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Abstract 

H.264/AVC is the latest video coding standard which outperforms previous video 

coding standards. However, it is computational intensive. Accordingly, optimization 

is required for reducing the complexity for real-time applications. In addition, even 

though the coding performance of H.264 is excellent, it can still be further improved. 

Coding of intra slices requires a large number of bits and therefore, to improve the 

coding performance, intra block matching technique is applied with several proposed 

enhancement techniques including best match prediction, multiple best matches, 

novel padding method, skip mode, etc. Experimental results show that the coding 

performance can be improved significantly. 

Variable block size motion estimation is one of the techniques contributes to the 

complexity of H.264. Accordingly, a fast variable block size motion estimation 

algorithm is proposed. It reuses S A D within the same macroblock and uses 

pattern-based motion estimation and refinement search to reduce the complexity 

while maintaining the coding performance. 

The complexity of H.264 is so high that encoding and decoding video in real-time on 

Pocket PC is not easily achieved. Accordingly, various optimization techniques are 

proposed and applied to develop a Pocket PC software-based real-time H.264 codec. 

The developed codec can encode and decode video in more than 25 frames per 

second. Besides, since the system is developed in software, it is suitable for 

technology transfer. 
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摘要 

H.264是現在最先進的視頻編碼標準之一，其壓縮率及視訊品質都比過去的視 

頻編碼標準較爲優勝，可是它的算法複雜度極高，爲了能夠做到實時編解碼， 

優化是必須的。雖然H.264有這麼好的壓縮率及視訊品質，改進的空間仍然是 

存在的。 

幀內條帶需要用很多的比特來進行編碼，爲了壓縮得更有效率，我們提出了多 

種的強化技術來提高一種叫幀內塊匹配技術的性能，提出的技術包括最佳匹配 

預測、數個最佳匹配、塡充方法、跳過模式等。實驗結果顯示當用了這些技術 

以後，系統的性能得到大大的改善。 

可變塊大小運動估計是其中一種令H.264的複雜度高的技術’因此’我們提出 

了一種快速可變塊運動估計算法，這算法主要是通過重複運用已計算的SAD 

與模式匹配運動估計來減低複雜度和保持編碼性能。 

由於H.264的複雜度極高，所以要在掌上電腦上進行實時編解碼並不容易，爲 

了開發一個基於軟件的、實時的H.264掌上電腦編解碼器，我們提出了不少優 

化技術，開發出來的編解碼器能在每秒編解碼多於廿五張幀，此外，因爲整個 

系統的開發都是基於軟件的，所以很容易就可以進行科技轉換。 
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Chapter 1 Introduction 

H.264/AVC [7, 18，19, 30] is the latest video coding standard which outperforms 

previous video coding standards such as H.261, H.263, MPEG-1, MPEG-2 and 

MPEG-4. However, it is more computational intensive. Consequently, optimization 

is required for reducing the complexity for real time applications. In addition, even 

though the performance of H.264 is excellent, there is still room for further 

improving the standard to achieve better coding performance. 

As mentioned, optimization and improvement of H.264 are necessary. Therefore, this 

thesis focuses on discussing the optimization techniques and improving the 

algorithms for H.264. 

The following sections describe the fundamental principles of video coding and 

provide an introduction of the H.264 standard. At the end of this chapter, the 

organization of this thesis and the contributions will be discussed. 

I.1 Video Coding 

Video coding is the process of compressing and decompressing a digital video signal 

[18]. Video compression aims to reduce the data used to represent the video content 

without significant loss in quality. After the video is compressed, it can be stored 

with less storage resources or can be transmitted efficiently. A lot of data are required 

to represent an uncompressed video. Consequently, it is valuable to develop efficient 

compression algorithms. Normally, the spatial and temporal correlations of video are 

exploited to achieve data compression. 
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Video compression can be classified into two types. One is lossless compression and 

the other is lossy compression. With lossless compression, compressed data can be 

decompressed back to the original data, i.e. the decompressed data are the same as 

the original data. As implied from its name, lossy compression causes loss of data 

during compression. Therefore, the decompressed data are not the same as the 

original data. For video data, if the loss is not excessive, the visual quality of the 

decompressed video will not be degraded significantly or unable to be perceived by 

human eyes.. 

When a video is being processed, normally each picture is partitioned into many 

macroblocks which comprise 16x16 pixels. For 4:2:0 Format, a macroblock 

comprises 16x16 luma components and two 8x8 chroma components as illustrated in 

Figure 1.1. The reason for partitioning each picture into 16x16 macroblocks is that 

when the partition size is too small, more overhead information is necessary to be 

transmitted. When the partition size is too large, prediction techniques cannot 

achieve accurate results and thus more resources are required to encode the 

prediction errors. Consequently, the size of a macroblock is 16x16 in traditional 

standards. (Recently, some researchers are trying to use 32x32 super-macroblock for 

High-Definition (HD) video processing.) 

16 

16 Y 

16 

16 — r ^ 
8 Cb 

Macroblock 
8 

8 Cr 
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Figure 1.1 A macroblock comprises 16x16 luma (Y) components and two chroma 

(Cb and Cr) components for 4:2:0 Format. 

After the picture is partitioned into macroblocks, each of them is processed with 

various techniques. Traditionally, these techniques mainly include intra/inter 

prediction, transform and inverse transform, quantization and de-quantization, 

entropy coding and decoding. With these techniques, videos can be compressed 

efficiently. Figure 1.2 illustrates a generic DPCM/DCT hybrid encoder and decoder 

[18]. 
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Figure 1.2 (a) A DPCM/DCT video encoder and (b) A DPCM/DCT hybrid decoder 

[18]. 

In Figure 1.2 (a), each macroblock of picture Fn attempts to find a best match from 

1-3 



the reference picture. After the best match is found, the motion vectors are encoded 

and the best match is selected as prediction P for the current macroblock. The 

prediction is subtracted from the current M B to generate the prediction errors Dn. The 

prediction errors are transformed and quantized. The quantized transform coefficients 

X are reordered with the specified scanning method and finally they are entropy 

encoded. 

Only the encoded prediction errors and header information are transmitted to the 

decoder. Based on previously received data, the decoder generates the same 

prediction P as that generated in the encoder. In addition, the decoder performs 

entropy decoding and reorders the decoded quantized transform coefficients. Then 

they are rescaled, inverse transformed and adding to the prediction to construct a 

picture. 

To ensure both encoder and decoder reconstruct the same picture for prediction, the 

prediction errors are also rescaled, inverse transformed and adding to the prediction 

in the encoder side. Note that the structure of the decoder and the reconstruction 

structure in the encoder are the same. Consequently, both encoder and decoder have 

the same reconstructed picture for prediction. These are the fundamental principles of 

video coding. 

In the following sections, the techniques mentioned above including temporal 

prediction, transformation, quantization and entropy coding will be discussed in 

detail. 
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1.1.1 Temporal Prediction 

As mentioned in Section 1.1, a best match is found from a reference picture for each 

macroblock. The reason for doing this is that normally there is high temporal 

correlation between neighboring pictures in a video, i.e. the neighboring pictures in a 

video are very similar. Figure 1.3 illustrates the temporal correlation of two video 

sequences, mobile and news. Figures 1.3 (a), (b), (d) and (e) show the frame 0 and 

frame 1 of mobile and news, respectively. Figures 1.3 (c) and (f) demonstrate the 

differences between frame 0 and frame 1 without motion compensation. 

闕 

^ S r ^ J ^ M 丨丨�2 13 14 15 16 17 m 

18 19 20 21 

B U S B B I i l l L ^ ^ J D E B a f l l ^ M � MobUe, Frame 0 

？nij ^ 4 5 6 7 8 y _ 

• T j l i i i n 13 14 15 16 n m 
18 19 20 21 ^ J ^ y ^ 

i K f l H H E i l L i a J D D B n i ^ l H H I (b) MobUe, Frame 1 

. 1-5 



I : , L 工条 

^！ M P 遭 

、̂11 番 

M P E K 

^ m W O R L D m f ^ m i l ^ ^ g 



l l l l l l l l l l l l l l l l l l B l l l l l l l l l l l l l l ^ ^ B l l l l l l l l U l B (f) Frame -

Figure 1.3 The temporal correlation of mobile and new video sequences. 

In Figure 1.3 (c) and (f), pixels with grey value represent zero prediction error, white 

and black represent 255 and -255, respectively. It is obvious that even though without 

applying motion compensation, for sequence with small motion, the prediction errors 

are small. However, when the motion of the sequence is large, then the prediction 

errors become larger and therefore more bits are necessary to encode the prediction 

errors. Consequently, a technique called motion estimation and compensation is 

developed to minimize the prediction errors. 

Motion estimation is to estimate which position in the reference picture is the best 

match of the current block. To determine the best match, a cost function is required. 

Normally, the sum of absolute difference (SAD) or sum of squared difference (SSD) 

is employed. Due to the low complexity of SAD and its acceptable accuracy, it is 

generally preferred. The position with the minimum cost is selected as the best match 

and this best match is chosen as the prediction. With this motion compensated 

prediction, the prediction errors are reduced significantly as illustrated in Figure 1.4. 
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Figures 1.4 (a) and (b) show the prediction error of mobile and news with motion 

compensation. The motion estimation and compensation employed for Figure 1.4 

was 8x8 block based with search range equaled to 32. From the figure, it can be 

observed that prediction errors are reduced significantly when compared with those 

in Figure 1.3 (c) and (f) and nearly equal to zero. This implies that fewer bits are 

required for encoding them. Consequently, higher compression can be achieved. 

An accurate temporal prediction can contribute to high compression. If other 

techniques are employed to process the prediction errors, an even higher 

compression can be achieved. Those techniques will be discussed in the next 

sections. 

• • • • 
(a) 
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• 
(b) 

Figure 1.4 The prediction errors with motion compensation of (a) mobile and (b) 

news. 
1.1.2 Transform Coding 

The correlation of image data or prediction errors is generally high. A decorrelation 

process is to reduce the correlation of the data. Transformation is such a process. 

After transformation, most of the energy is packed into few transform coefficients. 

These coefficients are quantized and can be encoded efficiently. 

Karhunen-Loeve Transform (KIT) is optimal in the mean square error sense. 

However, it depends on the statistics of the data and therefore it cannot be 

implemented with fast algorithm. Due to its complexity, video coding standards do 

not adopt this transform for their transform coding process. 

Discrete Cosine Transform (DCT) is a sub-optimal transform. Even though it cannot 

decorrelate data as efficiently as KLT, it does not depend on the statistics of the data 
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and it has fast algorithm. Therefore, in previous video coding standards such as h.261, 

MPEG-1, D C T is adopted for their transform coding scheme. 

The forward 2D D C T of an NxN data is given by Equation 1.1 [18]， 

Y = T X T t (1.1) 

and the inverse 2D D C T is given by Equation 1.2. 

X = T'YT (1.2) 

where X is a matrix of the input signals, 

Y is a matrix of the D C T coefficients, 

T is an NxN transform matrix, and 

the elements of T are given by Equation 1.3. 

T：： + where Cq = , —, and C： = , — (i > 0) (1.3) 

For 8x8 DCT, the transform matrix T is: 

0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 

0.4904 0.4157 0.2778 0.0975 -0.0975 -0.2778 -0.4157 -0.4904 

0.4619 0.1913 -0.1913 -0.4619 -0.4619 -0.1913 0.1913 0.4619 

^ _ 0.4157 -0.0975 -0.4904 -0.2778 0.2778 0.4904 0.0975 -0.4157 

“0.3536 -0.3536 -0.3536 0.3536 0.3536 -0.3536 -0.3536 0.3536 

0.2778 -0.4904 0.0975 0.4157 -0.4157 -0.0975 0.4904 -0.2778 

0.1913 -0.4619 0.4619 -0.1913 -0.1913 0.4619 -0.4619 0.1913 

0.0975 -0.2778 0.4157 -0.4904 0.4904 -0.4157 0,2778 -0.0975 

The forward and inverse 2D D C T can be written in another form as shown in 

Equations 1.4 and 1.5 [18]. 

Y^ = r C , y y X：,. c o s — - c o s - (1.4) 
^ ^ y ^Lu y 9/v IN 

1=0 y=0 "V LIM 
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The basis pictures of 8x8 D C T are shown in Figure 1.5. 
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Figure 1.5 The 8x8 D C T basis pictures [18]. 

Figure 1.6 illustrates how D C T packs the energy of an 8x8 block into a small number 

of coefficients. X is the input signal. C is the D C T coefficients of the input signal. It 

can be observed that most of the energy is packed to the top-left comer in C. 

Therefore, after quantization and entropy encoding, the data can be encoded with a 

small number of bits and thus the compression can be increased. 

. 1-11 



55 54 53 55 55 54 55 52 

54 55 52 52 53 54 54 49 

55 55 53 53 55 54 54 55 

^ ^ 55 55 54 55 55 54 54 52 

“ 5 7 57 55 54 54 53 54 54 

55 52 53 54 55 55 55 49 

52 53 53 53 54 55 55 48 

55 55 55 55 53 53 54 54 

(a) 

431 4 - 2 5 -2 2 - 3 1 

0 0 1 1 1 - 1 - 1 0 
-2 - 1 - 1 0 - 1 1 0 0 

_ -1 0 - 2 2 -1 2 0 1 

= 4 1 2 -3 2 0 0 -1 

0 -2 -3 1 0 1 0 0 

2 - 1 1 - 1 3 0 1 0 

2 0 2 -2 0 -2 0 0 

(b) 

Figure 1.6 (a) The input signal and (b) The D C T coefficients of the input signal. 

1.1.3 Quantization 

The fundamental principle of quantization is to quantize a signal with large range to 

smaller range. For example, the output value of a quantizer can be computed with 

Equation 1.6. To reconstruct the signal R, Equation 1.7 is applied. In the Equations, 

the QP is the quantization parameter which controls the step sizes of the quantizer. 

When QP is large, fewer bits are required to encode the output signals. Otherwise, 

more bits are required but the distortion introduced by quantization is less. Figure 1.7 

shows an example of a three-bit uniform scalar quantizer. In the example, the 

quantizer has a QP of 32. If the value of the input signal is 66，it will be quantized to 

2. 
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Output = (1.6) 

R = Output x Q P (1.7) 

It should be noticed that the reconstructed signal is not the same as the input signal. 

Therefore, quantization is a lossy process. If the distortion introduced during the 

quantization process is not too large, the reconstructed signal is similar to the input 

signal. In image and video processing, QP can be used to control the compression 

and the quality of the reconstructed signal. 

Oiitpiit 

3 + 

2 --

1 
32 64 96 128 

-H——I——I——I I ̂  M——I——I——f- inpiit 
-128 -96 -64 -32 

- 1 

-_ -2 

_- -3 

---4 

Figure 1.7 A three-bit uniform scalar quantizer. 

In addition to scalar quantization, there is another type of quantization called vector 

quantization. A vector quantizer maps a set of input data to a single codeword. Both 

encoder and decoder store the same set of vectors in a codebook. Therefore, the 

vector can be dequantized correctly [18]. 
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1.1.4 Entropy Coding 

Entropy coding is a lossless process. One or more input symbols are converted to a 

single codeword. At the decoder side, the encoded codeword can be decoded back to 

the original symbols without any distortion. There are many entropy coding methods 

such as Runlength Coding, Huffman Coding, Arithmetic Coding, etc. 

Runlength Coding converts run of zeros to a single codeword. Therefore, when the 

occurrence of zero in the input data set is high, the data can be compressed 

efficiently. 

Huffman Coding encodes the input symbols based on the probabilities of their 

occurrences. A short length codeword is assigned to a symbol with higher probability 

of occurrence and vice versa. The codeword is unique and instantaneously decodable. 

The average bit per symbol R of Huffman Coding can be computed with Equation 

1.8, Huffman Coding can achieve high compression. However, the codeword of each 

symbol contains an integral number of bits. In reality, the optimal number of bits for 

a symbol depends on the information content and is generally a fractional number. 

Consequently, Huffman Coding is only sub-optimal. 

N-l 

R = (1.8) 
/=o 

where Pi is the probability of occurrence of symbol i, 

Li is the length of the codeword of symbol i, and 

N is the total number of symbols 
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Arithmetic Coding is an entropy coding technique that approaches the entropy limit. 

A message is represented by an interval of real numbers between 0 and 1. As the 

message is longer, the interval needed to represent it becomes smaller, and the 

number of bits needed to specify that interval grows. If the probability of occurrence 

of a symbol is very high, the interval will be reduced in a smaller amount and vice 

versa. 

Unlike Huffman Coding, Arithmetic Coding converts a sequence of symbols to a 

single fractional number and therefore it can generally compress the symbols more 

efficient than Huffman Coding does [18]. 

1.2 H.264/MPEG-4 Part 10 

H.264/AVC is the latest video coding standard which is developed by the Moving 

Picture Experts Group and the Video Coding Experts Group (MPEG and VCEG). It 

outperforms previous video coding standards such MPEG-1, MPEG-2, MPEG-4, 

H.261, H.263, etc. It is entitled 'Advanced Video Coding' (AVC) and is published 

jointly as Part 10 of MPEG-4 and ITU-T Recommendation H.264 [19, 20]. 

Unlike MPEG-4 which supports object-based video coding, H.264/AVC is 

frame-based. It encodes video with the highest compression and best quality amongst 

all existing video coding standards. Applications of H.264 include video telephony or 

video conferencing, storage, etc. 
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1.2.1 Overview 

H.264 employs various advanced video processing techniques which include variable 

block size motion estimation and compensation, multiple reference pictures, various 

modes of intra prediction, deblocking filter, etc. These techniques contribute to the 

excellent performance of H.264. Even though H.264 outperforms previous video 

coding standards, H.264 is computational intensive. Consequently, many researchers 

develop fast algorithms, such as fast motion estimation, fast mode decision, early 

skip detection, etc, to reduce the complexity of H.264. 
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(a) The H.264 encoder 

Inter 

F'n., >. MC ~ _ 
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uF； X 
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(b) The H.264 decoder 

Figure 1.8 The H.264 codec [18]. 

Figure 1.8 (a) shows the H.264 encoder structure. Similar to previous video coding 
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standards, H.264 applies hybrid coding scheme. For I picture, based on the cost 

function, the best intra prediction mode is selected and the prediction errors Dn are 

transformed, quantized, reordered and entropy encoded. The quantized Integer 

Cosine Transform (ICT) coefficients are rescaled and inverse transformed to generate 

Dn，. The prediction P is added to 0„' to form the unfiltered reconstructed block. 

Finally, the unfiltered reconstructed block is filtered by a deblocking filter and the 

output is the reconstructed frame used for temporal prediction. It should be noticed 

that intra prediction exploits unfiltered reconstructed blocks to perform the 

prediction. 

In H.264, seven different block types are available for motion compensation. A 

macroblock can be partitioned into 16x16，8x16, 16x8, or 8x8 blocks. If 8x8 partition 

size is selected, the 8x8 sub-macroblock can further be partitioned into 8x8, 4x8, 8x4 

or 4x4 blocks as illustrated in Figure 1.9. When compared with the fixed block size 

strategy in previous standards, this variable block size strategy can reduce the 

temporal prediction errors more significantly. For P or B pictures, the best mode is 

selected amongst all the enabled intra and inter modes based on the cost function 

defined in the encoder. After the best prediction is found, the whole process is the 

same as that of I picture. 
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Figure 1.9 The macroblock and sub-macroblock partitions in H.264. 

Figure 1.8 (b) shows the H.264 decoder structure. It can be observed that the decoder 

structure is similar to the reconstruction part of the encoder (bottom parts) except that 

the blocks ‘‘Choose Intra prediction" and "ME" are not present. 

The Baseline Profile of H.264 supports I and P slices only. It supports 17 intra 

prediction modes which include nine 4x4, four 16x16 luma intra prediction modes 

and four 8x8 chroma prediction modes. For inter prediction, it supports all the seven 

block types. In addition, 1/4 and 1/8 pixel motion compensations are supported for 

luma and chroma components, respectively. The transform and quantization are 4x4 

based. The quantized transform coefficients are encoded with Context-based 

Adaptive Variable Length Coding (CAVLC) and all other syntax elements are 

encoded with Exponential-Golomb Variable Codes. The ON/OFF of the deblocking 

filter is optional. In the following sections, the main components of H.264 will be 

discussed in detail. The discussions focus on the Baseline Profile of H.264. 
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1.2.2 Intra Prediction 

As mentioned before, in H.264 Baseline Profile, there are totally 17 intra prediction 

modes as illustrated in Figure 1.10. Figure 1.10 (a) shows the nine 4x4 luma intra 

prediction modes. It should be noted that the prediction samples, i.e. A...M can be 

the reconstructed samples of current macroblock or previously reconstructed 

macroblock within the same slice. Figure 1.10 (b) shows the four 16x16 luma intra 

prediction modes. The chroma intra prediction modes are similar to those of 16x16 

luma prediction modes except the D C mode is quite different. Figure 1.10 (c) is an 

example of chroma D C prediction. In the example, the neighboring prediction 

samples (a.. .r) are assumed to be available. 

0 (vertical) 1 (horizontal) 2 (DC) 3 (diagonal down如ft) 4 (diagonal down-right) 

M|A|B|C|D̂IHG[Tn IMIAIBICIUIblĤ  |M|a|B|C|D|E|F|-5[H1 |M| A|b|C|Umnŷ ] |M|A|B̂ |D|E|F|T5rH1 

wT ^ ^ 
5 (vertical-rifi^) 6 (horizontal-down) 7 (verticaMoft) 8 (honzontal-up) 

|M[AlBIC|U|b|HqH| |M[A|B|C|D|E|FTT5rT?] |M[A|BIC|DJEirT75rH1 |MlA|B|C|p|E|P 剛 
r ^ p ^ 

(a) The 4x4 luma prediction modes [18]. 

0 (vertical) 1 (horizontal) 2(DC) 3 (plane) 

, 1 . . . H I • I H I 丨丨 H J , I , h 1 

r i ^ r ^ ^ r r ^ ^ 
V V V Mean(H+V) V y 

(b) The 16x16 luma prediction modes [18]. 

. 1-19 



a 丨 丨 c 丨 <11 e I f I g~ri7 
i 
丁 Mean „ 
丄 <a...tl， Mean 
A i...iii) 
111 
II 
T Mean Mean 
If ( " … � e _ " h ， 
— n...r) 

(c) An example of chroma D C prediction. 

Figure 1.10 The intra prediction modes in H.264 Baseline Profile. 

1.2.3 Inter Prediction 

In H.264, only the motion vector differences which can be derived with Equation 1.9 

are encoded. In natural video, motion of neighboring blocks is highly correlated. 

Therefore, the motion of the current block can be predicted from its neighboring 

blocks to reduce the bits used to encode the motion information. 

M V d = M V - Pred_MV (1.9) 

where M V d is the motion vector difference, 

M V is the motion vector of the best match, and 

Pred_MV is the prediction motion vector which is defined in the H.264 

standard. 

Figure 1.11 illustrates the neighboring blocks of the current block. In Figure 1.11, N 

is the current block, A, B, C, and D are the left, upper, upper-right and upper-left 

blocks of the current block. Pred_MV is mainly the median of the motion vectors of 

blocks A, B and C. When blocks C is not available, the motion vector of block D is 

used instead. 
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(a) (b) 

Figure 1.11 The current block N and its neighboring blocks. The block size of N is (a) 

16x16 and (b) 8x8. 

The deriving processes of Pred_MV for 8x16 and 16x8 blocks are exceptional cases. 

Figure 1.12 illustrates the prediction for these two cases. The Pred_MV of the upper 

8x16 blocks is set to the motion vector of the upper block while the Pred一MV of the 

lower one is set to the motion vector of the left block only. The Pred_MVs of the left 

and right 16x8 blocks are set to the motion vectors of the left and upper-right block, 

respectively. 

• I B , [ 7 1 n _ _ , 

16 

——> 

Figure 1.12 The prediction directions of 16x8 and 8x16 block sizes. 

All the above examples assume the motion vectors of the neighboring blocks are 

available. Otherwise, the deriving process of the prediction motion vector is required 

to be modified. 
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During motion estimation, the best matches are found amongst all seven block types. 

The smallest block size of H.264 is 4x4. With such small block size, accurate 

matching can be achieved. However, this requires a large amount of bits to encode 

the motion information. Consequently, small block size is not always preferred 

although prediction errors are small. For the interpolation of the sub-pixel positions, 

a six tap filter with tap value (1,-5, 20, 20，-5，1) is employed for luma component. 

The interpolation process for luma component will be discussed in Section 5.1.2 in 

detail. Figure 1.13 illustrates the interpolation of the chroma components. N indicates 

the sample to be interpolated. A, B, C and D are integer chroma samples. The value 

of N can be computed with Equation 1.10 [30]. 

N = [(8-x) (8-y) A + x (8-y) B + (8-x) y C + x y D + 32] » 6 (1.10) 

A 、 , B 

,...、 ,、. 

y 

八 . A . o 
X S / N 8-x 

/\ 八 入 /�� . . ’•-�- . s 

\{ V V - '' V V. 
8-y 

V V X : X y V,、.‘>z 

X X X X X X 
X X X > ；： X 
C D 

Figure 1.13 The interpolation of chroma 1/8 samples. 
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1.2.4 Transform and Quantization 

H.264 employs Integer Cosine Transform (ICT) and Hadamard Transform instead of 

Discrete Cosine Transform (DCT). The transformations in H.264 involve integer 

operations only while D C T requires floating point operations. In addition, ICT can 

achieve results which are similar to those of DCT. Consequently, ICT can outperform 

D C T in terms of complexity without significant loss in coding efficiency. 

In H.264 Baseline Profile, the 2x2 chroma D C coefficients for 4:2:0 or the 4x4 luma 

D C coefficients (when 16x16 intra prediction is employed) are further decorrelated 

with Hadamard Transform. All other prediction errors employ 4x4 ICT. Equation 

I.11 and 1.12 are the forward and inverse 4x4 ICT used in H.264 [18]. 

厂 , <7& ab a^ — a-— 
2 2 

/ p 1 i n � " i � i 2 I 1 1 \ ^ ^ ^ 
» 2 1 - 1 - 2 X 1 1 - 1 - 2 T T y T 

VLl -2 2 -1」L 」Ll -2 1 -I J/ « T T 
at> ab b^ 

- T T T T -

(1.11) 

1 1 1 i ， ’ [ 1 1 1 1 

T j 7 一 1 一 q Y。口办 ah 1 5 - T 一 1 

1 1 」 川 " " 丄 丄 _ 1 1 」 
. 2 J 12 2. 

(1.12) 

where a = — , b = , 
2 V 5 

X is the prediction errors matrix, and 
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Y is the transform coefficients matrix. 

In Equations 1.11 and 1.12, there are scaling matrices Ef and Ej. Since they contain 

floating point number, they cannot be implemented by right shift or left shift. To 

reduce the complexity, the scaling process is combined into the quantization process. 

The transform coefficients are quantized with Equation 1.13 [18]. 

PF 
Zij = roundiWij • ) (1.13) 

Qstep 

where Wij = CfXCf'^, and 

Zij is the quantized and scaled coefficients. 

Position PF 

(0, 0)，（2，0), (0, 2) or (2，2) a2 

(1,1), (1,3), (3, Dor (3, 3) ^ 

Others 迎 
2 

QP g辱 QP g鄉 I 叫 Q:邓 g尸 Qs哪一 

0 0.625 7 1.375 18 5 

1 0.6875 8 1.625 丨 42 80 

2 0.8125 9 1.75 24 10 _ _ 

3 0.875 10 2 I 48 160 

4 1 11 2.25 30 20 

5 1.125 12 2-5 丨 51 224 

6 1.25 ： 36 40 

Table 1.1 The quantization step sizes in H.264 codec. 

The dequantized coefficients can be obtained with Equation 1.14: 

Wij' = 64 Zij Qstep PFi (1.14) 
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Position PFi 

(0, 0), (2, 0), (0, 2) or (2, 2) a' 

(1’ 1)’（1，3)，（3，l)or (3,3) b^ 

Others ab 

1.2.5 Entropy Coding 

Context-based Adaptive Variable Length Coding (CAVLC) and Exponential-Golomb 

Variable Coding are entropy coding methods adopted in H.264 Baseline Profile. Only 

prediction errors are encoded with CAVLC, other syntax elements such as motion 

vector differences, macroblock type, coded block patterns, etc, are encoded with 

Exponential-Golomb Variable Coding. 

The syntax elements used in C A V L C are shown in Table 1.2 [30]. There are totally 

six tables for parsing the syntax element coeff_token. Two of them are for chroma 

D C level (4:2:0 and 4:2:2) and the others are for luma level, chroma A C and chroma 

D C level (4:4:4). A parameter nC determines which table should be used. Table 1.3 

illustrates the calculation of nC. nA and nB are the number of non-zero coefficients 

of the left and upper block of the current block, respectively. If nC is small (nA and 

nB are small), there is a high probability that the current block contains a small 

number of non-zero coefficients. Therefore, shorter codes are assigned to small 

TotalCoeff and vice versa. 

The level (non trailing一ones) of a non-zero coefficient consists of two parts, the 

level一prefix and the level一suffix. The length of the code for level—suffix is 

determined by a variable called levelSuffixSize. If level—prefix is smaller than 14， 
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levelSuffixSize is set to suffixLength. suffixLength changes mainly according to the 

magnitude of previously encoded/decoded non-zero coefficient. When level—prefix is 

equaled to 14 and suffixLength is 0, levelSuffixSize is set to 4. Otherwise, 

levelSuffixSize is set equal to level—prefix - 3. The reason for doing this is that this 

can change the length of the code for non-zero coefficient adaptively. Table 1.4 

illustrates the codeword of the level—prefix. 

Syntax Element Meaning 

coeff—token TotalCoeff: Total number of non-zero quantized 

transform coefficient levels 

TrailingOnes: The number of trailing one quantized 

transform coefficient levels, maximum 

number is 3 

trailing—ones—sign_flag 1 bit syntax element, when it is equal to: 

0: level of the coefficient is +1 

1: level of the coefficient is -1 

level—prefix The first part of code of a non-zero coefficient (excluding 

trailing ones) 

level一suffix The second part of code of a non-zero coefficient 

total-zeros Total number of zeros after the first non-zero coefficients 

in reverse zig-zag order 

run_before Number of zeros after a non-zero coefficient in reverse 

zig-zag order (excluding the last non-zero coefficient) 

Table 1.2 The syntax elements of CAVLC. 
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Blocks A and B are available nC = (nA + nB + 1)»1 

Only block A is available nC = nA 

Only block B is available nC = nB 

Blocks A and B are unavailable nC = 0 

Table 1.3 The calculation of nC. 

LeveLprefix bit string 

0 1 

1 01 

2 001 

3 0001 

4 0000 1 

• • • •鲁參 

Table 1.4 The codeword table for level—prefix [30]. 

The C A L V C process is complicated. Interested readers are recommended to read [18, 

21 and 30] for details. 

When CAVLC is applied, Exponential Golomb codes [22] are used to encode the 

non-prediction errors syntax elements. Table 1.5 shows the relationship between the 

bit strings and the range of codeNum. For example, the bit strings for codeNums 

equaled to 1 and 2 are 0 1 0 and 0 1 1’ respectively. 

There are four mapping types for Exponential Golomb codes in H.264. They are 

unsigned (ue), truncated (te), signed (se) and mapped (me). The codeNum of syntax 
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element with ue type is set to its value, te is similar to ue except when the range of 

the syntax element is equal to 1, only 1 bit is encoded/decoded (bit 0 for codeNum 1 

and bit 1 for codeNum 0). The relationship between the codeNum and the se type 

syntax element value is shown in Table 1.6. me is for coded block pattern. The 

codeNum for me type syntax element is derived according to the table on pages 

202-204 of [30]. 

Bit string form Range of codeNum 

1 0 
t 

0 1 Xo 1-2 

0 0 1 xo 3-6 

0 0 0 1 X2 xi xo 7-14 

0 0 0 0 1 X3 X2 xi Xo 15-30 

0 0 0 0 0 1 X4X3X2X1X0 31-62 

• • • • • • 

Table 1.5 The relationship between bit strings and codeNum ranges [30]. 

codeNum Syntax element value 

0 0 

1 1 

2 -1 

3 2 

4 -2 

k (-l)k+iround(k/2) 

Table 1.6 The relationship between codeNum and syntax element value for se type 
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[ 3 0 ] . 

The design of these mappings aims to produce short bit strings for frequently 

occurring values and longer bit strings for the others [18]. For example, motion 

vector difference value of 0 occurs frequently and thus it is encoded with 1 bit only 

while the other less frequently occurring values are encoded with more than 1 bit. 

1.2.6 Deblocking Filter 

Since the video coding scheme employed in H.264 is block based, blocking artefacts 

occur especially when the compression is high. In H.264, an optional in-loop filter 

can be applied to filter the reconstructed picture. This can smooth the blocking 

artefacts and cause the reconstructed picture to be more pleasing to view visually. In 

addition, the temporal prediction can be more accurate. Consequently, the in-loop 

filter can improve both coding efficiency and subjective quality of the reconstructed 

picture with a little increment in complexity. Figure 1.14 shows an experiment to 

investigate about the effect of applying the deblocking filter for QP equaled to 36 on 

Common Intermediate Format (CIF) video. The compression ratio for both cases are 

nearly equal while the (peak-signal-to-noise ratio) PSNR of the reconstructed frames 

with deblocking filter is 0.3965dB higher than those without deblocking filter. It is 

easy to notice that the subjective quality of the reconstructed frames with deblocking 

filter is much higher than those without deblocking filter. The total encoding time for 

the case with deblocking filter and without deblocking filter were 1.766s and 1.718s, 

respectively (increased by about 2.8 %). 

The deblocking filter adopted in H.264 applies to luma and chroma pixel locations 
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(c) •a-c。ded Frame 0 

with deblocking filter. 

(d) Original Frame 1. 

^ ~ ( e ) Hybrid-coded Frame 1 

^ without deblocking filter. 

PSNR: 31.939 dB 
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(f) Hybrid-coded Frame 1 

with deblocking filter. 

^ ^ ^ ^ ^ ^ ^ g g t / g / g g a m PSNR: 32.355 dB 

Figure 1.14 An experiment to investigate about the effect of applying the deblocking 

filter for QP equaled to 36. 

1.3 Organization of the Thesis 

In the following chapters, this thesis is organized into mainly three parts. The 

organization is shown as follows: 

1. Review of Motion Estimation Techniques 

2. Proposed Algorithms 

3. Optimization of the Codec 

After these parts are discussed, there is a conclusion. In addition, the future 

development of the algorithms is discussed. 

1.3.1 Review of Motion Estimation Techniques 

In Chapter 2，different motion estimation (ME) algorithms are reviewed, which 

include integer pixel, sub-pixel or even variable block size motion estimation 
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algorithms. Firstly, the traditional motion estimation algorithms, which include Three 

Step Search, Hexagon-based Search, Diamond Search, etc, are briefly described. 

Then, some novel motion estimation algorithms which include Fast Full Search, 

Hybrid Unsymmetrical-cross Multi-Hexagon-grid Search (UMHS), Center biased 

Fractional Pel Search and Enhanced Predictive Zonal Search (EPZS) are reviewed. 

Due to their low complexity and high accuracy, they are adopted in the reference 

software of H.264 as fast motion estimation algorithms. U M H S and EPZS are faster 

than Fast Full Search by about 85% without significant loss in coding performance. 

1.3.2 The Proposed Algorithms 

The proposed algorithms are introduced in Chapters 3, 4 and 5. In Chapter 3，an intra 

prediction method which is similar to motion estimation and compensation is 

reviewed. Several techniques, which include padding, multiple best matches, 

different modes, etc., are proposed to enhance the performance of the intra prediction 

method. Besides, fast algorithms are developed to reduce the complexity of the 

proposed techniques without degrading the coding performance [31]. 

In Chapter 4，a fast variable block size motion estimation algorithm is proposed. This 

algorithm exploits the characteristics of variable block size motion estimation. It 

reuses the SADs within a macroblock and uses pattern-based motion estimation and 

refinement search to reduce the complexity with a little degradation of coding 

performance in terms of PSNR and bitrate. 
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1.3.3 Optimization of the Codec 

Chapter 5 discusses the development of a Pocket PC based real-time H.264 codec. In 

that chapter, two algorithms are introduced. One is a fast interpolation algorithm 

which aims to reduce the complexity of the interpolation process without degrading 

the performance. The other is a fast sub-pixel motion estimation algorithm that can 

reduce the complexity significantly with only a little degradation of coding 

performance. 

The optimization of the H.264 Baseline Profile is also discussed. The optimization 

focuses on programming optimization techniques. With these techniques and the 

mentioned fast algorithms, the developed Pocket PC based H.264 Baseline Profile 

codec can encode and decode videos in real time with only a little degradation of 

coding performance when compared with that of the reference software. Due to 

limited resources of Pocket PC, it is difficult for the highly complex H.264 codec to 

run in real time. Consequently, this is a tremendous achievement. The developed 

codec can be applied for different applications such as video telephony, video 

conferencing, etc. 
I 

At the end of Chapters 3, 4 and 5, there are experimental results to investigate the 

performance of the proposed algorithms and the developed Pocket PC based 

real-time H.264 codec. The results focus on analyzing the complexity and the coding 

performance. 
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1.4 Contributions 

This thesis describes algorithms for improving and optimizing the latest video coding 

standard H.264/AVC. Even though tremendous coding performance is achieved, 

H.264 is computational intensive. Therefore, algorithms aim to reduce the 

complexity are proposed. Besides, there is room to further improve the coding 

performance of H.264. Accordingly, algorithms which are designed for improving 

the coding performance are proposed. 

Several enhancement techniques are proposed in Chapter 3 to improve the coding 

performance of intra block matching. In Chapter 4，a fast variable block size motion 

estimation algorithm, which reduces the complexity of variable block size motion 

estimation significantly, is proposed. This algorithm is the fastest when compared 

with the fast motion estimation algorithms adopted in the H.264 reference software. 

The development of a Pocket PC software-based real-time H.264 codec is described 

in Chapter 5. During the development, all the codes are re-written instead of using 

those of the reference software. This allows us to design the structure of the codec 

and redundant features and operations can be avoided easily. Different optimization 

techniques are proposed and applied. Eventually, the developed codec can encode 

and decode video in real-time (more than 25 fps) on Pocket PC. This is a tremendous 

achievement because the complexity of H.264 is so high that it is not easy to develop 

a software-based real-time H.264 codec on Pocket PC platform. 
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Chapter 2 Review of Motion Estimation Techniques 

In this chapter, several algorithms are reviewed. They focus on integer and sub-pixel 

motion estimation. Full Search is an exhaustive search technique which evaluates all 

the search points within the search window. Accordingly, its complexity is very high 

and fast motion estimation algorithms are required. Typical fast motion estimation 

algorithms include three step search (TSS), 2-D logarithmic search (2-D LOGS) [13], 

Hexagon-based Search (HEXBS) [14], Diamond search (DS) [15], etc. Since they 

evaluate fewer search points than Full Search does, they are much faster. However, 

they are susceptive to be trapped in local minimum and this introduces large 

prediction errors. Their search patterns are shown in Figure 2.1. In the figures, the 

squares indicate the first step; circles indicate the second step and triangles are the 

last one. The search range is 土8. 

B • n • • 

• ED • • 

(a) (b) 
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Figure 2.1 Different search patterns of fast motion estimation algorithms, (a) TSS, (b) 

2-D LOGS (c) HEXBS and (d) DS. 

The above algorithms are not specially designed for H.264. In this chapter, 

algorithms which are designed or adopted in H.264 are introduced. These algorithms 

include Fast Full Search (FFS), Hybrid Unsymmetrical-cross Multi-Hexagon-grid 

Search (UMHS), Center biased Fractional Pel Search (CBFPS) and Enhanced 

Predictive Zonal Search (EPZS). Fast Full Search is specially designed for variable 

block size motion estimation. U M H S are designed based on the characteristics of 

natural video. CBFPS are sub-pixel motion estimation algorithm. EPZS employs 

predictor selection. 

2.1 Fast Full Search 

Fast Full Search (FFS) can provide coding performance which is similar to that of 

Full Search. It is specially designed for variable block size motion estimation. There 

are totally seven different block sizes in H.264. Motion estimation is performed for 

each of them. Therefore, the complexity of motion estimation process of encoder will 

be high if Full Search is applied. Consequently, Fast Full Search is designed to 
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reduce the complexity while achieving similar coding performance. 

As mentioned in Chapter 1，motion estimation requires a cost function to find the 

best match. In the reference software of H.264, the cost function for motion 

estimation consists of two parts. One is the cost contributed by encoding the motion 

vector difference. The other is the sum of absolute difference (SAD) which is for 

measuring the similarity between the current block and the reference block. S A D 

computation is very time consuming. Accordingly, if the number of S A D 

computations can be reduced, the complexity of motion estimation can be reduced 

significantly. The objective of Fast Full Search is to reduce repetitive S A D 

computations during variable block size motion estimation. 

With the same search center for all block types within a macroblock, S A D can be 

reused. At the beginning, the macroblock is partitioned into sixteen 4x4 blocks and 

the SADs (SAD4x4) of each of them within the search window are pre-computed and 

stored. Consequently, the stored SAD4x4S can be used to construct the true SADs for 

different block sizes during variable block size motion estimation as illustrated in 

Figure 2.2. Thus, the complexity can be reduced significantly. 

4 16 8 

4 SAD尔 SAD彬 SAD.,. SAD.,. 4 SAD站 

SAD,,. SAD.,. SAD.,. S A D , , s 

16 —""— > 

SAD•好 SAD.,. SAD.,. SAD.,. 

SAD.,. SAD.,. SAD.,. 

Figure 2.2 Construction of the S A D of 4x8 blocks from the stored SAD4X4S. 
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In the reference software, the search center for Full Search is the prediction motion 

vector, which is defined in the standard, of each block. Consequently, different block 

within a macroblock can have different search center. Since Fast Full Search can only 

have a fixed search center, the prediction motion vector for the 16x16 block type is 

selected. The search center affects the cost of the motion vector differences. 

Therefore, the coding performance of Fast Full Search and that of Full Search is not 

the same. However, they are very similar. Therefore, Fast Full Search can benefit the 

encoder in terms of complexity. 

2.2 Hybrid Unsymmetrical-cross Multi-Hexagon-grid Search 

The Hybrid Unsymmetrical-cross Multi-Hexagon-grid Search (UMHS) is a fast 

integer pixel motion estimation algorithm proposed in [2] and it is adopted in the 

H.264 reference software as one of the fast motion estimation algorithms. It is faster 

than Fast Full Search and generally can achieve coding performance which is similar 

to that of Fast Full Search. 

U M H S includes several steps. The first step is to find an initial search point 

prediction. Different modes have different prediction candidates which include the 

median prediction defined in the H.264 standard, (0，0) vector prediction and motion 

vectors of the upper layers. The upper layers of current mode are the modes with 

larger block sizes. This strategy aims to utilize the motion relationship between 

different modes. The prediction candidate with the minimum cost is selected as the 

initial search point prediction. 
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After the initial search point prediction is found, mainly four steps are performed 

with different kinds of search pattern as illustrated in Figure 2.3. First, an 

unsymmetrical-cross search is performed. Based on the argument that vertical motion 

is less likely than horizontal motion for natural video, the search pattern is designed 

to search more points in horizontal direction and search fewer points in vertical 

direction as illustrated in step 2 of Figure 2.3. The search point with the minimum 

cost is chosen as search center for the next step. 

10 y ^ \ � ^ ^ 

5 ^ ^ ^ 

1 D^ ^ g ^ [ 
• I z • 广 “ I . • 

• 〇 〇 （ ） 〇 〇 • 
I • O O A O O • I 

0 ]-A A - o A A-a-A A-a A 0 A 0 A 0 A oA~~A-a-A A-o-A~A-( 
I • O O M O 0 • I 
• 〇〇（）〇〇̂ D • 

• I L、yO I • 
- 5 】 I ？ / “ ： ； ^ ^ 口 I 【 

-15 I 
-15 -10 -5 0 5 10 15 

A step2 o step3-l —step3-2 — v— step4-l — •—step4-2 

Figure 2.3 Search process of H U C M H G S algorithm, search range is 16 [2]. 

A full search with search range equaled to 2 is carried out around the search center as 

illustrated in step 3-1 of Figure 2.3. Then an Uneven Multi-Hexagon-grid Search 

strategy is applied as illustrated in step 3-2 of Figure 2.3 and Figure 2.4. As shown in 

the figures, the pattern contains fewer search points in vertical direction than those in 

horizontal direction and therefore it is called uneven. This design is based on the 

same argument mentioned before, i.e. vertical motion is less likely than horizontal 
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motion for natural video. Finally, with the best search point in the previous step as 

search center, a search process which is similar to that of Hexagon-based Search is 

performed to find the best integer pixel motion vector as illustrated in step 4 of 

Figure 2.3 [2]. 

个Y 

i -j 「 1 

h ~ 1 h ~ ？ r ^ x 

i -i 1 • 

- 4 

Figure 2.4 The basic search pattern of Uneven Multi-Hexagon-grid Search [2]. 

2.3 Center biased Fractional Pel Search 

The Center biased Fractional Pel Search (CBFPS) is a fast sub-pixel motion 

estimation algorithm proposed in [2]. It utilizes the assumption that the unimodal 

error surface assumption is true in most cases for fractional pixel search [12]. 

frac—pred—mv 二 (pred一mv - mv)%p (2.1) 

where frac_pred_mv is the fractional prediction motion vector, 
pred_mv is the prediction motion vector, 

mv is the best integer pixel motion vector of the current block which is in 

fractional pixel unit, 

% is the modulus operation, and 

P = 4 for quarter pixel case. 
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Firstly, a prediction motion vector, frac_pred_mv, is derived with Equation 2.1. Then 

the costs of (0，0) and frac_pred_mv are compared and the one with the minimum 

cost is chosen as the search center for the next step. Finally, the small diamond 

search pattern is employed to find the best match as illustrated in Figure 2.5. The 

search center is updated to the best search point (the search point with the minimum 

cost) at each stage if that best search point is not located at the search center. 

Otherwise, the search process is completed and the best search point is the best 

match [2]. 

f h i c j M ' e d j n v 
HO.OI 
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Figure 2.5 Implementation of CBFPS algorithm, squares are the integer pixel 

positions. 

2.4 Enhanced Predictive Zonal Search 

The Enhanced Predictive Zonal Search (EPZS) [3’ 16，17] mainly comprises three 

features which include the initial predictor selection, the adaptive early termination 

and the final prediction refinement. It is much faster than Full Search and even Fast 

Full Search without significant loss in coding performance. Same as U M H S , it is also 

adopted by the reference software of H.264 as one of the fast motion estimation 
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algorithms. 

The predictor selection can be considered as the key feature of EPZS. The predictors 

can be selected by exploiting temporal and spatial correlation. The predictors of 

EPZS include the median predictor which is the prediction motion vector defined in 

the H.264 standard, other spatial predictors, temporal predictors and a set of search 

range dependent predictors. In [16], the spatial predictors include the median 

predictor, the left, upper, upper-left, upper-right block motion vectors as illustrated in 

Figure 2.6 and the (0，0) predictor. In addition to spatial predictors, temporal 

predictors are used in EPZS which include the co-located motion vector, 8 motion 

vectors of the adjacent blocks which are around the co-located block, etc. A set of 

search range dependent predictors is also defined to better cover the large search 

ranges for high motion videos. The two possible search range dependent predictor 

sets in [17] are illustrated in Figure 2.7. The centers in Figure 2.7 can be either at (0， 

0) or the median predictor [16]. 

Spatial Piedic tors 

“ I 抵 — 
Median Predictor 

Current frame 

Figure 2.6 Spatial predictors of EPZS [16]. 

- 2-8 



, I I I I I I i l l I I I I I I ， ” I I I I I i l l I I I I I I T 
———— 

o O O O th 王 -

II o 二I O O 

= = = = " i ~ f e = = = = = = = = = i i z i ~ n 7 z i z i i i i i i 
Center Center 

—— u ~ ~ o … 平 -

0 A o 

i I I I I I I I i I I I I I 丄 I I I I I I I 4 I I I I I 

(a) (b) 

Figure 2.7 Two possible search range dependent predictor sets of EPZS with search 

range equaled to 8 [17]. 

The adaptive early termination of EPZS enables an extra reduction in complexity of 

the motion estimation process. If the cost of the median predictor is smaller than a 

threshold Ti, the motion estimation process is terminated without examining any 

other predictors. In this case the median predictor is defined as the best integer pixel 

motion vector. Otherwise, all other predictors are examined. If the minimum cost of 

the predictors is smaller than another threshold T2, the search is terminated. 

Otherwise, motion vector refinement is performed with the best predictor as search 

center. 

The search patterns employed by EPZS include small diamond pattern, square 

pattern (EPZS】）and extended EPZS pattern (extEPZS) as shown in Figure 2.8. It can 

be observed that the small diamond pattern provides least complexity while the 

extEPZS provides best coding performance amongst the patterns. If the best search 

point is at the search center, it is defined as the best integer pixel motion vector. 
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Otherwise, the search center is set to the best search point in the current step. The 

process is repetitively performed until the best search point in the current step is at 

the search center. 

I ^ f ^ I 

(a) (b) (c) 

Figure 2.8 (a) Small diamond pattern, (b) Square pattern (EPZS^) and (c) Extended 

EPZS pattern (extEPZS) [17]. 

Besides the above mentioned features, EPZS has other features. Therefore, interested 

readers are recommended to read [3, 16, 17] for more details about EPZS. 
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Chapter 3 Enhancement Techniques for Intra Block Matching 

In this chapter, a novel intra block matching algorithm [23，24] is briefly reviewed. It 

is similar to motion estimation and compensation technique. For motion estimation 

and compensation, the pixels of the current macroblock are predicted from the pixels 

of other pictures. This algorithm predicts pixels of the current block from the 

reconstructed pixels of the current slice. In this chapter, this algorithm is called intra 

block matching. 

Several enhancement techniques for further improving the algorithm are proposed. 

The proposed techniques include best match prediction, multiple best matches, novel 

padding method, skip mode, etc. Experimental results show that the coding 

performance can be improved significantly and more than 1 dB and 0.6 dB gains in 

PSNR can be achieved for intra and hybrid coding, respectively. 

In the following sections, the reason and the whole process of applying intra block 

matching are first discussed. Then the proposed enhancement algorithms, modes and 

fast algorithms are described in detail. After the description, experimental results are 

shown at the end of this chapter to illustrate the performance of the proposed 

techniques. Finally, there is a discussion on the experimental results. 

3.1 Introduction 

3.1.1 Fundamental Principles 

The intra prediction techniques adopted in H.264 predict the intensities of the pixels 

of the current block from its neighboring pixels. This aims to exploit the spatial 
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correlation in a slice. However, when the texture of the reconstructed pixels is not 

smooth, using neighboring pixels to predict the pixels of the current block may not 

be accurate. Consequently, encoding of intra slices requires a large number of bits. 

To improve the coding efficiency, intra block matching technique is applied" with 

several proposed enhancement techniques. 

As mentioned before, the main idea of intra block matching is to predict the pixels of 

the current block from the pixels in the current slice within a search region. 

Therefore, similar to motion vector, an offset vector is required to indicate the 

position of the best match. In this chapter, that vector is called intra displacement 

vector (Intra—DV). The defined search region in our experiment is illustrated in 

Figure 3.1. In the figure, all the pixels that are reconstructed or padded, and within 

macroblocks "P" and "C" are used for prediction. 

The intra block matching process is carried out as follows: 

1. Find a best match for the current block within the search region. (The cost 

function defined in our experiment is shown in Equation 3.1) 

2. After the best matches of all the intra block matching modes are found, the total 

costsmode (cost for modc decision) of all the available modes of the encoder are 

compared with each other. 

3. When the best one is intra block matching mode, the corresponding best matches 

are used for prediction. 

4. Prediction errors are transformed, quantized, encoded and reconstructed as usual. 
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Figure 3.1 White blocks are reconstructed blocks, block "C" and "P" are the current 

macroblock and the pixels used for prediction, respectively, and the shaded 

macroblocks are not encoded and thus are not reconstructed. 

J = S A D + X<iisplacement bitSintra.DVd ( 3 . 1 ) 

where J is the cost of a candidate search point, 

S A D is the sum of absolute differences between two blocks, 

？^disp lacement is the Lagrange Multiplier, and 

bitsintra—DVds is the number of bits used to encode the Intra—DV differences 

(Intra_DVds). 

3.1.2 Variable Block Size Intra Block Matching 

Similar to motion compensation of H.264, intra block matching can also employ 

variable block size technique. The reason of partitioning a macroblock to perform 

intra block matching is that when 16x16 intra block matching is performed, the 

prediction errors are large but less overhead information is encoded for the 
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Intra_DVds. When 4x4 intra block matching is performed, the prediction errors are 

reduced but more overhead information is encoded. Therefore, variable block size 

can provide a good balance between prediction errors and the amount of overhead 

information for different situations. 

In [24], seven different block sizes are employed. They include all the block sizes 

employed in the motion compensation process of H.264. Even though accurate 

prediction can be found, much processing power is required. In contrast, fewer 

number of block sizes is employed in [23]. The complexity is definitely less but the 

prediction may not be very accurate. In our design, the current macroblock can be 

partitioned into mainly four different block sizes as illustrated in Figure 3.2. Each 

macroblock can be partitioned into one 16x16, four 8x8, sixteen 4x4 blocks or into 

four Combine blocks. Each Combine block is a sub-macroblock and can further be 

partitioned into one 8x8 block or four 4x4 blocks. W e found that adding more block 

sizes cannot achieve much gain in coding performance but increase the complexity in 

a great amount. Accordingly, only four block sizes are adopted to achieve a good 

balance among prediction errors, complexity and the amount of overhead 

information. 
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Figure 3.2 The four variable block sizes, (a) 16x16, (b) 8x8, (c) 4x4, and (d) 

Combine. For the Combine block size, each sub-macroblock can be partitioned into 

(e) one 8x8 block or (f) four 4x4 blocks to perform intra block matching. 

3.2 Proposed Techniques 

3.2.1 Padding 

The current block is padded from the neighboring pixels before intra block matching 

to maximize the number of candidates. Let the position of the pixel in the top-left 

comer of the block to be padded and the current block are (xp, yp) and (x, y), 

respectively, imgY represents current (reconstructed) slice and xO, yO are the intra 

padded block dimensions. They can be smaller than the current block size. In our 

experiment, for 4x4 and 8x8, xO = 4 and yO = 4. For 16x16, xO = 8 and yO = 8. 

This is due to the spatial distances between the bottom right comer pixels and the 

neighboring pixels of the current block are longer when the block sizes are large. The 

padding is classified into three types, the DC, horizontal and vertical padding. To 

avoid encoding the overhead information, the costs of these three padding types are 
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computed and compared. The one with the minimum cost is selected as the best 

padding type. The same cost evaluation and comparison are carried out in both 

encoder and decoder side. Therefore, no extra overhead information is required. The 

padding process is performed until the whole current block is padded by changing 

(xp, yp) iteratively. In iteration, the following process is performed. 

When neither the left nor the upper block is available (When a block is located inside 

the current slide and has already been encoded and reconstructed, it is available. 

Otherwise, k is unavailable.), D C intra padding method is defined as the best and 

imgY (r, s) with r = xp...xp + xO - 1 and s = yp...yp + yO - 1 is derived with 

Equation 3.12. 

When at least one of the left and upper blocks is available, three padding costs are 

computed for finding the best padding type amongst the three padding types. The 

padding costs of D C (PadCostO), horizontal (PadCostl) and vertical (PadCost2) 

padding types change according to the availabilities of the left and upper blocks. 

For PadCostl and PadCost2, when the involved neighboring block (left block for 

horizontal padding and upper block for vertical padding) is unavailable, they are set 

to infinite. Otherwise, they are derived with Equations 3.2 and 3.3, respectively. 

When horizontal or vertical padding is the best amongst the three padding types, 

imgY(r, s) is set to imgY(x-l, s) or imgY(r, y-1), respectively. 

For D C padding, as mentioned before, PadCostO changes according to the 

availabilities of the neighboring blocks. The computation of PadCostO and the D C 

padding value, PadDC, is performed based on the following three different 
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situations. 

1. Both the left and upper blocks are available. 

2. Only the left block is available. 

3. Only the upper block is available. 

For case 1，Equations 3.4，3.5 and 3.6 are used to derive PadCostO and Equation 3.7 

is used to derive PadDC. For case 2, Equations 3.5 and 3.8 are used to derive 

PadCostO and Equation 3.9 is used to derive PadDC. For case 3, Equations 3.4 and 

3.10 are used to derive PadCostO and Equation 3.11 is used to derive PadDC. When 

D C padding type is the best, imgY(r, s) is set to PadDC. 

imgY(r’s) (the padded pixels) are used for the searching process of intra block 

matching only. After the best match is found, the padded pixels are replaced by the 

best prediction pixels. 

y p + y O - l 2 

PadCostl= Z Z|(imgY(x-3,i)-imgY(x-a,i)| (3.2) 

i=yp a=l 

x p + x O - 1 2 

PadCost2 = Z I|(imgY(i,y-3)-imgY(i,y-a)| (3.3) 

i = x p a = l 

x p + x O - 1 

Z imgY(i, y - 3) 
PadO = round(—^ ) (3.4) 

xO 
y p + y O - l 

I imgY(x-3，i) 
Padl = r o u n d ( ^ — ) (3.5) 

x p + x O - l 2 yp+yO-1 2 

S Z| imgY(i, y - a) - PadO | + Z S| imgY(x - b, j) - Padl | 
PadCostO = round( — a=i ^ j=yp b=i ) (̂  � 
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x p + x O - 1 yp+yO-1 

S imgY(i，y-l)+ I imgY(x -l,j) 
PadDC = r o u n d ( ^ ^ ) (3 7) 

xO + yO 
yp+yO-l 2 

PadCostO: I I|imgY(x-a, i)-Padl| (3.8) 

i =yp a = l 

y p + y O - 1 

I imgY(x-l,i) 
PadDC = round(—^^ ) (3.9) 

yO 
x p + x O - 1 2 

PadCostO = Z Z|imgY(i,y-a)-PadO| (3.10) 

i = x p a = l 

x p + x O - 1 

Z imgY(i,y-l) 
PadDC = round(^^ ) (3.11) 

xO 

imgY(r, s) = (1 « (BitDepth - 1)) (3.12) 

where round () indicates rounding the result to the nearest integer, and 

BitDepth is the number of bits used to represent each luma component. 

Figure 3.3 is an example to illustrate the D C intra padding process of an 8x8 block 

for xO = 4 and yO = 4. N is the block to be padded. The color pixels within N are the 

pixels to be padded. The pixels with blue colour are the neighboring pixels. Through 

the above process, the current block is padded. In addition to the reconstructed pixels 

of the current slice, the pixels of this padded block are used for intra block matching. 
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Figure 3.3 An example of D C intra padding process of an 8x8 block with xO = 4 and 

yO = 4. 

The above padding process is for luma component. The intra padding process for 

chroma components is the same as that for luma except that the intra padding block 

sizes are scaled according to input file format. For example, when the input file 

format is 4:2:0, the intra padded block dimensions for chroma components are xO/2 

and yO/2. 

3.2.2 Modes 

In our design, there are totally nine modes for intra block matching. They are 

summarized in Table 3.1. The terminology used in Table 3.1 is shown in Table 3.2. 

Table 3.3 shows the priority of each mode. In the table, the mode with higher priority 

has a smaller priority number. A macroblock type with higher priority means that 

fewer bits are used to encode it. Experimentally, C O M B I N E and DIRECT PRED 
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have high selection probability and thus their priority is set to be the highest. For the 

remaining modes, high priority is assigned to INT or SUB 16x16，8x8 because their 

overhead information is less when compared with that of 4x4. The priority of INT or 

SUB 4x4 is set to be higher than that of INT_SUB_4x4 because INT_SUB—4x4 

requires one more flag to indicate using INT or SUB for each sub-macroblock. It can 

be noticed that for SUB, the integer Intra_DVds are required to be multiplied by four. 

Consequently, the overhead information of SUB is larger than that of INT and the 

priority of INT is set to be higher than that of SUB. 

Mode Name Description 

0 INT一4x4 The macroblock is partitioned into sixteen 4x4 blocks. 

This mode applies SUB_MB_DVD_ZERO. 

1 INT—8x8 The macroblock is partitioned into four 8x8 sub-

macroblocks. 

2 INT—16x 16 The macroblock is partitioned into one 16x16 block. 

3 SUB一4x4 The macroblock is partitioned into sixteen 4x4 blocks. 

This mode applies SUB_MB_DVD_ZERO. 

4 SUB _8x8 The macroblock is partitioned into four 8x8 sub-

macroblocks. 

5 SUB _ 16x 16 The macroblock is partitioned into one 16x16 block. 

6 DIRECT—PRED The macroblock is partitioned into sixteen 4x4 blocks and 

all Intra_DVds are zero. 

7 C O M B I N E The macroblock is partitioned into four 8x8 sub-

macroblocks and each of them is further partitioned into 

four 4x4 blocks or one 8x8 block. This mode applies 

INT—SUB. 

8 INT_SUB_4x4 The macroblock is partitioned into sixteen 4x4 blocks. 

This mode applies SUB_MB_DVD_ZERO. 

Table 3.1 The modes employed for intra block matching. 
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INT Only integer pixel intra block matching is performed. 

SUB Only sub-pixel intra block matching is performed. 

INT SUB Each sub-macroblock can use INT or SUB adaptively 

with encoding an extra 1 bit flag for each of them. 

SUB M B D V D ZERO ^y encoding extra four 1 bit flags to indicate which of 

the sub-MBs with all Intra—DVds equal to zero. 

Therefore, the Intra_DVds for that/those 

sub-macroblock(s) are not encoded. When at least one 

of the Intra—DVds is non-zero, all the four Intra_DVds 

of that sub-macroblock are encoded. 

Table 3.2 The terminology used in Table 3.1. 

Name of the mode Priority Number Bit String (I slice) 

INT一4x4 6 0 0 0 1 0 0 0 

INT 一 8 x 8 3 0 0 1 0 1 

INT 一 1 6 x 1 6 2 0 0 1 0 0 

S U B 一 4 x 4 7 0 0 0 1 0 0 1 

S U B 一 8 x 8 5 0 0 1 1 1 

SUB—16x16 4 0 0 1 1 0 

DIRECT_PRED 1 O i l 

C O M B I N E Q 0 1 0 

INT 一 SUB—4x4 8 0 0 0 1 0 1 0 

Table 3.3 The priority of each mode. 

The bit strings of the proposed modes for P or B slice can be derived by the 

Exp-Golomb method defined in the H.264 standard. The modes are code as ue(v). 

The input value is the priority number of the mode added by 6 or 24 for P or B slice, 

respectively. 
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3.2.3 Performance Enhancement Tools 

3.2.3.1 Multiple Best Matches 

For motion estimation, generally one integer pixel best match is first found. Then it 

is used as the center for sub-pixel search. Instead of just finding one integer pixel 

best match, we propose to find several best matches to improve the coding efficiency 

of intra block matching. In our experiment, three best matches are found. After 

finding them, another cost function is used to find the true best match amongst them. 

Equation 3.13 is the cost function used in our experiment. 

J_best = SATD + X<displacement b i t S i n t r a _ D V d s (3.13) 

where J_best is the new cost of the best match, 

SATD is the sum of absolute transform differences after transforming the 

prediction errors with Hadamard Transform, 

？̂displacement is the Lagrange Multiplier, and 

bitsintra.DVds is the number of bits used to encode the Intra_DVds. 

The reason of choosing Hadamard Transform is that it is similar to ICT. Therefore, it 

is more accurate than SAD. In addition, the complexity of Hadamard Transform is 

less than that of ICT. 

As mentioned before, in our experiment, only three best matches are first found. The 

reason of choosing three is that if too many best matches are found, computational 

complexity will be increased significantly. In addition, experimentally, three best 

matches can achieve good result. 
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This enhancement tool can improve the coding efficiency without increasing the 

complexity in a great amount. This tool can enhance the performance because the 

original simple cost function, i.e. Equation 3.1，is not accurate enough. Two or more 

candidate search points sometimes have the same cost or wrong decision may even 

be made due to the inaccuracy of Equation 3.1. Therefore, if several best matches are 

first found and then a more precise cost function is used, better result can be 

achieved. Certainly, this enhancement tool can also be applied to the motion 

estimation process. Since we want to test the improvement of all the proposed 

algorithms and techniques for intra block matching only, this enhancement tool was 

not applied to motion estimation process. 

3.2.3.2 Adaptive Integer and Sub-pixel Intra Block Matching 

The motion vector precision of H.264 for luma component is quarter pixel. The 

accuracy of sub-pixel search is better than that of integer pixel search. However, due 

to H.264 only allows fixed motion vector precision, the motion vector differences are 

multiplied by four for the integer pixel positions before they are encoded. Therefore, 

much overhead information is necessary for encoding them. 

In our design, as shown in Table 3.1, each macroblock is allowed to select integer 

and sub-pixel intra block matching adaptively. The decoder can decode the mode 

first. Then it knows whether sub-pixel is required. As a result, The Intra一DVds can 

be encoded efficiently. In addition, when the cost of encoding the vector differences 

decreases for INT, there is a larger margin for reducing the prediction errors during 

the block matching process. 
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To perform sub-pixel intra block matching, the integer pixel best match is first found. 

Then that best match is selected as search center for the sub-pixel search. Totally 7x7 

(including the center point) search points are evaluated with cost function (3.13) and 

the one with the minimum cost is the best match. The interpolation process for luma 

and chroma components are the same as that defined in the H.264 standard. 

The conversion of the luma Intra_DVs to the chroma Intra_DVs is the same as that 

of the luma motion vectors to the chroma motion vectors defined in the H.264 

standard. Therefore, the precision of chroma Intra_DVs is 1/8. 

3.2.4 Pseudo Intra Block Matching 

In the H.264 standard, the best match position is first predicted from its neighboring 

blocks. Then the motion vector difference is computed by subtracting the prediction 

motion vector from the true motion vector. This is based on the assumption that 

neighboring blocks belong to the same object and thus their motions are similar. This 

prediction technique can reduce the bits used to encode the motion information. 

For intra block matching, the Intra_DVs are not motion vectors. They are just offsets 

to indicate the position of the best match. Consequently, the characteristics exploited 

in motion compensation can not be applied to intra block matching efficiently. 

A method to predict a best match position from the previous I slice is proposed to 

reduce the overhead information. When the co-located macroblock in the nearest 

previous I slice is coded with the intra block matching technique and its size is larger 
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than or equal to that of the current block, the predicted best Intra_DV (PBIDV) is set 

to the Intra_DV of that co-located block and the Intra_DVd of the current block is 

derived with Equation 3.14. Otherwise, when the block size of the current block is 

larger, the mean of the Intra—DVs of all the involved smaller co-located blocks is 

computed as the PBIDV. When any of the pixels which are located at the PBIDV is 

not in the search region, the default predicted position is applied to avoid inaccurate 

prediction because there is no chance the PBIDV is the best Intra_DV. Certainly, the 

region outside the search region can also be padded and searched. However, the 

probability of selecting them as the best match is not very high and thus padding and 

searching them do not have much gain in coding efficiency. Consequently, the 

default predicted position is used instead to reduce the complexity. When the 

co-located macroblock in the nearest previous I slice is not coded with the intra block 

matching technique, the default predicted position is selected. 

Experimentally, three default predicted positions are found. For 4x4 block, Pred_x = 

0 and Pred_y = 0, for 8x8 block, Pred_x = -4 and Pred_y = -4 and for 16x16 block, 

Pred_x = -4 and Pred_y = -12. The values of Pred_x and Pred_y are expressed 

relative to the top-left comer pixel of the current block. These default predicted 

positions can achieve acceptable results for different video sequences and different 

quantization parameters. 

Intra一 DVd = Intra—DV - PBIDV (3.14) 

This technique is called pseudo because the Intra_DVs from the previous I slice are 

used. Nevertheless, intra prediction demands using decoded samples of the current 

slice to perform prediction and thus this can still be called intra prediction. To 
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prevent errors in the transmitted Intra_DVds, a one bit flag is designed to be 

transmitted in the I slices header to indicate whether previous Intra—DVs are used to 

predict PBIDV. In our experiments, the I slices in the coming nearest I picture use the 

default predicted positions after every one second. Then the counter resets. 

3.3 Proposed Fast Algorithms 

In this section, totally four fast algorithms are proposed for variable block size intra 

block matching. Except fast intra block matching decision, all the proposed fast 

algorithms reduce the complexity of the whole process without degrading the coding 

performance. 

3.3.1 Fast Intra Block Matching Decision 

This fast intra block matching decision method is based on the algorithm proposed in 

[25]. The performance of this algorithm is video sequence dependent. The mean of 

the rate distortion costs (RDcosts) of the selected intra block matching modes is 

updated with Equation 3.15 and 3.16 when one of the modes in Table 3.1 is selected 

as the best mode. N u m and MeanRD are initialized to zero at the beginning of the 

encoding process. 

Nunik+i = Numic + 1 (3.15) 

New_RDcost — MeanRD, 
MeanRD, , . = MeanRD, + ^ (3.16) 

K +1 K Num, 1 
k +1 

where N u m is the total number of selected intra block matching macroblocks, 

MeanRD is the mean of the RDcosts of the selected intra block matching 
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macroblocks, 

New—RDcost is the RDcost of the latest intra block matching coded 

macroblock, and 

k and k+1 indicate the current and updated value, respectively. 

Since recent RDcosts are more important for making correct decision, N u m is 

updated with Equation 3.17 after several pictures are encoded. In our experiment, 

N u m is updated after every five pictures are encoded. Offset and Pic_Num in 

Equation 3.17 were set to 4 and 5, respectively. 

Num, + offset 
Num …=Truncate(——^ ) (3.17) 

^ + i PiC-Num 

where truncate () means the result are truncated toward zero, 

Pic_Num is the number of pictures after which the value of Num is 

required to be updated, and 

offset is a constant for rounding purpose. 

After finding the best mode amongst all of the original modes of H.264, the current 

best RDcost is compared with MeanRD. If MeanRD is smaller, all of the modes in 

Table 3.1 are evaluated. Otherwise, their checking processes are skipped. 

This algorithm is applied only when current slice is a P or B slice. In P or B slice, the 

probability of selecting intra mode as the best mode is low. Therefore, applying this 

fast algorithm does not affect the coding performance in a great amount while the 

complexity can be greatly reduced. 
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The differences between our algorithm and that proposed in [25] are shown as 

follows: 

1. [25] does not consider that recent RDcosts are more important. 

2. Equation 3.16 can be implemented with one division only while [25] requires one 

multiplication and one division. 

3. [25] applies their mode decision algorithm to the intra modes of H.264 while the 

proposed one applies to intra block matching. 

3.3.2 Skipping some Intra Block Matching Processes 

This method reuses some evaluated data to skip some processes. This method is 

applied to C O M B I N E and INT—SUB—4x4 modes. Some of the intra block matching 

processes for C O M B I N E and INT_SUB_4x4 modes can be skipped if INT一4x4， 

SUB_4x4, INT—8x8 and SUB_8x8 modes are evaluated first. For example, the 

results of the first sub-macroblock of C O M B I N E and INT_SUB_4x4 modes can be 

generated by directly copying the results of the first sub-macroblock of the 

mentioned four modes. In addition, for instance, if the best sub mode of the first 

sub-macroblock for C O M B I N E mode is int_4x4 (The sub-macroblock is partitioned 

into four 4x4 blocks and all of them use integer intra block matching, int or sub 

refers to integer or sub-pixel intra block matching.), the block matching process of 

int一4x4 for the second sub-macroblock can be skipped and the result of the second 

sub-macroblock of INT_4x4 is the required int_4x4 result for C O M B I N E mode 

because the conditions are the same. 

It can be noticed that this algorithm reuses the computed data to avoid repetitive 
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computation when certain conditions are fulfilled. Therefore, this algorithm does not 

degrade the coding performance of the whole matching process. It only reduces the 

complexity. 

3.3.3 Early Termination 

This algorithm is designed for C O M B I N E and INT_SUB_4x4 mode. The main idea 

of this algorithm is to compare the partial sum of the sub-macroblock RDcosts with 

the current best RDcost. When the partial sum is larger, the rest of the process is not 

necessary to be performed. 

For C O M B I N E and INT—SUB—4x4 modes, R D costs are computed for each sub 

mode (sub-macroblock can be classified into int_4x4, sub_4x4, int_8x8 or sub一8x8.) 

to find the best. The partial sum of the best sub-macroblock RDcosts of all evaluated 

sub-macroblocks, RD_costs_sum, is derived with Equation 3.18. Then it is compared 

with the current best RDcost of the current macroblock. If the RD_costs_sum is 

larger, the intra block matching process for C O M B I N E or INT_SUB_4x4 modes will 

not be carried out. Otherwise, intra block matching is performed continuously for 

that mode. 

RD_costs_sum = Ax bits mode + .受[义 x (bit_8x8j) + Distoition_8x8j ] (3.18) 
i=0 

where i is the index of a sub-macroblock, 

n is the index of the current sub-macroblock, 

X is the Lagrange Multiplier, 

Distortion_8x8i is the distortion of the sub-macroblock i (luma 

component), 
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b i t S m o d e is the number of bits used to encode the mode and header 

information of the current macroblock, and 

bit_8x8i is derived with Equation 3.19. 

bit_8x8i = bit-coeffi + bit—intra—DVdSi + bit_otheri (3.19) 

where bit—coeffi is the number of bits used to encode the prediction errors of 

sub-macroblock i (luma component), 

bit_intra_DVdSi is the number of bits used to encode the intra_DVds of 

sub-macroblock i (if necessary), 

bit一otheri includes the number of bits used to encode a skip一flag which is 

for indicating whether all intra_DVds of sub-macroblock i are zero and the 

number of bits used to indicate the sub mode of sub-MB i. [Note: For block 

size equals to 4x4 and all intra—DVds equal to 0，no extra flag is required 

to indicate whether the sub-MB is int_4x4 or sub_4x4 because all 

intra_DVds are zero.] 

In Equations 3.18 and 3.19, Distortion_8x8i and bit_coeffi only comprise those costs 

of luma component. In H.264, the chroma prediction errors are first transformed with 

ICT and the D C coefficients are further de-correlated with Hadamard Transform. 

Therefore, the final distortion of chroma components and the bits used for encoding 

the chroma prediction errors cannot be found until the whole 8x8 prediction errors 

matrix is derived (for the case of 4:2:0). This implies that the partial RDcosts 

contributed by chroma components cannot be found. However, the cost contributed 

by luma component is normally much higher than that contributed by chroma 

components and thus the effect of this algorithm is still significant. 
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It can be noticed that this algorithm does not degrade the coding performance of the 

whole matching process. It only reduces the complexity. In addition, this algorithm 

can also be applied to the original intra or inter modes of H.264 to reduce the 

complexity. Since we focus on the intra block matching process, in our experiments, 

this algorithm was only applied to intra block matching process. 

3.3.4 SAD Reuse Techniques 

[4], [26], and Fast Full Search are designed for variable block size motion estimation. 

In Chapter 2, Fast Full Search has already been reviewed while [26] will be 

introduced in Chapter 4. SADs are reused by partitioning a macroblock into sixteen 

4x4 blocks. Then the SADs of each of them are computed and stored. The S A D of 

larger block sizes can be derived by summing the required SADs of the 4x4 blocks. 

This S A D Reuse Technique can also be applied to intra block matching to reduce the 

complexity. The current macroblock is partitioned into sixteen 4x4 blocks. Since the 

padding method is different for different block sizes, when a candidate search point 

consists of neither pixels outside the search region nor the padded pixels, the 4x4 

S A D of the candidate search point is computed, stored and reused. By applying this 

technique, the computational complexity of intra block matching can be reduced 

significantly. Same as the algorithms introduced in Section 3.3.2 and 3.3.3，this 

method does not degrade the coding performance. 
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3.4 Experimental Results 

The results were generated with JM10.2 after integrating the intra block matching 

algorithm with the proposed techniques, modes and fast algorithms. In our 

experiments, the search region is shown in Figure 3.1，i.e. all the pixels that are 

reconstructed or padded, and within macroblocks "P" and "C". R D O was turned on. 

One reference frame and Hadamard Transform were used. No 8x8 transform was 

involved, C A V L C and Exp-Golomb were applied for entropy coding and QPs were 

28，32, 36 and 40. Table 3.4 shows the improved coding performance in terms of 

APSNR (dB) or the equivalent ABitrate (%) for different video sequences with QCIF 

or GIF 4:2:0 format when compared with those of the original H.264 encoder (The 

results do not compare with those of [23] and [24] because the conditions were 

totally different. Interested readers can use their results for reference). The extra 

encoding time (EET) is computed with Equation 3.20. APSNR一 1 and ABitrate_l 

show the results when G O P (Group of Pictures) structure was IIIIIII... with average 

EET = 242.378% and APSNR—2 and ABitrate_2 show the results when G O P 

structure was IBBPBBI... with average EET = 26.877%. The computation method of 

the APSNRs and the equivalent ABitrates is proposed in [11]. Figure 3.4 and 3.5 

show the Rate Distortion Curves for different video sequences with IIIIIII... and 

IBBPBBI.. .GOP structures, respectively. 

The results show that the coding performance of the encoder can be improved 

significantly. However, EET is very high for intra coding and is still quite high for 

hybrid coding. The reason is that the proposed modes are evaluated and compared 

one by one and thus the complexity is high. If efficient mode decision algorithms, 

which are similar to inter mode decision algorithms, are developed, the problem can 
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be solved. 

EET(%)=NeW-E 腳 ding-Time-Original-Encoding-Timexioo (3,20) 
Original_Encoding_Time 

Sequence APSNR—l ABitrate_l APSNR_2 ABitrate—2 

Akiyo, QCIF ^ -IM ^ -5.12 

Carphone’ QCIF 0.94 -12.14 ^ -7.07 

Claire, QCIF ^ -9M ^ -5.35 

Foreman, QCIF 1.26 -17.53 ^ -10.51 

Mother, QCIF 0.28 ^ -2.70 

News, QCIF -6.95 0.29 -3.86 

Table, QCIF ^ -12.08 ^ -6.02 

Akiyo, CIF ^ -9M 0.37 -5.59 

Bus, CIF ^ - A m ^ -2.32 

Carphone, CIF 1.00 -15.18 0.40 -8.08 

Foreman, CIF 0.75 -12.68 0.32 -6.42 

Hall, CIF ^ ^ ^ -3.57 

Highway，CIF 0.80 -16.50 0.35 -9.79 

Mobile, CIF ^ 0.11 -2.11 

Mother, CIF ^ ^ -2.92 

News, CIF ^ -9M ^ -4.98 

Paris, CIF ^ -3.83 

Table, CIF ^ -10.67 ^ -5.65 

Average 0.656 -9.556 0.297 -5.327 

Table 3.4 The APSNRs and ABitrates of different video sequences. 

RD-Curve (Foreman, QCIF) RD-Curve (Mother, QCIF) 

38 J 

g S 36 
2 / y ^ ~»~JM10.2 Z - • - J M 1 0 . 2 
12 32 - " — N e w 差 New 

28 1 1 30 ~ - ~ , J 
100 300 500 700 100 200 300 400 

Bit Rate (k bits/s) Bit Rate (k bits/s) 
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ROCurve (Carphone, GIF) RD-Curve (Mobile, GIF) 
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Figure 3.4 RD-curve comparisons of different video sequences with IIIIIII... G O P 

structure. 
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Figure 3.5 RD-curve comparisons of different video sequences with IBBPBBI... 

G O P structure. 

Figure 3.6 are two examples to illustrate the selected intra block matching best 

modes of the sequences Foreman and Mother with QCIF 4:2:0 format. In the figure, 

the numbers indicate the selected best modes which are defined in Table 3.1. It is 
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obvious that most of the macroblocks representing the background building of 

Foreman select intra block matching modes. The reason is that the directions of the 

grey lines in the picture are not similar to those of the intra prediction technique 

adopted in H.264. The directions of 4x4 intra prediction in H.264 include vertical, 

horizontal, 45°, 26.6° and DC. The grey lines in the picture are not in these directions 

and thus intra block matching modes are selected. For the human in Foreman, it is 

difficult to find a similar pattern from the neighbouring blocks. Accordingly, the intra 

block matching modes are not selected. For Mother, similar patterns are either 

difficult to be found or very smooth. Accordingly, intra block matching modes are 

not selected frequently. Even though some macroblocks are encoded with intra block 

matching techniques, due to the mentioned features of this sequence, the 

improvement is still not significant. 

From these two examples, it can be observed that when intra block matching modes 

are selected frequently, the coding performance can be improved substantially and 

vice versa. 

？ 1 ^ ^ 

2 ^ i i m m i m ^ ^ 

6 2 

i f e l L J i ^ M W ^ m i j W ^ ^ ^ S B I (a) Foreman 

, 3-25 



Jjjj jPPB^MjBBII^MII III 丨 l l B I ^ B ^ B ^ B B B 

i ^ M ^ M i m 

國 瞧 通 i i m i 國 〜 

B B C _ I Z t l j j J j L ”？ L l a ^ (b) Mother 

Figure 3.6 The selected intra block matching best modes of sequences (a) Foreman 

and (b) Mother. 

As mentioned before, the computation method of the APSNRs and the equivalent 

ABitrates is proposed in [11]. This method mainly includes three basic elements. 

1. Fitting a curve through four data points. 

2. An expression is found for the integral of the curve. 

3. The average difference is computed as the difference between the integrals 

divided by the integration interval. 

The curve is fitted with a third order polynomial which is expressed by Equation 3.21. 

With this method, two curves can be fitted. One is the result of the reference software 

and the other is the result of the improved encoder. The bitrate can be found as a 

function of PSNR in a similar way. This function is defined by Equation 3.22. 

PSNR = a + b*bit + c*bit̂  + d*bit̂  (3.21) 
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bit = a + b*PSNR + c*PSNR^ + d*PSNR^ (3.22) 

Where PSNR is the PSNR at a particular bitrate which is the bit in the equations, 

a, b, c and d are determined such that the curve passes through all the four 

data points. 

In this way, the followings can be found. 

1. Average PSNR difference in dB over the whole range of bitrates 

2. Average bitrate difference in % over the whole range of PSNR 

Therefore, the results can be compared [11]. 

In this Chapter, many enhancement algorithms, modes and fast algorithms for intra 

block matching are proposed. With them, the coding performance of H.264 can be 

improved significantly. The pseudo intra block matching technique predicts the 

location of the best match accurately. Therefore, the overhead information for 

encoding the Intra—DVds is greatly reduced. This technique contributes to the 

improvement most. 

The maximum gain in PSNR can be more than 1 dB for intra coding and more than 

0.6 dB when hybrid coding is applied when compared with the coding performance 

of the original H.264 encoder. 
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Chapter 4 Enhanced SAD Reuse Fast Motion Estimation 

In this chapter, a fast variable block size motion estimation algorithm is introduced. 

It focuses on reducing the complexity by utilizing the characteristics of variable 

block size motion estimation. With the proposed algorithm, the encoding speed can 

be improved significantly while the coding performance can be maintained. The 

complexity and coding performance comparisons of the proposed algorithm and 

different fast motion estimation algorithms which are adopted in the reference 

software of H.264 are shown at the end of this chapter. 

4.1 Introduction 

Motion estimation and compensation is a video coding technique that exploits 

temporal redundancy between pictures in a video to compress the video efficiently. 

Many video coding standards such as MPEG-1, 2，4 and H.261, H.263 use this 

technique with fixed block size. H.264 also applies it to encode videos with some 

modification. Instead of fixed block size, H.264 uses variable block size to improve 

the coding efficiency. However, variable block size motion estimation is 

computational intensive and thus fast motion estimation algorithms are required to 

reduce its complexity. In H.264, seven different block types (16x16, 8x16, 16x8, 8x8, 

4x8, 8x4 and 4x4) are adopted. Each block type requires performing motion 

estimation and therefore the total time required for variable block size motion 

estimation is very long. 

For finding a best match during the motion estimation process, a cost function is 

necessary. In the reference software of H.264, the sum of absolute difference (SAD) 
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is a part of the cost function and it is the most complex part. Consequently, reducing 

S A D computation can significantly reduce the total time required for motion 

estimation. 

In the literature, some fast motion estimation algorithms such as those proposed in 

[1-3] and [5-9] concentrate on reducing the number of search points without reusing 

SAD. Fast Full Search (FFS), the fast motion estimation algorithm adopted in the 

reference software of H.264 for reducing the complexity of Full Search while 

maintaining the coding efficiency, uses a fixed search center for the motion 

estimation of the seven block types within the same macroblock. The SADs of each 

of the sixteen 4x4 blocks are pre-computed and stored. Therefore, these stored SADs 

can be reused during the motion estimation processes of all the seven block types. 

This can significantly reduce the complexity of the variable block size motion 

estimation process and thus FFS is less complex than Full Search. Even though FFS 

considers SAD reuse, it is not fast enough because it still performs Full Search once 

for each macroblock. The algorithm proposed in [4] also considers SAD reuse 

without pattern-based motion estimation and this may not be very accurate. W e 

propose to reuse S A D with pattern-based motion estimation and refinement search to 

reduce the motion estimation time while maintaining good coding performance in 

terms of PSNR and bitrate. 
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4.2 Proposed Fast Motion Estimation Algorithm 

4.2.1 Best Initial Motion Vector 

At the beginning, the availabilities of the neighboring blocks A and B of the current 

block are derived. Blocks A and B are the left and upper block of the current block, 

respectively, as shown in Figure 4.1. When the neighboring block A or B exceeds the 

boundary of the current slice or is intra-coded, that neighboring block is unavailable. 

Otherwise, it is available. 

16x16 block type is evaluated first, followed by 8x16，16x8, 8x8, 4x8, 8x4 and 4x4. 

The following process is performed only when block type is 16x16. Other block 

types do not require to perform it. At most three initial candidate search points can be 

derived. When blocks A and/or B are available, their motion vectors, which are used 

to derive initial candidate search points, are available and are used to derive the first 

and/or the second initial candidate search points. The prediction motion vector 

defined in the H.264 standard, i.e. the median of the motion vectors of the left block, 

upper block, upper-left or upper-right block, is used to derive the third initial 

candidate search point. 

Finally, the costs of each of these initial candidate search points are computed. The 

one with the minimum cost is the best initial candidate search point and the 

corresponding motion vector is the best initial motion vector (When the motion 

vector used for deriving an initial candidate search point is not available, the cost of 

the corresponding initial candidate search point is regarded as larger than those of the 

others.). The cost function is defined by Equation 4.1. 
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Cost = S A D + A,(QP) X bit ̂vd (4.1) 

where S A D is the sum of absolute difference between the current block and a 

block in the reference frame, 

？i(QP) is the Lagrange multiplier whose value depends on QP, the 

quantization parameter, and 

bitMVd is the number of bits used to encode the motion vector difference 

(motion vector - prediction motion vector). 

The best initial motion vector is used to derive the center of a fixed initial search 

pattern. The initial search pattern changes according to the search range and this will 

be discussed in Section 4.2.2. The best initial motion vector derived in the above 

process is used for all other block types, i.e. 8x16, 16x8, 8x8 4x8，8x4 and 4x4, 

within the same macroblock. 

B 

小I ŝ  
Figure 4.1 Neighboring blocks A and B of the current block N. 

4.2.2 Initial Search Pattern 

The best initial motion vector is used to derive the center of a fixed initial search 

pattern. The fixed initial search pattern consists of two parts called the center part 

and the outside part. The candidate search points in the outside part are for handling 
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large motion situations while those in the center part are for handling small motion 

situations. The center part is fixed and does not depend on search ranges. The outside 

part changes according to the search range, as illustrated in Figure 4.2. Figure 4.2 (a) 

illustrates the center part, "-1" indicates the best initial candidate search point derived 

in Section 4.2.1. “-1”，"0" and "1" are the indices of the candidate search points. 

Candidate search points with index equals to 1 are at the boundary and the others are 

not at the boundary of the center part. Figure 4.2 (b) illustrates the center part and 

outside part. 

Equations 4.2 and 4.3 are used to derive the number of layers of the outside part and 

the distance between each layer of the outside part and the center part. S is the 

number of layers and L (n) is the distance between layer n and the center part. Table 

4.1 shows some examples to illustrate the relationship among the search range, S and 

L(n). 

S=Tnmcate(log/eareyange)) (4.2) 

L(n) = T n m c a t e ( S e— 2， )， ^ & ^ (4 3) 

If S > 0，both the center part and the outside part are required and Equation 4.3 is 

evaluated to determine the positions of the candidate search points in the outside part. 

If S = 0，only the center part is required, n is an integer which is greater than or 

equals to 1 and smaller than or equals to S. Truncate ( ) truncates the result toward 

zero, for example, Truncate (1.8) = 1. 
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Search range <8 8 16 32 64 

S 0 1 2 3 4 

L(l) 4 8 16 32 

L(2) 4 8 16 

L(3) 4 8 

L(4) 4 

Table 4.1 Examples for illustrating the relationship among the search range, S and 

L(n). 

• T • • 

^ jM m m 

§ , L(2) 
\! V < >1 
丄 丄 • • • 

I • • 
• • • • 國 • • 

• • 

I I I I I I I I L(1) • • • 
I I I I I I I ^ ^ 

三 二 • • • 
~__o __g 

I I I I I 11 • • • 

(a) (b) 

Figure 4.2 Initial search pattern, (a) only the center part, (b) the center part and the 

outside part for S = 2. 

The candidate search points in the initial search pattern required to be evaluated for 

all the block types. First, the current macroblock is partitioned into sixteen 4x4 

blocks and the SADs, called SAD4X4S, of each of them are pre-computed with the 
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candidate search points in the initial search pattern. Then each SAD4X4 is stored and 

can be reused for computing the true SADs of all block types within the same 

macroblock. Since all the block types use the same best initial motion vector, 

SAD4X4S can be reused. This can reduce the complexity of the variable block size 

motion estimation process significantly. 

4.2.3 Initial Search Process and Search Pattern Improvement 

Process 

The costs of all candidate search points in the initial search pattern are computed 

with Equation 4.1 (SAD can be computed by summing the corresponding SAD4X4S). 

The one with the minimum cost is defined as the best initial search pattern candidate 

search point (BISPCSP). 

When block type is 16x16, go to Section 4.2.3.1. 

For the other block types, the cost of another candidate search point, called improved 

candidate search point (ICSP), which is derived from the prediction motion vector 

defined in the H.264 standard is evaluated. 

When block type is 8x16 or 16x8 and the cost of ICSP is smaller than that of 

BISPCSP, ICSP is defined as motion estimation center (MEC) and motion estimation 

process defined in Section 4.2.4.1 is carried out. Otherwise, proceed to Section 

4.2.3.1. 

For 8x8 block type, when the cost of ICSP is smaller than that of BISPCSP, ICSP is 

defined as the center of an improved search pattern (ISP) and ISP of that 

sub-macroblock is available. It is fixed for all search ranges as illustrated in Figure 
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4.3. All of its candidate search points are evaluated when it is available. Since a 

sub-macroblock is 8x8，it can be partitioned into four 4x4 blocks and their SAD4X4S 

are computed and stored. Therefore, the SAD4X4S can be reused to evaluate the 

candidate search points in ISP for all sub-macroblock types of that sub-macroblock. 

If the best candidate search point is in ISP, go to Section 4.2.3.2. Otherwise, go to 

Section 4.2.3.1. 

For 4x8，8x4 or 4x4 block type, when the ISP of the corresponding sub-macroblock 

is available, the costs of its candidate search points (SAD4X4S can be reused) are 

compared with those of BISPCSP and ICSP. If the best candidate search point is 

BISPCSP, go to Section 4.2.3.1. If ICSP is the best, proceed to Section 4.2.4.1 with 

ICSP as M E C . Otherwise, the best candidate search point must be one of the 

candidate search points in ISP. Accordingly, proceed to Section 4.2.3.2 

= = I = 工 Z : 

= = 工 Z 工 = = 
= 3 = 2 = 3 = 

Figure 4.3 Improved search pattern (ISP), "0" is the center of ISP, "0" or “1” is 

non-boundary candidate search point and "2" is boundary candidate search point 

of ISP. 

4.2.3.1 BISPCSP Motion Estimation or Refinement Process Decision 

When BISPCSP is in the outside part or is at the boundary of the center part of the 

initial search pattern, proceed to Section 4.2.4.1 with BISPCSP as M E C . Otherwise, 

proceed to Section 4.2.4.2 with BISPCSP as refinement center. 
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4.2.3.2 ISP Motion Estimation or Refinement Process Decision 

When the best candidate search point is not at the boundary of ISP, proceed to 

Section 4.2.4.2 with it as the refinement center. Otherwise, proceed to Section 4.2.4.1 

with it as the M E C . 

4.2.4 Motion Estimation Process and Refinement Process 

The patterns used in the motion estimation process and the refinement process are 

illustrated in Figure 4.4. The patterns used for these two processes are changed 

according to different conditions. The decision process of using which of them is 

discussed in Section 4.2.4.1 and 4.2.4.2. 

4.2.4.1 Motion Estimation Process 

The center of the search window is defined as ICSP, the center of the initial search 

pattern, or the center of ISP, depending on where the M E C comes from. When the 

M E C is ICSP, the center of the search window is ICSP. When the M E C is in the 

initial search pattern or is in ISP, the center of the search window is set to the center 

of the initial search pattern or ISP, respectively. 

When the M E C is in the outside part of the initial search pattern or is ICSP, vertical 

hexagon search pattern is selected. Otherwise, star search pattern is selected. When 

the M E C is at the boundary of the center part of the initial search pattern or at the 

boundary of ISP, the block is assumed to have small motion and therefore star 
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pattern is selected to minimize the number of search points. If horizontal hexagonal 

search pattern is used instead of vertical hexagonal pattern, through experiments, the 

overall performance is degraded a little. This can be explained with the argument that 

[2] vertical motion is less likely than horizontal motion for natural video. 

Consequently, vertical hexagonal search pattern is used. 

After the search pattern is selected, the motion estimation process is performed as 

follows: 

Step 1) Six or four (depending on vertical hexagon or star search pattern is selected) 

candidate search points centered at the M E C are evaluated with the selected search 

pattern. If the best one is at the center, proceed to step 3; otherwise, proceed to step 

2. 

Step 2) With the best candidate search point in the previous search step as the center, 

three more candidate search points are evaluated with the same search pattern. If the 

best one is at the center, proceed to step 3; otherwise, repeat this step. 

Step 3) Perform the refinement process in Section 4.2.4.2 with the best candidate 

search point in the previous search step as refinement center. 

I I I I M I I 1*1 I I I I I I I I I I I I I I 
一 一 • 一 mil I I I 一 一 丨 春 | _ | 鲁 丨 

一 一 _ 一二 I l i l l I I I ! " 丨春11 •丨 
= • 二 • = 至 二 = 二 • = = • = = 

M i l l I I 1*1 I I I I I I M M I N 

(a) (b) (c) (d) 

Figure 4.4 (a) Star search pattern and (b) Vertical hexagon search pattern, square 

is the center and circles are the candidate search points which are evaluated in 
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each search step, (c) Small diamond refinement pattern and (d) Hexagon 

refinement pattern, square is the refinement center and circles are the candidate 

search points which will be evaluated. 

4.2.4.2 Refinement Process 

If the star search pattern is chosen as the motion estimation search pattern or the 

motion estimation process is not required, small diamond refinement pattern is 

selected as the refinement pattern. Otherwise, hexagon refinement pattern is chosen. 

Eight or four candidate search points centered at the refinement center are evaluated 

with the selected refinement pattern. The best one is defined as the best match. 

The above processes are summarized in Figure 4.5. 
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Find the best 
initial motion vector 
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Define the center 

and decide the type 
of initial search 

pattern 

Find BISPCSP 

16x16 , others 
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8x16 or 

16x8 
Choose BISPCSP or 

Choose BISPCSP Choose BISPCSP or ICSP or the best 
as center ICSP as center candidate search point 

of ISP as center 

^ Perform ME and/or ^ 
refinement process 

The best match 
is found 

Figure 4.5 Flow chart of the proposed S A D reuse motion estimation 

process. 

4.2.5 Motion Estimation Skip Process for B Pictures 

If the cost of a particular block type of list 1 is smaller than that of list 0 (list 0 and 

list 1 are the lists storing the reference pictures for motion estimation and 

compensation), the mean of the costs of that block type of list 1 will be updated. 

After the cost of one block type of list 0 is evaluated, it is compared with the 
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weighted mean of the cost of the same block type of list 1. Weighted mean is the 

mean multiplied by a weighting factor, in our experiments, which was set to 0.75. 

The weighting factor is adjusted according to whether high speed or good coding 

performance is demanded. If the cost of certain block type of list 0 is smaller than the 

weighted mean of the same block type of list 1，the motion estimation process of list 

1 for that particular block type will be skipped and the best M V of list 1 for that 

block type will be set to the prediction M V which is defined in the H.264 standard. 

To achieve better coding performance, this comparison process will be performed 

only if the number of samples used to compute the corresponding mean is larger than 

or equals to certain threshold, in our experiments, which was set to ten. Since SAD4X4 

requires to be computed and stored when block type is 16x16, this motion estimation 

skip process is not performed when block type is 16x16. 

4.3 Experimental Results 

The experiments were carried out using the H.264 reference software JM 10.2 [10] 

on PC with 3.2G Hz CPU and IG R A M . Two tests were carried out. The first test 

used only one I frame and all of the remaining frames were P frames and 150 frames 

were tested for each video sequence. The second test used only one I frame, there 

were two B frames between two consecutive I or P frames and 148 frames were 

tested for each video sequence. Slice QPs of I, P and B frames were 24，28, 32 and 

36. Only integer motion estimation was applied and the number of reference frames 

was one. R D O was turned off and all seven block types were evaluated with search 

range equaled to 16. The M E Time is computed by JM 10.2. All comparisons are 

with respect to FFS. The proposed algorithm is compared with four fast motion 
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estimation algorithms adopted in JM 10.2, namely Hybrid Unsymmetrical-cross 

Multi-Hexagon-grid Search (UMHS), simplified U M H S (SUMHS), Enhanced 

Predictive Zonal Search (EPZS) and FFS. The results showing the coding 

performances of the motion estimation algorithms in terms of PSNR variation or 

bitrate variation are in Table 4.2 and Table 4.3, respectively. The PSNR variation and 

the bitrate variation in the tables are computed with the method proposed in [11]. 

The measurement of the complexity used in the comparisons is derived Equation 4.4: 

ME Time FAST ME 

METime(%) = 100x( :~) (4.4) 
ME Timepps 

where Fast—ME is U M H S , S U M H S , EPZS or New which is the proposed 

algorithm, and 

M E Time is the motion estimation time computed by JM 10.2. 

From Table 4.2, 4.3 and 4.4, it can be observed that the motion estimation time of the 

proposed algorithm is the shortest and the coding performance in terms of bitrate 

variation or PSNR variation of the proposed motion estimation algorithm is similar 

to those of the other motion estimation algorithms. 

Figure 4.6 and Figure 4.7 show the R D curve comparisons of the motion estimation 

algorithms, it can be observed the RD-curves of the proposed algorithm are similar to 

those of FFS. 

Bitrate Variation (%) w.r.t. FFS PSNR Variation (dB) w.r.t. FFS 

Sequence UMHS SUMHS EPZS New UMHS SUMHS EPZS New 
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Carphone, C 3.84 8.11 2.57 4.61 -0.14 -0.29 -0.09 -0.17 

Coastguard, C 0.19 0.01 -0.24 0.20 0.00 0.00 0.01 -0.01 

Container, C 0.77 0.92 0.29 0.35 -0.03 -0.04 -0.01 -0.01 

Foreman, C 2.52 6.59 1.85 3.62 -0.09 -0.24 -0.07 -0.13 

Carphone, Q 0.96 3.40 1.29 1.93 -0.04 -0.14 -0.05 -0.08 

Child, Q 0.60 1.43 0.19 0.76 -0.04 -0.09 -0.01 -0.05 

Claire, Q 0.98 3.82 0.91 0.67 -0.04 -0.17 -0.04 -0.03 

Coastguard, Q 0.12 0.01 0.03 0.08 0.00 0.00 0.00 0.00 

Foreman, Q 3.38 7.63 1.47 3.82 -0.15 -0.33 -0.07 -0.17 

Suzie, Q 0.22 2.19 0.22 0.85 -0.01 -0.08 -0.01 -0.03 

Table, Q 1.81 3.19 1.09 2.78 -0.09 -0.15 -0.05 -0.13 

Trevor, Q 0.53 1.44 0.85 0.82 -0.02 -0.06 -0.04 -0.04 

Average 1.33 3.23 0.88 1.71 -0.055 -0.133 -0.037 -0.072 

I 
Table 4.2 Bitrate and PSNR comparisons, C is GIF, Q is QCIF for IPPPPPPPPP 

G O P structure.... 

Bitrate Variation (%) w.r.t. FFS PSNR Variation (dB) w.r.t. FFS 

Sequence UMHS SUMHS EPZS New UMHS SUMHS EPZS New 

Carphone, C 2.53 6.03 1.79 3.25 -0.10 -0.23 -0.07 -0.13 

Coastguard, C -0.39 -1.54 -1.17 -0.58 0.01 0.06 0.05 0.02 
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Container, C 1.03 0.79 0.30 -0.53 -0.04 -0.03 -0.01 0.02 

Foreman, C 1.22 4.33 0.99 3.37 -0.05 -0.17 -0.04 -0.13 

Carphone, Q 0.87 2.76 1.12 0.52 -0.04 -0.12 -0.05 -0.02 

Child, Q 0.01 0.90 -0.22 -0.28 0.00 -0.06 0.01 0.02 

Claire, Q 1.81 4.74 1.40 0.38 -0.08 -0.20 -0.06 -0.02 

Coastguard, Q 0.08 -0.70 -0.89 -0.65 0.00 0.03 0.04 0.03 

Foreman, Q 0.97 3.65 1.17 1.84 -0.05 -0.17 -0.05 -0.09 

Suzie, Q -0.33 0.05 -0.99 -0.26 0.01 0.00 0.04 0.01 

Table, Q 1.65 1.90 1.33 3.05 -0.08 -0.09 -0.06 -0.15 

Trevor, Q 0.12 0.13 -0.46 -0.73 -0.01 -0.01 0.02 0.04 

Average 0.80 1.92 0.36 0.78 -0.034 -0.082 -0.016 -0.033 

L-

Table 4.3 Bitrate and PSNR comparisons, C is CIF, Q is QCIF for IBBPBBPBBP 

G O P structure.... 

ME Time (%) w.r.t. FFS ME Time (%) w.r.t. FFS 

IPPPPPPPPP... IBBPBBPBBP... 

Sequence UMHS SUMHS EPZS New UMHS SUMHS EPZS New 

Carphone, C 15.09 10.46 16.02 9.65 15.30 10.12 15.53 7.54 

Coastguard, C 25.01 17.14 22.23 10.85 26.66 17.68 23.15 9.54 

Container, C 13.37 10.00 14.51 8.67 12.92 9.34 14.05 6.91 
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Foreman’ C 17.89 11.75 22.25 9.59 18.86 12.15 18.05 8.28 

Carphone, Q 15.52 10.94 16.13 9.36 16.61 9.78 15.87 7.57 

Child, Q 13.31 9.71 14.51 8.32 13.80 9.47 13.85 6.89 

Claire, Q 10.11 8.12 11.63 7.66 10.46 7.25 11.31 6.32 

Coastguard, Q 23.16 15.74 19.45 9.25 22.67 15.81 21.35 9.62 

Foreman, Q 19.61 13.88 18.60 10.17 19.43 12.88 18.61 8.34 

Suzie, Q 16.25 11.28 15.40 8.69 15.84 11.39 15.79 8.45 

Table, Q 18.58 13.88 17.41 8.9 19.16 13.40 18.13 8.69 

Trevor, Q 16.21 11.47 15.49 8.55 16.74 11.03 15.20 6.87 

Average 17.01 12.03 16.97 9.14 17.37 11.69 16.74 7.92 

Table 4.4 Motion estimation time comparisons, C is CIF, Q is QCIF for 

IPPPPPPPPP... and IBBPBBPBBP…GOP structures. 

Rate Distortion Curve (Carphone, CIF) Rate Distortion Curve (Claire, QCIF) 

0 250 500 750 o 30 60 

Bit Rate (kbits/s) Bit Rate (kbits/s) 
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Rate Distortion Curve (Foreman, QCIF) Rate Distortion Curve (Table, QCIF) 

0 100 200 300 60 140 220 300 

Bit Rate (kbils/s) Bit Rale (kbits/s) 

Figure 4.6 RD-curve comparisons of different video sequences with different motion 

estimation algorithms for IPPPPPPPPP... G O P structure. 

Rate Distortion Curve (Carphone, CIF) Rate Distortion Curve (Claire, QCIF) 

〖丨•面�ii—面 
0 300 咖 900 0 25 50 75 

Bit Rate (kbits/s) B i t R a t e (kb i t s / s ) 

Rate Distortion Curve (Foreman, QCIF) Rate Distortion Curve (Table, QCIF) 

0 100 200 300 60 160 260 360 

Bit Rate (kbits/s) Bit Rate (kbits/s) 

Figure 4.7 RD-curve comparisons of different video sequences with different motion 

estimation algorithms for IBBPBBPBBP... G O P structure. 

From the experimental results, it can be observed that for videos with large motion, 

such as Carphone, Foreman and Table, the coding performance in terms of bitrate 

variation or PSNR variation of the proposed algorithm is not as good as that of FFS. 

. 4 - 1 8 



For the proposed algorithm, the center of the initial search pattern is fixed for all the 

blocks within a macroblock, but the true prediction motion vectors for these blocks 

may change greatly if the video contains large motion and the number of search 

points of the proposed algorithm is less than that of FFS. Therefore, the coding 

performance of the proposed algorithm is not as good as that of FFS for videos with 

large motion. For videos with small motion, such as Claire, Coastguard, Container, 

etc, the coding performance of the proposed algorithm is similar to that of FFS. From 

the experimental results, it can also be observed that the motion estimation time of 

the proposed algorithm is the shortest amongst the five fast motion estimation 

algorithms. 

The proposed algorithm reduces the motion estimation time by approximately 90% 

when compared with that of FFS with only a little degradation of coding 

performance in terms of PSNR and bitrate. The worst bitrate and PSNR variations of 

the proposed algorithm are +4.61% and -0.17dB, the best bitrate and PSNR 

variations are +0.08% and OdB for IPPPPPPPPP... G O P structure. The worst bitrate 

and PSNR variations are +3.37% and -0.15dB, the best bitrate and PSNR variations 

are -0.73% and 0.04dB for IBBPBBPBBP...GOP structure. The average coding 

performance of the proposed algorithm is similar to those of the others and the 

motion estimation time of the proposed algorithm is the shortest amongst the five fast 

motion estimation algorithms. Therefore, it can be concluded that the proposed 

algorithm reduces the complexity of variable block size motion estimation. 
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Chapter 5 Development of Real-Time H.264 Codec on Pocket PC 

H.264 achieves excellent coding performance and outperforms previous video 

coding standards. However, its complexity is very high, especially on encoder side, 

and the processing power of mobile device is limited. Accordingly, optimizations are 

required for real-time applications, especially on mobile platform. This chapter 

focuses on the development of a real-time H.264 codec on Pocket PC platform. 

Based on the proposed algorithms and optimization techniques, a Pocket PC 

software-based real-time H.264 codec is developed. Since the whole system is 

implemented in software, it is suitable for technology transfer. 

H.264 provides several profiles which include Baseline, Main, Extended and High 

Profiles for different applications. The Baseline Profile was chosen for developing 

the system. The main reason is that the complexity of the techniques in Baseline 

Profile is low when compared with those of the others and the performance is 

acceptable for mobile applications. Accordingly, this profile is the most suitable one 

for developing real-time system on mobile platform. 

There are many kinds of optimization techniques such as instruction level 

optimization, algorithmic optimization, code level optimization, etc. Generally, 

instruction level optimization applies SIMD (Single Instruction Multiple Data) 

technology to reduce the complexity. Normally several data are loaded into a single 

register, SIMD technology provides instructions to process these packed data in 

parallel. For example, when four data are loaded into a single register, one SIMD 

instruction can process four data at the same time. Therefore, the complexity can be 

reduced. The instruction level optimization can be applied to some highly complex 
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modules such as forward and inverse Integer Cosine Transform, S A D computation, 

interpolation, etc. After the instruction level optimization is performed, the 

complexity of these time consuming modules can be reduced significantly. 

In the following sections, we will focus on discussing about the algorithmic 

optimizations and code level optimizations followed by experimental results. The 

applications of the developed real-time codec will be discussed at the end of this 

chapter. 

5.1 Algorithmic Optimizations 

Algorithmic optimizations reduce the complexity of the system through algorithms 

with or without degradation of coding performance. The algorithms which are 

proposed and applied to optimize the codec include fast interpolation, fast integer 

and sub-pixel motion estimation, early skip termination, etc. The details of the fast 

integer motion estimation, early skip termination can be found in [27，28]. This 

section focuses on the proposed fast interpolation and sub-pixel motion estimation 

algorithms and an inverse Integer Cosine Transform and inverse quantization 

skipping process. 

5.1.1 Fast Sub-Pixel Motion Estimation 

Figure 5.1 illustrates the sub-pixel motion estimation used for Fast Full Search in the 

reference software of H.264. In the first step, the center square and the triangles are 

evaluated. Then, according to the best search point in the previous step, the 

surrounding eight quarter pixels are evaluated. The best one (the one with the 
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minimum cost which is derived with Equation 4.1) amongst the nine search points is 

the best match. In [2], the assumption, which states that the unimodal error surface in 

most cases for fractional pixel search holds true [12], is utilized. In our proposed 

sub-pixel motion estimation algorithm, this assumption is still utilized. 

_ _ _ ooo 
O A O A A 
O O O 

_ A • A _ 

A A A 

圓 圓 圖 

Figure 5.1 The sub-pixel motion estimation process used for Fast Full Search in the 

reference software of H.264. 

The proposed algorithm first finds a prediction best match. Three different search 

points are compared and the best one is the prediction best match. The three search 

points PO, PI and P2 are defined in Equation 5.1. After the prediction best match is 

found, it is regarded as the search center and a refinement search is performed. The 

search pattern selected for the refinement search is small diamond pattern as shown 

in Figure 2.8 (a). The search process terminates until the current best match is at the 

center or the cost of the best match in the current stage satisfies the condition defined 

in Equation 5.2. In our experiment, the values of a and b in Equation 5.2 were set to 

0.6 and 0.2. 

. 4-3 



PO = (0，0) 

P1 = (Pred - Int_best一match) % 4 (5.1) 

P2 = Pred % 4 

where % indicates modulus operation, 

Pred is the prediction motion vector, and 

Int_best_match is the best match of integer pixel block matching. 

(Pred and Int_best一match are in quarter pixel precision. PO, PI and P2 are 

expressed relative to Int—best_match.) 

if (best—cost < a X Threshold) or (best—cost < b x intra_mean_cost) 

the search process is terminated 

otherwise 

continue to search (5.2) 

where intra一mean_cost is the mean of the costs of the intra coded macroblocks, 

best_cost is the cost of the current best sub-pixel search point, 

a and b are tuning factors for achieving a good balance between 

complexity and coding performance, and 

Threshold is set to the cost of the integer pixel best match. 

In addition to the mentioned process, during our implementation, a matrix is used to 

record the sub-pixel search points which have already been checked. Therefore, the 

search points will not be searched repetitively. 

The experimental results illustrating the performance and complexity of the proposed 

algorithm are shown in Table 5.1. The experiment was performed on the Pocket PC 

platform with IPPPP... G O P structure. Q P was set to 28，32, 36 and 40. The ABitrate 
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or the equivalent APSNR are computed with the method proposed in [11] when 

compared with the sub-pixel motion estimation algorithm used for Fast Full Search 

in the reference software of H.264. The Encoding Time (%) is derived with Equation 

5.13. From the results, it can be observed that the increment of bitrate is less than 1 

% and the reduction in the total encoding time is more than 10% on average. 

Sequence ABitrate (%) APSNR (dB) Encoding Time (%) 

Carphone ^ -0.01 -15.4 

Container -0.01 -10.27 

Foreman 2.3 -0.11 -17.61 

Grandma 0.42 -0.01 -8.34 

MissA \M -0.07 -9.66 

Salesman -0.01 -11.23 

Silent 0 ^ -13.06 

Average 0.686 -0.033 -12.224 

Table 5.1 The performance and complexity of the proposed algorithm. 

5.1.2 Interpolation 
5.1.2.1 Revision of Luma Interpolation 

The luma interpolation process of H.264 includes two parts, the half and quarter 

pixel interpolation. For the half-pixel interpolation, a six-tap filter with tap values (1， 

-5，20, 20，-5，1) is applied. In Figure 5.2, aa, bb, cc, dd, ee, ff, gg and hh are the 

intermediate values of the half pixels. They are derived in a way similar to Equations 

5.6 and 5.7. b, h, j, m, and s are the half pixels which are derived in a way similar to 

Equations 5.3，5.4, 5.5，5.8 and 5.9. The quarter pixels are derived in a way similar to 

Equations 5.10 and 5.11. 
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b = Clipl ((bl + 16) » 5) (5 3) 

h = Clipl ((hi + 16) » 5 ) (5 4) 

j = Clipl((jl+512)»10) (5 5) 

where bl, hi and jl are derived with Equations 5.6，5.7，5.8 and 5.9. 

bl =(E-5F + 20G + 20H - 51 + J) (56) 

hi =(A-5C + 20G + 20M - 5R + T) (57) 

jl = cc - 5dd + 20hl + 20ml -5ee + ff • (5 8) 

or 

jl =aa-5bb + 20b 1 + 20s 1 - 5gg + hh (5.9) 

a = (G + b+ 1 ) » 1 (5.10) 

e = (b + h+ 1 ) » 1 (5.11) 

Clipl(x): If X > (1 « BitDepth )-l,x = ( 1 « BitDepth ) — 1 

else if X < 0, X = 0 (5.12) 

else X = X 

where « is arithmetic left shift, 

» is arithmetic right shift, and 

BitDepth is the number of bits used to represent each luma component. 

The results of Equations 5.8 and 5.9 are the same and this is proved as follows: 

cc = Yi - 5Y5 + 20E + 20K - 5Zi + Z5 

dd = Y2 - 5Y6 + 20F + 2OL-5Z2 + Ze 

hi = A - 5 C + 20G + 2 0 M - 5 R + T 

ml = B - 5D + 20H + 20N -5S + U 

ee = Y3 - 5Y7 + 201 + 2OP-5Z3 + Z7 

ff = Y4 - 5Y8 + 20J + 20Q - 5Z4 + Zg 
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jl =cc-5dd + 20hl + 20ml - 5ee + ff = [ Yi - 5Y5 + 20E + 20K - 5Zi + Z5 + 

Y4 - 5Y8 + 20J + 20Q - 5Z4 + Zg]-

5 [ Y2 - 5Y6 + 20F + 2OL-5Z2 + Z6 + 

Y3 - 5 Y7 + 201 + 20P - 5Z3 + Z7] + 

20 [ A - 5C + 20G + 20M - 5R + T + 

B - 5D + 20H + 20N - 5S + U] 

m m _ A 國 _ • 

m _ 0 A [1 圓 顯 

m _ _ [ £ 

®®®® 
A A A®A®A A A 

0®®© 

圖 國 0 A因 國 圓 

_ 國 因 众 圓 m 圓 

_ _ S3 A S _ 圔 

Figure 5.2 The squares are integer pixels, b, h, j, m, s are half pixels and the circles 

are quarter pixels. 
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aa = Yi - 5Y2 + 20A + 20B - 5Y3 + Y4 

bb = Y5 - 5Y6 + 20c + 20D - 5 Y7 + Yg 

bl = E - 5F + 20G + 20H - 51 + J 

si = K - 5 L + 20M + 20N - 5P + Q 

gg = Z, - 5Z2 + 20R + 20s - 5Z3 + Z4 

hh = Z5 - 5Z6 + 20T + 20U - 5Z7 + Zg 

jl = aa- 5bb + 20bl + 20sl - 5gg + hh = [ Y, - 5Y2 + 20A + 20B - 5Y3 + Y4+ 

Z5 - 5Z6 + 20T + 20U - 5Z7 + Zg]-

5 [ Y5 - 5 Y6 + 20c + 20D - 5 Y7 + Y8 + 

Zi - 5Z2 + 20R + 20s - 5Z3 + Z4] + 

20[ E - 5 F + 20G + 20H-5I + J + 

K - 5 L + 20M + 20N - 5P + Q] 

=cc - 5dd + 20hl + 20ml - 5ee + ff 

The details of the luma interpolation process can be found in [30]. 

5.1.2.2 Fast Interpolation 

In Section 5.1.2.1, the interpolation process for luma component is reviewed. 

Certainly, interpolation of all sub-pixel positions consumes a large amount of 

computing resources and thus this is not a suitable implementation for real-time 

applications. It can be observed that the interpolation of half-pixel is highly complex 

because a six-tap filter is used, and the derivation of quarter pixel requires at least 

one half pixel. Therefore, repetitive interpolation of the half pixel should be avoided. 
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For the sub-pixel motion estimation algorithm adopted in the reference software of 

H.264, the half pixels are derived and stored first. Then the quarter pixels can be 

derived from the stored half pixels. Unlike this algorithm, the fast sub-pixel motion 

estimation algorithm introduced in Section 5.1.1 has chances that the half pixels are 

not derived but they are required for deriving quarter pixels which are necessary to 

be evaluated in the current stage. To reduce the complexity, during our 

implementation, when a half pixel is derived (no matter it is derived because it is 

required or for deriving a quarter pixel), its value is stored for future usage. This can 

greatly reduce the complexity. In Figure 5.3, the triangles are the half pixels which 

may be stored during the proposed sub-pixel fast motion estimation process. The 

center square is the best integer pixel best match. 

圓 A _ A 圓 

A A A A A 

_ A • A _ 

A A A A A 

_ A _ A _ 

Figure 5.3 Triangles represent the half pixels which may be stored during the 

proposed sub-pixel fast motion estimation process. 

Table 5.2 illustrates the reduction in complexity when the fast interpolation method is 

applied. The setting of the experiment was the same as that applied for the proposed 

fast sub-pixel motion estimation algorithm. The Encoding Time (%) is derived with 

‘ 5-9 



Equation 5.13. It can be observed that the total encoding time can be reduced by 

about 4.1% on average. In fact, the encoding time for the sequence Foreman is the 

longest as shown in Table 5.9. From Table 5.2，the total encoding time reduction for 

Foreman is about 7.4 % and thus this method can help to achieve real-time 

applications efficiently. In addition, this method reduces the complexity without 

degrading the coding performance. 

Sequence Encoding Time (%) 

Carphone -6.421 

Container -0.775 

Foreman -7.429 

Grandma -2.650 

MissA -3.746 

Salesman -3.183 

Silent -4.677 

Average -4.126 

Table 5.2 The reduction in complexity when the fast interpolation method is applied. 

r J. T. New一Encoding-Time — Original一Encoding time 
Encoding Time (%) = ^ . … f . — — ： ———xlOO (5.13) 

Original_Encoding_time 

5.1.3 Skipping Inverse ICT and Inverse Quantization Depends on 

Coded Block Pattern 

In H.264 standard, there is a syntax element called coded—block—pattern (CBP). In 

the Baseline Profile, a macroblock comprises a 16x16 luma block and two 8x8 

chroma blocks. The CBP is used to specify which of the luma or chroma 8x8 blocks 

contains non-zero transform coefficient levels. For macroblock type which is not 

equal to Intra一 16x16, this syntax element is present in the bitstream and two 
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variables CodedBlockPattemLuma and CodedBlockPattemChroma are derived with 

Equations 5.14 and 5.15. When macroblock type is Intra一 16x16, the 

CodedB lockPattemLuma and CodedB lockPattemChroma can be derived from the 

macroblock type. 

CodedB lockPattemLuma = coded_block_pattem % 16 (5.14) 

CodedB lockPattemChroma = codecLblock—pattern /16 (5.15) 

where % is the modulus operation, and 

/ is integer division with truncation of the result toward zero. 

CodedB lockPattemLuma specifies which of the four 8x8 luma blocks contains 

non-zero transform coefficient levels. The meaning of CodedB lockPattemChroma is 

specified in Table 5.3 [30]. 

C o d e d B l o c k P a t t e r n C h r o m a D e s c r i p t i o n 

Q All chroma transform coefficient levels are equal to 

a 
1 One or more chroma D C transform coefficient levels 

shall be non-zero valued. All chroma A C transform 

coefficient levels are equal to 0. 

2 Zero or more chroma D C transform coefficient 

levels are non-zero valued. One or more chroma A C 

transform coefficient levels shall be non-zero valued. 

Table 5.3 The meaning of CodedB lockPattemChroma [30]. 

It is well known that inverse ICT and inverse quantization are time consuming 

processes. If their implementation process can be skipped, the complexity of the 

codec can be reduced. From the above explanation, it can be noticed that 

CodedBlockPattemLuma and CodedBlockPatternChroma can be used to skip some 
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of the inverse ICT and inverse quantization processes because they specify whether 

the quantized transform coefficients of a block are all zeros. The inverse ICT or 

inverse Hadamard Transform and the inverse quantization process for luma and 

chroma D C or A C blocks can be skipped when the quantized coefficient levels of a 

block are all zeros. The output matrix can be derived by assigning zeros to all of the 

elements of the matrix. Consequently, the complexity of the codec can be reduced 

significantly. 

5.2 Code Level Optimizations 

Even though algorithms can be applied to reduce the complexity of a system, it is 

still insufficient to develop a Pocket PC based real-time H.264 codec without 

applying other optimization techniques. In this section, code level optimizations are 

discussed. There are many code level optimization techniques, such as Loop 

Optimizations, Numerical Operation Optimizations, Memory Operation 

Optimizations, etc. The following are some examples for Loop Optimizations. 

5.2.1 Merging Loops 

As implied from its name, this method aims to reduce the number of loops by 

combining them. This method is simple but efficient. Consider the following C code: 

Nnn-Optimized Code: 

for (a=0; aclOO; a++) 

x[a] 二 a; 

for (b=20; b<120; b++) 
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y[b-20] = b; 

Optimized Code: 

for (a=0; aclOO; a++){ 

x[a] = a; 

y[a] = a+20; 

} 

Since a/or loop consists of initializations, comparisons and counters, remove a for 

loop can reduce the complexity in a great amount. In the above example, a/or loop is 

removed and one initialization, 100 comparisons and 100 additions are removed. 

5.2.2 Moving Independent Code outside the Loop 

Each statement within a loop is implemented many times. Accordingly, the 

complexity of a loop can be reduced by pre-computed some variables or statements 

which are invariant within the loop. Consider the following example: 

Non-Optimized Code: 

for (y=0; y<h; y++){ 

for (x=0; x<w; x++){ 

N[y][x] = [(8-Fx)*(8-Fy)*P[y][x] + Fx*(8-Fy)*[y][x+1] + 

(8-Fx)*Fy*P[y+l][x] + Fx*Fy*P[y+l][x+l] + 32] » 6 

} 

} 
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Optimized Code: 

Aweight = (8-Fx)*(8-Fy); 

Bweight = Fx*(8-Fy); 

Cweight = (8-Fx)*Fy; 

D weight = Fx*Fy; 

for (y=0; y<h; y++){ 

for (x=0; x<w; x++){ 

N[y][x] = [Aweight*P[y][x] + Bweight* [y][x+l] + 

Cweight*P[y+l][x] + Dweight*P[y+l][x+l] + 32] » 6 

} 

} 

It can be noticed that the above example is the implementation of Equation 1.10’ i.e. 

the chroma interpolation process. In the above example, the loop-independent codes 

are implemented outside the loop. Accordingly, the number of multiplications within 

the loop is reduced and the complexity of the chroma interpolation process is 

reduced. 

5.2.3 Unrolling Loops 

As mentioned before, afar loop consists of initializations, comparisons and counters. 

Unrolling loops can reduce the number of comparisons and counters and thus this 

may reduce the complexity. The following is an example to illustrate the unrolling 

loops process. 
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Original Code: 

int S A D = 0; 

for (y=0; y<4; y++){ 

for (x=0; x<4; x++){ 

SAD = S A D + abs(Org[Y+y][x] - Ref[Y+y][x]); 

} 

} 

Code with unrolled loops: 

int SAD = 0; 

for (y=0; y<4; y++){ 

SAD = S A D + abs(Org[Y+y][x] - Ref[Y+y][x]); 

SAD = S A D + abs(Org[Y+y][x+l] - Ref[Y+y][x+l])； 

SAD = S A D + abs(0rg[Y+y][x+2] - Ref[Y+y][x+2]); 

SAD = S A D + abs(0rg[Y+y][x+3] - Ref[Y+y][x+3]); 

} 

In the above example, the number of comparisons and additions required for the 

loops is reduced. Ideally, the complexity of the codes is reduced. However, this 

increases the code size and can produce a situation in which the program ceases to fit 

within the available R A M and the operating system would be forced to use the hard 

disk which is much slower. Cache also has a size limit and situations may occur in 

which an unrolled loop would not fit within it. Therefore, unrolling loops or not 

depends on different situations and can only be decided through experiment [29]. 
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5.3 Experimental Results 

The codec was implemented on a H P 4700 Pocket PC which has an embedded 

PXA27x processor produced by Intel. The processor runs at 624 M Hz and the 

Pocket PC has 92M R A M . The profile selected is the Baseline Profile. Seven QCIF 

4:2:0 video sequences were tested. The sequences include Carphone, Container, 

Foreman, Grandma, Miss A, Salesman and Silent. Some of them have large motion 

and some have less. Two tests were carried out. The first test used only intra coding 

and 150 pictures were tested for each video sequence. The second one used only one 

I picture and all of the remaining pictures were P pictures and 150 frames were tested 

for each video sequence. The tested QPs were 28，32，36 and 40. Deblocking filter 

was applied for both tests. All the bitstreams generated by the developed encoder can 

be decoded by JM 10.1 or the developed decoder correctly. 

After all the optimizations, which include algorithmic optimizations, code level 

optimizations and instruction level optimizations, are applied to the codec, the 

encoding and decoding speeds of the codec were evaluated. In addition, the coding 

performance of the encoder was compared with those of J M 10.1, the reference 

software of H.264, and x.264 which is a well known open source H.264 encoder and 

has excellent encoding speed. The coding performance is compared in APSNR or the 

equivalent ABitrate which are computed with the method proposed in [11]. The 

APSNR and ABitrate are with respect to JM 10.1. In addition, the RD-curves are 

plotted and the subjective quality of the reconstructed video sequences is shown. 

Table 5.4 and Table 5.7 illustrate the coding performance of the developed encoder 

for mil...and IPPPP... G O P structures, respectively. Table 5.5 and Table 5.8 
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compare the coding performance of the developed encoder with that of x.264. It can 

be observed that the performance of developed encoder is better than that of x.264 

and the coding performance is similar to that of JM 10.1 on average. The 

performance of the developed encoder is even better than that of JM 10.1 when only 

intra coding is applied. Figure 5.4 and 5.5 show the R D curves of JM 10.1，the 

developed encoder and x.264 encoder for comparisons. From Figure 5.5，it can be 

noticed that the coding performance of our encoder is not as good as that of the 

reference software when the bitrate is high. The reason is that the integer pixel 

motion estimation algorithm [27] employed in our encoder is susceptive to be 

trapped in local minimum easily. When bitrate is low, the best match is most likely 

located near the prediction motion vector because the cost of encoding the motion 

vectors is large. In contrast, the cost of encoding the motion vectors is low when 

bitrate is high and thus the best match may not be located near the prediction motion 

vector. Therefore, the employed integer pixel motion estimation algorithm may not 

find the global minimum search point and the coding performance is affected. 

Figure 5.6 shows the visual quality of the decoded pictures. All the pictures in the 

figure are the 150'̂  picture of each sequence. The pictures in the first column are the 

original pictures, and those in the second and third columns are the decoded pictures 

with mil... and IPPPP... G O P structures, respectively and QP is equaled to 28. It 

can be observed that the decoded pictures have a little distortion especially in highly 

texture region such as the hair of a human. The pictures shown in Figure 5.6 are 

displayed by a desktop PC because the display of the Pocket PC is only 16-bit. 

Accordingly, the Pocket PC introduces some distortion to the decoded video. 

From Table 5.6 and Table 5.9, it can be observed that the picture rate of the 

. 4-17 



developed encoder is more than 25 frames per second (fps) for all the tested video 

sequences with different QPs. Accordingly, it can encode video with QCIF 4:2:0 

format in real-time on the Pocket PC. 

Table 5.10 and Table 5.11 show the decoding speed of the developed decoder for 

different video sequences with IIIII... and IPPPP... G O P structures, respectively, and 

with different QPs. The decoder can decode, on average, 45.028 and 163.25 fps for 

IIIII... and IPPPP... G O P structures, respectively. Accordingly, the decoding speed 

of the developed decoder is much better than 25 fps and thus the decoder is suitable 

for real-time applications. 

Q P 28 32 36 40 

Sequence PSNR B R PSNR B R PSNR B R PSNR B R 

(dB) (kbps) (dB) (kbps) (dB) (kbps) (dB) (kbps) 

Carphone 38.16 631.3 35.26 434.1 32.59 300.9 29.88 204 

Container 37.00 786.3 34.1 537.1 31.36 357.5 28.76 240.3 

Foreman 36.57 791.2 33.72 519 31.05 343 28.58 236.3 

Grandma 37.06 671.8 34.31 424.1 32.03 263.3 30.07 162.0 

MissA 40.7 363.3 38.16 241.5 35.81 162.5 33.57 110.4 

Salesman 36.03 915.9 32.99 586.7 30.34 367.2 27.99 223.9 

Silent 36.22 851.6 33.36 553.7 30.89 350.5 28.5 230.0 

Table 5.4 Coding performance of the developed encoder for IIIII... G O P structure. 
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Sequence Developed Encoder x.264 

APSNR (dB) ABitrate (%) APSNR (dB) ABitrate (%) 

Carphone 0.01 -0.13 -0.17 2.46 

Container 0.21 -3.03 0.04 -0.55 

Foreman 0.06 -0.92 -0.09 1.26 

Grandma 0.14 -2.53 -0.09 1.72 

MissA 0.09 -1.23 -0.34 5.23 

Salesman 0.08 -1.21 -0.07 1.17 

Silent -0.02 0.45 -0.21 3.6 

Average 0.08 -1.23 -0.13 2.13 

Table 5.5 Coding performance comparisons of the developed encoder and x.264 

encoder for IIIII... G O P structure. 

Q P 28 32 36 40 

Sequence (fps) (fps) (fps) (fps) 

Carphone 26.28 26.35 27.9 27.84 

Container 26.41 27.25 27.8 27.82 

Foreman 28.03 28.76 29.41 29.05 

Grandma 25.79 26.92 27.15 27.19 

MissA 26.52 26.6 26.8 26.84 

Salesman 27.72 28.01 28.43 28.15 

Silent 28.3 28.63 28.54 27.78 

Average 27 27.5 28.04 27.81 

Table 5.6 Encoding speed of the developed encoder in terms of fps for IIIII... G O P 
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structure. 

Q P 28 32 36 40 

Sequence PSNR B R PSNR B R PSNR B R PSNR B R 

(dB) (kbps) (dB) (kbps) (dB) (kbps) (dB) (kbps) 

Carphone 37.18 131.12 34.12 66.49 31.43 33.07 28.76 17.33 

Container 36.04 57.63 33.25 29.15 30.60 14.58 28.07 8.11 

Foreman 35.85 166.94 33.05 86.40 30.32 46.37 27.65 27,50 

Grandma 36.65 48.44 33.97 22.69 31.67 11.39 29.71 6.36 

MissA 40.03 39.67 37.37 20.79 34.99 11.99 32.40 7.89 

Salesman 35.48 76.87 32.50 41.90 29.82 22.57 27.38 12.13 

Silent 35.76 96.97 32.86 56.28 30.37 31.84 27.87 18.02 

Table 5.7 Coding performance of the developed encoder for IPPPP... G O P structure. 

Sequence Developed Encoder x.264 

APSNR (dB) ABitrate (%) APSNR (dB) ABitrate (%) 

Carphone -0.39 9.52 -0.51 12.44 

Container -0.35 8.14 -0.17 3.53 

Foreman -0.47 10.5 -0.6 13.54 

Grandma -0.27 7.18 -0.3 8.21 

MissA 0.64 -10.46 0.07 -I.34 

Salesman -0.47 10.73 -0.31 6,79 

Silent -0.39 8.66 -0.31 6.56 

Average -0.24 6.32 -0.3 7.1 

丨 Table 5.8 Coding performance comparisons of the developed encoder and x.264 
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encoder for IPPPP... G O P structure. 

QP 28 32 36 40 

Sequence (fps) (fps) (fys) (fps) 

Carphone 31.46 39.06 49.08 62.5 

Container 60.88 73.24 81.52 88.44 

Foreman 28.07 33.24 39.72 48.32 

Grandma 59.34 69.44 79.45 90.14 

MissA 54.19 63.34 71.56 79.45 

Salesman 55.15 62.09 71.02 82.24 

Silent 43.6 49.87 57.87 68.43 

Average 47.53 55.75 64.32 74.22 

Table 5.9 Encoding speed of the developed encoder in terms of fps for IPPPP... G O P 

structure. 

1 0 . 1 - ^ J M 10.1 ~ ~ ~ 
Our Encoder n r i p Our Bicoder „ . . 
y 264 Carphone ( jUh ^ 264 Container QCIF 

39 38 ^ 

i z 香兄 y Z 
I 35 I 34 7 之 

33 " " " g 32 —— 

一 31 > 30 
29 ‘ ‘ ‘ 2 8 ‘ J 

200 300 400 500 600 200 400 600 800 
Bitrate (k bits/s) Bitrate (k bits/s) 

I - * — J M l O . l P - ^ J M 10.1 ~ ‘ 
— 發 J n ^ Foreman QCIF 巧 axler| G i ^ - a Q C I F 

37 — ^ ^ 37 

CQ 35 — S . . ^ ^ ^ ^ ^ 
3 3 35 ^ ^ 

i : : = 3 Z ± = —— 
^ 29 -r^ ：——— 31 

27 ‘ ^ ^ 29 L- ^ , 
200 400 600 800 150 350 5 5 � 

Bitrate (k bits/s) Bi^te (k bits/s) 

‘ 5-21 



丨 10.1r -^JMlO.l 
” • " 靜 MissA QCIF Salesman QCIF 

: : 丨 ； ： 瞻 纖 i 灘 I 
100 200 300 400 200 400 600 800 

Bitrate (k bits/s) Bitrate (k bits/s) 

10.1 
Our Bicodei ^ 
x.264 Silent QCIF 

37 I:,..…....：；..,I . . / , , 

29 ？ 寫 幽 粥 : V 』 ' 
271 ::、.:..，〜:...::〈妖【：：“̂二：‘. 

200 400 600 800 
Bitrate (k bits/s) 

Figure 5.4 R D curves of JM 10.1, the developed encoder and x.264 encoder for 

different video sequences with IIIII... GOP structure. 

| - ^ J M 1 0 . 1 “ 10.1 ~ 
Our Encodei ^ 旧口 Our Encoder 
r264 I Carphone QCIF x.264 Container Q Q F 

I M t e i t e ^ ^ 27 丨 " 〜 ： 纖 ； I 

27 1 。 B i A b _ 110 0 B&mts/sf ^ 

1 1 - • - J M 1 0 . 1 | ~ * ~ J M 1 0 . 1 “ 
- » — Our Encoder Our Encodei 

x.264 Foreman QCIF x.264 Grandma QCIF 
釅 • 綱 I；驶柳•,....—、；,....〜.：..，-

10 6 0 110 160 0 2 0 A O 

Bitrate (k bits/s) Bitrate (k bits/s) 

‘ 5-22 



| - * - J M 1 0 . 1 - ^ J M 10.1 

+ g 『 似 叫 M.SAQCIF Salesman QCIF 

40 — 35 

g 38 1 33 

圣 
32 ‘ ‘ 27 ~ ‘ ‘ ‘ 

0 20 40 0 20 40 60 80 
Bitrate (k bits/s) Bitrate (k bits/s) 

10.1 ~ 
—•—Our Encoder 

X.264 Silent QCIF 

35 义 , 

I 33 
1 31 — ^ 

� + 
27 ‘ 

10 60 
Bitrate (k bits/s) 

Figure 5.5 R D curves of JM 10.1, the developed encoder and x.264 encoder for 

different video sequences with IPPPP... G O P structure. 

Original IIIII... GOP structure IPPPP... G O P structure 

^ B ^ ^ w l BSMtelii ^BfeMl l 

^ ^ B I H I ^ ^ B I I H I^^BHH 
I L 

‘ 5-23 



8HB 
B M I B M 

Figure 5.6 Visual quality comparisons of different sequences. 
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Q P 28 32 36 40 

Sequence (fps) (fps) (fps) (fps) 

Carphone 35.59 42.28 48.91 55.58 

Container 33.34 39.26 46.08 52.34 

Foreman 32.03 39.54 47.69 54.88 

Grandma 34.28 42.02 50.56 57.92 

MissA 44.76 51.44 57.25 61.93 

Salesman 29.18 36.66 45.57 54.09 

Silent 30.56 37.75 46.27 53.02 

Average 34.25 41.28 48.90 55.68 

Overall Average 45.028 

Table 5.10 The decoding speed of the developed decoder for IIIII... G O P structure. 

Q P 28 32 36 40 

Sequence (fps) (fps) (fps) (fps) 

Carphone 74.89 103.45 141.91 185.87 

Container 142.05 182.48 220.91 254.24 

Foreman 64.05 87.11 113.9 144.51 

Grandma 144.23 186.1 227.96 266.9 

MissA 143.68 179.86 212.77 242.72 

Salesman 121.16 150.91 185.41 222.22 

Silent 101.01 125.1 155.76 189.87 

Average 113.0 145.00 179.80 215.19 

Overall Average 163.25 

Table 5.11 The decoding speed of the developed decoder for IPPPP... G O P structure. 
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5.4 Applications 

The developed Pocket PC based real-time H.264 codec has wide applications and 

competitive abilities. Firstly, it can encode and decode video with QCIF 4:2:0 format 

in real-time (more than 25 fps) on Pocket PC which has relative low processing 

power while the coding performance is still very good. Secondly, the developed 

codec is software-based and thus could be used on other platforms. Users only 

require to download and run the execution files on their mobile platform and the 

codec can work properly. Thirdly, besides the codec, other modules which include 

display module, video capture module and wireless transmission module are 

successfully developed for the codec. Thus, in fact, a system is developed. This 

system has commercial value and diverse applications such as video conferencing, 

video telephony, video streaming and all real-time related video applications. 
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Chapter 6 Conclusions and Future Development 

6.1 Conclusions 

6.1.1 Enhancement Techniques for Intra Block Matching 

Intra block matching performs prediction with the pixels of the current slice in a way 

similar to that of motion estimation and compensation. Within a search range, a best 

match is found with a predefined cost function. The best match is regarded as the 

prediction. Even though this technique can improve the coding performance, the 

number of bits used to encode intra blocks is still very high. Therefore, several 

enhancement techniques, which include best match prediction, multiple best matches, 

novel padding method, skip mode, etc., are proposed to further improve the coding 

performance. Moreover, several techniques are proposed for reducing the complexity 

of the variable block size intra block matching process. Experimental results show 

that the coding performance can be improved significantly and more than 1 dB and 

0.6 dB gains in PSNR were achieved for intra and hybrid coding, respectively. 

6.1.2 Enhanced SAD Reuse Fast Motion Estimation 

The complexity of motion estimation is high. In H.264, variable block size motion 

estimation is employed and its complexity is much higher than that of fixed block 

size motion estimation. Therefore, fast algorithms are necessary. In Chapter 4，a fast 

variable block size motion estimation algorithm is introduced. It reuses the S A D to 

reduce the complexity and uses pattern-based motion estimation and refinement 

search to maintain good coding performance in terms of PSNR and bitrate. With the 
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proposed algorithm, the encoding speed can be improved significantly while the 

coding performance can be maintained. Experimental results illustrate that the 

proposed algorithm reduces the variable block size motion estimation time by 

approximately 90% when compared with that of FFS. This algorithm is the fastest 

when compared with the fast motion estimation algorithms adopted in the H.264 

reference software. 

6.1.3 Development of Real-Time H.264 Codec on Pocket PC 

The development of a Pocket PC software-based real-time H.264 codec is described 

in Chapter 5. Various algorithms are proposed and applied during the development. 

These algorithms include fast interpolation, fast integer and sub-pixel motion 

estimation, early skip termination, etc. In addition, code and instruction level 

optimizations are applied to further reduce the complexity. Consequently, the 

developed codec can encode and decode video in real-time on the Pocket PC. The 

developed Pocket PC software-based real-time H.264 codec has wide applications 

and competitive abilities. Firstly, it can encode and decode video with QCIF 4:2:0 

format in real-time (more than 25 fps) on the Pocket PC which has relatively low 

processing power while the coding performance is still very good. Secondly, the 

developed codec is software-based and thus could be used on other platforms. 

Thirdly, besides the codec, other modules which include display module, video 

capture module and wireless transmission module are successfully developed for the 

codec. Accordingly, this system has commercial value and diverse applications such 

as video conferencing, video telephony, video streaming and all real-time related 

video applications. 
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6.2 Future Development 

The techniques proposed for intra block matching improve the coding performance 

of H.264. However, the complexity is also increased. All the proposed modes are 

evaluated one by one and the RD-costs are compared with each other. Accordingly, 

the complexity is high. Fast intra block matching mode decision algorithm is 

necessary to be developed. In addition, as mentioned in Chapter 3，some of the 

proposed techniques can also be applied to inter prediction for further improving the 

coding performance of the encoder. For the fast variable block size motion estimation 

algorithm, early termination techniques can be applied to further reduce the 

complexity. 
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