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Abstract of thesis entitled: 

Some Topics on Nonlinear Conservation Laws 

Submitted by Duan Ben 

for the degree of Master of Philosophy in Mathematics 

at The Chinese University of Hong Kong in August 2007 

It is well-known for the Quasi-One-Dimensional nozzle flow that the standing 

shock is stable in the diverging duct and is unstable in the converging duct for 

the idea inviscid flow. In this thesis, we will investigate viscous flows in Quasi-

One-Dimensional nozzle. After a brief introduction of viscous conservation law 

and viscous shock profile, we study the stability of viscous shock waves. Besides 

initial value problem, we also study the propagation of stationary shock waves in 

bounded domain. Moreover, some new results about propagation of stationary 

shock wave for viscous transonic flow through a nozzle are obtained. 
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摘 要 

衆所周知，對於擬一維管道中的理想無粘流體而言，丨宁立激波在發散的管道 

中是穩定的，在壓縮的管道中是不穩定的。在本文中，我們將硏究一維管道中的 

粘性流體。在很簡短的介紹粘性守恒律和粘性波段之後，我們將硏究粘性激波的 

穩定性。對於初値問題下的激波的傳播，我們做了一定的硏究’此外，還硏究了 

有界區域上相應的問題。這裏，我們得到一些粘性跨音速流體穿過管道時關於激 

波傳播的結果。 
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Introduction 

For large time behavior of convex scalar hyperbolic conservation law 

卜 淋 = 0 ’ (0.0.1) 
I u(x, 0) = Uq 

we have learn a great deal. In Lax's paper [29] 1957, asymptotic behavior of 

solutions was discussed as t tends to infinity, it was completely described and 

depends on the initial data in the far field. Moreover if a system is strictly 

hyperbolic and each characteristic field is either genuinely nonlinear or linearly 

degenerate, large time behavior is also determined. The deep result for 2 x 2 

systems was presented by Glimm and Lax [15] 1970, which was extended to general 

systems by DiPerna[7] and Liu[30]. 

In contrast, for viscous conservation law 

卜 / ⑷ 一 … （0.0.2) 
I u{x,0) = Uq. 

it is much more difficult and to obtain asymptotic stability is not easy. 11'in and 

01einik[23]1958 using maximal principle proved that viscous shock profile in the 

case of a convex nonlinear term was indeed orbitally stable, and later, Peletier[41] 

used energy method and gave another proof. On the other hand, in [23], 11'in 

and Oleinik also showed that if the initial value exponentially decayed to the end-

states of the profile, then the perturbation of waves decayed at a corresponding 

exponentially rate, which also can be obtained from energy method[58]. In the 

article, for convex flux function, when both initial perturbation in H^ is small 

enough and has certain decay in the far field, the perturbed solution will converge 

to shock profile when time tends to infinity. If one consider the linearized stability 

of viscous shock wave, we will find that the corresponding linearized operator 
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probably has eigenvalue 0 due to translation invariance of the equations. For this 

sake, we can not deduce nonlinear stability from linear stability directly [50]. 

Up to 1976，Sattinger [46] proved that a traveling wave is asymptotically sta-

ble with respect to small perturbations. His idea amounts to define the linearized 

operator in a weighted space, therefore, the corresponding eigenfunction space 

will become smaller. Subsequently, the eigenvalues of this linearized operator 

will be restricted in a smaller region in complex plane such that except for iso-

lated simple eigenvalue 0，real parts of all other eigenvalues have a negative upper 

bound. Under this condition, nonlinear stability for general traveling waves can 

be obtained in the weighted space. Moreover, nonlinear stability of viscous shock 

waves becomes an example of Sattinger's theory, without restriction on convexity 

of flux functions. And, his result also showed that perturbation decays expo-

nentially in time whe the initial perturbation decays exponentially to the shock 

profile at the far field for non-convex conservation law. 

Kawashima and Matsumura [25)1985 investigated the asymptotic stability of 

traveling wave solutions with shock profile for several systems of gas dynamics. 

Particularly, for a scalar conservation law with viscosity, the solution approaches 

the traveling wave solution at rate 亡—"(for some 7 > 0) as ^ ̂  00, provided that 

the initial disturbance is small and of integral order, and decays at an algebraic 

rate for |;r| —> 00. By energy method, the decay obtained is in a polynomial 

weighted L^ space. Later, Jones, Gardner and Kapitula [24] 1993 generized the 

algebraic decay in [25] to weighted L°° space, by a new technique of resolvent 

analysis. And the nonlinear term convexity hypothesis is not assumed. Moreover, 

such technique was successfully applied to system of conservation laws, even for 

multidimensional system of conservation laws [13，18]. 

While, the aforementioned methods can only get asymptotic stability for small 

perturbation of travelling waves. Moreover, they can only get the convergence 

in 1 / 2 ， o r in certain weighted space. On the other hand, we know, for one-
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dimensional conservation law, L^ is indeed a suitable space, where Cauchy prob-

lem is well-posed, and L^ space has physical significance for conservation law. 

Hence, stability is much more important than any other stability. This di-

rection was originated by Osher and Ralston [42] 1982，they obtained asymptotic 

stability for viscous shock wave when the initial data is between two shifted vis-

cous shock waves. Along this direction, Serre and Preistuhler, have made compre-

hensive studies and finally obtained a complete result for L} stability of viscous 

shock profile, they showed that any perturbation will merge into the viscous 

shock wave, it was included in a series of work, [47], [11]. A good survey for 

Z/i-stability of nonlinear waves in scalar conservation law is [49], where Serre also 

studied stability of relaxation shock, radiative shock, discreet shock and bound-

ary layers, and so forth. The basic tools for establishing L^ stability are some 

important properties for scalar viscous conservation law, 1 } contraction principle, 

comparison principle[27], and dispersion property for viscous conservation law[l]. 

For system of viscous conservation laws, the initial data without excess mass, 

asymptotic stability of viscous shock wave was first proved by Goodman[16], Mas-

tumura and Nishihara [39], by energy method independently, in certain sense, it 

can be regarded as a generalization of Peletier's idea for scalar equation. How-

ever, the method and analysis by Goodman are more fundamental and useful 

in many other situations. When initial perturbation has excess mass, I ? stabil-

ity for viscous shock wave for a special class of perturbations was obtained by 

Liu in [30] 1977 where he introduced very important diffusion waves. By intro-

ducing coupled linear diffusion waves and combining the energy estimate with 

pointwise estimate, Szepessy and Xin [53] 1993 got rid of the restriction in [30] 

and obtained stability of viscous Shockwave for general initial perturbation. L^ 

stability for Lax shock was finally established by Liu[31] by an elaborate study 

of approximate Green's function and detailed pointwise estimates. 

When we consider the stability of viscous shock wave in scalar conservation 
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law for initial value problem, there is a viscous shock wave in the whole space. 

Although there are some small disturbances, they will merge into the shock wave, 

therefore, viscous shock wave will propagate in the whole space freely, so the sta-

tionary shock keeps static. For bounded domain and half space, if the shock wave 

is not stationary, Rankine-Hugoniot condition says that the shock wave will ei-

ther be absorbed into boundary or generate a strong boundary layer. While, the 

propagation of stationary viscous shock wave is very subtle when the domain has 

boundary. In general, boundary layer will occur because usually the shock profile 

does not match the boundary condition exactly; moreover, since the speeds of the 

boundary layer and shock layer are comparable, therefore, the resonance of these 

two types of layer will occur. These induce fruitful phenomena for the propaga-

tion of stationary viscous shock wave in bounded domain and half space. When 

the viscous coefficient is small enough, viscous shock wave in bounded domain 

will be drifted by two boundary layers, to balance these boundary layers, the mo-

tion of shock layer will be exponentially slow in exponentially long time, this is so 

called metastable phenomenon. This phenomenon was first observed for Burgers 

equation by Kreiss and Kreiss[26] in numerics, and then studied for general equa-

tion by Laforgue and 0'Malley[28], Reyna and Ward[43] independently. In [28], 

the authors generalized matched asymptotic analysis method. Reyna and Ward 

analyzed linearized problem around the shock wave, with the help of studying 

certain spectrum problem, and obtained the propagation of viscous shock wave 

in bounded domain. 

As far as the half space is concerned, Ward and Reyna [55] 1995 first studied 

the propagation of a shock by the method they developed in [43]. Since boundary 

layer and shock layer will be resonant, therefore, the shock layer will be drifted 

away from the boundary, thus the influence of boundary layer will be weaker 

and weaker on the shock layer, so the acceleration of shock layer away form 

the boundary will be smaller. Asymptotic analysis shows that shock layer will 
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propagate with speed of order log 亡 with respect to time t. Later on, Liu and Yu 

[38] 1997 gave a justification for the asymptotical analysis result in [55] by detailed 

pointwise estimates, because they almost can write down the solution explicitly 

by Green's function. 

In practice, balance law equation is as important as conservation law equation. 

Several physical situations can be modelled as hyperbolic equation with a source, 

for instance, the geometric effect of a nozzle on the gas flow can be expressed as 

source. The quasi-one-dimensional model of gas flow through a nozzle [57] is 

,絮 + =-榮P, 
< 举 + 長(pu2+p) = - 错 ( 0 . 0 . 3 ) 

where p, u, p, E are the density, velocity, pressure and the total energy of the 

gas, and A{x) is the area of cross section of the nozzle. For uniform nozzle 

A'(x) = 0，the system becomes one dimensional compressible Euler equation. 

Liu and his collaborators made comprehensive studies for the system (0.0.3), see 

[31, 32, 33, 14] and references therein. The main results they obtained are that 

the shape of the nozzle has stabilizing and distabilizing effect, and that there are a 

finite number of asymptotic shapes that can be constructed explicitly. Almost at 

the same time, Ebid, Goodman and Majda [9] studied steady states of isentropic 

flow through a nozzle. To analyze stability of standing transonic shock as what 

was done by Liu, they proposed a much simpler scalar model 

ut + 二 (0.0.4) 

analogous to isentropic flow through a nozzle. 

Actually, Liu in [35] 1987 also proposed a scalar model similar to (0.0.4) as 

^̂ t + /(w)z = a(:r)/i(ti)， (0.0.5) 

where he imposed conditions for strong coupling of source, h(u) ^ 0 and h'{u) + 

0. Utilizing his modification of Glimm scheme and wave interaction estimate, 
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he obtained a transparent and revealing qualitative understanding of wave be-

havior of (0.0.5), including such as existence, nonlinear stability, instability, and 

changing types of waves. Besides inviscid model, Liu and Hsu [22] also studied 

existence and nonlinear stability of steady states for viscous equation 

ut + = €.Uxx + a{x)h{u) (0.0.6) 

by a new type of a priori estimate and spectrum analysis. 

In fact, besides steady states, stability of viscous transonic shock wave is of 

great interests. If the life span of shock wave is very long, we will observe it easily 

in experiment. Therefore, we are interested with propagation of viscous shock in 

a nozzle as in the case of conservation law, [43] 1999, where the flow is passing 

through a uniform nozzle. Sun and Ward [51] studied the propagation of viscous 

shock waves with constraint that a(a:) is exponentially small for the model 

Ut + f(u)a： = eu^x + a{x)u, (0.0.7) 

where the leading order approximation by matched asymptotic analysis is as 

same as that in [43] for viscous conservation law, applying projection method in 

[43] with a little bit generalization, they obtained metastability of viscous shock 

wave in this case again. To relax the artificial constraints in [51], we note that 

it is different from viscous conservation law that the shape of nozzle will help 

determine the location of shock wave for flow in nozzle. Motivated by the study 

for inviscid flow through a nozzle, we may take the leading order ansatz of location 

of shock wave to be static for a divergent nozzle. Then we can solve the next and 

higher order outer solutions, ansatz of location of shock wave and inner solutions 

simultaneously. It shows that the change of the ansatz of location of shock wave is 

very small, therefore, metastability of viscous transonic shock wave in a divergent 

nozzle is obtained. 

We conclude this introduction by outlining the rest of this thesis. In chap-

ter 1，we shall study nonlinear stability of shock profile by energy method and 
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contraction principle. In chapter 2，we will use projection method to study the 

propagation of shock wave in bounded domain and half space, then verify the 

asymptotic result in half space by pointwise estimate. In chapter 3, we will study 

asymptotic stability by spectrum analysis then analyze leading order and higher 

order approximations of transonic flow through a nozzle by matched asymptotic 

analysis. In last chapter, chapter 4，we study the interaction between shock layer 

and boundary layer. 



Chapter 1 

Stability of Shock Waves in 

Viscous Conservation Laws 

In this chapter, we first recall some basic properties of solutions to Cauchy prob-

lems for viscous scalar conservation laws, then define viscous shock profiles and 

give some basic properties of viscous shock profiles. Based on these basic knowl-

edge, we will study the stability of shock profiles by energy method, V- stability 

of viscous shock wave by contraction principle and comparison principle respec-

tively. 

1.1 Cauchy Problem for Scalar Viscous Conser-

vation Laws and Viscous Shock Profiles 

Consider the following Cauchy problem 

ut + f{u)x = Wxx, ( l - l - l ) 

u(x, 0) = UoOr). (1.1.2) 

From the seminal paper of Kruzkov[27], we have 

10 
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Theorem 1,1.1 For any uq G the problem (1.1.1)-(1.1.2) has a unique 

solution in C(0, oo; and satisfies the following four properties: 

(i) ： u e X Rl) when f G 

(ii) (Comparison principle): Assume two initial data uq and vq satisfy uq < vq, 

then the corresponding solutions satisfy u(x’t) < v(x, t); 

(Hi) (Conservation of mass): Let u, v be two solutions to the Cauchy problem 

(1.1.1)-(1.1.2) corresponding to the initial data Uq, Vq, if uq — vq E 

then u{t) — v(t) e L^(R) and 
foo roo 
/ {u{x,t) - v(x,t))dx = / (izo - VQ)dx\ (1.1.3) 

J —CO J —CO 

(iv) (Contraction principle): Suppose ^^ollii < oo andu, v are two solutions 

to the Cauchy problem (1 .1 .1)- (1 .1 .2) associated with initial data uq, vq, then 

< \\uo-VO\\L^. (1.1.4) 

Theorem 1.1.1 is very classical, and its proof can be found in [27, 47]. 

Theorem 1.1.1 allows us to construct an operator S{t) which with a given 

initial data uq associates at the instant t > 0 the solution u{t) to (1.1.1)-(1.1.2). 

It is easy to show the family iS{t))t>o is a semigroup. 

One of the key elements in understanding the theory of viscous conservation 

laws is the inviscid theory. It is well-known that the shock wave 

{ u _ X < st, , � 
(1.1.5) 

U+ X > st, 

is very important for hyperbolic conservation law 

ut + / ⑷工=0. (1.1.6) 

If (1.1.5) is a weak solution to (1.1.6), then Rankine-Hugoniot condition implies 

f{u+)-f(U-) = s(u+-u-). (1.1.7) 
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We will denote the shock wave (1.1.5) which satisfies Rankine-Hugoniot condition 

(1.1.7) by (u_,u+,s). If we interchange U- with u+ in (1.1.5), U-, s) also 

satisfies Rankine-Hugoniot condition (1.1.7). To get physical solution, we need 

some admissible condition. For general scalar conservation laws, Oleinik condition 
r / \ r / \ 

—^ > s for all u between u+ and (1.1.8) 
u _ u一 

is an necessary condition for admissibility of shock wave (1.1.5) for hyperbolic 

conservation law (1.1.6), see [47]. If the flux function is convex, f'(u_) + s 

and f(u+) — s, then Oleinik condition becomes famous Lax geometric entropy 

condition, u_ > u+. A natural physical entropy condition is the following viscous 

criteria: 

Vanishing Viscosity Criteria: A weak solution u of (1.1.6) is admissible if 

there exists a sequence of smooth solution û  of 

Ut + f{u)x = ê ixx (1.1.9) 

which converges to u in L}��as e 一 0+. 

Since shock wave (1.1.5) is dilation invariant, therefore, we expect that (1.1.9) 

possesses a travelling wave solution which converges to u in (1.1.5) as 

e —> 0+. On the other hand, if converges to (1.1.5) as e —>• 0+，then 

0 ( 0 一 ii土 as € 士oo. Therefore, we have 

Definition 1.1.2 (/>(x — st) is called a viscous shock profile for the shock wave 

{u-,u+,s), if 

卜‘僅 二 小 ( 1 . 1 . 1 0 ) 

where ' = ^ = x — st. 

Then we have 

Lemma 1.1.3 (1) (j) exists if and only if Oleinik condition (1.1.8) holds, and 

is unique up to phase shift; 
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(2) If f is convex, then ^ < 0; 

(3) If (f) is a shock profile to the inviscid shock s), then there exists Xi 

such that f'{(j)(xi)) = s; 

(4) Suppose f is convex and • is a shock profile to the inviscid shock [u_,u+, s), 

then 

1 0 ' � I < 0(l)|n_ - l̂-NI, (1.1.11) 

where C = minye[u+,u_] f"{u). 

Proo f : (1)，(2)，(3) are obvious. 

Since f is convex, therefore, < 0. Prom (1.1.10)，we know 

( l n ( | 0 ' | ) ) ' = / ' � - s . (1.1.12) 

It follows from (3) that there exists Xi such that f'{(j){xi)) — s. Therefore, if 

X > y > xi, integrating the equation (1.1.12) from x to y gives 

丨作)l = rif'wz))-s)dz 
my)\ - ‘ 

Therefore 

that is to say, 
= (1.1.13) 

Integrating both sides of (1.1.13) from Xi to x with respect to y yields (1.1.11). 

Similarly, we can get (1.1.11) when x <xi. • 

The question is whether (j)(x - st) is a global attractor for the problem 

‘ 办 丄 _ a^ 
W卞 dx —职, 

< u(x,0) = uo(x), (1.1.14) 

lima； 一士 = 士. 
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The answer in general is not true, if 树;r — st) is a solution, then (l){x — st + 6) is 

also a solution for any 6. 

If we linearize the problem at (f)： 

“ = S - S " ⑷ 診 = 。 • 
Obviously, €(/)' = 0, therefore, 0 is an eigenvalue of jC. Hence we can not to 

deduce nonlinear stability for viscous shock wave from linearized stability by a 

standard procedure in [50]. 

For convex flux functions, we can deal with nonlinear stability of viscous shock 

wave by energy method because of ^ ^ < 0 by lemma 1.1.3. 

We digress for a moment and consider that if fj^(uo(x) — (^(x))dx = m • 0’ 

then 

/ {u{x, t) — (/){x — st))dx 二 / {uo{x) — (j){x))dx = m 0, 

therefore, we do not hope that limt^+oo /^i I权(工，亡）一竹工 _ st)\dx = 0. On the 

other hand, for any J G we have 
poo 
/ {(f){x + 6)- (j)(x))dx = 6{u+ - u—), (1.1.15) 

J —00 

therefore, if we set 8 = ——~, then 

f {uo{x) - (Pix + 5))dx = [ {uo{x) - (f)(x)) + [ ((f){x)-(f>(x + 6)). 
7ri JRI 

= 0 

Therefore, even when initial data has excess mass, for one dimensional viscous 

conservation law, we still expect that we can get asymptotic stability of viscous 

shock waves after a shift. 

Remark 1.1.4 The (1.1.15) only holds for one dimensional case. Therefore, 

high expectation to get asymptotic stability of shock profiles for multidimensional 

viscous conservation law only occurs when the initial perturbation has no excess 

mass [49]. 
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1.2 Stability of Shock Waves by Energy Method 

We first state the main result on asymptotic stability of viscous shock waves by 

II'in and Oleinik [23]. 

Theorem 1.2.1 Let f"{u) > 0, u- > u+ and (p{x - st) be the shock profile for 

the shock wave s). Set 

r+oo 

mo = (uo(x) - (j)(x))dx, (1.2.1) 
J—oo 

5 = - ! ^ . (1.2.2) 
— U-

If /jji - (f){x + 6))'^dx < e and ||wo 一 + < e for some small e, 

then 

sup \u{x, t) - (f)(x - st + (̂ )l — 0 as t — oo. (1.2.3) 
xGR 

Proof: We will follow [58]. 

Step 1: For simplicity, let s = 0 and (J = 0. Set u(x,t) = (/){x) + w(x,t), 

substituting into the equation, we deduce that 

f t + + im+——m - /'⑷—二 （1.24) 
I w(x, 0 ) = UQ{X) — (PIX). 

If we define w) = /{(j) -\-w) - f(4>) - f'((f>)w, when w is bounded, then it is 

easy to obtain that 

I S O � H2. 

Set v{x,t) = J:mW[y,t)dy, vo(x) = f^Juo(x) - (P(x))dx, then 

I + + (1.2.5) 

Step 2: Basic energy estimate 

Claim 1: There exists a constant Ci > 0, such that if 

sup < ei, 
0<t<T 
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then the estimate 

I … + 2 ' l k ( .，T ) | | > + f 丄 \ ^ m i y ' d x d T < Ciii^olli^ (1.2.6) 

holds for 0 < i < T. 

Proof of the claim 1: We multiply both sides of (1.2.5) by v and integrate over 

IRi to get 

I 去 II y ( ; t ) H i . + 獻 + L … 工 - — 丄 剛 么 工 . 

Applying Sobolev imbedding theorem, we deduce that 

I / vQ{(/),v^)dx\ < -0(1) / M'^dx 
Jri 

< lMi /2 .0� / M'dx. 

Combining above estimate with assumption and < 0 by Lemma 1.1.3， 

yields estimate (1.2.6). 

Step 3: Higher order estimate 

Claim 2: There exists a constant €2 > 0, such that if 

sup < 62, 
0<t<T 

then the estimate 

H - M m + f lk(•，力 115/2 办 < C2\\vo\\h (1.2.7) 
Jo 

holds for 0<t<T. 

Proof of the Claim 2: we multiply both sides of (1.2.4) by w and integrate 

over IRi to get 

5去丨丨_•’丨丨至2 —人/'⑷丽:rcte-义iQ(0’切—= -丄Iw^xNa;, 

that is to say, 

•甚 f / wldx = [ f'((/))wwa:dx + I Q{(j),w)w^dx. 
2 at J^i jRi Jr^ 



S o m e  T o p > i c s  o n  N o n l i n e a r  C o n s e r v a t i o n  . L a w s  1 7 ^  

B a s e d  o n  S o b o l e v  i m b e d d i n g  t i h e o r e m  a n d  C a u c h y  i n e q u a l i t y ,  t ; h e  h a n d  s i d e  

o f  a b o v e  i n e q u a l i t y  c a n  b e  e s t i m a t e d  b y  

J r i  4  

T h e n  U i e r e  e x i s t s  e 、 2  w  m l  s u c h  t ; h a t  i f  

s u p  1 1  义 - , 0 1 1  妒 2 ( 5  ^  4  

3  

w e  h a v e  l ^ h e  e s t i m a t e  

h e r e  w e  h a v e  u s e d  t h e  e s t i m a t e  ( 1 . 2 . 6 ) .  

S i m i l a r l y ,  w e  c a n  o b t ; a i n  t : h e  s e c o n d  o r d e r  d e r i v a t i v e  e s t i m a t e  o f  v  b y  c h o o s i n 的  

a  s  ^  t - 2 .  T h e n  t h e  ； p r o o f  o f  t ; h e  c l a i m  2  i s  c o m p l e t e d .  

S t e j D  仁 ： S t a n d a r d  C o n t i n u i t y  a r g u m e n t ;  

C l a i m 3 :  T h e r e  e x i s t s  a  c o n s t a n t  e 、 、 >  0 ,  a s  l o n g  a s  

l b o l l / p ( K l )  ^  e 、 、 ，  

t h e n  

「 C o  

。 I M 8 I M i l l M 2 ( 5  +  y o  F ( . ， r ) l l 》 2 ( 5 c ? T  A c ,  ( 1 . 2 . 8 )  

w h i c h  i m p l i e s  

l i m  I K . , S L 8  n o .  ( L 2 . 9 )  

r o o  

P r o o f  o 叫  C l a i m  3 :  B y  f i x e d  p > o i n t  t i l i e o r e m ,  w e  c a n  s h o w  i n h e r e  e x i s t s  l o c a l  

s o l u t i o n  t o  ( L 2 . 5 )  i n  L 8 ( o )  . / , r 2 ( R l ) ) ， f o r  s o m e  t i m e  J \  A  o o ,  i f  v o  m  

m o r e o v e r ,  i 叫 w e 、 ， t h e n  

s u i >  ( 二 ) I I / / 2 ( K )  ^  6 2  a n d  s u p  l l t s 又 兰 I s s  A  8 .  

5  一  5 j  

T h i s  r e s u l t  a n d  l o c a l  e x i s t e n c e  m o r e  g e n e r a l  j > a r a b o l i c  s y s t e m s  c a n  b e  j f o i m d  i n  

4 7 一 .  H e n c e  a l l  t h e  c a l c u l a t i o n s  a b o v e  m a k e  s e n s e .  T a k e e 、 、 =  e 7 c 2 -  I f  | | 妄 l l / / 2 ( 5  ^  

e 、 、 ， t h e n  ( 1 . 2 . 7 )  i m p l i e s  t h a t  

I M . , T 1 ) I U 2 ( K )  〈 e 、 .  
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K y  t h e  l o c a l  e x i s t e n c e  r e s u l t ,  U i e r e  e x i s t s  s o l u t i o n  o n 【 T l ,  2 T i 一  s a t i s f y i n g  

s u p  S 二 )  I U 2 ( K 1 )  R  e 2 .  

l T i , 2 r i j  

T h u s  C l a i m  2  a g a i n  s h o w s  
I  I I 又 i l u 2 ( 5  ̂

，  

【 0 , 2 r l j  

a n d  s o ,  

l ? 2 r l ) l l 遍 ) 二 、 .  

C o n t i n u i n g  t h i s  p > r o c e d u r e ,  o n e s  s h o w s  t ^ h a t  a s  l o n g  a s  

I I 妄  l k 2 ( K l )  ^  e 、 、 ，  

t l i e n  

『 0 0  

S U I ^  I I 义 二 )  P 2 ( K 1 ) +  /  L K ( . ， - R ) P 2 ( K L ) C F T 〈  A  

T l i u s ,  w e  f i n i s h  p > r o v i n w  ( 1 . 2 , 8 ) .  I n  t h e  f o l l o w i n g ,  C  w i l l  d e n o t e  a  g e n e r i c  c o n s t a n t ,  

w h i c h  d e p > e n d s  o n l y  o n  { 7  i n  ( 1 . 2 . 8 ) .  M u l t i p l y i n g  w  o n  b o t i h  s i d e s  〇 f  t ; h e  ô c p̂ ô̂ ^  

( 1 . 2 . 4 ) ， t h e n  w e  g e t  

麵 t  =  / 叉 ； ^  — 到 s s 色 I 到 0 ( 0 ,  J ) 昏  

^  o l f + i l r l l 昏  1  

T h e r e f o r e ,  w e  h a v e  

「 8  f j  

y 。 A  o  a n d  吐  

s o  I I 5 ) 1 1 1 2  丄  0  a s  i  — +  + 0 0 .  B y  S o b o l e v  i m b e d d i n g  t h e o r e m ,  w e  k n o w  

w r  "  c f  f  1  s  条 * F  

h e n c e  l i m r o o  I 夏 - J Q I L S  =  0  a s  t  丄  0 0 .  
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Step 5: Since VQ{X) = J^{uo{y) — (F){y))dy, by weighted Poincare inequality[19, 

53], we deduce that 

/ r \ 1/2 
||”o|b < / \x{uo{x)-(f>ix))\^dx]. 

\Jr J 

Thus if f股1 lxl^(uo(x) -(/)(x))^dx < e and \\uq-(I)\\hi < e for some e small enough, 

we have 

ll'î olkacR) < e"， 

so we complete the proof of the theorem. • 

Remark 1.2.2 If we assume � 1 ； — + � 1 

and uo(-) — </>(• + S) e instead of the assumptions in Theorem 1.2.1, we can 

also obtain asymptotic stability for shock profile, see[52]. Under these conditions, 

if each characteristic field of system of conservation laws is either genuinely non-

linear or linearly degenerate, the stability of shock profile for a Lax shock was ob-

tained by Liu[34l for special initial data, and in general by Szepessy and Xin[53] by 

energy method, certainly, there are some important ingredients as we mentioned 

in Introduction to deal with systems. 

Remark 1.2.3 The energy method can succeed in establishing the asymptotic 

stability of shock profile is due to the following two reasons. First, special form 

of equation for conservation law，more precisely, we can integrate the equation 

(1.2.4) once to get a Hamilton-Jacobi equation (1.2.5). Applying the basic energy 

estimate for this Hamilton-Jacobi equation, we can estimate t) = f : � w(y, t)dy. 

Then standard higher order estimate help to get the estimate for w. If we han-

dle equation (1.2.4) directly, it is hard to deal with nonlinear term. Second, 

悬/'((/>) < 0. Since two similar properties holds for a Lax shock for system of 

conservation laws, therefore, we can handle viscous shock wave in system of con-

servation laws by energy method, see [16, 34，17, 53]. 
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1.3 Li Stability of Shock Waves in Scalar Vis-

cous Conservation Laws 

In this section, we will show the stability of shock wave with general V- pertur-

bations. This is motivated by the important physical significance of the L^ norm 

for conservation law and the fact that it is the norm for which the semigroup S(t) 

is non-expansive. We first state the main result in this section. 

Theorem 1.3.1 Let 0 : ]R —> E 6e a shock profile for the inviscid shock [u—, u+, s) 

with u- + u+. Ifuo-cj) G then the solution u{t) = S{t)uQ to (1.1.1)-(1.1.2) 
with initial data uq satisfies 

lim + = O with 6= •^-ooKW-树劝"工,(13.1) 
t^oo u+ — U-

where S(t) is the semigroup defined in section 1 .1. 

This theorem is a consequence of long time endeavor of many mathematicians, 

and Z^i-stability as presented in theorem 1.3.1 was first obtained by Preistuhler 

and Serre [11]. Here we will combine some results appeared in [42’ 47, 48，11，49] 

and give a complete proof. The proof depends on several important lemmas. 

Lemma 1.3.2 If there exist a, p e R such that (f)(x + o；) < uo{x) < (p(x + 

jS) almost everywhere. Then the solution u(t) = S{t)uo of the Cauchy problem 

satisfies (1.3.1). 

Proof: We will mainly follow [47]. 

Using a moving coordinate ^ = x — st, we can assume that the shock is 

stationary: s = 0. At the same time, if we take translation to 0，the assumption 

in lemma 1.3.2 will hold with a translation, thus we assume ^ = 0 for simplicity. 

With the help of the comparison principle and assumption of the initial data, 

we have, (f){x + a) < u{t, x) < (f){x + /?). Let us write v{t) = u(t) — (j), then 

\v{t)\ < (j)(x + (f){x + a) G L\R) for \ft > 0. 
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In addition, contraction principle (1.1.4) yields 

|丨邓’.+ ")-碰 二 ||妳.+ ") -uWlli 

< l|t^�(. + /0 —询||i = ll”(o，. + " ) -r (o )||i . 

Since € Li(R), therefore 

||_，- + /i) — — 0 as h-^0. 

Thus the hypotheses in Kolmogrov compactness theorem [20，60] are all satisfied, 

so the family is relatively compact in the cj—limit set B = 

0 + 门及y Bs where Bs is the closure in L^(IR) of ⑴；i > s}. Furthermore, B is 

non-empty since Bg C Bt as s > t and Bg are all non-empty compact sects for all 

s > 0. The set B is that of all cluster points for the distance d{z, w) = \\z -

of subsequences {n(i„)}„eN where tn — o o . 

The cj—limit set B is invariant under the semigroup S(t) since ii b £ B 

with b = oo w(亡n)’ then S{t){b) = + t^). For the same reason, 

S(t) : B — B is onto as we also have b = S(t)c where c is a cluster point of the 

sequence {u{tn -亡)}neN. Therefore, b e C°° for \/b e B by Theorem 1.1.1. 

Now, let k eM., the decreasing function 11-^ �—</>(• — A;)||i admits a limit 

denoted by c(k) when t oo. If 6 G B, we deduce that ||6 — (f){- — A;)||i = c{k). 

However, S{t)b 6 B, so it follows that the function t \\S{t)b — (/){• - /c)||i is 

constant. Let us write w{t) = S(t)b and z{t) = w(f) — (/){• — k), then 

0 = 4 l k � 1 1 1 二 f ^t • sgnzdx. (1.3.2) 
at 

Prom the equation (1.1.1) and the definition of shock profile we know 

zt + ( /W — / ( * - k))), = Z^^ar 

Multiplying this equation both sides by sgnz, we deduce that 

1 4 + ( ( / W - f W - - k)))sgnzl = 'Ŝ x. • sgnz. (1.3.3) 
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Integrating over R gives 

[ \z\dx = [ Za:x • sgnzdx. 

7K Jr 

Thus 

0 = / Zxx ‘ Sgnzdx. (1.3.4) 
JR 

However, since the initial data b is the sum of a BV function (f) and a 1} function 

6 — a priori estimate shows that Wxx is integrable over R [47] and hence also is 

Zxx- Therefore, using dominated convergence theorem, we have 

0 = lim / Zxxje(^)dx, 

where j j j ) = y/e^ + r^. Integrating by parts, we have 

0 - lim f zl£{z)dx. (1.3.5) 

Let rco be a point where z vanishes. Suppose \zx{xq)\ = 7 � 0 , then there 

exists (5 > 0 such that 

I < \z^{y)\ < 2 7 + 

Choosing e > 0 sufficiently small such that ^ < 6, we have \z\ < e on (xq -

六，工 0 + 卖 ） b y mean value theorem. On the other hand, £ ( r ) = e~V(r / e ) with 

J(r ) = ( l + r2)-3/2. Thus 

/ 4j:iz)dcc > i r+命 JiDzldx > J易 J(l)(圣)2 = 平 〉 0 . 

Jr e 人0-卖 q 2 4 

This contradicts with (1.3.5)，therefore, Zx(xq) = 0. Finally, we have proved that 

V6 6B,VA:gIR S(t)h{x) = (t){x -k)今(S(t)b(x))^ = - k). 

Since S{t) is from B onto B, therefore, 

ybeBykeR b(x) = (pix b'{x) = (f)'{x - k). (1.3.6) 
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To complete the proof of lemma, we note first of all that b lies between (f){x+a) 

and (f){x + as limit of such functions, hence b takes its values strictly between 

U- and u^. Thus the function x t—> k{x) = x —杀—1(6(0:)) is well defined and 

smooth. By construction b{x) = (^{x — k{x)), the differentiation gives b'{x)= 

(//(工-k{x))(l — k'{x)). Using (1.3.6) we find that 

(f>'{x - kix))k'{x) = 0 

and hence that k'(x) = 0. Finally, A; is a constant and b = (f){- — k). Thank for 

the property of conservation of mass (1.1.3)，we have 

(b- uo)dx = 0. 
JR 

Thus, we have k = 0 because of our assumption at the beginning of the proof. 

Hence, we have proved that the a;—limit set is reduced to a single element 

(f). Since the family { f (0}t>o is relatively compact in and as it has only a 

single limiting value when 亡— 0 0， i t is convergent, that is 

lim\\u(t,')-(l){--sti-6)\\i = 0. 
t—*oo 

• 

To prove the theorem, we first extend the initial data in Lemma 1.3.2 to a 

larger class. Define 

Ui = {Wo I there exist such that </)(a; + a) < uo(x) < (f){x + /?)}, 

U2 = {woko(â ) G [inf sup</>], for all a; G M, uq - (j) e L }̂. 

Corollary 1.3.3 (1.3.1) holds for u(t) == S(J:�uq with uq G U2. 

Proof: It is clear that Ui is a dense subset of U2 with the distance d(z, w)= 

\\z - w;||i. Therefore, Vwq G U2, there exists {wn} C U2 such that ||tin - wo||i 0 
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as n —> oo. Ve > 0, there exist N eN such that Vn > N, \\un - wo||i < e/3, then 

115"�lio - (Pix - s力 + 6)\\i < I I - � � 1 1 1 

+ - (Pix + 6n)\\l + \\(t>{x - St + 5^) " (j>{x - st + 6)\\i 

< ll̂ in - Wolll + \\S{t)Un - (j)[工-St4)||l + K — . _ 

where & = hence | 知 - < - ^o||i/K _ 

Taking t — oo and applying Lemma 1.3.2，we get 亡 ) W o — s 力 + ( 5 ) | | i < Ce 

for a fixed constant C. Since e is arbitrary, we finish the proof of corollary. • 

In fact, we will reduce the proof of Theorem 1.3.1 to the following stability 

of constant states. 

Lemma 1.3.4 For every c G E and any function uq E c + with 

roo 
/ (uo(a;) - c)dx = 0, (1.3.7) 

J —oo 

the solution u = S{t)uo to (1.1.1)-(1.1.2) with initial data Uq satisfies 

lim ||w�-c||i = 0 . (1.3.8) 
t—*oo 

Proof: The original proof of this lemma was due to Preistuhler and Serre [11]. 

Here we will follow the framework of [49]. 

Define IQ{V) = limt->oo \\S{t)v - c||i, by contraction principle (1.1.4), IQ is 

continuous on c + L^. Up to the choice of a moving frame, we may always assume 

that / ( c ) 二 / ' ( c ) = 0, after a translation, we can also assume c = 0. Denote 

Ll = {v e L\R)\J^^v{x)dx 二 0}，then the set U3 = {v'\v G W^i’i(]R)} is 

dense in Lj. Due to continuity of IQ on I/, we only need to prove the lemma 

for uo e 丄⑴.Given uo G U3 n Uo = w' and w G Wi’i(R), then 
ikiloo = IWloo and 

| /MI<iV/ ( IKI|oo)H' , (1-3.9) 

where Â /(||iio||oo) = |8叩卜丨丨鄉丨丨�如丨口 | / � � 
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The standard energy estimate for equation (1.1.1), and the fact that uf'{u)= 

9'{u) yield 

Using one dimensional Nash inequality[40 

M 2 < c | k l l 2 l M I ? , (1-3.10) 

and decreasing property of 亡一 we obtain 

This differential inequality obviously implies the following dispersion relation [1] 

IMb < (1.3.11) 

Write u as mild solution 

u{t) = � * Wo - / (d^K{t - s) * f{u{s)))ds, 
Jo 

then by (1.3.9) and (1.3.11)， 

I k W I l i < ⑴ * 以0II1+/'ll氏K(亡—s)||i||/(以⑷ 
Jo 

ft f]o 
< l|i^W*^lli + cw,(||u�|Ulh^�||?/ - 7 = = . 

Jo - s) 

Since 

and 

ft ds 
I — = TT, 

Jo \/s{t - s) 
therefore /oW<C3iV/(ll̂ ^o||oo)||^^o||?. (1.3.12) 
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On the other hand, lo(uo) = lo(u(t)), we may apply (1.3.12) to u(t), instead to 

get 

A ) � ) S C 3 i V / ( I W | o o )剛 I ? . 

Taking t oo, we get 

/oK)<C3iV/(||no||oc)(/oK))'. (1-3.13) 

Fix a real number R > 0 and consider the ball Br defined by ||wo||oo < R 

in Lq n . In the connected set Br, (1.3.13) tells either Zo(以o) = 0 or /q > 

l / (c3Nf(R)) . Since Iq is continuous and take the value zero for uq = 0，this 

implies Zo 三 0 on Br, hence on the union Lj D of these balls. This ends the 

proof of the lemma. • 

After these plenty of preparations, we can prove the theorem easily. 

Proof of theorem 1.3.1: We will follow [11]. 

Denote sup0 and inf (f) by c+ and c_, respectively. Set 

poo fOO 

771+ = / (uo(x) — c+)+cb and m_ = / (c_ — Uo{x))+dx. 
J —oo J — oo 

These are well-defined since 0 < m士 < ||wo — As 

(/)(士oo) = 士 and uq - (/) G 

therefore the Lebesgue measures of two sets Z+ = <�_+�+} and Z_ = 

> are infinite. Thus there exist sets M+ C and M_ C Z- of 

Lebesgue measure 2m+/(c+ — c_) and 2m_/(c+ — c_). Set 

, � I max{wo(a;),c+} xeR\M+, 
aiOc)= < 

[ ( c _ + c+)/2 a; G M+, 

{ m i n { u o ( x ) , c _ } a; G ]R\M_, 

(c_+c+)/2 X G M_, 
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then 

a2(x) < uo{x) < ai(x) Va; G R. 

Clearly 
poo 

ai - c+ e L1(R) and / (ai(a;) - c+)dx = 0. 
J—oo 

Set ui(t) = S(t)ai, U2(t) = S(t)a2, then Lemma 1.3.4 implies 

lim II ((’•）-。+)+111 = 0. 
t—oo 

Similarly, we can prove that 

lim (1.3.14) 
t—oo 

By comparison principle, the solution u(t) = S(t)uo satisfies 

U2(t, x) < u{t, x) < ui {t, x) Vo; G R. 

Fix an arbitrary e � 0， t h e n there exists a ̂ ^ > 0 such that 

隱，.)-c+)+||i < e/2, ||(水•) - c_)_||i < e/2. 

Let Ue{t) = S{t - t^)uo for t > t e with 
f 

C_ if u{te,x) < C-, 

Uo = u(t„x) if c_ < u{t„x) < c+, (1.3.15) 

C+ if C+ < u{te,x). 
� 

While 

11̂0 - < e 

and 

11̂ 0 - </>(•—减）||l < 11̂ 0 - Oil + IW亡O •) - - S力Jill < oo, 

so Corollary 1.3.3 implies that 

lim IliieW — - sU - s(t - U) + ( y 111 二 0 
t^OO 
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with appropriate By contraction property 

limsup •) — (f){‘ — st + Di l l < e. 
t—*oo 

As JT^iH^ + ^i) — ^{x + S2))dx = (<̂ 1 - 52){u+ - u_)’ therefore 

- (̂ 621 • \u+ - U-\ < lim sup •) — (/){• -st + 
t-*oo 

+ lim sup •) — (j){- - st + (^eJlli 
t—00 

< ei + 62-

Thus Se converges, as e j 0, to some limit S and limf_,oo 二 0. 

Therefore ^ = H o ( 一 • 
一U — 



Chapter 2 

Slow Motion of a Viscous Shock 

After studying the stability of viscous shock wave for initial value problem, we 

consider propagation of viscous stationary shock waves in bounded domain and 

half space. For bounded domain case, we will use two asymptotic analysis meth-

ods and projection method to study the location of shock layer and study the 

effect of boundary conditions for the propagation of shock layer. In the case of 

propagation of stationary shock wave in half space, we first study the problem 

by asymptotic analysis, then verify this asymptotic analysis results by careful 

pointwise estimate. 

2.1 Propagation of a Viscous Shock in Bounded 

Domain 

In this section we will study the internal layer behavior associated with the fol-

lowing viscous shock problem in the limit e —> 0 

ut + Uiy))x = eu^x, 0 < x < L , t > 0 , u e R , (2.1.1) 

u(a;,0) = uo(x), u(0,t) = u(L,t) = (2.1.2) 

29 
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where � 0 ， q ; + < 0, and the smooth nonlinearity f{u) has the following 

properties: 

/(O) = / ' ( O ) = 0’ / ( a _ ) = / ( « + ) =/ (oO， f"{u) > 0. (2.1.3) 

Two important examples for the flux function are: f(u)=譬，this is well-known 

Burgers equation; f(u) = u — 击 which arises the study of one dimensional 

transonic gas in a straight channel[21]. 

To get some insights of the problem, we first focus on the steady problem. 

2.1.1 Steady Problem 

For problem (2.1.1)-(2.1.2), the corresponding steady problem is 

( / W ) x = ê ^xx, 0<x<L, (2.1.4) 

u(0) = u(L) = (2.1.5) 

where � 0 ， < 0，and (2.1.3) hold, the problem (2.1.4)-(2.1.5) has a unique 

solution with a shock type internal layer. 

For e —> 0, the leading order matched asymptotic expansion solution for 

(2.1.4)-(2.1.5) is given by u ~ (f)�{pc - Xo)/e), [10], where 从z) is the shock profile 

satisfying 

ct>'{z) = f((f>{z)) - fia), -oo<z<oo, m = 0, (2.1.6) 

( j ) � z � � a _ — z —> - o o , (2.1.7) 

之 ） 〜 + a+e〜+ 之 ， 么 ~>oo’ ( 2 . 1 . 8 ) 

where 

"士 = 干 / ' ( a 士 )， (2.1.9) 

(2丄10) 
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Since f{u) is convex, direct computation shows a士 > 干a士. Notice that for 

any xq 6 (0，1)，with 0 ( e ) � o ; � � 1 - 0(e)，the matched asymptotic expansion 

solution satisfies the equation exactly and it satisfies (2.1.5) to with exponentially 

small terms. Therefore the location XQ of the shock layer can not be determined 

only by matched asymptotic expansions. 

The deviation w = u — (f){z) between the steady state and internal layer should 

satisfy a nonlinear differential equation 

/(^ + (t>(z))x - f((f>{z))x = 

Since we expect that the deviation is small enough, therefore, at least we need 

that the solution to the corresponding linearized problem is small enough. Thus 

we will consider the following linearized problem. 

ew,, - {f'{(t>)w), = 0, 0<x<L, (2.1.11) 

—0) = (j){-xo/e)�a_e〜—卯/、 (2.1.12) 

w(L) = a+- - x o ) / e ) 〜 卯 ( 2 . 1 . 1 3 ) 

To solve the problem (2.1.11)-(2.1.13), we first transform the differential equa-

tion (2.1.11) into a self-adjoint form. Introducing a new variable 

w = w(x) exp(-g(z)), p(^) = ^ l o g ( ^ ) , where z^'^-p-. (2.1.14) 

After a simple calculation, we find that w satisfies 

- = 0, (2.1.15) 

w{0)〜（/(a)a_)"V::"2r"_W(2e)’ (2.1.16) 

w{L)�—(/(a)a+)i/2i/;:i/2e-ML-:=o)/(26)， (2.1.17) 

where the potential V(z) is defined by 

V{z) = \(f{cP{z))f + IfWzMiz). (2.1.18) 
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Define 

C 沙 = e V x x - (2.1.19) 

Therefore we can represent w as linear combination of eigenfunctions of self-

adjoint linear operator C^ and a correction term which is induced by inhomoge-

neous boundary conditions (2.1.16)-(2.1.17). Hence we consider associated eigen-

value problem 

卜=冰()<《：’ (2.1.20) 
[ m = 0, {̂L) = 0, 

It is obvious that A is real. Suppose A is an eigenvalue, then 

A = -e^ J ^Idx- J V(z)'iP^dx 

=—一/ i^idx- yjc/'o^ � ) ) v 血—• J 

Since 

I f _ � m f d A = \\ J e{f{c/>(z))Wdx\ 

=I j e/'OK 劝 圳 

thus A < 0. 

Suppose {Aj}j>o and {4'j}j>o are eigenvalues and corresponding eigenfunc-

tions to Ce. We now give an asymptotic estimate for the principal eigenvalue A� 

and for the corresponding eigenfunction ipo. Define = (j)'(z) . exp(—p(2；))， 

then Ce'ipQ = 0. Then Green's identity shows 

Ao(而，tW - - ^o(0)V'Ox(0)). (2.1.21) 

To estimate Aq from (2.1.21) we construct •(pc) asymptotically and then calculate 

•0ox(O) and 'ipox{L). Since 如 satisfies Ce'ipo = 0, is exponentially small at a; = 0 and 

X = L, and is of one sign, then ipo � N q如, e x c e p t possibly near the endpoints. 
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Here NQ is a normalization constant, thus we must add a boundary layer term to 

Noi^oix) near each endpoint to approximate ipQ. 

We first consider the region near x = 0. Since V ( z ) � i / i / 4 for z —> —oo, 

then for a: 0, we have 

Mx)�AW而⑷ + � ) • (2.1.22) 

Using t p o { x ) � f o r a: 0 and enforcing 秘Q) = 0, 

we find 

Therefore 

V ' o x ( O ) � - e - i " _ i V o ( a - " - / ( a ) ) " 2 e _ " � � / � . (2.1.23) 

A similar calculation for the region near x = L gives 

〜 帅 ) / 側 . (2.1.24) 

Now to evaluate the left hand side of (2.1.21)，we use the estimate (ipo^ipo)� 

NQ�如where 

roo 

(•’ 而）〜e / {ci>'{z)f = 2e(a_ - a+ ) / (a ) . (2.1.25) 
J —oo 

Hence, we obtain the following estimate for Ao = Ao(zo): 

Ao(a:o) 卯 + (2.1.26) 
a- — Q;+ 

Motivated by analysis for Burgers equation in [26], we assume that {Aj}j>i 

are away from 0. Now we project w to subspace which is spanned by tpj, then 

0 = = (2.1.27) 

where 

Bj = e\w{L)^UL) - wm^M)- (2.1.28) 
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Then by previous asymptotic analysis BQ = 卯 + e —邵 / ” . On 

the other hand, to satisfy well-posedness for the linearized problem, there will be 

||w)||l°° < O(l)max{|z£;(0)|, |u;(L)|}. Using asymptotic analysis for A � i n (2.1.26), 

to balance two terms in right hand side of (2.1.27) for j = 0, BQ must be 0. Thus 

a 一 v_e …小=a+"+e 一 帅)… (2.1.29) 

The solution to (2.1.29) is :co = Xe where 

= — l o g ( ^ ) . (2.1.30) 

Summarizing, we have 

Proposition 2.1.1 The shock layer solution for (2.1.4), (2.1.5) is given asymp-

totically by u � w h e r e x^ is defined by (2.1.30). 

This proposition and several propositions below were obtained in [43] for a 

special case q;_ = — L = 1, and some results about more general case where 

a_ may not equal to — h a d appeared in [44], [55], [54] diversely either without 

derivation or by different treatment. Here we present analysis and results all 

for more general case where may not equal to - a + and L is arbitrary by a 

uniform treatment. 

2.1.2 Time-Dependent Problem 

For time dependent problem 

ut + (/(n))x = 0 < 2； < L , 力〉 0 , (2.1.31) 

u(0’t) = a 一 ’ u(L,t) = a+, (2.1.32) 

we will track the propagation of the shock wave by the method developed in the 

previous subsection. 

Starting from initial data a shock layer is formed on an 0(1) time scale. To 

describe the subsequent slow motion of the shock layer we look for a solution 
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to (2.1.31)-(2.1.32) of the form u { x , t ) � — Xo{t))/e), where (f>{z) is the 

shock profile defined in (2.1.6)-(2.1.8) and x = Xo(t) is the unknown location 

of the shock layer. Since 0(0) = 0，then xo{t) is an approximation to zero of 

u{x, t) during the slow evolutionary period. In a strict sense, labelled by 

corresponding to the location of the zero of u for the shock layer initial data of the 

form u{x, 0)�<;z!)(:c — F o r more general initial data, however, we will interpret 

Xq as the location of the shock layer at the onset of the slow evolution. Although 

a precise definition of is not needed for our purposes, one possible definition is 

that Xq is the location of the zero of u at the time when the inviscid problem(e = 0) 

first forms a shock. Since the slow evolution occurs on an exponentially long time 

scale, we only incur an 0 (1 ) error in the total elapsed time by assuming that the 

slow motion begins at ^ = 0, that is to say, a;o(0) = XQ. 

For t � 0 ( 1 ) , we look for a solution to (2.1.31)-(2.1.32) of the form u(x,t)� 

(p(z) + w(x,t), where z = (x — xo(t))/e, w�小.Linearize the problem at (f)(z), 

then 

ei/̂ xx - {f\(t){z))w)x 二 -e~'^XQ(f)\z) + Wt, (2.1.33) 

— ( U ) � 帅 / � (2.1.34) 

w{L, t ) 〜 卯 ( 2 . 1 . 3 5 ) 

As same as before, to get an adjoint linear operator, we use the transformation 

w{x,t) = exp{-g(z))w{x,t), 

then we can convert the boundary value problem (2.1.33)-(2.1.35) to 

e'w,. - V{z)w = � e - " � + ewt — (2.1.36) 

w(0, t ) 〜 二 W ( 2 e ) ’ (2.1.37) 

w{L, t ) 〜 功 ) / 側 . (2.1.38) 

Suppose {'ipj{x)}j>o are eigenfunctions for the eigenvalue problem (2.1.20), then 

為） + e(办，％) — ⑷ 也 V ĵ) — Xj(w,iPj) 二 - B 州 , ( 2 . 1 . 3 9 ) 
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where B八t) = - w)(0, 

Since ipoix)�Nocj)'(z) ex\){—g{z)) is exponentially small outside a narrow 

region of width 0{e) centered at a; = a;。，thus the dominant contribution to the 

inner product integrals in (2.1.39) for j 二 0 arise from the region near x = XQ. 

In this region, we assume Wt � e一沒诊 t h u s we neglect the second term on the 

left side of (2.1.39). Moreover, since i d � 1 and f((f)) « 0 when a; is in a small 

neighborhood of XQ, the third term on the left side of (2.1.39) is asymptotically 

smaller than the first term. Noting that A q � 0， t h e n letting e —> 0 in (2.1.39), 

we obtain the following approximate equation of motion for a;o： 

Xo((/>'e-',7/;o) = Bo(t). (2.1.40) 

Proposition 2.1.2 For e — 0， the exponentially slow evolution of the shock 

layer for (2.1.31)-(2.1.32) is described by u �工二。�),where Xo{t) satisfies the 

ordinary differential equation 

xo = ~ ~ - 卯 “ - � 卯 ) / ” ， (2.1.41) 
Q_ — a+ 

here (f){z) is defined by (2.1.6) — (2.1.8)and i>±, a± are defined in (2.1.9), (2.1.10). 

The initial position of the shock layer Xq = :co(0) is determined by the transient 

process describing the formation of the shock layer from the initial data. 

Remark 2.1.3 If x^ > Xe, then i;o < 0, therefore the shock layer will move to Xe 

at last; Conversely, if XQ < Xe, then XQ > 0, therefore the shock layer will move 

to Xe after exponentially long time. So we can see that the location Xe of shock 

for the steady problem (2.1.4)-(2.1.5) is stable. 

2.1.3 Super-Sensitivity of Boundary Conditions 

Now we look at the problem we solved again. The problem can be written in an 

abstract form as: 

Ix = y, 
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where I is an abstract operator, in our case, it relates to the differential operator; 

y represents the effect of boundary conditions; x is what we want to solve, the 

location of shock layer. The differential operator has small eigenvalues, that is 

to say, the norm of the operator I is very small, on the other hand, we know 

that boundary condition is also quite small, therefore, y can be viewed as a small 

quantity. So, as a matter of fact, we are solving an ill-conditioned problem. To 

verify this ill-condition, we perturb y a little bit and solve some problems with a 

little bit different boundary conditions . 

First, we study the steady problem (2.1.4) with boundary conditions 

w(0) = Q：一- A/e-c"�u{L) = + A^e—c"� (2.1.42) 

here A i ,礼，q, c,. > 0. As same as in section 2.1.1, studying the new boundary 

layer terms and then we have 

Proposition 2.1.4 The shock layer solution for (2.1.4), (2.1.42) is given asymp-

totically by u � w h e r e x^ is solution of following equation: 

a-v一e…小-ci+"+e�+(PM/右=- A^v+e—cr". 

When f is even, then = = u, = = a, a_ = a+ 二 a, and Xe can be 

explicitly represented by 

工e =会+ llog(7 + (72 + l)"2)， （2.1.43) 

where 

1 = ^ • 

If we choose ci = Cr = " L / 2 and Ai + Ar, this example shows that the 

exponentially small changes in the boundary conditions induce on 0(e) changes 

in the location of the shock layer. 

The second example is the steady problem (2.1.4) with boundary conditions 

- ki{u{0) - a一）= 0’ eu^(L) + kr{u(L) — a+) = 0, (2.1.44) 
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here ki, Av > 0. As same as in section 2.1.1, we study certain eigenvalue problem, 

give an asymptotic estimate for the principal eigenvalue, and apply solvability 

condition for associated linearized problem, then we have 

Proposition 2.1.5 When ("+ — - ki) > 0, the shock layer solution for 

(2.1.4), (2.1.44) is given asymptotically by u ^ where x^ is defined by 

xe = ^ ^ log ( . (2.1.45) 

Alternatively, when ("+ — kr){u- — ki) < 0, there is no shock layer solution for 

(2.1.4), (2.1.44). 

We find that if we perturb the boundary conditions (2.1.5) a little bit to 

(2.1.44), the shock layer may disappear. This again implies that the problem is 

very sensitive to its boundary conditions. 

While, for time dependent problem (2.1.31) with boundary conditions similar 

to (2.1.44) 

eu^(0, t) - ki{u{0, t) - a - ) = 0’ eu从 t) + kr{u(L, t) — a+) = 0， (2.1.46) 

parallel to section 2.1.2, we have 

Proposition 2.1.6 For e —̂  0, the exponentially slow evolution of the shock 

layer for (2.1.33), (2.1.44) is described by u ^ where XQ(t) satisfies the 

ordinary differential equation 

xo = - ( - 卯 - - 1 ) 6 — - 卯 ’ (2.1.47) 
_ \ kr ki ) 

here (t)(z) is defined by (2.1.6) and "士, a士are defined in (2.1.9)； (2.1.10). The 

initial position of the shock layer a;o = xo(0) is determined by the transient process 

describing the formation of the shock layer from the initial data. 

Remark 2.1.7 / / " _ < h and < K, for any xg G (0,L), the solution xo{t) 

tends to x^ in the equilibrium location. When > ki and > K, the equilib-

rium location is unstable; more precisely, when > Xe{xQ < Xe), the shock will 
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eventually hit the boundary x = L{x = 0). Finally, if ("+ - kr){v- - ki) < 0, the 

shock layer will hit the boundary at x = L{x = 0) when > &”("+ < Av). 

Remark 2.1.8 If we take ki, kr ^ oo in the boundary condition (2.1.44),(2.1.46), 

formally, we get the boundary condition{2.1.b), (2.1.32) respectively. Meanwhile, 

when ki, kr —> oo, the location of shock layer Xe in (2.1.45) will tend to (2.1.30)； 

similarly, the propagation of shock layer XQ{t) defined by (2.1.47) will go to (2.1.41). 

Thus we can regard (2.1.4)- (2.1.5) as a special case of (2.1.4)- (2.1.44) and 

(2.1.31)- (2.1.32) as a special case o/(2.1.31)- (2.1.46) for k = K = oo. 

2.2 Propagation of a Stationary Shock in Half 

Space 

In chapter 1, we know that if there is no excess mass, for Cauchy problem, the 

location of shock can be regarded as static. While in Section 2.1，we find that the 

location of shock will move slowly due to the effect of boundary layer. Since there 

are two boundary layers, in certain sense, as a result of balance of two boundary 

layers, the shock will not move a lot. In this section, we will see that when there 

is only one boundary, the shock still moves slowly, but they will move away from 

the boundary farther and farther. 

2.2.1 Asymptotic Analysis 

First of all, we will use projection method developed in section 2.1 to give the 

propagation of shocks in half space. 

Consider the problem 

Ut + f(u)a： = Oiarz’ 0 < X < OO, t > 0, u{x, 0) = Uo(x), (2.2.1) 

iz(0, t) = a-, u{x,t) —> a+ as x —̂  oo. (2.2.2) 
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Starting from uo(jr), we assume that a shock layer is formed in an 0(1) time 

interval with the shock layer location an 0(1) distance away form a; = 0. 

If we take A：/ —> CXD, L —̂  oo in the boundary conditions (2.1.46), then we 

get the boundary conditions (2.2.2); at the same time, the location of shock layer 

(2.1.47) will become the propagation of shock layer for the problem (2.2.1)-(2.2.2). 

Thus we have 

Proposition 2.2.1 [55j For t � 0 ( 1 ) and e —> 0； the slow shock layer motion 

for (2.2.1), (2.2.2) is given by u � w h e r e xo{t) satisfies 

Xo{t)�^rS + 丄 log(l + 4)， ts 三如- - : + ) , - • ’ (2.2.3) 
V 一 ts a-vt 

here and a— are defined in (2.1.9) and (2.1.10). 

2.2.2 Pointwise Estimate 

In section 2.2.1，we only give the propagation of shock waves as (2.2.3) by asymp-

totic analysis, but it is not rigorous mathematical proof. In this subsection, we 

will justify the above asymptotic result by careful pointwise estimate. 

More precisely, after a scaling, we consider the following initial boundary value 

problem 

Ut + UUx = u 工 工 , 

< u(0,t) = l, u(oo,t) = -l, (2.2.4) 

u(x, 0) = Uo(x). 
\ 

Since we know for Burgers equation, the inviscid shock (1, - 1 , 0 ) has a shock 

profile 

(f){x) 二 _ tanh - . (2.2.5) 
LI 

In this section, we will consider the initial value uo(x) which is a perturbation of 

the stationary wave solution (f)(x — XQ) with a location a ;�=舍 for e � 0 sufficiently 
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small with the following two properties: 

广oo 

/ (uo{x) - (t)(x — XQ))dx = 0, (2.2.6) 
Jo 

|tio(:r) - <l)(x - xo) - e-怎(1 — (/){x - xo))| < H(x, xo), (2.2.7) 

where H(x,y) is a function of x and y defined as 

f for 0 < rr < 1， 

H{x^y)={ c。sh;f 一 - (2.2.8) 

I îhifir for a:>l. 

In order to trace the asymptotic behavior of the solution u{x, t), we define the 

wave front X{t) of the solution t) in terms of the stationary wave (f)�x). X{t) 

is given by the implicit relation 
roo 

/ {u{x, t) - (f)(x - X(t)))dx = 0. (2.2.9) 
Jo 

It is easy to see that for each t>0, X(t) is unique, we will explain later that for 

each ^ > 0, X{t) exists, with the help of X{t), we have 

Theorem 2.2.2 [38] Suppose the initial data uo(x) satisfies (2.2.6)-(2.2.7), then 

the solution u{x, t) of the initial boundary value problem (2.2.4) has the properties: 

I 輪 < ^ ^ ^ 二 cosh 単 ’ (2.2.1。） 

X(t ) = x o + log(l + te-^") + e(t), (2.2.11) 

where e{t) is a function satisfying 

lim e{t) = 0. 
t—*oo 

Remark 2.2.3 We can see the location of wave front in (2.2.11) coincides with 

what we have got in (2.2.3) by asymptotic analysis. 

To prove the theorem, we need introduce some notations. 
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For any a 6 |) we define a sequence 

Xo = = l /e > 0, (2.2.12) 

Xn = Xn-i + 5n-i for u > 1, (2.2.13) 

where 5饥 is any constant with < < . This induces a sequence 

{^n}n>o given implicitly by X{Tn) = Xn, we will show the existence and unique-

ness of Tn later. 

Lemma 2.2.4 If the solution u(x, t) to the initial boundary value problem (2.2.4) 

satisfies 

Tn) — (/>(x - Xn) - (1 - < H(x , (2.2.14) 

for some n > 0, then the following initial boundary value problem 
f 

dtv + d办{cc - Xn)v) - d^^v =-煞v), 

< v(0,t) = l-(^(-Xn), v{oo,t) = 0, (2.2.15) 

v{x,0)=u{x,Tn)-(l>{x-Xn), 
\ 

has a solution Vn{x, t) = v{x, t) for 0 < t < XnSn exp(Xn), furthermore, the 

following boundary gradient estimate 

\d:,Vn{0 t̂)\ = O � + (2.2.16) 

holds for any t G [0, XnSn exp(X„)]. 

This lemma is a summary of several lemmas in [38]. The proof is quite long, 

but the idea is very clear. Here we only sketch some basic ideas of proof for 

lemma 2.2.4, the details can be found in [38). The local existence for this nonlinear 

differential equation is proved by fixed point theorem. We first study the iterative 

initial boundary value problem for the linear partial differential equation 

‘ d t记 + dM^ - XnH) — = -IdM-'?. 

< ”;j(0’t) = l - ^ - X „ ) ’ < (oo ’ ; 0 = 0， (2.2.17) 

\ 
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for A; > 1 and v^ = 0. We represent the solution for (2.2.17) by its Green's 

function which can be explicitly written down. Then a detailed pointwise estimate 

yields convergence of iterative approximate solution at least on [0’ XnSn exp(X„)]. 

As far as the boundary gradient estimate (2.2.16) is concerned, first, we can 

represent the solution by Green's function, therefore, when we take the derivative 

to solution, the derivative will transfer to the derivative of Green's function, thus, 

we need only to estimate the derivative of Green's function and a sharper estimate 

for solution itself, essentially, a sharper estimate for the solution to the linear 

equation. 

Now we apply Lemma 2.2.4 to prove Theorem 2.2.2. 

Proof of theorem 2.2.2: Define Xn(t) = then T^+i-Tn is the time 

the wave front X{t) drifts from Xn to Xn+i. Actually, u(x,t) = "UnO^，亡-Tn) + 

(f){x — Xn) on [Tn^Tn + XnSn exp(X„)], therefore, we use translation t ^ t + Tn, 

and define Un(x, t) = u{x, t + T„) for 0 < f < X^Sn exp(Xn). We know that Xn{t) 

exist locally. From the definition of X(t), we differentiate (2.2.6) with respect to 

t, then 

0 二 J {dtUr,{x, t) - (f>'(x - Xn(t))Xn(t)) dx 

= J dtVnix, t)dx - ； ⑴ j (f)'{x - Xn{t))dx. 

Using the equation (2.2.15) and boundary gradient estimate (2.2.16), then we 

have for t < Xn, we first assume Xn{t) > 0，then 

I X � I < + 0 ( l ) ( e — + X M ) , 

thus we find X.n + > X^ + Ce哉丨^ > X“t) > X^ - Ce^^"/^ > 0 for some 

constant C, when t < Xn. Do above computation again for t > Xn, then 

劫)> 0. 

Therefore, Xn {t) are well-defined for t < XJn exp(X„) and e一知⑷ 二 0(l)e一乂", 
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moreover, we have 

I之⑴I < + + xj^)) 

for t < Xn6nexp{X^). Thus 
roo 

0 = / (u{x,t) - (f){x - Xn{t)))dx 
Jo 

poo 

= / Hx, t) 一 - + — Xn) - (/>(x - Xn(t)))dx 
Jo 

ft poo 
= / / 久 t ^ r z ( 工 ， � + • � e - x " ) 

Jo Jo 

=[{-d.Vn(0, s) — M-^n))ds - (Xn(t) - X^)(2 + 
Jo 

where we use the equation and 0(rc) = — tanh|. Then using the boundary 

gradient estimate and = + 0(l)e~^"), we have 

^n(t) - Xn = (I + OWe-Xn) s) - M—Xn))ds 

= 力 e -x" + O � + (2.2.18) 

Suppose that both t < and � 1 . Since 

(̂ n 二 Xn+l - Xn = — T ĵe"̂ " + 0(1)(6一5乂"/6 + ( 义 丄 ) ” 

and 6n 二 不 '� e " ^ ^ " / ® , we have that 

Tn+i - 7； 二（1 + O � ( 2 . 2 . 1 9 ) 

therefore X,, < Tn+i - Tn < XnSnB^", hence Tn+i is uniquely determined. 

At the same time, by a delicate pointwise estimate, we can get 

\VN(x,TN+L — TN) - (1 - - < H{x,XN). 

Since at initial time, To = 0’ (2.2.7) holds, therefore, by induction, for the solution 

u{x,t) to (2.2.4) defined globally in time, similar to (2.2.7), we have 

Hx, Tn) - Cf>(x - — (1 -小 { x - X M < H{x, Xn) (2.2.20) 
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for n > 0. 

From the estimate (2.2.19)，it follows that 

= 二 〜 嚇 - ’ . （ 2 . 2 . 2 1 ) 

This is discretization of the ordinary differential equation 

^ _户-耶） 
dt 

with initial value X (0 ) = XQ, we have 

；C � = : l o g ( e 卯 + i ) ’ (2.2.22) 

then there exists a constant C > 0 such that 

iTn+i - - - < - e "̂) (2.2.23) 

holds with a - a > 0 sufficiently small. When XQ is sufficiently large, we have 

- T„) < e^" - < 2(T„+i - % ) for all n > 1. (2.2.24) 

According to (2.2.23) and (2.2.24), we have 

— Tn < gXn+i _ Xn < 了时 1 — Tn (2.2.25) 

and 

- ^ ^ T r . + 一)1-' < ê " - 一 + + 一)1-�(2.2.26) 
1 — a 2 1 — a Z 

then 

Xn = l o g ( e X � + + 0(1)(T„ + e而 r ) ) . (2.2.27) 

Thus 

= log(T„ + 1) + En, (2.2.28) 

Here En satisfies 
pXo 

En = log(l + + T ^ r ' + — ) ) . (2.2.29) 
J-n+l 
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From (2.2.20), we conclude that 

\u{x, TO 一 Hx ? (恐)一 " 3 . (2.2.30) 
cosh 

From (2.2.19), we know T^ —> co as n — o o , then by (2.2.28), Xn ^ oo as 

n oo. Moreover, from the definition of {Xn}n in (2.2.12) and (2.2.13), it 

follows that for any y > Xq + we can construct a sequence {XN}n such 

that y = Xm for a G Thus for any t > e(i_a)办’ there is a sequence 

{Xn}n satisfying such that X{t) = Xm € Therefore, we have that when 

t > 瓜， 

丨咖 0 + < = cosh 华 • (2.2.31) 

So we complete the proof of the theorem. 口 



Chapter 3 

Viscous Transonic Flow Through 
a Nozzle 

In this chapter, the model we consider is 

ut + {f{u))x = eu^x + a(x)h{u) (3.0.1) 

The flux function f{u) is assumed to be convex. This is motivated by gas 

dynamics, where the sound speed depends monotonically on the density. By 

composition with a simple translation, we may assume that: 

{ f"{u) > 0 for all u under consideration � 

/ (O) = / ' (O) = 0 •. 

The function h{u) represents the coupling of the source due to the geometry 

and the gas flow. The following strong nonlinear coupling assumption is dictated 

by physical consideration: 

h(u) ^ 0， U{u) + 0 for all u under consideration (3.0.3) 

The function a(a;) denotes the strength of the source and may change sign. 

47 
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Firstly, we recall some observation of propagation of a shock wave in nozzle. 

Then, we shall study the nonlinear stability and instability of stationary of (3.0.1). 

At the end, we will take our focus on the movement of a viscous shock wave 

by matched asymptotic analysis. Furthermore, some problems which are still 

unsolved are left in next chapter. 

3.1 Nonlinear Stability and Instability of Shock 

Waves 

Before studying the viscous cases, we first consider the propagation of a shock 

wave through stationary waves. The stationary wave to the right (left) of the 

shock is denoted by ur{x){ui(a;))and the location of the shock wave is a; 二 a:(t). 

The speed of the shock wave is governed by the Rankine-Hugoniot condition 

工 ‘ ⑷ = 八 f y ) 三 ⑴ ， M 力 ) ) (3丄1) 

U+(t) = Ur(x(t))； U 一 (t)三 Ui(x(t)) 

Since U-(t) and u+(t) are the values of the stationary waves ui(t) and Ur(t) 

at X = x(t), we have 

^ = = f(u4t))M^m(u4t)Mt) (312) 

^ 二 ^ H r ^ x ' W = /'…+⑷广丄。剛％+W)工‘⑴ ‘‘ 

Differentiate (3.1.1) and use (3.1.2) to obtain 

2；"� a(x(t)), zz.wMM^ h ( u 4 t ) ) � � 

顽=u+w-“严⑷-轉�(Tra—^ra))() 

The system of ordinary differential equations (3.1.1) and (3.1.2) determines 

the location x = x(t) and the states u(t) of the shock wave. It also shows that 

when a shock wave propagates through a stationary wave it leaves behind another 
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stationary wave, which is the extension of the original stationary wave behind the 

shock wave. 

Base on (3.1.3)，we may investigate the stability of shock waves. A supersonic 

shock wave U- > u+ > 0, accelerates to the right and moves away from the sonic 

state; a subsonic shock wave 0 > u- > u+ accelerates to the left and also moves 

away from the sonic state. For transonic shock waves u_ > 0 > u+’ from (3.1.3), 

for nearly stationary shock waves 

$ � ， - n 湖 ~ 0 (3.1.4) 

Thus a nearly stationary transonic shock wave decelerates and is nonlinearly 

stable if 

a(x)h'(u) < 0 (stability) (3.1.5) 

and accelerates and nonlinearly unstable if 

a{x)h'{u) > 0 (instability) (3.1.6) 

3.2 Asymptotic Stability and Instability 

In this part, we study the nonlinear stability and instability of stationary solution 

of 

' I f + 警 二 德 + • ) % )， 

< •，())=•)， (3.2.1) 

U(0,t) = Ul, U(l,t) = Ur, 

Let [/(x) = U{x]e) be a stationary solution of 

\ U{0) = Ul, f / � = W , , ’ 
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Theorem 3.2.1 Suppose u{x,t) is a solution of (3.2.1) and U(x) is a solution 

of corresponding stationary equation (3.2.2)； then we will have following things: 

(i) (Divergent duct):If a(x)h'(u) < 0； then 

^{0,t)>^{0)=^uix,t)>U(x) 

and 

(ii) (Convergent duct):If a(x)h'{u) < 0， 

Moreover, if U(x) contains no interior layer, then it is asymptotically stable; 

If U(x) contains interior layer, then it is asymptotically unstable. 

(Hi) (Special Model): For the model 

du du d � A'{x) � n � 

^ + = (3.2.3) 

// - 错 - 尝 ⑷ < 0，then U{x) is stable. 

Proof: 

Define 

w{x,t) 二 u(jc’t) - U(x) 

Prom (3.2.1) and (3.2.2), we have 

I wt + f(w + U)(w, + = e^xx + - a{x)h{U) + a{x)h{w + U) 

I i/;(0’ 力)=0 ’ w;(l，力)=0, 

(3.2.4) 

The linearized equation is 

{wt-\- f(U)w, + f{U)U, = ew,, + a{x)h'{U)w (3 ^ 5) 

I w(0,t) = 0, w(l,t) = 0, 
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Set w(x, t) = and obtain 

f 叫"-ifiUM + aix)h'iU)r] = Xr) (3 2 6) 

1 V{0) = 0 ， v W = 0， 

(1) 

Firstly we may assume that Ux(0,t) > Ux{0) for all t. 

Step 1: 

Claim: A < 0 

Proof: We prove by contradiction. Assume A > 0, 

From (3.2.6) we have 

erf — (fiUM + (aix)h'{U) -X)ri = 0 (3.2.7) 

Integrate (3.2.7) from x' to x with 0 < x' < x < 1, 

eri'(x) = ev'ix') + f(U{x))r^(x) - f'{U{x'Mx') — J\ah' — \)r](s)ds (3.2.8) 

Integrate again from x' to x, 

H v V ) - (3.2.9) 

-全 /； dyZ(a{s)h'{U{s)) — 

Setting x' = 0，previous hypothesis ch' < 0 and A > 0 implies that r}{x) > 0 

as long as r]{y) > 0 for 0 < ^ < x. By the initial assumption Ux(0,t) > Ux(0), it 

is clear that r/(y) > 0 for ?/ close to 0. 

Integrate (3.2.6), that 

e ( ? / ( l ) - 7 / ( 0 ) ) + / a(x)h'([/(x))7](x)dx = \ ( r]{x)dx (3.2.10) 
Jo Jo 

Here r){x) > 0 implies A < 0, which is a contradiction. 
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Step 2: 

By define 

( p = 
< (3.2.11) 
[ g = p(x)(a(x)h'(U)-r(U)U,-\) 

(3.2.6) becomes 

[ " ( 0 ) = •， “ ⑴ = 0 ’ 

Use Comparison Theorem in [6], we may have the desired result. 

(2) In this case a{x)h'{u) < 0, 

We followed by [37], 

For the case U{x) contains no interior layer, and A = A(£：) is bounded uni-

formly in e, we may rewrite (3.2.6) as 

f erf-[f'[U)7iY + a{x)h'(Jjyn = Xrj 
< 3.2.13 
[ V { 0 ) = 0， 7/(0) = 1’ 

Thus it follows form Lemma 4.4 in [37] that 77(1) > 0，which is a contradicts 

(3.2.6), q( l )=0. If A =入(e) becomes large A > 1, then it follows from integrating 

(3.2.6) that 

{ri{x)E{x))' = E(x) — i [\a{x)h'(U) — A)77(T)dT， 
^ JQ 

where 

E { x ) ^ e x p { - - � f ' [ U ) _ 
E Jo 

Therefor, we have 

" ⑷ 〉 — r 释 

In particular, g(l) > 0，again a contradiction. Thus, for U{x) contains no interior 

layer, A < 0 and U(x) is stable. 
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On the other hand, we consider the case U{x) contains an interior layer. We 

want to prove by contradiction that A > 0. If not, then 

a{x)h'{U) - A > 0 

and so from adapting Lemma 4.5 [37] to (3.2.13)，we have 77(1) < 0 which con-

tradicts (3.2.6), 77(1) = 0. Thus A > 0 and U{x) is unstable. 

(3) 

By define 

f p = e / o �华农 
< 川、 （3.2.14) 

(3.2.3) becomes 

f ( 暴 ( 3 . 2 . 1 5 ) 

["(0) = 0， 7/(1) 二 0, 

The initial assumption - ^ ( x ) < 0 guarantees that we can use Strong 

Minimum Principle in [56]’ which implies that rj > 0. By a similar argument of 

(l)step 1, we could deduce A < 0 and so l/(x) is stable. 

• 

3.3 Matched Asymptotic Analysis 

The model we consider is a simplified scalar model related to the model proposed 

in [9]. More precisely, consider the following initial boundary value problem 

< = (3.3.1) 

U(0,t) = Ul, U(l,t) = Ur, 
\ 
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where 

f"M > 0, /'(O) = / ( O ) = 0. (3.3.2) 

Motivated by the study for inviscid flow, we first study the divergent nozzle case, 

that is a(x) < 0, where standing shock in the inviscid flow is stable. 

First of all, we generalize the study of Ebid, Goodman and Majda [9]. Suppose 

ui and Uj. satisfy that there exist 无，U-, u+ such that 

Q(uJ) — Q(ui) = A(x), Q{ur) - Q{u+)=成—A{x) (3.3.3) 

and 

f(u+) = / ' (u+) < f{u_), (3.3.4) 
I 

where Q{u) = / � " � d y , Q(0) = 0，and A{x) = a(s)ds, = f^ a(s)ds, then 

there is a standing transonic shock {u-,u+) at x in the steady flow 

警=a{x )u (3.3.5) 

with boundary condition u(0) 二 ui and u{l) = il” When f(u)=苦，(3.3.3) and 

(3.3.4) will reduce to the results in [9] 

叫 + 収 ; - 头 + 旬 = 0 for some x e [0，1] and m > U r - A i . (3.3.6) 
Zt 

Suppose Ui, Ur in (3.3.1) satisfy (3.3.3) and (3.3.4)，then a transonic shock 

layer will be generated in bounded domain [0,1] when e is sufficiently small. As 

same as stability or instability of standing shock for inviscid flow, the stability and 

instability of stationary viscous shock wave are of great interest and importance. 

To reach this goal, we first study the propagation of viscous transonic shock wave 

in a bounded nozzle. 

First of all, we use matched asymptotic analysis to study the internal shock 

layer and the solution in outer region. Although this process is known in principle 

[10], we would like to carry it out in detail here so that we can explain the problem 

easily later. 
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We start with the outer expansion. In the region away from the shock layer, 

the solution may be approximated by truncation of the formal series 

u{x, t)�wo(:c，i) + eui(x, t) + e^U2{x, t) H • (3.3.7) 

Substituting this into (3.3.1) and equating coefficients of powers of e, we get 

0 (1) : uot + - a(x)uo = 0’ (3.3.8) 

0(e) : uit + - a{x)ui = Uoxx, (3.3.9) 

0(e2) ： U2t + {f'{uo)u2)x - aix)u2 = u i 工 工 - ( 3 . 3 . 1 0 ) 

In the shock layer region, u should be represented by an inner expansion: 

u(x’ t ) � 吼 t) + eUi K’ t) + e'C/sK, 0 + .••， (3.3.11) 

where ^ is the stretched variable given by 

e 二 卜 ， ⑷ + Soit) + 6̂ 1 (0 + e%{t} + • •. . (3.3.12) 

This time we substitute (3.3.11) into (3.3.1) and obtain 

O(^) : Uq这 + xoUo^ - f iUoh = 0’ (3.3.13) 

•⑴： t/iK + iolM — (fiUoWi)^ = Soit)Uo^ + Uot 

-a{xo{t))UQ, (3.3.14) 

0{e) : U2这 + ioU2�—{f(Uo)U2h = + 占靠H + Uit 

- 1 - 一 ⑷ ) K — _)C/o.(3.3.15) 

On the other hand, in a zone somewhat farther from the shock layer, the 

matching zone, for example, e" < x — xo(t) + e如⑷ H < e", for some 0 < // < 

" < 1, we expect both the inner and the outer expansions to be valid. Therefore, 

the two expansions must agree there. As explained in [10], we can express the 

outer solutions in terms of ^ and use Taylor series to find the following matching 
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conditions as ^ — oo: 

吼 t) = ^^0(工0(0士0，力）+^^1), (3.3.16) 

= ⑷ 士 0’力）+ K —如)氏 � ±0，力）+ o ( l ) , (3.3.17) 

-Sid:,uo(xo{t) 士 M ) + — 6ofd^,uoixoit) 士 0，t) 

+0(1). (3.3.18) 

Now let us look at the leading order outer solution, it is described by (3.3.8)， 

which is a quasi-linear hyperbolic differential equation and can be viewed as 

equation for inviscid flow through a divergent nozzle. Since for inviscid flow, the 

shape of divergent nozzle has stabilizing effect, therefore, the leading order term 

in the ansatz for the location of shock wave will not move a lot. Suppose it is 

generated at some time t = i, xq = x, and the change of location of shock layer is ‘ 

a quantity 0{e), thus we may assume XQ = 0. Since our interest is the propagation : 

of this shock layer after its generation, and usually the time of generating a shock 丨丨 
� f 

layer is quite short, so we can assume t = 0 without loss of generality. Thus the ！ 
. . i 

leading order term UQ for the inner solution satisfies 丨_ 

" 0 « - 爛 广 0 ’ (3.3.19) ‘ 

and the equation for leading order expansion UQ for the outer solution reads 

uot + /(wo)a； == a{x)uo. (3.3.20) 

Since up to the leading order, the speed and location of shock wave does not 

change as time goes on, therefore, combining with our assumption (3.3.3) and 

(3.3.4), we deduce that UQ will be the steady state of (3.3.20), that is UQ satisfies 

® = (3.3.21) 

on [0’ x] and [x, 1] respectively, and has a jump {u-, u+) at x. Using the matching 

condition (3.3.16), UQ will be the shock profile (j) for the standing shock (u_,U+) 
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at X in the steady flow (3.3.21) for all time t. In the following we choose 0 such 

that /'(</)(0)) = 0’ for example, for f(u)=譬，we have 0 � = u + t a n h ^ . 

To get more accurate propagation of the shock layer, we must analyze the 

next order approximations. First, we solve the first order outer solution, ui, from 

the linear hyperbolic equation (3.3.9). Since UQ, the solution of (3.3.21) satisfies 

the boundary condition in the initial boundary value problem (3.3.1), therefore, 

we impose the boundary condition ui(0,t) = 0 and Ui(l, t) = 0 when we solve 

(3.3.9) in the domain [0’ 到 x E+ and [x, 1] x E+ respectively. Since uo{x) > 0 

when X G [0，到 and < 0 for a; G [无，1], therefore, the initial boundary value 

problems 

uit + (/'(wo)wi)x — a{x)ui = woxx, X G [0,̂ ], t > 0, 
< ixi (a:，0)=^irW，xe [0 ,x] , (3.3.22) 

ui(0，t) = 0’ t > 0, 
V 

and 

Uu 4- (f'(uo)ui)j： - a{x)ui = woxx, ^ G [x, 1], t > 0, 

< ui(x,0) = ut(x), a; e [无，11， (3.3.23) 

？ = 0, t > 0 , 

\ 

are both well-posed. Moreover, since uo does not depend on t and f'(uo) > /'(w一)， 

for X e [0，到 and f{uo) < f'(u+), for x G [x, 1], by characteristic method it is 

easy to see that ui is independent of time when t is sufficiently large. 

Now we go back to the first order approximation of inner solution, with the 

help of knowledge of XQ, UQ, UQ and A = a(X), we can rewrite (3.3.14) as 

U依—(J聊ik = ^om - a(f>. 

If we define a smooth function satisfies 

f for ^ > 1, , 
= (3.3.24) 

[ / U for ^ < -1’ 
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where 士 = 无士)’ and set Vi(^,t) = — Di(^), then 

t) - U^WVik = -Dm + ( / '⑷伪)《 + 各 ⑷ - acj^. (3.3.25) 

Thank for the nice property (1.1.11) of shock profile and f'(^u±)l3± = cm士，we 

know that = - A � + ( / ' ( 0 ) 以 ) s a t i s f i e s < oo. Therefore, 

if we integrate equation (3.3.25) from 0 to we have 

vi�oe，o - f'{m{^,t)+cit) = Gio+Som, (3.3.26) 

where = JQ g i^d^ and c(t) is related to 14(0’ 力）and V^{0,t). Solve this 

ordinary differential equation, we get the one of solutions 

t) = j \ m m - G{v) - c{t)) exp ( J : f'誦dC�dq. (3.3.27) 

After a simple analysis, we will get 

V K U ) — 」 。 ( ％ 二 r � a. ^ - > ± 0 0 , (3.3.28) 

where 士 — lim^—士oo 

On the other hand, for t > i sufficient large, Ui is independent of time, then 

using the matching condition (3.3.17)，we have 

VUf 力）—7士 — as € — ±00， （3.3.29) 

here 7士 = (无士）. Combing (3.3.28) with (3.3.29), we have 

/ W " 、 1. T " “ 、 ^ O W ^ - — G- — c(t) 
7 一 一 卢 - 如 ⑷ = l i m = 7 7 ^ 

=So{t)u.-G- — ((7+ - P+Soit))f'{u+) + - G+) 
— ‘ ’ 

hence 

u— - U+ U- - u+ ‘ 

Using / ' ( u士士 = cm士，then 

So(t)-aSo(t) = h, (3.3.30) 
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where 

u- - u+ \ ' 

Thus 

如 ⑷ = + (力-l)loc. (3.3.32) 

Similarly, we can solve outer solution U2 and derive 

5i(t) - a5^{t) = h, (3.3.33) 

where h = 抖)/'(“+卜2(叫/'(以-)for some M_ and M+. Thus 

^ � 二 (I) + - l)/a. (3.3.34) 

Using ^i(^) , we can solve inner solution U2. 

For divergent nozzle, a < 0，therefore, we find that the location of shock wave 

will not be drifted far away from the original location from above asymptotic 

analysis. Moreover, the time that shock wave exists is very long, this is nothing 

but metastability of viscous shock wave. 

The main difference between equation (3.3.1) and viscous conservation law is 

that the shape of nozzle helps determine the location of the shock wave. There-

fore, the propagation of viscous shock wave in a nozzle can be determined only 

by matched asymptotic analysis. 

For the rigorous mathematical proof for this asymptotic analysis result, we 

leave for the future. 

Moreover, to our knowledge, the propagation and dynamic stability or insta-

bility of viscous shock wave in a convergent nozzle are all unknown. 



Chapter 4 

C 

Consider 

f UU, = f/xx + cl{X)U , 
< (4.0.1) 
[U{0)=ui, C/�= ur’ 

where a(a;) = as before. 

Lemma 4.0.1 There exist a positive M depending on ui and Ur such that any 

solution of U{x) of (4.0.1) statisfies 

\U{x)\ < M, 0<a;<l. 

Moreover, 

\U'(x)\ <C(x)M^M\ 0<a;<l. 

where C{x) = maxo<y<x{|a(2/)|} 

60 
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