
Improvement and Optimization of H.264

Video Codec

TANQ Kai Lam

…--—w

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Philosophy

in

Electronic Engineering

© The Chinese University of Hong Kong

August 2007

The Chinese University of Hong Kong holds the copyright of this thesis. Any

person(s) intending to use a part or whole of the materials in the thesis in a proposed

publication must seek copyright release from the Dean of the Graduate School.

_ 随 ~ / M / J
Ws^BRARY SYSTEMXW

Acknowledgement

I would like to express my deep and sincere gratitude to my supervisor, Professor

Ngan King Ngi, for his invaluable suggestions and guidance. His expertise in visual

signal processing guides me towards the completion of my project and research.

I wish to express my warm and sincere thanks to the technical staff and my fellow

students in the Visual Signal Processing and Communications Laboratory. Their

detailed and constructive comments, help and suggestions support me during my

difficult moments.

I would like to warmly thank the department of Electronic Engineering of the

Chinese University of Hong Kong for providing me with a comfortable study

environment and advanced facilities.

i

Abstract

H.264/AVC is the latest video coding standard which outperforms previous video

coding standards. However, it is computational intensive. Accordingly, optimization

is required for reducing the complexity for real-time applications. In addition, even

though the coding performance of H.264 is excellent, it can still be further improved.

Coding of intra slices requires a large number of bits and therefore, to improve the

coding performance, intra block matching technique is applied with several proposed

enhancement techniques including best match prediction, multiple best matches,

novel padding method, skip mode, etc. Experimental results show that the coding

performance can be improved significantly.

Variable block size motion estimation is one of the techniques contributes to the

complexity of H.264. Accordingly, a fast variable block size motion estimation

algorithm is proposed. It reuses S A D within the same macroblock and uses

pattern-based motion estimation and refinement search to reduce the complexity

while maintaining the coding performance.

The complexity of H.264 is so high that encoding and decoding video in real-time on

Pocket PC is not easily achieved. Accordingly, various optimization techniques are

proposed and applied to develop a Pocket PC software-based real-time H.264 codec.

The developed codec can encode and decode video in more than 25 frames per

second. Besides, since the system is developed in software, it is suitable for

technology transfer.

ii

摘要

H.264是現在最先進的視頻編碼標準之一，其壓縮率及視訊品質都比過去的視

頻編碼標準較爲優勝，可是它的算法複雜度極高，爲了能夠做到實時編解碼，

優化是必須的。雖然H.264有這麼好的壓縮率及視訊品質，改進的空間仍然是

存在的。

幀內條帶需要用很多的比特來進行編碼，爲了壓縮得更有效率，我們提出了多

種的強化技術來提高一種叫幀內塊匹配技術的性能，提出的技術包括最佳匹配

預測、數個最佳匹配、塡充方法、跳過模式等。實驗結果顯示當用了這些技術

以後，系統的性能得到大大的改善。

可變塊大小運動估計是其中一種令H.264的複雜度高的技術’因此’我們提出

了一種快速可變塊運動估計算法，這算法主要是通過重複運用已計算的SAD

與模式匹配運動估計來減低複雜度和保持編碼性能。

由於H.264的複雜度極高，所以要在掌上電腦上進行實時編解碼並不容易，爲

了開發一個基於軟件的、實時的H.264掌上電腦編解碼器，我們提出了不少優

化技術，開發出來的編解碼器能在每秒編解碼多於廿五張幀，此外，因爲整個

系統的開發都是基於軟件的，所以很容易就可以進行科技轉換。

• iii

Contents

Acknowledgement i
Abstract ii
Contents iv
Publication List vii

Chapter 1 Introduction 1-1
1.1 Video Coding 1-1

1.1.1 Temporal prediction 1-5

1.1.2 Transform Coding 1-9

1.1.3 Quantization 1-12

1.1.4 Entropy Coding 1-14

1.2 H.264/MPEG-4 Part 10 1-15

1.2.1 Overview 1-16

1.2.2 Intra Prediction 1-19

1.2.3 Inter Prediction 1-20

1.2.4 Transform and Quantization 1-23

1.2.5 Entropy Coding 1-25

1.2.6 Deblocking Filter 1-29

1.3 Organization of the Thesis 1-32

1.3.1 Review of Motion Estimation Techniques 1-32

1.3.2 The Proposed Algorithms 1-33

1.3.3 Optimization of the Codec 1-34

1.4 Contributions 1-35

Chapter 2 Review of Motion Estimation Techniques 2-1
2.1 Fast Full Search 2-2

2.2 Hybrid Unsymmetrical-cross Multi-Hexagon-grid Search 2-4

2.3 Center biased Fractional Pel Search 2-6

2.4 Enhanced Predictive Zonal Search 2-7

Chapter 3 Enhancement Techniques for Intra Block Matching 3-1
3.1 Introduction 3-1

3.1.1 Fundamental Principles 3-1

3.1.2 Variable Block Size Intra Block Matching 3-3

3.2 Proposed Techniques 3-5

3.2.1 Padding 3-5

3.2.2 Modes 3-9

. iv

3.2.3 Performance Enhancement Tools 3-12

3.2.3.1 Multiple Best Matches 3-12

3.2.3.2 Adaptive Integer and Sub-pixel Intra Block Matching.... 3-13

3.2.4 Pseudo Intra Block Matching 3-14

3.3 Proposed Fast Algorithms 3-16

3.3.1 Fast Intra Block Matching Decision 3-16

3.3.2 Skipping some Intra Block Matching Processes 3-18

3.3.3 Early Termination 3-19

3.3.4 S A D Reuse Techniques 3-21

3.4 Experimental Results 3-22

Chapter 4 Enhanced SAD Reuse Fast Motion Estimation 4-1
4.1 Introduction 4-1

4.2 Proposed Fast Motion Estimation Algorithm 4-3

4.2.1 Best Initial Motion Vector 4-3

4.2.2 Initial Search Pattern 4-4

4.2.3 Initial Search Process and Search Pattern Improvement Process 4-7

4.2.3.1 BISPCSP Motion Estimation or Refinement Process

Decision 4-8

4.2.3.2 ISP Motion Estimation or Refinement Process Decision 4-9

4.2.4 Motion Estimation Process and Refinement Process 4-9

4.2.4.1 Motion Estimation Process 4-9

4.2.4.2 Refinement Process 4-11

4.2.5 Motion Estimation Skip Process for B Pictures 4-12

4.3 Experimental Results 4-13

Chapter 5 Development of Real-Time H.264 Codec on Pocket PC 5-1
5.1 Algorithmic Optimizations 5-2

5.1.1 Fast Sub-Pixel Motion Estimation 5-2

5.1.2 Interpolation 5-5

5.1.2.1 Revision of Luma Interpolation 5-5

5.1.2.2 Fast Interpolation 5-8

5.1.3 Skipping Inverse ICT and Inverse Quantization Depends on

Coded Block Pattern 5-10

5.2 Code Level Optimizations 5-12

5.2.1 Merging Loops 5-12

5.2.2 Moving Independent Code outside the Loop 5-13

5.2.3 Unrolling Loops 5-14

5.3 Experimental Results 5-16

. V

5.4 Applications 5-26

Chapter 6 Conclusions and Future Development 6-1
6.1 Conclusions 6-1

6.1.1 Enhancement Techniques for Intra Block Matching 6-1

6.1.2 Enhanced S A D Reuse Fast Motion Estimation 6-1

6.1.3 Development of Real-Time H.264 Codec on Pocket PC 6-2

6.2 Future Development 6-3

Bibliography I

. vi

Publication List

1. Enhanced SAD Reuse Fast Motion Estimation, Kai Lam Tang and King N.

Ngan, Proceedings of SPIE, Vol. 6508, Visual Communications and Image

Processing 2007

2. Enhancement Techniques for Intra Block Matching, Kai Lam Tang and King N.

Ngan, ICME'07 - Multimedia Coding and Processing Track

vii

Chapter 1 Introduction

H.264/AVC [7, 18，19, 30] is the latest video coding standard which outperforms

previous video coding standards such as H.261, H.263, MPEG-1, MPEG-2 and

MPEG-4. However, it is more computational intensive. Consequently, optimization

is required for reducing the complexity for real time applications. In addition, even

though the performance of H.264 is excellent, there is still room for further

improving the standard to achieve better coding performance.

As mentioned, optimization and improvement of H.264 are necessary. Therefore, this

thesis focuses on discussing the optimization techniques and improving the

algorithms for H.264.

The following sections describe the fundamental principles of video coding and

provide an introduction of the H.264 standard. At the end of this chapter, the

organization of this thesis and the contributions will be discussed.

I.1 Video Coding

Video coding is the process of compressing and decompressing a digital video signal

[18]. Video compression aims to reduce the data used to represent the video content

without significant loss in quality. After the video is compressed, it can be stored

with less storage resources or can be transmitted efficiently. A lot of data are required

to represent an uncompressed video. Consequently, it is valuable to develop efficient

compression algorithms. Normally, the spatial and temporal correlations of video are

exploited to achieve data compression.

1-1

Video compression can be classified into two types. One is lossless compression and

the other is lossy compression. With lossless compression, compressed data can be

decompressed back to the original data, i.e. the decompressed data are the same as

the original data. As implied from its name, lossy compression causes loss of data

during compression. Therefore, the decompressed data are not the same as the

original data. For video data, if the loss is not excessive, the visual quality of the

decompressed video will not be degraded significantly or unable to be perceived by

human eyes..

When a video is being processed, normally each picture is partitioned into many

macroblocks which comprise 16x16 pixels. For 4:2:0 Format, a macroblock

comprises 16x16 luma components and two 8x8 chroma components as illustrated in

Figure 1.1. The reason for partitioning each picture into 16x16 macroblocks is that

when the partition size is too small, more overhead information is necessary to be

transmitted. When the partition size is too large, prediction techniques cannot

achieve accurate results and thus more resources are required to encode the

prediction errors. Consequently, the size of a macroblock is 16x16 in traditional

standards. (Recently, some researchers are trying to use 32x32 super-macroblock for

High-Definition (HD) video processing.)

16

16 Y

16

16 — r ^
8 Cb

Macroblock
8

8 Cr

1-2

Figure 1.1 A macroblock comprises 16x16 luma (Y) components and two chroma

(Cb and Cr) components for 4:2:0 Format.

After the picture is partitioned into macroblocks, each of them is processed with

various techniques. Traditionally, these techniques mainly include intra/inter

prediction, transform and inverse transform, quantization and de-quantization,

entropy coding and decoding. With these techniques, videos can be compressed

efficiently. Figure 1.2 illustrates a generic DPCM/DCT hybrid encoder and decoder

[18].

(二 h
m

‘-Motion I
Estimert*

F � 1 ,, ^ Motion , , p

(refdrencd) CompcMato
1 I i V»ctora ar>d

henckri

一 • 一 J L I ‘ ••• — ‘ — - - . . .

(a)

i F' , ^ Motion p

I (一。> 一知• Vectors and —
headers

F； L A— k - d S 一 h C，
(n<nn<»c<Kf) + aeooae bistream

(b)

Figure 1.2 (a) A DPCM/DCT video encoder and (b) A DPCM/DCT hybrid decoder

[18].

In Figure 1.2 (a), each macroblock of picture Fn attempts to find a best match from

1-3

the reference picture. After the best match is found, the motion vectors are encoded

and the best match is selected as prediction P for the current macroblock. The

prediction is subtracted from the current M B to generate the prediction errors Dn. The

prediction errors are transformed and quantized. The quantized transform coefficients

X are reordered with the specified scanning method and finally they are entropy

encoded.

Only the encoded prediction errors and header information are transmitted to the

decoder. Based on previously received data, the decoder generates the same

prediction P as that generated in the encoder. In addition, the decoder performs

entropy decoding and reorders the decoded quantized transform coefficients. Then

they are rescaled, inverse transformed and adding to the prediction to construct a

picture.

To ensure both encoder and decoder reconstruct the same picture for prediction, the

prediction errors are also rescaled, inverse transformed and adding to the prediction

in the encoder side. Note that the structure of the decoder and the reconstruction

structure in the encoder are the same. Consequently, both encoder and decoder have

the same reconstructed picture for prediction. These are the fundamental principles of

video coding.

In the following sections, the techniques mentioned above including temporal

prediction, transformation, quantization and entropy coding will be discussed in

detail.

1-4

1.1.1 Temporal Prediction

As mentioned in Section 1.1, a best match is found from a reference picture for each

macroblock. The reason for doing this is that normally there is high temporal

correlation between neighboring pictures in a video, i.e. the neighboring pictures in a

video are very similar. Figure 1.3 illustrates the temporal correlation of two video

sequences, mobile and news. Figures 1.3 (a), (b), (d) and (e) show the frame 0 and

frame 1 of mobile and news, respectively. Figures 1.3 (c) and (f) demonstrate the

differences between frame 0 and frame 1 without motion compensation.

闕

^ S r ^ J ^ M 丨丨�2 13 14 15 16 17 m

18 19 20 21

B U S B B I i l l L ^ ^ J D E B a f l l ^ M � MobUe, Frame 0

？nij ^ 4 5 6 7 8 y _

• T j l i i i n 13 14 15 16 n m
18 19 20 21 ^ J ^ y ^

i K f l H H E i l L i a J D D B n i ^ l H H I (b) MobUe, Frame 1

. 1-5

I : , L 工条

^！ M P 遭

、̂11 番

M P E K

^ m W O R L D m f ^ m i l ^ ^ g

l l l l l l l l l l l l l l l l l l B l l l l l l l l l l l l l l ^ ^ B l l l l l l l l U l B (f) Frame -

Figure 1.3 The temporal correlation of mobile and new video sequences.

In Figure 1.3 (c) and (f), pixels with grey value represent zero prediction error, white

and black represent 255 and -255, respectively. It is obvious that even though without

applying motion compensation, for sequence with small motion, the prediction errors

are small. However, when the motion of the sequence is large, then the prediction

errors become larger and therefore more bits are necessary to encode the prediction

errors. Consequently, a technique called motion estimation and compensation is

developed to minimize the prediction errors.

Motion estimation is to estimate which position in the reference picture is the best

match of the current block. To determine the best match, a cost function is required.

Normally, the sum of absolute difference (SAD) or sum of squared difference (SSD)

is employed. Due to the low complexity of SAD and its acceptable accuracy, it is

generally preferred. The position with the minimum cost is selected as the best match

and this best match is chosen as the prediction. With this motion compensated

prediction, the prediction errors are reduced significantly as illustrated in Figure 1.4.

. 1-7

Figures 1.4 (a) and (b) show the prediction error of mobile and news with motion

compensation. The motion estimation and compensation employed for Figure 1.4

was 8x8 block based with search range equaled to 32. From the figure, it can be

observed that prediction errors are reduced significantly when compared with those

in Figure 1.3 (c) and (f) and nearly equal to zero. This implies that fewer bits are

required for encoding them. Consequently, higher compression can be achieved.

An accurate temporal prediction can contribute to high compression. If other

techniques are employed to process the prediction errors, an even higher

compression can be achieved. Those techniques will be discussed in the next

sections.

• • • •
(a)

. 1-8

•
(b)

Figure 1.4 The prediction errors with motion compensation of (a) mobile and (b)

news.
1.1.2 Transform Coding

The correlation of image data or prediction errors is generally high. A decorrelation

process is to reduce the correlation of the data. Transformation is such a process.

After transformation, most of the energy is packed into few transform coefficients.

These coefficients are quantized and can be encoded efficiently.

Karhunen-Loeve Transform (KIT) is optimal in the mean square error sense.

However, it depends on the statistics of the data and therefore it cannot be

implemented with fast algorithm. Due to its complexity, video coding standards do

not adopt this transform for their transform coding process.

Discrete Cosine Transform (DCT) is a sub-optimal transform. Even though it cannot

decorrelate data as efficiently as KLT, it does not depend on the statistics of the data

. 1-9

and it has fast algorithm. Therefore, in previous video coding standards such as h.261,

MPEG-1, D C T is adopted for their transform coding scheme.

The forward 2D D C T of an NxN data is given by Equation 1.1 [18]，

Y = T X T t (1.1)

and the inverse 2D D C T is given by Equation 1.2.

X = T'YT (1.2)

where X is a matrix of the input signals,

Y is a matrix of the D C T coefficients,

T is an NxN transform matrix, and

the elements of T are given by Equation 1.3.

T：： + where Cq = , —, and C： = , — (i > 0) (1.3)

For 8x8 DCT, the transform matrix T is:

0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536

0.4904 0.4157 0.2778 0.0975 -0.0975 -0.2778 -0.4157 -0.4904

0.4619 0.1913 -0.1913 -0.4619 -0.4619 -0.1913 0.1913 0.4619

^ _ 0.4157 -0.0975 -0.4904 -0.2778 0.2778 0.4904 0.0975 -0.4157

“0.3536 -0.3536 -0.3536 0.3536 0.3536 -0.3536 -0.3536 0.3536

0.2778 -0.4904 0.0975 0.4157 -0.4157 -0.0975 0.4904 -0.2778

0.1913 -0.4619 0.4619 -0.1913 -0.1913 0.4619 -0.4619 0.1913

0.0975 -0.2778 0.4157 -0.4904 0.4904 -0.4157 0,2778 -0.0975

The forward and inverse 2D D C T can be written in another form as shown in

Equations 1.4 and 1.5 [18].

Y^ = r C , y y X：,. c o s — - c o s - (1.4)
^ ^ y ^Lu y 9/v IN

1=0 y=0 "V LIM

. 1-10

The basis pictures of 8x8 D C T are shown in Figure 1.5.

• • 圄 M U I B 國 •

H • 圓

醒mm誦徹m
Rmmmmmmm
mm^mmmmm
国•國••圓
目圍••圏國•懸

Figure 1.5 The 8x8 D C T basis pictures [18].

Figure 1.6 illustrates how D C T packs the energy of an 8x8 block into a small number

of coefficients. X is the input signal. C is the D C T coefficients of the input signal. It

can be observed that most of the energy is packed to the top-left comer in C.

Therefore, after quantization and entropy encoding, the data can be encoded with a

small number of bits and thus the compression can be increased.

. 1-11

55 54 53 55 55 54 55 52

54 55 52 52 53 54 54 49

55 55 53 53 55 54 54 55

^ ^ 55 55 54 55 55 54 54 52

“ 5 7 57 55 54 54 53 54 54

55 52 53 54 55 55 55 49

52 53 53 53 54 55 55 48

55 55 55 55 53 53 54 54

(a)

431 4 - 2 5 -2 2 - 3 1

0 0 1 1 1 - 1 - 1 0
-2 - 1 - 1 0 - 1 1 0 0

_ -1 0 - 2 2 -1 2 0 1

= 4 1 2 -3 2 0 0 -1

0 -2 -3 1 0 1 0 0

2 - 1 1 - 1 3 0 1 0

2 0 2 -2 0 -2 0 0

(b)

Figure 1.6 (a) The input signal and (b) The D C T coefficients of the input signal.

1.1.3 Quantization

The fundamental principle of quantization is to quantize a signal with large range to

smaller range. For example, the output value of a quantizer can be computed with

Equation 1.6. To reconstruct the signal R, Equation 1.7 is applied. In the Equations,

the QP is the quantization parameter which controls the step sizes of the quantizer.

When QP is large, fewer bits are required to encode the output signals. Otherwise,

more bits are required but the distortion introduced by quantization is less. Figure 1.7

shows an example of a three-bit uniform scalar quantizer. In the example, the

quantizer has a QP of 32. If the value of the input signal is 66，it will be quantized to

2.

. 1-12

Output = (1.6)

R = Output x Q P (1.7)

It should be noticed that the reconstructed signal is not the same as the input signal.

Therefore, quantization is a lossy process. If the distortion introduced during the

quantization process is not too large, the reconstructed signal is similar to the input

signal. In image and video processing, QP can be used to control the compression

and the quality of the reconstructed signal.

Oiitpiit

3 +

2 --

1
32 64 96 128

-H——I——I——I I ̂ M——I——I——f- inpiit
-128 -96 -64 -32

- 1

-_ -2

_- -3

---4

Figure 1.7 A three-bit uniform scalar quantizer.

In addition to scalar quantization, there is another type of quantization called vector

quantization. A vector quantizer maps a set of input data to a single codeword. Both

encoder and decoder store the same set of vectors in a codebook. Therefore, the

vector can be dequantized correctly [18].

. 1-13

1.1.4 Entropy Coding

Entropy coding is a lossless process. One or more input symbols are converted to a

single codeword. At the decoder side, the encoded codeword can be decoded back to

the original symbols without any distortion. There are many entropy coding methods

such as Runlength Coding, Huffman Coding, Arithmetic Coding, etc.

Runlength Coding converts run of zeros to a single codeword. Therefore, when the

occurrence of zero in the input data set is high, the data can be compressed

efficiently.

Huffman Coding encodes the input symbols based on the probabilities of their

occurrences. A short length codeword is assigned to a symbol with higher probability

of occurrence and vice versa. The codeword is unique and instantaneously decodable.

The average bit per symbol R of Huffman Coding can be computed with Equation

1.8, Huffman Coding can achieve high compression. However, the codeword of each

symbol contains an integral number of bits. In reality, the optimal number of bits for

a symbol depends on the information content and is generally a fractional number.

Consequently, Huffman Coding is only sub-optimal.

N-l

R = (1.8)
/=o

where Pi is the probability of occurrence of symbol i,

Li is the length of the codeword of symbol i, and

N is the total number of symbols

. 1-14

Arithmetic Coding is an entropy coding technique that approaches the entropy limit.

A message is represented by an interval of real numbers between 0 and 1. As the

message is longer, the interval needed to represent it becomes smaller, and the

number of bits needed to specify that interval grows. If the probability of occurrence

of a symbol is very high, the interval will be reduced in a smaller amount and vice

versa.

Unlike Huffman Coding, Arithmetic Coding converts a sequence of symbols to a

single fractional number and therefore it can generally compress the symbols more

efficient than Huffman Coding does [18].

1.2 H.264/MPEG-4 Part 10

H.264/AVC is the latest video coding standard which is developed by the Moving

Picture Experts Group and the Video Coding Experts Group (MPEG and VCEG). It

outperforms previous video coding standards such MPEG-1, MPEG-2, MPEG-4,

H.261, H.263, etc. It is entitled 'Advanced Video Coding' (AVC) and is published

jointly as Part 10 of MPEG-4 and ITU-T Recommendation H.264 [19, 20].

Unlike MPEG-4 which supports object-based video coding, H.264/AVC is

frame-based. It encodes video with the highest compression and best quality amongst

all existing video coding standards. Applications of H.264 include video telephony or

video conferencing, storage, etc.

1-15

1.2.1 Overview

H.264 employs various advanced video processing techniques which include variable

block size motion estimation and compensation, multiple reference pictures, various

modes of intra prediction, deblocking filter, etc. These techniques contribute to the

excellent performance of H.264. Even though H.264 outperforms previous video

coding standards, H.264 is computational intensive. Consequently, many researchers

develop fast algorithms, such as fast motion estimation, fast mode decision, early

skip detection, etc, to reduce the complexity of H.264.

r^TTr 一 H 卜贴 L
ituirent) I I I I |

^ ME

P - h
F'n-1 J MC inter

a p
(1 cir2pr»Mouftty 1 1 1 ^ �

Choose Intra ~ »

p p r S M p子广 n t r a

<r*conitfuct»d̂ +

(a) The H.264 encoder

Inter

F'n., >. MC ~ _
felsrefiM) ^ ^ r

(1 o(2 pf«vicu(ty Intra
encodwj itamw) Intra

prediction

uF； X
Filter ̂ ~~i 一 r 一 & = — NAL

(b) The H.264 decoder

Figure 1.8 The H.264 codec [18].

Figure 1.8 (a) shows the H.264 encoder structure. Similar to previous video coding

. 1 - 1 6

standards, H.264 applies hybrid coding scheme. For I picture, based on the cost

function, the best intra prediction mode is selected and the prediction errors Dn are

transformed, quantized, reordered and entropy encoded. The quantized Integer

Cosine Transform (ICT) coefficients are rescaled and inverse transformed to generate

Dn，. The prediction P is added to 0„' to form the unfiltered reconstructed block.

Finally, the unfiltered reconstructed block is filtered by a deblocking filter and the

output is the reconstructed frame used for temporal prediction. It should be noticed

that intra prediction exploits unfiltered reconstructed blocks to perform the

prediction.

In H.264, seven different block types are available for motion compensation. A

macroblock can be partitioned into 16x16，8x16, 16x8, or 8x8 blocks. If 8x8 partition

size is selected, the 8x8 sub-macroblock can further be partitioned into 8x8, 4x8, 8x4

or 4x4 blocks as illustrated in Figure 1.9. When compared with the fixed block size

strategy in previous standards, this variable block size strategy can reduce the

temporal prediction errors more significantly. For P or B pictures, the best mode is

selected amongst all the enabled intra and inter modes based on the cost function

defined in the encoder. After the best prediction is found, the whole process is the

same as that of I picture.

. 1-17

16

, , Macjooblock
(MB)

8 8
16 16

一 一 一 一 一 \

一 一 一 一 \ 一一一一 \ — 一 、

& a 4 4

s i 4 日
Figure 1.9 The macroblock and sub-macroblock partitions in H.264.

Figure 1.8 (b) shows the H.264 decoder structure. It can be observed that the decoder

structure is similar to the reconstruction part of the encoder (bottom parts) except that

the blocks ‘‘Choose Intra prediction" and "ME" are not present.

The Baseline Profile of H.264 supports I and P slices only. It supports 17 intra

prediction modes which include nine 4x4, four 16x16 luma intra prediction modes

and four 8x8 chroma prediction modes. For inter prediction, it supports all the seven

block types. In addition, 1/4 and 1/8 pixel motion compensations are supported for

luma and chroma components, respectively. The transform and quantization are 4x4

based. The quantized transform coefficients are encoded with Context-based

Adaptive Variable Length Coding (CAVLC) and all other syntax elements are

encoded with Exponential-Golomb Variable Codes. The ON/OFF of the deblocking

filter is optional. In the following sections, the main components of H.264 will be

discussed in detail. The discussions focus on the Baseline Profile of H.264.

. 1 - 1 8

1.2.2 Intra Prediction

As mentioned before, in H.264 Baseline Profile, there are totally 17 intra prediction

modes as illustrated in Figure 1.10. Figure 1.10 (a) shows the nine 4x4 luma intra

prediction modes. It should be noted that the prediction samples, i.e. A...M can be

the reconstructed samples of current macroblock or previously reconstructed

macroblock within the same slice. Figure 1.10 (b) shows the four 16x16 luma intra

prediction modes. The chroma intra prediction modes are similar to those of 16x16

luma prediction modes except the D C mode is quite different. Figure 1.10 (c) is an

example of chroma D C prediction. In the example, the neighboring prediction

samples (a.. .r) are assumed to be available.

0 (vertical) 1 (horizontal) 2 (DC) 3 (diagonal down如ft) 4 (diagonal down-right)

M|A|B|C|D̂IHG[Tn IMIAIBICIUIblĤ |M|a|B|C|D|E|F|-5[H1 |M| A|b|C|Umnŷ] |M|A|B̂ |D|E|F|T5rH1

wT ^ ^
5 (vertical-rifi^) 6 (horizontal-down) 7 (verticaMoft) 8 (honzontal-up)

|M[AlBIC|U|b|HqH| |M[A|B|C|D|E|FTT5rT?] |M[A|BIC|DJEirT75rH1 |MlA|B|C|p|E|P 剛
r ^ p ^

(a) The 4x4 luma prediction modes [18].

0 (vertical) 1 (horizontal) 2(DC) 3 (plane)

, 1 . . . H I • I H I 丨丨 H J , I , h 1

r i ^ r ^ ^ r r ^ ^
V V V Mean(H+V) V y

(b) The 16x16 luma prediction modes [18].

. 1-19

a 丨 丨 c 丨 <11 e I f I g~ri7
i
丁 Mean „
丄 <a...tl， Mean
A i...iii)
111
II
T Mean Mean
If (" … � e _ " h ，
— n...r)

(c) An example of chroma D C prediction.

Figure 1.10 The intra prediction modes in H.264 Baseline Profile.

1.2.3 Inter Prediction

In H.264, only the motion vector differences which can be derived with Equation 1.9

are encoded. In natural video, motion of neighboring blocks is highly correlated.

Therefore, the motion of the current block can be predicted from its neighboring

blocks to reduce the bits used to encode the motion information.

M V d = M V - Pred_MV (1.9)

where M V d is the motion vector difference,

M V is the motion vector of the best match, and

Pred_MV is the prediction motion vector which is defined in the H.264

standard.

Figure 1.11 illustrates the neighboring blocks of the current block. In Figure 1.11, N

is the current block, A, B, C, and D are the left, upper, upper-right and upper-left

blocks of the current block. Pred_MV is mainly the median of the motion vectors of

blocks A, B and C. When blocks C is not available, the motion vector of block D is

used instead.

, 1-20

c D L r ^

8 D 司 ——
nr— — N

4lA I
N 16

(a) (b)

Figure 1.11 The current block N and its neighboring blocks. The block size of N is (a)

16x16 and (b) 8x8.

The deriving processes of Pred_MV for 8x16 and 16x8 blocks are exceptional cases.

Figure 1.12 illustrates the prediction for these two cases. The Pred_MV of the upper

8x16 blocks is set to the motion vector of the upper block while the Pred一MV of the

lower one is set to the motion vector of the left block only. The Pred_MVs of the left

and right 16x8 blocks are set to the motion vectors of the left and upper-right block,

respectively.

• I B , [7 1 n _ _ ,

16

——>

Figure 1.12 The prediction directions of 16x8 and 8x16 block sizes.

All the above examples assume the motion vectors of the neighboring blocks are

available. Otherwise, the deriving process of the prediction motion vector is required

to be modified.

. 1-21

During motion estimation, the best matches are found amongst all seven block types.

The smallest block size of H.264 is 4x4. With such small block size, accurate

matching can be achieved. However, this requires a large amount of bits to encode

the motion information. Consequently, small block size is not always preferred

although prediction errors are small. For the interpolation of the sub-pixel positions,

a six tap filter with tap value (1,-5, 20, 20，-5，1) is employed for luma component.

The interpolation process for luma component will be discussed in Section 5.1.2 in

detail. Figure 1.13 illustrates the interpolation of the chroma components. N indicates

the sample to be interpolated. A, B, C and D are integer chroma samples. The value

of N can be computed with Equation 1.10 [30].

N = [(8-x) (8-y) A + x (8-y) B + (8-x) y C + x y D + 32] » 6 (1.10)

A 、 , B

,...、 ,、.

y

八 . A . o
X S / N 8-x

/\ 八 入 /�� . . ’•-�- . s

\{ V V - '' V V.
8-y

V V X : X y V,、.‘>z

X X X X X X
X X X > ；： X
C D

Figure 1.13 The interpolation of chroma 1/8 samples.

. 1-22

1.2.4 Transform and Quantization

H.264 employs Integer Cosine Transform (ICT) and Hadamard Transform instead of

Discrete Cosine Transform (DCT). The transformations in H.264 involve integer

operations only while D C T requires floating point operations. In addition, ICT can

achieve results which are similar to those of DCT. Consequently, ICT can outperform

D C T in terms of complexity without significant loss in coding efficiency.

In H.264 Baseline Profile, the 2x2 chroma D C coefficients for 4:2:0 or the 4x4 luma

D C coefficients (when 16x16 intra prediction is employed) are further decorrelated

with Hadamard Transform. All other prediction errors employ 4x4 ICT. Equation

I.11 and 1.12 are the forward and inverse 4x4 ICT used in H.264 [18].

厂 , <7& ab a^ — a-—
2 2

/ p 1 i n � " i � i 2 I 1 1 \ ^ ^ ^
» 2 1 - 1 - 2 X 1 1 - 1 - 2 T T y T

VLl -2 2 -1」L 」Ll -2 1 -I J/ « T T
at> ab b^

- T T T T -

(1.11)

1 1 1 i ， ’ [1 1 1 1

T j 7 一 1 一 q Y。口办 ah 1 5 - T 一 1

1 1 」 川 " " 丄 丄 _ 1 1 」
. 2 J 12 2.

(1.12)

where a = — , b = ,
2 V 5

X is the prediction errors matrix, and

. 1-23

Y is the transform coefficients matrix.

In Equations 1.11 and 1.12, there are scaling matrices Ef and Ej. Since they contain

floating point number, they cannot be implemented by right shift or left shift. To

reduce the complexity, the scaling process is combined into the quantization process.

The transform coefficients are quantized with Equation 1.13 [18].

PF
Zij = roundiWij •) (1.13)

Qstep

where Wij = CfXCf'^, and

Zij is the quantized and scaled coefficients.

Position PF

(0, 0)，（2，0), (0, 2) or (2，2) a2

(1,1), (1,3), (3, Dor (3, 3) ^

Others 迎
2

QP g辱 QP g鄉 I 叫 Q:邓 g尸 Qs哪一

0 0.625 7 1.375 18 5

1 0.6875 8 1.625 丨 42 80

2 0.8125 9 1.75 24 10 _ _

3 0.875 10 2 I 48 160

4 1 11 2.25 30 20

5 1.125 12 2-5 丨 51 224

6 1.25 ： 36 40

Table 1.1 The quantization step sizes in H.264 codec.

The dequantized coefficients can be obtained with Equation 1.14:

Wij' = 64 Zij Qstep PFi (1.14)

. 1-24

Position PFi

(0, 0), (2, 0), (0, 2) or (2, 2) a'

(1’ 1)’（1，3)，（3，l)or (3,3) b^

Others ab

1.2.5 Entropy Coding

Context-based Adaptive Variable Length Coding (CAVLC) and Exponential-Golomb

Variable Coding are entropy coding methods adopted in H.264 Baseline Profile. Only

prediction errors are encoded with CAVLC, other syntax elements such as motion

vector differences, macroblock type, coded block patterns, etc, are encoded with

Exponential-Golomb Variable Coding.

The syntax elements used in C A V L C are shown in Table 1.2 [30]. There are totally

six tables for parsing the syntax element coeff_token. Two of them are for chroma

D C level (4:2:0 and 4:2:2) and the others are for luma level, chroma A C and chroma

D C level (4:4:4). A parameter nC determines which table should be used. Table 1.3

illustrates the calculation of nC. nA and nB are the number of non-zero coefficients

of the left and upper block of the current block, respectively. If nC is small (nA and

nB are small), there is a high probability that the current block contains a small

number of non-zero coefficients. Therefore, shorter codes are assigned to small

TotalCoeff and vice versa.

The level (non trailing一ones) of a non-zero coefficient consists of two parts, the

level一prefix and the level一suffix. The length of the code for level—suffix is

determined by a variable called levelSuffixSize. If level—prefix is smaller than 14，

1-25

levelSuffixSize is set to suffixLength. suffixLength changes mainly according to the

magnitude of previously encoded/decoded non-zero coefficient. When level—prefix is

equaled to 14 and suffixLength is 0, levelSuffixSize is set to 4. Otherwise,

levelSuffixSize is set equal to level—prefix - 3. The reason for doing this is that this

can change the length of the code for non-zero coefficient adaptively. Table 1.4

illustrates the codeword of the level—prefix.

Syntax Element Meaning

coeff—token TotalCoeff: Total number of non-zero quantized

transform coefficient levels

TrailingOnes: The number of trailing one quantized

transform coefficient levels, maximum

number is 3

trailing—ones—sign_flag 1 bit syntax element, when it is equal to:

0: level of the coefficient is +1

1: level of the coefficient is -1

level—prefix The first part of code of a non-zero coefficient (excluding

trailing ones)

level一suffix The second part of code of a non-zero coefficient

total-zeros Total number of zeros after the first non-zero coefficients

in reverse zig-zag order

run_before Number of zeros after a non-zero coefficient in reverse

zig-zag order (excluding the last non-zero coefficient)

Table 1.2 The syntax elements of CAVLC.

. 1-26

Blocks A and B are available nC = (nA + nB + 1)»1

Only block A is available nC = nA

Only block B is available nC = nB

Blocks A and B are unavailable nC = 0

Table 1.3 The calculation of nC.

LeveLprefix bit string

0 1

1 01

2 001

3 0001

4 0000 1

• • • •鲁參

Table 1.4 The codeword table for level—prefix [30].

The C A L V C process is complicated. Interested readers are recommended to read [18,

21 and 30] for details.

When CAVLC is applied, Exponential Golomb codes [22] are used to encode the

non-prediction errors syntax elements. Table 1.5 shows the relationship between the

bit strings and the range of codeNum. For example, the bit strings for codeNums

equaled to 1 and 2 are 0 1 0 and 0 1 1’ respectively.

There are four mapping types for Exponential Golomb codes in H.264. They are

unsigned (ue), truncated (te), signed (se) and mapped (me). The codeNum of syntax

. 1-27

element with ue type is set to its value, te is similar to ue except when the range of

the syntax element is equal to 1, only 1 bit is encoded/decoded (bit 0 for codeNum 1

and bit 1 for codeNum 0). The relationship between the codeNum and the se type

syntax element value is shown in Table 1.6. me is for coded block pattern. The

codeNum for me type syntax element is derived according to the table on pages

202-204 of [30].

Bit string form Range of codeNum

1 0
t

0 1 Xo 1-2

0 0 1 xo 3-6

0 0 0 1 X2 xi xo 7-14

0 0 0 0 1 X3 X2 xi Xo 15-30

0 0 0 0 0 1 X4X3X2X1X0 31-62

• • • • • •

Table 1.5 The relationship between bit strings and codeNum ranges [30].

codeNum Syntax element value

0 0

1 1

2 -1

3 2

4 -2

k (-l)k+iround(k/2)

Table 1.6 The relationship between codeNum and syntax element value for se type

. 1-28

[3 0] .

The design of these mappings aims to produce short bit strings for frequently

occurring values and longer bit strings for the others [18]. For example, motion

vector difference value of 0 occurs frequently and thus it is encoded with 1 bit only

while the other less frequently occurring values are encoded with more than 1 bit.

1.2.6 Deblocking Filter

Since the video coding scheme employed in H.264 is block based, blocking artefacts

occur especially when the compression is high. In H.264, an optional in-loop filter

can be applied to filter the reconstructed picture. This can smooth the blocking

artefacts and cause the reconstructed picture to be more pleasing to view visually. In

addition, the temporal prediction can be more accurate. Consequently, the in-loop

filter can improve both coding efficiency and subjective quality of the reconstructed

picture with a little increment in complexity. Figure 1.14 shows an experiment to

investigate about the effect of applying the deblocking filter for QP equaled to 36 on

Common Intermediate Format (CIF) video. The compression ratio for both cases are

nearly equal while the (peak-signal-to-noise ratio) PSNR of the reconstructed frames

with deblocking filter is 0.3965dB higher than those without deblocking filter. It is

easy to notice that the subjective quality of the reconstructed frames with deblocking

filter is much higher than those without deblocking filter. The total encoding time for

the case with deblocking filter and without deblocking filter were 1.766s and 1.718s,

respectively (increased by about 2.8 %).

The deblocking filter adopted in H.264 applies to luma and chroma pixel locations

, 1-29

IP^H

(c) •a-c。ded Frame 0

with deblocking filter.

(d) Original Frame 1.

^ ~ (e) Hybrid-coded Frame 1

^ without deblocking filter.

PSNR: 31.939 dB

. 1-31

(f) Hybrid-coded Frame 1

with deblocking filter.

^ ^ ^ ^ ^ ^ ^ g g t / g / g g a m PSNR: 32.355 dB

Figure 1.14 An experiment to investigate about the effect of applying the deblocking

filter for QP equaled to 36.

1.3 Organization of the Thesis

In the following chapters, this thesis is organized into mainly three parts. The

organization is shown as follows:

1. Review of Motion Estimation Techniques

2. Proposed Algorithms

3. Optimization of the Codec

After these parts are discussed, there is a conclusion. In addition, the future

development of the algorithms is discussed.

1.3.1 Review of Motion Estimation Techniques

In Chapter 2，different motion estimation (ME) algorithms are reviewed, which

include integer pixel, sub-pixel or even variable block size motion estimation

. 1-32

algorithms. Firstly, the traditional motion estimation algorithms, which include Three

Step Search, Hexagon-based Search, Diamond Search, etc, are briefly described.

Then, some novel motion estimation algorithms which include Fast Full Search,

Hybrid Unsymmetrical-cross Multi-Hexagon-grid Search (UMHS), Center biased

Fractional Pel Search and Enhanced Predictive Zonal Search (EPZS) are reviewed.

Due to their low complexity and high accuracy, they are adopted in the reference

software of H.264 as fast motion estimation algorithms. U M H S and EPZS are faster

than Fast Full Search by about 85% without significant loss in coding performance.

1.3.2 The Proposed Algorithms

The proposed algorithms are introduced in Chapters 3, 4 and 5. In Chapter 3，an intra

prediction method which is similar to motion estimation and compensation is

reviewed. Several techniques, which include padding, multiple best matches,

different modes, etc., are proposed to enhance the performance of the intra prediction

method. Besides, fast algorithms are developed to reduce the complexity of the

proposed techniques without degrading the coding performance [31].

In Chapter 4，a fast variable block size motion estimation algorithm is proposed. This

algorithm exploits the characteristics of variable block size motion estimation. It

reuses the SADs within a macroblock and uses pattern-based motion estimation and

refinement search to reduce the complexity with a little degradation of coding

performance in terms of PSNR and bitrate.

1-33

1.3.3 Optimization of the Codec

Chapter 5 discusses the development of a Pocket PC based real-time H.264 codec. In

that chapter, two algorithms are introduced. One is a fast interpolation algorithm

which aims to reduce the complexity of the interpolation process without degrading

the performance. The other is a fast sub-pixel motion estimation algorithm that can

reduce the complexity significantly with only a little degradation of coding

performance.

The optimization of the H.264 Baseline Profile is also discussed. The optimization

focuses on programming optimization techniques. With these techniques and the

mentioned fast algorithms, the developed Pocket PC based H.264 Baseline Profile

codec can encode and decode videos in real time with only a little degradation of

coding performance when compared with that of the reference software. Due to

limited resources of Pocket PC, it is difficult for the highly complex H.264 codec to

run in real time. Consequently, this is a tremendous achievement. The developed

codec can be applied for different applications such as video telephony, video

conferencing, etc.
I

At the end of Chapters 3, 4 and 5, there are experimental results to investigate the

performance of the proposed algorithms and the developed Pocket PC based

real-time H.264 codec. The results focus on analyzing the complexity and the coding

performance.

1-34

1.4 Contributions

This thesis describes algorithms for improving and optimizing the latest video coding

standard H.264/AVC. Even though tremendous coding performance is achieved,

H.264 is computational intensive. Therefore, algorithms aim to reduce the

complexity are proposed. Besides, there is room to further improve the coding

performance of H.264. Accordingly, algorithms which are designed for improving

the coding performance are proposed.

Several enhancement techniques are proposed in Chapter 3 to improve the coding

performance of intra block matching. In Chapter 4，a fast variable block size motion

estimation algorithm, which reduces the complexity of variable block size motion

estimation significantly, is proposed. This algorithm is the fastest when compared

with the fast motion estimation algorithms adopted in the H.264 reference software.

The development of a Pocket PC software-based real-time H.264 codec is described

in Chapter 5. During the development, all the codes are re-written instead of using

those of the reference software. This allows us to design the structure of the codec

and redundant features and operations can be avoided easily. Different optimization

techniques are proposed and applied. Eventually, the developed codec can encode

and decode video in real-time (more than 25 fps) on Pocket PC. This is a tremendous

achievement because the complexity of H.264 is so high that it is not easy to develop

a software-based real-time H.264 codec on Pocket PC platform.

. 1-35

Chapter 2 Review of Motion Estimation Techniques

In this chapter, several algorithms are reviewed. They focus on integer and sub-pixel

motion estimation. Full Search is an exhaustive search technique which evaluates all

the search points within the search window. Accordingly, its complexity is very high

and fast motion estimation algorithms are required. Typical fast motion estimation

algorithms include three step search (TSS), 2-D logarithmic search (2-D LOGS) [13],

Hexagon-based Search (HEXBS) [14], Diamond search (DS) [15], etc. Since they

evaluate fewer search points than Full Search does, they are much faster. However,

they are susceptive to be trapped in local minimum and this introduces large

prediction errors. Their search patterns are shown in Figure 2.1. In the figures, the

squares indicate the first step; circles indicate the second step and triangles are the

last one. The search range is 土8.

B • n • •

• ED • •

(a) (b)

- 2-1

石 苍 H I
ii

^^^rCjl^C^-Cj]

^̂ ^ ^ ^ n •
• • a i) •

(C) (d)

Figure 2.1 Different search patterns of fast motion estimation algorithms, (a) TSS, (b)

2-D LOGS (c) HEXBS and (d) DS.

The above algorithms are not specially designed for H.264. In this chapter,

algorithms which are designed or adopted in H.264 are introduced. These algorithms

include Fast Full Search (FFS), Hybrid Unsymmetrical-cross Multi-Hexagon-grid

Search (UMHS), Center biased Fractional Pel Search (CBFPS) and Enhanced

Predictive Zonal Search (EPZS). Fast Full Search is specially designed for variable

block size motion estimation. U M H S are designed based on the characteristics of

natural video. CBFPS are sub-pixel motion estimation algorithm. EPZS employs

predictor selection.

2.1 Fast Full Search

Fast Full Search (FFS) can provide coding performance which is similar to that of

Full Search. It is specially designed for variable block size motion estimation. There

are totally seven different block sizes in H.264. Motion estimation is performed for

each of them. Therefore, the complexity of motion estimation process of encoder will

be high if Full Search is applied. Consequently, Fast Full Search is designed to

- 2-2

reduce the complexity while achieving similar coding performance.

As mentioned in Chapter 1，motion estimation requires a cost function to find the

best match. In the reference software of H.264, the cost function for motion

estimation consists of two parts. One is the cost contributed by encoding the motion

vector difference. The other is the sum of absolute difference (SAD) which is for

measuring the similarity between the current block and the reference block. S A D

computation is very time consuming. Accordingly, if the number of S A D

computations can be reduced, the complexity of motion estimation can be reduced

significantly. The objective of Fast Full Search is to reduce repetitive S A D

computations during variable block size motion estimation.

With the same search center for all block types within a macroblock, S A D can be

reused. At the beginning, the macroblock is partitioned into sixteen 4x4 blocks and

the SADs (SAD4x4) of each of them within the search window are pre-computed and

stored. Consequently, the stored SAD4x4S can be used to construct the true SADs for

different block sizes during variable block size motion estimation as illustrated in

Figure 2.2. Thus, the complexity can be reduced significantly.

4 16 8

4 SAD尔 SAD彬 SAD.,. SAD.,. 4 SAD站

SAD,,. SAD.,. SAD.,. S A D , , s

16 —""— >

SAD•好 SAD.,. SAD.,. SAD.,.

SAD.,. SAD.,. SAD.,.

Figure 2.2 Construction of the S A D of 4x8 blocks from the stored SAD4X4S.

. 2-3

In the reference software, the search center for Full Search is the prediction motion

vector, which is defined in the standard, of each block. Consequently, different block

within a macroblock can have different search center. Since Fast Full Search can only

have a fixed search center, the prediction motion vector for the 16x16 block type is

selected. The search center affects the cost of the motion vector differences.

Therefore, the coding performance of Fast Full Search and that of Full Search is not

the same. However, they are very similar. Therefore, Fast Full Search can benefit the

encoder in terms of complexity.

2.2 Hybrid Unsymmetrical-cross Multi-Hexagon-grid Search

The Hybrid Unsymmetrical-cross Multi-Hexagon-grid Search (UMHS) is a fast

integer pixel motion estimation algorithm proposed in [2] and it is adopted in the

H.264 reference software as one of the fast motion estimation algorithms. It is faster

than Fast Full Search and generally can achieve coding performance which is similar

to that of Fast Full Search.

U M H S includes several steps. The first step is to find an initial search point

prediction. Different modes have different prediction candidates which include the

median prediction defined in the H.264 standard, (0，0) vector prediction and motion

vectors of the upper layers. The upper layers of current mode are the modes with

larger block sizes. This strategy aims to utilize the motion relationship between

different modes. The prediction candidate with the minimum cost is selected as the

initial search point prediction.

. 2-4

After the initial search point prediction is found, mainly four steps are performed

with different kinds of search pattern as illustrated in Figure 2.3. First, an

unsymmetrical-cross search is performed. Based on the argument that vertical motion

is less likely than horizontal motion for natural video, the search pattern is designed

to search more points in horizontal direction and search fewer points in vertical

direction as illustrated in step 2 of Figure 2.3. The search point with the minimum

cost is chosen as search center for the next step.

10 y ^ \ � ^ ^

5 ^ ^ ^

1 D^ ^ g ^ [
• I z • 广 “ I . •

• 〇 〇 （ ） 〇 〇 •
I • O O A O O • I

0]-A A - o A A-a-A A-a A 0 A 0 A 0 A oA~~A-a-A A-o-A~A-(
I • O O M O 0 • I
• 〇〇（）〇〇̂ D •

• I L、yO I •
- 5 】 I ？ / “ ： ； ^ ^ 口 I 【

-15 I
-15 -10 -5 0 5 10 15

A step2 o step3-l —step3-2 — v— step4-l — •—step4-2

Figure 2.3 Search process of H U C M H G S algorithm, search range is 16 [2].

A full search with search range equaled to 2 is carried out around the search center as

illustrated in step 3-1 of Figure 2.3. Then an Uneven Multi-Hexagon-grid Search

strategy is applied as illustrated in step 3-2 of Figure 2.3 and Figure 2.4. As shown in

the figures, the pattern contains fewer search points in vertical direction than those in

horizontal direction and therefore it is called uneven. This design is based on the

same argument mentioned before, i.e. vertical motion is less likely than horizontal

. 2-5

motion for natural video. Finally, with the best search point in the previous step as

search center, a search process which is similar to that of Hexagon-based Search is

performed to find the best integer pixel motion vector as illustrated in step 4 of

Figure 2.3 [2].

个Y

i -j 「 1

h ~ 1 h ~ ？ r ^ x

i -i 1 •

- 4

Figure 2.4 The basic search pattern of Uneven Multi-Hexagon-grid Search [2].

2.3 Center biased Fractional Pel Search

The Center biased Fractional Pel Search (CBFPS) is a fast sub-pixel motion

estimation algorithm proposed in [2]. It utilizes the assumption that the unimodal

error surface assumption is true in most cases for fractional pixel search [12].

frac—pred—mv 二 (pred一mv - mv)%p (2.1)

where frac_pred_mv is the fractional prediction motion vector,
pred_mv is the prediction motion vector,

mv is the best integer pixel motion vector of the current block which is in

fractional pixel unit,

% is the modulus operation, and

P = 4 for quarter pixel case.

- 2-6

Firstly, a prediction motion vector, frac_pred_mv, is derived with Equation 2.1. Then

the costs of (0，0) and frac_pred_mv are compared and the one with the minimum

cost is chosen as the search center for the next step. Finally, the small diamond

search pattern is employed to find the best match as illustrated in Figure 2.5. The

search center is updated to the best search point (the search point with the minimum

cost) at each stage if that best search point is not located at the search center.

Otherwise, the search process is completed and the best search point is the best

match [2].

f h i c j M ' e d j n v
HO.OI

•

- H ^ t ^ -

ht

P I I I I I ifb I I I I I

Figure 2.5 Implementation of CBFPS algorithm, squares are the integer pixel

positions.

2.4 Enhanced Predictive Zonal Search

The Enhanced Predictive Zonal Search (EPZS) [3’ 16，17] mainly comprises three

features which include the initial predictor selection, the adaptive early termination

and the final prediction refinement. It is much faster than Full Search and even Fast

Full Search without significant loss in coding performance. Same as U M H S , it is also

adopted by the reference software of H.264 as one of the fast motion estimation

. 2-7

algorithms.

The predictor selection can be considered as the key feature of EPZS. The predictors

can be selected by exploiting temporal and spatial correlation. The predictors of

EPZS include the median predictor which is the prediction motion vector defined in

the H.264 standard, other spatial predictors, temporal predictors and a set of search

range dependent predictors. In [16], the spatial predictors include the median

predictor, the left, upper, upper-left, upper-right block motion vectors as illustrated in

Figure 2.6 and the (0，0) predictor. In addition to spatial predictors, temporal

predictors are used in EPZS which include the co-located motion vector, 8 motion

vectors of the adjacent blocks which are around the co-located block, etc. A set of

search range dependent predictors is also defined to better cover the large search

ranges for high motion videos. The two possible search range dependent predictor

sets in [17] are illustrated in Figure 2.7. The centers in Figure 2.7 can be either at (0，

0) or the median predictor [16].

Spatial Piedic tors

“ I 抵 —
Median Predictor

Current frame

Figure 2.6 Spatial predictors of EPZS [16].

- 2-8

, I I I I I I i l l I I I I I I ， ” I I I I I i l l I I I I I I T
————

o O O O th 王 -

II o 二I O O

= = = = " i ~ f e = = = = = = = = = i i z i ~ n 7 z i z i i i i i i
Center Center

—— u ~ ~ o … 平 -

0 A o

i I I I I I I I i I I I I I 丄 I I I I I I I 4 I I I I I

(a) (b)

Figure 2.7 Two possible search range dependent predictor sets of EPZS with search

range equaled to 8 [17].

The adaptive early termination of EPZS enables an extra reduction in complexity of

the motion estimation process. If the cost of the median predictor is smaller than a

threshold Ti, the motion estimation process is terminated without examining any

other predictors. In this case the median predictor is defined as the best integer pixel

motion vector. Otherwise, all other predictors are examined. If the minimum cost of

the predictors is smaller than another threshold T2, the search is terminated.

Otherwise, motion vector refinement is performed with the best predictor as search

center.

The search patterns employed by EPZS include small diamond pattern, square

pattern (EPZS】）and extended EPZS pattern (extEPZS) as shown in Figure 2.8. It can

be observed that the small diamond pattern provides least complexity while the

extEPZS provides best coding performance amongst the patterns. If the best search

point is at the search center, it is defined as the best integer pixel motion vector.

. 2 - 9

Otherwise, the search center is set to the best search point in the current step. The

process is repetitively performed until the best search point in the current step is at

the search center.

I ^ f ^ I

(a) (b) (c)

Figure 2.8 (a) Small diamond pattern, (b) Square pattern (EPZS^) and (c) Extended

EPZS pattern (extEPZS) [17].

Besides the above mentioned features, EPZS has other features. Therefore, interested

readers are recommended to read [3, 16, 17] for more details about EPZS.

- 2 - 1 0

Chapter 3 Enhancement Techniques for Intra Block Matching

In this chapter, a novel intra block matching algorithm [23，24] is briefly reviewed. It

is similar to motion estimation and compensation technique. For motion estimation

and compensation, the pixels of the current macroblock are predicted from the pixels

of other pictures. This algorithm predicts pixels of the current block from the

reconstructed pixels of the current slice. In this chapter, this algorithm is called intra

block matching.

Several enhancement techniques for further improving the algorithm are proposed.

The proposed techniques include best match prediction, multiple best matches, novel

padding method, skip mode, etc. Experimental results show that the coding

performance can be improved significantly and more than 1 dB and 0.6 dB gains in

PSNR can be achieved for intra and hybrid coding, respectively.

In the following sections, the reason and the whole process of applying intra block

matching are first discussed. Then the proposed enhancement algorithms, modes and

fast algorithms are described in detail. After the description, experimental results are

shown at the end of this chapter to illustrate the performance of the proposed

techniques. Finally, there is a discussion on the experimental results.

3.1 Introduction

3.1.1 Fundamental Principles

The intra prediction techniques adopted in H.264 predict the intensities of the pixels

of the current block from its neighboring pixels. This aims to exploit the spatial

- 3-1

correlation in a slice. However, when the texture of the reconstructed pixels is not

smooth, using neighboring pixels to predict the pixels of the current block may not

be accurate. Consequently, encoding of intra slices requires a large number of bits.

To improve the coding efficiency, intra block matching technique is applied" with

several proposed enhancement techniques.

As mentioned before, the main idea of intra block matching is to predict the pixels of

the current block from the pixels in the current slice within a search region.

Therefore, similar to motion vector, an offset vector is required to indicate the

position of the best match. In this chapter, that vector is called intra displacement

vector (Intra—DV). The defined search region in our experiment is illustrated in

Figure 3.1. In the figure, all the pixels that are reconstructed or padded, and within

macroblocks "P" and "C" are used for prediction.

The intra block matching process is carried out as follows:

1. Find a best match for the current block within the search region. (The cost

function defined in our experiment is shown in Equation 3.1)

2. After the best matches of all the intra block matching modes are found, the total

costsmode (cost for modc decision) of all the available modes of the encoder are

compared with each other.

3. When the best one is intra block matching mode, the corresponding best matches

are used for prediction.

4. Prediction errors are transformed, quantized, encoded and reconstructed as usual.

- 3-2

16

16

P P P

P P P

P C : , .

— “~‘ i , • , ！ ‘ • — — ； “ ；

. . . . • . . -

..,’-. ...,、 . . . • . . , - ‘： -
. . • ‘ • ‘ . .

..." ‘；•，.. ..‘，.-' ‘ - ‘ - . . . , •

一 . 丨 丨 、 ••」"良• ” • 丨 ’.• “ . . . ,

‘ - . , •‘ • ‘ ‘ •

Figure 3.1 White blocks are reconstructed blocks, block "C" and "P" are the current

macroblock and the pixels used for prediction, respectively, and the shaded

macroblocks are not encoded and thus are not reconstructed.

J = S A D + X<iisplacement bitSintra.DVd (3 . 1)

where J is the cost of a candidate search point,

S A D is the sum of absolute differences between two blocks,

？^disp lacement is the Lagrange Multiplier, and

bitsintra—DVds is the number of bits used to encode the Intra—DV differences

(Intra_DVds).

3.1.2 Variable Block Size Intra Block Matching

Similar to motion compensation of H.264, intra block matching can also employ

variable block size technique. The reason of partitioning a macroblock to perform

intra block matching is that when 16x16 intra block matching is performed, the

prediction errors are large but less overhead information is encoded for the

‘ 3-3

Intra_DVds. When 4x4 intra block matching is performed, the prediction errors are

reduced but more overhead information is encoded. Therefore, variable block size

can provide a good balance between prediction errors and the amount of overhead

information for different situations.

In [24], seven different block sizes are employed. They include all the block sizes

employed in the motion compensation process of H.264. Even though accurate

prediction can be found, much processing power is required. In contrast, fewer

number of block sizes is employed in [23]. The complexity is definitely less but the

prediction may not be very accurate. In our design, the current macroblock can be

partitioned into mainly four different block sizes as illustrated in Figure 3.2. Each

macroblock can be partitioned into one 16x16, four 8x8, sixteen 4x4 blocks or into

four Combine blocks. Each Combine block is a sub-macroblock and can further be

partitioned into one 8x8 block or four 4x4 blocks. W e found that adding more block

sizes cannot achieve much gain in coding performance but increase the complexity in

a great amount. Accordingly, only four block sizes are adopted to achieve a good

balance among prediction errors, complexity and the amount of overhead

information.

- 3-4

^ 8 [X l

8 ^
16

⑶ (b) (C)

g r r n m
8 ^ — —

(d) (e) (f)

Figure 3.2 The four variable block sizes, (a) 16x16, (b) 8x8, (c) 4x4, and (d)

Combine. For the Combine block size, each sub-macroblock can be partitioned into

(e) one 8x8 block or (f) four 4x4 blocks to perform intra block matching.

3.2 Proposed Techniques

3.2.1 Padding

The current block is padded from the neighboring pixels before intra block matching

to maximize the number of candidates. Let the position of the pixel in the top-left

comer of the block to be padded and the current block are (xp, yp) and (x, y),

respectively, imgY represents current (reconstructed) slice and xO, yO are the intra

padded block dimensions. They can be smaller than the current block size. In our

experiment, for 4x4 and 8x8, xO = 4 and yO = 4. For 16x16, xO = 8 and yO = 8.

This is due to the spatial distances between the bottom right comer pixels and the

neighboring pixels of the current block are longer when the block sizes are large. The

padding is classified into three types, the DC, horizontal and vertical padding. To

avoid encoding the overhead information, the costs of these three padding types are

- 3-5

computed and compared. The one with the minimum cost is selected as the best

padding type. The same cost evaluation and comparison are carried out in both

encoder and decoder side. Therefore, no extra overhead information is required. The

padding process is performed until the whole current block is padded by changing

(xp, yp) iteratively. In iteration, the following process is performed.

When neither the left nor the upper block is available (When a block is located inside

the current slide and has already been encoded and reconstructed, it is available.

Otherwise, k is unavailable.), D C intra padding method is defined as the best and

imgY (r, s) with r = xp...xp + xO - 1 and s = yp...yp + yO - 1 is derived with

Equation 3.12.

When at least one of the left and upper blocks is available, three padding costs are

computed for finding the best padding type amongst the three padding types. The

padding costs of D C (PadCostO), horizontal (PadCostl) and vertical (PadCost2)

padding types change according to the availabilities of the left and upper blocks.

For PadCostl and PadCost2, when the involved neighboring block (left block for

horizontal padding and upper block for vertical padding) is unavailable, they are set

to infinite. Otherwise, they are derived with Equations 3.2 and 3.3, respectively.

When horizontal or vertical padding is the best amongst the three padding types,

imgY(r, s) is set to imgY(x-l, s) or imgY(r, y-1), respectively.

For D C padding, as mentioned before, PadCostO changes according to the

availabilities of the neighboring blocks. The computation of PadCostO and the D C

padding value, PadDC, is performed based on the following three different

- 3-6

situations.

1. Both the left and upper blocks are available.

2. Only the left block is available.

3. Only the upper block is available.

For case 1，Equations 3.4，3.5 and 3.6 are used to derive PadCostO and Equation 3.7

is used to derive PadDC. For case 2, Equations 3.5 and 3.8 are used to derive

PadCostO and Equation 3.9 is used to derive PadDC. For case 3, Equations 3.4 and

3.10 are used to derive PadCostO and Equation 3.11 is used to derive PadDC. When

D C padding type is the best, imgY(r, s) is set to PadDC.

imgY(r’s) (the padded pixels) are used for the searching process of intra block

matching only. After the best match is found, the padded pixels are replaced by the

best prediction pixels.

y p + y O - l 2

PadCostl= Z Z|(imgY(x-3,i)-imgY(x-a,i)| (3.2)

i=yp a=l

x p + x O - 1 2

PadCost2 = Z I|(imgY(i,y-3)-imgY(i,y-a)| (3.3)

i = x p a = l

x p + x O - 1

Z imgY(i, y - 3)
PadO = round(—^) (3.4)

xO
y p + y O - l

I imgY(x-3，i)
Padl = r o u n d (^ —) (3.5)

x p + x O - l 2 yp+yO-1 2

S Z| imgY(i, y - a) - PadO | + Z S| imgY(x - b, j) - Padl |
PadCostO = round(— a=i ^ j=yp b=i) (̂ �

- 3 - 7

x p + x O - 1 yp+yO-1

S imgY(i，y-l)+ I imgY(x -l,j)
PadDC = r o u n d (^ ^) (3 7)

xO + yO
yp+yO-l 2

PadCostO: I I|imgY(x-a, i)-Padl| (3.8)

i =yp a = l

y p + y O - 1

I imgY(x-l,i)
PadDC = round(—^^) (3.9)

yO
x p + x O - 1 2

PadCostO = Z Z|imgY(i,y-a)-PadO| (3.10)

i = x p a = l

x p + x O - 1

Z imgY(i,y-l)
PadDC = round(^^) (3.11)

xO

imgY(r, s) = (1 « (BitDepth - 1)) (3.12)

where round () indicates rounding the result to the nearest integer, and

BitDepth is the number of bits used to represent each luma component.

Figure 3.3 is an example to illustrate the D C intra padding process of an 8x8 block

for xO = 4 and yO = 4. N is the block to be padded. The color pixels within N are the

pixels to be padded. The pixels with blue colour are the neighboring pixels. Through

the above process, the current block is padded. In addition to the reconstructed pixels

of the current slice, the pixels of this padded block are used for intra block matching.

- 3 - 8

8 8 8

8 8 8

xO xO

8 8 8

8 8 8

xO xO
— > — ~ >

y 。 _ _ _ y “ m

Figure 3.3 An example of D C intra padding process of an 8x8 block with xO = 4 and

yO = 4.

The above padding process is for luma component. The intra padding process for

chroma components is the same as that for luma except that the intra padding block

sizes are scaled according to input file format. For example, when the input file

format is 4:2:0, the intra padded block dimensions for chroma components are xO/2

and yO/2.

3.2.2 Modes

In our design, there are totally nine modes for intra block matching. They are

summarized in Table 3.1. The terminology used in Table 3.1 is shown in Table 3.2.

Table 3.3 shows the priority of each mode. In the table, the mode with higher priority

has a smaller priority number. A macroblock type with higher priority means that

fewer bits are used to encode it. Experimentally, C O M B I N E and DIRECT PRED

1-9

have high selection probability and thus their priority is set to be the highest. For the

remaining modes, high priority is assigned to INT or SUB 16x16，8x8 because their

overhead information is less when compared with that of 4x4. The priority of INT or

SUB 4x4 is set to be higher than that of INT_SUB_4x4 because INT_SUB—4x4

requires one more flag to indicate using INT or SUB for each sub-macroblock. It can

be noticed that for SUB, the integer Intra_DVds are required to be multiplied by four.

Consequently, the overhead information of SUB is larger than that of INT and the

priority of INT is set to be higher than that of SUB.

Mode Name Description

0 INT一4x4 The macroblock is partitioned into sixteen 4x4 blocks.

This mode applies SUB_MB_DVD_ZERO.

1 INT—8x8 The macroblock is partitioned into four 8x8 sub-

macroblocks.

2 INT—16x 16 The macroblock is partitioned into one 16x16 block.

3 SUB一4x4 The macroblock is partitioned into sixteen 4x4 blocks.

This mode applies SUB_MB_DVD_ZERO.

4 SUB _8x8 The macroblock is partitioned into four 8x8 sub-

macroblocks.

5 SUB _ 16x 16 The macroblock is partitioned into one 16x16 block.

6 DIRECT—PRED The macroblock is partitioned into sixteen 4x4 blocks and

all Intra_DVds are zero.

7 C O M B I N E The macroblock is partitioned into four 8x8 sub-

macroblocks and each of them is further partitioned into

four 4x4 blocks or one 8x8 block. This mode applies

INT—SUB.

8 INT_SUB_4x4 The macroblock is partitioned into sixteen 4x4 blocks.

This mode applies SUB_MB_DVD_ZERO.

Table 3.1 The modes employed for intra block matching.

1-10

INT Only integer pixel intra block matching is performed.

SUB Only sub-pixel intra block matching is performed.

INT SUB Each sub-macroblock can use INT or SUB adaptively

with encoding an extra 1 bit flag for each of them.

SUB M B D V D ZERO ^y encoding extra four 1 bit flags to indicate which of

the sub-MBs with all Intra—DVds equal to zero.

Therefore, the Intra_DVds for that/those

sub-macroblock(s) are not encoded. When at least one

of the Intra—DVds is non-zero, all the four Intra_DVds

of that sub-macroblock are encoded.

Table 3.2 The terminology used in Table 3.1.

Name of the mode Priority Number Bit String (I slice)

INT一4x4 6 0 0 0 1 0 0 0

INT 一 8 x 8 3 0 0 1 0 1

INT 一 1 6 x 1 6 2 0 0 1 0 0

S U B 一 4 x 4 7 0 0 0 1 0 0 1

S U B 一 8 x 8 5 0 0 1 1 1

SUB—16x16 4 0 0 1 1 0

DIRECT_PRED 1 O i l

C O M B I N E Q 0 1 0

INT 一 SUB—4x4 8 0 0 0 1 0 1 0

Table 3.3 The priority of each mode.

The bit strings of the proposed modes for P or B slice can be derived by the

Exp-Golomb method defined in the H.264 standard. The modes are code as ue(v).

The input value is the priority number of the mode added by 6 or 24 for P or B slice,

respectively.

1-11

3.2.3 Performance Enhancement Tools

3.2.3.1 Multiple Best Matches

For motion estimation, generally one integer pixel best match is first found. Then it

is used as the center for sub-pixel search. Instead of just finding one integer pixel

best match, we propose to find several best matches to improve the coding efficiency

of intra block matching. In our experiment, three best matches are found. After

finding them, another cost function is used to find the true best match amongst them.

Equation 3.13 is the cost function used in our experiment.

J_best = SATD + X<displacement b i t S i n t r a _ D V d s (3.13)

where J_best is the new cost of the best match,

SATD is the sum of absolute transform differences after transforming the

prediction errors with Hadamard Transform,

？̂displacement is the Lagrange Multiplier, and

bitsintra.DVds is the number of bits used to encode the Intra_DVds.

The reason of choosing Hadamard Transform is that it is similar to ICT. Therefore, it

is more accurate than SAD. In addition, the complexity of Hadamard Transform is

less than that of ICT.

As mentioned before, in our experiment, only three best matches are first found. The

reason of choosing three is that if too many best matches are found, computational

complexity will be increased significantly. In addition, experimentally, three best

matches can achieve good result.

1-12

This enhancement tool can improve the coding efficiency without increasing the

complexity in a great amount. This tool can enhance the performance because the

original simple cost function, i.e. Equation 3.1，is not accurate enough. Two or more

candidate search points sometimes have the same cost or wrong decision may even

be made due to the inaccuracy of Equation 3.1. Therefore, if several best matches are

first found and then a more precise cost function is used, better result can be

achieved. Certainly, this enhancement tool can also be applied to the motion

estimation process. Since we want to test the improvement of all the proposed

algorithms and techniques for intra block matching only, this enhancement tool was

not applied to motion estimation process.

3.2.3.2 Adaptive Integer and Sub-pixel Intra Block Matching

The motion vector precision of H.264 for luma component is quarter pixel. The

accuracy of sub-pixel search is better than that of integer pixel search. However, due

to H.264 only allows fixed motion vector precision, the motion vector differences are

multiplied by four for the integer pixel positions before they are encoded. Therefore,

much overhead information is necessary for encoding them.

In our design, as shown in Table 3.1, each macroblock is allowed to select integer

and sub-pixel intra block matching adaptively. The decoder can decode the mode

first. Then it knows whether sub-pixel is required. As a result, The Intra一DVds can

be encoded efficiently. In addition, when the cost of encoding the vector differences

decreases for INT, there is a larger margin for reducing the prediction errors during

the block matching process.

1-13

To perform sub-pixel intra block matching, the integer pixel best match is first found.

Then that best match is selected as search center for the sub-pixel search. Totally 7x7

(including the center point) search points are evaluated with cost function (3.13) and

the one with the minimum cost is the best match. The interpolation process for luma

and chroma components are the same as that defined in the H.264 standard.

The conversion of the luma Intra_DVs to the chroma Intra_DVs is the same as that

of the luma motion vectors to the chroma motion vectors defined in the H.264

standard. Therefore, the precision of chroma Intra_DVs is 1/8.

3.2.4 Pseudo Intra Block Matching

In the H.264 standard, the best match position is first predicted from its neighboring

blocks. Then the motion vector difference is computed by subtracting the prediction

motion vector from the true motion vector. This is based on the assumption that

neighboring blocks belong to the same object and thus their motions are similar. This

prediction technique can reduce the bits used to encode the motion information.

For intra block matching, the Intra_DVs are not motion vectors. They are just offsets

to indicate the position of the best match. Consequently, the characteristics exploited

in motion compensation can not be applied to intra block matching efficiently.

A method to predict a best match position from the previous I slice is proposed to

reduce the overhead information. When the co-located macroblock in the nearest

previous I slice is coded with the intra block matching technique and its size is larger

1-14

than or equal to that of the current block, the predicted best Intra_DV (PBIDV) is set

to the Intra_DV of that co-located block and the Intra_DVd of the current block is

derived with Equation 3.14. Otherwise, when the block size of the current block is

larger, the mean of the Intra—DVs of all the involved smaller co-located blocks is

computed as the PBIDV. When any of the pixels which are located at the PBIDV is

not in the search region, the default predicted position is applied to avoid inaccurate

prediction because there is no chance the PBIDV is the best Intra_DV. Certainly, the

region outside the search region can also be padded and searched. However, the

probability of selecting them as the best match is not very high and thus padding and

searching them do not have much gain in coding efficiency. Consequently, the

default predicted position is used instead to reduce the complexity. When the

co-located macroblock in the nearest previous I slice is not coded with the intra block

matching technique, the default predicted position is selected.

Experimentally, three default predicted positions are found. For 4x4 block, Pred_x =

0 and Pred_y = 0, for 8x8 block, Pred_x = -4 and Pred_y = -4 and for 16x16 block,

Pred_x = -4 and Pred_y = -12. The values of Pred_x and Pred_y are expressed

relative to the top-left comer pixel of the current block. These default predicted

positions can achieve acceptable results for different video sequences and different

quantization parameters.

Intra一 DVd = Intra—DV - PBIDV (3.14)

This technique is called pseudo because the Intra_DVs from the previous I slice are

used. Nevertheless, intra prediction demands using decoded samples of the current

slice to perform prediction and thus this can still be called intra prediction. To

1-15

prevent errors in the transmitted Intra_DVds, a one bit flag is designed to be

transmitted in the I slices header to indicate whether previous Intra—DVs are used to

predict PBIDV. In our experiments, the I slices in the coming nearest I picture use the

default predicted positions after every one second. Then the counter resets.

3.3 Proposed Fast Algorithms

In this section, totally four fast algorithms are proposed for variable block size intra

block matching. Except fast intra block matching decision, all the proposed fast

algorithms reduce the complexity of the whole process without degrading the coding

performance.

3.3.1 Fast Intra Block Matching Decision

This fast intra block matching decision method is based on the algorithm proposed in

[25]. The performance of this algorithm is video sequence dependent. The mean of

the rate distortion costs (RDcosts) of the selected intra block matching modes is

updated with Equation 3.15 and 3.16 when one of the modes in Table 3.1 is selected

as the best mode. N u m and MeanRD are initialized to zero at the beginning of the

encoding process.

Nunik+i = Numic + 1 (3.15)

New_RDcost — MeanRD,
MeanRD, , . = MeanRD, + ^ (3.16)

K +1 K Num, 1
k +1

where N u m is the total number of selected intra block matching macroblocks,

MeanRD is the mean of the RDcosts of the selected intra block matching

1-16

macroblocks,

New—RDcost is the RDcost of the latest intra block matching coded

macroblock, and

k and k+1 indicate the current and updated value, respectively.

Since recent RDcosts are more important for making correct decision, N u m is

updated with Equation 3.17 after several pictures are encoded. In our experiment,

N u m is updated after every five pictures are encoded. Offset and Pic_Num in

Equation 3.17 were set to 4 and 5, respectively.

Num, + offset
Num …=Truncate(——^) (3.17)

^ + i PiC-Num

where truncate () means the result are truncated toward zero,

Pic_Num is the number of pictures after which the value of Num is

required to be updated, and

offset is a constant for rounding purpose.

After finding the best mode amongst all of the original modes of H.264, the current

best RDcost is compared with MeanRD. If MeanRD is smaller, all of the modes in

Table 3.1 are evaluated. Otherwise, their checking processes are skipped.

This algorithm is applied only when current slice is a P or B slice. In P or B slice, the

probability of selecting intra mode as the best mode is low. Therefore, applying this

fast algorithm does not affect the coding performance in a great amount while the

complexity can be greatly reduced.

1-17

The differences between our algorithm and that proposed in [25] are shown as

follows:

1. [25] does not consider that recent RDcosts are more important.

2. Equation 3.16 can be implemented with one division only while [25] requires one

multiplication and one division.

3. [25] applies their mode decision algorithm to the intra modes of H.264 while the

proposed one applies to intra block matching.

3.3.2 Skipping some Intra Block Matching Processes

This method reuses some evaluated data to skip some processes. This method is

applied to C O M B I N E and INT—SUB—4x4 modes. Some of the intra block matching

processes for C O M B I N E and INT_SUB_4x4 modes can be skipped if INT一4x4，

SUB_4x4, INT—8x8 and SUB_8x8 modes are evaluated first. For example, the

results of the first sub-macroblock of C O M B I N E and INT_SUB_4x4 modes can be

generated by directly copying the results of the first sub-macroblock of the

mentioned four modes. In addition, for instance, if the best sub mode of the first

sub-macroblock for C O M B I N E mode is int_4x4 (The sub-macroblock is partitioned

into four 4x4 blocks and all of them use integer intra block matching, int or sub

refers to integer or sub-pixel intra block matching.), the block matching process of

int一4x4 for the second sub-macroblock can be skipped and the result of the second

sub-macroblock of INT_4x4 is the required int_4x4 result for C O M B I N E mode

because the conditions are the same.

It can be noticed that this algorithm reuses the computed data to avoid repetitive

1-18

computation when certain conditions are fulfilled. Therefore, this algorithm does not

degrade the coding performance of the whole matching process. It only reduces the

complexity.

3.3.3 Early Termination

This algorithm is designed for C O M B I N E and INT_SUB_4x4 mode. The main idea

of this algorithm is to compare the partial sum of the sub-macroblock RDcosts with

the current best RDcost. When the partial sum is larger, the rest of the process is not

necessary to be performed.

For C O M B I N E and INT—SUB—4x4 modes, R D costs are computed for each sub

mode (sub-macroblock can be classified into int_4x4, sub_4x4, int_8x8 or sub一8x8.)

to find the best. The partial sum of the best sub-macroblock RDcosts of all evaluated

sub-macroblocks, RD_costs_sum, is derived with Equation 3.18. Then it is compared

with the current best RDcost of the current macroblock. If the RD_costs_sum is

larger, the intra block matching process for C O M B I N E or INT_SUB_4x4 modes will

not be carried out. Otherwise, intra block matching is performed continuously for

that mode.

RD_costs_sum = Ax bits mode + .受[义 x (bit_8x8j) + Distoition_8x8j] (3.18)
i=0

where i is the index of a sub-macroblock,

n is the index of the current sub-macroblock,

X is the Lagrange Multiplier,

Distortion_8x8i is the distortion of the sub-macroblock i (luma

component),

1-19

b i t S m o d e is the number of bits used to encode the mode and header

information of the current macroblock, and

bit_8x8i is derived with Equation 3.19.

bit_8x8i = bit-coeffi + bit—intra—DVdSi + bit_otheri (3.19)

where bit—coeffi is the number of bits used to encode the prediction errors of

sub-macroblock i (luma component),

bit_intra_DVdSi is the number of bits used to encode the intra_DVds of

sub-macroblock i (if necessary),

bit一otheri includes the number of bits used to encode a skip一flag which is

for indicating whether all intra_DVds of sub-macroblock i are zero and the

number of bits used to indicate the sub mode of sub-MB i. [Note: For block

size equals to 4x4 and all intra—DVds equal to 0，no extra flag is required

to indicate whether the sub-MB is int_4x4 or sub_4x4 because all

intra_DVds are zero.]

In Equations 3.18 and 3.19, Distortion_8x8i and bit_coeffi only comprise those costs

of luma component. In H.264, the chroma prediction errors are first transformed with

ICT and the D C coefficients are further de-correlated with Hadamard Transform.

Therefore, the final distortion of chroma components and the bits used for encoding

the chroma prediction errors cannot be found until the whole 8x8 prediction errors

matrix is derived (for the case of 4:2:0). This implies that the partial RDcosts

contributed by chroma components cannot be found. However, the cost contributed

by luma component is normally much higher than that contributed by chroma

components and thus the effect of this algorithm is still significant.

1-20

It can be noticed that this algorithm does not degrade the coding performance of the

whole matching process. It only reduces the complexity. In addition, this algorithm

can also be applied to the original intra or inter modes of H.264 to reduce the

complexity. Since we focus on the intra block matching process, in our experiments,

this algorithm was only applied to intra block matching process.

3.3.4 SAD Reuse Techniques

[4], [26], and Fast Full Search are designed for variable block size motion estimation.

In Chapter 2, Fast Full Search has already been reviewed while [26] will be

introduced in Chapter 4. SADs are reused by partitioning a macroblock into sixteen

4x4 blocks. Then the SADs of each of them are computed and stored. The S A D of

larger block sizes can be derived by summing the required SADs of the 4x4 blocks.

This S A D Reuse Technique can also be applied to intra block matching to reduce the

complexity. The current macroblock is partitioned into sixteen 4x4 blocks. Since the

padding method is different for different block sizes, when a candidate search point

consists of neither pixels outside the search region nor the padded pixels, the 4x4

S A D of the candidate search point is computed, stored and reused. By applying this

technique, the computational complexity of intra block matching can be reduced

significantly. Same as the algorithms introduced in Section 3.3.2 and 3.3.3，this

method does not degrade the coding performance.

1-21

3.4 Experimental Results

The results were generated with JM10.2 after integrating the intra block matching

algorithm with the proposed techniques, modes and fast algorithms. In our

experiments, the search region is shown in Figure 3.1，i.e. all the pixels that are

reconstructed or padded, and within macroblocks "P" and "C". R D O was turned on.

One reference frame and Hadamard Transform were used. No 8x8 transform was

involved, C A V L C and Exp-Golomb were applied for entropy coding and QPs were

28，32, 36 and 40. Table 3.4 shows the improved coding performance in terms of

APSNR (dB) or the equivalent ABitrate (%) for different video sequences with QCIF

or GIF 4:2:0 format when compared with those of the original H.264 encoder (The

results do not compare with those of [23] and [24] because the conditions were

totally different. Interested readers can use their results for reference). The extra

encoding time (EET) is computed with Equation 3.20. APSNR一 1 and ABitrate_l

show the results when G O P (Group of Pictures) structure was IIIIIII... with average

EET = 242.378% and APSNR—2 and ABitrate_2 show the results when G O P

structure was IBBPBBI... with average EET = 26.877%. The computation method of

the APSNRs and the equivalent ABitrates is proposed in [11]. Figure 3.4 and 3.5

show the Rate Distortion Curves for different video sequences with IIIIIII... and

IBBPBBI.. .GOP structures, respectively.

The results show that the coding performance of the encoder can be improved

significantly. However, EET is very high for intra coding and is still quite high for

hybrid coding. The reason is that the proposed modes are evaluated and compared

one by one and thus the complexity is high. If efficient mode decision algorithms,

which are similar to inter mode decision algorithms, are developed, the problem can

1-22

be solved.

EET(%)=NeW-E 腳 ding-Time-Original-Encoding-Timexioo (3,20)
Original_Encoding_Time

Sequence APSNR—l ABitrate_l APSNR_2 ABitrate—2

Akiyo, QCIF ^ -IM ^ -5.12

Carphone’ QCIF 0.94 -12.14 ^ -7.07

Claire, QCIF ^ -9M ^ -5.35

Foreman, QCIF 1.26 -17.53 ^ -10.51

Mother, QCIF 0.28 ^ -2.70

News, QCIF -6.95 0.29 -3.86

Table, QCIF ^ -12.08 ^ -6.02

Akiyo, CIF ^ -9M 0.37 -5.59

Bus, CIF ^ - A m ^ -2.32

Carphone, CIF 1.00 -15.18 0.40 -8.08

Foreman, CIF 0.75 -12.68 0.32 -6.42

Hall, CIF ^ ^ ^ -3.57

Highway，CIF 0.80 -16.50 0.35 -9.79

Mobile, CIF ^ 0.11 -2.11

Mother, CIF ^ ^ -2.92

News, CIF ^ -9M ^ -4.98

Paris, CIF ^ -3.83

Table, CIF ^ -10.67 ^ -5.65

Average 0.656 -9.556 0.297 -5.327

Table 3.4 The APSNRs and ABitrates of different video sequences.

RD-Curve (Foreman, QCIF) RD-Curve (Mother, QCIF)

38 J

g S 36
2 / y ^ ~»~JM10.2 Z - • - J M 1 0 . 2
12 32 - " — N e w 差 New

28 1 1 30 ~ - ~ , J
100 300 500 700 100 200 300 400

Bit Rate (k bits/s) Bit Rate (k bits/s)

1-23

ROCurve (Carphone, GIF) RD-Curve (Mobile, GIF)

40 1

3S ^

Z 36 y Z ^ JM10.2| I 31 I-*—JM10.2|

30 . J 2 5 ^ - , r

300 800 1300 1700 3700 5700
Bit Rate (k bits/s) Bit Rate (k bits/s)

Figure 3.4 RD-curve comparisons of different video sequences with IIIIIII... G O P

structure.

ROCurve (Foreman, QCIF) RD-Curve (Mother, QCIF)

38 ^

m 34 m 36 ——

I I ,, ^^jmo.i

I 32 1 - " - N e w 差 34 | _ » _ N e w |

> 30 ^

28 ？t , , 30 -P ,
40 90 140 22 72

Bit Rate (k bits/s) Bit Rate (k bits/s)

RD-Curve (Carphone, CIF) RD-Curve (Mobile, CIF)

38 33 -

S 36 , I 31 —— ^

—•—JMIO.2 z —JM10.2^
券 34 New w 29 - » — New

^ 32 / ‘ 27 /

30 C——, , , 2 5 ——, ,

90 190 290 390 390 890 1390 1890

Bit Rate (k bits/s) 册 " ^ ^ e (k bits/s)

Figure 3.5 RD-curve comparisons of different video sequences with IBBPBBI...

G O P structure.

Figure 3.6 are two examples to illustrate the selected intra block matching best

modes of the sequences Foreman and Mother with QCIF 4:2:0 format. In the figure,

the numbers indicate the selected best modes which are defined in Table 3.1. It is

• 3 - 2 4

obvious that most of the macroblocks representing the background building of

Foreman select intra block matching modes. The reason is that the directions of the

grey lines in the picture are not similar to those of the intra prediction technique

adopted in H.264. The directions of 4x4 intra prediction in H.264 include vertical,

horizontal, 45°, 26.6° and DC. The grey lines in the picture are not in these directions

and thus intra block matching modes are selected. For the human in Foreman, it is

difficult to find a similar pattern from the neighbouring blocks. Accordingly, the intra

block matching modes are not selected. For Mother, similar patterns are either

difficult to be found or very smooth. Accordingly, intra block matching modes are

not selected frequently. Even though some macroblocks are encoded with intra block

matching techniques, due to the mentioned features of this sequence, the

improvement is still not significant.

From these two examples, it can be observed that when intra block matching modes

are selected frequently, the coding performance can be improved substantially and

vice versa.

？ 1 ^ ^

2 ^ i i m m i m ^ ^

6 2

i f e l L J i ^ M W ^ m i j W ^ ^ ^ S B I (a) Foreman

, 3-25

Jjjj jPPB^MjBBII^MII III 丨 l l B I ^ B ^ B ^ B B B

i ^ M ^ M i m

國 瞧 通 i i m i 國 〜

B B C _ I Z t l j j J j L ”？ L l a ^ (b) Mother

Figure 3.6 The selected intra block matching best modes of sequences (a) Foreman

and (b) Mother.

As mentioned before, the computation method of the APSNRs and the equivalent

ABitrates is proposed in [11]. This method mainly includes three basic elements.

1. Fitting a curve through four data points.

2. An expression is found for the integral of the curve.

3. The average difference is computed as the difference between the integrals

divided by the integration interval.

The curve is fitted with a third order polynomial which is expressed by Equation 3.21.

With this method, two curves can be fitted. One is the result of the reference software

and the other is the result of the improved encoder. The bitrate can be found as a

function of PSNR in a similar way. This function is defined by Equation 3.22.

PSNR = a + b*bit + c*bit̂ + d*bit̂ (3.21)

1-26

bit = a + b*PSNR + c*PSNR^ + d*PSNR^ (3.22)

Where PSNR is the PSNR at a particular bitrate which is the bit in the equations,

a, b, c and d are determined such that the curve passes through all the four

data points.

In this way, the followings can be found.

1. Average PSNR difference in dB over the whole range of bitrates

2. Average bitrate difference in % over the whole range of PSNR

Therefore, the results can be compared [11].

In this Chapter, many enhancement algorithms, modes and fast algorithms for intra

block matching are proposed. With them, the coding performance of H.264 can be

improved significantly. The pseudo intra block matching technique predicts the

location of the best match accurately. Therefore, the overhead information for

encoding the Intra—DVds is greatly reduced. This technique contributes to the

improvement most.

The maximum gain in PSNR can be more than 1 dB for intra coding and more than

0.6 dB when hybrid coding is applied when compared with the coding performance

of the original H.264 encoder.

1-27

Chapter 4 Enhanced SAD Reuse Fast Motion Estimation

In this chapter, a fast variable block size motion estimation algorithm is introduced.

It focuses on reducing the complexity by utilizing the characteristics of variable

block size motion estimation. With the proposed algorithm, the encoding speed can

be improved significantly while the coding performance can be maintained. The

complexity and coding performance comparisons of the proposed algorithm and

different fast motion estimation algorithms which are adopted in the reference

software of H.264 are shown at the end of this chapter.

4.1 Introduction

Motion estimation and compensation is a video coding technique that exploits

temporal redundancy between pictures in a video to compress the video efficiently.

Many video coding standards such as MPEG-1, 2，4 and H.261, H.263 use this

technique with fixed block size. H.264 also applies it to encode videos with some

modification. Instead of fixed block size, H.264 uses variable block size to improve

the coding efficiency. However, variable block size motion estimation is

computational intensive and thus fast motion estimation algorithms are required to

reduce its complexity. In H.264, seven different block types (16x16, 8x16, 16x8, 8x8,

4x8, 8x4 and 4x4) are adopted. Each block type requires performing motion

estimation and therefore the total time required for variable block size motion

estimation is very long.

For finding a best match during the motion estimation process, a cost function is

necessary. In the reference software of H.264, the sum of absolute difference (SAD)

1-1

is a part of the cost function and it is the most complex part. Consequently, reducing

S A D computation can significantly reduce the total time required for motion

estimation.

In the literature, some fast motion estimation algorithms such as those proposed in

[1-3] and [5-9] concentrate on reducing the number of search points without reusing

SAD. Fast Full Search (FFS), the fast motion estimation algorithm adopted in the

reference software of H.264 for reducing the complexity of Full Search while

maintaining the coding efficiency, uses a fixed search center for the motion

estimation of the seven block types within the same macroblock. The SADs of each

of the sixteen 4x4 blocks are pre-computed and stored. Therefore, these stored SADs

can be reused during the motion estimation processes of all the seven block types.

This can significantly reduce the complexity of the variable block size motion

estimation process and thus FFS is less complex than Full Search. Even though FFS

considers SAD reuse, it is not fast enough because it still performs Full Search once

for each macroblock. The algorithm proposed in [4] also considers SAD reuse

without pattern-based motion estimation and this may not be very accurate. W e

propose to reuse S A D with pattern-based motion estimation and refinement search to

reduce the motion estimation time while maintaining good coding performance in

terms of PSNR and bitrate.

1-2

4.2 Proposed Fast Motion Estimation Algorithm

4.2.1 Best Initial Motion Vector

At the beginning, the availabilities of the neighboring blocks A and B of the current

block are derived. Blocks A and B are the left and upper block of the current block,

respectively, as shown in Figure 4.1. When the neighboring block A or B exceeds the

boundary of the current slice or is intra-coded, that neighboring block is unavailable.

Otherwise, it is available.

16x16 block type is evaluated first, followed by 8x16，16x8, 8x8, 4x8, 8x4 and 4x4.

The following process is performed only when block type is 16x16. Other block

types do not require to perform it. At most three initial candidate search points can be

derived. When blocks A and/or B are available, their motion vectors, which are used

to derive initial candidate search points, are available and are used to derive the first

and/or the second initial candidate search points. The prediction motion vector

defined in the H.264 standard, i.e. the median of the motion vectors of the left block,

upper block, upper-left or upper-right block, is used to derive the third initial

candidate search point.

Finally, the costs of each of these initial candidate search points are computed. The

one with the minimum cost is the best initial candidate search point and the

corresponding motion vector is the best initial motion vector (When the motion

vector used for deriving an initial candidate search point is not available, the cost of

the corresponding initial candidate search point is regarded as larger than those of the

others.). The cost function is defined by Equation 4.1.

1-3

Cost = S A D + A,(QP) X bit ̂vd (4.1)

where S A D is the sum of absolute difference between the current block and a

block in the reference frame,

？i(QP) is the Lagrange multiplier whose value depends on QP, the

quantization parameter, and

bitMVd is the number of bits used to encode the motion vector difference

(motion vector - prediction motion vector).

The best initial motion vector is used to derive the center of a fixed initial search

pattern. The initial search pattern changes according to the search range and this will

be discussed in Section 4.2.2. The best initial motion vector derived in the above

process is used for all other block types, i.e. 8x16, 16x8, 8x8 4x8，8x4 and 4x4,

within the same macroblock.

B

小I ŝ
Figure 4.1 Neighboring blocks A and B of the current block N.

4.2.2 Initial Search Pattern

The best initial motion vector is used to derive the center of a fixed initial search

pattern. The fixed initial search pattern consists of two parts called the center part

and the outside part. The candidate search points in the outside part are for handling
4-4

large motion situations while those in the center part are for handling small motion

situations. The center part is fixed and does not depend on search ranges. The outside

part changes according to the search range, as illustrated in Figure 4.2. Figure 4.2 (a)

illustrates the center part, "-1" indicates the best initial candidate search point derived

in Section 4.2.1. “-1”，"0" and "1" are the indices of the candidate search points.

Candidate search points with index equals to 1 are at the boundary and the others are

not at the boundary of the center part. Figure 4.2 (b) illustrates the center part and

outside part.

Equations 4.2 and 4.3 are used to derive the number of layers of the outside part and

the distance between each layer of the outside part and the center part. S is the

number of layers and L (n) is the distance between layer n and the center part. Table

4.1 shows some examples to illustrate the relationship among the search range, S and

L(n).

S=Tnmcate(log/eareyange)) (4.2)

L(n) = T n m c a t e (S e— 2，)， ^ & ^ (4 3)

If S > 0，both the center part and the outside part are required and Equation 4.3 is

evaluated to determine the positions of the candidate search points in the outside part.

If S = 0，only the center part is required, n is an integer which is greater than or

equals to 1 and smaller than or equals to S. Truncate () truncates the result toward

zero, for example, Truncate (1.8) = 1.

1-5

Search range <8 8 16 32 64

S 0 1 2 3 4

L(l) 4 8 16 32

L(2) 4 8 16

L(3) 4 8

L(4) 4

Table 4.1 Examples for illustrating the relationship among the search range, S and

L(n).

• T • •

^ jM m m

§ , L(2)
\! V < >1
丄 丄 • • •

I • •
• • • • 國 • •

• •

I I I I I I I I L(1) • • •
I I I I I I I ^ ^

三 二 • • •
~__o __g

I I I I I 11 • • •

(a) (b)

Figure 4.2 Initial search pattern, (a) only the center part, (b) the center part and the

outside part for S = 2.

The candidate search points in the initial search pattern required to be evaluated for

all the block types. First, the current macroblock is partitioned into sixteen 4x4

blocks and the SADs, called SAD4X4S, of each of them are pre-computed with the

1-6

candidate search points in the initial search pattern. Then each SAD4X4 is stored and

can be reused for computing the true SADs of all block types within the same

macroblock. Since all the block types use the same best initial motion vector,

SAD4X4S can be reused. This can reduce the complexity of the variable block size

motion estimation process significantly.

4.2.3 Initial Search Process and Search Pattern Improvement

Process

The costs of all candidate search points in the initial search pattern are computed

with Equation 4.1 (SAD can be computed by summing the corresponding SAD4X4S).

The one with the minimum cost is defined as the best initial search pattern candidate

search point (BISPCSP).

When block type is 16x16, go to Section 4.2.3.1.

For the other block types, the cost of another candidate search point, called improved

candidate search point (ICSP), which is derived from the prediction motion vector

defined in the H.264 standard is evaluated.

When block type is 8x16 or 16x8 and the cost of ICSP is smaller than that of

BISPCSP, ICSP is defined as motion estimation center (MEC) and motion estimation

process defined in Section 4.2.4.1 is carried out. Otherwise, proceed to Section

4.2.3.1.

For 8x8 block type, when the cost of ICSP is smaller than that of BISPCSP, ICSP is

defined as the center of an improved search pattern (ISP) and ISP of that

sub-macroblock is available. It is fixed for all search ranges as illustrated in Figure

1-7

4.3. All of its candidate search points are evaluated when it is available. Since a

sub-macroblock is 8x8，it can be partitioned into four 4x4 blocks and their SAD4X4S

are computed and stored. Therefore, the SAD4X4S can be reused to evaluate the

candidate search points in ISP for all sub-macroblock types of that sub-macroblock.

If the best candidate search point is in ISP, go to Section 4.2.3.2. Otherwise, go to

Section 4.2.3.1.

For 4x8，8x4 or 4x4 block type, when the ISP of the corresponding sub-macroblock

is available, the costs of its candidate search points (SAD4X4S can be reused) are

compared with those of BISPCSP and ICSP. If the best candidate search point is

BISPCSP, go to Section 4.2.3.1. If ICSP is the best, proceed to Section 4.2.4.1 with

ICSP as M E C . Otherwise, the best candidate search point must be one of the

candidate search points in ISP. Accordingly, proceed to Section 4.2.3.2

= = I = 工 Z :

= = 工 Z 工 = =
= 3 = 2 = 3 =

Figure 4.3 Improved search pattern (ISP), "0" is the center of ISP, "0" or “1” is

non-boundary candidate search point and "2" is boundary candidate search point

of ISP.

4.2.3.1 BISPCSP Motion Estimation or Refinement Process Decision

When BISPCSP is in the outside part or is at the boundary of the center part of the

initial search pattern, proceed to Section 4.2.4.1 with BISPCSP as M E C . Otherwise,

proceed to Section 4.2.4.2 with BISPCSP as refinement center.

1-8

4.2.3.2 ISP Motion Estimation or Refinement Process Decision

When the best candidate search point is not at the boundary of ISP, proceed to

Section 4.2.4.2 with it as the refinement center. Otherwise, proceed to Section 4.2.4.1

with it as the M E C .

4.2.4 Motion Estimation Process and Refinement Process

The patterns used in the motion estimation process and the refinement process are

illustrated in Figure 4.4. The patterns used for these two processes are changed

according to different conditions. The decision process of using which of them is

discussed in Section 4.2.4.1 and 4.2.4.2.

4.2.4.1 Motion Estimation Process

The center of the search window is defined as ICSP, the center of the initial search

pattern, or the center of ISP, depending on where the M E C comes from. When the

M E C is ICSP, the center of the search window is ICSP. When the M E C is in the

initial search pattern or is in ISP, the center of the search window is set to the center

of the initial search pattern or ISP, respectively.

When the M E C is in the outside part of the initial search pattern or is ICSP, vertical

hexagon search pattern is selected. Otherwise, star search pattern is selected. When

the M E C is at the boundary of the center part of the initial search pattern or at the

boundary of ISP, the block is assumed to have small motion and therefore star

1-9

pattern is selected to minimize the number of search points. If horizontal hexagonal

search pattern is used instead of vertical hexagonal pattern, through experiments, the

overall performance is degraded a little. This can be explained with the argument that

[2] vertical motion is less likely than horizontal motion for natural video.

Consequently, vertical hexagonal search pattern is used.

After the search pattern is selected, the motion estimation process is performed as

follows:

Step 1) Six or four (depending on vertical hexagon or star search pattern is selected)

candidate search points centered at the M E C are evaluated with the selected search

pattern. If the best one is at the center, proceed to step 3; otherwise, proceed to step

2.

Step 2) With the best candidate search point in the previous search step as the center,

three more candidate search points are evaluated with the same search pattern. If the

best one is at the center, proceed to step 3; otherwise, repeat this step.

Step 3) Perform the refinement process in Section 4.2.4.2 with the best candidate

search point in the previous search step as refinement center.

I I I I M I I 1*1 I I I I I I I I I I I I I I
一 一 • 一 mil I I I 一 一 丨 春 | _ | 鲁 丨

一 一 _ 一二 I l i l l I I I ! " 丨春11 •丨
= • 二 • = 至 二 = 二 • = = • = =

M i l l I I 1*1 I I I I I I M M I N

(a) (b) (c) (d)

Figure 4.4 (a) Star search pattern and (b) Vertical hexagon search pattern, square

is the center and circles are the candidate search points which are evaluated in

1 - 1 0

each search step, (c) Small diamond refinement pattern and (d) Hexagon

refinement pattern, square is the refinement center and circles are the candidate

search points which will be evaluated.

4.2.4.2 Refinement Process

If the star search pattern is chosen as the motion estimation search pattern or the

motion estimation process is not required, small diamond refinement pattern is

selected as the refinement pattern. Otherwise, hexagon refinement pattern is chosen.

Eight or four candidate search points centered at the refinement center are evaluated

with the selected refinement pattern. The best one is defined as the best match.

The above processes are summarized in Figure 4.5.

1-11

Find the best
initial motion vector

I
Define the center

and decide the type
of initial search

pattern

Find BISPCSP

16x16 , others
< ? Block type —

8x16 or

16x8
Choose BISPCSP or

Choose BISPCSP Choose BISPCSP or ICSP or the best
as center ICSP as center candidate search point

of ISP as center

^ Perform ME and/or ^
refinement process

The best match
is found

Figure 4.5 Flow chart of the proposed S A D reuse motion estimation

process.

4.2.5 Motion Estimation Skip Process for B Pictures

If the cost of a particular block type of list 1 is smaller than that of list 0 (list 0 and

list 1 are the lists storing the reference pictures for motion estimation and

compensation), the mean of the costs of that block type of list 1 will be updated.

After the cost of one block type of list 0 is evaluated, it is compared with the

1 - 1 2

weighted mean of the cost of the same block type of list 1. Weighted mean is the

mean multiplied by a weighting factor, in our experiments, which was set to 0.75.

The weighting factor is adjusted according to whether high speed or good coding

performance is demanded. If the cost of certain block type of list 0 is smaller than the

weighted mean of the same block type of list 1，the motion estimation process of list

1 for that particular block type will be skipped and the best M V of list 1 for that

block type will be set to the prediction M V which is defined in the H.264 standard.

To achieve better coding performance, this comparison process will be performed

only if the number of samples used to compute the corresponding mean is larger than

or equals to certain threshold, in our experiments, which was set to ten. Since SAD4X4

requires to be computed and stored when block type is 16x16, this motion estimation

skip process is not performed when block type is 16x16.

4.3 Experimental Results

The experiments were carried out using the H.264 reference software JM 10.2 [10]

on PC with 3.2G Hz CPU and IG R A M . Two tests were carried out. The first test

used only one I frame and all of the remaining frames were P frames and 150 frames

were tested for each video sequence. The second test used only one I frame, there

were two B frames between two consecutive I or P frames and 148 frames were

tested for each video sequence. Slice QPs of I, P and B frames were 24，28, 32 and

36. Only integer motion estimation was applied and the number of reference frames

was one. R D O was turned off and all seven block types were evaluated with search

range equaled to 16. The M E Time is computed by JM 10.2. All comparisons are

with respect to FFS. The proposed algorithm is compared with four fast motion

4-13

estimation algorithms adopted in JM 10.2, namely Hybrid Unsymmetrical-cross

Multi-Hexagon-grid Search (UMHS), simplified U M H S (SUMHS), Enhanced

Predictive Zonal Search (EPZS) and FFS. The results showing the coding

performances of the motion estimation algorithms in terms of PSNR variation or

bitrate variation are in Table 4.2 and Table 4.3, respectively. The PSNR variation and

the bitrate variation in the tables are computed with the method proposed in [11].

The measurement of the complexity used in the comparisons is derived Equation 4.4:

ME Time FAST ME

METime(%) = 100x(:~) (4.4)
ME Timepps

where Fast—ME is U M H S , S U M H S , EPZS or New which is the proposed

algorithm, and

M E Time is the motion estimation time computed by JM 10.2.

From Table 4.2, 4.3 and 4.4, it can be observed that the motion estimation time of the

proposed algorithm is the shortest and the coding performance in terms of bitrate

variation or PSNR variation of the proposed motion estimation algorithm is similar

to those of the other motion estimation algorithms.

Figure 4.6 and Figure 4.7 show the R D curve comparisons of the motion estimation

algorithms, it can be observed the RD-curves of the proposed algorithm are similar to

those of FFS.

Bitrate Variation (%) w.r.t. FFS PSNR Variation (dB) w.r.t. FFS

Sequence UMHS SUMHS EPZS New UMHS SUMHS EPZS New

1-14

Carphone, C 3.84 8.11 2.57 4.61 -0.14 -0.29 -0.09 -0.17

Coastguard, C 0.19 0.01 -0.24 0.20 0.00 0.00 0.01 -0.01

Container, C 0.77 0.92 0.29 0.35 -0.03 -0.04 -0.01 -0.01

Foreman, C 2.52 6.59 1.85 3.62 -0.09 -0.24 -0.07 -0.13

Carphone, Q 0.96 3.40 1.29 1.93 -0.04 -0.14 -0.05 -0.08

Child, Q 0.60 1.43 0.19 0.76 -0.04 -0.09 -0.01 -0.05

Claire, Q 0.98 3.82 0.91 0.67 -0.04 -0.17 -0.04 -0.03

Coastguard, Q 0.12 0.01 0.03 0.08 0.00 0.00 0.00 0.00

Foreman, Q 3.38 7.63 1.47 3.82 -0.15 -0.33 -0.07 -0.17

Suzie, Q 0.22 2.19 0.22 0.85 -0.01 -0.08 -0.01 -0.03

Table, Q 1.81 3.19 1.09 2.78 -0.09 -0.15 -0.05 -0.13

Trevor, Q 0.53 1.44 0.85 0.82 -0.02 -0.06 -0.04 -0.04

Average 1.33 3.23 0.88 1.71 -0.055 -0.133 -0.037 -0.072

I
Table 4.2 Bitrate and PSNR comparisons, C is GIF, Q is QCIF for IPPPPPPPPP

G O P structure....

Bitrate Variation (%) w.r.t. FFS PSNR Variation (dB) w.r.t. FFS

Sequence UMHS SUMHS EPZS New UMHS SUMHS EPZS New

Carphone, C 2.53 6.03 1.79 3.25 -0.10 -0.23 -0.07 -0.13

Coastguard, C -0.39 -1.54 -1.17 -0.58 0.01 0.06 0.05 0.02

1-15

Container, C 1.03 0.79 0.30 -0.53 -0.04 -0.03 -0.01 0.02

Foreman, C 1.22 4.33 0.99 3.37 -0.05 -0.17 -0.04 -0.13

Carphone, Q 0.87 2.76 1.12 0.52 -0.04 -0.12 -0.05 -0.02

Child, Q 0.01 0.90 -0.22 -0.28 0.00 -0.06 0.01 0.02

Claire, Q 1.81 4.74 1.40 0.38 -0.08 -0.20 -0.06 -0.02

Coastguard, Q 0.08 -0.70 -0.89 -0.65 0.00 0.03 0.04 0.03

Foreman, Q 0.97 3.65 1.17 1.84 -0.05 -0.17 -0.05 -0.09

Suzie, Q -0.33 0.05 -0.99 -0.26 0.01 0.00 0.04 0.01

Table, Q 1.65 1.90 1.33 3.05 -0.08 -0.09 -0.06 -0.15

Trevor, Q 0.12 0.13 -0.46 -0.73 -0.01 -0.01 0.02 0.04

Average 0.80 1.92 0.36 0.78 -0.034 -0.082 -0.016 -0.033

L-

Table 4.3 Bitrate and PSNR comparisons, C is CIF, Q is QCIF for IBBPBBPBBP

G O P structure....

ME Time (%) w.r.t. FFS ME Time (%) w.r.t. FFS

IPPPPPPPPP... IBBPBBPBBP...

Sequence UMHS SUMHS EPZS New UMHS SUMHS EPZS New

Carphone, C 15.09 10.46 16.02 9.65 15.30 10.12 15.53 7.54

Coastguard, C 25.01 17.14 22.23 10.85 26.66 17.68 23.15 9.54

Container, C 13.37 10.00 14.51 8.67 12.92 9.34 14.05 6.91

1-16

Foreman’ C 17.89 11.75 22.25 9.59 18.86 12.15 18.05 8.28

Carphone, Q 15.52 10.94 16.13 9.36 16.61 9.78 15.87 7.57

Child, Q 13.31 9.71 14.51 8.32 13.80 9.47 13.85 6.89

Claire, Q 10.11 8.12 11.63 7.66 10.46 7.25 11.31 6.32

Coastguard, Q 23.16 15.74 19.45 9.25 22.67 15.81 21.35 9.62

Foreman, Q 19.61 13.88 18.60 10.17 19.43 12.88 18.61 8.34

Suzie, Q 16.25 11.28 15.40 8.69 15.84 11.39 15.79 8.45

Table, Q 18.58 13.88 17.41 8.9 19.16 13.40 18.13 8.69

Trevor, Q 16.21 11.47 15.49 8.55 16.74 11.03 15.20 6.87

Average 17.01 12.03 16.97 9.14 17.37 11.69 16.74 7.92

Table 4.4 Motion estimation time comparisons, C is CIF, Q is QCIF for

IPPPPPPPPP... and IBBPBBPBBP…GOP structures.

Rate Distortion Curve (Carphone, CIF) Rate Distortion Curve (Claire, QCIF)

0 250 500 750 o 30 60

Bit Rate (kbits/s) Bit Rate (kbits/s)

1-17

Rate Distortion Curve (Foreman, QCIF) Rate Distortion Curve (Table, QCIF)

0 100 200 300 60 140 220 300

Bit Rate (kbils/s) Bit Rale (kbits/s)

Figure 4.6 RD-curve comparisons of different video sequences with different motion

estimation algorithms for IPPPPPPPPP... G O P structure.

Rate Distortion Curve (Carphone, CIF) Rate Distortion Curve (Claire, QCIF)

〖丨•面�ii—面
0 300 咖 900 0 25 50 75

Bit Rate (kbits/s) B i t R a t e (kb i t s / s)

Rate Distortion Curve (Foreman, QCIF) Rate Distortion Curve (Table, QCIF)

0 100 200 300 60 160 260 360

Bit Rate (kbits/s) Bit Rate (kbits/s)

Figure 4.7 RD-curve comparisons of different video sequences with different motion

estimation algorithms for IBBPBBPBBP... G O P structure.

From the experimental results, it can be observed that for videos with large motion,

such as Carphone, Foreman and Table, the coding performance in terms of bitrate

variation or PSNR variation of the proposed algorithm is not as good as that of FFS.

. 4 - 1 8

For the proposed algorithm, the center of the initial search pattern is fixed for all the

blocks within a macroblock, but the true prediction motion vectors for these blocks

may change greatly if the video contains large motion and the number of search

points of the proposed algorithm is less than that of FFS. Therefore, the coding

performance of the proposed algorithm is not as good as that of FFS for videos with

large motion. For videos with small motion, such as Claire, Coastguard, Container,

etc, the coding performance of the proposed algorithm is similar to that of FFS. From

the experimental results, it can also be observed that the motion estimation time of

the proposed algorithm is the shortest amongst the five fast motion estimation

algorithms.

The proposed algorithm reduces the motion estimation time by approximately 90%

when compared with that of FFS with only a little degradation of coding

performance in terms of PSNR and bitrate. The worst bitrate and PSNR variations of

the proposed algorithm are +4.61% and -0.17dB, the best bitrate and PSNR

variations are +0.08% and OdB for IPPPPPPPPP... G O P structure. The worst bitrate

and PSNR variations are +3.37% and -0.15dB, the best bitrate and PSNR variations

are -0.73% and 0.04dB for IBBPBBPBBP...GOP structure. The average coding

performance of the proposed algorithm is similar to those of the others and the

motion estimation time of the proposed algorithm is the shortest amongst the five fast

motion estimation algorithms. Therefore, it can be concluded that the proposed

algorithm reduces the complexity of variable block size motion estimation.

. 4 - 1 9

Chapter 5 Development of Real-Time H.264 Codec on Pocket PC

H.264 achieves excellent coding performance and outperforms previous video

coding standards. However, its complexity is very high, especially on encoder side,

and the processing power of mobile device is limited. Accordingly, optimizations are

required for real-time applications, especially on mobile platform. This chapter

focuses on the development of a real-time H.264 codec on Pocket PC platform.

Based on the proposed algorithms and optimization techniques, a Pocket PC

software-based real-time H.264 codec is developed. Since the whole system is

implemented in software, it is suitable for technology transfer.

H.264 provides several profiles which include Baseline, Main, Extended and High

Profiles for different applications. The Baseline Profile was chosen for developing

the system. The main reason is that the complexity of the techniques in Baseline

Profile is low when compared with those of the others and the performance is

acceptable for mobile applications. Accordingly, this profile is the most suitable one

for developing real-time system on mobile platform.

There are many kinds of optimization techniques such as instruction level

optimization, algorithmic optimization, code level optimization, etc. Generally,

instruction level optimization applies SIMD (Single Instruction Multiple Data)

technology to reduce the complexity. Normally several data are loaded into a single

register, SIMD technology provides instructions to process these packed data in

parallel. For example, when four data are loaded into a single register, one SIMD

instruction can process four data at the same time. Therefore, the complexity can be

reduced. The instruction level optimization can be applied to some highly complex

. 4-1

modules such as forward and inverse Integer Cosine Transform, S A D computation,

interpolation, etc. After the instruction level optimization is performed, the

complexity of these time consuming modules can be reduced significantly.

In the following sections, we will focus on discussing about the algorithmic

optimizations and code level optimizations followed by experimental results. The

applications of the developed real-time codec will be discussed at the end of this

chapter.

5.1 Algorithmic Optimizations

Algorithmic optimizations reduce the complexity of the system through algorithms

with or without degradation of coding performance. The algorithms which are

proposed and applied to optimize the codec include fast interpolation, fast integer

and sub-pixel motion estimation, early skip termination, etc. The details of the fast

integer motion estimation, early skip termination can be found in [27，28]. This

section focuses on the proposed fast interpolation and sub-pixel motion estimation

algorithms and an inverse Integer Cosine Transform and inverse quantization

skipping process.

5.1.1 Fast Sub-Pixel Motion Estimation

Figure 5.1 illustrates the sub-pixel motion estimation used for Fast Full Search in the

reference software of H.264. In the first step, the center square and the triangles are

evaluated. Then, according to the best search point in the previous step, the

surrounding eight quarter pixels are evaluated. The best one (the one with the

. 4-2

minimum cost which is derived with Equation 4.1) amongst the nine search points is

the best match. In [2], the assumption, which states that the unimodal error surface in

most cases for fractional pixel search holds true [12], is utilized. In our proposed

sub-pixel motion estimation algorithm, this assumption is still utilized.

_ _ _ ooo
O A O A A
O O O

_ A • A _

A A A

圓 圓 圖

Figure 5.1 The sub-pixel motion estimation process used for Fast Full Search in the

reference software of H.264.

The proposed algorithm first finds a prediction best match. Three different search

points are compared and the best one is the prediction best match. The three search

points PO, PI and P2 are defined in Equation 5.1. After the prediction best match is

found, it is regarded as the search center and a refinement search is performed. The

search pattern selected for the refinement search is small diamond pattern as shown

in Figure 2.8 (a). The search process terminates until the current best match is at the

center or the cost of the best match in the current stage satisfies the condition defined

in Equation 5.2. In our experiment, the values of a and b in Equation 5.2 were set to

0.6 and 0.2.

. 4-3

PO = (0，0)

P1 = (Pred - Int_best一match) % 4 (5.1)

P2 = Pred % 4

where % indicates modulus operation,

Pred is the prediction motion vector, and

Int_best_match is the best match of integer pixel block matching.

(Pred and Int_best一match are in quarter pixel precision. PO, PI and P2 are

expressed relative to Int—best_match.)

if (best—cost < a X Threshold) or (best—cost < b x intra_mean_cost)

the search process is terminated

otherwise

continue to search (5.2)

where intra一mean_cost is the mean of the costs of the intra coded macroblocks,

best_cost is the cost of the current best sub-pixel search point,

a and b are tuning factors for achieving a good balance between

complexity and coding performance, and

Threshold is set to the cost of the integer pixel best match.

In addition to the mentioned process, during our implementation, a matrix is used to

record the sub-pixel search points which have already been checked. Therefore, the

search points will not be searched repetitively.

The experimental results illustrating the performance and complexity of the proposed

algorithm are shown in Table 5.1. The experiment was performed on the Pocket PC

platform with IPPPP... G O P structure. Q P was set to 28，32, 36 and 40. The ABitrate

. 4-4

or the equivalent APSNR are computed with the method proposed in [11] when

compared with the sub-pixel motion estimation algorithm used for Fast Full Search

in the reference software of H.264. The Encoding Time (%) is derived with Equation

5.13. From the results, it can be observed that the increment of bitrate is less than 1

% and the reduction in the total encoding time is more than 10% on average.

Sequence ABitrate (%) APSNR (dB) Encoding Time (%)

Carphone ^ -0.01 -15.4

Container -0.01 -10.27

Foreman 2.3 -0.11 -17.61

Grandma 0.42 -0.01 -8.34

MissA \M -0.07 -9.66

Salesman -0.01 -11.23

Silent 0 ^ -13.06

Average 0.686 -0.033 -12.224

Table 5.1 The performance and complexity of the proposed algorithm.

5.1.2 Interpolation
5.1.2.1 Revision of Luma Interpolation

The luma interpolation process of H.264 includes two parts, the half and quarter

pixel interpolation. For the half-pixel interpolation, a six-tap filter with tap values (1，

-5，20, 20，-5，1) is applied. In Figure 5.2, aa, bb, cc, dd, ee, ff, gg and hh are the

intermediate values of the half pixels. They are derived in a way similar to Equations

5.6 and 5.7. b, h, j, m, and s are the half pixels which are derived in a way similar to

Equations 5.3，5.4, 5.5，5.8 and 5.9. The quarter pixels are derived in a way similar to

Equations 5.10 and 5.11.

. 4-5

b = Clipl ((bl + 16) » 5) (5 3)

h = Clipl ((hi + 16) » 5) (5 4)

j = Clipl((jl+512)»10) (5 5)

where bl, hi and jl are derived with Equations 5.6，5.7，5.8 and 5.9.

bl =(E-5F + 20G + 20H - 51 + J) (56)

hi =(A-5C + 20G + 20M - 5R + T) (57)

jl = cc - 5dd + 20hl + 20ml -5ee + ff • (5 8)

or

jl =aa-5bb + 20b 1 + 20s 1 - 5gg + hh (5.9)

a = (G + b+ 1) » 1 (5.10)

e = (b + h+ 1) » 1 (5.11)

Clipl(x): If X > (1 « BitDepth)-l,x = (1 « BitDepth) — 1

else if X < 0, X = 0 (5.12)

else X = X

where « is arithmetic left shift,

» is arithmetic right shift, and

BitDepth is the number of bits used to represent each luma component.

The results of Equations 5.8 and 5.9 are the same and this is proved as follows:

cc = Yi - 5Y5 + 20E + 20K - 5Zi + Z5

dd = Y2 - 5Y6 + 20F + 2OL-5Z2 + Ze

hi = A - 5 C + 20G + 2 0 M - 5 R + T

ml = B - 5D + 20H + 20N -5S + U

ee = Y3 - 5Y7 + 201 + 2OP-5Z3 + Z7

ff = Y4 - 5Y8 + 20J + 20Q - 5Z4 + Zg

‘ 5-6

jl =cc-5dd + 20hl + 20ml - 5ee + ff = [Yi - 5Y5 + 20E + 20K - 5Zi + Z5 +

Y4 - 5Y8 + 20J + 20Q - 5Z4 + Zg]-

5 [Y2 - 5Y6 + 20F + 2OL-5Z2 + Z6 +

Y3 - 5 Y7 + 201 + 20P - 5Z3 + Z7] +

20 [A - 5C + 20G + 20M - 5R + T +

B - 5D + 20H + 20N - 5S + U]

m m _ A 國 _ •

m _ 0 A [1 圓 顯

m _ _ [£

®®®®
A A A®A®A A A

0®®©

圖 國 0 A因 國 圓

_ 國 因 众 圓 m 圓

_ _ S3 A S _ 圔

Figure 5.2 The squares are integer pixels, b, h, j, m, s are half pixels and the circles

are quarter pixels.
. 4-7

aa = Yi - 5Y2 + 20A + 20B - 5Y3 + Y4

bb = Y5 - 5Y6 + 20c + 20D - 5 Y7 + Yg

bl = E - 5F + 20G + 20H - 51 + J

si = K - 5 L + 20M + 20N - 5P + Q

gg = Z, - 5Z2 + 20R + 20s - 5Z3 + Z4

hh = Z5 - 5Z6 + 20T + 20U - 5Z7 + Zg

jl = aa- 5bb + 20bl + 20sl - 5gg + hh = [Y, - 5Y2 + 20A + 20B - 5Y3 + Y4+

Z5 - 5Z6 + 20T + 20U - 5Z7 + Zg]-

5 [Y5 - 5 Y6 + 20c + 20D - 5 Y7 + Y8 +

Zi - 5Z2 + 20R + 20s - 5Z3 + Z4] +

20[E - 5 F + 20G + 20H-5I + J +

K - 5 L + 20M + 20N - 5P + Q]

=cc - 5dd + 20hl + 20ml - 5ee + ff

The details of the luma interpolation process can be found in [30].

5.1.2.2 Fast Interpolation

In Section 5.1.2.1, the interpolation process for luma component is reviewed.

Certainly, interpolation of all sub-pixel positions consumes a large amount of

computing resources and thus this is not a suitable implementation for real-time

applications. It can be observed that the interpolation of half-pixel is highly complex

because a six-tap filter is used, and the derivation of quarter pixel requires at least

one half pixel. Therefore, repetitive interpolation of the half pixel should be avoided.

‘ 5-8

For the sub-pixel motion estimation algorithm adopted in the reference software of

H.264, the half pixels are derived and stored first. Then the quarter pixels can be

derived from the stored half pixels. Unlike this algorithm, the fast sub-pixel motion

estimation algorithm introduced in Section 5.1.1 has chances that the half pixels are

not derived but they are required for deriving quarter pixels which are necessary to

be evaluated in the current stage. To reduce the complexity, during our

implementation, when a half pixel is derived (no matter it is derived because it is

required or for deriving a quarter pixel), its value is stored for future usage. This can

greatly reduce the complexity. In Figure 5.3, the triangles are the half pixels which

may be stored during the proposed sub-pixel fast motion estimation process. The

center square is the best integer pixel best match.

圓 A _ A 圓

A A A A A

_ A • A _

A A A A A

_ A _ A _

Figure 5.3 Triangles represent the half pixels which may be stored during the

proposed sub-pixel fast motion estimation process.

Table 5.2 illustrates the reduction in complexity when the fast interpolation method is

applied. The setting of the experiment was the same as that applied for the proposed

fast sub-pixel motion estimation algorithm. The Encoding Time (%) is derived with

‘ 5-9

Equation 5.13. It can be observed that the total encoding time can be reduced by

about 4.1% on average. In fact, the encoding time for the sequence Foreman is the

longest as shown in Table 5.9. From Table 5.2，the total encoding time reduction for

Foreman is about 7.4 % and thus this method can help to achieve real-time

applications efficiently. In addition, this method reduces the complexity without

degrading the coding performance.

Sequence Encoding Time (%)

Carphone -6.421

Container -0.775

Foreman -7.429

Grandma -2.650

MissA -3.746

Salesman -3.183

Silent -4.677

Average -4.126

Table 5.2 The reduction in complexity when the fast interpolation method is applied.

r J. T. New一Encoding-Time — Original一Encoding time
Encoding Time (%) = ^ . … f . — — ： ———xlOO (5.13)

Original_Encoding_time

5.1.3 Skipping Inverse ICT and Inverse Quantization Depends on

Coded Block Pattern

In H.264 standard, there is a syntax element called coded—block—pattern (CBP). In

the Baseline Profile, a macroblock comprises a 16x16 luma block and two 8x8

chroma blocks. The CBP is used to specify which of the luma or chroma 8x8 blocks

contains non-zero transform coefficient levels. For macroblock type which is not

equal to Intra一 16x16, this syntax element is present in the bitstream and two

‘ 5-10

variables CodedBlockPattemLuma and CodedBlockPattemChroma are derived with

Equations 5.14 and 5.15. When macroblock type is Intra一 16x16, the

CodedB lockPattemLuma and CodedB lockPattemChroma can be derived from the

macroblock type.

CodedB lockPattemLuma = coded_block_pattem % 16 (5.14)

CodedB lockPattemChroma = codecLblock—pattern /16 (5.15)

where % is the modulus operation, and

/ is integer division with truncation of the result toward zero.

CodedB lockPattemLuma specifies which of the four 8x8 luma blocks contains

non-zero transform coefficient levels. The meaning of CodedB lockPattemChroma is

specified in Table 5.3 [30].

C o d e d B l o c k P a t t e r n C h r o m a D e s c r i p t i o n

Q All chroma transform coefficient levels are equal to

a
1 One or more chroma D C transform coefficient levels

shall be non-zero valued. All chroma A C transform

coefficient levels are equal to 0.

2 Zero or more chroma D C transform coefficient

levels are non-zero valued. One or more chroma A C

transform coefficient levels shall be non-zero valued.

Table 5.3 The meaning of CodedB lockPattemChroma [30].

It is well known that inverse ICT and inverse quantization are time consuming

processes. If their implementation process can be skipped, the complexity of the

codec can be reduced. From the above explanation, it can be noticed that

CodedBlockPattemLuma and CodedBlockPatternChroma can be used to skip some

‘ 5-11

of the inverse ICT and inverse quantization processes because they specify whether

the quantized transform coefficients of a block are all zeros. The inverse ICT or

inverse Hadamard Transform and the inverse quantization process for luma and

chroma D C or A C blocks can be skipped when the quantized coefficient levels of a

block are all zeros. The output matrix can be derived by assigning zeros to all of the

elements of the matrix. Consequently, the complexity of the codec can be reduced

significantly.

5.2 Code Level Optimizations

Even though algorithms can be applied to reduce the complexity of a system, it is

still insufficient to develop a Pocket PC based real-time H.264 codec without

applying other optimization techniques. In this section, code level optimizations are

discussed. There are many code level optimization techniques, such as Loop

Optimizations, Numerical Operation Optimizations, Memory Operation

Optimizations, etc. The following are some examples for Loop Optimizations.

5.2.1 Merging Loops

As implied from its name, this method aims to reduce the number of loops by

combining them. This method is simple but efficient. Consider the following C code:

Nnn-Optimized Code:

for (a=0; aclOO; a++)

x[a] 二 a;

for (b=20; b<120; b++)

‘ 5-12

y[b-20] = b;

Optimized Code:

for (a=0; aclOO; a++){

x[a] = a;

y[a] = a+20;

}

Since a/or loop consists of initializations, comparisons and counters, remove a for

loop can reduce the complexity in a great amount. In the above example, a/or loop is

removed and one initialization, 100 comparisons and 100 additions are removed.

5.2.2 Moving Independent Code outside the Loop

Each statement within a loop is implemented many times. Accordingly, the

complexity of a loop can be reduced by pre-computed some variables or statements

which are invariant within the loop. Consider the following example:

Non-Optimized Code:

for (y=0; y<h; y++){

for (x=0; x<w; x++){

N[y][x] = [(8-Fx)*(8-Fy)*P[y][x] + Fx*(8-Fy)*[y][x+1] +

(8-Fx)*Fy*P[y+l][x] + Fx*Fy*P[y+l][x+l] + 32] » 6

}

}

. 4-13

Optimized Code:

Aweight = (8-Fx)*(8-Fy);

Bweight = Fx*(8-Fy);

Cweight = (8-Fx)*Fy;

D weight = Fx*Fy;

for (y=0; y<h; y++){

for (x=0; x<w; x++){

N[y][x] = [Aweight*P[y][x] + Bweight* [y][x+l] +

Cweight*P[y+l][x] + Dweight*P[y+l][x+l] + 32] » 6

}

}

It can be noticed that the above example is the implementation of Equation 1.10’ i.e.

the chroma interpolation process. In the above example, the loop-independent codes

are implemented outside the loop. Accordingly, the number of multiplications within

the loop is reduced and the complexity of the chroma interpolation process is

reduced.

5.2.3 Unrolling Loops

As mentioned before, afar loop consists of initializations, comparisons and counters.

Unrolling loops can reduce the number of comparisons and counters and thus this

may reduce the complexity. The following is an example to illustrate the unrolling

loops process.

. 4-14

Original Code:

int S A D = 0;

for (y=0; y<4; y++){

for (x=0; x<4; x++){

SAD = S A D + abs(Org[Y+y][x] - Ref[Y+y][x]);

}

}

Code with unrolled loops:

int SAD = 0;

for (y=0; y<4; y++){

SAD = S A D + abs(Org[Y+y][x] - Ref[Y+y][x]);

SAD = S A D + abs(Org[Y+y][x+l] - Ref[Y+y][x+l])；

SAD = S A D + abs(0rg[Y+y][x+2] - Ref[Y+y][x+2]);

SAD = S A D + abs(0rg[Y+y][x+3] - Ref[Y+y][x+3]);

}

In the above example, the number of comparisons and additions required for the

loops is reduced. Ideally, the complexity of the codes is reduced. However, this

increases the code size and can produce a situation in which the program ceases to fit

within the available R A M and the operating system would be forced to use the hard

disk which is much slower. Cache also has a size limit and situations may occur in

which an unrolled loop would not fit within it. Therefore, unrolling loops or not

depends on different situations and can only be decided through experiment [29].

‘ 5-15

5.3 Experimental Results

The codec was implemented on a H P 4700 Pocket PC which has an embedded

PXA27x processor produced by Intel. The processor runs at 624 M Hz and the

Pocket PC has 92M R A M . The profile selected is the Baseline Profile. Seven QCIF

4:2:0 video sequences were tested. The sequences include Carphone, Container,

Foreman, Grandma, Miss A, Salesman and Silent. Some of them have large motion

and some have less. Two tests were carried out. The first test used only intra coding

and 150 pictures were tested for each video sequence. The second one used only one

I picture and all of the remaining pictures were P pictures and 150 frames were tested

for each video sequence. The tested QPs were 28，32，36 and 40. Deblocking filter

was applied for both tests. All the bitstreams generated by the developed encoder can

be decoded by JM 10.1 or the developed decoder correctly.

After all the optimizations, which include algorithmic optimizations, code level

optimizations and instruction level optimizations, are applied to the codec, the

encoding and decoding speeds of the codec were evaluated. In addition, the coding

performance of the encoder was compared with those of J M 10.1, the reference

software of H.264, and x.264 which is a well known open source H.264 encoder and

has excellent encoding speed. The coding performance is compared in APSNR or the

equivalent ABitrate which are computed with the method proposed in [11]. The

APSNR and ABitrate are with respect to JM 10.1. In addition, the RD-curves are

plotted and the subjective quality of the reconstructed video sequences is shown.

Table 5.4 and Table 5.7 illustrate the coding performance of the developed encoder

for mil...and IPPPP... G O P structures, respectively. Table 5.5 and Table 5.8

‘ 5-16

compare the coding performance of the developed encoder with that of x.264. It can

be observed that the performance of developed encoder is better than that of x.264

and the coding performance is similar to that of JM 10.1 on average. The

performance of the developed encoder is even better than that of JM 10.1 when only

intra coding is applied. Figure 5.4 and 5.5 show the R D curves of JM 10.1，the

developed encoder and x.264 encoder for comparisons. From Figure 5.5，it can be

noticed that the coding performance of our encoder is not as good as that of the

reference software when the bitrate is high. The reason is that the integer pixel

motion estimation algorithm [27] employed in our encoder is susceptive to be

trapped in local minimum easily. When bitrate is low, the best match is most likely

located near the prediction motion vector because the cost of encoding the motion

vectors is large. In contrast, the cost of encoding the motion vectors is low when

bitrate is high and thus the best match may not be located near the prediction motion

vector. Therefore, the employed integer pixel motion estimation algorithm may not

find the global minimum search point and the coding performance is affected.

Figure 5.6 shows the visual quality of the decoded pictures. All the pictures in the

figure are the 150'̂ picture of each sequence. The pictures in the first column are the

original pictures, and those in the second and third columns are the decoded pictures

with mil... and IPPPP... G O P structures, respectively and QP is equaled to 28. It

can be observed that the decoded pictures have a little distortion especially in highly

texture region such as the hair of a human. The pictures shown in Figure 5.6 are

displayed by a desktop PC because the display of the Pocket PC is only 16-bit.

Accordingly, the Pocket PC introduces some distortion to the decoded video.

From Table 5.6 and Table 5.9, it can be observed that the picture rate of the

. 4-17

developed encoder is more than 25 frames per second (fps) for all the tested video

sequences with different QPs. Accordingly, it can encode video with QCIF 4:2:0

format in real-time on the Pocket PC.

Table 5.10 and Table 5.11 show the decoding speed of the developed decoder for

different video sequences with IIIII... and IPPPP... G O P structures, respectively, and

with different QPs. The decoder can decode, on average, 45.028 and 163.25 fps for

IIIII... and IPPPP... G O P structures, respectively. Accordingly, the decoding speed

of the developed decoder is much better than 25 fps and thus the decoder is suitable

for real-time applications.

Q P 28 32 36 40

Sequence PSNR B R PSNR B R PSNR B R PSNR B R

(dB) (kbps) (dB) (kbps) (dB) (kbps) (dB) (kbps)

Carphone 38.16 631.3 35.26 434.1 32.59 300.9 29.88 204

Container 37.00 786.3 34.1 537.1 31.36 357.5 28.76 240.3

Foreman 36.57 791.2 33.72 519 31.05 343 28.58 236.3

Grandma 37.06 671.8 34.31 424.1 32.03 263.3 30.07 162.0

MissA 40.7 363.3 38.16 241.5 35.81 162.5 33.57 110.4

Salesman 36.03 915.9 32.99 586.7 30.34 367.2 27.99 223.9

Silent 36.22 851.6 33.36 553.7 30.89 350.5 28.5 230.0

Table 5.4 Coding performance of the developed encoder for IIIII... G O P structure.

. 4-18

Sequence Developed Encoder x.264

APSNR (dB) ABitrate (%) APSNR (dB) ABitrate (%)

Carphone 0.01 -0.13 -0.17 2.46

Container 0.21 -3.03 0.04 -0.55

Foreman 0.06 -0.92 -0.09 1.26

Grandma 0.14 -2.53 -0.09 1.72

MissA 0.09 -1.23 -0.34 5.23

Salesman 0.08 -1.21 -0.07 1.17

Silent -0.02 0.45 -0.21 3.6

Average 0.08 -1.23 -0.13 2.13

Table 5.5 Coding performance comparisons of the developed encoder and x.264

encoder for IIIII... G O P structure.

Q P 28 32 36 40

Sequence (fps) (fps) (fps) (fps)

Carphone 26.28 26.35 27.9 27.84

Container 26.41 27.25 27.8 27.82

Foreman 28.03 28.76 29.41 29.05

Grandma 25.79 26.92 27.15 27.19

MissA 26.52 26.6 26.8 26.84

Salesman 27.72 28.01 28.43 28.15

Silent 28.3 28.63 28.54 27.78

Average 27 27.5 28.04 27.81

Table 5.6 Encoding speed of the developed encoder in terms of fps for IIIII... G O P

. 4-19

structure.

Q P 28 32 36 40

Sequence PSNR B R PSNR B R PSNR B R PSNR B R

(dB) (kbps) (dB) (kbps) (dB) (kbps) (dB) (kbps)

Carphone 37.18 131.12 34.12 66.49 31.43 33.07 28.76 17.33

Container 36.04 57.63 33.25 29.15 30.60 14.58 28.07 8.11

Foreman 35.85 166.94 33.05 86.40 30.32 46.37 27.65 27,50

Grandma 36.65 48.44 33.97 22.69 31.67 11.39 29.71 6.36

MissA 40.03 39.67 37.37 20.79 34.99 11.99 32.40 7.89

Salesman 35.48 76.87 32.50 41.90 29.82 22.57 27.38 12.13

Silent 35.76 96.97 32.86 56.28 30.37 31.84 27.87 18.02

Table 5.7 Coding performance of the developed encoder for IPPPP... G O P structure.

Sequence Developed Encoder x.264

APSNR (dB) ABitrate (%) APSNR (dB) ABitrate (%)

Carphone -0.39 9.52 -0.51 12.44

Container -0.35 8.14 -0.17 3.53

Foreman -0.47 10.5 -0.6 13.54

Grandma -0.27 7.18 -0.3 8.21

MissA 0.64 -10.46 0.07 -I.34

Salesman -0.47 10.73 -0.31 6,79

Silent -0.39 8.66 -0.31 6.56

Average -0.24 6.32 -0.3 7.1

丨 Table 5.8 Coding performance comparisons of the developed encoder and x.264

‘ 5-20

encoder for IPPPP... G O P structure.

QP 28 32 36 40

Sequence (fps) (fps) (fys) (fps)

Carphone 31.46 39.06 49.08 62.5

Container 60.88 73.24 81.52 88.44

Foreman 28.07 33.24 39.72 48.32

Grandma 59.34 69.44 79.45 90.14

MissA 54.19 63.34 71.56 79.45

Salesman 55.15 62.09 71.02 82.24

Silent 43.6 49.87 57.87 68.43

Average 47.53 55.75 64.32 74.22

Table 5.9 Encoding speed of the developed encoder in terms of fps for IPPPP... G O P

structure.

1 0 . 1 - ^ J M 10.1 ~ ~ ~
Our Encoder n r i p Our Bicoder „ . .
y 264 Carphone (jUh ^ 264 Container QCIF

39 38 ^

i z 香兄 y Z
I 35 I 34 7 之

33 " " " g 32 ——

一 31 > 30
29 ‘ ‘ ‘ 2 8 ‘ J

200 300 400 500 600 200 400 600 800
Bitrate (k bits/s) Bitrate (k bits/s)

I - * — J M l O . l P - ^ J M 10.1 ~ ‘
— 發 J n ^ Foreman QCIF 巧 axler| G i ^ - a Q C I F

37 — ^ ^ 37

CQ 35 — S . . ^ ^ ^ ^ ^
3 3 35 ^ ^

i : : = 3 Z ± = ——
^ 29 -r^ ：——— 31

27 ‘ ^ ^ 29 L- ^ ,
200 400 600 800 150 350 5 5 �

Bitrate (k bits/s) Bi^te (k bits/s)

‘ 5-21

丨 10.1r -^JMlO.l
” • " 靜 MissA QCIF Salesman QCIF

: : 丨 ； ： 瞻 纖 i 灘 I
100 200 300 400 200 400 600 800

Bitrate (k bits/s) Bitrate (k bits/s)

10.1
Our Bicodei ^
x.264 Silent QCIF

37 I:,..…....：；..,I . . / , ,

29 ？ 寫 幽 粥 : V 』 '
271 ::、.:..，〜:...::〈妖【：：“̂二：‘.

200 400 600 800
Bitrate (k bits/s)

Figure 5.4 R D curves of JM 10.1, the developed encoder and x.264 encoder for

different video sequences with IIIII... GOP structure.

| - ^ J M 1 0 . 1 “ 10.1 ~
Our Encodei ^ 旧口 Our Encoder
r264 I Carphone QCIF x.264 Container Q Q F

I M t e i t e ^ ^ 27 丨 " 〜 ： 纖 ； I

27 1 。 B i A b _ 110 0 B&mts/sf ^

1 1 - • - J M 1 0 . 1 | ~ * ~ J M 1 0 . 1 “
- » — Our Encoder Our Encodei

x.264 Foreman QCIF x.264 Grandma QCIF
釅 • 綱 I；驶柳•,....—、；,....〜.：..，-

10 6 0 110 160 0 2 0 A O

Bitrate (k bits/s) Bitrate (k bits/s)

‘ 5-22

| - * - J M 1 0 . 1 - ^ J M 10.1

+ g 『 似 叫 M.SAQCIF Salesman QCIF

40 — 35

g 38 1 33

圣
32 ‘ ‘ 27 ~ ‘ ‘ ‘

0 20 40 0 20 40 60 80
Bitrate (k bits/s) Bitrate (k bits/s)

10.1 ~
—•—Our Encoder

X.264 Silent QCIF

35 义 ,

I 33
1 31 — ^

� +
27 ‘

10 60
Bitrate (k bits/s)

Figure 5.5 R D curves of JM 10.1, the developed encoder and x.264 encoder for

different video sequences with IPPPP... G O P structure.

Original IIIII... GOP structure IPPPP... G O P structure

^ B ^ ^ w l BSMtelii ^BfeMl l

^ ^ B I H I ^ ^ B I I H I^^BHH
I L

‘ 5-23

8HB
B M I B M

Figure 5.6 Visual quality comparisons of different sequences.

‘ 5-24

Q P 28 32 36 40

Sequence (fps) (fps) (fps) (fps)

Carphone 35.59 42.28 48.91 55.58

Container 33.34 39.26 46.08 52.34

Foreman 32.03 39.54 47.69 54.88

Grandma 34.28 42.02 50.56 57.92

MissA 44.76 51.44 57.25 61.93

Salesman 29.18 36.66 45.57 54.09

Silent 30.56 37.75 46.27 53.02

Average 34.25 41.28 48.90 55.68

Overall Average 45.028

Table 5.10 The decoding speed of the developed decoder for IIIII... G O P structure.

Q P 28 32 36 40

Sequence (fps) (fps) (fps) (fps)

Carphone 74.89 103.45 141.91 185.87

Container 142.05 182.48 220.91 254.24

Foreman 64.05 87.11 113.9 144.51

Grandma 144.23 186.1 227.96 266.9

MissA 143.68 179.86 212.77 242.72

Salesman 121.16 150.91 185.41 222.22

Silent 101.01 125.1 155.76 189.87

Average 113.0 145.00 179.80 215.19

Overall Average 163.25

Table 5.11 The decoding speed of the developed decoder for IPPPP... G O P structure.

‘ 5-25

5.4 Applications

The developed Pocket PC based real-time H.264 codec has wide applications and

competitive abilities. Firstly, it can encode and decode video with QCIF 4:2:0 format

in real-time (more than 25 fps) on Pocket PC which has relative low processing

power while the coding performance is still very good. Secondly, the developed

codec is software-based and thus could be used on other platforms. Users only

require to download and run the execution files on their mobile platform and the

codec can work properly. Thirdly, besides the codec, other modules which include

display module, video capture module and wireless transmission module are

successfully developed for the codec. Thus, in fact, a system is developed. This

system has commercial value and diverse applications such as video conferencing,

video telephony, video streaming and all real-time related video applications.

. 4-26

Chapter 6 Conclusions and Future Development

6.1 Conclusions

6.1.1 Enhancement Techniques for Intra Block Matching

Intra block matching performs prediction with the pixels of the current slice in a way

similar to that of motion estimation and compensation. Within a search range, a best

match is found with a predefined cost function. The best match is regarded as the

prediction. Even though this technique can improve the coding performance, the

number of bits used to encode intra blocks is still very high. Therefore, several

enhancement techniques, which include best match prediction, multiple best matches,

novel padding method, skip mode, etc., are proposed to further improve the coding

performance. Moreover, several techniques are proposed for reducing the complexity

of the variable block size intra block matching process. Experimental results show

that the coding performance can be improved significantly and more than 1 dB and

0.6 dB gains in PSNR were achieved for intra and hybrid coding, respectively.

6.1.2 Enhanced SAD Reuse Fast Motion Estimation

The complexity of motion estimation is high. In H.264, variable block size motion

estimation is employed and its complexity is much higher than that of fixed block

size motion estimation. Therefore, fast algorithms are necessary. In Chapter 4，a fast

variable block size motion estimation algorithm is introduced. It reuses the S A D to

reduce the complexity and uses pattern-based motion estimation and refinement

search to maintain good coding performance in terms of PSNR and bitrate. With the

‘ 6 - 1

proposed algorithm, the encoding speed can be improved significantly while the

coding performance can be maintained. Experimental results illustrate that the

proposed algorithm reduces the variable block size motion estimation time by

approximately 90% when compared with that of FFS. This algorithm is the fastest

when compared with the fast motion estimation algorithms adopted in the H.264

reference software.

6.1.3 Development of Real-Time H.264 Codec on Pocket PC

The development of a Pocket PC software-based real-time H.264 codec is described

in Chapter 5. Various algorithms are proposed and applied during the development.

These algorithms include fast interpolation, fast integer and sub-pixel motion

estimation, early skip termination, etc. In addition, code and instruction level

optimizations are applied to further reduce the complexity. Consequently, the

developed codec can encode and decode video in real-time on the Pocket PC. The

developed Pocket PC software-based real-time H.264 codec has wide applications

and competitive abilities. Firstly, it can encode and decode video with QCIF 4:2:0

format in real-time (more than 25 fps) on the Pocket PC which has relatively low

processing power while the coding performance is still very good. Secondly, the

developed codec is software-based and thus could be used on other platforms.

Thirdly, besides the codec, other modules which include display module, video

capture module and wireless transmission module are successfully developed for the

codec. Accordingly, this system has commercial value and diverse applications such

as video conferencing, video telephony, video streaming and all real-time related

video applications.

- 6-2

6.2 Future Development

The techniques proposed for intra block matching improve the coding performance

of H.264. However, the complexity is also increased. All the proposed modes are

evaluated one by one and the RD-costs are compared with each other. Accordingly,

the complexity is high. Fast intra block matching mode decision algorithm is

necessary to be developed. In addition, as mentioned in Chapter 3，some of the

proposed techniques can also be applied to inter prediction for further improving the

coding performance of the encoder. For the fast variable block size motion estimation

algorithm, early termination techniques can be applied to further reduce the

complexity.

‘ 6-3

B i b l i o g r a p h y

[1] K.K. M a and P.I. Hosur, "Performance Report of Motion Vector Field Adaptive Search

Technique (MVFAST)，，，ISO/IEC JTC1/SC29/WG11 MPEG99/ m5851, Noordwijkerhout, NL,

Mar'OO.

[2] Zhibo Chen, Peng Zhou, Yun He, Yidong Chen, “Fast Integer Pel and Fractional Pel Motion

Estimation for JVT", JVT-F017, in: 6th Meeting, Awaji, JP, 2002, pp. 5-13.C. Jones (private

communication).

[3] A. M . Tourapis, “ Enhanced Predictive Zonal Search for Single and Multiple Frame Motion

Estimation", proceedings of Visual Communications and Image Processing 2002 (VCIP-2002),

pp. 1069-79, San Jose, CA, January 2002.

[4] Hasan F. Ates, Yucel Altunbasak, "SAD reuse in hierarchical motion estimation for the H.264

encoder", Proc. IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), Philadelphia, PA, March 2005.

[5] Chang-Hsing Lee and Ling-Hwei Chen, “A Fast Motion Estimation Algorithm Based on the

Block Sun Pyramid", IEEE Trans. Image Processing, vol. 6’ Nov. 1997.

[6] Renxiang Li, Bing Zeng, and Ming L. Liou, "A New Three-Step Search Algorithm for Block

Motion Estimation", IEEE Trans. Circuit Syst. Video Technol., vol. 3’ Aug. 1994.

[7] Thomas Wiegand, Gary J. Sullivan, Gisle Bjontegaard, and Ajay Luthra, "Overview of the

H.264 / A V C Video Coding Standard", IEEE TRANSACTIONS O N CIRCUITS A N D

S Y S T E M S F O R VIDEO T E C H N O L O G Y , JULY 2003

[8] S. Zhu and K.-K. Ma, "A new diamond search algorithm for fast block matching motion

estimation", IEEE Trans. Image Processing, vol.9 po.287-290 Feb 2000.

I

[9] J. Y. Tham, S. Ranganath, M . Ranganath, and A. A. Kassim, "A novel unrestricted

center-biased diamond search algorithm for block motion estimation", IEEE Trans. Circuit Syst.

Video Technol., vol. 8，pp. 369-377，Aug. 1998.

[10] H.264 Reference Software JM 10.2.

[11] G. Bjontegaard, "Calculation of average PSNR differences between RD-curves", ITU-T SGI6

Doc. VCEG-M33, 2001.

[12] Zhibo Chen, Yun He, etc. "Fast Integer and Fractional Pel Motion estimation", JVT-E045.doc,

5th Meeting: Geneva, Switzerland, 9-17 October, 2002.

[13] JJain, AJain, "Displacement measurement and its application in interframe image coding",

IEEE Transactions on Communications, vol.COM-29, pp. 1799-1806, Dec. 1981.

[14] Ce Zhu, Xiao Lin, and Lap-Pui Chau, "Hexagon-Based Search Patten for Fast Block Motion

Estimation", IEEE Trans, on CSVT, pp.349-355, Vol.12, No.5，May, 2002.

[15] S. Zhu and K.-K. Ma, "A New Diamond Search Algorithm for Fast Block Matching Motion

Estimation", in Proc. Int. Conf. Inform., Commun., Signal Process., pp.292-296, Singapore,

Sept.9-12, 1997.

[16] H. Y. Cheong, A. M . Tourapis, and P. Topiwala, "Fast Motion Estimation within the JVT

codec", ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16, document JVT-E023, 0ct'02.

[17] A. M . Tourapis, H. Y. Cheong, and P. Topiwala, "Fast M E in the JM reference software",

ISO/IEC JTC1/SC29/WG11 and ITU-T SGI6 Q.6, document JVT-P026, July 2005.

[18] Iain E.G. Richardson, H.264 and MPEG-4 video compression, Wiley, 2003.

[19] ISO/IEC 14496-10 and ITU-T Rec. H.264, Advanced Video Coding, 2003

[20] A. Hallapuro, M . Karczewicz and H. Malvar, Low Complexity Transform and Quantization -
Part I: Basic Implementation, JVT document JVT-B038, Geneva, February 2002.

II

[21] Gisle Bj0ntegaard and Karl Lillevold, Context-adaptive V L C (CVLC) coding of coefficients,
JVT document JVT-C028, Fairfax, Virginia, USA, 6-10 May, 2002.

[22] S. W . Golomb, Run-length encoding, IEEE Trans, on Inf. Theory, IT-12, pp. 399-401, 1966.

[23] S.L. Yu and C. Chrysafis, "New intra prediction using intra-macroblock motion compensation",
JVT-C151rl-L.doc, Joint Video Team (JVT) of ISO/IEC M P E G & ITU-T V C E G Meeting,
May 2002

[24] Satoshi Kondo, Hisao, Sasai and Shinya Kadono, "Tree Structured Hybrid Intra Prediction",
International Conference on Image Processing (ICIP), 2004

[25] Ki-Hun Han and Yung-Lyul Lee, "Fast Macroblock Mode Decision in H.264", T E N C O N 2004

[26] Enhanced SAD Reuse Fast Motion Estimation, Kai Lam Tang and King N. Ngan, Proceedings
of SPIE, Vol. 6508, Visual Communications and Image Processing 2007

[27] WEI Zhenyu, JIANG Baochen, Z H A N G Xudong, C H E N Yu, "A New Full-pixel and Sub-pixel
Motion Vector Search Algorithm for Fast Block-matching Motion Estimation in H.264", ICIG
2004

[28] Zhenyu Wei, King Ngi, Ngan, "A Fast Macroblock Mode Decision Algorithm for H.264", IEEE
Asia-Pacific Conference on Circuits and Systems, Singapore, 2006

[29] Kris Kaspersky, "Code Optimization: Effective Memory Usage", ISBN: 1931769249

[30] ISO/IEC 14496-10 and ITU-T Rec. H.264, Advanced Video Coding for generic audiovisual
services, 2005

[31] Enhancement Techniques for Intra Block Matching, Kai Lam Tang and King N. Ngan,
ICME'07 - Multimedia Coding and Processing Track

III

/
/
 '
 ’

f

;

叫

“

.

〜

•

-

.

.

.

r

:

「

 •

.
:
 、：

 ‘
.

/

.

.
-
.
r
.
 -
:
.
<
.
.
-

、

 ‘
、
-
.
-
-
.
-
.
.

 I.
,
.
.

..

 ,/
v
;

-
V
:

？

 •，•.-.-

 ；
-

.

-

.

.

•

.

:

.

.

•

.

.

 >
,

,

.
 .

:
n

k
.
 «

 、

 :

.

.

.

.

.

«
 '

 •

 ̂

 '

 J
 ̂

 '

 ̂

 4
 .

 .
.
.
.

 ̂

？

 、；r

 .
 .

 .A
v
.
.
:

 .
.
.
.
.
.
.

 .,

 .

-

,
"

,
,
>
 >

 -
r
t
.

 ？
&
二

.

:
V

 :

.

:

？

〜

广

 ’：

.

 •“..：，.‘

：
 .

1
 .

 ,

 <

 i

 >
 V
 ,

 •〜-
 \

 •
.

,

 ...

 .

r
 .

 ：
 \
\

 n
托
：
：
r
i
-

“
」
‘
 ̂

 ,

,

,

,

.

 ‘.
、

 、

 .

 .

 .

V
/
:

！
二

T
分
k
<
c

‘

f

\
\

 f
 *
 .

 .

 .
.
.
.
.
.
.
.
.

 ,

r

「

<

t

i

l

:

r

f

.

.

.
 .

 .

I

,

.

.

.

『
i
 ,

〜
、
\
i
 \
r

 1

 >

 r

 、

 •

 .
.
.
.
.

 “

 .

/
„
:
v

、
、
 “
人
、

 ；
'
'
'
.

.

.

J
/
 -

,

A

产
.
r

 *

 -
 ;

 /

 ,

 .
.

、：
 ，
：
I

〜
,
/

^

 ‘

 ,
 "
<

 *

 \

 ,

i
.
l
3
.
 -

 >"..:,..,-(.

 ,1

 -

 .•.、-..<-_:,..

 y

 •

 .

 .

 ..

 y
:

 •

 -

u

 -

 -

J
 i
i
i
-
.

 .

 .

 y

 .

 .

 .

 .

•r
 V

 \
.
-
:

 .
 ,

 -.
.
-
.

 :

 •

 •

.
 J

、

.
 .

 .

.

•

 •
-

•

 .

 .V

 t,

 /

..

,

 :

 ‘

•

f
.

 •
•
,

.

>

.
二

.

,

-

-
 .

 ,

f
.

〜
r

 -
 .

 I.
.
.

 «

 .

/
 -

 -

 -

 •

k

.

r

 .
 .

！

、
-
.
_
,
:
.
 *

-
.
 -

 .

 .

#
 .

 •

 •

 •

 •

 .

 •

.
v
、
：
i
v

、
-
.
.

々
.
r
.
 .，.

•

一

•

二
 r

 ,

 -

 :

V
 V

 -

 *

 .

l.v.、V,:
 .

 .

 .

 -

 •

 .
.
.

C U H K L i b r a r i e s

• • I I I I I
004440041

