=GAC{:^^eie}- Thus by Property 5.1.3 and AC{iff}—AC{jL^iff} 

WalOl, HSW04], we have AC{iff}= GAC{jt̂ eie}- Similar proofs can be made 

for all the other cases. • 

Corollary 5.10 shows that disequalities on X and Y can be removed when 

A C is maintained on iff or G A C is maintained on ele. 
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5.2 Set-Int Channeling (SI) 

W e assume that Mx is a set model and My is an integer model. X and Y 

must satisfy the characteristic condition for the channeling to make sense: (1) 

Ur=i 工i = {1，…’爪} and (2) xi n Xj = {} for all i,j G {1’...，n} and i + j. In 

other words, each index for variables in Y must be in exactly one set variable 

in X, since each variable in Y must take exactly one value. W e call (1) and 

(2) in totality the partition constraint. 

Again, there are two ways to implement the partition constraints: by im-

plementing conditions (1) and (2) directly (||) and by implementing a single 

global constraint (H) which is available in ILOG Solver [IL099.. 

The following property is useful for our subsequent proofs. 

Property 5.2. Given it is HC^iff), we have: 

1. for each Xi, k G RS{xi) ^ yk ^ i 

2. for each Xi, k G PS{xi) i G Dy^ 

3. ii — j, k，such that k e RS{xi) and k G RS{xj) 

4- ^ j�k, such that k G RS{xi) and k G PS{xj) 

Proof. Points 1 and 2 follow from the definition of SI. 

To prove point 3, suppose k, such that k G RS{xi) and k G RS{xj), 

where i — j. By point 1, z and yk ^ j simultaneously, which is a 

contradiction. 

To prove point 4, suppose 3z, j, k, such that k e RS{xi) and k e PS{xj), 

where i j. By point 1 and point 2, 1—̂  i and j G Dy^ is a contradiction. • 

Points 3 and 4 explain that there is no sharing of values between (a) each 

pair of required sets and (b) each pair of required set and possible set of 
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different variables. The following steps for constructing a complete assignment 

for Sx,Y is used in subsequent proofs. 

Construction 5.1. Steps: 

1. \fx e X, let RS'{x) = RS{x). 

2. a se力 H = {1，... ’ m } — IJxex 

3. Vr e R, pick a value dr € D{yr), and make RS'{xd^) = RS'(xd^) U {r} 

4- we obtain the complete assignment e = {xj h RS'{xj) | Xj G X} U {yk h 

j I rcj. e X，/c e RS'{xj)} 

Step 2 collects in the set R all indices of Y that are not in the required set of 

any variable in X. In other words, the variables in Y with indices in R are not 

assigned any value yet. Then step 3 picks an arbitrary value dr from the domain 

of Ur for each r E R and fix Ur to dr (by putting r into RS'{xdr))- Note that 

by Property 5.2.2, r must be in and thus Vx； G X, RS'(xj) C PS{xj) 

after step 3. Step 4 obtains a complete assignment e for SX,Y as a result. 

Example 5.1. Suppose X = {xi,x2}, Y = {？/i,2/2,2/3}, PSixi) = {1,2,3}, 

PS[X2) = {1,3}, RS{x,) = {2}, RS{x2) = {}, Ari = = {1,2}, B , , = 

{1}. Construction 5.1 may give us e = {xi »—> {2,3},0:2 h {1}’2/i h 2,y2 h 

1,2/3 ^ 1 } as following steps. 

1. we make RS'{xi) and RS'{x2)-

2. {1,2,3}-{2} = {1,3} 

3. we pick 2 G Dy, and 1 G Dy^, and make RS'(oc2) = {} U {1} 二 {1} and 

RS'ix,) = {2} U {3} = {2’ 3} 
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4. we obtain a complete assignment e = {xi i-> {2,3}，X2 h {1}} U 

{yi 2, 2/2 1，2/3 !}• 

W e first prove that si w.r.t. H C is as tight as iff or ele w.r.t. HC. 

Theorem 5.11. H C \ s i � = H C阶 

Proof. HC{si)^ HC{iff�is trivially implied. To show the reverse by contradic-

tion, suppose it is HC{iff} but not HC{si}- Consider the following two cases: 

(1) by L e m m a 5.1, 3i such that either (a) Xi PS(xi) or (b) Xi i—> RS{xi) 

is not in any solution of si, (2) 3 a value in the domain of yi, say di, cannot 

be extended to any solution of si, (l)(a) Now we construct a complete assign-

ment e by Construction 5.1 with doing RS'{xi) = PS{xi) between step 1 and 

2. Note that by Property 5.2.4’ k such that both yk ^ j and y^ ̂  i in 

e, where j — i. Here, e is a solution of si, which is a contradiction. (l)(b) 

Now we construct a complete assignment e by Construction 5.1 with an extra 

condition that each dr ^ i dX step 3. Note that dr must exist.̂  Again, e is 

a solution of si, which is a contradiction. (2) Note that {yi i-> G x^J is 

HC { i f f } . W e construct a complete assignment e by Construction 5.1 with doing 

RS'(xdi) = RS'{xd,) U {z} between step 1 and 2. Note that by Property 5.2.2’ 

i e PS(Xcii). Moreover by Property 5.2.4, $t di, such that i G RS{xt). Thus, 

we have yi ̂  di only. Again, e is a solution of si, which is a contradiction. 

Prom both of cases (1) and (2)，this is a contradiction. • 

Theorem 5.12. HC{eie}=HC{iff}. 

Proof. First, we show HC{eie} ̂  HC{iff}. Suppose it is HC{eie} but not HC{iffy 

Consider the following two cases: (1) by Lemma 5.1, 3 i such that xi PS{xi) 

^Suppose dr does not exist, thus dr = i and D{yr) must be equal to {i}, which essentially 
assign i to yr. Then r must be in RS{xi) because of HC{iff}, which is a contradiction with 
Construction 5.1.1. 
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or RS{xi) can not be extended to any solution of a constraint c, j £ Xi ^ 

Uj = i. (2) 3 a value a in the domain of yi which makes a constraint c, yi = j 

^ i ^ Xj to be not HC. (1) W e consider the following cases: (a) i € Dy. and j 

e RS{xi) (b) i e Dy. but j i RS{xi) (c) i • Dy. but j e RS(xi) (d) i • Dy. 

and j 茫 RS{xi) (a) Since j € Xy. is HC, j € PS{xi). Thus, { âi i-> P»S(:ri)，yj 

2 } and { Xi H-̂  RS{xi), yj ^ i } are two solutions of c. (b) Since j G Xy. is 

HC, j G PS{xi). Thus, { rci H PS{xi), yj i } is & solution of c. Let b G Dy., 

we want to show 3b + i. Suppose b must be z, by j E Xy. is HC, j G RS{xi), 

which is a contradiction. Thus { Xi h RS{xi), yj b } is 8i solution of c. (c) 

This case is not possible, since ŷ i = ^ is HC, j 朱 PS{xi), which means j 朱 

RS[xi). (d) Since y^i = i is HC, j 车 PS{xi), thus let b G Dy., thus { Xi h 

PS{xi), Vj ^ b } and { Xj t—>• RS{xi), Vj ̂  b } are two solutions of c. 

(2) W e consider the folloing cases: (a) a ^ j {h) a = j. (a) W e want like to 

show that i ^ RS{xj). Suppose i e RS{xj), since yxj = j is HC, then yi must 

equal to j, which contradicts to a — j. Thus { Xj i—> RS(xj), i—̂  a } is a 

solution of c. (b) Since i e Xy. is HC, then i G PS{xj). Then { Xj i-> PS{;Cj\ 

a } is a solution of c. 

Combine the above two cases, this is an contradiction. 

Second, we show HC�=HC{eie} = HC{iffy Since HC{si} ^ HC{eie} is 

trivial, and we have HC{eie} ̂  ^^{iff} already. By Theorem 5.11, we have 

HC{si}= HC\iff、, thus we have HC{si} = HC{eie} == HC\iff、. • 

Corollary 5.13. HC{si}= HC{c}, where c can be iff or ele. 

Proof. Straightly followed by Theorem 5.11 and 5.12. • 

Corollary 5.13 shows that the global implementation si gives no more prun-

ing than iff or ele w.r.t. HC. 

Theorem 5.14. HC{si}=HC{Y[^si}-
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Proof. By Property 5.1.1, HC{Yi,si}^ HC�.To show the reverse by contra-

diction, suppose it is HC⑷ but not HC{Yi,si} due to a global partition con-

straint. Then, by Lemma 5.1，3i such that either Xi PS{xi) or Xi h RS[xi) 

cannot be extended to any solution of on X , but 3 a solution e — ex U ey 

of si, where ex = {xi i—̂  Si, ..., i—> s^, ..., Xn i—> ey = {yi^di,...， 

ym^dm}, and Si = PS{xi) or RS{xi). Note that ex cannot be a solution of 

n on X. Hence there are two cases, (1) sjj = Sj, but su C {1，…,m}. 

Then 3/c such that k € {1,...，m} but k ̂  su. That means yk does not take 

any value, this is a contradiction. (2) 3ki, k2 such that Sk = Xk̂  fl and 

Sjfc + {}. Then 3^3 G Sk. That means yk̂  need to take ki and k)、this is a 

contradiction. Prom both of cases (1) and (2)，this is a contradiction. • 

Corollary 5.15. HC{c)=HC{a,c), where c can be si, iff, elex or eley； and a 

can be Yl or \ . 

Proof. In general, HC{Y[,si}'̂  ̂ ^{llsi}'^ HC{si}• By Theorem 5.14, we have 

HC{Y[,si}= HC{\isi}= HC{si). And we can easily derive the rest by Corollary 

5.13 and Property 5.1.2，5.1.3. • 

Corollary 5.15 shows that any implementation of the SI channeling con-

straint subsumes all possible implementations of the partition constraints. In 

other words, the partition constraints can be removed from the model without 

losing constraint propagation strength. 

5.3 Set-Set Channeling Constraints (SS) 

Both M x and M y are set models in this case. Channeling two set models im-

poses no characteristic constraints. The next property, which follows directly 

from the definition of SS, helps with our subsequent proofs. 
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Property 5.3. Given it is SBC�iff�’ we have 

1. j e PSixi) i e PSivj) 

2. j € RS{xi) ^ i e RSivj) 

W e are now ready to give a tightness relation between ss and iff w.r.t. 

SBC. 

Theorem 5.16. SBC{ss}=SBC{iff}. 

Proof. SBC{ss} ^SBC{ i f f } is trivially implied. To show the reverse by con-

tradiction, suppose it is SBC {iff} but not SBC{ss}- W.L.O.G., let it not be 

SBC{ss} on X (a symmetric proof can be made for Y). Then, by Lemma 5.1， 

such that either (1) Xi i—PS[xi) or (2) Xi i—RS(xi) cannot be ex-

tended to any solution ss. For (1)，We construct a complete assignment 

e = {xi^ PS^a^i) I rci e X } U {yi h-> PS�yi�| yi G Y}. Note that by Property 

5.3.1，e is a solution of ss, which is a contradiction. For (2), W e construct a 

complete assignment e = {xi ^ RS{xi) \ Xi e X} U {yi h RS{yi) \yi eY}. 

Note that by Property 5.3.2，e is a solution of ss, which is a contradiction. 

Prom both of cases (1) and (2), this is a contradiction. • 

Theorem 5.17. SBC{eie}=SBC{iff}. 

Proof. First, we show SBC{eie} ^ SBC {iff}. Suppose it is SBC{eie} but not 

SBC{iffy Consider the following two cases: (1) by Lemma 5.1，3 i such that 

Xi PS{xi) or RS{xi) can not be extended to any solution of a constraint 

c, j e Xi i e Uj. (2) by L e m m a 5.1, 3 i such that yj h PS{yj) or RS(yj) 

can not be extended to any solution of a constraint c, j E Xi i G yj. (1) W e 

would like to show that (a) { Xi PS{xi), yj PS{yj) } and (b) { Xj i-̂  

RS{xi), yj I—>• RS(yj) } are two solutions of c. (a) If j G PS{xi), since i G yx^ 

is S B C , i e PS{yj), If j • PS{xi), since j G Xy. is S B C , i • PS{yj). Thus { 
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Xi f-> PS{xi), yj H PS{yj) } is a solution of c. (b) if j 6 RS { x i ) , since i G Vxi 

is S B C , i e RS{yj). If j 车 RS{xi), since j E Xy. is S B C , i • RS{yj). Thus { 

Xi RS{xi), Uj I—RS(yj) } is a solution of c. (2) Symmetric proof can be 

made as (1). 

This is an contradiction. 

Second, we show SBC^ss] = SBC{eie} = SBC {iff}. Since SBC {si} ^ SBC^eie} 

is trivial, and we have SBC{eie} ^ SBC侦、already. By Theorem 5.16, we have 

SBC{si}= SBC {iff), thus we have SBC^si) = SBC^eie) = SBC^�. • 

Corollary 5.18. SBC{ss}=SBC{c}, where c can be iff or ele. 

Proof. Straightly followed by Theorem 5.16 and 5.17. • 

Corollary 5.18 shows that the global implementation ss gives no more prun-

ing than iff or ele w.r.t. SBC. 

5.4 Int-Bool Channeling (IB) 

W e assume that Mx is an integer model with only one variable and My is a 

Boolean model. Since the variable in X must be assigned exactly one value, 

channeling Mx and My imposes the characteristic constraint on Y: J2yiEY Hi — 

1. W e call this constraint sum-to-one and denote it by Q . 

The following property is for helping the following proofs. 

Property 5.4. Given Sx,y is AC{iff}, we have: 

1. X t - ^ 2 2/i I—> 1 

2. ie D^^ I e Dy. 

3. + j, such that �/i i—> 1 (or Dy. = {1}^ and 1 G Dy. 
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4. if Syi G Y such that 1 e Dy., then \fyj ^ E 0 G Dy. 

Proof. To prove point 3. Suppose 3i + j, such that Vi^ I and 1 G Dy.. By 

point 1 and point 2, rr i—> z and j G Dx is a contradiction. 

To prove point 4. Suppose 3yj such that 0 朱 Dy., which means Dy. = {1}. 

Then by point 3，this is a contradiction. • 

Point 1 and 2 are from the definition of IB. Point 3 explains there can be 

only one variable in Y is assigned to 1. And Point 4 is a situation that derived 

from point 3. 

Here, we prove that ib w.r.t. G A C is as tight as iff w.r.t. AC. The result 

follows directly from the fact that ib is actually the same as eley, which in 

turn is a special case of the eley in II (Boolean is a special case of integer). 

Theorem 5.19. GAC{ib}=GAC{eie}=AC{iff}. 

Proof. W e first prove for GAC{ib}=AC{iffy G AC {n,}^ AC {iff} is trivially im-

plied. To show the reverse by contradiction, suppose it is AC{iff} but not 

GAC{iby Consider the following two cases: (1) 3 a value i G Dx, which is not 

GAC{H)}. (2) 3 a domain of yi, say di, which is not GAC{ib}. (1) Note that 

i e Dx and 1 E Dy. are AC {iffy. Now we construct a complete assignment e 

in the following steps. First we make e contains x h i and yi i-̂  1. Then by 

Property 5.4.4, for the rest of yj must in Dy., and we make e contains 

Uj H 0. Hence e is a solution of ib, which is a contradiction. (2) Consider 

the following two cases (a) di = 0 and (b) di == 1. (a) i-> 0 and i ^ D^ 

are AC{iffy Now we construct a complete assignment e in the following steps. 

First we pick a value j such that 1 G Dy. and j + i, and make e contains a: i—> j 

and Uj 1. Note that by Property 5.4.2 and D^ + {}，j must exist. Then 

by Property 5.4.4’ for the rest of 狄，0 must in Dy^, and we make e contains 

yk ̂  0. Again e is a solution fo ib, which is a contradiction, (b) yi ̂  I and 
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X ^ i are AC{iff}. Here, we have a same proof as (1). Prom both of cases (1) 

and (2), this is a contradiction. 

Second, we prove for GAC{ib} = GAC^eie} = ^̂ {iff}- By Theorem 5.5，we 

have GAC^eie} ^ since Y x can be consider as: 

Xyi = i^Vi e Y 

Moreover, GAC{ib}^GAC{eie} is trivial. Thus, together with GAC{ib]=AC{iff}, 

we have GAC^ib} = GAC{eie} = AC {iff}. • 

Theorem 5.20. [CLS06] AC{iff}= GAC{iff^Q}. 

Corollary 5.21. GAC{ib}=GAC{ib,Q}. 

Proof. B y Theorem 5.19，GAC{ib}= AC {iff). By Property 5.1.2, we can have 

GAC{ib^Q}= Thus, by Theorem 5.20 and Property 5.1.3, we have 

GAC{ib}= GAC{ib,Q}. • 

Theorem 5.20 and Corollary 5.21 show that the sum-to-one constraint does 

not cause any more domain reduction when working with either si or iff. 

5.5 Set-Bool Channeling (SB) 

W e assume that M x is a set model with only one variable and M y is a Boolean 

model. 

The following property is for helping the following proof. 

Property 5.5. Given Sx,y is SBC{iff], we have: 

1. i e PS{x) 

2. i • (Dy, = {0}； 

3. i e RS{x) ^Vi^l (Dy, = {1}； 
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4. i i RS{x) ^OeDy, 

Point 1 and 3 are from the definition of SB. Point 2 is equivalent to point 

1, and point 4 is equivalent to point 3. 

Here, we prove that sb w.r.t. H C is as tight as ele w.r.t. HC, and as tight 

as iff w.r.t. HC. 

Theorem 5.22. 丑 尸 丑 

Proof. W e first prove HC{sb}=HCliffy. HC{sb}^HC{iff} is trivially implied. 

To show the reverse by contradiction, suppose it is HC{iff} but not HC{sb}-

By L e m m a 5.1, consider the following two cases: (l)(a) x t-> PS{x) or (b) 

X I—)• RS{x) is not HC^sb}- (2) 3 a domain of yi, say di, which is not GAC{sb}-

(1)(a) Note that for each k G PS{x), Uk h 1 is HC^�. Now we construct 

a complete assignment e in the following steps. First we make e = {x 

PS{x)} U {2/A； 1 I A: G PS{x)}. Then for the rest of yi which is not assigned 

with value yet, make e contains yi 0. Note that by Property 5.5.2，0 G DyJ. 

Hence e is a solution of sb, this is a contradiction. (l)(b) Note that for each 

k G RS{x), 2/fc 1 is HC{iff}. N o w we construct a complete assignment e in 

the following steps. First we make e — RS[x)) U {？/̂  1 | /c G RS{x)). 

Then for the rest of yi which is not assigned with value yet, make e contains 

yi 0. Note that by Property 5.5.4’ 0 e Dy^. Again e is a solution of sb, 

this is a contradiction. Prom both of cases (a) and (b), this is a contradiction. 

(2) Consider the following two cases: (a) di — 0 and (h)di = 1. (a) Vi ^ 0 

and i ^ PS{x) (and i • RS{x)) are HC{iff}. N o w we construct a complete 

assignment e same as (1) (a). Ami e is a solution of sb, this is a contradiction, 

(b) yi H 1 and i G PS{x) are HC{iff}. Here, we have a same proof as (l)(a). 

Prom both of cases (1) and (2), This is a contradiction. 

Second, we prove for HC{sb} = HC{eie} = HC{iff}. By Theorem 5.12，we 
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have HC{eie} ^ HC{iff], since Y x can be consider as: 

i e Xy.yyi e Y 

Moreover, HC{sb}^HC{eie} is trivial. Thus, together with HC、sb、=HC{iff、, we 

have HC{sb} = HC{eie} = H C 阶 • 

5.6 Discussion 

In ideal situation, if a solver provides glo (i.e. ii, si, ss, sb, and ib) or ele, 

they should be maintained HC. While in real situation, it is not always true. 

For example, ILOG solver provides Ilclnverse as ii, but Ilclnverse is just 

maintained a equivalent consistency level as maintaining AC on each constraint 

in iff. Another example is using element constraint for int-int channeling. 

Prom the user manual of SICStus Prolog: 

element(?X, +List, 7Y) 

element/3 maintains domain-consistency in X and interval-

consistency in List and Y. 

A domain constraint is an expression X :: /, where X is a domain 

variable and / is a nonempty set of integers. A set S of domain 

constraints is called a store. D{X, S), the domain of X in 5, is 

defined as the intersection of all I such that X :: I belongs to S. 

A constraint C is domain- consistent wrt. S iff, for each variable 

Xi and value Vi in D[Xi, 5), there exist values Vj in D{Xj, S), 1 < 

j ^ j, such that C(Vi,..., 14) is true. 
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A constraint C is interval-consistent wrt. S iff, for each variable Xi 

and value Vi in D[Xi^ S), there exist values Vj and Wj in D'(Xj, 5), 

^ ^ j ^ j, such that C{Vi, ..., min{D{Xi, 5)), ..., 14) and 

C{Wi^ …，max(D(Xi , S)), ...，Wn) are both true. 

Although the other solvers that we investigated in the previous chapter do 

not state the consistency level they maintain, element constraint is usually not 

maintained as G A C because of the performance issue. 

Our theoretic result shows that except for II，maintaining a higher level 

of consistency on the entire global channeling constraint does not increase 

the pruning power, which is an useful information on implementing efficient 

channeling constraints. 



Chapter 6 

Algorithms and Implementation 

In the previous chapter, we investigate and report the comparison on con-

sistency levels among the various realizations for each of the channeling con-

straint. A major result is that, except for II, a global constraint maintaining 

H C on the entire channeling constraint gives the same pruning power as main-

taining H C on each of the constraints in an iff implementation. One might 

be tempted to conclude that (a) the iff implementations are the best for the 

SI, SS, IB, and SB channeling constraints, and (b) a G A C global constraint 

implementation is the best for the II constraint. For (a), we are going to show 

that the iff implementations are inefficient since there are a large number of 

constraints. During constraint propagation, many invocations of propagators 

are proved to be unnecessary. For (b), we have so far been unable to devise an 

efficient propagator for the global II constraint to enforce G A C . Apparently, 

the cost for maintaining G A C is so high that it cannot be compensated by 

the extra pruning achieved. The implementation details is reported in the last 

section in this chapter, and experimental results are given in the next chapter. 

The discussion above should not be used as arguments against global con-

straint implementations, since we can always maintain a lower level of con-

sistency than H C for a global constraint. An important advantage of global 

constraint implementation is that information from many constraints can be 
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considered in one go, providing a more complete view and saving time for coor-

dinating the domain reduction and propagation of pruning information among 

a large number of constraints. In the following, we analyze the inefficiency 

of the iff implementations, followed by presentations of two generic propaga-

tors for making part of and the complete set of the iff constraints into global 

constraints. 

6.1 Source of Inefficiency 

If we are channeling models Mx and M y with n and m variables respectively, 

there should be nm iff constraints, each of which is associated with a prop-

agator, and each propagator is invoked whenever there is domain reduction. 

Consider a situation in II, in which the value 3 is removed from D^i. If we are 

maintaining A C on the individual iff constraints, this information will invoke 

m of the iff propagators involving rci, but only one propagator takes effect and 

removes the value 1 from Dy^. This last domain reduction in turn trigger the 

other n — 1 propagators involving 2/3，but no reduction will happen. Suppose, 

in SI, that 1 is added to RS{xs). If we are maintaining H C on the individual 

iff constraints, this would invoke the m propagators involving X3, and only 

one would take effect and cause 3 to be assigned to yi. The assignment is 

equivalent to removing values {1，2，4，…，n} from Dy” which would in turn 

invoke n — 1 propagators involving yi and cause xi 1, 0:2 -/> 1, X4 1,...’ 

Xn 1. Since n — 1 X variables are updated, (n — l)(m — 1) propagators in-

volving these variables will be invoked without further reduction effect. Prom 

these two examples, we can see that usually a large number of invocations 

of propagators is unnecessary and wasteful of computing resources. Similar 

analysis leads to the iff column in Table 6.1，which reports the big O order of 
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Type Task iff ele glo 
II VD 0{nm) 0(n + m ) 0(n + m ) 

PR 0(n + m ) 0(n + m ) 0(1) 

SI VW 0{nm) ~ Q(n + m ) “ 0{n) 
PR Q(n + m ) 0(n + m ) 0(1)~~ 

SS V ^ 0(n + m)~ 0(n + m ) “ 0(1) 

PR 0(n + m ) 0(n + m ) 0(1) 

IB V^ 0(m) — Q(m) “ 0(m) 
PR 0{m)~ 0(1) 一 0(1) 

S B V^ 0{m)~~ 0(1) — 0 ( 1 )“ 

PR Ojm) 0(1) — 0(1) 一 

Table 6.1: Big O Order of Propagator Invocations 

the number of propagator invocations for various implementations and chan-

neling constraint types. The table gives the number of propagator invocations 

caused by both variable decisions (VD) and domain reductions (DR) for each 

channeling constraint. 

6.2 Generalized Element Constraint Propaga-

tors 

Cheng et al. [CCLW99] suggest using the element constraint as a more suc-

cinct and compact way of expressing the II channeling constraint. This would 

work also for IB, but not for SI, SS, and SB which involve set variables. W e 

propose a generalized element constraint for both integer and set variables 

specialized for implementing channeling constraints. The form of the con-

straint is gElementC/, LVi, . . . ,y„]，c), where I and K's are either integer 

(Boolean) or set variables and c is an integer constant. The new constraint 
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1: xDomRed( i : index of variable x ) t> be invoked when the domain 
2: if V is impossible for Xi then of Xi is changed 

y^i 
1: yDomRed(rm: set of new impossible values > be invoked when the domain 

for y; of y is changed 
rq : set of new decided values ) 

for y\ 
2: for each j e rq do 
3: Xj ^ V 

Figure 6.1: The Propagator for gElement of the form Xy = v or v e Xy 

is a generalization of element since set variables are now supported. It is a 

specialization (for efficient implementatioE) since c must be a constant. 

W h e n I and V^s are integer variables, gElement has the same meaning as 

element. W h e n / is a set variable and Vj's are integer variables, the constraint 

enforces that Vj. E /, V̂- = c. When I is an integer variable and V̂ 's are 

set variables, the constraint means that c G V/. When both I and ViS are 

set variables, the semantics is that Vj e I, c e Vj. When Vi's are integer 

variables, the constraint is abbreviated to Vj = c. When V̂ 's are set variables, 

the constraint is abbreviated to c G V/. Suppose the variable x^ is instantiated 

to the set {2，4，7} in SI. Both the ele constraints would enforce 2/2，2/4，and y-j 

to take the value 3，and vice versa. 

Figure 6.1 gives the pseudocode of the propagator for the gElement con-

straint of the form either XY = v OT v e XY (i.e. Xi^s are the principal variables). 

By making use of notions and notations defined in Chapter 2, the pseudocode 

is generic in the sense that the different combinations of variable types are 

immaterial in understanding the algorithms. The propagator consists of two 

procedures: xDomRed is invoked when one of the Xi variables is updated and 

yDomRed is invoked when the y variable is updated. The procedure xDomRed 
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is called with the index i of the updated variable Xi. Depending on the status 

of the value v with respect to Dx, Dy is updated accordingly. On the other 

hand, yDomRed is called with the new impossible values and/or the new de-

cided value for 2/ as a result of the last update. Based on these values, domains 

of the appropriate Xj variables are updated. 

Note that Boolean mapping constraint Yx is actually a special case of Xŷ  = 

i, in which our gElement Propagator is also fit for it. 

Property 6.1. A reified constraint C � C 2 is satisfied if and only if both Ci 

and C2 are true or both Ci and C2 are false, where Ci and C2 are constraint. 

Thus, we have propagation rules of (1) Ci is true C2 is true, (2) C2 is true 

C2 is true, (3) Ci is false => C2 is false, (4) C2 is false => C2 is false. 

Proof. It is by definition of reified constraint. • 

Lemma 6.1. The iff constraint can he maintained as HC by 4mn propagation 

rules (by Property 6.1), they are: (1) xi^ j yj i; (2) yj ^ i Xi ^ j; 

(3) yj • i; (4) j, Vrc, e X^'iyj e Y. 

Proof. It is straightly followed by the definition of HC. • 

T h e o r e m 6.2. Using the gElement propagator in each constraint in ele is 

equivalent as maintains HC on each constraint in iff. 

Proof. By SLemma 6.1, there are propagation rules (1), (2), (3) and (4). Prom 

Figure 6.1, all the rules in (1) and (4) are handled by procedure "xDomRed", 

and all the rules in (2) and (3) are handled by procedure "yDomRed". • 

Similar analysis is performed to give the big O order of the number of 

gElement propagator invocations for the ele implementation in Table 6.1. Ac-

tually, the number of propagator invocations is proportional to the number of 

constraints with their variables' domains are changed. 



Chapter 6 Algorithms and Implementation 66 

6.3 Global Channeling Constraint 

In Chapter 4，we introduce the existing global channeling constraints in dif-

ferent solvers. While they are for int-int channeling constraint (II), but not 

for SI, SS, SB and IB which involve set variables and Boolean variables. On 

the other hand, some solvers do not provide an implementation of II which is 

maintained G A C . In this section, we present two algorithms on global chan-

neling constraint. One is the generalization of those existing global channeling 

constraints for integer, set and Boolean variables. This generalization main-

tains a consistency level as same as maintaining H C on each constraint in iff. 

Another one is an implementation of II which is maintained G A C , and it is 

based on the implementation of global AllDiff constraint. 

6.3.1 Generalization of Existing Global Channeling Con-

straints 

Prom Table 6.1，we can see that the elex and eley implementations offer a good 

reduction in number of propagator invocations. This good trend suggests to go 

one step further to bundle all iff constraints (and thus also all ele constraints) 

into one global constraint as our glo implementation. Figure 6.2 gives the 

pseudocode of the glo propagator for channeling models Mx and My- Again, 

the pseudocode is generic in the sense that it is applicable to all five channeling 

constraints. The glo propagator has three procedures: domRed is a common 

procedure called by xDomRed and yDomRed, which are invoked by updates 

of an Xi or yj variable. Arguments to the xDomRed and yDomRed procedures 

include the index of the updated variable, and the new impossible and/or 

decided values for the updated variable as a result of the last update. Upon 

entry, the xDomRed and yDomRed procedures simply pass the variables to 
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1: domRed( Z : set of variables {z i , . . . Zn}\ t> be invoked by xDomRed 
V : value; or yDomRed 

rm: set of impossible values; 
rq : set of decided values ) 

2: for each j 6 rm do 
3: Zj V 
4: for each j 6 rq do 
5: Zj V 
1: xDomRed( i : index of variable re; t> be invoked when the domain 

rm: set of new impossible values of Xi is changed 
for Xi] 

rq : set of new decided values 
for Xi ) 

2: domRed(y, i, rm, rq) 
1: yDomRed( i : index of variable y; t> be invoked when the domain 

rm: set of new impossible values of yi is changed 
for yi] 

rq : set of new decided values 
for Vi ) 

2: domRed(X, i, rm, rq) 

Figure 6.2: The glo Propagator 
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be updated and the received arguments to domRed. Based on the received 

values, the domRed procedure updates the appropriate variables accordingly. 

Theorem 6.3. The glo propagator maintains HC on the iff constraints. 

Proof. By L e m m a 6.1, there are propagation rules (1), (2), (3) and (4). Prom 

Figure 6.2, all the rules in (1) and (3) are handled by procedure "xDomRed", 

and all the rules in (2) and (4) are handled by procedure "yDomRed". • 

Table 6.1 gives also the big O order of the number of glo propagator in-

vocations in the last column. W e can see that the glo propagator in general 

gives a drastic improvement in performance over the iff and ele propagators. 

There are a few points to note. First, for IB and SB, eley contains only one 

constraint, which is equivalent in pruning behavior to the glo constraint. That 

is why they share the same big O order. Second, IB and SB are special cases of 

II and SI respectively. The big O order entries of IB and SB can be obtained 

from those of II and SI by setting n to 1 (since \X\ = 1 for both IB and SB). 

6.3.2 Maintaining GAC on Int-Int Channeling Constraint 

In this section, we give an algorithm for maintaining G A C on global II (gll), 

which is based on matching theories and Regin's all-difference algorithm [Reg94 . 

In the following, we are channeling two integer models Mx and My with vari-

ables X = {xi,...，Xn} and Y = {yi,..., respectively. 

Method 6.1. Construct a bipartite graph Gu = (V, E), where V = X U Y 

(xi £ X on the left and yj G Y on the right) and E = {{a:̂ , yj} | j G Dx^ and 

i € Dy.}. 

Figure 6.3 shows a result Gu that is constructed by Method 6.1 for X = 

Y = {2 /1 , . . .2/4}’ A r i = Dy, = Dy^ = {1，2}’ = { 1 ’ 2 , 3 } , = 
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"crT"] V2 
: 

\ ^ ^ ^ I M / 

Figure 6.3: Perfect Matching 

Dx4 = Dy^ = {3,4} and Dy^ = {2,3,4}. In this figure, the bold edges are a 

perfect matching E of Ga. By considering each edge {xi, yj} as an assignment 

{xi I—> J, Uj I—> z}, we can clearly obtain a solution 5=； of ii: {xj z | E 

X} U {Vi ̂  i \ Vi E Y}. By this example, we have the following theorem and 

corollary: 

Theorem 6.4. Given Gu is constructed by Method 6.1, ii has a solution s三 if 

and only if Ga has a perfect matching E. 

Corollary 6.5. Given Gu is constructed by Method 6.1,3 a perfect matching 

of Ga contains an edge {rci, yj} if and only if {xi h j,yj t—>• i} can be extended 

to a solution of ii, where j G Dx^ and i G Dy^ 

Theorem 6.4 gives us a method of finding a solution for a given global II， 

and Corollary 6.5 points out a condition on when a domain value (in both 

models) can be extended to a solution. If we have an efficient way to remove 

all edges that are not in any perfect matching, then we can maintain G A C on 

global II. Here is a property helps us. 
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Property 6.2. [BerTO] An edge belongs to some of but not all maximum 

matchings, iff, for an arbitrary maximum matching M, it belongs to either 

an even alternating path which begins at a free vertex, or an even alternating 

cycle. 

By this property, if we find a perfect matching S and the set of edges 6 

of all even augmenting cycle in Gu, then edges i? = {e | Ve G e ̂  H and 

6 ^ 0 } can be removed. Here is an efficient method to remove R, same as 

what Regin did [Reg94.. 

Method 6.2. Given a bipartite graph G = (V, E), where V = X U Y, and a 

perfect matching E of G, construct an oriented graph G' = (V, E'), where E'= 

{{x,y) I V{a;,?/} G G X andy G y } U {{y,x) | G E-E,x G X and 

y G y } . If the set of edges Q' are edges of all strongly connected components of 

G', then edges R' = {{a;,?/} | V{a:,?/} G E^ • S, {x,y) and {y, x) • 6'} 

can be removed. 

Method 6.2 is efficient, as finding all strongly connected components takes 

0[\V\ + I丑I) steps. Note that the direction of edges in E' makes any path 

traversal forming an alternating path. Thus if 3 an edge e in a strong connected 

component, then there must be an even alternating cycle (a cycle in bipartite 

graph must be even) contains e, and vice versa. Hence, we have R = R'. The 

dotted edge ys} in Figure 6.3 is an example that it does not belong to any 

perfect matching (solution) in the graph. 

Let us summarize our method of maintaining G A C on global II (gll), and 

calculate the overall complexity. 

1. Construct a bipartite graph G from X and Y, remove domains that can't 

form edges. 

2. Find a perfect matching E of G, no solution can be found if this fails. 
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3. Construct another graph G\ by orienting edges {xi^yj} belongs to E as 

(xi, yj), or orienting as [vj.Xi) otherwise. 

4. Find edges 0 of all strongly connected components of G'. 

5. Remove the domains of the corresponding edges e ̂  0. 

Step 1, 3，4’ 5 takes 0{\V\-\-\E\) steps, step 2 takes 0{{\V\-\-\E\)y/\V\) steps. 

Thus the overall complexity is 0((|V| + \E\)^/^\). 

In practice, step 1,2 and 3 can be built‘ once, and they can be maintained 

during search. Step 1 and 3 can be maintained by propagators in Figure 6.2. 

While on maintaining step 2, if k edges are removed in the matching, then 

steps are need for repair. 



Chapter 7 

Experiments 

To evaluate the feasibility and efficiency of our proposed propagator algo-

rithms, we have implemented the propagators and compared them against 

techniques utilizing available constraints in existing solvers. One way to per-

form benchmarking is to construct a combined model with only variables and 

channeling constraints. Random variable assignments and pruning can then 

be generated to exercise the various implementations and observe their perfor-

mances. Such an approach is ad hoc in the least. W e test our implementations 

on real CSP benchmarks from the CSPLib. Smith [SmiOl] suggests the models 

{Qc, Qr, Qz} of the n-queens problem, {:„，Lp, L^} of the Langford's problem, 

and {Gg, Gp, G^, Gz} of the Social Golfers problem. The models {A^^ Ap^ Az} 

of the All Interval Series problem, {Be, Bp, Bz} of the Balanced Academic 

Curriculum, and Sp, Sz} of the Steiner Triple Systems are by Choi et al. 

CLS06], Hnich et al. [HKW02], and Law and Lee [LL06] respectively. 

For each problem, we test a wide range of instances which terminate in rea-

sonable time. All executions search for all solutions to exercise the channeling 

constraints to the fullest, using smallest domain first and first unbound variable 

heuristics for integer variables and set variables respectively. All experiments 

are conducted using ILOG Solver 4.4 on a Sun Blade 25000 workstation with 

2GB memory. 
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In the resulting tables, each row corresponds to a problem instance, and 

each column corresponds to a type of channeling constraint implementation. 

In the same table, if all the channeling constraint implementations maintain 

the same consistency level, we report their fails in the rightmost column. On 

the other hand, if the implementations maintain different consistency levels, 

we group them into blocks according to their consistency levels, and report 

their fails in the rightmost within each block. Each table caption specifies the 

models used for channeling. Variables of the bolded model is used as search 

variables. The aim of the experiments, except those relate to maintaining 

G A C on int-int channeling constraint, is to compare the runtime of the glo 

implementation against all other implementations. Thus, despite reporting 

the runtime on each type of channeling constraints implementation, speedups 

(runtime of an implementation / runtime of glo implementation), are reported 

at the bottom of each implementation, i.e. the bottom of table. Speedups are 

averaged over the number of instances, specified at the right bottom corner, 

which run more than one second on their iff implementation i . W e report 

also in brackets the standard deviation of each statistics. 

7.1 Int-int Channeling Constraint 

Theorem 5.6 in Chapter 5 tells us about maintaining G A C on a global int-

int channeling constraint causes more domain reduction. Thus we divide this 

section into two subsections. The first focuses on the implementations that 

are equivalent to maintaining A C on each iff constraints. This compares the 

runtime among the gElement implementation, glo implementation, and those 
iProm our experience, the runtime report by iLog solver may not be accurate. There can 

be + / — 0.1 � 0 . 2 variation in second. Thus we want to minimize the error for calculation 
in this way 



Chapter 7 Experiments 74 

predefined constraints in ILOG Solver. The second focuses on the implementa-

tions that are equivalent to maintaining G A C on the global int-int channeling 

constraint. This compares the runtime among the gll implementations and 

those predefined constraints in ILOG Solver. 

7.1.1 Efficient AC implementations 

Tables 7.1，7.2，7.3，7.4, and 7.5 report the results for int-int channeling be-

tween models Qc and Q ” Ln and L p， a n d Lp, An and Ap and An and A p 

respectively. The result for channeling between models Qc and Qr are identical 

to the one of channeling between models Qc and Qr\ thus we leave it out. The 

iff implementation is the basic one. Hnich et al. [HSW04] prove that keeping 

pairwise disequality ⑷ constraints on either model does not increase prun-

ing. W e study how the extra disequality constraints in the implementation 

• iff + can degrade performance. For the realization of pairwise disequality 

constraints, we use the IlcAllDif f constraint, which is a predefined con-

straint in ILOG Solver. The IlcAllDif f constraint has an option for choosing 

different consistency levels, and we choose the one that is equivalent as main-

taining A C on each pairwise disequality constraint. The ele implementations 

use gElement with variables in models 1 and 2 together. For the II case, the 

ILOG element constraint can also be used, we use elei2 implementation to 

represent ILOG implementation, where 1 is the letter representing variable in 

model 1，and 2 is the letter representing variable in model 2. ILOG Solver also 

provides the Ilclnverse constraint, which is also a global constraint main-

taining the same consistency (by our experimental observation only) as glo. 

Their performances are basically identical and we leave out the results. 

Results in Table 7.1, 7.2, 7.3, 7.4, 7.5 confirm that glo are the fastest 

among all implementations. The speedups for the 寺 iff • implementation 
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n _ iff 寺 iff elecr ele glo Fails 

8 ^ ^ O ^ o S ^ 

9 0.15 0.13 0.11 0.08 0.06 929 
10 0.57 0.58 0.43 0.33 0.23 4106 
11 2.65 2.65 • 1.92 1.41 0.99 17601 
12 13.41 13.37 9.27 6.89 4.74 80011 
13 71.9 71.41 48.41 35.89 23.82 392128 
14 412.67 409.19 265.26 198.2 128.2 2101047 
15 2508.1 2494.85 1569.64 1178.39 741.85 11724826 
16 16527.7 16366.6 9888.31 7482.33 4593.78 70692998 

Speedup 3.12(0.35) 3.1(0.33) 2.04(0.09) 1.52(0.08) 1(0) || 6 

Table 7.1: Result for int-int channeling between models Qc and Qr of the 
TV-Queens Problem 

are ranging from 2.6 to 3.51. Moreover, the ele implementation are always 

faster than ele^ provided by ILOG Solver. The • iff + implementation is 

usually the slowest, but sometimes the iff implementation can be a little bit 

slower. The _ iff 寺 implementation should be slower than iff due to the 

extra work load by the pairwise disequality constraints. In real situation, if 

the implementation of + is efficient, like the one we used (IlcAllDiff), it is 

possible to reduce the number of propagation steps that should be done by the 

"inefficient" iff. Thus, the instances L(10,4)’ L(ll，4)，... ’ L(15,4) in Table 7.3 

have the ^ iff implementation slightly faster than the iff implementation. 

7.1.2 GAC Implementations 

Tables 7.6, 7.7，7.8, 7.9, and 7.10 report the results for int-int channeling be-

tween models Qc and Qr, Ln and Lp, L„ and Lp, An and Ap and An and Ap 

respectively. Our implementation gll maintains G A C on ii. By Corollary 5.8, 

we form three other implementations: V iglo V，V iglo, and iglo V，which achieve 
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n, k iff ^ iff elcnp ele glo Fails 
7,2 o m o m ^ ^ 
8,2 0.14 0.13 0.09 0.07 0.04 340 
9.2 0.88 0.87 0.58 0.44 0.26 2800 
10,2 4.9 4.78 3.05 2.42 1.39 13345 
11,2 40.69 39.65 23.77 19.59 10.94 71984 
12.2 274.5 265.33 155.74 130.27 71.53 438141 
7.3 ^ ^ ^ ^ 
8,3 0.06 0.05 0.05 0.03 0.02 61 
9.3 0.26 0.25 0.21 0.14 0.09 257 
10.3 1.01 0.92 0.75 0.53 0.31 788 
11,3 4.09 3.88 3.06 2.21 1.27 2977 
12,3 21.5 20.25 15.88 11.58 6.6 13687 
13,3 121.84 116.25 88.41 65.45 37.37 69376 
14.3 557.15 530.43 397.27 297.88 169.59 281728 
7A ^ m ^ 0 8 

8.4 0.05 0.05 0.04 0.02 0.02 23 
9,4 0.11 0.11 0.12 0.06 0.04 44 
10.4 0.33 0.32 0.33 0.19 0.12 130 
11,4 1.22 1.16 1.13 0.69 0.41 414 
12,4 5.1 4.9 4.28 2.66 1.6 1344 
13,4 23.97 22.85 17.18 11.19 6.69 5111 
14,4 112.79 99.36 64.87 43.06 25.86 16944 
15,4 455.57 438.92 245.39 163.73 96.14 59479 

Speedup 3.61(0.49) 3.45(0.45) 2.38(0.17) 1.73(0.05) 1(0) 12 

Table 7.2: Result for int-int channeling between models Ln and Lp of the 
Langford's Problem 
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n, k + iff + iff elenp ele glo Fails 

7,2 ^ ^ ^ ^ ~ 

8,2 0.13 0.12 0.08 0.06 0.04 291 

9.2 0.78 0.77 0.46 0.4 0.24 2575 

10,2 4.46 4.37 2.5 2.23 1.31 12531 

11,2 36.84 36.11 19.33 18.52 10.49 67765 

12.2 246.87 240.4 125.69 123.11 68.55 405667 

7.3 ^ ^ ^ m si 

8,3 0.05 0.06 0.04 0.03 0.02 54 

9.3 0.27 0.27 0.2 0.14 0.08 205 

10.3 0.88 0.85 0.6 0.48 0.28 646 

11,3 3.7 3.59 2.48 2.03 1.18 2426 

12,3 17.04 16.43 10.81 9.36 5.42 9923 

13,3 89.78 87.76 55.61 49.31 28.75 47416 

14.3 376.56 365.45 225.25 205.23 120.4 173295 

7A ^ ^ ^ 10 

8.4 0.08 0.07 0.06 0.04 0.03 25 

9,4 0.17 0.17 0.14 0.1 0.06 56 

10.4 0.48 0.49 0.39 0.28 0.18 138 

11,4 1.12 1.14 0.89 0.66 0.41 272 

12,4 4.85 4.92 3.45 2.67 1.64 947 

13,4 18.54 18.59 11.19 8.72 5.42 2628 

14,4 63.93 63.98 33.34 26.7 16.64 7302 

15,4 239.61 242.35 111.33 88.84 54.56 22775 

Speedup 3.41(0.4) 3.36(0.43) 1.97(0.1) 1.68(0.05) 1(0) 1 2 — 

Table 7.3: Result for int-int channeling between models and Lp of the 
Langford's Problem 
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n ^ iff ：^ iff elsnp ele glo Fails 
8 ^ O ^ 002 0X11 ^ 1 0 4 ^ 
9 0.08 0.07 0.07 0.04 0.04 349 
10 0.34 0.33 0.29 0.2 0.15 1298 
11 1.57 1.49 1.25 0.91 0.65 5136 
12 7.78 7.39 6 4.39 3.11 22238 
13 40.27 38.03 30.64 21.44 15.5 101463 
14 221.5 208.18 165.12 116.34 83.33 495826 
15 1280.86 1201.76 940.02 693.96 472.83 2558523 
16 7798.82 7331.12 5683.88 4083.17 2850.82 14099360 

Speedup 2.6(0.12) 2.46(0.11) 1.97(0.03) 1.44(0.03) 1(0) 6 

Table 7.4: Result for int-int channeling between models An and Ap of the All 
Interval Series Problem 

n 寺 iff 寺 iff elcnp ele glo Fails 
9 002 ^ 0.02 120 
10 0.08 0.07 0.06 0.04 0.03 324 
11 0.26 0.25 0.17 0.15 0.11 981 
12 0.87 0.86 0.56 0.49 0.35 3146 
13 3.23 3.2 2.01 1.8 1.27 10892 
14 13.12 13.03 8.05 7.3 5.09 40352 
15 60.14 59.6 36.54 33.85 23.18 173549 
16 299.78 298.53 182.08 170.19 114.67 794100 
17 1710.95 1700.09 1044.36 969.97 643.59 4162212 

Speedup 2.58(0.06) 2.56(0.06) 1.59(0.02) 1.45(0.04) 1(0) 6 

Table 7.10: Result for int-int channeling between models An and Ap of the All 
Interval Series Problem 
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the same domain reduction as gll, where iglo represents the Ilclnverse con-

straint of ILOG Solver. For the realization of the global allDiff (V) con-

straints, we use the IlcAllDiff constraint, and we set its consistency level to 

maintain G A C . On the right-hand-side of each table, we append the results of 

glo to give a better overall picture on the int-int channeling constraints imple-

mentation. The bolded values in each table are the fastest runtimes, excluding 

the ones of glo {glo is the fastest in most cases). 

n V iglo V V iglo iglo V gll Fails glo Fails 

~8 ^ m ooi ^ ^ 

9 0.07 0.07 0.07 0.07 925 0.06 929 
10 0.29 0.25 0.26 0.26 4066 0.23 4106 
11 1.27 1.12 1.13 1.13 17393 0.99 17601 
12 6.06 5.36 5.34 5.38 78974 4.74 80011 
13 30.43 27.11 27.08 27.27 386437 23.82 392128 
14 164.63 146.29 145.84 146.58 2066779 128.2 2101047 
15 957.12 851.15 846.3 . 845.44 11517753 741.85 11724826 
16 5940.42 5223.65 5246.9 5222.29 69348242 4593.78 70692998 

Table 7.6: Result for int-int channeling between models Qc and Qr of the 
TV-Queens Problem 

Results in Tables 7.6, 7.7, 7.8, 7.9, and 7.10 show that V iglo, iglo V and 

our gll implementations perform similarly, and it is unclear which is better in 

different situations. The reason for the different runtime between the imple-

mentation of V iglo and iglo V is the order of constraint propagation, as their 

global allDif f constraints V are posted on different models. Moreover, the glo 

implementation is the fastest in most cases, except the one of channeling mod-

els An and Ap of the All Interval Series Problem, for the cases n > 12. These 

exceptions are due to the large decrease in fails. For example, in Table 7.10, 

when n = 17, the fails of the glo implementation are 60.5% more than those of 
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n, k V iglo V V iglo iglo V gll Fails glo Fails 

7,2 ^ ^ ^ ^ ^ ^ ^ ^ 

8,2 0.06 0.05 0.05 0.05 332 0.04 340 

9.2 0.33 0.29 0.29 0.31 2703 0.26 2800 

10,2 1.73 1.56 1.56 1.63 12860 1.39 13345 

11,2 13.79 12.45 12.5 12.79 68844 10.94 71984 

12.2 88.88 80.77 80.81 83.1 417953 71.53 438141 

7.3 0.01 ^ ^ ^ 

8,3 0.02 0.02 0.02 0.02 61 0.02 61 

9.3 0.09 0.09 0.09 0.09 245 0.09 257 
10.3 0.35 0.32 0.32 0.35 756 0.31 788 

11,3 1.41 1.3 1.33 1.4 2813 1.27 2977 
12,3 7.33 6.83 6.84 7.31 12996 6.6 13687 

13,3 40.81 38.46 38.22 40.95 65458 37.37 69376 

14.3 184.46 172.84 171.74 184.29 265118 169.59 281728 

7.4 0.01 ^ 0.01 8 0 8 

8,4 0.02 0.02 0.02 0.02 23 0.02 23 

9,4 0.04 0.04 0.04 0.04 43 0.04 44 

10.4 0.13 0.13 0.12 0.12 129 0.12 130 

11,4 0.45 0.42 0.42 0.45 406 0.41 414 

12,4 1.68 1.61 1.59 1.76 1274 1.6 1344 

13,4 6.93 6.65 6.56 7.23 4841 6.69 5111 

14,4 26.42 25.5 25.17 27.8 16041 25.86 16944 

15,4 102.01 98.44 97.59 106.8 56324 96.14 59479 

Table 7.7: Result for int-int channeling between models Ln and Lp of the 
Langford's Problem 
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n, k V iglo V V iglo iglo V gll Fails glo Fails 

7,2 0.02 0.02 0.02 0.02 ^ ^ 0.01 82 

8,2 0.05 0.05 0.05 0.05 262 0.04 291 
9.2 0.3 0.27 0.28 0.28 2374 0.24 2575 

10,2 1.65 1.42 1.51 1.51 11458 1.31 12531 

11,2 13.19 11.51 12.06 11.88 60583 10.49 67765 

12.2 84.42 74.59 77.86 76.99 359073 68.55 405667 

7.3 0.01 0.01 0.01 0.01 29 0.01 31 

8,3 0.02 0.02 0.92 0.02 52 0.02 54 

9.3 0.1 0.09 0.09 0.09 189 0.08 205 

10.3 0.33 0.29 0.31 0.32 612 0.28 645 

11,3 1.41 1.26 1.34 1.31 2297 1.18 2426 

12,3 6.35 5.57 6.06 5.91 9297 5.42 9923 

13,3 33.04 29.55 31.82 31.15 44221 28.75 47416 

14.3 136.93 121.51 131.04 128.61 160433 120.4 173291 

~7A 10 10 

8.4 0.03 0.03 0.03 0.03 25 0.03 25 

9,4 0.07 0.07 0.07 0.07 52 0.06 56 

10.4 0.2 0.19 0.19 0.2 125 0.18 138 

11,4 0.44 0.41 0.43 0.44 261 0.41 272 

12,4 1.74 1.65 1.71 1.74 900 1.64 947 

13,4 5.61 5.31 5.56 5.67 2460 5.42 2627 

14,4 17.06 16.31 17.02 17.48 6822 16.64 7304 

15,4 58.45 55.34 58.01 59.08 21354 54.56 22775 

Table 7.10: Result for int-int channeling between models An and Ap of the All 
Interval Series Problem 
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n V iglo V V iglo iglo V gll Fails glo Fails 

8 0.01 103 o H 1 0 4 ^ 

9 0.05 0.04 0.04 0.04 347 0.04 349 

10 0.18 0.17 0.17 0.17 1284 0.15 1298 

11 0.81 0.73 0.72 0.75 5077 0.65 5136 

12 3.81 3.44 3.37 3.53 21887 3.11 22238 

13 18.91 17.05 16.85 17.59 99625 15.5 101463 

14 101.11 90.97 88.9 93.4 485829 83.33 495826 

15 566.92 514.76 502.86 524.65 2499948 472.83 2558523 

16 3430.03 3083.98 3016.11 3144.38 13748263 2850.82 14099360 

Table 7.9: Result for int-int channeling between models An and Ap of the All 
Interval Series Problem 

n V iglo V V iglo iglo V gll Fails glo Fails 

"~9 ^ ^ 115 0.02 120 

10 0.05 0.04 0.04 0.04 308 0.03 324 

11 0.14 0.12 0.12 0.11 904 0.11 981 

12 0.41 0.37 0.38 0.33 2760 0.35 3146 

13 1.39 1.24 1.31 1.11 9051 1.27 10892 

14 5.32 4.68 4.98 4.17 31737 5.09 40352 
15 22.39 19.98 21.24 17.47 126407 23.18 173549 

16 104.19 92.52 99.25 80.09 540979 114.67 794100 

17 539.06 482.85 515.93 415.53 2593350 643.59 4162212 

Table 7.10: Result for int-int channeling between models An and Ap of the All 
Interval Series Problem 
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implementations maintaining G A C . Thus, implementations maintaining G A C 

on int-int channeling perform better, if they can cause much more domain 

reduction than the glo implementation. 

7.2 Set-Int Channeling Constraint 

Tables 7.11, 7.12, 7.13, 7.14, 7.15, and 7.16 give the results of set-int chan-

neling between models G p and Gg, Gp and Gg, G w and Gg、G^ and Gg, Bp 

and Be, and Bp and Be respectively. In addition to the standard iff and ele 

implementations, we also have Yl iff, which is iff augmented with the set par-

tition constraints Yl- W e prove that keeping the partition constraints in the 

set model does not increase pruning in Chapter 5. W e use the f]访 imple-

mentation to study how much the partition constraints degrade performances. 

For the realization of the set partition constraints, we use the IlcPartition 

constraint, which is a predefined constraint in ILOG Solver. 

Results in Tables 7.11, 7.12, 7.13, 7.14, 7.15, and 7.16 confirm that glo is 

the fastest among all other implementations. The speedups for the iff im-

plementation range from 1.17 to 1.48. One may argue that the speedup is not 

significant,but this will be discussed in a later section. The Yl iff implemen-

tation are always the slowest, but with some exceptional cases in which the 

iff implementation can be a little bit slov,er. The reason is the same as why 

+ iff + can be faster than iff, The IlcPartition constraint can efficiently 

reduce the number of propagations over the "inefficient" iff, though it does not 

increase any domain reduction. This is also the reason why the performance 

of the n 访 and iff implementations are similar. 
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g,s,w II iff iff^ ^ glo Fails 

3.2.2 m 0^01 a m 0 

3.2.3 0.01 0.01 0.01 0.01 1 

3.2.4 0.01 0.01 0.01 0.01 3 

3.2.5 0.01 0.01 0.01 0.01 1 

4.2.2 0.01 0.01 0.01 0.01 0 

4.2.3 0.03 0.03 0.03 0.02 22 

4.2.4 0.11 0.1 0.09 0.09 66 

4.2.5 0.15 0.14 0.13 0.12 62 

4.3.2 0.01 0.02 0.01 0.01 0 

4.3.3 0.12 0.1 0.08 0.08 285 

4.3.4 0.2 0.19 0.16 0.15 621 

4.3.5 0.16 0.15 0.11 0.11 381 

5.2.2 0.02 0.02 0.02 0.02 0 

5.2.3 1.28 1.23 0.96 0.91 1090 

5.2.4 47.88 46.27 37.07 35.22 52702 

5.2.5 514.95 498.34 407.9 389.82 629518 

5.3.2 0.06 0.05 0.04 0.04 0 

5.3.3 245.03 238.05 176.18 163.41 434115 

5.4.2 0.05 0.04 0.03 0.03 0 

5.4.3 189.66 185.4 132.3 121.66 544314 

5.4.4 2220.36 2169.49 1606.71 1492.05 7908227 

5.4.5 2306.79 2243.35 1674.41 1564.17 6402199 

6.2.2 0.09 0.09 0.07 0.07 0 

6.2.3 105.26 102.25 80.06 77.93 67595 

6,3,2 1.32 1.28 0.94 0.85 0 

6,4,2 1.19 1.17 0.8 0.72 0 

6,5,2 0.17 0.14 0.13 0.13 0 

7,2,2 0.7 0.66 0.49 0.46 0 

7,3,2 66.61 64.63 44.89 41.02 0 

7,4,2 281.68 276.87 187.94 170.92 0 

7,5,2 52.75 51.68 34.57 31.37 0 

7,6,2 0.59 ^ 0.49 0.41 0 

Speedup 1.52(0.12) 1.48(0.12) 1.08(0.03) 1(0) || 13 

Table 7.11: Result for set-int channeling between models G p and Gg of the 
Social Golfer Problem 
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g, s, w n 访 iff ele glo Fails 

3.2.2 ^ O ^ ^ m 0 

3.2.3 0.01 0.01 0.01 0.01 1 

3.2.4 0.01 0.01 0.01 0.01 3 

3.2.5 0.01 0.01 0.01 0.01 1 

4.2.2 0.01 0.01 0.01 0 0 

4.2.3 0.02 0.03 0.03 0.02 14 

4.2.4 0.1 0.09 0.09 0.08 60 

4.2.5 0.13 0.13 0.12 0.1 80 

4.3.2 0.02 0.01 0.01 0.01 0 

4.3.3 0.09 0.07 0.07 0.06 84 

4.3.4 0.15 0.16 0.13 0.11 341 

4.3.5 0.05 0.05 0.05 0.04 55 

5.2.2 0.02 0.02 0.02 0.01 0 

5.2.3 1.1 1.05 0.85 0.8 526 

5.2.4 38.63 37.24 31.01 29.55 19696 

5.2.5 412.4 397.43 34336.56 322.82 251678 

5.3.2 0.05 0.04 0.04 0.04 0 

5.3.3 183.31 176.9 138.38 130.31 151569 

5.4.2 0.05 0.05 0.05 0.05 4 

5.4.3 88.94 87.33 66.44 61.88 106224 

5.4.4 1363.52 1346.27 1008.05 937.94 2508285 

5.4.5 659.67 653.66 489.24 457.15 824135 

6.2.2 0.09 0.09 0.07 0.06 0 

6.2.3 87.43 84.58 67.09 63.26 29136 

6,3,2 1.45 1.32 1.1 0.98 0 

6,4,2 1.49 1.53 1.09 1 362 

6,5,2 0.17 0.17 0.15 0.13 65 

7,2,2 0.64 0.62 0.48 0.45 0 

7,3,2 76.38 73.97 54.41 50.43 168 

7,4,2 404.97 398.91 288.58 266.73 60729 

7,5,2 95.89 95.25 68.88 63.53 45983 

7,6,2 1.17 O 0.87 0.84 898 

Speedup 1.43(0.08) 1.4(0.09) 1.06(0.02) 1(0) || 14 

Table 7.12: Result for set-int channeling between models Gp and Gg of the 
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g^ s, w n ^S iff ele glo Fails 

OJOl m m 0 

3.2.3 0.01 0.01 0.01 0.01 2 

3.2.4 0.01 0 0 0 8 

4.2.2 0.01 0.01 0.01 0.01 0 

4.2.3 0.31 0.28 0.26 0.25 142 

4.2.4 6.3 5.97 5.15 5 4695 

4.3.2 0.02 0.01 0.01 0.01 0 

4.3.3 0.72 0.68 0.62 0.6 900 

4.3.4 8.74 8.27 7.33 7.14 17024 

5.2.2 0.06 0.06 0.05 0.05 0 

5.2.3 157.69 148.95 132.26 128.99 52486 

5.3.2 0.09 0.1 0.09 0.08 14 

5.3.3 11004.7 10371.3 9374.17 9212.21 9712202 

5.4.2 0.06 0.05 0.05 0.05 4 

5.4.3 4815.62 4687.03 4204.2 4138.08 4695132 

6,2,2 1.11 1.03 0.96 0.95 0 

6,3,2 6.47 6.28 5.79 5.73 1020 

6,4,2 3.55 3.36 3.14 3.08 1077 

6,5,2 0.27 0.28 0.25 0.25 65 

7,2,2 39.98 38.11 34.68 33.94 0 

7,3,2 985.56 933.35 871.84 860.37 97173 

7,4,2 1884.82 1820.12 1691.51 1666.95 455682 

7,5,2 266.62 258.51 244.67 240.65 84423 

7,6,2 2.25 2.35 2.23 2.09 898 

Speedup 1.17(0.05) 1.12(0.04) 1.02(0.02) 1(0) || 13 

Table 7.10: Result for int-int channeling between models An and Ap of the All 
Interval Series Problem 
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g,s,w n ^ff ^ ^ glo Fails 

3.2.2 ^ m 0 0 

3.2.3 0.01 0.01 0.01 0.01 2 

3.2.4 0.01 0.01 0.01 0.01 5 

4.2.2 0.01 0.01 0.01 0.01 0 

4.2.3 0.27 0.26 0.23 0.22 164 

4.2.4 5.12 4.8 4.12 3.99 3985 

4.3.2 0.02 0.02 0.02 0.02 0 

4.3.3 0.6 0.57 0.52 0.49 504 

4.3.4 5.02 4.76 4.07 3.98 10207 

5.2.2 0.05 0.05 0.05 0.05 0 

5.2.3 140.57 131.78 116.5 113.61 60187 

5.3.2 0.1 0.09 0.08 0.07 6 

5.3.3 8563.76 8098.96 7326.74 7190.13 4939024 

5.4.2 0.05 0.03 0.05 0.04 4 

5.4.3 3206.92 3049.01 2758.35 2720.2 2549284 

6,2,2 1.09 0.96 0.89 0.88 0 

6,3,2 5.95 5.71 5.34 5.27 338 

6,4,2 3.35 3.2 3 2.95 780 

6,5,2 0.28 0.27 0.26 0.26 65 

7,2,2 36.76 34.72 31.5 30.76 0 

7,3,2 896.59 844.56 785.67 777.37 30443 

7,4,2 1694.84 1639.84 1528.36 1508.1 249735 

7,5,2 252.19 245.49 230.9 225.95 66902 

7,6,2 2.4 ^ 2.12 1.99 898 

Speedup 1.18(0.06) 1.13(0.05) 1.02(0.02) 1(0) 12 

Table 7.10: Result for int-int channeling between models An and Ap of the All 
Interval Series Problem 
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instance Yl 访 iff ele glo Fails 

8 periods 0.09 0.08 0.06 0.05 101 

10 periods 0.63 0.61 0.46 0.45 470 

12 periods 44.74 44.31 30.62 29.32 33530 

~ ^ e e d u p 1.46(0.09) 1.43(0.11) 1.03(0.02) 1(0) 2 

Table 7.15: Result for set-int channeling between models Bp and Be of the 
Balanced Academic Curriculum Problem 

instance Yl W iff ele glo Fails 

8 periods ^ 0.69 1577 

10 periods 0.33 0.3 0.24 0.23 323 

12 periods 1.66 1.3 1.23 882 

"Speedup 1.38(0.05) 1.35(0,01) 1.09(0.05) 1(0) 2 

Table 7.16: Result for set-int channeling between models Bp and Be of the 
Balanced Academic Curriculum Problem 
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7.3 Set-Set Channeling Constraint 

Tables 7.17, 7.18, 7.19, and 7.20 give the results of set-set channeling between 

models G p and G^, Gp and G w , 8„ and 5p, and Sn and Sp respectively. Result 

confirms that glo is the fastest among all implementations. The speedups for 

the iff implementation range from 1.27 to 1.36. Again reasons on influencing 

the speedup will be discussed in a later section. 

g, s, w iff ele glo Fails 

^ ^ 0 0 0 2 

3,2,3 0.01 0.01 0.01 13 

4.2.2 0.01 0.01 0.01 8 

4.2.3 0.21 0.17 0.17 229 

4.3.2 0.35 0.28 0.27 938 

4.3.3 20 15.98 15.14 45344 

5.2.2 0.11 0.09 0.08 72 

5.2.3 17.88 14.43 13.76 13561 

5,3,2 35.95 27.88 26.09 63389 

5,4,2 4102.68 3074.57 2851.63 10754086 

6,2,2 1.21 0.97 0.92 688 

6,3,2 5534.17 4207.29 3932.27 7656122 

7,2,2 16.97 13.4 12.66 8272 

Speedup 1.36(0.05) 1.06(0.02) 1(0) || 7 — 

Table 7.17: Result for set-set channeling between models Gp and G切 of the 
Social Golfer Problem 

7.4 Int-Bool Channeling Constraint 

Tables 7.21，7.22, 7.23，7.24, 7.25, 7.26, and 7.27 give the results of set-set 

channeling between models Qc and Qz, Ln and L^, Lp and Lz, An and Az, 
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g, s, w iff ele glo Fails 

3.2.2 a m ^ o S 2 

3.2.3 0.01 0.01 0.01 18 

4.2.2 0.01 0.01 0.01 8 
4.2.3 0.25 0.22 0.2 607 

4.3.2 0.32 0.27 0.25 684 

4.3.3 23.86 19.81 18.81 77635 

5.2.2 0.1 0.09 0.08 60 

5.2.3 20.29 16.97 16.23 36744 

5,3,2 32.39 26.78 25.38 47S88 

5,4,2 3029.6 2512.79 2373.13 5764608 

6,2,2 1.11 0.92 0.87 544 

6,3,2 5159.86 4183.58 3963.61 5498928 

7,2,2 15.47 12.86 12.21 6040 

Speedup 1.27(0.02) 1.05(0.01) 1(0) 7 

Table 7.18: Result for set-set channeling between models Gp and G w of the 
Social Golfer Problem 

n iff ele glo Fails 

9 ^ 0.65 3786 

10 50.59 40.76 38.77 179583 

12 498684 399545 379782 1073741849 

13 613560 490844 468035 1073741851 

Seendup 1.31(0) 1.06(0.01) 1(0) 3 

Table 7.19: Result for set-set channeling between models 8„ and Sp of the 
Steiner Triple Systems 
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Ap and A^, Gg and G^, and Be and B^ respectively. Each table is separated 

into table (a) and (b), which are the results by choosing search variables in 

the first and the second model respectively. In addition to the standard iff 

implementations, we also have iff 〇，which is iff augmented with the sum-

to-one constraint © . There is also our ele implementation, but we find that 

its performances are basically identical to glo, thus we leave out the results. 

W e prove that keeping the sum-to-one constraint in the Boolean model 

does not increase pruning in Chapter 5. W e use the iff 〇 implementation 

to study how much the sum-to-one constraint degrade performances. For the 

realization of the sum-to-one constraint, we use the IlcSum constraint, which 

is a predefined constraint in ILOG Solver. 

Results in Tables 7.21, 7.22, 7.23, 7.24, 7.25, 7.26，and 7.27 confirm that glo 

is the fastest among all implementations. The speedups for the iff 〇 imple-

mentation range from 1.04 to 3.33. Again reasons on influencing the speedup 

will be discussed in a later section. The iff Q implementation is always the 

slowest, but with some exceptional cases in which the iff implementation can 

be a little bit slower. The reason is the same as why — iff # OY Yliff can 

be faster than iff. The IlcSum constraint can efficiently reduce the number 

of propagation steps over the "inefficient" iff, though it does not increase any 

domain reduction. This is also the reason why the performance of the iff Q 

and iff implementations are similar. 

7.5 Set-Bool Channeling Constraint 

Tables 7.28，7.29, 7.30, 7.31, and 7.32 give the results of set-bool channeling 

between models Gp and Gz、G如 and Gz, Bp and and Sz, and Sp and 

Sz respectively. Each table is separated into table (a) and (b), which are the 
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n iff ele glo Fails 
9 i m ^ 

10 21.73 18.11 17.27 107532 

12 296684 247781 237486 1073741848 

13 583889 486361 467110 1073739057 

Speedup 1.28(0.05) 1.04(0.01) 1(0) || 4 

Table 7.20: Result for set-set channeling between models Sn and Sp of the 
Steiner Triple Systems 

n iff 〇 glo Fails | n | (ff"〇 iff glo Fails~ 

7 ^ ol)i a m ^ 7 oii o m o ^ 

8 0.03 0.02 0.02 256 8 0.03 0.03 0.01 300 

9 0.11 0.11 0.06 929 9 0.11 0.11 0.06 1151 

10 0.46 0.45 0.23 4106 10 0.45 0.46 0.26 5181 

11 2.09 2.06 1 17601 11 2.18 2.19 1.16 23515 

12 10.47 10.37 4.76 80011 12 11.35 11.38 5.77 111076 

13 56.53 55.24 24.47 392128 13 62.29 62.38 30.83 561362 

14 318.33 311.19 134.73 2101047 14 363.54 364.36 172.69 3079792 

15 1932.62 1885.62 780.01 11724826 15 2280.16 2272,72 1047.69 17692260 

16 12580.8 12269.5 4912.93 70692998 16 15113.9 15109.8 6709.7 109047332 

Speedup 2.33(0.17) 2.29(0.16) 1(0) 6 Speedup 2.07(0.14) 2.07(0.13) 1(0) 6 

(a) Search by A : (b) Scarch by 

Table 7.21: Result for int-bool channeling between models Qc and Qz of the 

A^-Queens Problem 
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I 迅 9lo FaiiT] n,ib iff Q iff glo Fails 
7,2 0.04 0.04 0.02 110 "TIT" 
8.2 0.15 0.14 0.06 368 8,2 0.14 0.13 0.07 466 

9，2 1 0.96 0.38 3211 9 2 0.88 0.84 0.35 3453 

10’2 5.8 5.56 2.19 15597 10,2 4.96 4.72 2.04 17194 

11,2 47.35 45.02 17.09 91471 11,2 38.3 36.35 15.32 98505 

12.2 315.43 300.35 110.03 557590 12,2 248.03 236.04 96.14 606013 

8.3 0.08 0.08 0.03 75 8,3 0.07 0.07 0.03 71 

9.3 0.35 0.33 0.13 313 9,3 0.27 0.26 0.1 243 

10.3 1.39 1.35 0.48 1064 10,3 0.9 0.86 0.33 741 

11,3 6.33 6.02 2.1 4425 11,3 3.52 3.42 1.3 2757 

12,3 33.47 32.09 10.83 20273 12,3 16.11 15.58 5.66 11336 

13,3 201.97 194.82 63.05 107233 13,3 78.06 76 26.49 48960 

14.3 941.78 904.63 292.31 439230 14,3 343.97 338.62 116.14 197640 

T A 0 0 2 0 0 3 0 1 0 ~ ~ ~ ^ ^ o ! ^ 1 0 ~ 

8.4 0.07 0.07 0.02 28 8,4 0.08 0.08 0.04 38 

9,4 0.19 0.17 0.07 62 9,4 0.19 0.19 0.07 71 

10.4 0.58 0.55 0.19 165 10,4 0.48 0.45 0.17 141 

11,4 2.39 2.22 0.69 635 11,4 1.57 1.48 0.48 392 

12,4 9.92 8.98 2.62 2144 12,4 5.07 4.53 1.33 1057 

13,4 49.08 44.65 11.5 8558 13,4 16.27 16.33 3.98 2813 

14,4 199.46 178.55 42.67 28787 14,4 56.72 52.82 12.71 8388 

Speedup 3.33(0.62) 3.12(0.5) 1(0) 12 Speedup 3.15(0.68) 3.01(0.64) 1(0) 11 

(a) Search by X „ (b) Search by X , 

Table 7.22: Result for int-bool channeling between models L„ and Lz of the 
Langford's Problem 

results by choosing search variables in the first and the second model respec-

tively. There is also our ele implementation, but we find that its performances 

are basically identical to glo, thus we leave out the results. Result confirms 

that glo is the fastest among all other implementations. The speedups for 

the iff implementation range from 1.03 to 1.26. Reasons on influencing the 

speedup will be discussed in the next section. 

7.6 Discussion 

One might observe discrepancies in performance comparison from the theo-

retical prediction given in Table 6.1. For example, glo performs better than 
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n, k iff Q iff glo Fails 进 〇 进 9lo Fails 

0 0 4 0 0 3 I M ~ 7,2 ~ ^ o!o4 ^ 

8,2 0.16 0.16 0.08 381 8,2 0.17 0.17 0.1 496 

9.2 1.01 1.01 0.51 3029 9,2 1.16 1.14 0.62 3668 

10,2 6.05 5.81 2.99 1531S 10,2 6.74 6.61 3.58 18226 

11,2 49.53 47.99 24.28 91986 11,2 52.69 52.51 27.92 105202 

12.2 331.97 323.15 161.89 571667 12,2 349.06 351.89 184.14 646472 

7.3 0.07 0.06 0.03 124 ^ ^ 126 

0 2 1 (U 3 2 0 ~ 8,3 0.12 0.13 0.07 278 

9.3 1.1 1.07 0.53 1406 9,3 0.46 0.49 0.25 975 

10.3 4.11 3.99 1.95 4748 10,3 1.52 1.6 0.83 2757 

11,3 19.83 19.25 9.42 19902 11,3 5.98 6.49 3.28 9579 

12,3 115.27 111.37 53.88 99421 12,3 27.52 28.92 14.64 35845 

13,3 778.46 760.24 356.26 597804 13,3 133.78 144.5 70.11 145425 

14.3 4880.36 4598.26 207G.42 3017268 14,3 626.06 649.59 308.21 535418 

7.4 0.06 0.05 0.02 38 ^ ^ O M 4 5 ~ 

8,4 0.25 0.23 0.12 175 8,4 0.16 0.14 0.08 285 

9,4 1 16 1.1 0.54 708 9,4 0.37 0.39 0.19 597 

10.4 3.G1 3.46 1.58 1819 10,4 1.14 1.14 0.5 1547 

11,4 20.22 19.05 7.83 8120 1 1 ,4 4.04 4.23 1.67 4557 

12,4 99.25 87.49 33.39 30763 12,4 14.73 15.59 5.39 12996 

13,4 565.25 493.59 181.68 145950 13,4 47.89 51.56 19.7 37955 

14,4 2810.35 2765.93 892.19 610426 14,4 202.96 200.81 71.61 116245 

Speedup 2.33(0.4) 2.22(0.33) 1(0) 16 Speedup 2.12(0.35) 2.19(0.37) 1(0) 14 

(a) Search by A'p (b) Search by X : 

Table 7.23: Result for int-bool channeling between models Lp and Lz of the 
Langford's Problem 

predicted in IB, but less in SI. There are other factors than just the type 

of the channeling that affect the constraint solving efficiency in real problems 

(instead of quasi-empty models with only channeling constraints). First, we 

observe that the speedups of glo over others grow with instance size in general. 

W e employ all-solution search in our experiments so that the results are less 

sensitive to search heuristics and to exercise the channeling constraints more 

fully, but all-solution search is costly and limits our attentions to smaller in-

stances. W e did perform some experiments on single-solution search on larger 

instances. For example, in set-set channeling, for the model pair Sp, the 

speedups against iff become 1.84 and 2.16 for n = 25 and n = 27 respec-

tively, where n is the total number of distinct integers that can be contained 
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“ I 1万〇 glo Fails ] n iff Q ^ glo Fails 

6 0.01 0.01 0 17 6 5 5 5 2 

7 0.01 0.01 0.01 61 7 0 0 0 16 

8 0.05 0.05 0.05 194 8 0.02 0.02 0.01 67 

9 0.19 0.19 0.15 584 9 0.07 0.07 0.05 255 

10 0.73 0.71 0.6 1900 10 0.28 0.27 0.26 1070 

11 3.01 2.93 2.49 6726 11 1.44 1.41 1.25 4717 

12 12.95 12.76 10.87 25572 12 8.02 7.84 7.02 22849 

13 59.36 58.77 49.7 103662 13 48.28 46.98 42,37 121632 

14 288.81 286.53 244.17 447656 14 299.68 293.88 264.75 652856 

15 1496.01 1455.34 1238.85 2034574 15 2011.51 1950.13 1779.49 3802562 

16 8264.58 8009.53 6753.43 9860668 16 14486.3 14125.9 12617.1 23829086 

Speedup 1.2(0.01) 1.18(0.01) 1(0) 6 Speedup 1.14(0.01) 1.11(0.01) 1(0) 6 

(a) Search by X „ (b) Search by X , 

Table 7.24: Result for int-bool channeling between models An and A^ of the 
All Interval Series Problem 

in each triple. Another example is SI channeling, for the model pair Gp, Gg, 

the speedups against iff are 1.89 and 1,96 for p = 13, g = 13，if； = 3 and 

p == 14，g = 14, w = 3 respectively, where p is the number of golfers in each 

group, g is the number of groups in each week, and w is the number of weeks 

need to be scheduled. W e observe similar increase in speedup in other prob-

lems. 

Second, the proportion of channeling constraints among all constraints in 

the model and the complexity of the other constraints also affect the results. In 

general, if a model contain a large proportion of complex constraints, then the 

speedup gained in the improved channeling constraint implementation can be 

insignificant as compared to the time required for solving the other constraints. 

For example, in model Gun there are constraints to ensure that any 

two groups in different weeks have at most one golfer in common. For the 

combined models of GujCrndGg using SI and Gp, G^ using SS, iff has only pgw 

constraints, and ele has one less dimension when compared with iff. Another 

example is on 5„ and Sp. There are constraints to ensure that any two 

triples have at most one common integer, while iff has only nm constraints 
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n iff Q iff glo Fails 

6 0 0 0 i “ 访 Q iff glo Fails ‘ 
7 0 0 0 8 ‘ “ « 广 

8 - l 。.01 0.01 41 \ 。.：2 。.：1 ；: 

9 0.04 0.04 0.03 112 g 0.07 0.07 0.07 282 

10 0.12 0.12 0.1 297 10 0.37 0.36 0.31 1214 

11 0.37 0.36 0.31 856 11 1.95 1.87 1.62 5696 

12 1.19 1.16 1 2597 12 11.07 10.78 9.32 27700 

13 4.03 3.96 3.39 7971 13 67.47 65.91 56.78 145751 

14 15.01 14.89 12.67 26152 14 433.67 424,66 361.94 817882 

15 59.94 59.53 50.54 97205 15 2929.05 2834.72 2440.05 4791761 

16 276.81 271.37 232.76 387419 IG 21517.7 20636 17863 29845002 

Speedup 1.19(0) 1.17(0.01) 1(0) 5 | Speedup | 1.2(0.01) 1.16(0.01) 1(0) 
⑷ Search by (b) Search by 

Table 7.25: Result for int-bool channeling between models Ap and A^ of the 
All Interval Series Problem 

for combining models and 5p, where m — n{n — l)/6. 
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g,s,w iff 〇 iff glo Fails 

3.2.2 0 0 0 I ff，^5，w I iff Q iff glo Fails “ 

3.2.3 0 0.01 0 3 OOl OOl 0 0 

3.2.4 0.01 0.01 0.01 7 3,2,3 0 0 0.01 5 

3.2.5 0.01 0.01 0.01 4 3,2,4 0.01 0.01 0 9 

4.2.2 0.01 0.01 0.01 2 3,2,5 0.01 0 0.01 4 

4.2.3 0.04 0.05 0.05 43 4,2,2 0 0.01 0,01 4 

4.2.4 0.18 0.19 0.17 286 4,2,3 0.07 0.07 0.07 176 

4.2.5 0.35 0.38 0.36 908 4,2,4 0,31 0.32 0.31 971 

4.3.2 0.01 0.02 0.01 0 4,2,5 0.62 0.62 0.61 2100 

4.3.3 0.14 0.13 0.13 159 4,3,2 0.01 0,02 0.01 0 

4.3.4 0.36 0.37 0.34 878 4,3,3 0.27 0.27 0.25 800 

4.3.5 0.36 0.37 0.35 814 4,3,4 0.75 0.75 0.72 3006 

5.2.2 0.03 0.03 0.03 10 4,3,5 0.48 0.47 0.47 1585 

5.2.3 1.76 1.76 1.65 1013 5,2,2 0.03 0.04 0.04 50 

5.2.4 60.54 59.38 56.4 39296 5,2,3 3.16 3.18 3.04 7285 

5.2.5 662.23 664.04 627.85 701208 5,2,4 138.1 138.15 135.46 367404 

5.3.2 0.08 0.09 0.08 3 5,2,5 1864.72 1886.39 1865.17 5599996 

5.3.3 308.78 306.19 292.01 284440 5,3,2 0.1 0.1 0.1 45 

5.4.2 0.06 0.06 0.06 4 5,3,3 596.45 603.05 562.55 1469974 

5.4.3 166.33 168.83 162.31 178716 5,4,2 0.05 0.05 0.04 0 

5.4.4 2206.17 2209.14 2041.4 2838369 5,4,3 509.17 502.75 474.09 1279148 

5.4.5 2781.66 2774.68 2573.88 3257943 6,2,2 0.25 0.25 0.24 312 

6.2.2 0.16 0.16 0.16 44 6,2,3 240.88 242.37 228.42 484732 

6.2.3 135.26 133.92 125.44 53239 6,3,2 3.33 3.33 3.16 2691 

6,3,2 2.93 2.97 2.82 36 6,4,2 2.51 2.48 2.43 816 

6,4,2 2.97 2.94 2.79 537 6,5,2 0.19 0.17 0.18 0 

6,5,2 0.24 0.27 0.23 65 7,2,2 2.09 2,11 1.97 2658 

7,2,2 1.36 1.33 1.26 234 7,3,2 166.47 168.24 157.76 127191 

7,3,2 157.8 156.15 147.31 555 7,4,2 659.2 642.74 621.79 284324 

7,4,2 838.47 844.73 792.58 108702 7,5,2 118.62 118.87 109.12 22650 

7,5,2 214.58 197.28 199.21 58606 7,6,2 0.99 1.06 1.02 0 

7,6,2 2.19 2,15 2.04 898 | Speedup 1.04(0.03) 1.05(0.02) 1(0) 13 “ 

Speedup 1.07(0.02) 1.06(0.02) 1(0) || 12 (b) Search by X , 

(a) Search by Xg 

Table 7.26: Result for int-bool channeling between models Gg and G^ of the 
Social Golfer Problem 

instance i f f 〇 i f f glo Fails instance i f f 〇 i f f glo Fails 

8 periods 01)2 ^ (101 101 8 periods (U)3 ^ OiiT 183 

10 periods 0.18 0.17 0.16 468 10 periods 0.15 0.15 0.13 1103 

12 periods 7.39 7.34 5.84 33602 12 periods 0.11 0.1 0.08 366 

Speedup 1.2(0.1) 1.16(0.14) 1(0) 2 Speedup 1.26(0.16) 1.2(0.07) 1(0) 2 

(a) Search by X a (b) Search by ；G 

Table 7.27: Result for int-bool channeling between models B � a n d Bz of the 
Balanced Academic Curriculum Problem 
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g,s,w ^ glo Fails g,s,w iff glo Fails 
3.2.2 0 0 4 3,2,2 0 0 4 
3.2.3 0.01 0.01 5 3,2,3 0.01 0 5 
3.2.4 0.01 0.01 7 3,2,4 0.01 0.01 7 
3.2.5 0.01 0.01 7 3,2,5 0.01 0.01 7 
4.2.2 0.02 0.01 12 4,2,2 0.01 0.01 12 
4.2.3 0.05 0.05 34 4,2,3 0.05 0.05 34 
4.2.4 0.17 0.15 102 4,2,4 0.18 0.15 102 
4.2.5 0.29 0.26 234 4,2,5 0.29 0.26 234 
4.3.2 0.02 0.02 45 4,3,2 0.03 0.03 45 
4.3.3 0.18 0.16 330 4,3,3 0.17 0.16 330 
4.3.4 0.33 0.27 595 4,3,4 0.31 0.26 595 
4.3.5 0.33 0.27 510 4,3,5 0.32 0.27 510 
5.2.2 0.05 0.03 62 5,2,2 0.04 0.04 62 
5.2.3 2.12 1.83 1148 5,2,3 2.11 1.88 1148 
5.2.4 74.87 65.46 48468 5,2,4 75.43 67.72 48468 
5.2.5 769.06 680.53 544677 5,2,5 778.01 705.48 544677 
5.3.2 0.24 0.2 647 5,3,2 0.24 0.19 647 
5.3.3 368.05 300.63 434408 5,3,3 369.02 309.26 434408 
5.4.2 0.18 0.17 515 5,4,2 0.2 0.17 515 
5.4.3 298.13 238.99 544829 5,4,3 299.15 243.4 544829 
5.4.4 3239.6 2676.21 6735^^0 5,4,4 3225.13 2700.2 6735600 
5.4.5 3593.71 2988.32 5389126 5,4,5 3587.38 3035.35 5389126 
6.2.2 0.24 0.21 359 6,2,2 0.23 0.2 359 
6.2.3 162.35 137.23 67254 6,2,3 163.47 142.77 67254 
6,3,2 6.66 5.45 17311 6,3,2 6.73 5.69 17311 
6,4,2 16.11 12.92 43036 6,4,2 16.24 13.39 43036 
6,5,2 3.01 2.38 7030 6,5,2 3.05 2.52 7030 
7,2,2 1.91 1.65 2682 7,2,2 1.94 1.7 2682 
7,3,2 304.66 247.43 677196 7,3,2 311.08 260.56 677196 
7,4,2 2826.54 2218.26 6684046 7,4,2 2871.41 2321.3 6684046 
7,5,2 1988.17 1542.39 4060581 7,5,2 2042.92 1609.95 4060581 
7,6,2 67.12 51.39 117608 7,6,2 68.78 53.57 117608 

Speedup | 1.22(0.05) 1(0) || 16 | Speedup | 1.19(0.05) 1(0) 16 
(a) Search by Xp (a) Search by X^ 

Table 7.28: Result for set-bool channeling between models Gp and Gz of the 
Social Golfer Problem 
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g’s’w iff glo Fails ~ ~ 9 I 0 Fails 
~ O O l a m 4 3,2,2 0 0 4 

3.2.3 0.01 0.01 10 3,2,3 0.01 0 9 
3.2.4 0.01 0.01 9 3,2,4 0.01 0.01 13 
3.2.5 0.01 0.01 9 3,2,5 0.01 0.01 11 
4.2.2 0.02 0.02 20 4,2,2 0.02 0.01 21 
4.2.3 0.11 0.1 227 4,2,3 0.09 0.08 194 
4.2.4 0.45 0.41 892 4,2,4 0.42 0.41 1118 
4.2.5 0.63 0.59 1169 4,2,5 0.91 0.85 2596 
4.3.2 0.03 0.03 51 4,3,2 0.02 0.02 45 
4.3.3 1.21 1.14 3406 4,3,3 0.35 0.33 845 
4.3.4 3.63 3.41 9220 4,3,4 1.01 0.95 3057 
4.3.5 0.23 0.21 363 4,3,5 0.75 0.7 1970 
5.2.2 0.05 0.05 103 5,2,2 0.05 0.05 122 
5.2.3 4.73 4.51 9576 5,2,3 3.9 3.71 7357 

5.2.4 164.16 153.07 291104 5,2,4 175.09 164.85 376394 
5’2，5 1894.42 1735.48 3139532 5,2,5 2478.82 2307.03 5903049 
5.3.2 0.43 0.43 945 5,3,2 0.35 0.35 907 
5.3.3 2040.06 1933.89 4591584 5,3,3 753.7 729.41 1470836 
5’4’2 0.46 0.43 668 5,4,2 0.24 0.22 515 
5’4,3 6047.96 5781.57 10227177 5,4,3 663.91 640.01 1279663 
6’2’2 0.38 0.36 675 6,2,2 0.4 0.39 780 
6’2’3 358.52 342 638346 6,2,3 293.34 281.06 487356 
6’3’2 15.81 15.57 29342 6,3,2 10.6 10.42 23745 
6’4’2 50.63 49.45 66416 6,4,2 28.49 28.06 57479 
6’5’2 12.41 12.4 10685 5,5,2 4.76 4.53 7030 
7’2，2 3.2 3.11 5287 7,2,2 3.27 3.19 5964 
7’3,2 814.24 794.29 1258840 7,3,2 488.93 486.3 935808 
7,4’2 11866.9 11792 12721242 7,42 则 謹 4977.8 8439295 

10022.6 9901.37 6897490 752 肌 權 4006.03 5388120 

7’6’2 447.31 441.85 215155 n4.94 114.04 117608 
Speedup 1.04(0.03) 1(0) 16 K � , 一 ^ „ � � ，� -4 

^ ； ^J Speedup 1.03(0.02) 1 0 14 
� Search by X切 (b) Search by 

Table 7.29: Result for set-bool channeling between models G叫 and G^ of the 
Social Golfer Problem 
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instance iff glo Fails r—： ； ——— 
instance iff glo Fails 

8 periods 6.14 4.83 15107 g periods10470.5 8829.29 22182175 
10 periods 0.24 0.19 328 10 periods 34030.6 30523.5 66673689 
12 periods 7.82 6.38 7092 12 periods 71.74 64.35 43347 
Speedup 1.25(0.03) 1(0) 2 Speedup 1.14(0.04) 1(0) 3 

(a) Search by � Search by X. 

Table 7.30: Result for set-bool channeling between models Bp and Bz of the 
Balanced Academic Curriculum Problem 

n iff glo Fails n ^ ^ F a i l s 

7 0.02 0.01 63 7 0.01 0.01 63 

9 3.45 3.09 15711 9 4.14 3.3 15711 

10 164.01 147.8 544085 10 198.2 157.78 544085 

Speedup 1.11(0) 1(0) 2 Speedup 1.26(0) 1(0) 2 “ 

(a) Search by (b) Search by 

Table 7.31: Result for set-bool channeling between models Sn and Sz of the 
Steiner Triple Systems 

instance iff glo F^iiT] instance iff glo 11 F a i l s � 

7 m 0 I T " 7 0.01 0.01 9 

9 5.39 4.87 15176 9 1.55 1.39 3786 
10 154.21 138.15 375223 10 91.93 82.82 179583 

Speedup 1.11(0.01) 1(0) 2 Speedup | 1.11(0) 1(0) 
(a) Search by Xp (b) Search by X , 

Table 7.32: Result for set-bool channeling between models Sp and S: of the 
Steiner Triple Systems 
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Related Work 

In this chapter, we give an overview of related work on channeling constraints. 

This chapter is separated into four sections: empirical studies, theoretical stud-

ies, applications, and other kinds of channeling constraints. 

8.1 Empirical Studies 

Cheng et al. [CCLW99] propose the concept of redundant modeling, which 

uses channeling constraint to combine multiply models of the same problem. 

They suggest guidelines and give examples on how to create models, and how 

to combine them by channeling constraints, and in various forms of channeling 

constraints. They give two cases studies, which are the n-queens problem and 
the nurse staff rostering problem. They use the n-queens problem to show, 

in detail steps, how the combined model causes extra domain reduction. The 

nurse staff rostering problem is a real-life problem. The combined models show 

significant speedup against the individual (single) models. 

Smith [SmiOO, SmiOl] studies redundant modeling on the n-queens problem, 

the Langford's problem, and the social golfer problem. She points out several 

important issues. First, the iff constraints for int-int channeling can sub-

sume the pairwise disequalities in the models, but not the global all-different 
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constraints. Second, she proposes the concept of minimal combined model, 

in which some constraints in the combined model can be removed without 

affecting the search space. For example, the pairwise disequalities in the com-

bined model by int-int channeling can be removed. Third, she suggests to 

re-implement the iff more efficiently in general, which is realized in the thesis. 

8.2 Theoretical Studies 

Walsh et al. [WalOl, HW02, HSW04] perform an extensive study on applying 

redundant modeling on permutation problems and injection problems. In other 

words, their study is related to int-int channeling. They define the concept of 

constraint tightness, which we use in our theoretical analysis, for comparing 

the power of domain reduction between different models of the same problem. 

There are two differences between their comparison and our comparison on 

int-int channeling. They focus on the channeling constraint in the form of 

iff, while we also study the form of ele and glo. On the other hand, they 

look at different local consistencies, arc consistency (AC), forward checking 

(FC), bounds consistency (BC), path consistency (PC), strong path consis-

tency (ACPC), path inverse consistency (PIC), restricted path consistency 

(RPC), and singleton arc consistency (SAC). W e study A C and G A C for inte-

ger (or Boolean) variables, set bounds consistency (SBC) for set variables, and 

hybrid consistent (HC) for mixed of integer and set variables. 

Choi et al. [CL02, CLS06] do much further work on the idea of mini-

mal combined model [SmiOl]. They perform theoretical study on when some 

constraints are propagation redundant, which means redundant in terms of 

domain reduction, with respect to other constraints in the combined model. 

Their results are applicable to any combined model that is combined by the 

five kinds of channeling constraint. There are three main differences between 
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their work and our work on channeling. First, their study involves identifying 

propagation redundant constraints caused by two different reasons. A con-

straint can be made progagation redundant by (a) the channeling constraints 

and/or (b) constraints in another submodel via channeling constraints. W e 

focus on identifying propagation redundant constraint caused by channeling 

constraints only. Second, their study is based on the channeling form of iff 

only, while we also study the form of ele and glo. Third, their study points out 

that set-int channeling can subsume the all-pair null intersection constraints 

(Vi • j, Si n Sj. = {}). W e further point out that set-int channeling constraint 

can subsume the partition constraint. 

8.3 Applications 

Flener et al. [FFH+02a] identify row and column symmetries in 2-dimensional 

matrix models [FFH+01, FFH+02a]. They are variable symmetries, and can 

be broken by adding lexicographical ordering constraints [CB02a, CB02b, 

FHK+02]. One of their studies proposes to break value symmetries using 

Boolean model and channeling constraints. Given an n dimension matrix 

model, breaking its value symmetries can be done by breaking the correspond-

ing variable symmetries in its n + 1 dimensional Boolean matrix model, and 

combining them together with int-bool channeling or set-bool channeling. 

Law and Lee [Law05, LL06] proposed two methods of using symmetry 

breaking constraints to break value symmetries in CSP. One of them uses 

multiple viewpoints and channeling constraints. Given a model M which is 

a triple {X, D, C), where X is the variables, D is the domains, and C is 

the constraints. W e say that a viewpoint V is the pair of (X, D). Thus the 

model M can also be expressed as the pair {V, C). Given two viewpoints 

Vi and V2 of a problem, Law and Lee prove when a value symmetry in Vi 
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corresponds to a variable symmetry in V2 and vice versa. Moreover, they 

establish theorems to identify when variable symmetry breaking constraints 

in both Vi and V2 connected by channeling constraints are consistent. Their 

theorems are applicable to the five kinds of channeling constraints. 

Law and Lee [LL02, Law02] present a method to generate a new model 

from an existing model through channeling constraints The process is called 

model induction. Hernandez and Prisch [HF05] present how to generate chan-

neling constraints automatically. Specifically, they use an automatic modeling 

tool, Conjure [FJHM05]，to generate CSP models from problem specifications 

automatically. They target on generating channeling constraints between the 

generated models by Conjure, so that it is possible to produce new combined 

models with possibly more constraint propagation. 

Many permutation problems, such as Quasigroups, Golomb Rulers, and 

Magic Squares in CSPLIB [GW99], can be solved more efficiently by channel-

ing their own integer models [WalOl, HW02, DdVC03b, DdVCOSa]. Hnich et 

al. [HPS05] study a problem called t-covering array problem, show that the 

problem can be solved efficiently by combining its Boolean model and inte-

ger model together by int-bool channeling, and breaking the row and column 

symmetries in the Boolean model. 

8.4 Other Kinds of Channeling Constraints 

Smith [SmiOl] proposes a kind of channeling constraint which is for pair-based 

models. Here, we refer to her example on the social golfers problem for ex-

planation. In Model Gq = {Xg, Dx^^Cx^), each variable qi、j € Xg (integer 

variable) represents the week which golfer i and golfer j play in the same 

group = n X n). Thus Dg. . 二 {l,.. represents the possible weeks. 
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In Model Gh = {Xh, each variable Hij G Xh (set variable) rep-

resents the set of golfers play with golfer i in week j {\XH\ = n X W). Thus 

PS{Hij) = {1,…，n} represents the possible golfer numbers. W e can combine 

Gq with GH by: 

qij = Hi、k = Hj、k ^Qij e Xg,Vk e Dq,. 

and 

Qij + k 令 Hi^k n Hj�k = { } Vqij e Xq,\fk G D,, . 

Flener et al. [FFH+02b] propose another two kinds of channeling con-

straints. The first one is relating integer variables and Boolean variables. 

Suppose X is a set of integer variables and y is a set of Boolean variables. 

They can be channeled by: 

= Vj = 1 Vxi G X,\/yj e Y 

This channeling is for indicating whether there exists any variable, say Xi, is 

assigned with a value, say j. Result is stored at variable yj. The second one 

is relating Boolean variables and Boolean variables. Suppose X is a set of 

Boolean variables, and y is a Boolean variable. They can be channeled by: 

Xi = I y = I \/Xi £ X 

This channeling is for indicating whether there exists any variable, say cc“ is 

assigned with value 1. Result is stored at variable y. These two kinds of 

channeling constraint are not for redundant modeling. They are just for trans-

forming some information from a set of variables to another set of variables. 



Chapter 9 

Concluding Remarks 

W e conclude the thesis in this chapter by summarizing our contributions and 

giving possible directions for future research. 

9.1 Contributions 

The thesis gives a comprehensive treatise in comparing the constraint tight-

ness of various implementations of five common channeling constraints. Table 

9.1 shows a summary for all the important theorems. These results, however, 

must be interpreted with care. First, it may be theoretically nice to maintain 

tighter consistency level to prune more values, but the associated constraint 

propagation algorithms might incur higher costs. For example, our gll im-

plementation, which achieves G A C on int-int channeling constraint, cannot 

outperform our glo implementation, which achieves A C on each constraint in 

iff, although it prunes the most. Second, except for the case of II’ our theo-

retical results suggest that maintaining H C on a global constraint would not 

give more pruning. This should not be understood as an argument against 

global constraint implementations. It is always possible to implement a global 

constraint using a constraint propagation algorithm that maintains a lower 

level of consistency than HC. W e have proposed two efficient propagators for 
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Channeling Form Theorems 

^C{iff}=GAC{ele} 
II GAC{ii}=GAC{'^^iff}=GAC{iffy} 

GAC{ii}>AC{iff} 
近， 

SI HC{si}=HC{Yi^si} 

HC{si}=HC{iff} 
SS SBC{ss}=SBC{iff} 

IB GAC{ib}=GAC{eie}=AC{iff} 

尸 侦，〇} 

^ HC{sb}=HC{ele} = HC{iff} 

Table 9.1: Summary of Theorems 

implementing global channeling constraints. The gElement propagator is for a 

generalized element constraint, which provides "partial" globalization for the 

basic iff implementation. The glo propagator encapsulates all iff constraints 

into one, and achieves H C on iff. Experimental result confirms the efficiency 

of the glo implementation with speedups ranging from 1.0 to 3.61. While the 

gElement propagator is less efficient than the glo propagator, the gElement 

propagator has a speedup ranging from 1.1 to 1.4 over ILOG Solver's element 

constraint. Moreover, the glo implementation is on par with ILOG Solver's 

state of the art Ilclnverse. Note that Ilclnverse is specially designed for II 

channeling, while glo is a generic propagator for all five channeling constraints. 
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9.2 Future Work 

First, in term of breath, there exists other kinds of channeling constraint, other 

than the five common channeling constraints we studied. For example, pair-

based models needs a special form of channeling constraints, which is proposed 

by Smith [SmiOl]. Thus, a more general channeling constraint framework can 

be achieved. 

Second, in term of depth, more consistency level can be studied. For ex-

ample, it is possible to incorporate cardinality reasoning on the channeling 

constraints involving set variables. Another example is about bounds consis-

tency [MS98] on constraints with integer variables. Again, in this way, a more 

general channeling constraint framework can be achieved. 

Third, it is interesting to study if we can optimize gll implementation fur-

ther, so that it can outperform glo implementation under the int-int channeling 

situation. 
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