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Abstract of thesis entitled: 

A Tight Frame Algorithm in Image 

Inpainting 
Submitted by CHENG, Kei Tsi Daniel 

for the degree of Master of Philosophy in Mathematics 

at The Chinese University of Hong Kong in July 2007 

In this thesis, we work on image inpainting. In particular, we 

propose a new iteration algorithm based on framelet systems, 

a generalization of wavelets. Hence the regularity of the re-

stored image is guaranteed. By comparing the differences and 

similarities of existing algorithms as constrained minimization 

problems, we obtain a new iteration algorithm and prove its 

convergence in the context of convex analysis and optimization 

theory. Recently a method has been proposed in solving the 

total variation minimization problem. We also include a similar 

method as part of our convergence proof. We find that the con-

vergence limit satisfies some regularization properties. The min-

imization problem imposes a sparsity on the canonical framelet 

coefficients of the underlying solution. This would also restricts 

the Besov norm of the underlying solution, and hence the rough-
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of the solution is under control. Finally, we compare the new 

algorithm with existing ones in numerical experiments. 
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摘要 

香港中文大學碩士論文摘要 

論文提目： 

圖像修補中的Tight Frame算法 
鄭基賜 

二零零七年七月 

我們在這份論文硏究圖像修補。根據推廣了小波的framdet系統’我們 

提出了一種新®代算法。因此保證了被恢復的圖像的規律性。我們透過將現 

有的算法考慮成拘束的最小化問題，比較他們的相似性和區別。我們從這角 

度獲得一種新算法，並用凸分析和最優化理論證明它的收歛。最近有人提出 

了一個解決總變差最小化問題的算法°我們將一個類似的算法包括在我們的 

算法和收歛證明的裏面。我們發現得出來的解滿足一些正規化的特性。此最 

小化問題令標準framelet系數變得稀疏，這並且會限制解答的Besov範數， 

而解答的粗糖度會受到控制。最後，我們將新算法與現有的算法進行比較。 
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Chapter 1 

Introduction 

The problem of inpainting [3] occurs when part of the pixel data in a picture 

is lost or overwritten by other means. This problem arises from mimicking 

the restoration of ancient arts or drawings, where a portion of the picture 

is missing or damaged due to aging, scratch, etc. Inpainting problem later 

found its applications. For examples, we can apply inpainting algorithms in 

automatic scratch removal in digital photos and old films [3, 11]; in creat-

ing special effects such as disocclusion [30], object removal [3, 10], zooming 

and super-resolution[2, 11，41]; or in the case when an image is transmitted 

through a noisy passageway. On the other hand, inpainting has been closely 

related to earlier works in engineering literature such as image interpolation 

1’ 26，27] and error concealment [12, 25, 28] in communication technology. 

The task of inpainting is to recover the missing region from the incomplete 

data observed. The basic idea is to fill in missing region with data available 

from the surrounding. Ideally, an image is expected to possess shapes and 

patterns consistent to the given data in human vision. That is, we should 

extract information such as edges and texture from the observed data and 

"put" these information into the corrupted part in a way that it would look 

1 



CHAPTER 1. INTRODUCTION 2 

Figure 1.1: The image data is loss in the inpainting domain Q \ A, while the 

observed portion is often noisy. 

9 = ( / + e)lA is given 

^ j 

like a natural extension from the view of human. In most cases, the available 

data of the original image is noisy and thus it is necessary to eliminate the 

noise while filling in the corrupted part. 

The mathematical model of image inpainting can be formulated as follows. 

Denotes 0 = [0，1]̂  to be the image domain in R^, x to be a general point in Q 

and f(a;) to be the original image that we are interested. Part of the image in 

the domain is corrupted and only those inside a subset A C Q is observable. 

The observed region A is non-empty. The observed image g would then be 
( 

{(x) + e{x), xeA, 
g W = (1.1) 

arbitary, otherwise. 
、 

where e is the noise component. The aim of image inpainting is to recover f 
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from g. Throughout this thesis, we assume e to be additive white Gaussian 

noise. 

In parallel to its wide applications, there are various methods exist-

ing for inpainting and related problems, including the non-linear filtering 

method, the variational method, the Bayesian method, the learning-and-

growing method, and the PDE method. The Mumford-Shah-Euler image 

model [20] we are going to present belongs to the PDE method. Similar to 

most variational inpainting models, given an observed image g, the model 

tries to minimize the functional 

"⑷ =尝 / ( f - g ) 2 +丑(幻’ （1.2) 

where E(i) encodes the image model. For example, E{T) can be f^ Af or 

the total variation norm f^ |Vf| in Rudin, Osher and Fatemi's model [37’ 38]. 

Chan and Shen [11] and Tsai et al. [41] used the one that Mumford and Shah 

proposed for image segmentation [33]: 

五 ( f ， = ^ f \Vf\^dx + a . length(r)， (1.3) 

where T denotes the edge collection, and length(F) measures the length of 

the edges in F. 

There are some deficiencies when applying Mumford and Shah's object-

edge image model in inpainting. These shortcomings are first discovered by 

Chan and Shen [11]. To start with, one can see that penalizing the length of 

the edges of objects inside the image favors straight edges in the inpainting 

domain. The reason is that straight lines have the shortest length. As a 

result, the image model simply completes the missing segments by straight 

lines. These inpainted edges thus join the existing ones in a non-tangent 

manner that produce man-made corners. Minimizing the length of edges in-

side the inpainting domain may also violate the Connectivity Principle. The 
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functional encourages connection between pairs of edge segments in which 

the intersections with the inpainting region are close to each other. If the 

size of the inpainting domain exceeds that of the object, long distance con-

nection would cost more in the functional, and the restored image would have 

disconnected parts. This may contradict to the fact that many real images 

have structures like thin stripes or fiber-like textures. 

To overcome the above artifacts, Chan, Kang and Shen [9] proposed using 

Euler's elastic curve model. An additional term (3 /p K^ds is introduced to the 

image model. The resulting Mumford-Shah-Euler inpainting model becomes 

J(f, = ^ ( ( f - ^ f d x f \Vu\'dx + alength(r) + (3 f i^ds. 
2 J A 2 Jfi\r Jr 

If we define fiA = i^- 1a ⑷，we have 

J(f,r) = i [ + g f \Vu\'dx+ f{a + (3K')ds. 
2 Jn 2 7f2\r Jr 

The solution from this model is found by the Euler-Lagrange equation and 

used the level set method of Osher and Sethian [35]. 

In this thesis, we derive algorithms based on tight framelet system. This 

system, as well as other redundant systems, has already been used in many 

applications. Perturbation of the framelet coefficients and built-in regular-

ization of algorithms allow information to transmit from A to Q\A smoothly. 

It is known that by the redundancy in the system, numerical error in com-

puting coefficients is reduced. The projection of framelet coefficients to the 

space of some canonical coefficients can eliminate the error component in 

the kernel of reconstruction operator. In [7], an algorithm based on tight 

framelet is proposed. The algorithm is shown to improve the PSNR by 2 

to 3 dB when compared with variational approaches such as those given in 

10’ 11]. The advantage of the redundancy is also mentioned in [22] for its 

robust signal representation. 
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Many images such as carton images can be modeled as piecewise smooth 

functions. The framelet system can have a good approximation to these func-

tions. Additionally, the weighted minimization term in the coefficient do-

main allows sparse representations of images. With this important property, 

we can efficiently solve the problem in the framelet domain. Some inpainting 

algorithms related to minimization are proposed in [7, 15’ 19, 21，39]. 

In this thesis, we consider some of these algorithms as constrained mini-

mization problems, and derive new minimization problems from them. Us-

ing Combettes and Wajs's framework of proximal forward-backward splitting 

[14], and applying Chambolle's technique used in total variational minimiza-

tion [6], we propose a new iteration algorithm for inpainting problems. Be-

sides, we will see that the minimization problem is related to the Besov norm 

of its solution. 

The organization of this thesis is as follows. In Chapter 2，we will review 

some preliminary knowledge that is useful later in the thesis. We will then 

consider some inpainting algorithms as the minimizers of functionals given in 

Chapter 3. While we can see their similarities from the minimization point of 

view, we also present some new minimization functionals induced from them. 

In the subsequent Chapters 4 and 5，we will try to find new algorithms that 

converge to the minimizers of these new functionals. The convergence is then 

discussed in Chapter 6. The numerical results are given in Chapter 7. 



Chapter 2 

Background Knowledge 

2.1 Image Restoration using Total Variation 

Norm 

In this section, we consider (1.2) for the case where E(T) is the total variation 

norm, and the Chambolle's method [6] of solving it. We consider the method 

here because our approach in solving the inpainting problem will be similar 

to this method. Since in his paper, the method is proposed to solve image 

denoising and zooming, we assume A = Q in this section for illustrating his 

idea. 

Many choices of image model have been proposed for solving denoising 

problems. In 1977，Tikhonov and Arsenin [40] proposed E({) to be 7 f^ |Vfp. 

A very strong smoothing Laplacian operator appears in the Euler-Langrange 

equation 
0 = //(f-g)-Af. 

The 1/2 norm of the gradient in the functional is very strong in denoising but 

does not allow sharp edges in the solution. 

6 



CHAPTER 2. BACKGROUND KNOWLEDGE 7 

In [37, 38], Rudin, Osher and Fatemi proposed using L^ norm of the 

gradient, also called the total variation norm, instead. After this change, 

(1.2) becomes 

八 f ) 二 专 义 ( f — 工 + • 恤 . (2.1) 

Multifarious approaches in solving it can be found in the literature. In the 

following, we are going to present some of them. 

The first comes from Rudin, Osher and Fatemi [38] themselves. They 

made use of the Euler-Langrange equation, assuming homogeneous Neumann 

boundary conditions 

/ V f \ 
0 = j (2.2) 

and a time marching scheme to reach the steady state of the following 

parabolic equation: 

芸(工，力)=• . i ^ ^ i ) - 咖 ” - ⑴，（2.3) 

with initial condition 

i{x,0) = g{x,0),xen. 

An explicit discretization scheme is used to obtain a numerical method so 

that f(x, t) would approach the solution of the Euler-Language equation when 

t goes to infinity. In order to have stability, the time step should be small: 

At = 0{Ax^). Equation (2.2) is degenerate due to the term l/|Vf|. To 

overcome this difficulty, people use (/»(|Vf|) with suitable properties instead 

of |Vf|. A common proxy is v T ^ f p T ^ for ^ > 0, the corresponding time 

marching scheme is 

= ( V | V : ( 二 + ( 明 f ( 幼 - g ( 帥 ’ （2.4) 

with initial condition 
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Chan, Golub and Mulet [8] introduced a new algorithm to remove the 

highly non-linear and non-differentiable term Vf/|Vf| in (2.2). Their idea is 

to introduce a new variable p = Vf/|Vf|, and the new method is called the 

primal-dual method. Contrast to the simple look, the term has got rid of the 

singularity in the equation and provides a good global convergence property. 

With p = Vf/|Vf| in mind, we can replace (2.2) by the following equivalent 

system of linear equations: 

0 = |Vf|p — V f 三 i^(p，f) • 

(2.5) 

The authors of [8] suggested using Newton method to solve the system. 

Thus we obtain the linearization of the above system: 

|Vf| - ( / - 蘇 ) 「 J p ] 「 F ( p J ) -

= — • (2.6) 
- • . / i / J Sf G(p, f ) 

To solve (2.6), first eliminate Sp and then solve the resulting equation: 

� ( 1 « V F \ 1 

and 5p is then computed by 

The last method here comes from the dual formulation. By introducing 

the dual variable p, and using integral by parts, minimizing (2.1) can be 

rewritten as 

inf sup gfdx + jjS/.pdx\pe . (2.7) 

Since the function is strictly convex in f and concave (linear) in p，we can 

swap inf and sup, and obtain 

sup inf 1 1 ^ ( f - g ) '^^ + jjV.pdx\pe . (2.8) 
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Fix p, we can find the solution to inff by Euler-Langrange equation. The 

solution is given by: f = g — {V •p)/fi. 

Substitute back into (2.8), and use the identity s u p / ( x ) = - inf(-/(a：)) 

for a general function / ( x ) , we arrive at the dual problem: 

|inf {^(V • p - mfdx I p € C 她 } . (2.9) 

In discrete case, the constraint \pi\ < 1 yield the Lagrange multiplier 

ttj > 0 under the Karush-Kuhn-Tucker conditions, so that for each i; 

-(•(• . p - /ig))i + aiPi = 0， (2.10) 

with complementarity conditions: 

(i) oni > 0 and \pi\ = 1; or 

(ii) ai = 0 and \pi\ < 1. 

Note that after solving for p, we can recover f: f = g — ( • . p ) /… 

Chambolle made an observation in [6] that in the complementarity con-

ditions above, ai = |(V(V • p - fig))i\ for both cases. To see that, since by 

(2.10)，we have aiPi = ( • ( • • p - "g)》，by taking absolute value on both 

sides, ai\pi\ = |(V(V . p - "g))i|. In the first case, the result follows from 

substituting \pi\ = 1，while we can see that |(V(V . p - yug))̂ ! is zero in the 

second case. Hence the Lagrange multiplier a is eliminated and we obtain 

the following simplified equation: 

-(•(• . p - fig))i + |(V(V • p - fig))i\pi = 0. (2.11) 

Chambolle [6] thus proposed a semi-implicit gradient descent algorithm 

First set T > 0 and p® = 0, then for any n > 0, 

Pr+i = Pi — � ( - ( • ( • . - + l (V(V • p- - (2.12) 
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Reducing to the explicit scheme: 

凡 l + (2.13) 

We now state the main theorem in [6]: 

Theorem 1 Let r < 1/8. Then (V . p " ) / " converges io g - f as n — o o . 

2.2 An Example of Tight Frame system 

In this section, we give examples of tight frame filters using the unitary 

extension principle given in [36]. To know what tight frame is, see Section 

3.1. 

We first consider the univariate case, i.e., f is ID signal. Let h � b e the 

trigonometric polynomial cos?爪(a;/2). It is the refinement symbol of the B-

spline 
A , � sin2爪(a;/2) 

= 

of order 2m. The corresponding wavelets are given by = hn{uj/2)(^(a;/2) 

with wavelet masks 

K(uj) = sin"(a;/2)cos2—"(aV2)’ 

u v 

for 1 < n < 2m. It is shown in [36] that the system 

A' = 知 , 2 m } 

is a tight frame system. 

For example, if m = 1, we call it the piecewise linear tight frame systems 

The corresponding filters are 
1 py 1 

ho = = —[1 ,0 , - 1 ] , / i 2 = jhl，2，一 1]. 



CHAPTER 2. BACKGROUND KNOWLEDGE 11 

If m = 2，it is the piecewise cubic tight frame systems. The corresponding 

filters are 

ho =去 [ 1 , 4，6 , 4，1 ] ’二 |[1，2,0，-2’-1],h2 = ^ [ -1 ,0，2 ,0， - 1 ] , 

hs = 2,0, -2，1], h = ^ [ 1 , - 4 , 6 , —4，1]. 

Prom now on, for the ease of computation, we use the discrete version. In 

the discretized setting, Q is divided into I x I square pixels. The digital data, 

also denoted by f, of an image consists o i N = P pixels. Now, f is considered 

as a vector in R ^ by concatenating the image into a column vector. The 

data value of a pixel is produced by averaging the function value inside that 

pixel. 

In the following, we give the tight frame decomposition operator A. To 

apply the filters to finite sequence of discrete signals, boundary conditions 

must be amalgamated. We use the Neumann boundary conditions here, and 

we will get Toeplitz-plus-Hankel matrices. Using the Neumann boundary 

conditions have an advantage that usually the restored images have less ar-

tifacts near the boundaries, see [5, 7, 34]. Let the length of the signal be N, 

for any filter h = {"(力})二_爪，we define an N-hy-N matrix D{h) given by 

刚 … " ( - m ) 0 h{l) h(2) ... h(m) 

： ... ••• ••• h(2) 
• 0 

Dih)= h(m) ••. ••• ••• H-m) + ； … 

••. . •. ： h(m) 

0 h{m) .. • h(0) 0 0 
• _ 
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-

0 0 

h{-m) 

H~ • • • 
0 . 

h{-m)…h{-2) h{-l) 
- • 

Note that the last two matrices correspond to implementing the Neumann 

boundary conditions to the filter h. Define Hi = D{hi). The unitary principle 

implies that X Ĵ̂ q H*Hi = I. Therefore, we have the simplest, single level, 

tight frame system vl 二 [i/^, i^i*，...，H^^]*. 

Next, we present the multi-level version tight frame system (framelet sys-

tem). It corresponds to the framelet decomposition without down sampling. 

We will use this multi-level version in our numerical tests. For level I, the 

filter corresponding to h, which we call h�,is given by 

h � = h ( - m + 1), 0, • • •，…，0，"(m — 1), 0，…’0，/i(m)}. 
2'-1-1 2 ' - i - l 

The � is formed by adding — 1) zeros between every adjacent element 

in h. Let Hf^ 三 D(h!i\ and 对；才‘)三 H ” . . • H”. The multi-level 
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version of the tight frame system of level L without down-sampling is 

. n t - M " _ 

M = \ . (2.14) 

丑 1(1) 

By the perfect decomposition and reconstruction formula, one has M*M = I. 

When f is 2D, the tight frame systems are constructed using the tensor 

products of the filters in ID, and define in analogous to (2.14), see [16’ 29]. 

2.3 Sparse and compressed representation 

In this section, we present the relation between the minimization of €p-norm 

of the transform coefficients for 0 < p < 1 and the spaxsity of transform 

coefficients, see [18]. The approximation ability allows us to incorporate the 

minimization of £p-norm into denoising and inpainting problems. 

As the modern civilization advance, we have to deal with ever-increasing 

amount of data. In the process of acquiring and exploiting data, people find 

that most of the acquired data is compressible, i.e., can be eliminated with 

almost no perceptual loss. In the wild success of compression that reduces the 

data sizes for sounds, images and specialized data, a very natural question 

raises: do we need to put so much effort to acquire all the data, in which 
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most will be thrown away? Can we directly obtain the part that will be 

retained? 

Suppose X is an unknown vector in R ^ (e.g. digital image or signal). If 

X is known to be compressible by transform coding with a known transform, 

and can be reconstructed via some procedures, we can measure m general 

linear functionals of x and then reconstruct x from these measurements. 

The number of measurement m can be significantly smaller than the original 

size N. By directly acquiring just the essential information about the sig-

nal/images, we are not acquiring the part of data that would eventually be 

thrown away by lossy compression. 

In the abstract setting, we introduce here the principle of transform spar-

sity, which is known to hold in many setting of signal and image processing. 

We suppose that the object of interest is a vector x e R " , which can be a 

technical data or image with N samples or pixels, and that there is a basis 

{ipi:i = l,...,m). The transform coefficients 氏= ( x ,也〉a r e assumed to be 

sparse in some ‘ - n o r m , in the sense that, for some R>0 

I v," 
I I ^ I I p ^ ^ E N ' J 认 (2.15) 

This constraint is obeyed on natural classes of signals and images. For exam-

ple, bounded variation model is used in many image processing applications. 

The bounded variation views an image as a function f{x,y) on the unit 

square 0 < < 1 which satisfies 

[ \Vf\dxdy < R. (2.16) 

In discretized setting, the digital data of image consists of iV = pj^els 

produced by averaging over 1/1 x l/l pixels. 

The constraint (2.15) on transform coefficients above relates to its spar-

sity. In fact, if we keep the n largest coefficients of 9, setting the others to 
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zero, and denote the result by then 

(2.17) 

where C is a constant that depends only on p. This implies that we can 

keep "most" of the information by keeping only n ~ £办/(於-2) terms in 9 to 

reconstruct an approximation of the original 6 with error e. 

In the above relation, more sparsity is required as p decreases. So, the i 

norm with small p appears naturally in measuring sparsity. An £p constraint 

using p = 2 requires no sparsity at all. ‘ 

Prom the above, one may naturally turn the question to: if x is an ar-

bitrary signal that its transform coefficients 9 observe (2.15), is it possible 

that the number of measurement m is dramatically less than N, yet can give 

us a sensible reconstruction of the target x? This is considered in [18]. We 

present some of their ideas here. Let 

X = = { x ： II没(x)||p < i ? } c R"， 

we are interested in looking for measurement : X R ^ of m samples 

about X, and an algorithm 爪：— that reconstructs an approxima-

tion of X. Here the samples are independent of each other, i.e., each sample 

does not depend on previous samples of x. The measurement takes the form 

^m(x) = (�6’X〉，^.’〈“X�) ’ 

where the & are sampling kernels. As the samples are independent of each 

other, the kernels are non-adaptive. An example is the tight frame system 

presented in the last section. 

We want to find an optimal procedure that minimize the £2 error of the 

reconstruction, so it gives rise to the following minimax error for measure-

ment: 

E m W = .mf^supllo: - (2.18) 
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A good news comes as one can obtain an approximation in similar quality 

as keeping the n largest coefficients by using m ^ nlog(N) samples provided 

by Indeed, if (m, Nm) be a sequence with m oo, i V 爪 〜 7 > 

1’ � 0 ’ then for 0 < p < 1, there is a constant Cp > 0 which depends on A 

and 7 but not on m so that 

EJX) = Em(Xp,Nm < CpRim/ log(AU)i /2- i /p. (2.19) 

Here we do not require information on the specific object. Even though 

the measurement is non-adaptive and much less than the original size N, it 

can do as good as knowing the n best transform coefficients. As a result, we 

can take the minimization of the ‘ - n o r m of the transform coefficients and 

yet obtain a good approximation of the original signals or images. We will 

use the £1 minimization to tackle the inpainting problem in coming chapters. 

2.4 Existence of minimizer in convex analysis 

In this section, we present a sufficient condition of the existence of a minimizer 

in a convex programming problem. To fix our notations, denote To{H) the 

set of all lower semi-continuous convex functions from a finite dimensional 

Hilbert space H to (-00,+00] that is not identically +00. 

Theorem 2 If a function F(f) lies in To{H), and that it is coercive, then 

F(f) possess a minimizer. 

Proof: Since F ( f ) G ro(i^), in fF < +00. There is a real number A > inf F 

such that the level set 二 { f : F ( f ) < A} is non-empty. Note that S 

is closed. If F is coercive, then there exists r so that for any u satisfying 

r < ||u||, F (u ) > A. In other words, «S is bounded. The conclusion follows 

from the fact that a lower semi-continuous function on a closed and bounded 
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non-empty set inside a finite dimensional Hilbert space admits a minimum 

point. • 



Chapter 3 

Tight Frame Based 

Minimization 

In this chapter, we first consider some inpainting algorithms as minimization 

problems. Prom these problems, we induce other minimization problems and 

finally give out their similarities and differences. 

3.1 Tight Frames 

Let A be a K-hy-N {K > N) matrix whose rows are vectors in R " . The 

system, denoted by A again, consisting of all the rows of A, is a tight frame 

for R^ if for arbitrary vector x e R " , 

1142 =[丨〈乂，力|2. (3.1) 

yeA 

Note that (3.1) is equivalent to that the system A possess the perfect re-

construction property x 二 I]yg^{x,y>y. The representation is unique in the 

case of orthogonal bases in but this is not true in general. The matrix 

A is called the analysis operator, whereas its adjoint A* is called the syn-

thesis operator. It is clear that the perfect reconstruction equation can be 

18 
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written in the form x = A*Ax. This implies A is a tight frame if and only 

if A*A = I. Reader should be aware that in general, AA* + I. Pramelets 

come from multi-resolution analysis on tight frames. See [7, 16，36] and also 

Section 2.2 for examples and construction of tight frames and framelets. 

Partition the tight frame systems into blocks of matrices 

Ai 
A= . 

The sub-matrix Aq represents low-pass filter, while the others represent high-

pass filters. Here, from the perfect reconstruction equation, we have 

M 

^ A : A = A^A = L (3.2) 
i=0 

Finally, we note that from (3.1), ||v||2 = ||Av||2 for all v 6 E^. 

3.2 Minimization Problems and Algorithms 

To have a sparse decomposition for images, we seek to minimize the io norm of 

wavelet coefficients, which is seemingly intractable. So the £q norm is replaced 

by £i norm, and a minimization of |pQ;||i, where a is the vector containing 

the wavelet coefficients and D is a diagonal scaling matrix, is sought. Let Pa 

be the diagonal matrix with diagonal entries equal 1 for indices belongs to A 

and 0 otherwise. When there is no noise, this minimization is subject to a 

constraint where the pixel values of the recovered image should be equal to 

the given values, i.e., PJ = PaZ- SO we are required to solve 
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Problem 0: 

mm\\Da\\i, 

< s.t. i=A*a, (3.3) 

PAf=PAg. 

This is the problem proposed in [39], where a linear programming is applied 

to solve it. When noise is present in the observed data PAg, we replace the 

equality constraint of data fitting in (3.3) by an inequality constraint and 

solve 

Problem 1: 
min||Da||i， 

< s.t. i=A*a, (3.4) 

l | P A f - P A g | | B " 2 ， 

、 

where a^ is the noise level. If we use the Language multiplier method to 

solve it, it gives rise to 

mm{^\\PA(A*a) 一 ^AgH^ + v\\Da\Ul (3.5) 

where l/2r] is the Lagrange multiplier. Since kD is a diagonal matrix for 

any real number k, without loss of generalities, we would omit any constant 

multiplying ||Dq;||i. Equation (3.5) was considered in [21], where the authors 

tackled the minimization problem by the iteration 

«n+l = TxioL^ + A(P^g - PAf„)), 
< (3.6) 

fn+l = A*an+l. 
\ 

The operator T\ in (3.6) is the soft thresholding operator corresponding to 

the shrinkage operator in [21], and is defined as follows: 

TxWufh,... ’ / y 了）三[iAi("l)’tA2(/32)’ . • . . h ^ i M f (3.7) 
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with A = [Ai,入2，...，XKV is the diagonal of D, and TX,(-) is the soft thresh-

olding function [17]: 

sgn(A)(|A| - A,), i m \ > A,, 
tXiiPi)三 

、0， ifm < Xi. 

Since we do not threshold the low-pass framelet coefficients, A is of the form 

A = ( O r ^ ^ , Ajvo+i,... ’ Ak)^, (3.8) 
No • 

where Nq is the number of rows in Aq, Â  > 0 for i = ATq + 1, • • • 

Next we move to the following minimization problem which solves 

Problem 2: 

MM\\DA\\I, 

< s.t. \\a-Af\\l<p\ (3.9) 

尸Af=PAg. 
\ 

Its Lagrangian function is given by 

min{.s + MM{I||AF-+ V\\DA\\,}}, (3.10) 

where 

S = : { f : P A f = P A g } 

and is is the indicator function of S defined by 
0, X E S, 

^s(x)三 (3.11) 

+00, X 癸 S. 

The authors in [5] proved that the minimizer of (3.10) is the convergence 

limit of a framelet inpainting algorithm 

fn+i = Pas + ( / - P a ) A * T ^ { A Q , (3.12) 

which was considered in [7). 
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3.3 Other Minimization Problems 

In this section, we induce other minimization problems from Problems 1 

and 2’ and compare their differences. By using ||f- A*a\\2 < fP" instead of 

||q； - Ai\\2 < p^ in Problem 2，we obtain 

Problem 3: 
min||Z)a||i, 

< s.t. \\i-A^a\\l<p\ . (3.13) 

PAf=PAg-

Similarly, replacing f = A*a by a = Af in Problem 1 gives us 

Problem 4: 

< s.t. a = Af, (3.14) 

\\PAi-PAg\\l<C7\ 
\ 

We note that when A is an orthogonal basis, Problem 1 and Problem 4 

are identical, since if a 二 4 f ’ f = A—ia = and vice versa. Similarly, 

Problem 2 and Problem 3 are also identical. However, in general, when A is 

a framelet system, the relation between a and f is many-to-one due to the 

redundance of tight frame systems, so f = A*a does not implies a = Af. In 

fact, as we will show in Section 4, Problem 3 can be solved by an algorithm 

that is essentially the same as equation (3.6). 

Besides minimizing the (weighted) i i norm of framelet coefficients to in-

crease sparsity, we would also like to choose a good a so that the roughness 

of the inpainting solution is under control. This implies that the penalty 

function should somehow link to the true solution via some function norms. 

It is shown from framelet theory (see for e.g. [4, 24]) that the (weighted) 

norm of the canonical framelet coefficient sequence of a function is equivalent 
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to its Besov norm in the space Bf ^ under some mild conditions. As a result, 

we want a to be a canonical framelet coefficient sequence, i.e., in the range 

of A, so that we can make sure that the (weighted) £i norm of a is linked to 

the Besov norm of the underlying function. 

Reviewing the problem formulations above, we can see that Problems 0, 

1 and 3 make no restriction on a to the range of A. Since a does not neces-

sary equal AA*a, restriction on A*a tells us nothing about the relationship 

between a and the range of A. For Problem 2, a constraint has" been set 

up so that a can be close to the canonical coefficient sequence. Lastly, a is 

required to lie on the range of A in Problem 4’ since it requires a = Af. So 

the term that minimizes the (weighted) £i-norm of the canonical coefficient 

sequence a = Af contained in Problem 4 ensures that the Besov norm of the 

solution is under control. 



Chapter 4 

Algorithm from minimization 

problem 3 

In this chapter, we derive an algorithm that can be used to solve Problem 3. 

To see this, we start with a well known equivalence between soft-thresholding 

and a minimization functional. 

Lemma 1 The soft-thresholding operator T\，defined by (3.7)，satisfies 

TxiP) = argimn{||i)a||i + 全 一 a\\l}, (4.1) 

where a, /?，A e R^ and D is a diagonal matrix with Da = Aj. 

Proof: Following the equation (2.35) in [14], 

td{b) = aigmm{\da\ + - a||訂， (4.2) 

where a, b are real numbers and cHs a non-negative number. We note that the 

minimization problem in (4.1) can be decomposed into disjoint 1-dimensional 

minimzation problems in the form of (4.2) for each coordinate. Therefore 

Tx((3) is the minimizer of the minimization problem (4.1). • 

Let us see the above lemma in the context of convex analysis. Let us 

recall two basic definitions by Moreau [23, 31，32]. For any convex, lower 

24 
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semi-continuous function (p, its Moreau envelope of index 7 e (0，+00) is a 

function defined by 

V ( x ) = min{(/?(y) + - y||訂’ (4.3) 
y Z7 

and its proximity operator is defined by 

Prox^(x) = arginin{(^(y) + 全||x - y\\l}. (4.4) 

By [14, Lemma 2.5], the function V is convex and differentiable, with its 

gradient 

V ( V W ) = x - prox^(x). (4.5) 

Writing ^{a) = \\Da\\i and substituting (4.1) into (4.4)，we obtain 

proxf = Tx. (4.6) 

Therefore, the soft-thresholding operator is the proximity operator of the 

function ^(a) = ||I>q;||i. 

We now give the Lagrangian function of (3.13)， 

+ min{ .s( f ) + \\\A*a - f||射， (4.7) 

Substituting (4.3) in the above equation yields 

m i n { � Q O + i M ( A * a ) } . (4.8) 

The authors of [14] suggested a fixed point iteration for solving minimiza-

tion problems. We find that their idea can be applied here. We now state 

the main convergence theorem in [14] for the finite dimensional case. 

Theorem 3 Consider the minimization problem 

min{Fi(f) + F2(f)}, (4.9) 
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where Fi is a convex, lower semi-continuous function and F2 is a convex, 

differentiahle function with a 1/b-Lipschitz continuous gradient. Assume a 

minimizer to (4.9) exists and b > 1/2. Then for any initial guess fo, the 

following iteration 

fn+i = prox^i(fn — VF2(f„ ) ) (4.10) 

converges to a minimizer of (4.9). 

To apply the above theorem to our minimization problem, we define 

F i ( a )三 ^{a) and F2(a) = hs(A*a). By putting (4.5) with <p = is and 

(4.6) into (4.10), we have 

ckn+i 二 p r o x办 „ - V(hs(A*an) ) ) 
(4.11) 

where we note that the gradient is taken with respect to a„ , so by the chain 

rule, 

V(hs(A*an)) = A{A*an - (4.12) 

We are going to find what prox明 is. Note that the set S is convex since 

it is the kernel of Pa plus the vector P/^g. Any vector x G R ^ has a unique 

projection onto S, denoted by Ps(x) . This projection is the minimizer of the 

distance from x among all elements in S, i.e., 

Fs(x) = argmmi||x-y||2. 

Lemma 2 The projection Ps(x) satisfies 

M 1 
尸s(x) = arginin{-||x - y\\l + t s ( y ) } = prox场(x)， 

(b) 

Ps(x) = PAg + ( / - P A ) x . 
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Proof: Part (a) follows from the definition of ls and prox.g. In part (b), we 

note that for any vector y € S, we have 

l | y - x | | i = EieAiVi - ^ i f + I2ien\A{yi -

=T^ieAidi - Xi? + HienxAiVi " ^i? 
> -

=II^A(g-x)||l 

=||(PAg+(/-PA)x)-x||i. ‘ 

Therefore, PAg + ( / - PA)X is the closest vector to x in S. 口 

By Lemma 2, we can rewrite (4.11) as 

ĉ n+i = Tx{an - A(A*an - (PAg + { I -
(4.13) 

= T x { a n + APA{g-A*an)). 

Meanwhile we can obtain the vector by solving minf{tg (f) + ^ 11 f - A* 11̂ } 

from (4.7). By Lemma 2 again, we obtain = P^g + ( / - We 

have an algorithm given as follows: 

A l g o r i t h m 1 . 

(i) Set an initial guess fo, define ao = Afo-

(ii) Iterate on n until convergence: 

ocn+i = Tx{an + ^ ( P A g - ( 4 . 1 4 ) 

(Hi) Let a* be the output of Step (ii). We set f* = Pj^g + (/ - Pf,)A*a* to 

be the solution. 

But the iteration equation (4.14) is identical to (3.6) and its convergence 

is given in [21]. 



Chapter 5 

Algorithm from minimization 

problem 4 

In this chapter, we are going to derive a new algorithm using the approach 

similar to the last chapter. The proof of convergence of the algorithm will 

be given in the next chapter. 

The Lagrangian function of (3.14) is given as follows: 

min{||DAfl|i + l||PAf-PAg||^}, (5.1) 

To apply Theorem 3 in this case, we define Fi( f ) = ||ZMf||i and F 2 ( f ) = 

The function F2(f) is differentiable and VF2(f) = p ^ ( f - g ) . 

Combining everything in (4.10), we obtain 

fn+l 二 PrOX尸 i(f„ - PA( fn - g ) ) 

(5.2) 

=proxFi{PaE + (/ - Pa%) = proxpi(Ps(fn)), 

We now find prox朽 using duality formulation. Here, we use an idea which 

is first proposed by Chambolle on total variation minimization problem [6], 

see also Chapter 2. First we observe that 

veE, 

28 
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where E = {p : p € M^, S 1，V 1 < i S i^}. This means that 

Fi(f) 二 sup(f,^*Z>i;> = sup(f,iy), 
veE wec 

where C = {A*Dp : p G R^, \pi\ < i y i < i < K } . By (2.27) and (2.39) in 

[14], proxFi(f) is given by 

prox^^(f)=:f-Pc(f). (5.3) 

The projection P c ( f ) is the minimizer of the distance from f among all ele-

ments in C. Finding Pc ( f ) amounts to solving 

mm{\\A*Dp - f\\l ： p e M ,̂ - 1 S 0, Vi = 1，….，î }. (5.4) 

To simplify the calculation, \pi\ < 1 is replaced by < 1. 

The Karush-Kuhn-Tucker conditions (see for e.g. [23]) yield the existence 

of a Lagrange multiplier Ci > 0 such that for all i, we have 

(DA{AWp-V))i + Qp, = 0 (5.5) 

with either Q > 0, \pi\ = 1 or \pi\ < 1, 0 = 0. In the latter case {DA(A*Dp-

f))i = 0. Therefore in both cases, 

So we arrive at the following fixed point algorithm: we choose r > 0 and 

an initial guess p � . For any k > 0 , 

rf+i = rf - t{DA(A*Dp' - f)), + \{DA{A*Dp' - f))也…)’ （5.6) 

so that 
… = r f - riPAjAWp^ - f)), 

Pi ~ l + T\(DA{A*Dpf^-{))i\-

If the above iteration converges to p, since p is the minimizer of (5.4)，Pc(f)= 

A* Dp. 

We thus propose the whole algorithm for solving problem 4 : 
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Algorithm 2 . 

(i) Set an initial guess fo. 

(ii) Outer iteration: Iterate (Steps (a)-(c)) on n until convergence: 

(a) 

f n + � P A g + ( / - PA)fn. (5.8) 

(b) Inner iteration: .. 

Choose appropriate T and initial guess jp = 0, iterate on k until 

convergence: 

(c) Let p be the output of Step (b). We set f„+i = f^^i - A* Dp and 

go back to Step (a). 

We are going to prove the convergence of Algorithm 2 in the next chapter. 



Chapter 6 

Convergence of Algorithm 2 

This chapter is dedicated to showing the convergence of Algorithm 2. We 

show in Section 6.1 that in the inner iteration, limfc—00/ = p exists and 

A*Dp = Fc(f ) - In Section 6.2，we show that (5.1) has a minimizer, which is 

the convergence limit of the sequence {f„} in the outer iteration. 

6.1 Inner Iteration 

We now show the condition for the inner iteration to converge. The prove 

mimics the one in [6]. 

Theorem 4 Let A^ax = inaxi<i<A- Â . Ifr< l/A^^^, then A*Dp^ converges 

to Fc( f ) as k — 00. 

Proof: By induction, it is obvious that for every /c > 0, j p � < 1 for all i. Fix 

A:>0, and let q = We get 

— f||2 二 P * D / _ f | | 2 _ 2 T � > l * Z V ^ _ f ’ A ^ D ^ + T 2 | | # D g | | 2 

< - f||2 - r{2{DA(A*Dp' - f),q) — 州2) , 

31 
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the last inequality follows from \\A*Dq\\ < < Now, 

= E f = i - f ) ) , -

Prom (5.6) and the definition of q, 

with -

Then for every i, 

= + \(DA(AWp' - 一 _ A2m狀 

= ( 1 - + (\{DA{A*Dp' - f)),|2 - I 約 | 2 ) . 

Since < 1，\pi\ < \(DA{A*Dp^ - f)),|. Hence, if X l ^ r < 1, i.e., 

T < l / A ^ x ’ then it reveals that \\A*Dp'' - f|| is decreasing with k. 

Furthermore, when r < l/A^x’ if - f||2 二 一 f||2’ we 
can deduce that = \{DA{A*Dp'' — f))i| for every i. Here, the definition of 

Pi implies either \(DA{A*Dp^ - f))i| = 0 or |p无知+i| = 1. In either case, (5.7) 

gives us p广 1 = Pi-

Let m = limjfc^oo \\A*Dp^ - jf||, and p be the limit of a convergence sub-

sequence pki of pk. Let p be the limit of p知‘+丄，from (5.7), we have 

“ l + (6.1) 

Since m = \\A*Dp 一 f|| = \\A*Dp - f||, by repeating previous calculations, 

pi = Pi for each i, i.e., p = p. Hence 

(DAiAWp - f ) ) , + \iDA{A*Dp 一 = o, 



c - n / l - r 』 - C / r t  c .  c c ^ ^  V  t - l t v j t - l  v  c h  』 t i v i  N  C o  

i . e . ,  p  s o l v e s  ( 5 . 4 )  a n d  =  p c ( f ^  S i n c e  C  i s  a  c o n v e x  s e t ,  t h e  I D r o j e c t i o n  

i s  u n i q u e ,  w e  d e d u c e  t ; h a t  i : h e  s e q u e n c e  A *  D p ”  c o n v e r g e s  t ; o  p c ( f } -  •  

W e  r e m a r l c  1 : h a t  t : h e  p r o o f  o f  c o n v e r g e n c e  i s  i n d e p e n d e n t  o f  t ; h e  s t a r t ; i n O T  

p o i n t  p 。 ， a s  l o n g  a s  ̂  1  f o r  a l l  i .  

P 2  O u t e r  s e r a t i o n  

T o  p > r o v e  1 : h a t  l : h e  o u t e r  i t e r a t i o n  c o n v e r g e s  ̂o  a  m i n i m i z e r  o f  ( 5 . 1 ) ,  w e  c a n  

a p p l y  T h e o r e m  3 .  W e  m e r e l y  h a v e  t : o  c h e c k  t ; h a t  t ; h e  c o n d i t i o n s  o 冲  T h e o r e m  

3  h o l d .  

L e m m a 3  T h e  f u n c t i o n s  - I b A f l l l  a n d  竺 P A m  —  t A g l l l  a r e  b o t h  C O T W e H  a n d  

l o v o e r  s e m i - c o n t i n u o u s .  M o r e o v e r ,  m p A f  — - P A W 一  i s  d i j f e r e n t i a b l e  w i t h  a  

l - L i p s c h i t z  c o n t i n u o u s  g r a d i e n t .  

P r o o f :  S i n c e  D ,  A ,  P a  a r e  l i n e a r  t r a n s f o r m s ,  a n d  b o t h  1 - n o r m  a n d  t ; h e  s q u a r e  

o f  2 - n o r m  a r e  c o n v e x  a n d  c o n t i n u o u s ,  i t  i s  o b v i o u s  t h a t  l l b A f l l l  a n d  I I I P A f I  

力 A g l l l  a r e  c o n v e x  a n d  l o w e r  s e m i - c o n t i n u o u s .  N o t e , 竺 - p > f  I  P A g - l ⑶  i s  d i s e r -

e n t i a b l e  a n c i  i t s  g r a d i e n t  i s  w i v e n  b y  P A ( f  I  的 ) •  A l l  t h a t  l e f t  t ; o  I ^ r o v e  i s  1 : h a t  

t h e  g r a d i e n t  i s  l - L i p s c h i t z  c o n t i n u o u s :  

l - v ( I I I P A X  — P A g = I ) - v ( g p A y  — P A g l ® l l 2  =  l - > ( x l g )  — P A ( y  — g ) l l 2  

H  - l p > x  — P A y - l 2  

^  1 1 1 1 2 .  

T h i s  m e a n s  t h a t  竺 I t A g l l i  h a s  a  l - L i p s c h i t z  c o n t i n u o u s  g r a d i e n t .  •  

6 . 2 . 1  E x i s t e n c e  o f  m i n i m i z e r  

N e x t ,  w e  w a n t  t o  s h o w  t h e  e x i s t e n c e  o f  m i n i m i z e r  o f  F l ( f }  +  F 2 ( f } .  
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Lemma 4 Let A be a tight frame system that satisfies any one of the fol-

lowing: 

(i) AQAQ does not has 1 as its eigenvalue; or 

(a) 1 is a simple eigenvalue of A^AQ, and the corresponding eigenvector u 

satisfies PAU 0. 

Then the minimization problem (5.1) has at least one minimizer. 

Proof: By Proposition 3.1(i) in [14], or the theorem in section 2.4，it suffices 

to prove that F(f) = Fi(f) + 尸2(f) is coercive, i.e. whenever ||f||2 — oo, 

F(f) — 00. Let Amin = min仏狗+1 Ai, where \ is given in (3.8), we have 

FW > \\DA% 

> (6.2) 

> A m i i M l i 

Note that for any f € M^, using (3.2)，we get 

M M 

E IIAfll^ = - AlAo)f. 

1=1 i=l 

If condition (i) is satisfied, 0 is not an eigenvalue of / - A^Aq. Let j i be 

the smallest eigenvalue of I — A^AQ, then 

M 

i=l 

So, Fif) > Aminv^||f||2 — 00 whenever ||f||2 — oo. 

On the other hand, if condition (ii) is satisfied, let u be the eigenvector of 

A^Ao corresponding to the eigenvalue 1，and V be the subspace orthogonal to 

u, i.e., V = { f : u ^ f = 0 } . Since 1 is a simple eigenvalue of A*Ao, the matrix 



CHAPTER 6. CONVERGENCE OF ALGORITHM 2 35 

I - AlAo has a simple eigenvalue of 0. Furthermore, the corresponding null 

space is 1-dimensional and is spanned by u. Therefore, an arbitrary f e 

can be decomposed into i= ku-\- fy , where fy G V , and 

M 

E I丨Afllg = - > 72||fv||i (6.3) 
i=l 

where 72 be the smallest eigenvalue of / - A^AQ other than 0. 

Now, if ||f||2 goes to infinity, at least one of ||fv||2 and \k\ must go to 

infinity. If ||fv||2 — 00, then by (6.2) and (6.3), F(f) > Aminx/^llfvlb 00, 

and the proof is completed. Otherwise, if ||fv||2 is bounded, then |A;| 00. 

Since PAU — 0，there exist at least one index io e A such that u{io) + 0. 

This implies that ku{io) and hence f(zo) would go to infinity, very far from 

the given data g(io). Therefore, UPaF-尸八邑||! — oo. Hence, F(f) > ||p f̂ _ 

尸 — 00 and we are done. � 

Putting the above two lemmas together, and using Theorem 3, we now 

state the convergence theorem of Algorithm 2. 

Theorem 5 If one of the conditions (i) and (ii) in Lemma 4 holds, then 

Algorithm 2 converges to a minimizer of the minimization problem (5.1) for 

any initial guess. 

Now, we can show the convergence if the example in (2.14) is used. 

Corollary 1 With the tight frame system A = M in (2.14)，Algorithm 2 

converges to a minimizer of the minimization problem (5.1) for any initial 

guess. 

Proof: We prove by verifying the condition (ii) of Lemma 4. Note that by 

the results in [34], the matrices H f for I = 1 ,…，L can be diagonalized by 

the discrete cosine transform (DCT) matrix. Moreover, the eigenvalues " � 
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of H^i�are given by 

/4') = c � S 2 - ( 2 M 蒜 ) ’ 

for 0 < i < n — 1. 

If 4 二 M，then AQ = MQ = nf=V H ” . Since the matrices H^ for I = 

1，…,L can be diagonalized in DCT by the same matrix, so the eigenvalues 

of AQAQ are given by 

n(/4'))2 = fr�s4m(2'-;)， 
Z=1 /—I 

for 0 < i < n - 1. Note that [ J L I coŝ "̂  (2^1 盖 ) = 1 if and only if z = 0. 

Hence, 1 is a simple eigenvalue of A^AQ. Also, it can be easily verified that 

the corresponding eigenvector is 1，and 尸八1 # 0. 口 

When f is 2D, the tight frame systems are constructed using the tensor 

products, and defined in analogous to (2.14). The low-pass filter is M � ® M � . 

Hence we can get the convergence for Algorithm 2 by arguing similarly to 

Corollary 1. 



Chapter 7 

Numerical Results 

In this chapter, we compare Algorithm 2’ which minimizes (5.1), with (3.12) 

and (3.6). We use the 2D version of the multiresolution tight framelet sys-

tems, with parameters L representing the number of levels and m character-

izing the filters (see section 2.2). The diagonal of the scaling matrix D is 

chosen to be 

A 二 ，0，2 - " 2，.. . ， 2 - " 2 ， . . . , 广 / 2 ， ： ， 2 _ " 2 ， … ’ 1 ’ . 二 丄 1 广 ， ( 7 . 1 ) 

N 2mN 2mN 2mN 

where c is a parameter to be determined. We tune c in (7.1) manually until 

we get the best solution in terms of peak signal-to-noise ratio (PSNR). 

We choose the initial guess of the inpainting image to be the cubic in-

terpolation of the observed image g. The iteration is stopped when ||f„+i — 

fnlb/llgib < 10-4. To speed up Algorithm 2，while we set the initial guess, 

pO，of the first inner iteration to be 0, we set the initial guess of subsequent 

inner iterations to be the output p obtained from the previous inner iteration. 

In Figures 7.1, 7.2 and 7.3, we compare the three methods using the real 

image peppers, covered by texts. The image size is 256 x 256. We use the 

tight frame system corresponding to m = 2 and L = 4. Figure 7.1 shows 

37 
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the results when there is no noise, while Figure 7.2 is the results when white 

Gaussian noise with standard deviation equals to 5 is added, and Figure 7.3 

corresponds to the results when white Gaussian noise with standard deviation 

equals to 10 is present. Prom these images, the results of the three methods 

are close, and Algorithm 2 performs better. 

Algorithm (3.12) Algorithm (3.6) Algorithm 2 

no noise 33.83. 33.82 33.85 

a = 5 31.18 31.22 31.31 

(7 = 10 27.84 27.81 27.96 

Next, we present the results when applying the above methods in zoom-

ing. The images are down-sampled, in which only pixels with odd-odd indices 

are known. The test images are camera and lena, both of sizes 256 x 256. We 

have added white Gaussian noise with standard derivation 5 to both images. 

The parameters of the tight frame system are also m = 2 and L = 4. The 

results for camera are shown in Figure 7.4, while the results for lena are 

shown in Figure 7.5. 

The PSNRs of the restored images by the three methods are tabulated 

as follows. Again, the three methods give similar results while Algorithm 2 

is slightly better. 

Algorithm (3.12) Algorithm (3.6) Algorithm 2 

Camera 25.31 25.22 25.31 

Lena 28.40 28.41 28.45 
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Figure 7.1: The image "Pepper". Prom left to right: Image covered by 

texts; the restoration by (3.12) (PSNR=33.83); the restoration by (3.6) 

(PSNR二33.82); and the restoration by Algorithm 2 (PSNR=33 85) 
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Figure 7.3: The image "Pepper". From left to right: Image with additive 

white Gaussian noise with standard deviation 10, and covered by texts; the 

restoration by (3.12) (PSNR = 27.84); the restoration by (3.6) (PSNR = 

27.81); and the restoration by Algorithm 2 (PSNR = 27.96). 
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Figure 7.4: The image "Camera". Prom left to right: Image with additive 

white Gaussian noise with standard deviation 5，and only pixels of odd-odd 

index are observed; the restoration by (3.12) (PSNR = 25.31); the restoration 

by (3.6) (PSNR = 25.22); and the restoration by Algorithm 2 (PSNR = 

25.31). 
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Figure 7.5: The image "Lena". Prom left to right: Image with additive white 

Gaussian noise with standard deviation 5，and only pixels of odd-odd index 

are observed; the restoration by (3.12) (PSNR = 28.4); the restoration by 

(3.6) (PSNR = 28.41); and the restoration by Algorithm 2 (PSNR = 28.45). 
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Chapter 8 

Conclusion 

In this thesis, we propose a new iteration algorithm for image inpainting 

based on framelet systems. Here, by studying the relationship between sev-

eral wavelet-based methods as constrained minimization problems, we intro-

duce a new iteration algorithm and prove its convergence. The convergence 

limit of the new iteration minimizes a functional that is linked to the reg-

ularity of the solution. The restored images are slightly better than that 

of existing methods. Faster convergence algorithms for this minimization 

functional are yet to be found. This may lead to a further research topic. 
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