
Realizations of Common Channeling
Constraints in Constraint Satisfaction: Theory

and Algorithms

LAM Yee Gordon

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Philosophy

in

Computer Science and Engineering

©The Chinese University of Hong Kong

July 2006

The Chinese University of Hong Kong holds the copyright of this thesis.

Any person(s) intending to use a part or the whole of the materials in this

thesis in a proposed publication must seek copyright release from the Dean of

the Graduate School.

/ y 統 系 你

17 1

f

Abstract

Constraint satisfaction has found successes in many walks of industrial applica-

tions and computer science, such as scheduling, resource allocation, transport

routing, type checking, diagram layout, among others. Typically, a problem is

first modeled as a constraint satisfaction problem (CSP)，which is then sub-

ject to a solver based on tree search augmented with constraint propagation

algorithms.

There are usually more than one way of formulating a problem as a CSP.

Channeling constraints connect and combine multiple constraint satisfaction

models of the same problem to allow constraint propagation information to

flow among the combined models. We identify five common channeling con-

straints used in the literature for connecting between integer, set, and Boolean

models, and study how best to realize these channeling constraints in con-

straint programming systems. While the semantics of these constraints is

simple, their implementations can take on various forms using the primitive

constraints provided in existing solvers, such as the i f f and the element con-

straints, thus entailing possibly different pruning behavior. There is also the

possibility of global constraint implementations which enforce generalized arc

consistency using specialized propagation algorithms. The thesis (1) compares

the constraint propagation strengths of the different realizations of each of

the five channeling constraints, which give us useful insights on proposing the

ii

best implementations of the five channeling constraints; (2) propose generic

propagation algorithms for three global constraints specialized for implement-

ing channeling. Experimentation on an extensive set of benchmark problems

confirms that our proposed algorithms are in general the most efficient among

all implementation possibilities.

iii

摘要

很多工業應用和電腦科學問題，例如日程安排和工作調度、資源分配、運輸

路由、類型檢查、圖佈局等，在建模為約束滿足問題後都能成功被解決。一

般而言，問題首先被建模為約束滿足問題，之後以樹形搜索和限制傳播算法

為基礎的解難程式來解決。

通常，每一個應用問題都可以建模為多個約束滿足問題。我們可透過雙

導向約束來連接和結合同一個應用問題的多個約束滿足問題模型，從而加强

約束傳播的資訊流動。我們首先認辨五種連接整數模型，集合模型，和布爾

模型的雙導向約束，之後研究怎樣才能讓雙導向約束在約束編規劃系統中

得到最佳的實現。儘管雙導向約束的語義簡單，但一般情況下都存在多種

形式的編寫方法。假如使用約束規劃系統中預設的當且僅當約束和元素約

束等，就可能導致不同的樹形搜索修剪。又如，我們可編寫全局雙導向約

束，再以特殊的傳播算法强制執行以達到廣義弧形一致性。在本論文中，我

們探討編寫各種雙導向約束的以不同形式，比較它們在約束傳播過程中的强

度，從而洞悉實際中最佳的實施方案；第二,我們設計了三種專為全局雙導

向約束的實現算法。通過廣泛的實驗，我們證實了方案算法的可行性和高效

率 0

iv

Acknowledgments

I would like to thank my supervisor, Prof. Jimmy Lee, who brought me to the

research area of constraint programming in 2001. Jimmy has always been a

responsible supervisor and is very experienced in doing research. He is always

energetic at any time. I would never forget our overnight work before paper

submission deadlines. Although the results are not always rewarding.

I would also like to thank my examiners Professors Mark Wallace, Ho

Fung Leung, and Philip Leong. Their constructive comments help improve

the quality of the thesis a lot.

The atmosphere of our research group would not be so lively without fellow

groupmates Jeff Choi, Spencer Fung, Yat Chiu Law, Clotho Tsang, Charles

Sill, and May Woo. Our discussions always improved the quality of our re-

search. Especially thanks Jeff, Spencer and Chiu give me many useful advices.

During the last two years study, I join three companies: PriarTuck (NUS,

Singapore), Vocational Training Council (WanChi, Hong Kong), and Microsoft

(STB, Shanghai). Each of them widens my horizon a lot both in terms of

research, communication skills, personal growth industrial experience, and dif-

ferent culture. I am very grateful to all workmates their warm hospitality and

support towards me.

Finally, I must give my best wishes to my parents and my girl friend Edith

Ngai. You are always supporting me wholeheartedly throughout my four year

X

studies.

• ••. ‘'. •

：‘；•• .

• ‘ ‘ • •

：- 、—.

. . . • .
‘ ‘ • . . . -

• ' � “

. • ‘ ‘
• . .

. • . ‘ . •

• • • .

vi

• •‘

, • _ ,
• S •

• . ，

Contents

1 Introduction 1

1.1 Constraint Satisfaction Problems 1

1.2 Motivations and Goals 2

1.3 Outline of the Thesis 4

2 Background 5

2.1 CSP 5

2.2 Classes of Variable 6

2.3 Solution of a CSP 7

2.4 Constraint Solving Techniques 8

2.4.1 Local Consistencies 8

2.4.2 Constraint Tightness 10

2.4.3 Tree Search 10

2.5 Graph 14

3 Common Channeling Constraints 16

3.1 Models 16

3.2 Channeling Constraints 17

3.2.1 Int-Int Channeling Constraint (II) 18

3.2.2 Set-Int Channeling Constraint (SI) 21

3.2.3 Set-Set Channeling Constraint (SS) 24

vii

3.2.4 Int-Bool Channeling Constraint (IB) 25

3.2.5 Set-Bool Channeling Constraint (SB) 27

3.2.6 Discussions 29

4 Realization in Existing Solvers 31

4.1 Implementation by if-and-only-if constraint 32

4.1.1 Realization of iff in CHIP, ECLiPSe, and SICStus Prolog 32

4.1.2 Realization of iff in Oz and ILOG Solver 32

4.2 Implementations by Element Constraint 38

4.2.1 Realization of ele in CHIP, ECLiPSe, and SICStus Prolog 40

4.2.2 Realization of ele in Oz and ILOG Solver 40

4.3 Global Constraint Implementations 41

4.3.1 Realization of glo in CHIP, SICStus Prolog, and ILOG

Solver 42

5 Consistency Levels 43

5.1 Int-Int Channeling (II) 44

5.2 Set-Int Channeling (SI) 49

5.3 Set-Set Channeling Constraints (SS) 53

5.4 Int-Bool Channeling (IB) 55

5.5 Set-Bool Channeling (SB) 57

5.6 Discussion 59

6 Algorithms and Implementation 61

6.1 Source of Inefficiency 62

6.2 Generalized Element Constraint Propagators 63

6.3 Global Channeling Constraint 66

6.3.1 Generalization of Existing Global Channeling Constraints 66

6.3.2 Maintaining GAG on Int-Int Channeling Constraint . . . 68

viii

7 Experiments 72

7.1 Int-Int Channeling Constraint 73

7.1.1 Efficient AC implementations 74

7.1.2 GAC Implementations 75

7.2 Set-Int Channeling Constraint 83

7.3 Set-Set Channeling Constraint 89

7.4 Int-Bool Channeling Constraint 89

7.5 Set-Bool Channeling Constraint 91

7.6 Discussion 93

8 Related Work 101

8.1 Empirical Studies 101

8.2 Theoretical Studies 102

8.3 Applications 103

8.4 Other Kinds of Channeling Constraints 104

9 Concluding Remarks 106

9.1 Contributions 106

9.2 Future Work 108

Bibliography 109

ix

List of Figures

2.1 A solution of (3(4) 7

2.2 A propagator-based search tree for solving Q(4) 12

2.3 Examples of four graph definitions 14

3.1 Four equivalent solutions of G(3，2’ 3) in models Gg, Gp, G^ and

Gz respectively 21

3.2 A solution of B{2,4,3’ 6’ 1,3，{2，3，3’ 4}，{�2，1�}) 23

3.3 Mapping of common integer constraints to Boolean constraints

in our introduced models 25

3.4 Mapping of common set constraints to Boolean constraints in

our introduced models 28

4.1 Realization of model Qr (or Qc) by solver SICStus Prolog 33

4.2 Realization of model Qr (or Qc) by solver ECLiPSe or CHIP . 33

4.3 Clauses generateDiagI and generateDiag2 in Figure 4.1，4.2 . . . 34

4.4 Realization of channeling model Qr and Qc by CHIP, ECLiPSe,

and SICStus Prolog 34

4.5 Realization of channeling model Qr and Qc by solver Oz 35

4.6 Realization of channeling model Qr and Qc by ILOG Solver . . 36

4.7 Realization of iff, for channeling models Qr and Qc in Figure

4.4, which is applicable to CHIP, ECLiPSe, and SICStus Prolog 37

X

4.8 Implemented in Oz, iff for channeling model Qr and Qc in Fig-

ure 4.5 38

4.9 Implemented in ILOG Solver, iff for channeling model Qr and

Qc in Figure 4.6 38

4.10 Code for generating ele for channeling models Qr and Qc in

Figure 4.4 40

4.11 Code for generating ele for channeling models Qr and Qc in

Figure 4.5 41

4.12 Code for generating ele for channeling models Qr and Qc in

Figure 4.6 41

6.1 The Propagator for gElement of the form Xy = v oi v e Xy . . . 64

6.2 The glo Propagator 67

6.3 Perfect Matching 69

xi

List of Tables

4.1 Two ways of implementing channeling constraints 31

6.1 Big O Order of Propagator Invocations 63

7.1 Result for int-int channeling between models Qc and Qr of the

TV-Queens Problem 75

7.2 Result for int-int channeling between models Ln and Lp of the

Langford's Problem 76

7.3 Result for int-int channeling between models Ln and Lp of the

Langford's Problem 77

7.4 Result for int-int channeling between models An and Ap of the

All Interval Series Problem 78

7.5 Result for int-int channeling between models An and Ap of the

All Interval Series Problem 78

7.6 Result for int-int channeling between models Qc and Qr of the

TV-Queens Problem 79

7.7 Result for int-int channeling between models Ln and Lp of the

Langford's Problem 80

7.8 Result for int-int channeling between models Ln and Lp of the

Langford's Problem 81

xii

7.9 Result for int-int channeling between models A„ and Ap of the

All Interval Series Problem 82

7.10 Result for int-int channeling between models An and Ap of the

All Interval Series Problem 82

7.11 Result for set-int channeling between models Gp and Gg of the

Social Golfer Problem 84

7.12 Result for set-int channeling between models Gp and Gg of the

Social Golfer Problem 85

7.13 Result for set-int channeling between models G ^ and Gg of the

Social Golfer Problem 86

7.14 Result for set-int channeling between models Gyj and Gg of the

Social Golfer Problem 87

7.15 Result for set-int channeling between models Bp and Be of the

Balanced Academic Curriculum Problem 88

7.16 Result for set-int channeling between models Bp and Be of the

Balanced Academic Curriculum Problem 88

7.17 Result for set-set channeling between models Gp and G^ of the

Social Golfer Problem 89

7.18 Result for set-set channeling between models Gp and G ^ of the

Social Golfer Problem 90

7.19 Result for set-set channeling between models 8 „ and Sp of the

Steiner Triple Systems 90

7.20 Result for set-set channeling between models Sn and Sp of the

Steiner Triple Systems 92

7.21 Result for int-bool channeling between models Qc and Q: of the

TV-Queens Problem 92

xiii

7.22 Result for int-bool channeling between models and Lz of the

Langford's Problem 93

7.23 Result for int-bool channeling between models Lp and L^ of the

Langford's Problem 94

7.24 Result for int-bool channeling between models An and Az of the

All Interval Series Problem 95

7.25 Result for int-bool channeling between models Ap and Az of the

All Interval Series Problem 96

7.26 Result for int-bool channeling between models Gg and Gz of the

Social Golfer Problem 97

7.27 Result for int-bool channeling between models Be and B^ of the

Balanced Academic Curriculum Problem 97

7.28 Result for set-bool channeling between models Gp and Gz of the

Social Golfer Problem 98

7.29 Result for set-bool channeling between models G^ and Gz of

the Social Golfer Problem 99

7.30 Result for set-bool channeling between models Bp and B^ of the

Balanced Academic Curriculum Problem 100

7.31 Result for set-bool channeling between models Sn and Sz of the

Steiner Triple Systems 100

7.32 Result for set-bool channeling between models Sp and Sz of the

Steiner Triple Systems 100

9.1 Summary of Theorems 107

xiv

• • '. ” ： - /

. ‘ . .
• • - • ‘ ‘

•. •

. .

. . ^.. - . •

•‘ •

‘...，...
• •-；

‘ ‘ • ,

-. •

. ‘ •

XV

‘ • . .

Chapter 1

Introduction

Many real-life problems, such as scheduling [DSvH88]，design and configuration

PS98]，packing and partitioning [Hen92], combinatorial mathematics [SSW99],

games and puzzles [Smi02] can be modeled as finite domain constraint satisfac-

tion problems (CSPs) [Mac77]. The thesis reports work on a kind of constraint,

channeling constraint, which is an important line of research in the constraint

community, especially in redundant modeling [CCLW99]. This chapter first

gives a brief introduction on constraint satisfaction problems (CSPs) and an

overview of constraint solving techniques. We then introduce the concept of

redundant modeling and channeling constraints, and discuss the motivations

of our research. We also give an overview of the dissertation.

1.1 Constraint Satisfaction Problems

Constraint satisfaction problems (CSPs) can be defined, in the sense of Mack-

worth [Mac77]’ as follows:

We are given a finite set of variables, a finite domain of possible

values for each variable, and a conjunction of constraints. Each

constraint is a relation defined over a subset of the variables, limit-

ing the combination of values that the variables in this subset can

1

Chapter 1 Introduction 2

take. The goal is to find a consistent assignment of values from the

domains to the variables so that all the constraints are satisfied

simultaneously.

Solving CSPs is NP-complete [CLRSOl] in general. Thus, a general solv-

ing algorithm for solving CSPs is bound to require exponential time in the

worst case. A common way to solve CSPs is by backtracking tree search

GB65, Gas77, DP87, Nad89] incorporated with local consistency algorithms

Mon74, Mac77, MM88, Ger95, Ger97]. Backtracking tree search systemati-

cally explores the search space of a CSP by trying each value from the domain

of each variable, and backtracking if there are any constraint violations. Local

consistencies are properties, which are local to individual constraints, speci-

fying conditions on checking whether the domains of their constrained vari-

ables are possible to be extended to a solution. Examples include node and

arc consistencies [Mon74, Mac77], bounds consistency [MS98], generalized arc

consistency [MM88]，and set bounds consistency [Ger95, Ger97]. Local consis-

tency algorithms enforce these properties, which cause reduction on variable

domains. During backtracking tree search, removing a value from a variable do-

main means pruning a whole search sub-tree. Therefore, removing non-fruitful

domain values effectively helps reducing the search space. Some common com-

mercial CSP solvers such as COSYTEC CHIP [COSOl], ECLiPSe [ECL05],

ILOG Solver [IL099], the CLPFD library of SICStus Prolog [SIC05], and Oz

Moz04] are based on these constraint satisfaction techniques.

1.2 Motivations and Goals

There are usually more than one way of formulating a problem into a con-

straint satisfaction problem (CSP). A useful modeling technique, redundant

Chapter 1 Introduction 3

modeling [CCLW99], is to combine multiple models of the same problem us-

ing channeling constraints [CCLW99], which allow pruning information to flow

among the sub-models to induce possibly further domain reduction. Various

studies [FFH+02a，SmiOl, LL06, HSW04] have been conducted on this topic,

but different authors assume different implementations of the channeling con-

straints and some even do not specify how the constraints are implemented,

making it difficult to compare the studies. In addition, little attention is paid

. t o studying the best realizations of channeling constraints in existing solvers.

Channeling constraints are also constraints, and are subjected to the same

treatment as other constraints in any tree search based solver augmented

with local consistency algorithms. Different realizations of the channeling

constraints using different underlying primitive constraints or a global con-

straint implementation on a certain consistency level all might entail different

pruning behavior. In the thesis, we identify five common channeling con-

straints for connecting integer, set, and Boolean models, and enumerate how

these constraints can be realized in existing solvers. We compare the con-

straint propagation strengths of the various realizations of each channeling

constraint. We study also when and how the channeling constraint imple-

mentations can subsume some of the characteristic constraints resulting from

certain model combinations. Results from this study give us useful insights

and suggest the design of an efficient propagation algorithm suitable for im-

plementing global constraints for all five channeling constraints, which is based

on the notion of propagators. We propose (a) a propagation algorithm for a

generalized element constraint for both integer and set variables specialized

for implementing channeling constraints, and (b) a generic propagation algo-

rithm for global constraint implementation of the five channeling constraints.

Experimentations on an extensive set of benchmarks confirm the feasibility

Chapter 1 Introduction 4

and efficiency of our proposed algorithms.

1.3 Outline of the Thesis

The rest of the thesis is organized as follows. Chapter 2 provides the back-

ground to the thesis. We formally define the concept of CSP, classes of variables

and solutions of a CSP. We then briefly describe some CSP solving algorithms

including systematic and local search solvers. In particular, we present the

concept of constraint tightness [WalOl, HSW04], which is a measurement on

the strength of domain reduction of constraints; and how consistency tech-

niques can be incorporated into backtracking tree search to increase solving

efficiency. Moreover, some basic graph theories are presented, which are neces-

sary for our algorithms. Chapter 3 formally defines the concept of channeling

constraints and redundant modeling. Specifically, we categorize five common

types of channeling constraints, and give examples on each of them. Chapter 4

discusses the common implementation techniques of channeling constraints in

existing solvers: CHIP [COSOl], ECLiPSe [ECL05]，SICStus Prolog [SIC05],

Oz [M O Z 0 4] , and ILOG Solver [IL099]. Chapter 5 compares the constraint

tightness of each type of channeling constraints among different implementa-

tions. We study also how the channeling constraints interact with the char-

acteristic constraints arising from the particular model combinations. Chap-

ter 6 presents our algorithms and implementations on channeling constraints.

Moreover, we analyze the inefficiency of some existing channeling constraint

implementations. Chapter 7 presents experimental results using our proposals.

Chapter 8 presents a brief review of the related work in channeling constraints.

We conclude the thesis in Chapter 9 by summarizing our contributions and

giving possible directions for future research.

Chapter 2

Background

This chapter provides background to the thesis. We first give various defi-

nitions related to CSPs. Then we present constraint solving techniques for

solving CSPs, which include a brief overview of systematic search and local

search. In addition, we introduce the concept of constraint tightness which are

used for comparing different consistency levels on constraints. Last but not

least, we give some definitions on graph theory which is important for later

chapters.

2.1 CSP

A constraint satisfaction problem (CSP) is a triple (X, D, C), where X =

{a；!,... Xn} is a set of variables, D = {Dx^,... D^^} is the set of domains

for each variable containing the possible values for the variable, and C =

{c i ,…Cm} is a set of constraints. Each constraint c G C is a relation over a

subset XcQ X oi variables, specifying the allowed combinations of values that

Xc can take.

Example 2.1. The n-queens problem

The n-queens problem (Q(n)) is to place n queens on an n x n chessboard,

such that no two queens are in the same row, column, and diagonal. We

5

Chapter 2 Background 6

formulate it as Qr = (JKr, Dxr,Cxr) [SmiOl, CLS06], where each variable n G

Xr represents the row position of the queen in column i (|Xr| = n) with

•CVi = {1，...，n}. Cxr contains constraints that ensure each variable 7\ G Xr

must be (i) in different columns, r̂ ^ r^, VI < z < j < n; (ii) in different

d i a g o n a l s , � � + i — r). + j and Vi — i ^ Vj — j , VI < z < j < n. Since each

column must have a queen, values assigned to Xr must be a permutation of

1 ’ • ••，Tl/ •

2.2 Classes of Variable

There are three common classes of variables, namely integer variables, Boolean

variables, and integer set variables, depending on the types of values in the

variables' domains. The domain of an integer variable [MS98, IL099] is a set

of integers. A Boolean variable a; is a special case of an integer variable, where

Dx = {0 ,1 } . The domain of an integer set variable (or simply set variable)

Ger94, Ger97, IL099] is a set of integer sets.

The domain of a set variable x can be huge. When x ranges over all subsets

of n possible values, = Thus, for ease of manipulation, one of the

most common ways for representing the domain of a set variable x is by two

sets, namely the required set and the possible set. The required set RS{x) (or

sometimes called greatest lower bound) of x contains all values that must belong

to X, while the possible set PS{x) (or sometimes called least upper bound) of x

contains all values that can belong to x. Thus, RS(x) C PS{x). The domain

Dx of a set variable x is defined as Da； = {s | RS{x) C s C PS{x)}. Note that

RS{x) = f]Dx and PS{x) = U Ac. A variable x is fixed to a value a if and

only if Dx = {a } , i.e. there is only one value left in Dx. If x is a set variable,

then it is the situation when PS{x) = RS{x).

Chapter 2 Background 7

ri r2 n u 1 2 3 4
1 I Q I I ci I Q I I 一

2 ^ C2 Q
3 ~Q C3 ~Q
4 一 I Q I ~ ~ C4 I Q I —
(a) for model Qr (b) for model Qc

Figure 2.1: A solution of Q(4)

2.3 Solution of a CSP

By X I—)• a, we denote an assignment of value a e Dx to the variable x. A

complete assignment for a set of variables X is a set of assignments, one for

each variable in X. A solution for a CSP {X, D, C) is a complete assignment

for X satisfying all constraints in C.

Example 2.2. The n-queens problem

A solution s = {ri 3, r2 h 1，厂3 h 4’厂4 h 2} of Q(4) for model Qr is

shown in Figure 2.1(a). •

An assignment re i-> a for a variable x can be extended to a solution of a

CSP if and only if there exists a solution s such that (a; i-^ a) G s.

Example 2.3. Suppose c is Xi — X2, and D^^ = {1,2}, Dx^ = {2}. Then

Xi t—> 1 can be extended to a solution of c, but Xi i—̂ 2 cannot, since the only

solution of c is i-^ 1,0；2 ‘―̂ 2}. •

When an integer (or Boolean) variable x is fixed to a value a, x is assigned

with a automatically. Similarly, a set variable x is assigned with RS[x) (or

PS{x)) if X is fixed.

Chapter 2 Background 8

2.4 Constraint Solving Techniques

In general, CSPs are NP-complete [CLRSOl]. Solving CSPs requires exponen-

tial time in terms of problem size in the worst case. There are two general

classes of algorithms for solving CSPs. The first is systemic search, which

explores the tree of possible assignments systematically. This can guarantee

to find a solution (if it exists), or prove that no solution can be found. Thus

systemic search is sound and complete. A widely used algorithm in this class

is backtracking tree search [GB65, Gas77, DP87, Nad89], and it usually works

with consistency techniques [Mon74, Mac77, MM88, Ger95, Ger97], which are

used to remove infeasible values from variable domains so as to reduce tree

size.

Another class of algorithm is stochastic local search [SLM92, DTWZ94,

CLSOO, ZWOO], which explores the search space of complete assignments in

heuristic manner. In general this may not find a solution even one exists, or

prove that the problem has no solutions. Thus local search is incomplete. How-

ever, local search algorithms have been demonstrated to perform efficiently on

solving some large-scale and difficult CSPs [SLM92, DTWZ94, CLSOO, ZWOO:

when compared with algorithms based on backtracking tree search.

Our work focuses on systematic search. In the following, we describe no-

tions and algorithms related to consistenc), techniques, and explain how these

techniques can be incorporated into backtracking tree search.

2.4.1 Local Consistencies

There are different levels of local consistency of a constraint. In this thesis,

we focus on a few common consistency levels. A constraint c is generalized

arc consistent (GAC) [MM88] if and only if Va; G Xc^a G D工,工 a can

be extended to a solution of c. A constraint c is arc consistent (AC) [Mon74,

Chapter 2 Background 9

Mac77] if and only if it is GAC and it is binary (|；5(：。|二2). A constraint c is set

bounds consistent (SBC) [Ger95, Ger97] if and only if Vir G Xc, RS[x) 二 f j S

and PS(x) = (J'S', where == {ci | a e D̂； and x a can be extended to

a solution of c}. A constraint c is hybrid consistent (HC) [BHBHW05] if and

only if for each integer variable x G Xc, Va G D^^ x ^ a can be extended to a

solution of c, and for each set variable y G Xc，RS(j/) = Q 5 and PS{y) 二 IJ "̂，

where S = {a \ a E Dy and y ^ a can be extended to a solution of c}.

Typically AC and GAC are maintained for constraints containing integer

(and Boolean) variables, while SBC is for constraints containing set variables

only.

Example 2.4. Suppose constraint c is Xi < X2, and D î = {2,3,6}, Dx:=

{1,4，5}. The constraint c is not AC.

Both 6 € Aci (no value is > 6 in and 1 G D^̂ (no value is < 1 in Dx,)

cannot be extended to any solution of c. If D^̂ = {2,3} and D^̂ = {4,5} ,

then c is AC. •

Example 2.5. Suppose constraint c is Xi + X2 =工3，and D^^ = D^z 二 {1 ’2 } ,

Dx3 = {1 ,2 ,3 ,4 ,5} . The constraint c is not GAC.

Both 1 and 5 in D^^ cannot be extended to any solution of c. If D^̂ 二

{2 ,3 ,4} , then c is GAC. •

Example 2.6. Suppose constraint c is Xi A 0:2 二 { } , and PS{xi)==尸5*(2：2)=

{1 ,2 ,3} , and RS{xi) = {2}, RSix2) = {1} . The constraint c is not SBC,

Both 1 G and 2 G PS{x2) are not in any solution of c. If PS{xi)=

{2 ,3} and PS{x2) = {1,3} , then c is SBC. •

By maintaining local consistency for each constraint, infeasible values are

removed from variables' domains.

Chapter 2 Background 10

2.4.2 Constraint Tightness

Constraint tightness [WalOl, HSW04] is a kind of measurement on the strength

of domain reduction of constraints with respect to different local consistencies,

and we will use it for our comparing different constraint implementations.

Given two sets of constraints A and B, which are defined over a same set of

variables and set of domains, ^-consistency on A is at least as tight as 少-

consistency on B (written ^a ^ 屯b) if and only if, if all constraints in A are

少-consistent, then all constraints in B are ^-consistent, ^-consistency on A

is strictly tighter then 屯-consistency on B (written > 屯5) if and only if,

少A > 少B but not 屯 B ^ ^A- <l>-consistency on A is as tight as ^-consistency

on B (written ^a = if and only if, ^ a ^ "^b and 屯 b ^ ^a-

Example 2.7. Given a set of integer variables X = {a；!,..., and we want

each of them to take a distinct value. We can either impose n{n—l)/2 pairwise

disequalities i.e. xi + Xj, for 1 < i < j < n; or use a global all-different

constraint V [Reg94] on X. We have GAC{\/}>AC{^y

GAC{y} is trivially . Here, we give an example which is A C � but

not GAC{y}. Let X = {xi, X2,0:3}, and Dx^ = Dx: = Dx^ = {1,2} . There are

two solutions for each pairwise disequality, while there is no solution for an

all-different constraint. This is but not GAC[\jy •

2.4.3 Tree Search

In this thesis, we assume propagator-based constraint solving, which is a com-

bination of backtracking tree search and constraint propagation. This kind

of search procedure features interleave of domain reduction and variable de-

cisions. By a variable decision x ^ v, we mean assigning v E D^ to x {i.e.

making a; f) if a; is an integer or Boolean variable, and adding v G PS{x)

Chapter 2 Background 11

to RS{x) if rc is a set variable, as well as the situation that x is fixed to a

value V (i.e. Dx = {v}) . By domain reduction x ^ v, we mean removing v

from Dx if x is an integer or Boolean variable, and removing v from

if a; is a set variable. In a propagator-based solver, domain reduction is typi-

cally performed by propagators, each of which is attached to a constraint, for

maintaining the appropriate consistency levels for the particular constraint. A

propagator p is invoked whenever the domain of a variable in the constraint

associated with p is changed, which can in turn prune the domains of other

variables and sparkles a series of chain reaction further invoking other prop-

agator procedures. Such a sequence of domain reduction is called constraint

propagation, which stabilizes when all variable domains remain unchanged.

The tree search procedure backtracks when (a) Ac = { } if a; is an integer or

Boolean variable, or (b) RS{x) g PS(x) if re is a set variable. Search stops or

backtracks on demand when a solution is found.

Example 2.8. Q(4) is solved using propagator-based constraint solving with

natural order for variable decisions. All propagators maintain AC.

Figure 2.2 shows the resulting search tree. By symmetry, our search tree

shows the branches for ri h 1 and ri 2 only. Each chessboard represents

the status of Dxr after an assignment is made (e.g. ri i—> 1).A place in grey

means no queen should be there (corresponding domain's value is reduced),

where light grey means the domain's value is reduced by propagators, and

dark grey means the domain's value is reduced by an assignment. An arrow

means making an assignment. Since we would like to show major intermediate

domain changes making by propagators, we use a dash arrow as an index of

change. Now, we go though Figure 2.2 in detail.

• First, ri 1 invokes propagators involving ri, they are ri + r̂ , r! + t、一

2 + 1 and T\ r̂ + z — 1, V2 < z < 4. Propagators of t\ + r̂ cause Ti 1,

Chapter 2 Background 12

Q I

I : 二 • 二

HI in II r
T V ^ r 丨

” 2 r 2 •-> 4 j
Z \ I

Dr, Dr, Dr, Dr, Dr, Dr, Dr, D^, D^, D^,
4 ， 丨 . t ••»••|».i.n,».w J'.'.'.i.'.'.'.'.i |MWHIMM'.».'.».V.'.',1 ‘~"•-• •

Q ^ B
B n V r i Y i V ••••'•'••••••••• _____ J …L mam i.i.i.i.i.n.i. .i.i.i.i.u.i. ••_••••

J C — Q _
d l 一
� 、 ： I I I q •

|冊删[|丨 ^
I I

fail 丨 I
I I
i I

Dr,Dr,Dr,Dr, A", Am
Q

I ？=二=

ffi K
fail solution

Figure 2.2: A propagator-based search tree for solving Q(4)

Chapter 2 Background 13

and propagators of ri r̂ — z + 1 cause r̂ z, V2 < z < 4. Note that

some invocations do not cause any reduction effect, e.g. r! — r̂ + i — 1，

V2 < z < 4, and the chaining invocations related to the newly domains'

change. This situation always happens in later cases. Therefore, we only

focus on those invocations that cause domain reduction in the following

description.

- T h e n r2 3 invokes propagators of 7̂2 n , r2 ^ — z + 2 and

厂2 + ri + z - 2, for % = 1,3，4. Propagator of r^ + r^ causes

� 4 3，propagator of r-i � 3 + 1 causes rs 2, and propagator of

— 1 causes 7-3 4. Note that Dr^ = { } , and we backtrack

to try the next value for

—Now 7*2 4 invokes the same set of propagators involving T2, Prop-

agator of 广2 —厂3 causes ra 4 and propagator o f � 2 r^ + 2 causes

r4 2. Note that Dr^ = {2 } and Dr^ = {3} , which means that r^

is fixed to 2 a n d � 4 is fixed to 3. These invoke propagators involving

7̂3 and r4. Similarly, once propagator o f � 3 # � 4 一 1 causes rs 2

(or 厂4 3 depending on the order of invocation), we backtrack.

• Another branch starts with ri i—̂ 2, which invokes the same set of prop-

agators involving ri. Propagators of r\ — 7\ cause n 2, V2 < z < 4,

propagators of ri - z + 1 cause r̂ z + l , for z = 2,3, and propagator

of ri ^ r2 + 1 causes 厂2 1. Note that D r � = {4} , which means that T2

is fixed to 4. This invokes propagators involving r� .Similarly, D â = {1 }

and then D^̂ = {3} . We reach a solution. •

Furthermore, by a value v being impossible for x, we mean v ^ D^ if x is

an integer or Boolean variable and v ^ PS{x) is a; is a set variable. By a value

V being decided for x, we mean a; = if re is an integer or Boolean variable

Chapter 2 Background 14

and V e RS{x) if a; is a set variable.

2.5 Graph

(a) a bipartite graph Gb (b) an oriented graph Go

(c) a perfect matching M (d) augmenting cycles Ci and C2

Figure 2.3: Examples of four graph definitions

A graph G = (V, E) consists of a set of vertices V and a set of edges E.

An edge e is a line joining two vertices Vi,Vj G V; a directed edge e = (Vi, Vj) is

an ordered pair from vertex Vi to Vj, and e = {vi .vj} represents an undirected

edge. A directed graph consists of only directed edges, and an oriented graph

is a directed graph having no symmetric pair of directed edges. A bipartite

Chapter 2 Background 15

graph G — (V, E) consists of two disjoint sets X and Y of vertices, where

X U Y = V, and Ve = {vi ,vj} G E, neither Vi,Vj G X nor Vi, Vj e Y. A

matching M on a graph C is a subset of edges of G such that Vê ^ ej G M,

Ci n Cj = { } . A matching contains all vertices in G is called perfect matching.

A simple path on a graph G is a sequence of distinct vertices {vi^.vi^,…

such that {vi^.Vi^},..., are edges of G\ a cycle is a path such that

Vi�= Vî . An augmenting path or cycle is a simple path or cycle whose edges

are alternately in M and E — M, given a graph G = (V, E) and a matching

M.

Example 2.9. Figure 2.3 shows (a) a bipartite graph Gb, (b) an oriented graph

Go, (c) a perfect matching M on G^, and (d) two augmenting cycles C�and

C2 with respect to M and Gb.

(a) A bipartite graph Gf, = (V, E) consists of two disjoint sets of vertices

X = { x i , . . . , X4} and Y = {yl,... ,2/4}, where V = X U Y. Vertices in

X and Y are connected by undirected edges, (b) An oriented graph Go is

constructed from Gb, by giving a direction for each edge in Gb. (c) A perfect

matching M = {{a;i,2/i}, {x2,2/2}, {2:3,2/4}, {2:4,2/3}} is shown as bold edges,

(d) Augmenting cycles Ci = {zi，2/1，工2，2/2’ a :] and C2 = {3^3,2/4,2:4,2/3,3:3} are

shown as dash edges. Note that the bold dash edges are M. B

Chapter 3

Common Channeling

Constraints

In this chapter, we illustrate the relationship between models and channeling

constraints. We first introduce different ways of modeling given a problem P.

Then we present the concept of redundant modeling, which use channeling con-

straints to combine more than one model of the same problem P. Moreover, we

formally define five different forms of channeling constraints. They are int-int

channeling constraint, set-int channeling constraint, set-set channeling con-

straint, int-bool channeling constraint and set-bool channeling constraint. We

give various examples on combining different models based on six problems.

3.1 Models

Given a problem P. The modeling process consists of determining the set

X of variables, the corresponding domains D of variables, and the required

constraints C, resulting in model M = {X, D, C) for P. By considering P from

different perspectives, we can usually find more than one way of formulating

P into a CSP. Consider P as the n-queens problem in Example 2.1. We can

have another model Qc- In Model Qc = {XcDx^^CxJ [SmiOl，CLS06], the

16

Chapter 3 Common Channeling Constraints 17

queens must be placed in different rows, and each variable q G Xc (integer

variable) represents the column position of the queen in row i (|Xc| = n) with

Dci = {1，...，n}. Cxc contains constraints that ensure each variable Ci e Xc

must be (i) in different columns, Cj Cj, VI < z < j < n; (ii) in different

diagonals, ĉ + z Cj + j and C i - i ^ Cj - j , VI < z < j < n. Since each row

must have a queen, values assigned to Xc must be a permutation of { 1 , . . . , n].

Figure 2.1(b) gives a solution of Qc: {ci 2, C2 4, C3 1, C4 1—̂ 3}. Qc and

Qr are said to be redundant with respect to each other, as each of them suffices

to specify the n-queens problem completely. In the next section, we illustrate

how to combine different models of a problem by channeling constraints, in

order to achieve additional constraint propagation. This is called redundant

modeling [CCLW99 .

Integer models, set models and Boolean models are CSP models containing

only integer variables, set variables and Boolean variables respectively. We

give more examples of modeling in the next section.

3.2 Channeling Constraints

Given two models Mx and My of a problem with two disjoint sets of variables

X and Y respectively, channeling constraints [CCLW99] can be used to join

Mx and My together by relating X and Y. There is no agreed definition of

what channeling constraints should look like. Cheng et al. [CCLW99] suggest

the following general form:^

The variable associated with object x of type X has object y of

type Y as value if and only if the variable associated with y has x

as value.
1 Pair-based models need a special form of channeling constraints, proposed by [SmiOl].

Chapter 3 Common Channeling Constraints 18

For example, we can use the channeling constraint for joining Xr and X � o f

the n-queens problem:

Ti = j 分 Cj = i Vr,： G X r ^ C j G Xc

From the literature, we can find the following five common forms of channel-

ing constraints for connecting models with integer, Boolean, and set variables.

3.2.1 Int-Int Channeling Constraint (II)

Suppose X and Y are variables both from integer models. The int-int (II)

channeling constraint has the following form:

Xi = j Uj = i \/Xi e X and \/yj G Y

Example 3.1. Langford's Problem

This problem L(/c,n), "prob024" in CSPLib [GW99], is to arrange k sets

of numbers from {1 , . . . n} as a sequence of length s = k x n, such that for

each number m G { 1 , . . . , n}, there must be m numbers between each pair

of m,s (there are totally k m's). A particular instance L(3,9) [Mil99] of the

Langford's problem is as follows:

A 27-digit sequence includes the digits 1 to 9 three times each.

There is just one digit between the first two I's, and one digit

between the last two I's. There are just two digits between the

first two 2，s and two digits between the last two 2，s,…’ and so on.

Find all possible such sequences.

One solution of L(3,9) is 181915267285296475384639743. The following para-

graphs give two possible integer models, Lp and L^, for this problem.

In Model Lp = {Xp, D^p, C^J [SmiOl, HSW04, CLS06], each variable p力 €

Xp (integer variable) represents the position of the zth copy of the number j

Chapter 3 Common Channeling Constraints 19

(l^pl = s). Thus Dp., = { 1 , . . . , s } represents the possible positions for this

number. Cxp contains constraints that ensure the spacing between each pair

of copies, pij+i = Pi- + 2 + 1, VI < i < n, VI < j < k — 1. Since each

number needs to take a different position, values assigned to Xp must be a

permutation of {1,..., 5}, i.e. Pj. + pi…Vli < ji < Im ^ '̂ k in the order of

11 ? • • • ? Ifc) • • •) » • • ' 1 ^k•

In Model La = [SmiOl, HSW04, CLS06], each variable

di G Xd (integer variable) represents the number at position i (|Xd| = s). Thus

Ddi = {li，...，Ifc,... ’ ni,…，n^fc} represents the possible numbers at this po-

sition, where ji denote the ith copy of the number j, Cx^ contains constraints

that ensure the spacing between each pair of copies, di = j i 分 di^(^rn-i){j+i)=

jm, VI < 2 < 5, VI < j < n, V2 < m < /c, where (z + (m - l){j + 1)) < s; and

di ^ ji, VI < j < n, V(5 — {k — l){j + 1) + 1) < i < s. Since each position

needs to take a different number, values assigned to Xd must be a permutation

of { l i , . . . ’ Ifc’ •.., n i , . . . ，n/c}, i.e. di + dj, VI < z < j < s.

We can combine these two models by:

Pi = j 钱 dj = i \fpi G Xp, \fdj e Xd

Example 3.2. All Interval Series Problem

This problem A(n), "probOOT" in CSPLib [GW99], is to arrange numbers

from 1 to n as a sequence of length n, such that the absolute differences between

every pair of neighboring numbers form the set {1，…，n — 1}. A solution of

A{4) is 1423. The following paragraphs give two possible models, Ap and A^,

for this problem.

In Model Ap = {Xp, Dxp, Cxp) [CLS06], each variable pi G Xp (integer vari-

able) represents the position of the number i (|Xp| = n). Thus Dp. = { 1 , . . . , n }

represents the possible positions for this number. Choi et al. [CLS06] suggest

Chapter 3 Common Channeling Constraints 20

auxiliary variables V = { f i , . . . , tVi-i} denote the position where the difference

values 1 to 71 — 1 belong, where Dy. = {I,... - 1}, \/vi G V. Cxp contains

constraints (i) relate variables in V and Xp, {pi — pj = 1) — iVj-i = Pj) and

ipj — Pi = 1) — { v j - i = Pi), VI < 2 < j < n, (ii) ensure every pair of positions

for the difference value are different, Vi ^ VI < i < j < n — 1. Since each

number needs to take a position, values assigned to Xp must be a permuta-

tion of {l,...，n}，i.e. Pi • Pj, \/l < i < j < n. Furthermore, Choi et al.

.CLS06] observe the fact that only the numbers 1 and n can give the difference

of n — 1. Thus, they suggest adding two redundant constraints \pi — Pn\ = I

and Vn-i = min{pi^pn).

In Model Ad = {Xd,Dx^,Cxa) [PROl, CLS06], each variable di e X^

(integer variable) represents the number at position i = n). Thus

Ddi = {l，...，n} represents the possible numbers at this position. Choi et

al. [CLS06] suggest auxiliary variables U = { w i , . . . , Un-i} to denote the dif-

ference between adjacent numbers, where Du^ = {l，...，n — 1}，Vn̂ G U.

Cxd contains constraints (i) relate variables in U and Ui = \xi —

VI < i < n — 1 (ii) ensure every differences between adjacent numbers are

different, Ui ̂ Uj,yi < i < j < n—1. Since each position need to take a num-

ber, values assigned to Xd must be a permutation of {1，..., n} , i.e. di dj,

VI < 2 < j < n.

We can channel these two models by:

Pi = j dj = i V P I G A P , \/dj G Ad

Moreover, we can add redundant channelling constraints between V and U as

well:

Ui= j ^ Vj = i \/ui e U, \/Vj e V

Chapter 3 Common Channeling Constraints 21

weekg�lfer|l 2 3 4 5 61 卜 6 广 | 1 2 3
1 1 1 2 2 3 3 1 {1,2} {3,4} {5,6}

2 1 2 1 3 2 3 2 {1, 3} {2，5} {4，6}

3 1 2 2 3 3 1 3 {1，6} {2，3} {4, 5}

(a) Gg (b) Gp
week 1 o o

group 1 2 Q I 丄 乙 O
(1,2,3} (} (T 一 - 1 2 311 2 T r T ^

2 {1} { 2 3 } 1 1 0 0 1 0 0 1 0 0

3 2 1,3 2 1 0 0 0 1 0 0 1 0

4 { } {1} { 2 3 } 3 0 1 0 1 0 0 0 1 0
5 2 1,3 4 0 1 0 0 0 1 0 0 1

6 {3} {} 1,2 5 0 0 1 1 0 0 1 0 0
V — - - — — " 丨 6 0 0 1 0 0 1 1 0 0
(c) ^

Figure 3.1: Four equivalent solutions of G(3，2，3) in models Gg, Gp, G^ and
Gz respectively

3.2.2 Set-Int Channeling Constraint (SI)

Suppose X are variables from a set model, and Y are variables from an integer

model. The set-int (SI) channeling constraint has the following form:

j e Xi Uj = i yxi e X and Vy^ G Y

Example 3.3. Social Golfer Problem

This problem G{g,s,w), "probOlO" in CSPLib [GW99], is to schedule g

groups of golfers, each group has s golfers, for w weeks social play, such that

each pair of golfers plays in the same group at most once. There are totally

n = g xs golfers. A solution of G(3, 2,3) is shown in Figure 3.1. The following

paragraphs give three possible models, Gg, Gp, and Gw for this problem.

In Model Gg = (Xg ,Dx , ,Cx ,) [SmiOl, LL06, CLS06]，each variable g � j e

Xg (integer variable) represents the group number for golfer i in week j =

Chapter 3 Common Channeling Constraints 22

n X w). Thus Dg. . = {1 , . . . represents the possible group numbers. Cxg

contains constraints that (i) each group must have s golfers, |{a | ga,j = /c, VI <

a < n]\ = < j < w^'il < k < g, and (ii) each pair of golfers plays in the

same group at most once, |{a | 识’̂ =力’a，Vl < a < wjl < 1, VI < i < j < n.

In Model Gp = (Xp ,Bx , ,CxJ [SmiOL LL06, CLS06], each variable pij e

Xp (set variable) represents the golfer for group i in week j (|Xp| = gxw). Thus

PS{pij) = { 1 , . . . , n} represents the possible golfer numbers. Cxp contains

constraints (i) the cardinality of each p i j G Xp must be equal to s, \pij =

5, Pi J G Xp, (ii) the groups in each week do not contain the same golfer,

Pi�k n pj’k = { } , VI < 2 < j < p, VI < /c < It;, and (iii) each pair of golfers

plays in the same group at most once, |pi，fc 门厂)’/| < 1, VI < z < VI < j <

yi<k<l<w.

In Model G^ = (X̂；, each variable Wij G X^ (set variable)

represents the week for golfer i at group j (|义切| = n x g), thus PS{wij)=

{1，...，"} represents the possible weeks. Cx^ contains constraints (i) each

golfer participate exactly once per week, i.e. |Jf=i 川j,i = {1, • •. w}, VI < j < n;

and Wij n Wi’k = { } , VI < z < n, VI < j < k < g, (ii) each group

contains exactly s golfer, |{a | j G iCa.i,VI < a < n}| — w, VI < z < p,

VI < < w, and (iii) each pair of golfers plays in the same group at most

once, |{a | Vi € {1 ’ . . •，g}，a G {wĵ i fl ti;fc’i)}| < 1, VI < j < /c < n.

We can combine Gp with Gg by:

K E P I J GKJ = I VPI’J. G X P , Y G K J E X G

We can combine Guj with Gg by:

k e Wij ^ Qi^k = j ^Wij G X^ygi^k e Xg

Example 3.4. Balanced Academic Curriculum Problem

Chapter 3 Common Channeling Constraints 23

Period 1 ^ ~
Course {1 ,4}

Figure 3.2: A solution of 5(2 ’ 4,3，6,1,3, {2，3’ 3,4} , { � 2 , 1) })

This problem B(n,m,a,6, "probOSO" in CSPLib [GW99]，is to

schedule an academic curriculum by assigning n periods to m courses such

that the maximum academic load for all periods is minimized. The parame-

ters a and b are the minimum and maximum academic load for each period,

c and d are the minimum and maximum number of courses for each period, L =

{/i,…，Im} is a set of courses academic loads, and R = {�n，2，n’i〉，...，�7>’2，�’i�}

is a set of prerequisite pair�?\2，厂�’1�such that course r � ! must be taken be-

fore course ri’2. An optimal solution of 5(2，4, 3，6,1,3, { 2 , 3 ,3 ,4}， {�2 ,1� }) is

shown in Figure 3.2. The following paragraphs give two possible models, Bp

and Be, for this problem.

In Model B^ = (X^, D x � C x J [HKW02, CLS06]’ each variable Ci G (set

variable) represents the course number for period i (|Xc| = n). Thus PS{ci)=

{1, . . .，m} represents the possible course numbers. Choi et al. [CLS06] suggest

two sets of auxiliary variables W = {wi, • • •，Wn} and T = { ^ i , . . . , where

Wi represents the academic load at period i and U represents the number

of courses at period i. Cx�contains constraints (i) academic load for each

period is bounded, Wi = J2jeci h and a < Wi < b, \fwi G W, (ii) number of

courses in each period is bounded, U = |ci| and c < U < d, G T, (iii)

each course appears once and only once, Ci fl Cj = { } , VI < z < j < n; all

courses must appear E二丄 U) = m, and (iv) prerequisites must be satisfied,

e Cj) (n，2 • Cfc), V � n ’ 2 ’ n ’ i � G i?, VI < /c < j < n.

In Model Bp = (Xp, C x J [HKW02’ CLS06], each variable jh G Xp

(integer variable) represents the period to which course i is assigned (|Xp| = n).

Chapter 3 Common Channeling Constraints 24

Thus Dp. = {1,…，n} represents the possible period. Same as model B^

two sets of auxiliary variables W = {wi^..., Wn} and T = •(亡 i,...,亡 n} are

added. Cxp contains constraints (i) academic load for each period is bounded,

Wi = YlpjEXp pj=i and a < Wi < b, \/wi G W, (ii) number of courses in each

period is bounded, ti = \{pj | pj 6 Xp,pj = z}| and c < ti < d, \/亡i G T, and

(iii) prerequisites must be satisfied, 3 > Pn’” V�n，2，ri’i�^ R

We can use the following set-int channelling constraint to combine B � w i t h

Bp：

j e Ci^ Pj = i \/ci G Xc, Vpj. e Xp

3.2.3 Set-Set Channeling Constraint (SS)

Suppose X and Y are variables both from set models. The set-set (SS) chan-

neling constraint has the following form:

j e Xi e Uj \/Xi G X and \fyj G Y

Example 3.5. Social Golfer Problem

We can use the following set-set channelling constraint to combine Gp with

Gyj.

gi�j = j e Wk，i 力 i , j e Xg,\fwk’i e Xy,

Example 3.6. Steiner Triple Systems Problem

This problem T(n), "prob044" in CSPLib [GW99], is to find a set of

m = n{n— l) / 6 triples, where each triple is subset of {1，...，n}，and each pair

of triples has at most one common integer. A solution of T(7) is { {1 ,2 ,3 } ,

{1 ,4 ,5} , {1 ,6 ,7} , {2,4,6} , {2,5,7} , {3 ,4,7} ’ {3 ,5 ,6} } . The following para-

graphs give two possible models, Sn and 5p, for this problem.

In Model Sd = (X^, Dx^^Cx^) [LL06]，each variable di G Xd (set variable)

represents the z-th triples = m). Thus PS{di) = { 1 , . . . represents

Chapter 3 Common Channeling Constraints 25

Integer Boolean

工i - 工 j = a 气fc X Zj^k+a) = 1
Xi -Xj^ a (E L T 之 X Zj^k+a) = 0

Xi ^ Xj,\/1 <i<j<m ti = 之 and < 1, VI < / < n
and (Er=i ti) = m

= <a<m}\

Figure 3.3: Mapping of common integer constraints to Boolean constraints in
our introduced models

the possible integers that this triple can contain. Cx^ contains (i) each triple

(integer set) contains three integers only, \di\ = 3，\fdi G and (ii) each pair

of triples shares at most one common integer, \di A djl g 1，VI g i < jf g m.

In Model Sp = {Xp, Dxp.Cxp) [LL06], each variable Pi G Xp (set variable)

represents a set of triples that contain the integer i = n). Thus PS{pi)=

{1，...，m} represents the possible triples. contains (i) each triple contains

three integers only, |{a|i G Pa,Pa ^ 二 3, V l S i S m , and (ii) each pair

of integers shares at most one common triple, \pi fl Pj \ < 1, VI < i < j < m.

We can combine Sd and Sp by:

j e di^i e Pj \fdi e Xa, •巧 G X p

3.2.4 Int-Bool Channeling Constraint (IB)

Suppose X = { x } is a variable from an integer model, and Y are variables from

a Boolean model. The int-bool (IB) channeling constraint have the following

form:

X = i yi = I yyi e Y

All Boolean models in the following examples can be derived from the

corresponding integer models. Figure 3.3 shows mapping of common integer

Chapter 3 Common Channeling Constraints 26

constraints to Boolean constraints in our introduced integer models, where

each integer variable Xi with = n correponds to a set of n Boolean

variables {zi.i,…，Zi^n}- Auxiliary variables ti are introduced whenever appro-

priate. Therefore, we leave out the description of constraints for the following

Boolean models: The n-Queens Problem, Langford's Problem, All Interval

Series Problem, Social Golfer Problem, and Balanced Academic Curriculum

Problem.

The following paragraphs give five possible Boolean models, L^, Az, Gz,

and Bg, for each problem respectively.

In Model Qz = (X^, each variable Zr,c ^ 兄 (Boo l ean variable)

represents whether there is a queen at row r column c {\Xz\ = v?). The

combined model with Qr can be channeled by:

r i = j 公 Zj’i = 1 Vri G Xr^fzj�i G

The combined model with Qc can be channeled by:

Ci= j ^ Zi，j = 1 Vci e Xc, V2ij G X^

In Model L^ = (X^, each variable Zd,p G Xa (Boolean variable)

represents whether number d is at position p (IX^I = k"^ x v?). Lz can be

combined with Lp by:

j Zij = 1 Vpi G X p ^ Z i j G

Lz can be combined with Ld by:

d i = j ^ Zj�i = 1 \fdi e Xd, V^.i G X 之

In Model A^ = (X^, each variable Zp’d € Xd (boolean variable)

represents whether number d is at position p (l^^l = n^). Az can be channeled

with Ap by:

= j 钱 = 1 Vpi e Xp, yzij e X^

Chapter 3 Common Channeling Constraints 27

Az can be combined with Ad by:

di = j 分 Zj,i = 1 Vdi G Xd, yzj^i e X,

In Model Gz = (X^, Dx^, Cx^), each variable Zi丄k ^ Xz (boolean variable)

represents whether golfer i plays in group j at week k {\Xz\ = n x g x w). A

new model can be formed by combining Gg and Gz with:

9i,j = Zi，k’j = 1 ygij e Xg;izi、k、j G

In Model B: = {Xz, Dx^.CxJ, each variable Zc^p G Xz (boolean variable)

represents whether course c is in period p = n x m), Bp and B! can be

combined with:

Pi=j^ Zj’i = 1 VPI E Xp, Vzj^i e X,

3.2.5 Set-Bool Channeling Constraint (SB)

Suppose X = {rr} is a variable from a set model, and V are variables from

a Boolean model. The set-bool (SB) channeling constraint have the following

form:

iex^Vi^l V?/i e Y

Again, the following Boolean models can be derived from the corresponding set

models. Figure 3.4 shows a mapping of common set constraints to Boolean con-

straints in our introduced models, where each set variable Xi with = n

is corresponding to a set of n Boolean variables {^；么山 . . .，Therefore, we

leave out the description part of constraint for the following Boolean models:

Social Golfer Problem, Balanced Academic Curriculum Problem, and Steiner

Triple Systems Problem.

Chapter 3 Common Channeling Constraints 28

Set Boolean

(E L i 而’ 0 = 0
工 = {} (E L i * = 0

lULi 而丨 Er=i((EJ=î a)>i)
|{a|6 E Xa,Xa e X}\ Er=l 之i,b

Figure 3.4: Mapping of common set constraints to Boolean constraints in our
introduced models

There are two set models, Gp and Ĝ；, of the Social Golfer Problem. Thus

Gp and Gz can be combined with:

k e Pij ^ Zk,i,j = 1 Vpij G Xp,\/zk�i�j e x^

Gyj and Gz can be combined with:

k E Wi^j Zi’j�k = 1 ^Wij e x^yzij^k e ^z

The set model Be of the Balanced Academic Curriculum Problem can be com-

bined with its Boolean model Bz by:

j Zj�i = 1 Vci G Xc^fZj�i e X,

For the Boolean model Sz = (X^, Dx^.CxJ) of the Steiner Triple Systems

Problem, each variable Zn,p G Xz (boolean variable) represents whether integer

n is in triple p (iX^j = v?[n — l) /6). It can be combined with each of the two

set models, and 5p, of the Steiner Triple Systems Problem to form new

models. The set-bool channeling constraints between Sd and Sz are:

j edi 钱 Zj�i = 1 Wdi G Xd, ^Zj^i G

The set-bool channeling constraints between Sp and Sz are:

j ^ Pi Zi�j = 1 Vpi G Xp, Wi’j_ G -A：̂

Chapter 3 Common Channeling Constraints 29

3.2.6 Discussions

Assumptions

For the definition of II’ SI and SS, we assume for each value a in the domain

(or possible set) of each variable in X, there must exist a variable in Y cor-

responding to the value a, and vice versa. For example on SI, Vxi G X, Vj G

PS(xi),yj e Y and Vyi G V,Vj G Dy�Xj € X . For the definition of IB and

SB, we assume for each value a in the domain (or possible set) of x, there must

exist a variable in Y corresponding to the value a; and for each variable y�in

Y, there must exist a corresponding value a in the domain (or possible set) of

variable x. For example, in IB, Vz G Dx,yi G Y and Vŷ eY,i e D^.

Boolean Model via Channeling Constraint

There are two points to note. First, it is not necessary to define the bool-bool

channeling constraint (BB), as it just makes two Boolean variables x and y

equal, i.e. x = y. Second, one might argue that a one-variable model Mx

in the definition of IB and SB is impractical. In practice, we would have

a sequence of variables in X = { x i , . . . , and a 2-dimensional array of

Boolean variables Y = {2/1,1,..., yi�m,…，yn,i,...，2/n，m}, where m is the size

of the domain of each variable in X, or even a higher dimensional (like the

Social Golfer Problem). Thus, the IB channeling constraints would usually be

in the following form:

Xi= j ^ yij = 1 Vxi e X and \/yij e Y

We observe this form can be partition into n sets of constraints by each Xi G

X, and each pair of these sets share no variables at all. Thus, in terms of

consistency level analysis and discussion on efficient implementation, our IB

and SB definition are the most basic form for studying.

Chapter 3 Common Channeling Constraints 30

Previous Studies on Channeling Constraint

II is highly applied and studied [CCLW99, SmiOl, FFH+02b, HSW04, CLS06 .

SI is used for solving a nurse rostering problem [CCLW99] and the Balanced

Academic Curriculum Problem [CLS06], and for breaking value symmetry [LL06..

SS, IB and SB can be used for breaking value symmetry [FFH+02a, LL06] as

well.

Chapter 4

Realization in Existing Solvers

In this chapter, we categorize three different ways of expressing channeling

constraints, namely iff, ele, glo. Furthermore, we discuss the common imple-

mentation techniques of these channeling constraints in existing solvers (CHIP,

ECLiPSe, SICStus Prolog, Oz, and ILOG Solver), and give concrete exam-

ples on how to channel models Qr and Qc of the n-queen problem in these

solvers. Our discussion is based on the channeling of two sets of variables,

X = { x i . . . and Y = {yi.. .ym} of size n and m respectively, which can

be integer, set or Boolean variables.

Form iff ele
II Xi= j yj = i rcy. = i and yx^ = i
SI j E Xi ^ yj = i i G Xy. and ŷ i = i
SS j e Xi<^i e Vj i e Xy^ and i G ŷ i

IB X = i Ui = 1 Vx = and Y ^ x
SB i G cc yi = 1 Vx = ^ and Y x

Table 4.1: Two ways of implementing channeling constraints

31

Chapter 4 Realization in Existing Solvers 32

4.1 Implementation by if-and-only-if constraint

The most common way is to implement the channeling constraint directly

according to their definitions (see the iff column of Table 4.1) as n x m if-

and-only-if constraints. Most solvers have operators such as #<=> in ECLiPSe

:ECL05] and SICStus Prolog's CLPFD library (SICStus CLPFD hereafter)

:SIC05], = in Oz [Moz04], and == in ILOG Solver [IL099], while some solvers,

such as CHIP [COSOl], need to split a single constraint into a pair of i f - then

constraints. In the following, when the context is clear, we use iff to refer to

the n X m if-and-only-if constraints for implementing a particular channeling

constraint.

4.1.1 Realization of iff in CHIP, ECLiPSe, and SICStus

Prolog

Figure 4.4 shows the realization of models Qr and Qc for the n-queens prob-

lem ill the corresponding solvers, but there is missing channeling constraints

in line 4. The clause nQueensChannel(i?oi(;s, Cols, N) creates two models

nQueens{Rows, N) and nQueens(Co/s, N). The clause nQueens{Rows, N) in

Figure 4.1 is implemented in SICStus Prolog, while the one in Figure 4.2 can

be used by CHIP or ECLiPSe. The code in Figure 4.7 is the realization of iff,

in which part (c) can be used by all the three solvers, part (a) is for CHIP

only, and part (b) is for ECLiPSe or SICStus Prolog. We can use it by adding

if^(Rows, Cols, 1) in line 4 of Figure 4.4.

4.1.2 Realization of iff in Oz and ILOG Solver

Figure 4.5 and Figure 4.6 show two models Qr and Qc for the n-queens problem,

which is implemented in Oz and ILOG Solver respectively. The corresponding

Chapter 4 Realization in Existing Solvers 33

missing channeling constraints in line 17 and line 15 can be filled in by the

code in Figure 4.8 and Figure 4.9，which are the realizations of iff in Oz and

ILOG Solver respectively.

1： nQueens{Rows, N):- > Model Qr
2: \ength{Rows,N), > set variables
3: d o m a i n 1 , A^), t> set domains
4: g e n e r a t e D i a g I 仏 Rows, 1). > generate new variables 7\ — i,

see Figure 4.3
5: geneTa,teDi8ig2{Rou)PDiag, Rows, 1). > generate new variables r̂ + i,

see Figure 4.3
6: all-different(jRo腐)， > no two queens on the same row
7: alLdifferent(jRcm;iVZ)iag)’ O no two queens on the same
8: a\\-d\SeTent{RowPDiag). diagonal

Figure 4.1: Realization of model Qr (or Qc) by solver SICStus Prolog

1: nQueens{Rows, N):- > Model Qr
2: \ength{Rows,N), > set variables
3: Rows :: 1..7V， > set domains
4: genemteDiaigl{RowNDiag, Rows, 1). O generate new variables Vi — z,

see Figure 4.3
5: generateDiag2(i?oit;PDzap, Rows, 1). O generate new variables + z,

see Figure 4.3
6: dlldiSevent{Rows), l> no two queens on the same row
7: alldifferent (RowNDiag) , > no two queens on the same
8: alldifferent . diagonal

Figure 4.2: Realization of model Qr (or Qc) by solver ECLiPSe or CHIP

Chapter 4 Realization in Existing Solvers 34

1： generateDiagl([], [],_). > for generation of Xi — i
2: generatieDiagl([Dl|Ds]，[Xl\Xsl N):-
3: = X I - N,
4: Nl is Â + 1,
5: generateDiagl(Z)s, Xs , A^l).

6: generateDiag2([l, [],_). [> for generation of Xi-\-i
7: generateDiag2([Dl|Dsl, [Xl|Xs], iV):-
8: = X)^ + N �

9: TVlisTV + l,
10: generateDiagl(Ds, Xs^ Nl).

Figure 4.3: Clauses generateDiagl and generateDiag2 in Figure 4.1, 4.2

1: nQiieensChannel(i?oiys, Cols, N)\- > channel two models together
2: nQueens(i?cm;s，TV)， t> Model Qr, see Figure 4.1, 4.2
3: nQueens(Co/s, TV), O Model Q � s e e Figure 4.1，4.2
4: > place channeling constraints here
5: label ing([/ /] , Rows). O label Rows by First Fail heuristic

Figure 4.4: Realization of channeling model Qr and Qc by CHIP, ECLiPSe,
and SICStus Prolog

Chapter 4 Realization in Existing Solvers 35

1: fun {Queens N}
2: proc {$ Rows Cols}
3: LIN = {MakeTuple c N} [> make a tuple with length N
4: LM\N = {MakeTuple c N} > make a tuple with length N
5: in
6: {For 1 N 1 proc {$ / }
7: lAN.I = I LMIN.I = � I
8: end}

9: {FD.tuple rqueens N Rows}
10: {FD.distinct Rows} l> no two queens on the same row
11: {FD.distinctOfFset Rows LMIN] > no two queens on the same
12: {FD.distinctOffset Rows L\N] diagonal

13: {FD.tuple cqueens N Cols}
14: {FD.distinct Cols} > no two queens on the same column
15: {FD.distinctOffset Cols LMIN} > no two queens on the same
16: {FD.distinctOffset Cols L\N} diagonal

17: > place channeling constraints here

18: {FD.distribute ff Rows) D> label Rows by First Fail heuristic
19: end
20: end

Figure 4.5: Realization of channeling model Qr and Qc by solver Oz

Chapter 4 Realization in Existing Solvers 36

1: void nqueen(IlcManager& m, Ilcint n) {

2: IlcIntVarArray rows{m,n,Q,n — 1)， > setup variables for model Qr
drowl{m,n),drow2{m,n)]

3: IlcIntVar Array cols{m,n,0,n — 1), l> setup variables for model Qc
dcoll{m, n), dcol2{m, n);

4: for (int i = 0; i < n; i + +) {
5: drowl[i] = rows[i] — i\ > generate 7\ — i
6: drow2[i] = rows[i] + r, > generate ri + i
7: dcoll[i] = cols[i] — i\ > generate Ci — i
8: dcol2[i] = cols\i] + i\ !> generate Cj + i

}

9: m.add(IlcAllDiff(rcm;s)); > no two queens on the same row
10: m.add(IlcAllDiff(drou)l)); > no two queens on the same
11: m.add(IlcAllDiff(drow;2)); diagonal

12: m.add(IlcAllDiff(co/s)); l> no two queens on the same column
13: m.add(IlcAllDifF((ico/l)); > no two queens on the same
14: m.add(IlcAllDifT(dco/2)); diagonal

15: ... l> place channeling constraints here

16: m.add(IlcGenerate(a;, > label Rows by First Fail heuristic
IlcChooseMinSizeInt));

}

Figure 4.6: Realization of channeling model Qr and Qc by ILOG Solver

Chapter 4 Realization in Existing Solvers 37

1: iffGenerate(_, [],_,_).

2: iflFGenerate(Xn, [Ym\Ys], M, N):- > generate Xn = m ^ = n,
3: if = M then Ym# = TV, VI < m < n
4: if Ym# = N then = M,
5: M l i s M + l,
6: iffGenerate(Xn, y s , M l , N).
(a) Implemented in CHIP
1: iffGenerate(_, [] ,-，_).

2: ifFGenerate(Xn, fKmjl^s]，M, N):- > generate Xn — m ym =
3: Xn* = < = > Ym4 = N, VI < m < n
4: M l i s M + 1’
5: iffGenerate(Xn, Fs, M l , N).
(b) Implemented in ECLiPSe or SICStus Prolog

1： iff([]，-’—).
2: ifr([Xn|Xs],y, N)\- > take out
3: iffGenerate(Xn, y, 1, N)^ \> generate Xn = m ^ ym = n

VI < m < n, see (a) and (b)
4: TVl i sTV+l ,
5: i f f (X s , y , m) .
(c) Implemented in CHIP, ECLiPSe, or SICStus Prolog

Figure 4.7: Realization of iff, for channeling models Qr and Qc in Figure 4.4,
which is applicable to CHIP, ECLiPSe, and SICStus Prolog

Chapter 4 Realization in Existing Solvers 38

{For 1 N 1 proc {$ / }
2: {For 1 N 1 proc {$ J]
3: Row S.I := J = Cols.J := I \>ri 二 j Cj = i
4: end}
5: end}

Figure 4.8: Implemented in Oz, iff for channeling model Qr and Qc in Figure
4.5

1: for (int 2 = 0;z < + +)
2: for (int j = 0; j < n\j + +)
3: m.add((ro概[i] = = j) = = (coZs[j] = = i)); On = j 分 Cj = i

Figure 4.9: Implemented in ILOG Solver, iff for channeling model Qr and Qc
in Figure 4.6

4.2 Implementations by Element Constraint

Another common technique uses the element constraint (see the ele column

of Table 4.1). By Xy., we say that X are the principal variables indexed by

variables in Y. An element constraint Xŷ — a, when both X and Y are sets

of integer variables, has an equivalent meaning as:

yi = j Xj = a Vj e Dy^

An element constraint Xy. = a, when both X is a set of integer variable and Y

is a set of set variables, has an equivalent meaning as:

j Xj = a \/j e PS{yi)

An element constraint a E Xy^, when both X is a set of set variable and Y is

a set of integer variables, has an equivalent meaning as:

yi= j a e Xj Vj E D^Vi)

Chapter 4 Realization in Existing Solvers 39

An element constraint a £ Xy^^ when both X and Y are sets of set variables,

has an equivalent meaning as:

j e yi a e Xj Vj G PS{yi)

For II’ SI, and SS, there are two set of element constraints, one using X and the

other using Y as the principal variables. When X are the principal variables,

we refer to the m constraints as elex'

Xy. = i y y i € y, for cases when X is a set of integer variables

i £ Xy., V队 G y, for cases when X is a set of set variables

Similarly, when Y are the principal variables, we refer to the n constraints as

eley'

Vxj — j , VrCj. G X , for cases when y is a set of integer variables

j G yxj，Vxj G X , for cases when y is a set of set variables

Thus elex and eley together are equaivalent as iff. For IB and SB, since elex

can not be realized, we need Boolean mapping constraint Y x\

yi = 1 X = i, \/yi G F, for cases when X is a set of integer variables

= 1 z G X, \/yi e Y, for cases when X is a set of set variables

To the best of our knowledge, existing solvers support the element con-

straint for integer variables only. CHIP [COSOl], ECLiPSe [ECL05], Oz [Moz04],

and SICStus CLPFD [SIC05] has an element constraint in form of element (/nc/ex,

List, Value)^ where Index and Value can be an integer or integer variable,

and List can be a list of integers or integer variables. The meaning of the con-

straint is that the Index-th. element in List is Value. ILOG Solver [IL099.

supports a syntax very close to our notation. For example, the constraints in

Chapter 4 Realization in Existing Solvers 40

elex can be directly written as x [y [i]] == i. In the next section, we propose

a generic propagator for a generalized element constraint for both integer and

set variables specialized for implementing channeling constraints.

4.2.1 Realization of ele in CHIP, ECLiPSe, and SICStus

Prolog

Figure 4.10 shows the realization of ele for CHIP, ECLiPSe or SICStus Prolog.

We can fill in element Generate Cols, 1) (i.e. eleRows) and element Generate (C7oZs，

Rows, 1) (i.e. elecois) in line 4 of Figure 4.4 for the missing channeling con-

straints.

4.2.2 Realization of ele in Oz and ILOG Solver

Figure 4.11 and Figure 4.12 show the realization of ele for Oz and ILOG Solver

respectively. We can fill them correspondingly into line 17 and line 15 of Figure

4.5 and Figure 4.6 for the missing channeling constraints.

1: elementGenerate(_, [],_).
2: elementGenerate(X, [ynlFs], N):- [> take out ？/„
3: element{Yn,X,N), > Xy^ = n
4: iV l i s iV + l，

5: element Generate (X, Fs, A^l).

Figure 4.10: Code for generating ele for channeling models Qr and Qc in Figure
4.4

Chapter 4 Realization in Existing Solvers 41

1: {For 1 N 1 proc {$ / }
2: {FD.element Cols.I Rows 1} Orĉ = i
3: {FD.element Rows.I Cols 1} oc^. = i
4: end}

Figure 4.11: Code for generating ele for channeling models Qr and Qc in Figure
4.5

1: for (int z = 0;z < n;z + +) {
2: m.add(roif;s[co^s[2]] = = i)\ >rc. = i
3: m.a,dd(cols[rows [i]] == i)\ = i

} ^

Figure 4.12: Code for generating ele for channeling models Qr and Qc in Figure
4.6

4.3 Global Constraint Implementations

Last but not least, it is also possible to implement each channeling constraint as

a single global constraint glo by designing specialized propagation algorithms

to enforce consistency. As far as we know, only implementation for integer

variables is supported in existing solvers, such as inverse, I lc lnverse , and

assignment in CHIP [COSOl], ILOG Solver [IL099] and SICStus CLPFD

SIC05] respectively. Note that I lc lnverse does not enforce GAC, while

assignment has an argument to control the consistency level. Again, we will

propose another generic propagator for implementing glo that enforces AC on

iff for all five channeling constraints.

Chapter 4 Realization in Existing Solvers 42

4.3.1 Realization of glo in CHIP, SICStus Prolog, and

ILOG Solver

The missing channeling constraints in line 4 of Figure 4.4 and line 15 of Figure

4.6，can be filled by inveTse{Rows, Cols) in CHIP or assignment(i^oit/s, Cols)

in SICStus Prolog, and m.add(IlcMyInverse(roi/;s, cols)) in ILOG Solver re-

spectively.

In the rest of the thesis, we focus on ILOG Solver implementations.

Chapter 5

Consistency Levels of

Channeling Constraints

In this chapter, we compare the constraint tightness of each channeling con-

straint among different implementations. Where applicable, we study also how

the channeling constraints interact with the characteristic constraints arising

from the particular model combinations. For example, II is possible only for

permutation problems [SmiOl, WalOl, HSW04], and this enforces the charac-

teristic constraint that all variables are different. Our major theorems show

that except for II, maintaining a higher level of consistency on the entire chan-

neling constraint does not increase the pruning power. We present these in

five sections, which corresponds to II, SI, SS, IB, and SB.

In the rest of this section, we are channeling two models Mx and My with

variables X = { rc i , . . . , Xn) and Y = {y\�…�ym} respectively. We denote

Sx,Y = X \J Y. The following property is useful in subsequent presentations.

Property 5.1. Given a set of constraints A^ B, and C, and an 电 - c o n s i s t e n c y

which can be GAC, SBC and HC:

1. monotonicity [WalOl, HSW04]. ^ a u b ^ ^ a

2. fixed-point [WalOl, HSW04]; //歪义二巾丑，then u c=^b u c

43

Chapter 5 Consistency Levels of Channeling Constraints 44

3. transitivity: If and , then

4- subsumption: then u u b u c

Proof. Point 3 is by definition. To pove point 4, means ^a^^a U b-

And by monotonicity, ^a U b'^^a, we have ^a U b- Then by fixed-point,

we get ^A u c= ^A u B u c- •

The following lemma is useful in proving theorems concerning SBC.

Lemma 5.1. Given a constraint c. If both x RS(x) and x PS{x) can

be extended to a solution of c, Vrc G Xc, then c is SBC.

Proof. For each x G X^ let 5 = {a | a G D̂ ： and x a can be extended

to a solution of c}. Thus, RS{x) G 5, PS{X) e S, Recall the property of

RS{x) C C PS{x), we have Va G 5, RS{x) C a C PS{x). Consequently,

门 = RS{x) and U = PS{x), and c is SBC. •

The following corollary of Lemma 5.1, which is useful in proving theorems

concerning HC.

Corollary 5.2. Given a constraint c. If for each integer variable x G Xc,

Va e Dx, X I—̂ a can be extended to a solution of c, and for each set variable

y G Xc, both y i—>• RS{y) and y h PS{y) can be extended to a solution of c,

then c is HC.

5.1 Int-Int Channeling (II)

Both M x and My are integer models. Since each variable must take exactly

one value, the II channeling constraint implies the following: (1) variables in

X take on different values, (2) variables in Y take on different values, and (3)

m = n = \Dxi\ = \Dy. \ for all z, j G {1，..., n}. The characteristic constraints

Chapter 5 Consistency Levels of Channeling Constraints 45

are thus all-different on X and the same on Y. Therefore, both Mx and My

are permutation problems [SmiOl, WalOl, HSW04 .

There are two ways to implement all-different: by a series of pairwise dis-

equalities and by a single global a l l D i f f constraint (V). In the rest of

the paper, we use the notation "{ex, cc, q/}，，to denote the set of constraints

in which cx are the characteristic constraints on X, cc is the channeling con-

straint implementation, and cy are the characteristic constraints on Y. For

example, {V, n, V} means a global a l l D i f f on X plus a global implementation

of II on Sx,Y and a global a l l D i f f on Y. Note that cx and cy can be empty

under appropriate context.

We first prove that ii w.r.t. GAC subsumes global a l l D i f f constraint on

both models.

Theorem 5.3. GAC{ii)=GAC^u^i).

Proof. By Property 5.1.1, GAC{\/^ii;^}^GAC{ii}. To show the reverse by con-

tradiction, suppose S x y is GAC{ii) but not GAC{v,m,v} due to global a l l D i f f

constraints. W.L.O.G., assume it is not GAC{^) w.r.t. X (a symmetric proof

can be made on Y). Then 3 a value in the domain of cci, say di, cannot be

extended to any solution of the global a l l D i f f constraint on X, but 3 a solu-

tion e of ii which contains Xi t—> di. Hence 3 ki ^ /c2, k such that Xk^^k and

are in e. However yk needs to take values ki and k�by the definition

of ii, this is a contradiction. •

Corollary 5.4. GAC{ii)=GAC{aM,b), where a and b can be\f or ^ or empty.

Proof. We first prove the case of a is — and b is empty. By Theorem 5.3, we

have GAC{ii}=GAC{v,u,v}, and by Property 5.1.2，we get G^4(7{Aii}=G74(7{Av’ii，v}.

By Property 5.1.4 and the fact that GAC{\/} > ，we have G74C{#’v’ii’v}=

iNote that GAC^jt) and A C � are equivalent.

Chapter 5 Consistency Levels of Channeling Constraints 46

G^4(7{v’ii’v}. Thus, by Property 5.1.3, GAC{ii)= Similar proofs can

be applied to all the other cases. •

Theorem 5.3 and Corollary 5.4 suggest that all-different (either as global

a l l D i f f or pairwise disequalities) do not increase the amount of overall domain

reduction when ii is maintaining GAC.

Theorem 5.5. AC[iff)=GAC^eie}'

Proof. First, we show GAC{eie} ^ ^^{iff}- Suppose it is GAC^eie} but not

AC{iff} . Consider the following two cases: (1) 3 a value a in the domain of

Xi which makes a constraint c, Xi = j i/j = z to be not AC (2) 3 a value

a in the domain of yi which makes a constraint c, yi = J•公 Xj = z to be not

AC. (1) Since it is GAC^eie), a G Da；, implies i G Dy�by eley. H a = j, then

c must be AC. If a ^ j , we want to show that B b i, such that b G yj, in

order to make c is AC. Suppose b does not exist, then yj must equal i. By

elex, Xi must equal j , which contradicts to a ^ j. Thus, c is AC, which is a

contradiction. (2) Symmetric proof can be made as (1).

Second, we show AC^ijf) ^ GAC^eie}- Suppose it is AC {iff} but not GAC{eiex}-

Consider the following four cases: (1) 3 a value j in the domain of yi which

makes a constraint c, Xy. = i from elex, to be not GAC. (2) 3 a value j in the

domain of yi which makes a constraint c, yxo = from e/ey, to be not GAC.

(3) 3 a value j in the domain of Xi which makes a constraint c, y^^ == i from

eley, to be not GAC. (4) 3 a value j in the domain of Xi which makes a con-

straint c, Xy^ — a from elex, to be not GAC. (1) Now we construct a complete

assignment e of c. First we make e = {i/i ^ j, Xj h i}. Then for each Xk ̂ X

(xfc + Xj), make e = e U {xk ^ a^}, where dk G Thus e is a solution of

c, and this is a contradiction. (2) Now we construct a complete assignemtn e

of c. First we make e = {yi^ j}. We want to show 3 b e Xa, in which b 一 i.

Suppose b must be i, then Xa must be z, and yi must be a by Xa = i y： = a.

Chapter 5 Consistency Levels of Channeling Constraints 47

This condicts with j G Dy.. Thus, we can make e = e U {xa a}.

And for the rest of Vk Vb Vî make e = e U {yk i—> rfjt}, where dk G Dy^.

Thus e is a solution of c, and this is a contradiction. (3) Symmetric proof can

be made as (1). (4) Symmetric proof can be made as (2). •

Prom Theorem 5.5, we know that each constraints in ele w.r.t. G A C is as

tight as each constraints in iff w.r.t. AC. In the next two theorems, we prove

two tightness relations between ii w.r.t. G A C and iff w.r.t. AC.

Theorem 5.6. GAC{ii}>AC{iff}.

Proof. GAC^ii) is trivially AC{iff). Now we give an example which is AC{iff]

but not GAC{ii). Let X = {xi,... = {yi, • •. ,2/4}, and = Ar2 =

{1,2}, Ar3 = = Dy, = Dy, = {1,2,3,4}, Dy, = Dy, 二 {,4}• This is

AC [iff). But Hi I—> 3, 2/1 4, H 3’ y2 H 4, :c3 1 ’ ：C3 2, 2；4 H 1 and

x^y-^ 2 cannot be extended to any solution of ii. This is not GAC {ay •

Prom Theorem 5.6, we know that ii w.r.t. G A C is tighter than iff w.r.t.

AC.

Theorem 5.7. GAC{ii}=GAC{y^iff}=GAC{iffy}

Proof. By symmetry, we prove GAC{ii}= Ĝ 4C{v’近）only. First, we show

GAC{ii} ̂ GAC{y^iff}. By Theorem 5.6，we have GAC{ii}> AC {iff}. Therefore,

By Corollary 5.4 and Property 5.1.3，we get GAC{ii}^

To show the reverse by contradiction, suppose it is GAC{y^iff} but

not GAC{ii}. Then 3 a value in the domain of Xi, say di, cannot be extended

to any solution of ii, but there exists a solution Cx = …，Xi^di^ ...，

Xn^dn} of the global allDiff constraint on X. Now for each Xj\-̂ dj G e^,

there must exist j G Dy^, because of 奶’ and we construct Cy = {̂ /di'—

Note that GAC^iffy and AC^iff-^ are equivalent.

Chapter 5 Consistency Levels of Channeling Constraints 48

••.， Vdn^'^}' Note that {rfi,..., dn} = {1,..., n}, thus e = e^ U Cy is a

solution of a. This is a contradiction. •

Corollary 5.8. GAC {a)=GAC{a,c,b} ； where c can be iff, elex or eley； a and

b can be V or ^ or empty, but with a condition that at least one of a and b

must be V.

Proof. W e first prove the case of c = iff, a = V and 6 is —, and other cases of a

and b can be proved similarly. By Theorem 5.7，we have GAC{ii}= GAC{\/jff},

and by Property 5.1.2’ we get By Corollary 5.4 and

Property 5.1.3, we have =GAC{v,ijy. For c = elex and c = eley,

by Theorem 5.5, we have AC{iff}= GAC{eiex}= Ĝ 4(7{eZey}，and by Property

5.1.2，we get GAC{^/^eiex}= GAC{\/eieY} and AC{iffy}= GAC{eiex,v}=

G AC {eley y}- Then, similar proofs can be made for all the other cases. •

Corollary 5.8 shows that iff or elex or eley plus a global allDiff constraint

on either X or y can achieve the same domain reduction as ii w.r.t. G A C .

Theorem 5.9. [WalOl, HSW04] AC{iff}=AC{j,,iff̂ ：^}.

Corollary 5.10. GAC{ci}=GAC{a,c2,b}, where cl and c2 can be iff or ele; a

and b can be + or empty.

Proof. The cases of cl = c2 = iff is proved by Walsh and Hnich et al.

WalOl, HSW04]. W e first prove the case of cl = iff, c2 = ele, a is ^

and b is empty. By Theorem 5.5, AC{iff}=GAC{eie}- By Property 5.1.2’ we

have AC{^^iff}=GAC{:^^eie}- Thus by Property 5.1.3 and AC{iff}—AC{jL^iff}

WalOl, HSW04], we have AC{iff}= GAC{jt̂ eie}- Similar proofs can be made

for all the other cases. •

Corollary 5.10 shows that disequalities on X and Y can be removed when

A C is maintained on iff or G A C is maintained on ele.

Chapter 5 Consistency Levels of Channeling Constraints 49

5.2 Set-Int Channeling (SI)

W e assume that Mx is a set model and My is an integer model. X and Y

must satisfy the characteristic condition for the channeling to make sense: (1)

Ur=i 工i = {1，…’爪} and (2) xi n Xj = {} for all i,j G {1’...，n} and i + j. In

other words, each index for variables in Y must be in exactly one set variable

in X, since each variable in Y must take exactly one value. W e call (1) and

(2) in totality the partition constraint.

Again, there are two ways to implement the partition constraints: by im-

plementing conditions (1) and (2) directly (||) and by implementing a single

global constraint (H) which is available in ILOG Solver [IL099..

The following property is useful for our subsequent proofs.

Property 5.2. Given it is HC^iff), we have:

1. for each Xi, k G RS{xi) ^ yk ^ i

2. for each Xi, k G PS{xi) i G Dy^

3. ii — j, k，such that k e RS{xi) and k G RS{xj)

4- ^ j�k, such that k G RS{xi) and k G PS{xj)

Proof. Points 1 and 2 follow from the definition of SI.

To prove point 3, suppose k, such that k G RS{xi) and k G RS{xj),

where i — j. By point 1, z and yk ^ j simultaneously, which is a

contradiction.

To prove point 4, suppose 3z, j, k, such that k e RS{xi) and k e PS{xj),

where i j. By point 1 and point 2, 1—̂ i and j G Dy^ is a contradiction. •

Points 3 and 4 explain that there is no sharing of values between (a) each

pair of required sets and (b) each pair of required set and possible set of

Chapter 5 Consistency Levels of Channeling Constraints 50

different variables. The following steps for constructing a complete assignment

for Sx,Y is used in subsequent proofs.

Construction 5.1. Steps:

1. \fx e X, let RS'{x) = RS{x).

2. a se力 H = {1，... ’ m } — IJxex

3. Vr e R, pick a value dr € D{yr), and make RS'{xd^) = RS'(xd^) U {r}

4- we obtain the complete assignment e = {xj h RS'{xj) | Xj G X} U {yk h

j I rcj. e X，/c e RS'{xj)}

Step 2 collects in the set R all indices of Y that are not in the required set of

any variable in X. In other words, the variables in Y with indices in R are not

assigned any value yet. Then step 3 picks an arbitrary value dr from the domain

of Ur for each r E R and fix Ur to dr (by putting r into RS'{xdr))- Note that

by Property 5.2.2, r must be in and thus Vx； G X, RS'(xj) C PS{xj)

after step 3. Step 4 obtains a complete assignment e for SX,Y as a result.

Example 5.1. Suppose X = {xi,x2}, Y = {？/i,2/2,2/3}, PSixi) = {1,2,3},

PS[X2) = {1,3}, RS{x,) = {2}, RS{x2) = {}, Ari = = {1,2}, B , , =

{1}. Construction 5.1 may give us e = {xi »—> {2,3},0:2 h {1}’2/i h 2,y2 h

1,2/3 ^ 1 } as following steps.

1. we make RS'{xi) and RS'{x2)-

2. {1,2,3}-{2} = {1,3}

3. we pick 2 G Dy, and 1 G Dy^, and make RS'(oc2) = {} U {1} 二 {1} and

RS'ix,) = {2} U {3} = {2’ 3}

Chapter 5 Consistency Levels of Channeling Constraints 51

4. we obtain a complete assignment e = {xi i-> {2,3}，X2 h {1}} U

{yi 2, 2/2 1，2/3 !}•

W e first prove that si w.r.t. H C is as tight as iff or ele w.r.t. HC.

Theorem 5.11. H C \ s i � = H C阶

Proof. HC{si)^ HC{iff�is trivially implied. To show the reverse by contradic-

tion, suppose it is HC{iff} but not HC{si}- Consider the following two cases:

(1) by L e m m a 5.1, 3i such that either (a) Xi PS(xi) or (b) Xi i—> RS{xi)

is not in any solution of si, (2) 3 a value in the domain of yi, say di, cannot

be extended to any solution of si, (l)(a) Now we construct a complete assign-

ment e by Construction 5.1 with doing RS'{xi) = PS{xi) between step 1 and

2. Note that by Property 5.2.4’ k such that both yk ^ j and y^ ̂ i in

e, where j — i. Here, e is a solution of si, which is a contradiction. (l)(b)

Now we construct a complete assignment e by Construction 5.1 with an extra

condition that each dr ^ i dX step 3. Note that dr must exist.̂ Again, e is

a solution of si, which is a contradiction. (2) Note that {yi i-> G x^J is

HC { i f f } . W e construct a complete assignment e by Construction 5.1 with doing

RS'(xdi) = RS'{xd,) U {z} between step 1 and 2. Note that by Property 5.2.2’

i e PS(Xcii). Moreover by Property 5.2.4, $t di, such that i G RS{xt). Thus,

we have yi ̂ di only. Again, e is a solution of si, which is a contradiction.

Prom both of cases (1) and (2)，this is a contradiction. •

Theorem 5.12. HC{eie}=HC{iff}.

Proof. First, we show HC{eie} ̂ HC{iff}. Suppose it is HC{eie} but not HC{iffy

Consider the following two cases: (1) by Lemma 5.1, 3 i such that xi PS{xi)

^Suppose dr does not exist, thus dr = i and D{yr) must be equal to {i}, which essentially
assign i to yr. Then r must be in RS{xi) because of HC{iff}, which is a contradiction with
Construction 5.1.1.

Chapter 5 Consistency Levels of Channeling Constraints 52

or RS{xi) can not be extended to any solution of a constraint c, j £ Xi ^

Uj = i. (2) 3 a value a in the domain of yi which makes a constraint c, yi = j

^ i ^ Xj to be not HC. (1) W e consider the following cases: (a) i € Dy. and j

e RS{xi) (b) i e Dy. but j i RS{xi) (c) i • Dy. but j e RS(xi) (d) i • Dy.

and j 茫 RS{xi) (a) Since j € Xy. is HC, j € PS{xi). Thus, { âi i-> P»S(:ri)，yj

2 } and { Xi H-̂ RS{xi), yj ^ i } are two solutions of c. (b) Since j G Xy. is

HC, j G PS{xi). Thus, { rci H PS{xi), yj i } is & solution of c. Let b G Dy.,

we want to show 3b + i. Suppose b must be z, by j E Xy. is HC, j G RS{xi),

which is a contradiction. Thus { Xi h RS{xi), yj b } is 8i solution of c. (c)

This case is not possible, since ŷ i = ^ is HC, j 朱 PS{xi), which means j 朱

RS[xi). (d) Since y^i = i is HC, j 车 PS{xi), thus let b G Dy., thus { Xi h

PS{xi), Vj ^ b } and { Xj t—>• RS{xi), Vj ̂ b } are two solutions of c.

(2) W e consider the folloing cases: (a) a ^ j {h) a = j. (a) W e want like to

show that i ^ RS{xj). Suppose i e RS{xj), since yxj = j is HC, then yi must

equal to j, which contradicts to a — j. Thus { Xj i—> RS(xj), i—̂ a } is a

solution of c. (b) Since i e Xy. is HC, then i G PS{xj). Then { Xj i-> PS{;Cj\

a } is a solution of c.

Combine the above two cases, this is an contradiction.

Second, we show HC�=HC{eie} = HC{iffy Since HC{si} ^ HC{eie} is

trivial, and we have HC{eie} ̂ ^^{iff} already. By Theorem 5.11, we have

HC{si}= HC\iff、, thus we have HC{si} = HC{eie} == HC\iff、. •

Corollary 5.13. HC{si}= HC{c}, where c can be iff or ele.

Proof. Straightly followed by Theorem 5.11 and 5.12. •

Corollary 5.13 shows that the global implementation si gives no more prun-

ing than iff or ele w.r.t. HC.

Theorem 5.14. HC{si}=HC{Y[^si}-

Chapter 5 Consistency Levels of Channeling Constraints 53

Proof. By Property 5.1.1, HC{Yi,si}^ HC�.To show the reverse by contra-

diction, suppose it is HC⑷ but not HC{Yi,si} due to a global partition con-

straint. Then, by Lemma 5.1，3i such that either Xi PS{xi) or Xi h RS[xi)

cannot be extended to any solution of on X , but 3 a solution e — ex U ey

of si, where ex = {xi i—̂ Si, ..., i—> s^, ..., Xn i—> ey = {yi^di,...，

ym^dm}, and Si = PS{xi) or RS{xi). Note that ex cannot be a solution of

n on X. Hence there are two cases, (1) sjj = Sj, but su C {1，…,m}.

Then 3/c such that k € {1,...，m} but k ̂ su. That means yk does not take

any value, this is a contradiction. (2) 3ki, k2 such that Sk = Xk̂ fl and

Sjfc + {}. Then 3^3 G Sk. That means yk̂ need to take ki and k)、this is a

contradiction. Prom both of cases (1) and (2)，this is a contradiction. •

Corollary 5.15. HC{c)=HC{a,c), where c can be si, iff, elex or eley； and a

can be Yl or \ .

Proof. In general, HC{Y[,si}'̂ ̂ ^{llsi}'^ HC{si}• By Theorem 5.14, we have

HC{Y[,si}= HC{\isi}= HC{si). And we can easily derive the rest by Corollary

5.13 and Property 5.1.2，5.1.3. •

Corollary 5.15 shows that any implementation of the SI channeling con-

straint subsumes all possible implementations of the partition constraints. In

other words, the partition constraints can be removed from the model without

losing constraint propagation strength.

5.3 Set-Set Channeling Constraints (SS)

Both M x and M y are set models in this case. Channeling two set models im-

poses no characteristic constraints. The next property, which follows directly

from the definition of SS, helps with our subsequent proofs.

Chapter 5 Consistency Levels of Channeling Constraints 54

Property 5.3. Given it is SBC�iff�’ we have

1. j e PSixi) i e PSivj)

2. j € RS{xi) ^ i e RSivj)

W e are now ready to give a tightness relation between ss and iff w.r.t.

SBC.

Theorem 5.16. SBC{ss}=SBC{iff}.

Proof. SBC{ss} ^SBC{ i f f } is trivially implied. To show the reverse by con-

tradiction, suppose it is SBC {iff} but not SBC{ss}- W.L.O.G., let it not be

SBC{ss} on X (a symmetric proof can be made for Y). Then, by Lemma 5.1，

such that either (1) Xi i—PS[xi) or (2) Xi i—RS(xi) cannot be ex-

tended to any solution ss. For (1)，We construct a complete assignment

e = {xi^ PS^a^i) I rci e X } U {yi h-> PS�yi�| yi G Y}. Note that by Property

5.3.1，e is a solution of ss, which is a contradiction. For (2), W e construct a

complete assignment e = {xi ^ RS{xi) \ Xi e X} U {yi h RS{yi) \yi eY}.

Note that by Property 5.3.2，e is a solution of ss, which is a contradiction.

Prom both of cases (1) and (2), this is a contradiction. •

Theorem 5.17. SBC{eie}=SBC{iff}.

Proof. First, we show SBC{eie} ^ SBC {iff}. Suppose it is SBC{eie} but not

SBC{iffy Consider the following two cases: (1) by Lemma 5.1，3 i such that

Xi PS{xi) or RS{xi) can not be extended to any solution of a constraint

c, j e Xi i e Uj. (2) by L e m m a 5.1, 3 i such that yj h PS{yj) or RS(yj)

can not be extended to any solution of a constraint c, j E Xi i G yj. (1) W e

would like to show that (a) { Xi PS{xi), yj PS{yj) } and (b) { Xj i-̂

RS{xi), yj I—>• RS(yj) } are two solutions of c. (a) If j G PS{xi), since i G yx^

is S B C , i e PS{yj), If j • PS{xi), since j G Xy. is S B C , i • PS{yj). Thus {

Chapter 5 Consistency Levels of Channeling Constraints 55

Xi f-> PS{xi), yj H PS{yj) } is a solution of c. (b) if j 6 RS { x i) , since i G Vxi

is S B C , i e RS{yj). If j 车 RS{xi), since j E Xy. is S B C , i • RS{yj). Thus {

Xi RS{xi), Uj I—RS(yj) } is a solution of c. (2) Symmetric proof can be

made as (1).

This is an contradiction.

Second, we show SBC^ss] = SBC{eie} = SBC {iff}. Since SBC {si} ^ SBC^eie}

is trivial, and we have SBC{eie} ^ SBC侦、already. By Theorem 5.16, we have

SBC{si}= SBC {iff), thus we have SBC^si) = SBC^eie) = SBC^�. •

Corollary 5.18. SBC{ss}=SBC{c}, where c can be iff or ele.

Proof. Straightly followed by Theorem 5.16 and 5.17. •

Corollary 5.18 shows that the global implementation ss gives no more prun-

ing than iff or ele w.r.t. SBC.

5.4 Int-Bool Channeling (IB)

W e assume that Mx is an integer model with only one variable and My is a

Boolean model. Since the variable in X must be assigned exactly one value,

channeling Mx and My imposes the characteristic constraint on Y: J2yiEY Hi —

1. W e call this constraint sum-to-one and denote it by Q .

The following property is for helping the following proofs.

Property 5.4. Given Sx,y is AC{iff}, we have:

1. X t - ^ 2 2/i I—> 1

2. ie D^^ I e Dy.

3. + j, such that �/i i—> 1 (or Dy. = {1}^ and 1 G Dy.

Chapter 5 Consistency Levels of Channeling Constraints 56

4. if Syi G Y such that 1 e Dy., then \fyj ^ E 0 G Dy.

Proof. To prove point 3. Suppose 3i + j, such that Vi^ I and 1 G Dy.. By

point 1 and point 2, rr i—> z and j G Dx is a contradiction.

To prove point 4. Suppose 3yj such that 0 朱 Dy., which means Dy. = {1}.

Then by point 3，this is a contradiction. •

Point 1 and 2 are from the definition of IB. Point 3 explains there can be

only one variable in Y is assigned to 1. And Point 4 is a situation that derived

from point 3.

Here, we prove that ib w.r.t. G A C is as tight as iff w.r.t. AC. The result

follows directly from the fact that ib is actually the same as eley, which in

turn is a special case of the eley in II (Boolean is a special case of integer).

Theorem 5.19. GAC{ib}=GAC{eie}=AC{iff}.

Proof. W e first prove for GAC{ib}=AC{iffy G AC {n,}^ AC {iff} is trivially im-

plied. To show the reverse by contradiction, suppose it is AC{iff} but not

GAC{iby Consider the following two cases: (1) 3 a value i G Dx, which is not

GAC{H)}. (2) 3 a domain of yi, say di, which is not GAC{ib}. (1) Note that

i e Dx and 1 E Dy. are AC {iffy. Now we construct a complete assignment e

in the following steps. First we make e contains x h i and yi i-̂ 1. Then by

Property 5.4.4, for the rest of yj must in Dy., and we make e contains

Uj H 0. Hence e is a solution of ib, which is a contradiction. (2) Consider

the following two cases (a) di = 0 and (b) di == 1. (a) i-> 0 and i ^ D^

are AC{iffy Now we construct a complete assignment e in the following steps.

First we pick a value j such that 1 G Dy. and j + i, and make e contains a: i—> j

and Uj 1. Note that by Property 5.4.2 and D^ + {}，j must exist. Then

by Property 5.4.4’ for the rest of 狄，0 must in Dy^, and we make e contains

yk ̂ 0. Again e is a solution fo ib, which is a contradiction, (b) yi ̂ I and

Chapter 5 Consistency Levels of Channeling Constraints 57

X ^ i are AC{iff}. Here, we have a same proof as (1). Prom both of cases (1)

and (2), this is a contradiction.

Second, we prove for GAC{ib} = GAC^eie} = ^̂ {iff}- By Theorem 5.5，we

have GAC^eie} ^ since Y x can be consider as:

Xyi = i^Vi e Y

Moreover, GAC{ib}^GAC{eie} is trivial. Thus, together with GAC{ib]=AC{iff},

we have GAC^ib} = GAC{eie} = AC {iff}. •

Theorem 5.20. [CLS06] AC{iff}= GAC{iff^Q}.

Corollary 5.21. GAC{ib}=GAC{ib,Q}.

Proof. B y Theorem 5.19，GAC{ib}= AC {iff). By Property 5.1.2, we can have

GAC{ib^Q}= Thus, by Theorem 5.20 and Property 5.1.3, we have

GAC{ib}= GAC{ib,Q}. •

Theorem 5.20 and Corollary 5.21 show that the sum-to-one constraint does

not cause any more domain reduction when working with either si or iff.

5.5 Set-Bool Channeling (SB)

W e assume that M x is a set model with only one variable and M y is a Boolean

model.

The following property is for helping the following proof.

Property 5.5. Given Sx,y is SBC{iff], we have:

1. i e PS{x)

2. i • (Dy, = {0}；

3. i e RS{x) ^Vi^l (Dy, = {1}；

Chapter 5 Consistency Levels of Channeling Constraints 58

4. i i RS{x) ^OeDy,

Point 1 and 3 are from the definition of SB. Point 2 is equivalent to point

1, and point 4 is equivalent to point 3.

Here, we prove that sb w.r.t. H C is as tight as ele w.r.t. HC, and as tight

as iff w.r.t. HC.

Theorem 5.22. 丑 尸 丑

Proof. W e first prove HC{sb}=HCliffy. HC{sb}^HC{iff} is trivially implied.

To show the reverse by contradiction, suppose it is HC{iff} but not HC{sb}-

By L e m m a 5.1, consider the following two cases: (l)(a) x t-> PS{x) or (b)

X I—)• RS{x) is not HC^sb}- (2) 3 a domain of yi, say di, which is not GAC{sb}-

(1)(a) Note that for each k G PS{x), Uk h 1 is HC^�. Now we construct

a complete assignment e in the following steps. First we make e = {x

PS{x)} U {2/A； 1 I A: G PS{x)}. Then for the rest of yi which is not assigned

with value yet, make e contains yi 0. Note that by Property 5.5.2，0 G DyJ.

Hence e is a solution of sb, this is a contradiction. (l)(b) Note that for each

k G RS{x), 2/fc 1 is HC{iff}. N o w we construct a complete assignment e in

the following steps. First we make e — RS[x)) U {？/̂ 1 | /c G RS{x)).

Then for the rest of yi which is not assigned with value yet, make e contains

yi 0. Note that by Property 5.5.4’ 0 e Dy^. Again e is a solution of sb,

this is a contradiction. Prom both of cases (a) and (b), this is a contradiction.

(2) Consider the following two cases: (a) di — 0 and (h)di = 1. (a) Vi ^ 0

and i ^ PS{x) (and i • RS{x)) are HC{iff}. N o w we construct a complete

assignment e same as (1) (a). Ami e is a solution of sb, this is a contradiction,

(b) yi H 1 and i G PS{x) are HC{iff}. Here, we have a same proof as (l)(a).

Prom both of cases (1) and (2), This is a contradiction.

Second, we prove for HC{sb} = HC{eie} = HC{iff}. By Theorem 5.12，we

Chapter 5 Consistency Levels of Channeling Constraints 59

have HC{eie} ^ HC{iff], since Y x can be consider as:

i e Xy.yyi e Y

Moreover, HC{sb}^HC{eie} is trivial. Thus, together with HC、sb、=HC{iff、, we

have HC{sb} = HC{eie} = H C 阶 •

5.6 Discussion

In ideal situation, if a solver provides glo (i.e. ii, si, ss, sb, and ib) or ele,

they should be maintained HC. While in real situation, it is not always true.

For example, ILOG solver provides Ilclnverse as ii, but Ilclnverse is just

maintained a equivalent consistency level as maintaining AC on each constraint

in iff. Another example is using element constraint for int-int channeling.

Prom the user manual of SICStus Prolog:

element(?X, +List, 7Y)

element/3 maintains domain-consistency in X and interval-

consistency in List and Y.

A domain constraint is an expression X :: /, where X is a domain

variable and / is a nonempty set of integers. A set S of domain

constraints is called a store. D{X, S), the domain of X in 5, is

defined as the intersection of all I such that X :: I belongs to S.

A constraint C is domain- consistent wrt. S iff, for each variable

Xi and value Vi in D[Xi, 5), there exist values Vj in D{Xj, S), 1 <

j ^ j, such that C(Vi,..., 14) is true.

Chapter 5 Consistency Levels of Channeling Constraints 60

A constraint C is interval-consistent wrt. S iff, for each variable Xi

and value Vi in D[Xi^ S), there exist values Vj and Wj in D'(Xj, 5),

^ ^ j ^ j, such that C{Vi, ..., min{D{Xi, 5)), ..., 14) and

C{Wi^ …，max(D(Xi , S)), ...，Wn) are both true.

Although the other solvers that we investigated in the previous chapter do

not state the consistency level they maintain, element constraint is usually not

maintained as G A C because of the performance issue.

Our theoretic result shows that except for II，maintaining a higher level

of consistency on the entire global channeling constraint does not increase

the pruning power, which is an useful information on implementing efficient

channeling constraints.

Chapter 6

Algorithms and Implementation

In the previous chapter, we investigate and report the comparison on con-

sistency levels among the various realizations for each of the channeling con-

straint. A major result is that, except for II, a global constraint maintaining

H C on the entire channeling constraint gives the same pruning power as main-

taining H C on each of the constraints in an iff implementation. One might

be tempted to conclude that (a) the iff implementations are the best for the

SI, SS, IB, and SB channeling constraints, and (b) a G A C global constraint

implementation is the best for the II constraint. For (a), we are going to show

that the iff implementations are inefficient since there are a large number of

constraints. During constraint propagation, many invocations of propagators

are proved to be unnecessary. For (b), we have so far been unable to devise an

efficient propagator for the global II constraint to enforce G A C . Apparently,

the cost for maintaining G A C is so high that it cannot be compensated by

the extra pruning achieved. The implementation details is reported in the last

section in this chapter, and experimental results are given in the next chapter.

The discussion above should not be used as arguments against global con-

straint implementations, since we can always maintain a lower level of con-

sistency than H C for a global constraint. An important advantage of global

constraint implementation is that information from many constraints can be

61

Chapter 6 Algorithms and Implementation 62

considered in one go, providing a more complete view and saving time for coor-

dinating the domain reduction and propagation of pruning information among

a large number of constraints. In the following, we analyze the inefficiency

of the iff implementations, followed by presentations of two generic propaga-

tors for making part of and the complete set of the iff constraints into global

constraints.

6.1 Source of Inefficiency

If we are channeling models Mx and M y with n and m variables respectively,

there should be nm iff constraints, each of which is associated with a prop-

agator, and each propagator is invoked whenever there is domain reduction.

Consider a situation in II, in which the value 3 is removed from D^i. If we are

maintaining A C on the individual iff constraints, this information will invoke

m of the iff propagators involving rci, but only one propagator takes effect and

removes the value 1 from Dy^. This last domain reduction in turn trigger the

other n — 1 propagators involving 2/3，but no reduction will happen. Suppose,

in SI, that 1 is added to RS{xs). If we are maintaining H C on the individual

iff constraints, this would invoke the m propagators involving X3, and only

one would take effect and cause 3 to be assigned to yi. The assignment is

equivalent to removing values {1，2，4，…，n} from Dy” which would in turn

invoke n — 1 propagators involving yi and cause xi 1, 0:2 -/> 1, X4 1,...’

Xn 1. Since n — 1 X variables are updated, (n — l)(m — 1) propagators in-

volving these variables will be invoked without further reduction effect. Prom

these two examples, we can see that usually a large number of invocations

of propagators is unnecessary and wasteful of computing resources. Similar

analysis leads to the iff column in Table 6.1，which reports the big O order of

Chapter 6 Algorithms and Implementation 63

Type Task iff ele glo
II VD 0{nm) 0(n + m) 0(n + m)

PR 0(n + m) 0(n + m) 0(1)

SI VW 0{nm) ~ Q(n + m) “ 0{n)
PR Q(n + m) 0(n + m) 0(1)~~

SS V ^ 0(n + m)~ 0(n + m) “ 0(1)

PR 0(n + m) 0(n + m) 0(1)

IB V^ 0(m) — Q(m) “ 0(m)
PR 0{m)~ 0(1) 一 0(1)

S B V^ 0{m)~~ 0(1) — 0 (1)“

PR Ojm) 0(1) — 0(1) 一

Table 6.1: Big O Order of Propagator Invocations

the number of propagator invocations for various implementations and chan-

neling constraint types. The table gives the number of propagator invocations

caused by both variable decisions (VD) and domain reductions (DR) for each

channeling constraint.

6.2 Generalized Element Constraint Propaga-

tors

Cheng et al. [CCLW99] suggest using the element constraint as a more suc-

cinct and compact way of expressing the II channeling constraint. This would

work also for IB, but not for SI, SS, and SB which involve set variables. W e

propose a generalized element constraint for both integer and set variables

specialized for implementing channeling constraints. The form of the con-

straint is gElementC/, LVi, . . . ,y„]，c), where I and K's are either integer

(Boolean) or set variables and c is an integer constant. The new constraint

Chapter 6 Algorithms and Implementation 64

1: xDomRed(i : index of variable x) t> be invoked when the domain
2: if V is impossible for Xi then of Xi is changed

y^i
1: yDomRed(rm: set of new impossible values > be invoked when the domain

for y; of y is changed
rq : set of new decided values)

for y\
2: for each j e rq do
3: Xj ^ V

Figure 6.1: The Propagator for gElement of the form Xy = v or v e Xy

is a generalization of element since set variables are now supported. It is a

specialization (for efficient implementatioE) since c must be a constant.

W h e n I and V^s are integer variables, gElement has the same meaning as

element. W h e n / is a set variable and Vj's are integer variables, the constraint

enforces that Vj. E /, V̂- = c. When I is an integer variable and V̂ 's are

set variables, the constraint means that c G V/. When both I and ViS are

set variables, the semantics is that Vj e I, c e Vj. When Vi's are integer

variables, the constraint is abbreviated to Vj = c. When V̂ 's are set variables,

the constraint is abbreviated to c G V/. Suppose the variable x^ is instantiated

to the set {2，4，7} in SI. Both the ele constraints would enforce 2/2，2/4，and y-j

to take the value 3，and vice versa.

Figure 6.1 gives the pseudocode of the propagator for the gElement con-

straint of the form either XY = v OT v e XY (i.e. Xi^s are the principal variables).

By making use of notions and notations defined in Chapter 2, the pseudocode

is generic in the sense that the different combinations of variable types are

immaterial in understanding the algorithms. The propagator consists of two

procedures: xDomRed is invoked when one of the Xi variables is updated and

yDomRed is invoked when the y variable is updated. The procedure xDomRed

Chapter 6 Algorithms and Implementation 65

is called with the index i of the updated variable Xi. Depending on the status

of the value v with respect to Dx, Dy is updated accordingly. On the other

hand, yDomRed is called with the new impossible values and/or the new de-

cided value for 2/ as a result of the last update. Based on these values, domains

of the appropriate Xj variables are updated.

Note that Boolean mapping constraint Yx is actually a special case of Xŷ =

i, in which our gElement Propagator is also fit for it.

Property 6.1. A reified constraint C � C 2 is satisfied if and only if both Ci

and C2 are true or both Ci and C2 are false, where Ci and C2 are constraint.

Thus, we have propagation rules of (1) Ci is true C2 is true, (2) C2 is true

C2 is true, (3) Ci is false => C2 is false, (4) C2 is false => C2 is false.

Proof. It is by definition of reified constraint. •

Lemma 6.1. The iff constraint can he maintained as HC by 4mn propagation

rules (by Property 6.1), they are: (1) xi^ j yj i; (2) yj ^ i Xi ^ j;

(3) yj • i; (4) j, Vrc, e X^'iyj e Y.

Proof. It is straightly followed by the definition of HC. •

T h e o r e m 6.2. Using the gElement propagator in each constraint in ele is

equivalent as maintains HC on each constraint in iff.

Proof. By SLemma 6.1, there are propagation rules (1), (2), (3) and (4). Prom

Figure 6.1, all the rules in (1) and (4) are handled by procedure "xDomRed",

and all the rules in (2) and (3) are handled by procedure "yDomRed". •

Similar analysis is performed to give the big O order of the number of

gElement propagator invocations for the ele implementation in Table 6.1. Ac-

tually, the number of propagator invocations is proportional to the number of

constraints with their variables' domains are changed.

Chapter 6 Algorithms and Implementation 66

6.3 Global Channeling Constraint

In Chapter 4，we introduce the existing global channeling constraints in dif-

ferent solvers. While they are for int-int channeling constraint (II), but not

for SI, SS, SB and IB which involve set variables and Boolean variables. On

the other hand, some solvers do not provide an implementation of II which is

maintained G A C . In this section, we present two algorithms on global chan-

neling constraint. One is the generalization of those existing global channeling

constraints for integer, set and Boolean variables. This generalization main-

tains a consistency level as same as maintaining H C on each constraint in iff.

Another one is an implementation of II which is maintained G A C , and it is

based on the implementation of global AllDiff constraint.

6.3.1 Generalization of Existing Global Channeling Con-

straints

Prom Table 6.1，we can see that the elex and eley implementations offer a good

reduction in number of propagator invocations. This good trend suggests to go

one step further to bundle all iff constraints (and thus also all ele constraints)

into one global constraint as our glo implementation. Figure 6.2 gives the

pseudocode of the glo propagator for channeling models Mx and My- Again,

the pseudocode is generic in the sense that it is applicable to all five channeling

constraints. The glo propagator has three procedures: domRed is a common

procedure called by xDomRed and yDomRed, which are invoked by updates

of an Xi or yj variable. Arguments to the xDomRed and yDomRed procedures

include the index of the updated variable, and the new impossible and/or

decided values for the updated variable as a result of the last update. Upon

entry, the xDomRed and yDomRed procedures simply pass the variables to

Chapter 6 Algorithms and Implementation 67

1: domRed(Z : set of variables {z i , . . . Zn}\ t> be invoked by xDomRed
V : value; or yDomRed

rm: set of impossible values;
rq : set of decided values)

2: for each j 6 rm do
3: Zj V
4: for each j 6 rq do
5: Zj V
1: xDomRed(i : index of variable re; t> be invoked when the domain

rm: set of new impossible values of Xi is changed
for Xi]

rq : set of new decided values
for Xi)

2: domRed(y, i, rm, rq)
1: yDomRed(i : index of variable y; t> be invoked when the domain

rm: set of new impossible values of yi is changed
for yi]

rq : set of new decided values
for Vi)

2: domRed(X, i, rm, rq)

Figure 6.2: The glo Propagator

Chapter 6 Algorithms and Implementation 68

be updated and the received arguments to domRed. Based on the received

values, the domRed procedure updates the appropriate variables accordingly.

Theorem 6.3. The glo propagator maintains HC on the iff constraints.

Proof. By L e m m a 6.1, there are propagation rules (1), (2), (3) and (4). Prom

Figure 6.2, all the rules in (1) and (3) are handled by procedure "xDomRed",

and all the rules in (2) and (4) are handled by procedure "yDomRed". •

Table 6.1 gives also the big O order of the number of glo propagator in-

vocations in the last column. W e can see that the glo propagator in general

gives a drastic improvement in performance over the iff and ele propagators.

There are a few points to note. First, for IB and SB, eley contains only one

constraint, which is equivalent in pruning behavior to the glo constraint. That

is why they share the same big O order. Second, IB and SB are special cases of

II and SI respectively. The big O order entries of IB and SB can be obtained

from those of II and SI by setting n to 1 (since \X\ = 1 for both IB and SB).

6.3.2 Maintaining GAC on Int-Int Channeling Constraint

In this section, we give an algorithm for maintaining G A C on global II (gll),

which is based on matching theories and Regin's all-difference algorithm [Reg94 .

In the following, we are channeling two integer models Mx and My with vari-

ables X = {xi,...，Xn} and Y = {yi,..., respectively.

Method 6.1. Construct a bipartite graph Gu = (V, E), where V = X U Y

(xi £ X on the left and yj G Y on the right) and E = {{a:̂ , yj} | j G Dx^ and

i € Dy.}.

Figure 6.3 shows a result Gu that is constructed by Method 6.1 for X =

Y = {2 /1 , . . .2/4}’ A r i = Dy, = Dy^ = {1，2}’ = { 1 ’ 2 , 3 } , =

Chapter 6 Algorithms and Implementation 69

"crT"] V2
:

\ ^ ^ ^ I M /

Figure 6.3: Perfect Matching

Dx4 = Dy^ = {3,4} and Dy^ = {2,3,4}. In this figure, the bold edges are a

perfect matching E of Ga. By considering each edge {xi, yj} as an assignment

{xi I—> J, Uj I—> z}, we can clearly obtain a solution 5=； of ii: {xj z | E

X} U {Vi ̂ i \ Vi E Y}. By this example, we have the following theorem and

corollary:

Theorem 6.4. Given Gu is constructed by Method 6.1, ii has a solution s三 if

and only if Ga has a perfect matching E.

Corollary 6.5. Given Gu is constructed by Method 6.1,3 a perfect matching

of Ga contains an edge {rci, yj} if and only if {xi h j,yj t—>• i} can be extended

to a solution of ii, where j G Dx^ and i G Dy^

Theorem 6.4 gives us a method of finding a solution for a given global II，

and Corollary 6.5 points out a condition on when a domain value (in both

models) can be extended to a solution. If we have an efficient way to remove

all edges that are not in any perfect matching, then we can maintain G A C on

global II. Here is a property helps us.

Chapter 6 Algorithms and Implementation 70

Property 6.2. [BerTO] An edge belongs to some of but not all maximum

matchings, iff, for an arbitrary maximum matching M, it belongs to either

an even alternating path which begins at a free vertex, or an even alternating

cycle.

By this property, if we find a perfect matching S and the set of edges 6

of all even augmenting cycle in Gu, then edges i? = {e | Ve G e ̂ H and

6 ^ 0 } can be removed. Here is an efficient method to remove R, same as

what Regin did [Reg94..

Method 6.2. Given a bipartite graph G = (V, E), where V = X U Y, and a

perfect matching E of G, construct an oriented graph G' = (V, E'), where E'=

{{x,y) I V{a;,?/} G G X andy G y } U {{y,x) | G E-E,x G X and

y G y } . If the set of edges Q' are edges of all strongly connected components of

G', then edges R' = {{a;,?/} | V{a:,?/} G E^ • S, {x,y) and {y, x) • 6'}

can be removed.

Method 6.2 is efficient, as finding all strongly connected components takes

0[\V\ + I丑I) steps. Note that the direction of edges in E' makes any path

traversal forming an alternating path. Thus if 3 an edge e in a strong connected

component, then there must be an even alternating cycle (a cycle in bipartite

graph must be even) contains e, and vice versa. Hence, we have R = R'. The

dotted edge ys} in Figure 6.3 is an example that it does not belong to any

perfect matching (solution) in the graph.

Let us summarize our method of maintaining G A C on global II (gll), and

calculate the overall complexity.

1. Construct a bipartite graph G from X and Y, remove domains that can't

form edges.

2. Find a perfect matching E of G, no solution can be found if this fails.

Chapter 6 Algorithms and Implementation 71

3. Construct another graph G\ by orienting edges {xi^yj} belongs to E as

(xi, yj), or orienting as [vj.Xi) otherwise.

4. Find edges 0 of all strongly connected components of G'.

5. Remove the domains of the corresponding edges e ̂ 0.

Step 1, 3，4’ 5 takes 0{\V\-\-\E\) steps, step 2 takes 0{{\V\-\-\E\)y/\V\) steps.

Thus the overall complexity is 0((|V| + \E\)^/^\).

In practice, step 1,2 and 3 can be built‘ once, and they can be maintained

during search. Step 1 and 3 can be maintained by propagators in Figure 6.2.

While on maintaining step 2, if k edges are removed in the matching, then

steps are need for repair.

Chapter 7

Experiments

To evaluate the feasibility and efficiency of our proposed propagator algo-

rithms, we have implemented the propagators and compared them against

techniques utilizing available constraints in existing solvers. One way to per-

form benchmarking is to construct a combined model with only variables and

channeling constraints. Random variable assignments and pruning can then

be generated to exercise the various implementations and observe their perfor-

mances. Such an approach is ad hoc in the least. W e test our implementations

on real CSP benchmarks from the CSPLib. Smith [SmiOl] suggests the models

{Qc, Qr, Qz} of the n-queens problem, {:„，Lp, L^} of the Langford's problem,

and {Gg, Gp, G^, Gz} of the Social Golfers problem. The models {A^^ Ap^ Az}

of the All Interval Series problem, {Be, Bp, Bz} of the Balanced Academic

Curriculum, and Sp, Sz} of the Steiner Triple Systems are by Choi et al.

CLS06], Hnich et al. [HKW02], and Law and Lee [LL06] respectively.

For each problem, we test a wide range of instances which terminate in rea-

sonable time. All executions search for all solutions to exercise the channeling

constraints to the fullest, using smallest domain first and first unbound variable

heuristics for integer variables and set variables respectively. All experiments

are conducted using ILOG Solver 4.4 on a Sun Blade 25000 workstation with

2GB memory.

72

Chapter 7 Experiments 73

In the resulting tables, each row corresponds to a problem instance, and

each column corresponds to a type of channeling constraint implementation.

In the same table, if all the channeling constraint implementations maintain

the same consistency level, we report their fails in the rightmost column. On

the other hand, if the implementations maintain different consistency levels,

we group them into blocks according to their consistency levels, and report

their fails in the rightmost within each block. Each table caption specifies the

models used for channeling. Variables of the bolded model is used as search

variables. The aim of the experiments, except those relate to maintaining

G A C on int-int channeling constraint, is to compare the runtime of the glo

implementation against all other implementations. Thus, despite reporting

the runtime on each type of channeling constraints implementation, speedups

(runtime of an implementation / runtime of glo implementation), are reported

at the bottom of each implementation, i.e. the bottom of table. Speedups are

averaged over the number of instances, specified at the right bottom corner,

which run more than one second on their iff implementation i . W e report

also in brackets the standard deviation of each statistics.

7.1 Int-int Channeling Constraint

Theorem 5.6 in Chapter 5 tells us about maintaining G A C on a global int-

int channeling constraint causes more domain reduction. Thus we divide this

section into two subsections. The first focuses on the implementations that

are equivalent to maintaining A C on each iff constraints. This compares the

runtime among the gElement implementation, glo implementation, and those
iProm our experience, the runtime report by iLog solver may not be accurate. There can

be + / — 0.1 � 0 . 2 variation in second. Thus we want to minimize the error for calculation
in this way

Chapter 7 Experiments 74

predefined constraints in ILOG Solver. The second focuses on the implementa-

tions that are equivalent to maintaining G A C on the global int-int channeling

constraint. This compares the runtime among the gll implementations and

those predefined constraints in ILOG Solver.

7.1.1 Efficient AC implementations

Tables 7.1，7.2，7.3，7.4, and 7.5 report the results for int-int channeling be-

tween models Qc and Q ” Ln and L p， a n d Lp, An and Ap and An and A p

respectively. The result for channeling between models Qc and Qr are identical

to the one of channeling between models Qc and Qr\ thus we leave it out. The

iff implementation is the basic one. Hnich et al. [HSW04] prove that keeping

pairwise disequality ⑷ constraints on either model does not increase prun-

ing. W e study how the extra disequality constraints in the implementation

• iff + can degrade performance. For the realization of pairwise disequality

constraints, we use the IlcAllDif f constraint, which is a predefined con-

straint in ILOG Solver. The IlcAllDif f constraint has an option for choosing

different consistency levels, and we choose the one that is equivalent as main-

taining A C on each pairwise disequality constraint. The ele implementations

use gElement with variables in models 1 and 2 together. For the II case, the

ILOG element constraint can also be used, we use elei2 implementation to

represent ILOG implementation, where 1 is the letter representing variable in

model 1，and 2 is the letter representing variable in model 2. ILOG Solver also

provides the Ilclnverse constraint, which is also a global constraint main-

taining the same consistency (by our experimental observation only) as glo.

Their performances are basically identical and we leave out the results.

Results in Table 7.1, 7.2, 7.3, 7.4, 7.5 confirm that glo are the fastest

among all implementations. The speedups for the 寺 iff • implementation

Chapter 7 Experiments 75

n _ iff 寺 iff elecr ele glo Fails

8 ^ ^ O ^ o S ^

9 0.15 0.13 0.11 0.08 0.06 929
10 0.57 0.58 0.43 0.33 0.23 4106
11 2.65 2.65 • 1.92 1.41 0.99 17601
12 13.41 13.37 9.27 6.89 4.74 80011
13 71.9 71.41 48.41 35.89 23.82 392128
14 412.67 409.19 265.26 198.2 128.2 2101047
15 2508.1 2494.85 1569.64 1178.39 741.85 11724826
16 16527.7 16366.6 9888.31 7482.33 4593.78 70692998

Speedup 3.12(0.35) 3.1(0.33) 2.04(0.09) 1.52(0.08) 1(0) || 6

Table 7.1: Result for int-int channeling between models Qc and Qr of the
TV-Queens Problem

are ranging from 2.6 to 3.51. Moreover, the ele implementation are always

faster than ele^ provided by ILOG Solver. The • iff + implementation is

usually the slowest, but sometimes the iff implementation can be a little bit

slower. The _ iff 寺 implementation should be slower than iff due to the

extra work load by the pairwise disequality constraints. In real situation, if

the implementation of + is efficient, like the one we used (IlcAllDiff), it is

possible to reduce the number of propagation steps that should be done by the

"inefficient" iff. Thus, the instances L(10,4)’ L(ll，4)，... ’ L(15,4) in Table 7.3

have the ^ iff implementation slightly faster than the iff implementation.

7.1.2 GAC Implementations

Tables 7.6, 7.7，7.8, 7.9, and 7.10 report the results for int-int channeling be-

tween models Qc and Qr, Ln and Lp, L„ and Lp, An and Ap and An and Ap

respectively. Our implementation gll maintains G A C on ii. By Corollary 5.8,

we form three other implementations: V iglo V，V iglo, and iglo V，which achieve

Chapter 7 Experiments 76

n, k iff ^ iff elcnp ele glo Fails
7,2 o m o m ^ ^
8,2 0.14 0.13 0.09 0.07 0.04 340
9.2 0.88 0.87 0.58 0.44 0.26 2800
10,2 4.9 4.78 3.05 2.42 1.39 13345
11,2 40.69 39.65 23.77 19.59 10.94 71984
12.2 274.5 265.33 155.74 130.27 71.53 438141
7.3 ^ ^ ^ ^
8,3 0.06 0.05 0.05 0.03 0.02 61
9.3 0.26 0.25 0.21 0.14 0.09 257
10.3 1.01 0.92 0.75 0.53 0.31 788
11,3 4.09 3.88 3.06 2.21 1.27 2977
12,3 21.5 20.25 15.88 11.58 6.6 13687
13,3 121.84 116.25 88.41 65.45 37.37 69376
14.3 557.15 530.43 397.27 297.88 169.59 281728
7A ^ m ^ 0 8

8.4 0.05 0.05 0.04 0.02 0.02 23
9,4 0.11 0.11 0.12 0.06 0.04 44
10.4 0.33 0.32 0.33 0.19 0.12 130
11,4 1.22 1.16 1.13 0.69 0.41 414
12,4 5.1 4.9 4.28 2.66 1.6 1344
13,4 23.97 22.85 17.18 11.19 6.69 5111
14,4 112.79 99.36 64.87 43.06 25.86 16944
15,4 455.57 438.92 245.39 163.73 96.14 59479

Speedup 3.61(0.49) 3.45(0.45) 2.38(0.17) 1.73(0.05) 1(0) 12

Table 7.2: Result for int-int channeling between models Ln and Lp of the
Langford's Problem

Chapter 7 Experiments 77

n, k + iff + iff elenp ele glo Fails

7,2 ^ ^ ^ ^ ~

8,2 0.13 0.12 0.08 0.06 0.04 291

9.2 0.78 0.77 0.46 0.4 0.24 2575

10,2 4.46 4.37 2.5 2.23 1.31 12531

11,2 36.84 36.11 19.33 18.52 10.49 67765

12.2 246.87 240.4 125.69 123.11 68.55 405667

7.3 ^ ^ ^ m si

8,3 0.05 0.06 0.04 0.03 0.02 54

9.3 0.27 0.27 0.2 0.14 0.08 205

10.3 0.88 0.85 0.6 0.48 0.28 646

11,3 3.7 3.59 2.48 2.03 1.18 2426

12,3 17.04 16.43 10.81 9.36 5.42 9923

13,3 89.78 87.76 55.61 49.31 28.75 47416

14.3 376.56 365.45 225.25 205.23 120.4 173295

7A ^ ^ ^ 10

8.4 0.08 0.07 0.06 0.04 0.03 25

9,4 0.17 0.17 0.14 0.1 0.06 56

10.4 0.48 0.49 0.39 0.28 0.18 138

11,4 1.12 1.14 0.89 0.66 0.41 272

12,4 4.85 4.92 3.45 2.67 1.64 947

13,4 18.54 18.59 11.19 8.72 5.42 2628

14,4 63.93 63.98 33.34 26.7 16.64 7302

15,4 239.61 242.35 111.33 88.84 54.56 22775

Speedup 3.41(0.4) 3.36(0.43) 1.97(0.1) 1.68(0.05) 1(0) 1 2 —

Table 7.3: Result for int-int channeling between models and Lp of the
Langford's Problem

Chapter 7 Experiments 78

n ^ iff ：^ iff elsnp ele glo Fails
8 ^ O ^ 002 0X11 ^ 1 0 4 ^
9 0.08 0.07 0.07 0.04 0.04 349
10 0.34 0.33 0.29 0.2 0.15 1298
11 1.57 1.49 1.25 0.91 0.65 5136
12 7.78 7.39 6 4.39 3.11 22238
13 40.27 38.03 30.64 21.44 15.5 101463
14 221.5 208.18 165.12 116.34 83.33 495826
15 1280.86 1201.76 940.02 693.96 472.83 2558523
16 7798.82 7331.12 5683.88 4083.17 2850.82 14099360

Speedup 2.6(0.12) 2.46(0.11) 1.97(0.03) 1.44(0.03) 1(0) 6

Table 7.4: Result for int-int channeling between models An and Ap of the All
Interval Series Problem

n 寺 iff 寺 iff elcnp ele glo Fails
9 002 ^ 0.02 120
10 0.08 0.07 0.06 0.04 0.03 324
11 0.26 0.25 0.17 0.15 0.11 981
12 0.87 0.86 0.56 0.49 0.35 3146
13 3.23 3.2 2.01 1.8 1.27 10892
14 13.12 13.03 8.05 7.3 5.09 40352
15 60.14 59.6 36.54 33.85 23.18 173549
16 299.78 298.53 182.08 170.19 114.67 794100
17 1710.95 1700.09 1044.36 969.97 643.59 4162212

Speedup 2.58(0.06) 2.56(0.06) 1.59(0.02) 1.45(0.04) 1(0) 6

Table 7.10: Result for int-int channeling between models An and Ap of the All
Interval Series Problem

Chapter 7 Experiments 79

the same domain reduction as gll, where iglo represents the Ilclnverse con-

straint of ILOG Solver. For the realization of the global allDiff (V) con-

straints, we use the IlcAllDiff constraint, and we set its consistency level to

maintain G A C . On the right-hand-side of each table, we append the results of

glo to give a better overall picture on the int-int channeling constraints imple-

mentation. The bolded values in each table are the fastest runtimes, excluding

the ones of glo {glo is the fastest in most cases).

n V iglo V V iglo iglo V gll Fails glo Fails

~8 ^ m ooi ^ ^

9 0.07 0.07 0.07 0.07 925 0.06 929
10 0.29 0.25 0.26 0.26 4066 0.23 4106
11 1.27 1.12 1.13 1.13 17393 0.99 17601
12 6.06 5.36 5.34 5.38 78974 4.74 80011
13 30.43 27.11 27.08 27.27 386437 23.82 392128
14 164.63 146.29 145.84 146.58 2066779 128.2 2101047
15 957.12 851.15 846.3 . 845.44 11517753 741.85 11724826
16 5940.42 5223.65 5246.9 5222.29 69348242 4593.78 70692998

Table 7.6: Result for int-int channeling between models Qc and Qr of the
TV-Queens Problem

Results in Tables 7.6, 7.7, 7.8, 7.9, and 7.10 show that V iglo, iglo V and

our gll implementations perform similarly, and it is unclear which is better in

different situations. The reason for the different runtime between the imple-

mentation of V iglo and iglo V is the order of constraint propagation, as their

global allDif f constraints V are posted on different models. Moreover, the glo

implementation is the fastest in most cases, except the one of channeling mod-

els An and Ap of the All Interval Series Problem, for the cases n > 12. These

exceptions are due to the large decrease in fails. For example, in Table 7.10,

when n = 17, the fails of the glo implementation are 60.5% more than those of

Chapter 7 Experiments 80

n, k V iglo V V iglo iglo V gll Fails glo Fails

7,2 ^ ^ ^ ^ ^ ^ ^ ^

8,2 0.06 0.05 0.05 0.05 332 0.04 340

9.2 0.33 0.29 0.29 0.31 2703 0.26 2800

10,2 1.73 1.56 1.56 1.63 12860 1.39 13345

11,2 13.79 12.45 12.5 12.79 68844 10.94 71984

12.2 88.88 80.77 80.81 83.1 417953 71.53 438141

7.3 0.01 ^ ^ ^

8,3 0.02 0.02 0.02 0.02 61 0.02 61

9.3 0.09 0.09 0.09 0.09 245 0.09 257
10.3 0.35 0.32 0.32 0.35 756 0.31 788

11,3 1.41 1.3 1.33 1.4 2813 1.27 2977
12,3 7.33 6.83 6.84 7.31 12996 6.6 13687

13,3 40.81 38.46 38.22 40.95 65458 37.37 69376

14.3 184.46 172.84 171.74 184.29 265118 169.59 281728

7.4 0.01 ^ 0.01 8 0 8

8,4 0.02 0.02 0.02 0.02 23 0.02 23

9,4 0.04 0.04 0.04 0.04 43 0.04 44

10.4 0.13 0.13 0.12 0.12 129 0.12 130

11,4 0.45 0.42 0.42 0.45 406 0.41 414

12,4 1.68 1.61 1.59 1.76 1274 1.6 1344

13,4 6.93 6.65 6.56 7.23 4841 6.69 5111

14,4 26.42 25.5 25.17 27.8 16041 25.86 16944

15,4 102.01 98.44 97.59 106.8 56324 96.14 59479

Table 7.7: Result for int-int channeling between models Ln and Lp of the
Langford's Problem

Chapter 7 Experiments 81

n, k V iglo V V iglo iglo V gll Fails glo Fails

7,2 0.02 0.02 0.02 0.02 ^ ^ 0.01 82

8,2 0.05 0.05 0.05 0.05 262 0.04 291
9.2 0.3 0.27 0.28 0.28 2374 0.24 2575

10,2 1.65 1.42 1.51 1.51 11458 1.31 12531

11,2 13.19 11.51 12.06 11.88 60583 10.49 67765

12.2 84.42 74.59 77.86 76.99 359073 68.55 405667

7.3 0.01 0.01 0.01 0.01 29 0.01 31

8,3 0.02 0.02 0.92 0.02 52 0.02 54

9.3 0.1 0.09 0.09 0.09 189 0.08 205

10.3 0.33 0.29 0.31 0.32 612 0.28 645

11,3 1.41 1.26 1.34 1.31 2297 1.18 2426

12,3 6.35 5.57 6.06 5.91 9297 5.42 9923

13,3 33.04 29.55 31.82 31.15 44221 28.75 47416

14.3 136.93 121.51 131.04 128.61 160433 120.4 173291

~7A 10 10

8.4 0.03 0.03 0.03 0.03 25 0.03 25

9,4 0.07 0.07 0.07 0.07 52 0.06 56

10.4 0.2 0.19 0.19 0.2 125 0.18 138

11,4 0.44 0.41 0.43 0.44 261 0.41 272

12,4 1.74 1.65 1.71 1.74 900 1.64 947

13,4 5.61 5.31 5.56 5.67 2460 5.42 2627

14,4 17.06 16.31 17.02 17.48 6822 16.64 7304

15,4 58.45 55.34 58.01 59.08 21354 54.56 22775

Table 7.10: Result for int-int channeling between models An and Ap of the All
Interval Series Problem

Chapter 7 Experiments 82

n V iglo V V iglo iglo V gll Fails glo Fails

8 0.01 103 o H 1 0 4 ^

9 0.05 0.04 0.04 0.04 347 0.04 349

10 0.18 0.17 0.17 0.17 1284 0.15 1298

11 0.81 0.73 0.72 0.75 5077 0.65 5136

12 3.81 3.44 3.37 3.53 21887 3.11 22238

13 18.91 17.05 16.85 17.59 99625 15.5 101463

14 101.11 90.97 88.9 93.4 485829 83.33 495826

15 566.92 514.76 502.86 524.65 2499948 472.83 2558523

16 3430.03 3083.98 3016.11 3144.38 13748263 2850.82 14099360

Table 7.9: Result for int-int channeling between models An and Ap of the All
Interval Series Problem

n V iglo V V iglo iglo V gll Fails glo Fails

"~9 ^ ^ 115 0.02 120

10 0.05 0.04 0.04 0.04 308 0.03 324

11 0.14 0.12 0.12 0.11 904 0.11 981

12 0.41 0.37 0.38 0.33 2760 0.35 3146

13 1.39 1.24 1.31 1.11 9051 1.27 10892

14 5.32 4.68 4.98 4.17 31737 5.09 40352
15 22.39 19.98 21.24 17.47 126407 23.18 173549

16 104.19 92.52 99.25 80.09 540979 114.67 794100

17 539.06 482.85 515.93 415.53 2593350 643.59 4162212

Table 7.10: Result for int-int channeling between models An and Ap of the All
Interval Series Problem

Chapter 7 Experiments 83

implementations maintaining G A C . Thus, implementations maintaining G A C

on int-int channeling perform better, if they can cause much more domain

reduction than the glo implementation.

7.2 Set-Int Channeling Constraint

Tables 7.11, 7.12, 7.13, 7.14, 7.15, and 7.16 give the results of set-int chan-

neling between models G p and Gg, Gp and Gg, G w and Gg、G^ and Gg, Bp

and Be, and Bp and Be respectively. In addition to the standard iff and ele

implementations, we also have Yl iff, which is iff augmented with the set par-

tition constraints Yl- W e prove that keeping the partition constraints in the

set model does not increase pruning in Chapter 5. W e use the f]访 imple-

mentation to study how much the partition constraints degrade performances.

For the realization of the set partition constraints, we use the IlcPartition

constraint, which is a predefined constraint in ILOG Solver.

Results in Tables 7.11, 7.12, 7.13, 7.14, 7.15, and 7.16 confirm that glo is

the fastest among all other implementations. The speedups for the iff im-

plementation range from 1.17 to 1.48. One may argue that the speedup is not

significant,but this will be discussed in a later section. The Yl iff implemen-

tation are always the slowest, but with some exceptional cases in which the

iff implementation can be a little bit slov,er. The reason is the same as why

+ iff + can be faster than iff, The IlcPartition constraint can efficiently

reduce the number of propagations over the "inefficient" iff, though it does not

increase any domain reduction. This is also the reason why the performance

of the n 访 and iff implementations are similar.

Chapter 7 Experiments 84

g,s,w II iff iff^ ^ glo Fails

3.2.2 m 0^01 a m 0

3.2.3 0.01 0.01 0.01 0.01 1

3.2.4 0.01 0.01 0.01 0.01 3

3.2.5 0.01 0.01 0.01 0.01 1

4.2.2 0.01 0.01 0.01 0.01 0

4.2.3 0.03 0.03 0.03 0.02 22

4.2.4 0.11 0.1 0.09 0.09 66

4.2.5 0.15 0.14 0.13 0.12 62

4.3.2 0.01 0.02 0.01 0.01 0

4.3.3 0.12 0.1 0.08 0.08 285

4.3.4 0.2 0.19 0.16 0.15 621

4.3.5 0.16 0.15 0.11 0.11 381

5.2.2 0.02 0.02 0.02 0.02 0

5.2.3 1.28 1.23 0.96 0.91 1090

5.2.4 47.88 46.27 37.07 35.22 52702

5.2.5 514.95 498.34 407.9 389.82 629518

5.3.2 0.06 0.05 0.04 0.04 0

5.3.3 245.03 238.05 176.18 163.41 434115

5.4.2 0.05 0.04 0.03 0.03 0

5.4.3 189.66 185.4 132.3 121.66 544314

5.4.4 2220.36 2169.49 1606.71 1492.05 7908227

5.4.5 2306.79 2243.35 1674.41 1564.17 6402199

6.2.2 0.09 0.09 0.07 0.07 0

6.2.3 105.26 102.25 80.06 77.93 67595

6,3,2 1.32 1.28 0.94 0.85 0

6,4,2 1.19 1.17 0.8 0.72 0

6,5,2 0.17 0.14 0.13 0.13 0

7,2,2 0.7 0.66 0.49 0.46 0

7,3,2 66.61 64.63 44.89 41.02 0

7,4,2 281.68 276.87 187.94 170.92 0

7,5,2 52.75 51.68 34.57 31.37 0

7,6,2 0.59 ^ 0.49 0.41 0

Speedup 1.52(0.12) 1.48(0.12) 1.08(0.03) 1(0) || 13

Table 7.11: Result for set-int channeling between models G p and Gg of the
Social Golfer Problem

Chapter 7 Experiments 85

g, s, w n 访 iff ele glo Fails

3.2.2 ^ O ^ ^ m 0

3.2.3 0.01 0.01 0.01 0.01 1

3.2.4 0.01 0.01 0.01 0.01 3

3.2.5 0.01 0.01 0.01 0.01 1

4.2.2 0.01 0.01 0.01 0 0

4.2.3 0.02 0.03 0.03 0.02 14

4.2.4 0.1 0.09 0.09 0.08 60

4.2.5 0.13 0.13 0.12 0.1 80

4.3.2 0.02 0.01 0.01 0.01 0

4.3.3 0.09 0.07 0.07 0.06 84

4.3.4 0.15 0.16 0.13 0.11 341

4.3.5 0.05 0.05 0.05 0.04 55

5.2.2 0.02 0.02 0.02 0.01 0

5.2.3 1.1 1.05 0.85 0.8 526

5.2.4 38.63 37.24 31.01 29.55 19696

5.2.5 412.4 397.43 34336.56 322.82 251678

5.3.2 0.05 0.04 0.04 0.04 0

5.3.3 183.31 176.9 138.38 130.31 151569

5.4.2 0.05 0.05 0.05 0.05 4

5.4.3 88.94 87.33 66.44 61.88 106224

5.4.4 1363.52 1346.27 1008.05 937.94 2508285

5.4.5 659.67 653.66 489.24 457.15 824135

6.2.2 0.09 0.09 0.07 0.06 0

6.2.3 87.43 84.58 67.09 63.26 29136

6,3,2 1.45 1.32 1.1 0.98 0

6,4,2 1.49 1.53 1.09 1 362

6,5,2 0.17 0.17 0.15 0.13 65

7,2,2 0.64 0.62 0.48 0.45 0

7,3,2 76.38 73.97 54.41 50.43 168

7,4,2 404.97 398.91 288.58 266.73 60729

7,5,2 95.89 95.25 68.88 63.53 45983

7,6,2 1.17 O 0.87 0.84 898

Speedup 1.43(0.08) 1.4(0.09) 1.06(0.02) 1(0) || 14

Table 7.12: Result for set-int channeling between models Gp and Gg of the

Chapter 7 Experiments 86

g^ s, w n ^S iff ele glo Fails

OJOl m m 0

3.2.3 0.01 0.01 0.01 0.01 2

3.2.4 0.01 0 0 0 8

4.2.2 0.01 0.01 0.01 0.01 0

4.2.3 0.31 0.28 0.26 0.25 142

4.2.4 6.3 5.97 5.15 5 4695

4.3.2 0.02 0.01 0.01 0.01 0

4.3.3 0.72 0.68 0.62 0.6 900

4.3.4 8.74 8.27 7.33 7.14 17024

5.2.2 0.06 0.06 0.05 0.05 0

5.2.3 157.69 148.95 132.26 128.99 52486

5.3.2 0.09 0.1 0.09 0.08 14

5.3.3 11004.7 10371.3 9374.17 9212.21 9712202

5.4.2 0.06 0.05 0.05 0.05 4

5.4.3 4815.62 4687.03 4204.2 4138.08 4695132

6,2,2 1.11 1.03 0.96 0.95 0

6,3,2 6.47 6.28 5.79 5.73 1020

6,4,2 3.55 3.36 3.14 3.08 1077

6,5,2 0.27 0.28 0.25 0.25 65

7,2,2 39.98 38.11 34.68 33.94 0

7,3,2 985.56 933.35 871.84 860.37 97173

7,4,2 1884.82 1820.12 1691.51 1666.95 455682

7,5,2 266.62 258.51 244.67 240.65 84423

7,6,2 2.25 2.35 2.23 2.09 898

Speedup 1.17(0.05) 1.12(0.04) 1.02(0.02) 1(0) || 13

Table 7.10: Result for int-int channeling between models An and Ap of the All
Interval Series Problem

Chapter 7 Experiments 87

g,s,w n ^ff ^ ^ glo Fails

3.2.2 ^ m 0 0

3.2.3 0.01 0.01 0.01 0.01 2

3.2.4 0.01 0.01 0.01 0.01 5

4.2.2 0.01 0.01 0.01 0.01 0

4.2.3 0.27 0.26 0.23 0.22 164

4.2.4 5.12 4.8 4.12 3.99 3985

4.3.2 0.02 0.02 0.02 0.02 0

4.3.3 0.6 0.57 0.52 0.49 504

4.3.4 5.02 4.76 4.07 3.98 10207

5.2.2 0.05 0.05 0.05 0.05 0

5.2.3 140.57 131.78 116.5 113.61 60187

5.3.2 0.1 0.09 0.08 0.07 6

5.3.3 8563.76 8098.96 7326.74 7190.13 4939024

5.4.2 0.05 0.03 0.05 0.04 4

5.4.3 3206.92 3049.01 2758.35 2720.2 2549284

6,2,2 1.09 0.96 0.89 0.88 0

6,3,2 5.95 5.71 5.34 5.27 338

6,4,2 3.35 3.2 3 2.95 780

6,5,2 0.28 0.27 0.26 0.26 65

7,2,2 36.76 34.72 31.5 30.76 0

7,3,2 896.59 844.56 785.67 777.37 30443

7,4,2 1694.84 1639.84 1528.36 1508.1 249735

7,5,2 252.19 245.49 230.9 225.95 66902

7,6,2 2.4 ^ 2.12 1.99 898

Speedup 1.18(0.06) 1.13(0.05) 1.02(0.02) 1(0) 12

Table 7.10: Result for int-int channeling between models An and Ap of the All
Interval Series Problem

Chapter 7 Experiments 88

instance Yl 访 iff ele glo Fails

8 periods 0.09 0.08 0.06 0.05 101

10 periods 0.63 0.61 0.46 0.45 470

12 periods 44.74 44.31 30.62 29.32 33530

~ ^ e e d u p 1.46(0.09) 1.43(0.11) 1.03(0.02) 1(0) 2

Table 7.15: Result for set-int channeling between models Bp and Be of the
Balanced Academic Curriculum Problem

instance Yl W iff ele glo Fails

8 periods ^ 0.69 1577

10 periods 0.33 0.3 0.24 0.23 323

12 periods 1.66 1.3 1.23 882

"Speedup 1.38(0.05) 1.35(0,01) 1.09(0.05) 1(0) 2

Table 7.16: Result for set-int channeling between models Bp and Be of the
Balanced Academic Curriculum Problem

Chapter 7 Experiments 89

7.3 Set-Set Channeling Constraint

Tables 7.17, 7.18, 7.19, and 7.20 give the results of set-set channeling between

models G p and G^, Gp and G w , 8„ and 5p, and Sn and Sp respectively. Result

confirms that glo is the fastest among all implementations. The speedups for

the iff implementation range from 1.27 to 1.36. Again reasons on influencing

the speedup will be discussed in a later section.

g, s, w iff ele glo Fails

^ ^ 0 0 0 2

3,2,3 0.01 0.01 0.01 13

4.2.2 0.01 0.01 0.01 8

4.2.3 0.21 0.17 0.17 229

4.3.2 0.35 0.28 0.27 938

4.3.3 20 15.98 15.14 45344

5.2.2 0.11 0.09 0.08 72

5.2.3 17.88 14.43 13.76 13561

5,3,2 35.95 27.88 26.09 63389

5,4,2 4102.68 3074.57 2851.63 10754086

6,2,2 1.21 0.97 0.92 688

6,3,2 5534.17 4207.29 3932.27 7656122

7,2,2 16.97 13.4 12.66 8272

Speedup 1.36(0.05) 1.06(0.02) 1(0) || 7 —

Table 7.17: Result for set-set channeling between models Gp and G切 of the
Social Golfer Problem

7.4 Int-Bool Channeling Constraint

Tables 7.21，7.22, 7.23，7.24, 7.25, 7.26, and 7.27 give the results of set-set

channeling between models Qc and Qz, Ln and L^, Lp and Lz, An and Az,

Chapter 7 Experiments 90

g, s, w iff ele glo Fails

3.2.2 a m ^ o S 2

3.2.3 0.01 0.01 0.01 18

4.2.2 0.01 0.01 0.01 8
4.2.3 0.25 0.22 0.2 607

4.3.2 0.32 0.27 0.25 684

4.3.3 23.86 19.81 18.81 77635

5.2.2 0.1 0.09 0.08 60

5.2.3 20.29 16.97 16.23 36744

5,3,2 32.39 26.78 25.38 47S88

5,4,2 3029.6 2512.79 2373.13 5764608

6,2,2 1.11 0.92 0.87 544

6,3,2 5159.86 4183.58 3963.61 5498928

7,2,2 15.47 12.86 12.21 6040

Speedup 1.27(0.02) 1.05(0.01) 1(0) 7

Table 7.18: Result for set-set channeling between models Gp and G w of the
Social Golfer Problem

n iff ele glo Fails

9 ^ 0.65 3786

10 50.59 40.76 38.77 179583

12 498684 399545 379782 1073741849

13 613560 490844 468035 1073741851

Seendup 1.31(0) 1.06(0.01) 1(0) 3

Table 7.19: Result for set-set channeling between models 8„ and Sp of the
Steiner Triple Systems

Chapter 7 Experiments 91

Ap and A^, Gg and G^, and Be and B^ respectively. Each table is separated

into table (a) and (b), which are the results by choosing search variables in

the first and the second model respectively. In addition to the standard iff

implementations, we also have iff 〇，which is iff augmented with the sum-

to-one constraint © . There is also our ele implementation, but we find that

its performances are basically identical to glo, thus we leave out the results.

W e prove that keeping the sum-to-one constraint in the Boolean model

does not increase pruning in Chapter 5. W e use the iff 〇 implementation

to study how much the sum-to-one constraint degrade performances. For the

realization of the sum-to-one constraint, we use the IlcSum constraint, which

is a predefined constraint in ILOG Solver.

Results in Tables 7.21, 7.22, 7.23, 7.24, 7.25, 7.26，and 7.27 confirm that glo

is the fastest among all implementations. The speedups for the iff 〇 imple-

mentation range from 1.04 to 3.33. Again reasons on influencing the speedup

will be discussed in a later section. The iff Q implementation is always the

slowest, but with some exceptional cases in which the iff implementation can

be a little bit slower. The reason is the same as why — iff # OY Yliff can

be faster than iff. The IlcSum constraint can efficiently reduce the number

of propagation steps over the "inefficient" iff, though it does not increase any

domain reduction. This is also the reason why the performance of the iff Q

and iff implementations are similar.

7.5 Set-Bool Channeling Constraint

Tables 7.28，7.29, 7.30, 7.31, and 7.32 give the results of set-bool channeling

between models Gp and Gz、G如 and Gz, Bp and and Sz, and Sp and

Sz respectively. Each table is separated into table (a) and (b), which are the

Chapter 7 Experiments 92

n iff ele glo Fails
9 i m ^

10 21.73 18.11 17.27 107532

12 296684 247781 237486 1073741848

13 583889 486361 467110 1073739057

Speedup 1.28(0.05) 1.04(0.01) 1(0) || 4

Table 7.20: Result for set-set channeling between models Sn and Sp of the
Steiner Triple Systems

n iff 〇 glo Fails | n | (ff"〇 iff glo Fails~

7 ^ ol)i a m ^ 7 oii o m o ^

8 0.03 0.02 0.02 256 8 0.03 0.03 0.01 300

9 0.11 0.11 0.06 929 9 0.11 0.11 0.06 1151

10 0.46 0.45 0.23 4106 10 0.45 0.46 0.26 5181

11 2.09 2.06 1 17601 11 2.18 2.19 1.16 23515

12 10.47 10.37 4.76 80011 12 11.35 11.38 5.77 111076

13 56.53 55.24 24.47 392128 13 62.29 62.38 30.83 561362

14 318.33 311.19 134.73 2101047 14 363.54 364.36 172.69 3079792

15 1932.62 1885.62 780.01 11724826 15 2280.16 2272,72 1047.69 17692260

16 12580.8 12269.5 4912.93 70692998 16 15113.9 15109.8 6709.7 109047332

Speedup 2.33(0.17) 2.29(0.16) 1(0) 6 Speedup 2.07(0.14) 2.07(0.13) 1(0) 6

(a) Search by A : (b) Scarch by

Table 7.21: Result for int-bool channeling between models Qc and Qz of the

A^-Queens Problem

Chapter 7 Experiments 93

I 迅 9lo FaiiT] n,ib iff Q iff glo Fails
7,2 0.04 0.04 0.02 110 "TIT"
8.2 0.15 0.14 0.06 368 8,2 0.14 0.13 0.07 466

9，2 1 0.96 0.38 3211 9 2 0.88 0.84 0.35 3453

10’2 5.8 5.56 2.19 15597 10,2 4.96 4.72 2.04 17194

11,2 47.35 45.02 17.09 91471 11,2 38.3 36.35 15.32 98505

12.2 315.43 300.35 110.03 557590 12,2 248.03 236.04 96.14 606013

8.3 0.08 0.08 0.03 75 8,3 0.07 0.07 0.03 71

9.3 0.35 0.33 0.13 313 9,3 0.27 0.26 0.1 243

10.3 1.39 1.35 0.48 1064 10,3 0.9 0.86 0.33 741

11,3 6.33 6.02 2.1 4425 11,3 3.52 3.42 1.3 2757

12,3 33.47 32.09 10.83 20273 12,3 16.11 15.58 5.66 11336

13,3 201.97 194.82 63.05 107233 13,3 78.06 76 26.49 48960

14.3 941.78 904.63 292.31 439230 14,3 343.97 338.62 116.14 197640

T A 0 0 2 0 0 3 0 1 0 ~ ~ ~ ^ ^ o ! ^ 1 0 ~

8.4 0.07 0.07 0.02 28 8,4 0.08 0.08 0.04 38

9,4 0.19 0.17 0.07 62 9,4 0.19 0.19 0.07 71

10.4 0.58 0.55 0.19 165 10,4 0.48 0.45 0.17 141

11,4 2.39 2.22 0.69 635 11,4 1.57 1.48 0.48 392

12,4 9.92 8.98 2.62 2144 12,4 5.07 4.53 1.33 1057

13,4 49.08 44.65 11.5 8558 13,4 16.27 16.33 3.98 2813

14,4 199.46 178.55 42.67 28787 14,4 56.72 52.82 12.71 8388

Speedup 3.33(0.62) 3.12(0.5) 1(0) 12 Speedup 3.15(0.68) 3.01(0.64) 1(0) 11

(a) Search by X „ (b) Search by X ,

Table 7.22: Result for int-bool channeling between models L„ and Lz of the
Langford's Problem

results by choosing search variables in the first and the second model respec-

tively. There is also our ele implementation, but we find that its performances

are basically identical to glo, thus we leave out the results. Result confirms

that glo is the fastest among all other implementations. The speedups for

the iff implementation range from 1.03 to 1.26. Reasons on influencing the

speedup will be discussed in the next section.

7.6 Discussion

One might observe discrepancies in performance comparison from the theo-

retical prediction given in Table 6.1. For example, glo performs better than

Chapter 7 Experiments 94

n, k iff Q iff glo Fails 进 〇 进 9lo Fails

0 0 4 0 0 3 I M ~ 7,2 ~ ^ o!o4 ^

8,2 0.16 0.16 0.08 381 8,2 0.17 0.17 0.1 496

9.2 1.01 1.01 0.51 3029 9,2 1.16 1.14 0.62 3668

10,2 6.05 5.81 2.99 1531S 10,2 6.74 6.61 3.58 18226

11,2 49.53 47.99 24.28 91986 11,2 52.69 52.51 27.92 105202

12.2 331.97 323.15 161.89 571667 12,2 349.06 351.89 184.14 646472

7.3 0.07 0.06 0.03 124 ^ ^ 126

0 2 1 (U 3 2 0 ~ 8,3 0.12 0.13 0.07 278

9.3 1.1 1.07 0.53 1406 9,3 0.46 0.49 0.25 975

10.3 4.11 3.99 1.95 4748 10,3 1.52 1.6 0.83 2757

11,3 19.83 19.25 9.42 19902 11,3 5.98 6.49 3.28 9579

12,3 115.27 111.37 53.88 99421 12,3 27.52 28.92 14.64 35845

13,3 778.46 760.24 356.26 597804 13,3 133.78 144.5 70.11 145425

14.3 4880.36 4598.26 207G.42 3017268 14,3 626.06 649.59 308.21 535418

7.4 0.06 0.05 0.02 38 ^ ^ O M 4 5 ~

8,4 0.25 0.23 0.12 175 8,4 0.16 0.14 0.08 285

9,4 1 16 1.1 0.54 708 9,4 0.37 0.39 0.19 597

10.4 3.G1 3.46 1.58 1819 10,4 1.14 1.14 0.5 1547

11,4 20.22 19.05 7.83 8120 1 1 ,4 4.04 4.23 1.67 4557

12,4 99.25 87.49 33.39 30763 12,4 14.73 15.59 5.39 12996

13,4 565.25 493.59 181.68 145950 13,4 47.89 51.56 19.7 37955

14,4 2810.35 2765.93 892.19 610426 14,4 202.96 200.81 71.61 116245

Speedup 2.33(0.4) 2.22(0.33) 1(0) 16 Speedup 2.12(0.35) 2.19(0.37) 1(0) 14

(a) Search by A'p (b) Search by X :

Table 7.23: Result for int-bool channeling between models Lp and Lz of the
Langford's Problem

predicted in IB, but less in SI. There are other factors than just the type

of the channeling that affect the constraint solving efficiency in real problems

(instead of quasi-empty models with only channeling constraints). First, we

observe that the speedups of glo over others grow with instance size in general.

W e employ all-solution search in our experiments so that the results are less

sensitive to search heuristics and to exercise the channeling constraints more

fully, but all-solution search is costly and limits our attentions to smaller in-

stances. W e did perform some experiments on single-solution search on larger

instances. For example, in set-set channeling, for the model pair Sp, the

speedups against iff become 1.84 and 2.16 for n = 25 and n = 27 respec-

tively, where n is the total number of distinct integers that can be contained

Chapter 1 Experiments 95

“ I 1万〇 glo Fails] n iff Q ^ glo Fails

6 0.01 0.01 0 17 6 5 5 5 2

7 0.01 0.01 0.01 61 7 0 0 0 16

8 0.05 0.05 0.05 194 8 0.02 0.02 0.01 67

9 0.19 0.19 0.15 584 9 0.07 0.07 0.05 255

10 0.73 0.71 0.6 1900 10 0.28 0.27 0.26 1070

11 3.01 2.93 2.49 6726 11 1.44 1.41 1.25 4717

12 12.95 12.76 10.87 25572 12 8.02 7.84 7.02 22849

13 59.36 58.77 49.7 103662 13 48.28 46.98 42,37 121632

14 288.81 286.53 244.17 447656 14 299.68 293.88 264.75 652856

15 1496.01 1455.34 1238.85 2034574 15 2011.51 1950.13 1779.49 3802562

16 8264.58 8009.53 6753.43 9860668 16 14486.3 14125.9 12617.1 23829086

Speedup 1.2(0.01) 1.18(0.01) 1(0) 6 Speedup 1.14(0.01) 1.11(0.01) 1(0) 6

(a) Search by X „ (b) Search by X ,

Table 7.24: Result for int-bool channeling between models An and A^ of the
All Interval Series Problem

in each triple. Another example is SI channeling, for the model pair Gp, Gg,

the speedups against iff are 1.89 and 1,96 for p = 13, g = 13，if； = 3 and

p == 14，g = 14, w = 3 respectively, where p is the number of golfers in each

group, g is the number of groups in each week, and w is the number of weeks

need to be scheduled. W e observe similar increase in speedup in other prob-

lems.

Second, the proportion of channeling constraints among all constraints in

the model and the complexity of the other constraints also affect the results. In

general, if a model contain a large proportion of complex constraints, then the

speedup gained in the improved channeling constraint implementation can be

insignificant as compared to the time required for solving the other constraints.

For example, in model Gun there are constraints to ensure that any

two groups in different weeks have at most one golfer in common. For the

combined models of GujCrndGg using SI and Gp, G^ using SS, iff has only pgw

constraints, and ele has one less dimension when compared with iff. Another

example is on 5„ and Sp. There are constraints to ensure that any two

triples have at most one common integer, while iff has only nm constraints

Chapter 7 Experiments 112

n iff Q iff glo Fails

6 0 0 0 i “ 访 Q iff glo Fails ‘
7 0 0 0 8 ‘ “ « 广

8 - l 。.01 0.01 41 \ 。.：2 。.：1 ；:

9 0.04 0.04 0.03 112 g 0.07 0.07 0.07 282

10 0.12 0.12 0.1 297 10 0.37 0.36 0.31 1214

11 0.37 0.36 0.31 856 11 1.95 1.87 1.62 5696

12 1.19 1.16 1 2597 12 11.07 10.78 9.32 27700

13 4.03 3.96 3.39 7971 13 67.47 65.91 56.78 145751

14 15.01 14.89 12.67 26152 14 433.67 424,66 361.94 817882

15 59.94 59.53 50.54 97205 15 2929.05 2834.72 2440.05 4791761

16 276.81 271.37 232.76 387419 IG 21517.7 20636 17863 29845002

Speedup 1.19(0) 1.17(0.01) 1(0) 5 | Speedup | 1.2(0.01) 1.16(0.01) 1(0)
⑷ Search by (b) Search by

Table 7.25: Result for int-bool channeling between models Ap and A^ of the
All Interval Series Problem

for combining models and 5p, where m — n{n — l)/6.

Chapter 1 Experiments 97

g,s,w iff 〇 iff glo Fails

3.2.2 0 0 0 I ff，^5，w I iff Q iff glo Fails “

3.2.3 0 0.01 0 3 OOl OOl 0 0

3.2.4 0.01 0.01 0.01 7 3,2,3 0 0 0.01 5

3.2.5 0.01 0.01 0.01 4 3,2,4 0.01 0.01 0 9

4.2.2 0.01 0.01 0.01 2 3,2,5 0.01 0 0.01 4

4.2.3 0.04 0.05 0.05 43 4,2,2 0 0.01 0,01 4

4.2.4 0.18 0.19 0.17 286 4,2,3 0.07 0.07 0.07 176

4.2.5 0.35 0.38 0.36 908 4,2,4 0,31 0.32 0.31 971

4.3.2 0.01 0.02 0.01 0 4,2,5 0.62 0.62 0.61 2100

4.3.3 0.14 0.13 0.13 159 4,3,2 0.01 0,02 0.01 0

4.3.4 0.36 0.37 0.34 878 4,3,3 0.27 0.27 0.25 800

4.3.5 0.36 0.37 0.35 814 4,3,4 0.75 0.75 0.72 3006

5.2.2 0.03 0.03 0.03 10 4,3,5 0.48 0.47 0.47 1585

5.2.3 1.76 1.76 1.65 1013 5,2,2 0.03 0.04 0.04 50

5.2.4 60.54 59.38 56.4 39296 5,2,3 3.16 3.18 3.04 7285

5.2.5 662.23 664.04 627.85 701208 5,2,4 138.1 138.15 135.46 367404

5.3.2 0.08 0.09 0.08 3 5,2,5 1864.72 1886.39 1865.17 5599996

5.3.3 308.78 306.19 292.01 284440 5,3,2 0.1 0.1 0.1 45

5.4.2 0.06 0.06 0.06 4 5,3,3 596.45 603.05 562.55 1469974

5.4.3 166.33 168.83 162.31 178716 5,4,2 0.05 0.05 0.04 0

5.4.4 2206.17 2209.14 2041.4 2838369 5,4,3 509.17 502.75 474.09 1279148

5.4.5 2781.66 2774.68 2573.88 3257943 6,2,2 0.25 0.25 0.24 312

6.2.2 0.16 0.16 0.16 44 6,2,3 240.88 242.37 228.42 484732

6.2.3 135.26 133.92 125.44 53239 6,3,2 3.33 3.33 3.16 2691

6,3,2 2.93 2.97 2.82 36 6,4,2 2.51 2.48 2.43 816

6,4,2 2.97 2.94 2.79 537 6,5,2 0.19 0.17 0.18 0

6,5,2 0.24 0.27 0.23 65 7,2,2 2.09 2,11 1.97 2658

7,2,2 1.36 1.33 1.26 234 7,3,2 166.47 168.24 157.76 127191

7,3,2 157.8 156.15 147.31 555 7,4,2 659.2 642.74 621.79 284324

7,4,2 838.47 844.73 792.58 108702 7,5,2 118.62 118.87 109.12 22650

7,5,2 214.58 197.28 199.21 58606 7,6,2 0.99 1.06 1.02 0

7,6,2 2.19 2,15 2.04 898 | Speedup 1.04(0.03) 1.05(0.02) 1(0) 13 “

Speedup 1.07(0.02) 1.06(0.02) 1(0) || 12 (b) Search by X ,

(a) Search by Xg

Table 7.26: Result for int-bool channeling between models Gg and G^ of the
Social Golfer Problem

instance i f f 〇 i f f glo Fails instance i f f 〇 i f f glo Fails

8 periods 01)2 ^ (101 101 8 periods (U)3 ^ OiiT 183

10 periods 0.18 0.17 0.16 468 10 periods 0.15 0.15 0.13 1103

12 periods 7.39 7.34 5.84 33602 12 periods 0.11 0.1 0.08 366

Speedup 1.2(0.1) 1.16(0.14) 1(0) 2 Speedup 1.26(0.16) 1.2(0.07) 1(0) 2

(a) Search by X a (b) Search by ；G

Table 7.27: Result for int-bool channeling between models B � a n d Bz of the
Balanced Academic Curriculum Problem

Chapter 1 Experiments 98

g,s,w ^ glo Fails g,s,w iff glo Fails
3.2.2 0 0 4 3,2,2 0 0 4
3.2.3 0.01 0.01 5 3,2,3 0.01 0 5
3.2.4 0.01 0.01 7 3,2,4 0.01 0.01 7
3.2.5 0.01 0.01 7 3,2,5 0.01 0.01 7
4.2.2 0.02 0.01 12 4,2,2 0.01 0.01 12
4.2.3 0.05 0.05 34 4,2,3 0.05 0.05 34
4.2.4 0.17 0.15 102 4,2,4 0.18 0.15 102
4.2.5 0.29 0.26 234 4,2,5 0.29 0.26 234
4.3.2 0.02 0.02 45 4,3,2 0.03 0.03 45
4.3.3 0.18 0.16 330 4,3,3 0.17 0.16 330
4.3.4 0.33 0.27 595 4,3,4 0.31 0.26 595
4.3.5 0.33 0.27 510 4,3,5 0.32 0.27 510
5.2.2 0.05 0.03 62 5,2,2 0.04 0.04 62
5.2.3 2.12 1.83 1148 5,2,3 2.11 1.88 1148
5.2.4 74.87 65.46 48468 5,2,4 75.43 67.72 48468
5.2.5 769.06 680.53 544677 5,2,5 778.01 705.48 544677
5.3.2 0.24 0.2 647 5,3,2 0.24 0.19 647
5.3.3 368.05 300.63 434408 5,3,3 369.02 309.26 434408
5.4.2 0.18 0.17 515 5,4,2 0.2 0.17 515
5.4.3 298.13 238.99 544829 5,4,3 299.15 243.4 544829
5.4.4 3239.6 2676.21 6735^^0 5,4,4 3225.13 2700.2 6735600
5.4.5 3593.71 2988.32 5389126 5,4,5 3587.38 3035.35 5389126
6.2.2 0.24 0.21 359 6,2,2 0.23 0.2 359
6.2.3 162.35 137.23 67254 6,2,3 163.47 142.77 67254
6,3,2 6.66 5.45 17311 6,3,2 6.73 5.69 17311
6,4,2 16.11 12.92 43036 6,4,2 16.24 13.39 43036
6,5,2 3.01 2.38 7030 6,5,2 3.05 2.52 7030
7,2,2 1.91 1.65 2682 7,2,2 1.94 1.7 2682
7,3,2 304.66 247.43 677196 7,3,2 311.08 260.56 677196
7,4,2 2826.54 2218.26 6684046 7,4,2 2871.41 2321.3 6684046
7,5,2 1988.17 1542.39 4060581 7,5,2 2042.92 1609.95 4060581
7,6,2 67.12 51.39 117608 7,6,2 68.78 53.57 117608

Speedup | 1.22(0.05) 1(0) || 16 | Speedup | 1.19(0.05) 1(0) 16
(a) Search by Xp (a) Search by X^

Table 7.28: Result for set-bool channeling between models Gp and Gz of the
Social Golfer Problem

Chapter 1 Experiments 99

g’s’w iff glo Fails ~ ~ 9 I 0 Fails
~ O O l a m 4 3,2,2 0 0 4

3.2.3 0.01 0.01 10 3,2,3 0.01 0 9
3.2.4 0.01 0.01 9 3,2,4 0.01 0.01 13
3.2.5 0.01 0.01 9 3,2,5 0.01 0.01 11
4.2.2 0.02 0.02 20 4,2,2 0.02 0.01 21
4.2.3 0.11 0.1 227 4,2,3 0.09 0.08 194
4.2.4 0.45 0.41 892 4,2,4 0.42 0.41 1118
4.2.5 0.63 0.59 1169 4,2,5 0.91 0.85 2596
4.3.2 0.03 0.03 51 4,3,2 0.02 0.02 45
4.3.3 1.21 1.14 3406 4,3,3 0.35 0.33 845
4.3.4 3.63 3.41 9220 4,3,4 1.01 0.95 3057
4.3.5 0.23 0.21 363 4,3,5 0.75 0.7 1970
5.2.2 0.05 0.05 103 5,2,2 0.05 0.05 122
5.2.3 4.73 4.51 9576 5,2,3 3.9 3.71 7357

5.2.4 164.16 153.07 291104 5,2,4 175.09 164.85 376394
5’2，5 1894.42 1735.48 3139532 5,2,5 2478.82 2307.03 5903049
5.3.2 0.43 0.43 945 5,3,2 0.35 0.35 907
5.3.3 2040.06 1933.89 4591584 5,3,3 753.7 729.41 1470836
5’4’2 0.46 0.43 668 5,4,2 0.24 0.22 515
5’4,3 6047.96 5781.57 10227177 5,4,3 663.91 640.01 1279663
6’2’2 0.38 0.36 675 6,2,2 0.4 0.39 780
6’2’3 358.52 342 638346 6,2,3 293.34 281.06 487356
6’3’2 15.81 15.57 29342 6,3,2 10.6 10.42 23745
6’4’2 50.63 49.45 66416 6,4,2 28.49 28.06 57479
6’5’2 12.41 12.4 10685 5,5,2 4.76 4.53 7030
7’2，2 3.2 3.11 5287 7,2,2 3.27 3.19 5964
7’3,2 814.24 794.29 1258840 7,3,2 488.93 486.3 935808
7,4’2 11866.9 11792 12721242 7,42 则 謹 4977.8 8439295

10022.6 9901.37 6897490 752 肌 權 4006.03 5388120

7’6’2 447.31 441.85 215155 n4.94 114.04 117608
Speedup 1.04(0.03) 1(0) 16 K � , 一 ^ „ � � ，� -4

^ ； ^J Speedup 1.03(0.02) 1 0 14
� Search by X切 (b) Search by

Table 7.29: Result for set-bool channeling between models G叫 and G^ of the
Social Golfer Problem

Chapter 7 Experiments 100

instance iff glo Fails r—： ； ———
instance iff glo Fails

8 periods 6.14 4.83 15107 g periods10470.5 8829.29 22182175
10 periods 0.24 0.19 328 10 periods 34030.6 30523.5 66673689
12 periods 7.82 6.38 7092 12 periods 71.74 64.35 43347
Speedup 1.25(0.03) 1(0) 2 Speedup 1.14(0.04) 1(0) 3

(a) Search by � Search by X.

Table 7.30: Result for set-bool channeling between models Bp and Bz of the
Balanced Academic Curriculum Problem

n iff glo Fails n ^ ^ F a i l s

7 0.02 0.01 63 7 0.01 0.01 63

9 3.45 3.09 15711 9 4.14 3.3 15711

10 164.01 147.8 544085 10 198.2 157.78 544085

Speedup 1.11(0) 1(0) 2 Speedup 1.26(0) 1(0) 2 “

(a) Search by (b) Search by

Table 7.31: Result for set-bool channeling between models Sn and Sz of the
Steiner Triple Systems

instance iff glo F^iiT] instance iff glo 11 F a i l s �

7 m 0 I T " 7 0.01 0.01 9

9 5.39 4.87 15176 9 1.55 1.39 3786
10 154.21 138.15 375223 10 91.93 82.82 179583

Speedup 1.11(0.01) 1(0) 2 Speedup | 1.11(0) 1(0)
(a) Search by Xp (b) Search by X ,

Table 7.32: Result for set-bool channeling between models Sp and S: of the
Steiner Triple Systems

Chapter 8

Related Work

In this chapter, we give an overview of related work on channeling constraints.

This chapter is separated into four sections: empirical studies, theoretical stud-

ies, applications, and other kinds of channeling constraints.

8.1 Empirical Studies

Cheng et al. [CCLW99] propose the concept of redundant modeling, which

uses channeling constraint to combine multiply models of the same problem.

They suggest guidelines and give examples on how to create models, and how

to combine them by channeling constraints, and in various forms of channeling

constraints. They give two cases studies, which are the n-queens problem and
the nurse staff rostering problem. They use the n-queens problem to show,

in detail steps, how the combined model causes extra domain reduction. The

nurse staff rostering problem is a real-life problem. The combined models show

significant speedup against the individual (single) models.

Smith [SmiOO, SmiOl] studies redundant modeling on the n-queens problem,

the Langford's problem, and the social golfer problem. She points out several

important issues. First, the iff constraints for int-int channeling can sub-

sume the pairwise disequalities in the models, but not the global all-different

101

Chapter 8 Related Work 102

constraints. Second, she proposes the concept of minimal combined model,

in which some constraints in the combined model can be removed without

affecting the search space. For example, the pairwise disequalities in the com-

bined model by int-int channeling can be removed. Third, she suggests to

re-implement the iff more efficiently in general, which is realized in the thesis.

8.2 Theoretical Studies

Walsh et al. [WalOl, HW02, HSW04] perform an extensive study on applying

redundant modeling on permutation problems and injection problems. In other

words, their study is related to int-int channeling. They define the concept of

constraint tightness, which we use in our theoretical analysis, for comparing

the power of domain reduction between different models of the same problem.

There are two differences between their comparison and our comparison on

int-int channeling. They focus on the channeling constraint in the form of

iff, while we also study the form of ele and glo. On the other hand, they

look at different local consistencies, arc consistency (AC), forward checking

(FC), bounds consistency (BC), path consistency (PC), strong path consis-

tency (ACPC), path inverse consistency (PIC), restricted path consistency

(RPC), and singleton arc consistency (SAC). W e study A C and G A C for inte-

ger (or Boolean) variables, set bounds consistency (SBC) for set variables, and

hybrid consistent (HC) for mixed of integer and set variables.

Choi et al. [CL02, CLS06] do much further work on the idea of mini-

mal combined model [SmiOl]. They perform theoretical study on when some

constraints are propagation redundant, which means redundant in terms of

domain reduction, with respect to other constraints in the combined model.

Their results are applicable to any combined model that is combined by the

five kinds of channeling constraint. There are three main differences between

Chapter 8 Related Work 103

their work and our work on channeling. First, their study involves identifying

propagation redundant constraints caused by two different reasons. A con-

straint can be made progagation redundant by (a) the channeling constraints

and/or (b) constraints in another submodel via channeling constraints. W e

focus on identifying propagation redundant constraint caused by channeling

constraints only. Second, their study is based on the channeling form of iff

only, while we also study the form of ele and glo. Third, their study points out

that set-int channeling can subsume the all-pair null intersection constraints

(Vi • j, Si n Sj. = {}). W e further point out that set-int channeling constraint

can subsume the partition constraint.

8.3 Applications

Flener et al. [FFH+02a] identify row and column symmetries in 2-dimensional

matrix models [FFH+01, FFH+02a]. They are variable symmetries, and can

be broken by adding lexicographical ordering constraints [CB02a, CB02b,

FHK+02]. One of their studies proposes to break value symmetries using

Boolean model and channeling constraints. Given an n dimension matrix

model, breaking its value symmetries can be done by breaking the correspond-

ing variable symmetries in its n + 1 dimensional Boolean matrix model, and

combining them together with int-bool channeling or set-bool channeling.

Law and Lee [Law05, LL06] proposed two methods of using symmetry

breaking constraints to break value symmetries in CSP. One of them uses

multiple viewpoints and channeling constraints. Given a model M which is

a triple {X, D, C), where X is the variables, D is the domains, and C is

the constraints. W e say that a viewpoint V is the pair of (X, D). Thus the

model M can also be expressed as the pair {V, C). Given two viewpoints

Vi and V2 of a problem, Law and Lee prove when a value symmetry in Vi

Chapter 8 Related Work 104

corresponds to a variable symmetry in V2 and vice versa. Moreover, they

establish theorems to identify when variable symmetry breaking constraints

in both Vi and V2 connected by channeling constraints are consistent. Their

theorems are applicable to the five kinds of channeling constraints.

Law and Lee [LL02, Law02] present a method to generate a new model

from an existing model through channeling constraints The process is called

model induction. Hernandez and Prisch [HF05] present how to generate chan-

neling constraints automatically. Specifically, they use an automatic modeling

tool, Conjure [FJHM05]，to generate CSP models from problem specifications

automatically. They target on generating channeling constraints between the

generated models by Conjure, so that it is possible to produce new combined

models with possibly more constraint propagation.

Many permutation problems, such as Quasigroups, Golomb Rulers, and

Magic Squares in CSPLIB [GW99], can be solved more efficiently by channel-

ing their own integer models [WalOl, HW02, DdVC03b, DdVCOSa]. Hnich et

al. [HPS05] study a problem called t-covering array problem, show that the

problem can be solved efficiently by combining its Boolean model and inte-

ger model together by int-bool channeling, and breaking the row and column

symmetries in the Boolean model.

8.4 Other Kinds of Channeling Constraints

Smith [SmiOl] proposes a kind of channeling constraint which is for pair-based

models. Here, we refer to her example on the social golfers problem for ex-

planation. In Model Gq = {Xg, Dx^^Cx^), each variable qi、j € Xg (integer

variable) represents the week which golfer i and golfer j play in the same

group = n X n). Thus Dg. . 二 {l,.. represents the possible weeks.

Chapter 8 Related Work 105

In Model Gh = {Xh, each variable Hij G Xh (set variable) rep-

resents the set of golfers play with golfer i in week j {\XH\ = n X W). Thus

PS{Hij) = {1,…，n} represents the possible golfer numbers. W e can combine

Gq with GH by:

qij = Hi、k = Hj、k ^Qij e Xg,Vk e Dq,.

and

Qij + k 令 Hi^k n Hj�k = { } Vqij e Xq,\fk G D,, .

Flener et al. [FFH+02b] propose another two kinds of channeling con-

straints. The first one is relating integer variables and Boolean variables.

Suppose X is a set of integer variables and y is a set of Boolean variables.

They can be channeled by:

= Vj = 1 Vxi G X,\/yj e Y

This channeling is for indicating whether there exists any variable, say Xi, is

assigned with a value, say j. Result is stored at variable yj. The second one

is relating Boolean variables and Boolean variables. Suppose X is a set of

Boolean variables, and y is a Boolean variable. They can be channeled by:

Xi = I y = I \/Xi £ X

This channeling is for indicating whether there exists any variable, say cc“ is

assigned with value 1. Result is stored at variable y. These two kinds of

channeling constraint are not for redundant modeling. They are just for trans-

forming some information from a set of variables to another set of variables.

Chapter 9

Concluding Remarks

W e conclude the thesis in this chapter by summarizing our contributions and

giving possible directions for future research.

9.1 Contributions

The thesis gives a comprehensive treatise in comparing the constraint tight-

ness of various implementations of five common channeling constraints. Table

9.1 shows a summary for all the important theorems. These results, however,

must be interpreted with care. First, it may be theoretically nice to maintain

tighter consistency level to prune more values, but the associated constraint

propagation algorithms might incur higher costs. For example, our gll im-

plementation, which achieves G A C on int-int channeling constraint, cannot

outperform our glo implementation, which achieves A C on each constraint in

iff, although it prunes the most. Second, except for the case of II’ our theo-

retical results suggest that maintaining H C on a global constraint would not

give more pruning. This should not be understood as an argument against

global constraint implementations. It is always possible to implement a global

constraint using a constraint propagation algorithm that maintains a lower

level of consistency than HC. W e have proposed two efficient propagators for

106

Chapter 9 Concluding Remarks 107

Channeling Form Theorems

^C{iff}=GAC{ele}
II GAC{ii}=GAC{'^^iff}=GAC{iffy}

GAC{ii}>AC{iff}
近，

SI HC{si}=HC{Yi^si}

HC{si}=HC{iff}
SS SBC{ss}=SBC{iff}

IB GAC{ib}=GAC{eie}=AC{iff}

尸 侦，〇}

^ HC{sb}=HC{ele} = HC{iff}

Table 9.1: Summary of Theorems

implementing global channeling constraints. The gElement propagator is for a

generalized element constraint, which provides "partial" globalization for the

basic iff implementation. The glo propagator encapsulates all iff constraints

into one, and achieves H C on iff. Experimental result confirms the efficiency

of the glo implementation with speedups ranging from 1.0 to 3.61. While the

gElement propagator is less efficient than the glo propagator, the gElement

propagator has a speedup ranging from 1.1 to 1.4 over ILOG Solver's element

constraint. Moreover, the glo implementation is on par with ILOG Solver's

state of the art Ilclnverse. Note that Ilclnverse is specially designed for II

channeling, while glo is a generic propagator for all five channeling constraints.

Chapter 9 Concluding Remarks 108

9.2 Future Work

First, in term of breath, there exists other kinds of channeling constraint, other

than the five common channeling constraints we studied. For example, pair-

based models needs a special form of channeling constraints, which is proposed

by Smith [SmiOl]. Thus, a more general channeling constraint framework can

be achieved.

Second, in term of depth, more consistency level can be studied. For ex-

ample, it is possible to incorporate cardinality reasoning on the channeling

constraints involving set variables. Another example is about bounds consis-

tency [MS98] on constraints with integer variables. Again, in this way, a more

general channeling constraint framework can be achieved.

Third, it is interesting to study if we can optimize gll implementation fur-

ther, so that it can outperform glo implementation under the int-int channeling

situation.

Bibliography

Ber70] C. Berge. Graphe et Hypergraphes. Dunod, Paris, 1970. [70

B H B H W 0 5] Christian Bessiere, Emmanuel Hebrard, Zeynep Kiziltan

Brahim Hnich, and Toby Walsh. The range and roots constraints:

Specifying counting and occurrence problems. In Proceedings of

IJCAI-2005, 2005. [9；

CB02a] M . Carlsson and N. Beldiceanu. Arc-consistency for a chain of

lexicographic ordering constraints. Technical Report T2002-18,

Swedish Institute of Computer Science, 2002. [103

CB02b] M . Carlsson and N. Beldiceanu. Revisiting the lexicographic or-

dering constraint. Technical Report T2002-17, Swedish Institute

of Computer Science, 2002. [103

；CCLW99] B. M . W . Cheng, Kenneth M . F. Choi, J. H. M . Lee, and J. C. K.

W u . Increasing constraint propagation by redundant modeling:

an experience report. Constraints, 4(2):167-192, 1999. [1, 3, 17,

30, 63’ 101:

.CL02] C. W. Choi and J. H. M. Lee. On the pruning behaviour

of minimal combined models for permutation csps. In

109

Proceedings of the International Workshop on Reformu-

lating Constraint Satisfaction Problems: Towards System-

atisation and Automation (CP2002), Cornell University,

Ithaca, NY, USA, 2002. Available from http://www-

users .cs.york .ac.uk/ frisch / Reformulation/02/Proceedings /.

102:

CLRSOl] T.H. Gormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Intro-

duction to Algorithms. The MIT Press, second edition, 2001. [2，

8:

CLSOO] K.M.F. Choi, J.H.M. Lee, and P.J. Stuckey. A Lagrangian re-

construction of G E N E T . Artificial Intelligence, 123:1-39, 2000.

8

CLS06] C. W . Choi, J. H. M . Lee, and P. J. Stuckey. Removing propaga-

tion redundant constraints in redundant modeling, (to appear)

ACM Transaction on Computational Logic, 2006. [6, 16, 18, 19,

20’ 21’ 22’ 23’ 30，57’ 72, 102:

COSOl] C O S Y T E C . CHIP 5.4, CHIP++ Reference Manual, 2001. [2, 4，

32, 39，41

DdVCOSa] Ivan Dotu, Alvaro del Val, and Manuel Cebrian. Channeling con-

straints and value ordering in the quasigroup completion prob-

lem. In Ninth International Joint Conference on Artificial Intel-

ligence (IJCAI)�pages 1372-1373, 2003. [104

DdVCOSb] Ivan Dotu, Alvaro del Val, and Manuel Cebrian. Redundant

modeling for the quasigroup completion problem. In Ninth In-

ternational Conference on Principles and Practice of Constraint

110

Programming (CP), volume 2833 of LNCS, pages 288—302, 2003.

104:

DP87] D. Dechter and J. Pearl. Network-based heuristics for constraint

satisfaction problems. Artificial Intelligence, 34:1-38, 1987. [2，

8:

DSvH88] M . Dincbas, H. Simonis, and P. van Hentenryck. Solving the

car-sequencing problem in constraint logic programming. In Eu-

ropean Conference on Artificial Intelligence (ECAI), pages 290-

295’ 1988. [1:

D T W Z 9 4] A. Davenport, E. Tsang, C.J. Wang, and K. Zhu. G E N E T :

A connectionist architecture for solving constraint satisfaction

problems by iterative improvement. In Proceedings of AAAr94,

pages 325-330, 1994. [8:

ECL05] ECLiPSe. ECLiPSe 5.8, Constraint Library Manual, 2005.

Available from http://eclipse.crosscoreop.com/eclipse/doc/

libman/libman.html. [2，4, 32，39

FFH+01] Pierre Flener, Alan M . Prisch, Brahim Hnich, Zeynep Kiziltan,

Ian Miguel, and Toby Walsh. Matrix modelling. In PTOC忧dings

of Formul'Ol, the CP'01 Workshop on Modelling and Problem

Formulation, 2001. [103；

FFH+02a] Pierre Flener, Alan M . Prisch, Brahim Hnich, Zeynep Kiziltan,

Ian Miguel, Justin Pearson, and Toby Walsh. Breaking row

and column symmetries in matrix models. In Proceedings of

the 8th International Conference on Principles and Practice of

111

http://eclipse.crosscoreop.com/eclipse/doc/

Constraint Programming, volume 2470 of LNCS, 2002. [3, 30,

103

FFH+02b] Pierre Flener, Alan M . Prisch, Brahim Hnich, Zeynep Kiziltan,

Ian Miguel, and Toby Walsh. Matrix modelling: Exploiting com-

mon patterns in constraint programming. In Proceedings of the

International Workshop on Reformulating CSPs, held at CP'02,

2002. [30, 105

FHK+02] A.M. Prisch, B. Hnich, Z. Kiziltan, I. Miguel, and T. Walsh.

Global constraints for lexicographical orderings. In Proceedings

of the 8th International Conference on Principles and Practice

of Constraint Programming, pages 93—108，2002. [103

FJHM05] Alan M . Prisch, Christopher Jefferson, Bernadette Martinez

Hernandez, and Ian Miguel. The rules of constraint modelling.

In Proceedings of the Nineteenth International Joint Conference

on Artificial Intelligence (IJCAI)�2005. [104

Gas77] J. Gaschnig. A general backtracking algorithm that eliminates

most redundant tests. In Proceedings of the 5th International

Joint Conference on Artificial Intelligence, page 457，1977. [2，8'

GB65] S.W. Golomb and L.D. Baumert. Backtrack programming. Jour-

nal of the ACM, 12(4):516-524, 1965. [2, 8:

.Ger94] C. Gervet. Conjunto: Constraint logic programming with finite

set domains. In Proceedings of the International Logic Program-

ming Symposium, pages 339-358, 1994. [6

112

Ger95] C . Gervet. Set Intervals in Constraint Logic Programming: Defi-

nition and implementation of a language, P h D thesis, Universite

de Pi'anche-Comte, 1995. [2, 8, 9:

Ger97] C. Gervet. Interval propagation to reason about sets: Defini-

tion and implementation of a practical language. Constraints,

l(3):191-244, 1997. [2, 6, 8, 9；

GW99] Ian P. Gent and Toby Walsh. CSPLIB: A benchmark li-

brary for constraints. In Principles and Practice of Constraint

Programming (CP99), pages 480—481, 1999. Available from

http://www.csplib.org/. [18, 19, 21, 23, 24’ 104

Hen92] P. Van Hentenryck. Scheduling and packing in the constraint

language cc(FD). Technical Report CS-92-43, Zweben and Fox

(Eds), Morgan Kaufmann, 1992. [1

HF05] Bernadette Martinez Hernandez and Alan M . Prisch. Towards

the systematic generation of channelling constraints. In Princi-

ples and Practice of Constraint Programming (CP), 2005. [104

H K W 0 2] B. Hnich, Z. Kiziltan, and T. Walsh. Modelling a balanced aca-

demic curriculum problem. In Proceedings of the 4th Interna-

tional Workshop on Integration of AI and OR Techniques in

Constraint Programming for Combinatorial Optimization

lems (CP-AI-OR 2002), pages 121-131, 2002. [23，72:

HPS05] B. Hnich, S. Prestwich, and E. Selensky. Constraint-Based Ap-

proaches to the Covering Test Problem, volume 3419 of Lecture

Notes in Computer Science, pages 172 — 186. Springer, Mar 2005.

104

113

http://www.csplib.org/

HSW04] B. Hnich, B. Smith, and T. Walsh. Dual modelling of permu-

tation and injection problems. Journal of Artificial Intelligence

Research, 21:357-391, 2004. [3’ 4, 10，18, 19, 30’ 43，45, 48，74,

1 0 2；

HWO2I B. Hnich and T. Walsh. Models of injection problems. In

Eighth International Conference on Principles and Practice of

Constraint Programming (CP), volume 2470 of Lecture Notes in

Computer Science, page 781. Springer, 2002. [102, 104'

IL099] I L O G . ILOG Solver 44, Reference Manual, 1999. [2’ 4, 6, 32,

39，41’ 49；

Law02] Y.C. Law. Model induction: a new source of model redundancy

for constraint satisfaction problems. Master's thesis, The Chinese

University of Hong Kong, 2002. [104:

Law05] Y. C. Law. Breaking value symmetries in matrix models using

channeling constraints. In Proceedings of the 20th Annual ACM

Symposium on Applied Computing (SAC-2005), pages 375-380,

2005. [103；

LLO2] Y. C. Law and J. H. M . Lee. Model Induction: A New Source

of CSP Model Redundancy. In Proceedings of the Eighteenth

National Conference on Artificial Intelligence (AAAr02), pages

54-60, Edmonton, Canada, 2002. [104:

LL06] Y. C. Law and J. H. M . Lee. Symmetry breaking constraints

for value symmetries in constraint satisfaction, (to appear) Con-

straints, 2006. [3, 21’ 22，24, 25, 30, 72，103；

114

Mac77] A.K. Mackworth. Consistency in networks of relations. Artificial

Intelligence, 8(1):99-118, 1977. [1，2，8，9]

Mil99] J. E. Miller. Langford's problem, 1999. Available from

http://www.lclark.edu/ miller/langford.html. [18:

.MM88] R. Mohr and G. Masini. Good old discrete relaxation. In Proceed-

ings of the 8th European Conference on Artificial Intelligence,

pages 651-656, 1988. [2，8:

.Mon74] U. Montanari. Networks of constraints: Fundamental proper-

ties and applications to picture processing. Information Science,

7(2):95-132, 1974. [2, 8；

.Moz04] Mozart. Mozart 1.3.1, Mozart Documentation, 2004. Available

from http://www.mozart-oz.org/documentation/. [2’ 4，32’ 39

.MS98] K. Marriott and P.J. Stuckey. Programming with Constraints.
The MIT Press, 1998. [2, 6’ 108:

Nad89] Bernard A. Nadel. Constraint satisfaction algorithms. Compu-

tational Intelligence, 5:188-224, 1989. [2, 8

PROl] Jean-Francois Puget and Jean-Charles Regin. Solv-

ing the all interval problem, 2001. Available from

http://www.csplib.org/prob/prob007/piigeti.pdf. [20

PS98] L. Proll and B. Smith. ILP and constraint programming ap-

proaches to a template design problem. INFORMS Journal on

Computing, 10:265-275, 1998. [1

Reg94] Jean-Charles Regin. A filtering algorithm for constraints of dif-

ference in csps. In Proceedings of the 12th National Conference

115

http://www.lclark.edu/
http://www.mozart-oz.org/documentation/
http://www.csplib.org/prob/prob007/piigeti.pdf

on Artificial Intelligence (AAAr94), Seattle, W A , U S A , 1994.

10, 68，70:

SIC05] SICStus. SICStus. SICStus Prolog, Users Manual, 2005. Avail-

able from http://www.sics.se/sicstus/docs/latest/html/sicstus/

index.html. [2, 4’ 32’ 39’ 41；

'SLM92] Bart Selman, Hector J. Levesque, and D. Mitchell. A new

method for solving hard satisfiability problems. In Paul Rosen-

bloom and Peter Szolovits, editors, Proceedings of AAAr92,

pages 440-446, Menlo Park, California, 1992. AAAI Press. [8:

SmiOO] B. Smith. Modelliiig a permutation problem. In Proceedings

of ECAr2000 Workshop on Modelling and Solving Problems

with Constraints, 2000. Also available as Research Report from

http://scom.hud.ac.uk/staff/scombms/papers.html. [101

SmiOl] B. Smith. Dual models in constraint programming. Technical

report, University of Leeds, 2001. [3，6, 16，17, 18’ 19，21, 22’

30, 43, 45, 72, 101，102，104，108；

,Smi02] B. Smith. A dual graph translation of a problem in 'Life'. In

Eighth International Conference on Principles and Practice of

Constraint Programming (CP), volume 2470 of LNCS, pages

402-414，2002. [1；

SSW99] B. Smith, K. Stergiou, and T. Walsh. Modelling the golomb ruler

problem, 1999. [1:

WalOl] Toby Walsh. Permutation problems and channelling constraints.

In Proceedings of LPAR-2001, volume 2250 of LNAI, pages 377-

391. Springer, 2001. [4, 10, 43，45’ 48，102, 104:

116

http://www.sics.se/sicstus/docs/latest/html/sicstus/
http://scom.hud.ac.uk/staff/scombms/papers.html

ZWOO] Z.Wu and B.W. Wah. An efficient global-search strategy in dis-

crete lagrangian methods for solving hard satisfiability problems.

In Proceedings of AAAIW, pages 310-315, 2000. [8

117

•• •

• • •

• . . . - • ‘ ‘ “ . , • ^

• . . •

, ‘-.丨 ‘‘’ ’ -

• ‘ , • ‘ - ‘

.• ‘ • • . . . -

- • - • W • •‘
• - .• • . - . .

’ .,..1 ： - • . … . . 、 ’ . . . • • •• - ‘ •

；- ...',.•• “ • . • • ：、.. ‘ • ... • • —. • •'••'•>•'•- ‘ ••

V , ::..-、：：•':..:”‘',,’._.:..:...;.,-:,、、
； . . . : . ， 、 . . . : ：“.、•,- .•:•.,.-•〜，、.， ‘.
:-， ••• .,、- .. j : : . : ‘ - - • •
々真. • ’ .-.,,;、：. - :.: /、,.•”...广.•
I，..: .广•.广- V,” r.4、:/. : • � . , ‘ • . •‘ • •
> 、 . ：，••• ^ W； ；二么、，..： .•
.-•• . ： , - . -v./ ‘ , • . • 〜：..：、:”.….-..M—�: ,.-、•..... ‘ .

• ：：•• • . . . 、 . ： ： • 丨 ' - . • • . • • ,

C U H K L i b r a r i e s

_圓1_11
0 0 4 3 5 9 2 4 9

