
Portfolio Optimization under Minimax Risk 
Measure with Investment Bounds 

WONG, Chi Ying 

A Thesis Submitted in Partial Fulfilment 
of the Requirements for the Degree of 

Master of Philosophy 
in 

Systems Engineering and Engineering Management 

© The Chinese University of Hong Kong 
August 2007 

The Chinese University of Hong Kong holds the copyright of this thesis. Any 
person(s) intending to use a part or whole of the materials in the thesis in a 
proposed publication must seek copyright release from the Dean of the Graduate 
School. 



H：/ 



Thesis/Assessment Committee 

Professor YU Xu, Jeffery (Chair) 

Professor CAI Xiaoqiang (Thesis Supervisor) 

Professor YANG Chuen Chi, Christopher (Committee Member) 

Professor YANG Xiaoqi (External Examiner) 

i 



Abstract 

Minimax measure in portfolio selection problem refers to an optimiza-

tion problem that maximizes the minimum portfolio return or minimizes the 

maximum portfolio risk. Cai et. al. (2000, Management Science) has pro-

posed a portfolio selection model namely / � model to minimize the maximum 

individual risk. Cai et. al. (2004，Journal of the Operational Research Soci-

ety) has showed empirically that Iqq model has a similar performance to the 

Markowitz's model. This thesis employs their risk measure to solve the case 

with investment limits. More specifically, we derive an explicit analytical so-

lution and optimal investment policy for the portfolio selection problem with 

investment limits. Then we introduce an algorithm to find out the entire 

efficient frontier. Finally, numerical experiments on the efficient frontier and 

the performance of /qo model with investment limits in various scenarios are 

carried out. 

Keywords: Portfolio selection, efficient frontier, Kuhn-Tucker condition, 

minimax risk measure, investment limits 
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論細要 

極小化極大測量法運用於投資組合優化問題時，涉及求取最大的最小 

投資組合回報或最小的最高投資風險。蔡等人（2000，管理科學）提 

出一個投資組合選擇模型即•模型，它採用最高個別資產風險作爲風 

險測量標準。蔡等人（2004，作業硏究學界期刊）根據經驗證明運用 

/m模型跟運用馬科维兹模型能獲得相約的投資回報。此論文採用蔡等 

人的風險測量標準，解決設有投資上限的投資組合優化問題。我們爲 

設有投資上限的投資組合優化問題推論出最佳的投資策略。根據這個 

最佳的投資策略，我們更推論出描給整條效率前緣的方法。最後，我 

們會採用香港股票市場的資料進行一系列實驗，用以探討效率前緣和 

採用最高個別資產風險測量法於設有投資上限條件下的投資表現。 

關鍵字：投資組合選擇，效率前緣，庫思一塔克爾條件，極小化極大 

風險測量法，投資上限 
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Chapter 1 

Introduction 

Portfolio selection is to find an optimal allocation of wealth among a basket 

of assets. In most situations, an optimal allocation refers to maximizing the 

expected return and minimizing the risk as a portfolio basis. By formulating 

the portfolio selection problem using mean-variance approach, Markowitz 

(1956) has provided a fundamental basis for modern portfolio selection. His 

pioneering work has simulated and led to a proliferation of research in this 

area. In portfolio theory, the concept of expected return is definite. It is 

defined to be the total return of all assets. Nonetheless, the concept of risk 

falls into various schools of thinking. For example: Markowitz [19] has used 

the variance of returns out of portfolio as a risk measure and formulated the 

portfolio selection problem as a mean variance optimization problem. Konno 

[14], and Konno and Yamazaki [16] have proposed an /i function, a mean-

absolute deviation function, as another risk measure. Cai, Teo, Yang and 

Zhou [3，4] have proposed the Iqo risk function, a minimax function, which 

regards the maximum individual risk among all assets as a risk measure. 
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Evidently, there exists a gap between the academic literature and the real 

market. Some market constraints which financial institutions encounter have 

not been addressed in academic study. An important subject is the consider-

ation of investment limits. In the market, many investment institutions, like 

pension funds and banks, consider assets as belonging to different groups 

and impose investment limits on different groups of assets. For example, 

total fraction of the portfolio allocated to all international assets must not 

exceed 40% of the portfolio. Huge investment in a sector of assets would 

lead to volatility effect on the market, therefore in usual practice of the mar-

ket, investment bounds on sectors of assets are imposed in order to restrict 

investors on the amount of investment made in a particular sector. Further-

more, some banks would hire financial intermediates for investments with 

an imposition of investment limits on different groups of assets for risk di-

versification. On the side of fund investment, the value of funded pension 

depends critically on the investment performance of the funds. In order to 

protect people's savings, governments often regulate pension funds strictly, 

particularly when contributions are mandatory. One of the regulations on 

pension fund is limitation on investment allowed. Quantitative restriction 

on the shares of particular types of assets held by the fund limits the disper-

sion of outcomes, particularly for defined contribution schemes. For example, 

asset allocation restriction for Denmark, Germany, Japan and Switzerland 

on domestic equities is typically 30 or 40 percent of total assets. The sec-

ond common restriction on pension fund mangers is on the amount they 

can invest abroad. Take the example of Mandatory Pension Fund (MPF) 

in Hong Kong, a MPF scheme restricts its foreign currency exposure to not 
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more than 70% of its total assets. In addition to the external constraints 

mentioned above, investment limits can be generated internally by investors 

to address their special concerns. For example, investors who concern liq-

uidity constraints would limit their investment on less marketable securities 

like fixed income securities. Moreover, some investors having preference on 

assets of particular sectors would desire a larger proportion of these groups 

of assets in their portfolio. 

This thesis employs the minimax risk measure of Cai et. al. [3] to solve 

the portfolio selection problem with investment limits. Cai et. al. has for-

mulated the portfolio optimization problem as a bi-criteria problem with the 

criteria of maximizing the portfolio expected return and minimizing the loo 

risk function. This bi-criteria problem is converted into an equivalent param-

eterized problem with a single criterion. With the assumption of no short 

selling, an analytical solution and optimal investment strategy are derived for 

the efficient frontier of the portfolio optimization problem without having to 

solve any optimization problem. Moreover, Cai et. al. [4] have showed em-

pirically that /oo model has a similar performance to the Markowitz's model. 

In this thesis, we derive an explicit analytical solution for the portfolio selec-

tion problem with investment limits. Optimality of this solution is ensured 

by the KKT conditions as the problem is convex programming. Then we 

introduce an algorithm to find out the efficient frontier entirely, which makes 

the derived investment strategy an easy implementation task. 

The organization of this thesis is as follows. In chapter 2，we introduce the 

studies on portfolio selection problem, particularly in literature on different 

risk measures, efficient frontiers and investment limits. In chapter 3，we make 
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a concise review on I^o model which provides a referential framework of our 

proposed work. In chapter 4，we formulate the portfolio selection problem 

with group investment limits and derive the analytical solutions. In chapter 

5，we study the properties of the efficient frontier and derive an algorithm to 

find out the efficient frontier entirely. A discussion on the time complexity of 

the algorithm is also provided. In chapter 6, we find the investor's optimal 

portfolio from the efficient frontier. In chapter 7，numerical experiments 

using data from Hong Kong Stock Market are reported. We conclude the 

thesis in Chapter 8. 
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Chapter 2 

Literature Review 

Portfolio theory was built to solve portfolio selection problem. Modern port-

folio theory takes its origin from the work of Markowitz [19] in 1950s. Adopt-

ing the mean-variance criteria, Markowitz has used the portfolio variance, 

which corresponds to an I2 function, as a risk measure and formulated the 

portfolio selection problem as a parametric quadratic programming problem, 

known as a mean variance optimization problem which considers the correla-

tion among assets explicitly. He has proved the fundamental mean-variance 

methodology in finance, namely to maximize expected return for a given level 

of variance, and to minimize variance for a given level of expected return. It 

has led to the formulation of an efficient frontier where investors can choose 

their desired portfolio with their risk-return preferences. But arguments have 

been raised that the mean-variance model is appropriate only if the investor's 

utility is quadratic or the joint distribution of return is normal. Nevertheless, 

these arguments are rarely satisfied in practice. 

Since the pioneering work of Markowitz, research on portfolio theory has 
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been proliferated, alternative portfolio selection models have been proposed 

in literature. Sharpe [28] has proposed a method to allow a portfolio analysis 

problem to be treated as a linear programming problem. Following Sharpe, 

many attempts have been made to linearize the portfolio selection prob-

lem [30, 22]. Konno [14], Konno and Yamazaki [16] have proposed a mean 

absolute deviation risk function, which corresponds to an J\ function, and 

suggested that a piecewise linear function can be used to approximate this 

Ii risk function. They have demonstrated that the Ii risk function can ease 

the computational difficulty associated with solving a large-scale quadratic 

programming problem with a dense covariance matrix and solve large-scale 

optimization problem on a real time basis numerically. Young [35] has intro-

duced another linear program model using minimum return as a measure of 

risk. His model amounts to maximizing the minimum return over time peri-

ods with the average return on the portfolio exceeding some minimum level. 

Recently, Cai et. al. [3] have introduced a minimax risk function, which cor-

responds to an loo function, in which the maximum risk of individual assets 

is regarded as the risk criterion. The special structure of the /qq risk func-

tion enables a simple analytical solution scheme for the efficient frontier of 

the portfolio optimization problem without having to solve any optimization 

problem. The investment is obtained by a simple rule of ranking the assets 

according to their rates of return. The assets with higher rates of return are 

selected according to an investor's risk aversion parameter, then the invest-

ment amount in each asset is determined based on its risk level. Cai et. al. 

[4] have showed empirically that Iqo model has a similar performance to the 

Markowitz's model and the loo model is not sensitive to data. Moreover, Teo 
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and Yang [31] have introduced an alternative minimax risk function in port-

folio optimization. This risk function is defined as the average of maximum 

individual risks over a number of past time periods. The practical meaning 

of this risk function is to satisfy the objective of an investor to minimize the 

average of the maximum individual risks among assets to be invested. The 

corresponding portfolio optimization problem is formulated as a bi-criteria 

piecewise linear programming problem. More recently, Deng, Li and Wang 

9] have proposed a minimax model on portfolio selection with uncertainty of 

randomness and estimation in inputs. Their minimax model is to maximize 

the worst possible expected rates of returns on portfolio. By using linear 

programming technique, an optimal portfolio has been derived analytically. 

While the work of Deng, Li and Wang applies to market without frictions, 

Wang, Yamamoto, Yu [32] and Chen, Li, Wu [6] have solved portfolio selec-

tion problem in frictional markets. Wang, Yamamoto, Yu [32] have based on 

the minimax principal proposed by Deng, Li and Wang [9] and solved the 

portfolio selection problem with tax and dividends associated with transac-

tions, while Chen, Li, Wu [6] have studied portfolio selection problem with 

transaction costs under loo risk measure. Other minimax portfolio selection 

models include solving immunization problems for bond portfolios [12] and 

deriving efficient decisions in portfolio models using game theory [26 . 

In addition to mean-variance and minimax type models, alternative port-

folio selection models with different measures of risk have been proposed in 

the past fifty years [20, 18，29，8’ 15，17, 8，17, 2，5]. They include mean 

semivariance model [20, 18], mean absolute deviation model [29], mean vari-

ance skewness model [8, 15] and mean absolute deviation skewness model 
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17], With an argument that semi variance is more conceivable than variance 

as a measure of risk since only adverse deviations are concerned, Markowitz 

20] has considered the maximum negative deviation from the mean as the 

portfolio risk. Chunhachinda et. al. [8] have incorporated skewness in mean 

variance portfolio selection problem and showed empirically that investors 

trade expected portfolio return for skewness. This makes incorporation of 

skewness in portfolio selection lead to a significant change in the construction 

of the optimal portfolio. Konno, Shirakawa and Yamazaki [17] have proposed 

the mean-absolute deviation skewness portfolio selection model. They have 

formulated the portfolio selection problem with utility of investors involving 

the third moment, namely the skewness, as a linear programming problem. 

In addition to the studies of portfolio risk measures, efficient frontier anal-

ysis is another important area of concern in portfolio selection. Under the 

assumption that the covariance matrix is positive definite, Merton [21] has 

derived the efficient frontiers of the mean variance portfolio selection model 

analytically with the use of Lagrange multipliers for the case that borrowing 

and short selling of all securities are allowed. A few years later, Elton et. 

al. [11] have demonstrated a method to find the efficient frontier in both 

cases where short selling is allowed and disallowed by assuming the corre-

lation coefficient between all assets is identical. Recently, Goh and Yang 

13] have presented analytical methods to compute the exact efficient fron-

tier with multi-criteria convex quadratic programming problem subject to 

linear constraints. The efficient frontier is found under the assumption that 

the covariance matrix is positive definite and short selling is not allowed. A 

more general approach is presented by Perold [25]. He has proposed an al-
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gorithm to locate the efficient frontier for large-scale mean-variance portfolio 

selection problem with a positive semi-definite covariance matrix. One of 

the drawbacks of using mean-variance models is that it involves a large-scale 

quadratic programming problem with a dense covariance matrix which is usu-

ally computationally intensive to handle. Other than mean-variance models, 

Konno and Yamazaki [16] have proposed a mean absolute optimization prob-

lem and suggested to convert their portfolio selection problem with the Ii 

risk function into a scalar linear programming problem. The /i risk model 

allows linear program instead of quadratic program to be used, nevertheless, 

in order to obtain the efficient frontier of the problem, a large number of 

linear programming problems have to be solved. Cai et. al. [3] have derived 

an explicit analytical solution scheme to obtain the efficient frontier of the 

loo optimization problem. With simple equations involved in the solution 

scheme, much time is saved for tracing out the efficient frontier. 

Based on the basic framework of portfolio selection problem in early liter-

ature, some markets constraints have been considered and incorporated into 

portfolio selection models, one of these studies is the consideration of invest-

ment bounds. Sharpe [27] has followed Markowitz's approach to deal with 

mutual fund portfolio selection problem. The problem is formulated subject 

to investment constraints in the form of upper bounds on the proportion of 

the fund to be invested in a single security. Elton et.al. [10] have proposed 

a method to select portfolios when upper bound constraints are imposed on 

individual stocks under the case that the variance-covariance matrix follows 

a particular structure. They have solved the problem by presenting a linear 

programming approximation to the usual quadratic programming problem. 
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Other than modeling, Pang [23] has developed an algorithm for portfolio se-

lection problems with upper and lower bounds on investment. With a special 

structure of the covariance matrix, his algorithm can be applied to the index 

models. Around the same time, Pang [24] proposed a parametric approach 

to solve a similar problem. Recently, Womersley and Lau [33] have stud-

ied the portfolio selection problem with upper and lower bounds on asset 

allocations with semi-variance and skewness models. A skewness model is 

nonlinear and non-convex, making it more difficult to solve and solutions 

are local rather than global optimal. Other than incorporating the upper 

and lower bound constraints on investment together, Best and Hlouskova [1 

have considered the mean variance portfolio selection problem with upper 

and lower bounds on asset holdings separately. A closed form solution has 

been developed under a technical assumption. While many literatures con-

sider investment bounds on individual asset, Chiodi [7] has studied the lower 

and upper bounds of the capital invested in a group of assets regarded as a 

fund. He has formulated the portfolio selection problem on mutual funds in a 

single investment period as a mixed integer linear programming model. Since 

the solution of large mixed integer linear programming problems require huge 

computational times, some heuristics have been proposed. 
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Chapter 3 

Review of minimax portfolio 

selection model 

In this chapter, we will review the definition of the minimax risk measure 

namely the /qo risk function and the minimax model proposed by Cai et. 

al. (2000, Management Science). The loo risk function is defined as the 

maximum individual risk among all assets. The portfolio optimization prob-

lem with loo risk function is formulated as a bi-criteria problem, then it is 

transformed into an equivalent bi-criteria linear programming problem and 

further transformed into a parametric optimization problem. 

3.1 The loo model 

Assume an investor has initial wealth Mo, which is to be invested in n possible 

assets Sj, j = 1 , . . . ,n. Let Rj be a random variable representing the return 

rate of asset Sj, and let Xj > 0 be the allocation from Mq to Sj. By assuming 
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Xj > 0, we are concerned with the situation that each asset is not allowed to 

short sell. The feasible region for the portfolio optimization problem is 

： 它 = Mo,Xj > 0,j = l，...’nj> 

Let E{R) denote the mathematical expectation of a random variable R. De-

fine 

rj = E{Rj) and qj = E{\Rj - r^l) 

The expected return of a portfolio x = {xi,... Xn) is given by 
'n "I n n 

r(a;i , . . . Xn) = E RjXj = ^ = ^ rja;^ 

Definition 3.1.1 The Iqo risk function is defined as: 

= m^^E{\RjXj — rjXjl) = m^^qjXj. 

With an assumption that an investor wants to maximize the expected return 

and on the other hand minimize the risk level, this optimization problem is 

aimed at two criteria in conflict, namely, a higher return is always accompa-

nied by higher risk level. For this reason, the portfolio optimization problem 

can be formulated as a bi-criteria piecewise linear program as follows, which 

is denoted as POLqo (the Portfolio Optimization problem with the /沈 risk 

measure). 

Definition 3.1.2 The bi-criteria portfolio optimization problem POLqq un-

der the loo risk measure is defined as: 

( \ 
Minimize ( m^ qjOCj, — ^ rjXj 

\ j=i / 
subject to xE ^ 
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We can transform POLqo to an equivalent Bi-criteria Linear Programming 

(BLP) problem 

/ - \ 
Minimize ( y, - ^ rjXj 

\ j=i / 
subject to QjXj < y j = 1’. . . ’ n’ 

Now we convert the bi-criteria linear programming problem B L P into a 

parametric optimization problem with a single criterion. For a fixed A, where 

0 < A < 1, the Parametric Optimization problem of BLP, denoted as 

PO(A), is as follows: 

( n \ 

Minimize Fa(x,?/) = Ay + (1 - A) - ^ rjXj ] 
\ j=i ) 

subject to QjXj < y, j = 1 , . . . ,n, 

The equivalence relation between BLP and PO(A) is given below (cf. Yu 

34] for proof). 

Proposition 3.1.1 Consider the problems BLP and PO(X). The pair (a;, y) 

is an efficient solution of BLP if and only if there exists a A E (0,1) such 

that (cc, y) is an optimal solution of PO(X). 

Assume 

< r 2 < . . . < r „ 

Qj > 0, j = l,...,n 
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Theorem 3.1.1 For any X G (0,1)； an optimal solution to PO(X) is given 

by 

. f 幻 - 1 ’ � * ( 入 ) ’ 
工• — < 、 

3 [O, j 例 A ) ; 

= ^̂  E - ， 

where T(A) is the set of assets to be invested, which is determined by the 

following rule: 

(a) If there exists an integer k E [0, n — 2] such that 

Tn — Tn-l < A 
Qn 1 -入， 

Tn - rn-2 + Tn-l — < ^ 
Qn Qn-l 1 —入， 

Vn - Tn-k ‘ ^n-1 — 丄 丄 ^Vi-fc+l — ^n-fc > 
1 1 1 < r , 

Qn Qn-l Qn-k+l 丄 一 A 

and 

Tn - Tn-k-l ,厂n—1 一 厂—1 , , 一 ^n-fc-1 , ？ n̂-fc — ^n-fc-1 . A 
1 1 1 1 > r , 

Qn Qn-1 Qn-k+l Qn-k 丄—A 
then 

3*{X) = {n,n - 1 , . . . ,n - /c}. 

14 



(b) Otherwise, if the condition above is not satisfied by any integer k G 

0， n — 2], then 

r ( A ) 二 { n , n — 1，...，1}. 
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Chapter 4 

Portfolio optimization with 

group investment limits 

In the previous chapter, we have reviewed the portfolio optimization problem 

with the Iqo risk function where investment is made by consideration of each 

asset individually. In this chapter, we consider the case where assets are 

exclusively classified into groups and an investment limit is imposed on each 

group. 

4.1 The model 

Adopting the notations used in the previous chapter, assume an investor has 

initial wealth Mq to be invested in n possible assets Sj, j = 1，...，n. Let Rj 

be a random variable representing the return rate of asset Sj, r j = E{Rj), 

Qj = E{\Rj - rj\) and let Xj > 0 be the allocation from Mq to Sj. In 

order to disallow short selling, we restrict Xj > 0. Moreover, assume there 
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are T groups Gi,i = 1’...，T, where Gi n Gj = • when i + j. Let bi be the 

investment limit of the group Gi. The portfolio selection problem with group 

investment bounds can be formulated as: 

/ \ 
Minimize max QjXj, — } rjXj 

乂 I K " U J 
subject to QjXj < y, j = 1,... ,n 

X 工j SK i 二 h…,T 
jeGi 

n 

^ Xj = Mo 

Xj > 0, j = l，...’n 

With the investment risk tolerance parameter A, using similar argument for 

transformation from POLQ© to PO(A), the portfolio optimization problem 

with group investment limits, denoted as POB(A), is as follows: 

n 

Minimize F;̂ (x，y) = Ay + (1 -
j=i 

subject to QjXj < y, j = ... ,n 

jeGi 
n 

j=i 
Xj > 0, j = 1,…，n 

4.2 The optimal investment strategy 

Analogous to chapter 3’ consider the problem POb(A) with a given 入 e (0’ 1). 

Note that the parameters rj = E(Rj) and qj = E{\Rj — r」)，j = 1,2，... ’n’ 
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are constants, the value of which can be computed using historical data. 

Without loss of generality, we assume that 

ri < r2 < . . . < Tn 

Furthermore, we assume there do not exist two assets Si and Sj,i ^ j , such 

that Ti = Tj and qi = qj. Any two assets with the same r and q are regarded 

as a single aggregate asset. 

4.2.1 All assets are risky 

In this subsection, we consider the case where only risky assets are available. 

This implies that all assets Sj have qj > 0. 

Denote B*{X) as the set of groups to be invested at the investment limit 

(i.e. YljeGi — bi for all i G B*(A)), /C*(A) as the set of assets with their 

groups in B*{X), C*{X) as the set of assets to be invested such that XjQj = y, 

for j e £*(A), S*{X) as the set of assets to be invested such that XjQj < y 

and Y^j^a 工j < bi, for j e S*(A), V*(A) as the set of assets where xj = 0，for 

j e V*(A) and Z*{X) as the set of assets belonging to A?(A) but not £*(A) 

nor V*(A). 

Theorem 4.2.1 For a given A € (0’ 1), if the assets can be divided into the 

sets ;C*(A)’/C*(A)’Z*(A)，《S*(A) and V*(A), and the following conditions are 

satisfied 

(i) ForiJeS*{X), 

n = Tj (4.1) 
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(ii) For i e C*{X) U /C*(A) \ V*(A), s E 5*(A) and j G V*(A) \ JC*(X), 

r i > r s > Tj (4.2) 

(Hi) For s e <S*(A), zi G Z*{X) A G“ 

y： V (4.3) 
^ 01 ^ ^ 01 1 - A iec*ix)\ic'{x) w ieB \i£C*{x)nGi … 

(iv) For t, I e Z*{X) andt,l e Gi, 

n = n (4.4) 

(V) Fori.zj eGuie c*{X),z e Z*{X)J e V*(A), 

ri> rz > Tj (4.5) 

Then an optimal solution is given by 

专， j “ * ( A)， 

工 ； = 〜 — ( 4 - 6 ) 

0， j e v m 
V 

E ^^ = Mo— h - E f (4.7) 

( \ ( i � - l 
y* = E E ^^ E - ，（4.8) 

\ iEB*{x) S£S*{X) / w/ 

where V*(A) = {j 车 C (A) U (A) U (A)} 

and Z*(A) = {j e /C*(A) \ £*(A) \ V*(A)}. 
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Proof. We apply the Kuhn-Tucker conditions to POB(A). First, let us 

introduce the Lagrangian of POB(A): 

M工,y,Ao, 7,(/») = Ay + ( l - A ) rjXj + ^ ^jiqjXj - y) 
\ 3=1 J j=l 

+Ao [ y ^ Xj — M � ) + 7i ( E 工j - - S 小jXj (4.9) 
\j=l / i=l VjGGi ) j=l 

Then the K-T conditions that an optimal solution (x, y) must satisfy can be 

written as follows: 

= = 0 (4.10) 

^ = - ( 1 — A)rj + fijQj + Ao + 7i - = 0， ji = 1，...，n (4.11) 

n 
J 2 x j = Mo (4.12) 
j=i 

A^jfe工 j-y) 二 0， j = l，...’n (4.13) 

(Z^zj —�)=0， i = l,….,T (4.14) 
KjeCi J 

(l)jXj = 0’ j = 1,…，n (4.15) 

> 0, j 二 l，...’n (4.16) 

7 i > 0 , i = l，...’T (4.17) 

(t>j > 0, j = l , . . . , n (4.18) 
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Define £*(A) = {j : /z,- > 0},^*(A) = {z : > 0},/C*(A) = {j :j e G^.i e 

5*(A)} and Z*{X) = {j ：…=0,7^ > 0}. Let V*(A) = {j • C*(X) U Z*(A) U <S*(A)}. 

It follows from (4.13) and (4.14) that 

qjXj = y if je/C*(A)n>C*(A) 

0 < X j < ^ if j G5*(A)UZ*(A) 

Xj = 0 if j e V*(A) 

(These are conjectures, but we shall show in the following that it is in fact 

correct in terms of satisfying the K-T conditions.) Prom (4.13) and (4.14), 

we have 

Xj = if j e r ( A ) 
qj 

= if j e /C*(A) 

Xj = bi- 札 if j e 之*(入） 

From (4.12), we have 

E A = 购 - I > - E f 
Thus, 

专’ j “ * ( A)， 

= j - i) je 糊 , 
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From (4.13)，it follows that if Xjqj — y, then fij = 0. Thus fij = 0, Vj 朱 

From (4.14)，it follows that if Y^j^a + k , then 飞=0. Thus 

7i = 0, V? ^ B*[\). Prom (4.15)，it follows that if Xj > 0，then (j)j = 0. Thus 

(f)j = 0’ Vj G C*{\) U Z*(A)U5*(A). Let s G 5*(A), from (4.11), we have 

Ao = (1 - A)r, (4.19) 

H = - [ ( 1 - A)r,- - Ao] = - ( 1 - A)(r,- - r ,) , for j G ^ ( A ) \ iT(耶 .20) 
Qj 

H 二 - X)rj - A o - 7i] = A)(r,- - r^) - 7i]，for j G L*{X) n /C*(取 21) 
qj qj 

7i = (1 - A)r,- - Ao = (1 - X){rj - r^), for j e Z*{X) (4.22) 

(t>j = 7i + Ao - (1 - X)rj = 7i + (1 - A)(r, — rj), for j e / C * � n V*(AX4.23) 

(f>j = Ao - (1 - X)rj = (1 — \){rs - rj), for j e V*(A) \ /C*(A) (4.24) 

From (4.19), it is clear that condition (4.1) must hold. Further, by (4.2), 

fij,7i and (pj are all non-negative except for j G /C*(A) D £*(A) and j G 

/C*(A)nV*(A). Consider 7“ from (4.21), (4.22) and (4.23)， 

7i = (1 - A)(r,- - r , ) - for j G /C(A) A ZT(A) 

7i = (1 - A)(r,- - rs) + 0力 for j G /C*(A) n V*(A) 

It is clear that ji is unique for each group Gi. Let zz G Gj n Z. Thus 

… = - [ ( 1 - X){Tj - for j e /C*(A) H r (A) 
Qj 
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小j = (1 - - rj), for j G /C*(A)门 V*(A) 

By condition (4.5)，^ij and (f)j are non-negative for j £ JC*(X) n ； a n d 

j e /C*(A) n V*(A). From (4.20) and (4.21), and fij = 0 for j • C*{X), we 

have 

n 

= Y^ l^j 
j=i jec*(x) 

= [ ( l - A ) ( r j - r , ) ji 
je£*(A) qj jG£*(A)n;c*(A) qj 

- E i ) 

= E � - E j] 
J^C'iX)力 i&B*{X) \j£GinC*{X) . 

= A by condition (4.3) 

Thus y and Xj given by (4.6)，（4.7) and (4.8) satisfy all the K-T conditions 

(4.10)-(4.18). Because POB(A) is a convex programming problem, the K-T 

conditions are necessary and sufficient for optimality. Therefore, the solution 

given by (4.6), (4.7) and (4.8) is optimal. This completes the proof. • 

Denote B*{\) as the set of groups to be invested at the investment limit 

(i.e. Ylj^Gi 工j = bi for all i e B*(X}), /C*(A) as the set of assets with their 

groups in B*(X), C*(X) as the set of assets to be invested such that XjQj = y, 

for j G £*(A), S*{X) as the set of assets to be invested such that XjQj < y 

and Ylj^Gi 工j < bi, for j G S*{\). 

Theorem 4.2.2 For a given X G (0，1), if the assets can be divided into the 

sets £*(A), JC*{X) and S*{X), and the following conditions are satisfied 
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(i) ForiJeS^iX), 

N = TJ (4 .25) 

(ii) For i E £*(A)’ s e S*(X) and j • £*(A) U /C*(A), 

R I > R S > RJ (4 .26) 

(iii) ForseS*{X), 

( E 力 念 ） > t 4 X _ 

( E E (4.28) 

H ForiJ e Gui e £*(A)，J ^ £* (A) , 

N > TJ (4 .29) 

Then an optimal solution is given by 

f ， j e r (A), 
= — (4.30) 

0’ 
\ 

^S = M O - B I - [ ^ (4 .31) 

( \ ( i � _ l 
•二 M o - X； E E - (4.32) 

\ iGB*(A) aeS*{\) / ye£*(A)\/C*(A) / 

P roo f . The Kuhn-Tucker conditions that an optimal solution (x,?/) must 

satisfy are given by (4.10)-(4.18). Define C*{\) = { j : jij > 0},^*(A) = {i : 
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7i > 0} and /C*(A) = { j ： j G G^i e It follows from (4.13) and 

(4.14) that 

QjXj = y if j G / C * ( A ) n r ( A ) 

0 < a:,- < - if j e S*(X) 
‘ Q j “ 

Xj = 0 if j ^C*{X)US*{X) 

(These are conjectures, but we shall show in the following that it is in fact 

correct in terms of satisfying the K-T conditions.) Prom (4.13) and (4.14), 

we have 

Xj = 1 ， if j e £*(A) 
qj 

Xj = hu if 
j^Gi 

From (4.12), we have 

E A = 编 - E I E I 
Thus, 

工 ； = [ 

0’ 
V 

From (4.13)，it follows that if XjQj • y, then fij = 0. Thus /ij = 0, Vj 朱 

C*{X). From (4.14), it follows that if XljeCi # bi, then j i = 0. Thus 
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7i = 0, Vi ^ B*{X). Prom (4.15)，it follows that if Xj > 0’ then (j)j = 0. Thus 

(f)j = 0，Vj E C*{X) U 5*(A). Let s G 5*(A), from (4.11)，we have 

Ao = (1 - X)rs (4.33) 

H = [(1 - A)r,- - Ao] = ；^(1 - X){rj - r,), for j e L*{X) \ K*(A) (4.34) 
yj qj 

H =丄[(1 — - A o - 7i]=丄[(1 _ A)(rj 一 r̂ ) - 7i], for j G ^(A) H IC*{X) (4.35) 
Qj 

<Pj = 7i + Ao - (1 - X)rj = 7i + (1 - A)(r« - rj), for j G /C*(A) \ £ * � ( 4 . 3 6 ) 

(h = Ao - (1 - \)rj = (1 一 \){ts - Tj), for j • C,\\)\JS\\) (4.37) 

From (4.33), it is clear that condition (4.25) must hold. Further, by (4.26)， 

/zj, 7i and 小，are all non-negative except for j G /C* (入）A ；C*(A) and j E 

JC*{X) \ C*{X). Consider from (4.35) and (4.36)， 

7i = (1 — X){rj - r,) - for j G /C*(A) A £*(A) 

7i = (1 - A)(r,. — r,) + 0力 for j G /C*(A) \ £*(A) 

From (4.10)，(4.34) and (4.35)， 

X = Y , (1 一 广 rs) Y^ Ji 

= E H 广 ) - E E 
j€£*(A) 幻 ieB'iX) \jeGiac*⑷幻 / 

i€B*iX) \j€GinC'{X) ̂ ^ J j£C*{X) 力 
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( , \ \ ( \ ( 1 � 1 
E 7. E 丄 = ( " ) E - E - - A Qi ^ Q\ ^ Q] î B*(A) \j&GinC' (A)幻 / L (A) / \le/：* (A) / _ 

Let 

7i = ( l - A ) ( r , — r j + e,.̂ ,-, for j e n 广(入） (4.38) 

For l . t e G i and l,t G /C*(A) H £*(A), 

(1 - A)(n - Vs) + m = (1 - X){rt — rs) + qtCt 

qiei - Qtet = (1 - X){r t - r i ) 

E J = ( i - A ) E E e] 

I \ 
E e广 ( 1 —A) Y^ '-l^-X 

j€C*iX)nK:*{X) \jG£*(A)\;C*(A)力 / 

From (4.38), if n > n , then qtCt < qiei . Let pi be the least-return asset 

in Gi where pi G C*{X) and i E 6*{X). Let Cpi = —e where e is a very small 

number and e > 0. By (4.27)，we can assign a negative value to all e^, i.e. 

ej = -Cj j e / r ( ; O n / C ( A ) (4.39) 

where Cj > 0. Prom (4.35)，(4.38) and (4.39), for j G C*{X) n /C*(入)， 

= - [(1 - - ^s) - (1 - A)(rj - rs) - qjCq 
Qj 

= - C j > 0 

By (4.27) and (4.28), we can assign a positive value for all 飞 where i G iB*(A), 

i.e. 

7i > 0 for i G B*iX) 
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Let 

= + for / G/C*(A) \ (A) 

Recall 

飞=(1 - X X r j - r s H q j e j , for j G/C*(A) n/：* (A) 

For all i , I e Gi, by (4.26) 

qjCj - qidi = ( 1 - A ) ( n - r j ) < 0 

Qj^j < qidi 

Recall Cj < 0，we can assign a non-negative value to all di, i.e. 

di>0 for /G /C*(A) \ r (A) 

From (4.40)，for j G }C*{X) \ C*(X), 

<h = (1 - A)(rj - r,) + qjdj - (1 - X){rj - r,) 

= q j d j > 0 

Therefore, fij > 0 , > 0，Vj and 飞 > 0’ Vi. Thus y and Xj given by (4.30), 

(4.31) and (4.32) satisfy all the K-T conditions (4.10)-(4.18). Therefore, the 

solution given by (4.30), (4.31) and (4.32) is optimal. This completes the 

proof. • 

Denote B*{\) as the set of groups to be invested at the investment limit 

(i.e. Ylj^Gi 工j = h for all i e B*(A))，K,*{X) as the set of assets with their 

groups in B*{X), C*{X) as the set of assets to be invested such that XjQj = y, 

for j G £*(A) and Z*(A) as the set of assets belong to /C*(A) with 0 < ajj < 
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T h e o r e m 4.2.3 For a given A G (0’ 1), if the assets can be divided into the 

sets £*(A), /C*(A) and Z*{X), and the following conditions are satisfied 

(i) For i G C*{\) U Z*(A) and j • £*(A) U 1C[\), 

n > Tj (4 .40) 

(ii) For ze 

( E - V ^ ^ f E - ] (4.41) 

Qi qi 1 — A 

(Hi) For j, I G Z*(入）and j j G Gi, 

TTJ = N (4 .42) 
(iv) Fori,z,j eGuie C*{X),ze Z*{X)J i £*(A) UZ*(A), 

R I > R ^ > TJ (4 .43) 

Then an optimal solution is given by 
‘ 

J e _ ， 

工 ； = I ( E , 的 n . * � 3 ^ (4.44) 

0, j … A ) U Z * ( A ) , 

( \ ( i � _ i 
y* = Mo- k E 7 ‘ (4.45) 

Proof. The Kuhn-Tucker conditions that an optimal solution (x, y) must 

satisfy are given by (4.9)-(4.18). Define C*(X) = {j : > 0},5*(A) = {i ： 
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li > 0},/C*(A) = { j B*{X)} and Z*{X) = {j : fij = 0，7 i � 0 } . It 

follows from (4.13) and (4.14) that 

QjXj = y if j e /C( ; \ )n / :* (A) 

if j G 2:*(A) 

= ^ if j iC(\)\jZ*{\) 

(These are conjectures, but we shall show in the following that it is in fact 

correct in terms of satisfying the K-T conditions.) Prom (4.13) and (4.14), 

we have 

Xj =义，if j e r ( A ) 

= if j e /C*(A) 
jeGi 

Xj = 孔 if j e 
leCnGi 

Thus, 

‘ 

安, j e /:*(A)’ 

4 = [ 广 鄉 ) 幻 " * ’ … * ⑷ ’ 

0， 

\ 

From (4.13), it follows that if XjQj y, then fij = 0. Thus fij = 0，Vj • 

C*{\). Prom (4.14)，it follows that if Ej^ocj + k , then 飞=0. Thus 
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7i = 0, Vz ^ B*{\). Prom (4.15)，it follows that if Xj > 0, then = 0. Thus 

(t)j = 0，Vj E C*{X) U Z*(A). From (4.11)，we have 

Mi - - [ ( 1 - A)rj - Ao], for j e L*{X) \ K*{X) (4.46) 

H = - [ ( 1 - A)rj - A o - 7i], for j € L*{X) n /C*(A) (4.47) 
qj 

7i = (1 - \)rj - Ao, for j G Z*{\) (4.48) 

= 7i + Ao - (1 - A)r力 for j e /C*(A) \ £* � \ Z* � (4.49) 

(l)j = Ao - (1 - X)rj, for j • C{\) U 1C{\) (4.50) 

From (4.10), (4.46) and (4.47), 

入 = [ ( 1 - - AQ _ E 卫 

j€/:*(A) qj jeL*(A)n/c*(A) ̂ ^ 

Y： E ( 1 - 入 ) � ] o — A (4.51) 

j ] E 卜 - E J 1 (4.52) 
\iec*{\) L jGL*(A)n/c*(A) 

Let 

(1 - A)NO < AO < (1 - A)R,O (4 .53) 

where no = max,贫乙*⑷门;c*(A){n} and r^o = mmi^z*{x){ri}. It is clear that 

r,o > rio by (4.40). From (4.46) and (4.53)，for j e C*{X) \ /C*(A), 

> i [ ( l _ A ) ( r , - r , o ) ] > 0 
Qj 
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by (4.40). FVom (4.48) and (4.53), for j e Z*(X), 

li = (1 — xy^j — Ao 

> ( 1 - A)(r,- - r,o) > 0 

by (4.40). Moreover, < (1 - X){rj - rio). Hence, we have 

(1 — A)(r,- - r,o) < 7i < (1 - A)(r,- — no) (4.54) 

From (4.47) and (4.53), for j G /:*(A) D/C*(A), 

" j = — [(1 - X)rj - Ao - 7i 
qj 

=丄[(1-入)(。-〜)]〉0 
qj 

by (4.43)，where zi G Z*{X) n Gi. From (4.49) and 4.53), for j E /C*(A) \ 

/:*(A)\Z*(A)’ 

4>j = 7i - ( 1 - X)rj + 入0 

by (4.43). From (4.50) and (4.53)，for j 朱 C^X) U /C*(A), 

<t>j = Ao - (1 - X)rj 

> ( l - A ) ( r , - - n o ) > 0 

by (4.40). Therefore, if (4.54), then fij > 0, Vj and 飞 > 0, Vi Prom (4.51)， 

^ ( 1-咖 ]。一 A � 0 

/ � - 1 � “ 

Ao < E - ( 1 - 入 ） E S - A (4.55) 

\iec*{x) L iec*ix) _ 
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By (4.41)，we have 

/ i � - i � -
(1-A)r�< E - (1-^) E 

\i£C*{\) I leC'iX) -

Thus, (4.55) is satisfied. Therefore, " j > 0, (j)j > 0, Vj and j i > 0，Vi Thus 

y and Xj given by (4.44) and (4.45) satisfy all the K-T conditions (4.10)-

(4.18). Therefore, the solution given by (4.44) and (4.45) is optimal. This 

completes the proof. • 

Denote B*[\) as the set of groups to be invested at the investment limit 

(i.e. Ylj^Gi — bi for all i G B*(A)), A?(A) as the set of assets with their 

groups in B*{\), C*{X) as the set of assets to be invested such that XjQj = y, 

for jE/:*(A). 

T h e o r e m 4.2.4 For a given A G (0,1)，if the assets can be divided into the 

sets C*{X) and /C*(A), and the following conditions are satisfied 

(i) For i G C*{X) and j 车 £*(A) U )C[X), 

n > r j (4.56) 

(ii) For j e £*(A) and t 车 C*{X) U }C*{X), 

( \ 
n + Tpi - rio I y^ n - y + Ho ^ y^ 

^ a, ^ Qi 3 ^ Q] 
iec*{X)\ic*{X) iec*{x)nic*{x) � \i€C'(X) ^^ J 

< 1 ^ . 5 7 ) 

, TV v^ n - rpi + rio ( sr and > — + > n > — 
Ql Ql Qi 

l£C*{X)\IC*{X) leC*{X)nlC'{X) \l£C*{\) 
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where lo is the greatest-return asset in Gi for j 朱 C*[\) U /C*(A) 

and pi is the greatest-return asset in Gi with Xp = 0,p E Gi 

(in) Fori,z,j G Gi,i G C*(X)J 朱 £*(A)， 

n > Tj (4.59) 

Then an optimal solution is given by 

= ‘‘ (4.60) 

[o, j i /:*(A), 

( A-' 
y* = Mo - ， (4.61) 

^ ― ' Q) 

Proof. The Kuhn-Tucker conditions that an optimal solution (x,y) must 

satisfy are given by (4.9)-(4.18). Define C*(X) — {j : fij > 0}. It follows 

from (4.13) that 

QjXj = y if j e r ( A ) 

Let XljeGi 工j = bi for i E B*{X) and j G K*{\) and let Xj = 0 for j 车 L*(A). 

(These are conjectures, but we shall show in the following that it is in fact 

correct in terms of satisfying the K-T conditions.) From (4.13), we have 

Xj = if j e r ( A ) Qj 

Thus, 

. <忘’似 *⑷， 
Xj = 

0, 
\ 
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From (4.13)，it follows that if Xjqj — y, then 叫=0. Thus = 0，Vj • 

广（A). Prom (4.14), it follows that if Y^j^d + K then 飞=0. Thus 

7i = 0, Vi ^ (A). From (4.15), it follows that if Xj > 0，then = 0. Thus 

(f>j = 0, Vj G From (4.11), we have 

f^j = - [ ( 1 - A)r,- - Ao], for j e L*{X) \ K*{X) (4.62) 
qj 

/i, = - [ ( l - A ) r , - A o - 7 i ] , for G r ( A ) 门 / C � (4.63) 
qj 

7i = (1 - X)rj - Ao + (t)j, for j e K*{\) \ C{\) (4.64) 

(t>j = Ao - (1 - \)rj, for j i C[\) U /C*(A) (4.65) 

From (4.10)，（4.62) and (4.63)， 

A= [ (1 - \)Tj - AQ ^ 7i 
j€£*(A) 力 jeL*(A)n/C*(A)力• 

[ li = [ (1 - - Ao 入 

j€L'{X)nJC*(X) ^^ je£*(A) 力 

A � = ( E * ) 卜 E 卜 - E 尝 1 (搞） 
From (4.62) and (4.66), for j E £*(A) \/C*(入)， 

qj 

命 （ E 全n(") E E si I 
]t \i£C*{X) I i£C*{\) ^^ jeL*{x)nic*{\) ^^ j ) 
1 / r � ( i � i 

= i [ E 全 卜 ( " ） E l - r A E i ] 

+ - [ (4.67) 
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From (4.63) and (4.66)，for j G C*{X) n /C*(A), 

"j = — [ ( l - A ) r j - A o - 7 f ] Qj 

= ( 1 - 如 卜 （ Z 念） 

+ E - - ( E (4.68) 

7t = (1 - A)rj - Ao - fijQj 
( \ r “ 

=(1-咖广 E 去（1-” E •-入 - E 5 

们 A — 卜 _ ( E 

+ E - _ (4.69) 

From (4.64) and (4.66), for j E /C*(A) \ £*(入)， 

7i = (1 - A)rj - Ao + (pj 

= E [(i-A) E E J + 於 
\l&c*{X) [ leC'iX) jei/•(入 

/ I f � ( T M 

= E 全 A-(I-A) e 卜 . E ^ 
+ E (4.70) 

3EL*{X)r\K.*{X)�) 
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From (4.65) and (4.66), for j • 1C{\) U /：*(入)， 

(f>j 二 Ao - (1 - X)rj 

二（E � (1 -A) E A- E j1-(")� 
\i£C*{X) L leC'ix) ^ j£L*{X)nic*{x) 

= E ^ (1-A) E 卜 E 念 

- E (4.71) 

From (4.69) and (4.70), for j € /C*(A) n /：*(；\) and I G /C*(A) \ £*(A)’ where 

(1 - A)rj - îjQj = (1 — A)n + 

_ + = (1 - - n) > 0 

by (4.59). Therefore we can assign fij > 0 for j G /C*(A) n £ * ( 入 ） a n d (f)i > 0 

for I e }C*{X) \ 广(A) for any 飞 where i G B*(X). Let 

where lo be the greatest-return asset in Gi for j • £*(A)UA:*(A) and pi is the 

greatest-return asset in Gi with ;rp 二 0，p e Gi. It is clear that Vpi > n � , Vi 

by (4.56). From (4.66)， 

A�=(E 全 n ( i - A ) ^ ^ 

From (4.67) and (4.72), for j G C*{X) \ /C*(A)， 

/ \ -1 f “ 
� . = 丄 ^ 1 A - ( l - A ) ^ ^ 

+ I ！ - ^ - J e 
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From (4.68) and (4.72), for j G £*(A) n/C*(A)， 

幻 \l£C*{\) ll£C*{X)\IC*{X) 

+ E 
/e£*(A)nx:*(A) w Ve 广(A) / � J 

From (4.71) and (4.72)，for j • ；C*(A) U/C(A)’ 

iec*{x)nic'{x) … V … � / � 

By (4.57) and (4.58)，it is clear that 内 > 0 for j G C*{X) and (f)j > 0 for 

j i £*(A) U /C*(A). Therefore,約 > > 0，Vj and 飞 > 0’ Vi. Thus y 

and Xj given by (4.60) and (4.61) satisfy all the K-T conditions (4.10)-(4.18). 

Therefore, the solution given by (4.60) and (4.61) is optimal. This completes 

the proof. • 

Remark 4.2.1 If K*{\) = •，r^i < ri�Mi, therefore 7i = 0 Vi. (4.57) and 

(4-58) change to: 

I \ / l \ X 
E - E - < A for i e r ( A ) 

Qi Qi 1 — A 

( E -V .̂ f E -] > A � 

^ Ql J ^ Q) 1 — A These conform to the investment policy found by Cai et.al.[3] 
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4.2.2 Some riskfree assets are involved 

We now consider the case where there are riskfree assets available for selec-

tion, i.e. there exists some assets such that qj = 0. Without loss of generality, 

we may assume that there is only one riskfree asset under consideration. (All 

other riskfree assets whose return rates are lower than this one will be ex-

cluded by the optimal solution and therefore will not be considered.) This 

riskfree asset has the lowest return among all assets for investment, namely, 

1 = 1. We have qi = 0 and qj > 0 for j ^ 1. To generalize the result in 

section 4.2.1, we first assume that 豹 = e � 0 , where e is a sufficiently small 

number. We shall obtain our result by letting e — 0+. Let us consider the 

following two cases. 

Case 1. The asset is not selected for investment. 

In this case, it is obvious that the optimal solutions for POB(A) as given 

in Theorem 4.2.1，Theorem 4.2.2，Theorem 4.2.3 or Theorem 4.2.4 are un-

changed. 

Case 2. The asset 5i is selected for investment. 

Without loss of generality, let 3\ € G\. We can divide this case into two 

subcases. ‘ 

(a) If Mo <61， 

In this case, S\ ^ /C*(A), according to Theorem 4.2.1， 

( \ A l�-i 
y* = Mo- bi— E A E -

\ i&B'{X) sG5*(A) j \ � VC*(A)#1 W/ 
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Let e —> 0+，we ob t a in y* = 0， a ;卜 Mq, for all j > 1. T h e 

results are similar for Theorem 4.2.2, Theorem 4.2.3 and Theorem 4.2.4. 

(b) If M o � 6 1 ， 

In this case, Si G /C*(A), according to Theorem 4.2.1, 

/ \ ( \ 
= [ M o - E I E % E 圭 

which is independent of gi. In this case, it is obvious that the optimal 

solution for POB(A) as given in Theorem 4.2.1 is unchanged. Simi-

larly, the optimal solutions given in Theorem 4.2.2, Theorem 4.2.3 and 

Theorem 4.2.4 are unchanged. 

4.3 Chapter summary 

In this chapter, we considered the portfolio optimization problem under min-

imax risk measure with group investment limits and short selling being disal-

lowed. By applying Kuhn-Tucker optimality conditions, we have solved the 

problem POB(A) analytically. There exits four forms of the optimal solution 

of POB(A), which are given by Theorem 4.2.1, Theorem 4.2.2, Theorem 4.2.3 

and Theorem 4.2.4. Fortunately, these four forms of optimal solutions have 

similar properties, which enable us to derive an algorithm to solve the prob-

lem POB(A) completely. Before the end of this chapter, we have discussed 

the situation where a riskfree asset is available for investment. Solutions of 

which basically conform to the four theorems we established, except the case 

when the initial wealth is less than the investment limit of the group to which 

the riskfree asset belongs. 
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Chapter 5 

Tracing out the efficient 

frontier 

In chapter 4，we have derived the analytic optimal solutions for the paramet-

ric optimization problem POB(A). This problem involves an investor's risk 

tolerance parameter A. An optimal solution is generated with a given A. The 

relationship between A and x* can be a many-to-one relationship. Recall that 

in the beginning of chapter 4’ we defined the original objective function of our 

portfolio optimization problem as to minimize ^maxi<j<„ qjCCj, — •工j)， 

namely, maximizing the portfolio expected return and minimizing the loo risk 

function. By denoting y to be maxi<j<„ the problem is simply to max-

imize the expected return VjXj and minimize y. Prom the analytic 

solutions we have derived, a:� and y* are independent of A. If the sets /C, C, S 

and Z are determined, the exact solution of the problem will be known. 

Therefore we need a suitable algorithm of which the general goal is to divide 

the assets into correct sets throughout the efficient frontier for obtaining the 
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solution. 

The efficient frontier represents the set of portfolios that will provide 

the highest return at each level of risk, or alternatively, the lowest risk for 

each level of return. Consider the efficient frontier of POB(A), portfolio 

with larger y is accompanied by larger If V is small enough, the 

portfolio is diversified and no group reaches its investment limit. However, 

when y increases, investment in high-return assets also increases and some 

groups will attain their investment limits. Define a turning point to be a 

〒：i,y) pair where the elements composing any sets of /C, S and Z 

are changed. By continuously increasing y, we can get all turning points of 

the efficient frontier. At each turning point, the compositions of each set are 

determined. Furthermore, the entire efficient frontier is found by constructing 

a linear line between every two turning points. Before going into the details 

of the algorithm, we have derived the following lemmas which help us to 

understand the properties of the efficient frontier of P O B ( A ) . 

5.1 Properties of the efficient frontier 

POB(A) is different from PO(A) by the additional constraints on group in-

vestment bounds. Therefore, when all of the bound constraints are ineffec-

tive, the problem P O B ( A ) will be reduced to P O ( A ) . For y to be sufficiently 

small, we are reasonable to believe that there exits a case where all bound 

constraints are ineffective. In the following, Lemma 5.1.1，Lemma 5.1.2 and 

Lemma 5.1.3 will discuss some properties of the efficient frontier when all of 

the bound constraints are ineffective. In this section, denote 3 = CD Z[JS. 
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Lemma 5.1.1 Denote 3 as the set of assets chosen for investment, if all of 

the bound constraints are ineffective, p| decreases if and only if the portfolio 

return and risk increase. 

Proof. Let = {n, n — 1 , . . . , t + 1} and JB = {n, n — 1 , . . . , t + 1, t}. Let 

VA) and (r^, ys) be the return and risk of the portfolios with ^A and 

3B respectively. Since 工J = M)，we can write XAJ = XBJ + where 

— ^Bt and (5 > 0. Then, we have 

n n 

r\4 = Z rjXAj = + 嚇 
j=t+i j=t-hi 

n 

> Y1 (r仰+r而） 
j=t+i 

n n 

= Y . � B j 谷j 
j=t+i j=t+i 

n 

= ^ TjXBj + nXBt 
j=t+l 

= T B 

V A = XAJQJ = ( X B J + 5J)QJ 

=^BjQj + ^jQj 

> ^BjQj 

= V B 

This completes the proof. • 

Lemma 5.1.2 For y < min 水朱 B with 3 = {n,n -

1 , . . . , t} as the set of assets chosen for investment. When y increases, only 

Xt, where t is the least-return asset in 3, decreases, other Xj in 3 increases. 

43 



Proof . From Theorem 3.1.1, y = MQ ( E j e 3 幻 ^ With 3A = {n,n -

1，. •.，i + 1} and 3 B = {n，n _ 1，•..，t + 1’ t}’ we have � 

(X^jeas 念 ) . T h e r e f o r e when y increases, Xj for j = i + 1 , . . . , n, increase 

while Xt decreases from ^ {^ jed 念) to 0. This completes the proof. • 

In the case where all of the bound constraints are ineffective, i.e. y < 

min Lemma 5.1.1 illustrates that when y increases, 

the portfolio return increases while the size of the set of i n v e s t m e n t � r e -

duces. Lemma 5.1.2 shows more specifically that only the investment in the 

least-return asset decreases when y increases. Prom these two lemmas, we 

can deduce that when the investment in the least-return asset reduces to 

zero, that asset will be excluded from J, making the size of J to become 

smaller. From Theorem 3.1.1, we know y = MQ ^Xljea 念 ) . I f this y is less 

than min among all groups i, the case where all bound 

constraints are ineffective happens. Lemma 5.1.3 is proving it. 

L e m m a 5.1.3 Fory < min j t^ (EjeCina 六 ) | —ere y = MQ ( E j e a 

from Theorem 3.1.1 with 3 = {n’ n - 1，... ’ t} being the set of assets chosen 

for investment, the efficient frontier is the same as that found by Theorem 

3.1.1 

Proof . By Theorem 3.1.1’ for j G J, XjQj = y. If mini 卜 ( Z l j e C i n a | > 

y, bi (j2jeGim i ) >y •么 It implies k > y 念)= T ^ j ^ G i m ^ j = 

EjeGi 工j, since Xj = 0 for j • 3. Therefore the first group to reach bound is 

Gi with min j^i ( E j 印 ‘ n ] 念 ) | among all i, and y = min j^i (EjeG^nD 念 ) | Vi 
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at that moment. When y < min 卜(ZljeGin：!^) | Vi, the bound con-

straints Y^j^a 工j ^ bi Mi are ineffective, thus the efficient frontier of the part 

with 2/ < min I bi ( e jeG‘n3 ̂  ) k Vi is the same as that of the no-bound 

case. This completes the proof. • 

When y increases to a certain value, namely y > min ( ^ j ^ a n j 念) | 

among all groups z, some groups will reach their investment limits. With the 

effect of the bound constraints, further increase in y will result in a different 

response than the discussion in Lemma 5.1.2. In this case, investment in 

assets of the sets S and Z will reduce while allocation to other assets which 

have been chosen for investment will increase. The physical meaning of the 

assets in S and Z are the least-return asset in 3 and the least-return asset 

chosen for investment for each group Gi A 3 respectively. 

Lemma 5.1.4 When y increases, only Xs, where s e S, and Xz, where z E 

Z, decrease, Xj for j G Gi n U Z) \ {li},i G B, k is the least-return asset 

in Gi n (>C U Z) and Xj for j ^ C\K, would increase. 

Proof. Let k be the least-return asset in Gi n (>C U 2) . Prom Theorems 

4.2.1-4.2.4, the optimal solutions satisfy the following system of equations: 

2/ = (Mo — E i e s bi — Eses ^s) (E.eA^c i ) 

y = Xjqj, j e Gi n u z ) \ g B 

< EjeCi 工j = K 

XaQa <y, seS 

y = XjQj, j eC\JC 
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From the system of equations, we have: 

( A-' 
Ay = - 一 八孙 , h eZ,ieB 

\jeGin{cuz)\{ii} q q 

( 
Ay = - ~ 八工 s, 

J 

Ay = qj^Xj, j e Gi n OC u z ) \ {k},i e B 

AY = QJAXJ, J E C \ ) C (5 .1) 

Thus, ^ < 0 , ^ < 0 a n d ^ > 0 f o r j G and j G C\)C. 

This completes the proof. • 

In the beginning of this chapter, we have mentioned that efficient frontier 

is composed of many turning points and a turning point is defined as a 

y) pair where the composition of any sets of /C, S and Z is 

changed. The following lemma shows that only three cases are possible to 

give a turning point. 

Lemma 5.1.5 For each turning point, only one of the following cases would 

happen: 

(a) Xg = 0，where s e S 

(b) Xz = 0, where z e Z 

(c) 工j = bi, where i 朱 B 
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Proof. In the proof of Lemma 5.1.4，we know A之 < 0 and As < 0 

when Ay > 0. Prom (5.1), y increases with xj for j G C\ JC. li y = 

bp i ) ，where p is the group with min I k ( E jeGidiCuz) ^ I f， 

Vz ^ B, then J^jeCp 工j = V This completes the proof. • 

Remark 5.1.1 In Lemma 5.1.5, case (c) happens when Ay = 

miUi^B l^i (EjGGin(£uz)念)I - yt, —ere yt is the y of current portfolio. 

With the presence of constraints, the efficient frontier is a finite curve. 

The highest efficient point is the terminate point of the efficient frontier. 

It corresponds to a portfolio with greatest y and greatest expected return. 

After reaching the highest efficient point, we cannot find any portfolio with 

higher expected return when we increase y. 

Lemma 5.1.6 For all j > s，if j G Gi and i e B (i.e. j G JC), then the 

portfolio return cannot increase further with any increase in y. 

Proof. Denote Vp as the portfolio return. 

Arp = —Tŝ ^Xs + y ^ Tj/S.Xj where î Xg = ^ Axj 
Hs Hs 

HS j^s 

= ^ i - r s + + + 

j>S j<3 
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If all j > s e JC, then Axj = 0 for j > s G /C. This leads to 

Arp = + r j )Axj < 0 

Therefore the portfolio return cannot increase further, i.e. the portfolio with 

highest return is reached. This completes the proof. • 

Lemma 5.1.7 The linear combination of two successive efficient points are 

efficient. 

Proof. Let and be two successive efficient points on the 

efficient frontier. Suppose (x°, is an optimal solution for POB(A) with 

yO = ayi + (1 — and — ax^ + (1 — 

Case 1: x^ = ax^ + (1 — + Ax 

x^ = ax^ + (1 - + Ax = Mo-i-Ax 

which is infeasible. 

Case 2: = ax^ + (1 - - Ax 

n 

F(xO，yO) = + (1 - a)y^] - (1 - + (1 - - Ax 

n 

= + (1 - + 
j=i 

> aF(x\y') + (l-a)F(x',y') 

= F ( a x ^ + (1 - ay^ + (1 - a)y'^) 
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It contradicts the fact that the solution (x。，們 is optimal. This completes 

the proof. • 

Lemma 5.1.8 In an optimal portfolio, Vi G B, for p, t G Gi,p E CJ £ Z 

andt ^ CU Z, 

Tp>ri> n 

Proof. Suppose is an optimal portfolio with a group Ga, where 

a e B. Denote Vp as the portfolio return. For p,l,t G Ga,p E e Z and 

t^CUZ, 

Case 1: If ri > rp, 

n 

= Tj 工 j = � j + Y.〒：i 
•7 = 1 ĵ Ga jeGa 

= ^ TjXj + VpXp + nxi + nxt 
HGa 
_ ( y \ ( y\ 

= > RJXJ 4- FP — + N K 

= � j + ribi + (rp - n) ( f - j 

HGa 、"“ 
< rjXj + nbi 

HGa 
Therefore with the same y and without changing Xj for j 朱 Ga, we can 

construct a portfolio with higher return by investing ^ more on asset I. It 

contradicts the fact that the solution (x°，y°) is optimal. 
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Case 2: If Vt > r,， 

n 

= = Y . V j + Y . V j 
i = l j 东 Ga jeGa 

= ^ TjXj + rpXp + rixi 
HGa 

< ^ TjXj + TpXp + TtXi 
HGa 

Similar to case 1，with the same y and without changing Xj for j ^ Gay we 

can construct a portfolio with higher return by investing Xi on asset t. It 

contradicts the fact that the solution is optimal. This completes the 

proof. • 

Prom the above two lemmas, Lemma 5.1.7 and Lemma 5.1.8，we can 

obtain some insights for developing the algorithm to find the entire efficient 

frontier. Lemma 5.1.7 suggests that if all turning points are determined, 

the entire efficient frontier is found by constructing a linear line between 

every two successive efficient points. Moreover, Lemma 5.1.8 suggests that 

we should consider the assets with higher expected return to be invested first. 

Recall from Lemma 5.1.3，this lemma is established with the argument that 

investing in all assets would lead to the case where all bound constraints 

are ineffective, then the initial efficient point is ensured by Theorem 3.1.1. 

However it is not always true. Making investment in all assets are possible to 

result in some groups exceeding their investment limits. In this case, those 

groups are invested equal to their investment limits. The following lemma 

will discuss about it. 
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L e m m a 5.1.9 If 3t such that bt {^j^Ct � ^ o (^Zljer where 

C = {N, n — 1，...，1}，then Vj E Gt,j in an optimal portfolio. 

Proof . Obviously, the solution form follows Theorem 4.2.3, thus it is opti-

mal. Let the solution be The following shows y�is the smallest y 

such that EjGGt 工j ^ bt W，where y � = (Mq - EieB � ) ( E / € £ \ ; c ， 

B = (E jeGt i ) > ( E j € £ 1}. Suppose is an opti-

mal solution where y! = y�— Ay. Therefore 

1 = p'-Ay ^ n_ 八 for j e C 
‘ Qj ) ) 

I ]八巧= A巧 + Y . 八 巧 〉 a ⑷ 
j£C jec\ic jecnic j&cnic 

Therefore to maintain Xj < hi Vi, there will be YTj^x 工j < Mq which 

results in an infeasible solution. It contradicts the fact that the solution 

(xi，yi) is optimal. This completes the proof. • 

5.2 The algorithm 

The above Lemmas have disclosed some properties of the efficient frontier of 

POB(A). In this subsection, we make use of these properties to derive an 

algorithm to trace out the efficient frontier entirely. The following describes 

the procedure of the algorithm. 

Algor i thm 5.2.1 Algorithm for finding the efficient frontier of POB(X). 
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Step 1: (a) Sort the assets Sj, j = 1，. . .，N, in ascending rates of return, i.e. 

ri < r2 < …< rn. 

(b) Define JC = { j : Ej^Gi = bi},B={i: Ejec^ 工j = h } 
( 

JL j f： r 

0， j e V， 

aes ies j£c\ic � 

Note that Z = {j -.j e /C\£\V} and V = {j : j ^ CU ZUS}. 

SetlC = (j),C = (f) and S = (p. Therefore Z = • and B = (f). 

Step 2: (a) Set C = {n,n - .., 1}. By Theorem 3.1.1, get y and Xj. 

(b) Let c = min{&i(X^j.��r^)_i}Vi 朱 B. Increase y along the effi-

cient frontier found by Theorem 3.1.1. Find two successive turning 

points A and B where Xj < c and Xj > c. 

(c) If point B does not exist, go to step 3; else if point A does not exist, 

then the efficient frontier is the same as that found by Theorem 

3.1.1, stop; else, set C = 3a,S = ：！召 \3U，V 二 { j : j i OUDOfs} 

and s = {j : j G 5}. 

Step 3: (a) Define a set /C", where for any integer j G j G Gt with 怀 * < 

y，then j e /C". 

(b) If K” is empty, do step 8c and go to step 4, else continue. 

52 



(c) Set t e B, put K' = )CU / C " , £ ' = £ \ JC X = K' and C = C, 

(d) Repeat step 3. 

Step 4- For all j > s, if j G Gi and i eB, then stop, the portfolio with highest 

return and risk is given by step 9a; else continue. 

Step 5: Increase y until one of the following cases happen: 

(a) Xg = 0， go to step 6, 

(b) Xz = 0 where z e Z, go to step 7, 

(c) y = m i n i 辟 鄉 … 乙 念 g o to step 8. 

Step 6: (a) Put V' = VU {s}，V = V. Let m = s - = m. Ifx^ = 0, repeat 

step 6a, else if s e = C \ {s},£ = C. 

(b) I f s e Gi and i e B, then B' = B\ = B',)C' = }C\{j :j e 

Gi},}C' = }C,Z' = Z \ { j : j e Gi}, Z' = Z. 

(c) Go to step 9. 

Step 7: (a) Set Z' = Z\{z}, find t = j where j, z e Gi and r广r! > 0 is min. 

Then Z = Z'U{t},C' = Z:\{t}，/： 二 C! and V = VU{z},V = V. 

(b) Go to step 9. 

53 



step 8: (a) Let c = mini抖•的门乙 V is the group where 6p(EjGGpn£ = 

c. Sety = c,/C' = /CU{j : j e Gp},K： = = 5 U {p},5 = 

(b) For all j e Gp, set Xj = 0，V' = V U {j} and V = V' 

(c) Repeat j G Gp, let m — j where Vj is maximum Vj G Gp and 

工 j = 0. If bp - ZjeGp 工 j > •，then x^ = = £ U {m}’£ == 

/：'，• else if bp — XljeCp �•，仇en Xm = bp - EjeGp 巧，之‘二 

Z U {m},Z = Z'; else = = VU {m}，V 二 V'. 

(d) Go to step 9. 

Step 9: (a) For a given y, 
1’ j e L� 
Qj ‘ ‘ 

工 j = b, - (ZieG^^c i ) y^ j e Z , 

0, j e V; 

ses i£B jec\ic � 

(b) Go to step 4-

Theorem 5.2.1 Algorithm 5.2.1 finds the entire efficient frontier. 

Proof . Prove by induction. By Lemma 5.1.1’ the portfolio with smallest 

return and risk is given by investing in all assets. Therefore the initial point 

of the efficient frontier is given by including all assets in the set of investment, 
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3. The initial efficient point is proven by Theorem 3.1.1 if no group exceeds 

its investment limit, otherwise Lemma 5.1.9 proves it. Lemmas 5.1.2’ 5.1.3, 

5.1.4, 5.1.5 and 5.1.8 prove that the algorithm finds the next efficient point. 

By Lemma 5.1.7, the linear combination of two successive effective turning 

points is proved to be efficient. The stopping condition of the algorithm is 

proved by Theorem 5.1.6. Therefore, we conclude that the efficient frontier 

is found by the algorithm entirely. This completes the proof. • 

Algorithm 5.2.1 has outlined the optimal algorithm for finding the effi-

cient frontier of POB(A). Initially, the algorithm starts at a portfolio with 

the smallest return and risk. It denotes the lowest efficient point on the ef-

ficient frontier. In most cases, the lowest efficient point is a fully diversified 

portfolio by investing in all available assets. However, there exists a case 

that making investment in all assets results in some groups exceeding their 

investment limits. In order to remain feasible, those groups are invested up 

to their limits and the remaining wealth is distributed to other assets. When 

the portfolio risk, y, increases, the amount of investment in assets changes 

while the elements in the investment sets remain unchanged until a turning 

point is reached. A turning point represents a (X)j=i O^ j ‘ v) Pair where the 

elements composing any sets of /C, S and Z are changed. If all the bound 

constraints are ineffective, POB(A) is reduced to PO(A). Therefore the ef-

ficient frontier of POB(A) and PO(A) are the same. A turning point then 

refers to a situation that the elements in C are changed. If these exists at 

least one effective bound constraint, the efficient frontier of POB(A) will be 

different from that of PO(A). In this case, a turning point is reached if the 
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elements in the sets /C,«S or Z are changed. It will lead to changes in the 

composition of £ as well. By continuously increasing y, all turning points can 

be obtained until the highest-return portfolio is reached. The highest-return 

portfolio represents a portfolio of which any increase in y cannot further in-

crease the return. With the special nature of POB(A), a linear combination 

of any successive efficient turning points are efficient. Therefore the efficient 

frontier is achieved by constructing a linear line between every two turning 

points. 

5.3 Time complexity of the algorithm 

We follow the assumptions in the previous sections that there are n assets 

and T groups. There are two situations of POB(A): the bound constraints 

are ineffective and effective. If all of the bound constraints are ineffective, 

Algorithm 5.2.1 stops at step 2. The time complexity of the algorithm is 

0{n). If the bound constraints are effective, we need to consider the com-

plexity of each step. When finding the initial point of the efficient frontier, if 

investing in all assets does not violate the bound constraints, the complexity 

is 0{n), otherwise the algorithm goes through step 3. The complexity of step 

3(a) is O(nT) which is repeated for at most T times where J2T=i bi = MQ 

in this case. Therefore the complexity for finding the initial efficient point 

is 0(nT2) . According to Lemma 5.1.5, the complexity of finding the next 

efficient point by step 5 is 0 (n ) . After that, the complexity of updating the 

compositions of the sets at an efficient point by step 6，step 7 and step 8 

is also 0 ( n ) . Step 4 is for checking whether the stopping condition of the 
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algorithm is reached, the complexity is 0{n). Next, the solution is calculated 

by step 9 with complexity 0{n). Step 4 to step 9 are repeated for at most 3n 

times. Therefore the complexity of the algorithm is 0{nT^ + n?) = 0{v?T), 

asT <=n. 

5.4 Chapter summary 

In this chapter, based on the special nature of linear programming of P O B (入)’ 

the portfolio optimization problem with investment bounds, some properties 

of the efficient frontier are revealed and an algorithm with polynomial time 

complexity is derived to solve POB(A). The algorithm starts at the initial 

efficient point, which is the lowest point of the efficient frontier with smallest 

expected portfolio return and risk. By increasing the portfolio risk y, the 

entire efficient frontier is found until the highest-return portfolio is obtained. 

With the analytic solutions found in chapter 4，the investments made to each 

asset in the portfolio are known. Similar to the situation without bound con-

straints, the algorithm suggests that for solving POB(A), assets with higher 

expected return should be considered first. Then the amount of investment 

on each asset is determined by the risk level of each asset. 
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Chapter 6 

Finding the investor's optimal 

portfolio 

In the previous section, we have found the efficient frontier of POB(A). The 

efficient frontier is composed of infinite return-risk pairs, each corresponds to 

an optimal portfolio with a particular expected rate of return or risk. There-

fore an optimal portfolio can be acquired easily if an expected return rate is 

given by an investor. However, recall in chapter 4, POB(A) is formulated as 

a parametric optimization problem with A as a parameter. In this section, 

we will discuss the case when the risk tolerance parameter A is given by an 

investor. 

6.1 Investor's portfolio with given A 

From Algorithm 5.2.1, we get the efficient frontier of the problem. The 

efficient frontier consists of many efficient turning points. Now denote the 
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initial turning point as Without loss of generality, assume there are 

p turning points on the efficient frontier. Therefore, ( i ? � f o r t = 1，2’...，p. 

Theorem 6.1.1 With a given X, the investor's optimal portfolio is given by 

the portfolio with min {A /̂ — (1 — 

Proof . Suppose is an optimal portfolio with return BP = Y l ^ i 

therefore î (xO’y。）= Xŷ  — (1 -

Casel: Obviously, if is not minimum, there exists an efficient turn-

ing point (xi’yi) such that < It contradicts the fact 

that (x。，力 is optimal. 

Case 2: If is not a turning point on the efficient frontier. There-

fore is a linear combination of two efficient turning points (x^y^) 

and (x2，y2) Without loss of generality, let x^ < x^, therefore y^ < y^. 

Thus, < xO < x2 and < y � < Let the line joining 

and (Bp, y。）be i? = my + c, where m and c are constants. 

尸(xOy) = 

= y O - ( l - A ) ( m y V c ) 

= [ A - ( 1 - A ) m ] 

> [ A - ( 1 - A ) m ] y ^ - ( 1 - A ) c 

= F ( x W ) 

It contradicts the fact that is optimal. This completes the proof. • 
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6.2 Chapter summary 

In this chapter, we find the investor's optimal portfolio after the efficient fron-

tier is obtained. With a given expected rate of return, the optimal portfolio 

of a particular investor can be achieved easily with reference to the efficient 

frontier. For investor with a given risk tolerance parameter A, the optimal 

portfolio would be one of the turning points on the efficient frontier. 
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Chapter 7 

Numerical experiments 

In this chapter, two series of numerical experiments are provided to evaluate 

the performance of the /qo model with investment bounds. In the first section, 

an example is used to illustrate the characteristics of the efficient frontier of 

the problem we discussed in the previous chapter. Two comparisons of the 

efficient frontiers: in the case with and without bound constraints, and in the 

case with different bound constraints are conducted. In the second section, 

numerical testing is carried out to compare the performance of the model 

with the classical mean variance (/之）model in different situations. 

7.1 Finding the efficient frontier numerically 

To compare the entire efficient frontiers with and without bound constraints, 

we have implemented Algorithm 5.2.1 proposed in chapter 5 to find the ef-

ficient frontier of the case with investment bound constraints, while for the 

case without bound constraints, we have followed the method proposed by 
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Figure 7.1: Efficient frontiers with and without bound constraints 

Cai et. al. [3] to obtain the efficient frontier. In this experiment, assume 

Mo 二 1 and there are 35 stocks with 4 groups. The bounds of the groups 

are 0.7,0.2,0.25 and 0.3 respectively. Table A.l in Appendix A shows the 

expected rate of return (n) and the expected risk � of the assets. (The 

calculations of 7\ and 伪 will be provided in details in the next section.) In 

this example, there are 35 and 28 turning points for the cases without and 

with investment bound constraints respectively. Figure 7.1 shows the corre-

sponding efficient frontiers. 

Moreover, different values of the bound constraints are studied. To pro-
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Figure 7.2: Efficient frontiers with different bound constraints 

vide a better visualization of the results, 20 out of the 35 stocks are chosen 

for the experiment. The bounds are magnified by 1.5 times each for 4 times. 

For example, Bl 二 [0.49;0.7; 0.25;0.21], B2 = [0.735; 1.05;0.375; 0.315], 

which is 1.5 times Bl. In the same way, B3 = [1.10; 1.58; 0.57; 0.48] and 

B4 = [1.65; 2.37; 0.86; 0.72]. Figure 7.2 shows the conforming result that 

when the bounds of the groups increase, the efficient frontier with bound 

constraints approaches that of without bound constraints. 
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7.2 Performance between mean-variance model 

and IQQ model 

In this section, we evaluate the performance of the I沈 model with investment 

bounds by numerical experiments. Experiments with different expected re-

turns and bound constraints were carried out and comparisons between I^o 

model and I2 model are conducted. 

7.2.1 Data analysis 

The experiments use real data from the Hong Kong Stock Exchange Market. 

We select totally 75 stocks in the market with market capitalization above 

900 millions. Among the 75 stocks, 23 are Hang Seng Index constituents. The 

companies included in the experiments are listed in Appendix B. These stocks 

are divided into 4 groups according to the business nature of the companies: 

Properties, Utilities, Commerce and Industry, and Finance. Moreover, three 

investment periods, namely, short term (1 week and 1 month) and intermedi-

ate term (6 months) are considered. The number of consecutive working days 

for one-week, one-month and five-month investment period are 5, 21 and 131 

days respectively. In the experiment, historical data for the relevant stocks 

are used to estimate the parameters 7\ and qi. Specifically, the return rates 

of 100 trading days prior to the investment day (the day when investment 

is made) are used in the estimation. Let Rij be the jth past return rate of 

stock i, and 9 be the number of trading days in the investment period. Then 

吧 j = l’2，….’100 
Pi,j+e 
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where p^j is the closing price of stock i on the jth trading day before the 

investment day. The expected return rate of stock i is calculated by 

y^ioo FL 
Ti = 

‘ 100 

and the expected risk of stock i is calculated according to the formula 

Ej=i I 代j - r d 

乐 = 1 0 0 • 

To obtain the mean variance portfolio, the covariances of the return rates of 

any two stocks are needed. The covariance, (jij, is calculated as follows: 
1 100 

即 = 丽 公 队 k _ TiKRji^ - rj). 
k=l 

7.2.2 Experiment description and discussion 

The experiments are carried out with the assumption that the amount of ini-

tial wealth Mo = 1. The expected rate of return of the portfolio, p，is used 

as a parameter in the comparison between the /qo model and mean-variance 

(/2) model. In any case, same expected rate of return of portfolio in loo model 

and mean-variance model is used. The experiments are conducted with ser-

val different values of p for different periods of investment (see Table 7.1). In 

Investment period Expected return of the portfolio, p 

1 week 0.2%，0.5%, 0.8% 

1 month 1%, 3%, 5% 

6 months 5%, 10%, 15% 

Table 7.1: Expected return rates for different investment periods 

our experiments, stocks are classified into 4 groups according to the business 
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nature of the companies. For each group, the investment limit is chosen with 

reference to its market capitalization rate. For example, group-one stocks in 

total approximately contribute to 10% by capitalization of the total stocks 

we considered in our experiments, therefore 0.1 times a magnification factor 

is selected to be the investment limit of group 1. The investment limits for 

other groups are selected similarly. In our experiments, the capitalization 

rate for the 4 groups are 0.1, 0.1, 0.5 and 0.3 respectively. Specifically, our 

numerical experiments are conducted for different investment periods, differ-

ent expected rates of return of the portfolio and different bound constraints. 

An actual return graph is constructed for each experiment to illustrate the 

outcome (see Appendix C). On the graph, the horizontal axis represents the 

day of investment, while the vertical axis represents the actual return rate 

of the corresponding portfolio. Moreover, same starting date is chosen for 

different investment periods. The graphical results are included in Appendix 

C. In most cases, the trends of the actual portfolio return using I^o model 

are similar regardless of the size of the bounds. Generally, the return of 

portfolio by the /oo model fluctuates more than the I2 model. For one-week 

investment, it can be observed from the graphs that the actual returns of the 

portfolio obtained by the / � model and the I2 model are very close to each 

other, however, the IQO model results in more fluctuations. The portfolio of 

the loo model is less sensitive to the investment bounds for smaller expected 

rate of return of the portfolio. Similar results are found for investment pe-

riod of one month. For one-month investment, the performance of the /qo 

model and the I2 model is comparable regardless of the size of the expected 

returns and the investment bounds. Both the IQO model and the I2 model 
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result in more fluctuations of the actual returns for large expected returns. 

For intermediate investment period of six months, the I � model and the I2 

model performs similarly for small expected return regardless of the size of 

the investment bounds, their deviations become larger for larger expected 

return. 

7.3 Chapter summary 

In this chapter, two series of experiments using data collected from the Hong 

Kong Stock Exchange are conducted. In the first series of experiments, by 

adopting Algorithm 5.2.1 proposed in chapter 5, the efficient frontiers of the 

problem with and without bound constraints are found. A conforming result 

has revealed that the efficient frontier with bound constraints approaches 

that of without bound constraints when the bounds become larger. In the 

second series of experiments, the performance of the loo model and classi-

cal mean-variance {I2) model are studied. Generally, the trends of the Î o 

model and the h model are close to each other regardless of the investment 

bounds. Moreover, the /QO model shows more fluctuations than the I2 model, 

especially for short investment period. 
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Chapter 8 

Conclusion 

In this thesis, we explored and solved the portfolio optimization problem 

under minimax risk measure model with group investment bound constraints 

and short selling is disallowed. In the market, assets are classified into sectors 

according to the types of securities to which they belong and the nature of 

their companies. Investment limits on sectors of assets are imposed both 

externally by regulations and internally by investors. In this thesis, We 

employed the /QO risk model proposed by Cai et. al [3] in our problem. The 

ultimate objective of our portfolio optimization problem is to maximize the 

expected return of the portfolio while minimize the portfolio risk defined by 

the loo risk function. 

Adopting Cai et. al approach, the portfolio optimization problem is for-

mulated as a bi-criteria problem and converted into an equivalent param-

eterized problem with an investor's risk tolerance parameter. By applying 

Kuhn-Tucker optimality conditions, we have solved the problem analytically. 

The solution exists in four different forms with similar properties. Optimality 
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of the solutions are ensured by the KKT conditions as the problem is convex 

programming. 

With similar properties of the optimal solutions and the special nature of 

linear programming, we have revealed some properties of the efficient frontier 

of the portfolio optimization problem. The properties enable us to derive an 

algorithm with polynomial time complexity to solve the problem completely. 

The algorithm starts at the initial efficient point, which is a portfolio with 

smallest expected return and risk. Then by increasing the portfolio risk, all 

turning points, which are defined as return-risk pairs where the assets in 

the investment sets are changed, are obtained The algorithm stops and the 

entire efficient frontier is found when the highest-return portfolio is reached. 

Similar to the situation without bound constraints, for the portfolio opti-

mization problem with investment limits, the algorithm suggests that assets 

with higher expected return should be considered first. Then the amount of 

investment on each asset is determined by the risk level of the asset. After 

the efficient frontier is obtained, an investor's optimal portfolio with particu-

lar expected return is achieved easily. For investor with a given risk tolerance 

parameter, the optimal portfolio is restricted to one of the efficient turning 

points on the efficient frontier. 

In the last section of this thesis, two series of numerical experiments were 

carried out. One of the series is to demonstrate the efficient frontiers of 

the problem with and without investment bounds. A conforming result has 

illustrated that the efficient frontier of the problem with bounds approach 

to that of without bounds when the bounds increase. Another series of 

experiments was to evaluate the performance of the loo model and compare 
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it with that of the classical mean-variance I2 model. Various scenarios have 

been tested with different expected returns of the portfolio and different 

investment bounds in short and intermediate terms of investment. In general, 

the trends of the actual return of the portfolio found by the IQO model and 

I2 model are similar regardless of the investment bounds. Moreover, the /QO 

model shows more fluctuations than the I2 model. 

The portfolio optimization problem under / � model with investment lim-

its first determines which assets should be invested, then the amount to be 

invested is decided according to the risk level of each asset. No correlations 

among assets are involved in the process of finding the optimal solutions. 

Without directly calculating the correlations of the covariance, less time is 

required to trace out the efficient frontier. The /QO model can be further 

studied to apply to situations with more constraints. Possible extensions in-

clude consideration that some assets are subjects to lower investment bounds, 

transaction costs are taken into account and generalization of the loo model 

to the multi-period case. 
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Appendix A 

Stocks for finding the efficient 

frontiers with and without 

bound constraints 
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Stock Group Expected Return rt Expected Risk qi 

1 1 0.0567 0.0461 

2 1 0.0377 0.0556 

3 1 0.0359 0.0458 

4 1 0.1991 0.0969 

5 1 0.1734 0.0809 

6 2 0.1149 0.0478 

7 2 -0.0178 0.0251 

8 2 0.0255 0.0322 

9 3 -0.0693 0.0623 

10 3 -0.0584 0.0496 

11 3 -0.0115 0.0467 

12 3 0.0964 0.1087 

13 3 0.0821 0.0339 

14 3 0.0482 0.0789 

15 3 0.0838 0.1320 

16 3 0.0237 0.0811 

17 3 0.1579 0.1686 

18 3 0.2235 0.1298 

19 3 0.1843 0.1053 

20 3 0.0170 0.1988 

21 3 0.2485 0.1433 

22 3 0.0348 0.0732 

23 3 0.2320 0.1028 

24 3 0.0830 0.0689 

25 3 0.1107 0.1557 

26 3 0.4294 0.1019 

27 3 -0.0024 0.0466 

28 3 0.0283 0.0893 

29 3 0.5359 0.1108 

30 4 0.0752 0.0171 

31 4 0.0087 0.0439 

32 4 0.2882 0.0719 

33 4 0.2724 0.1529 

34 4 0.1377 0.0752 

35 4 0.6141 0.1239 

Table A.l: Expected return and expected risk of the stocks for finding the 

efficient frontiers of the problem with and without bound constraints 
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Appendix B 

List of companies 
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Code Name Sector 

1 0001.HK Cheung Kong (Holdings) Ltd. Properties 

2 0002.HK CLP Holdings Ltd. Utilities 

3 0003.HK Hong Kong and China Gas Co. Ltd. Utilities 

4 0004.HK Wharf (Holdings) Ltd. Commerce k Industry 

5 0005.HK HSBC Holdings Ltd. Finance 

6 0006.HK Hong kong Electric Holdings Ltd. Utilities 

7 0008.HK PCCW Ltd. Commerce k Industry 

8 OOll.HK Hang Seng Bank Ltd. Finance 

9 0012.HK Henderson Land Development Co. Ltd. Properties 

10 0013.HK Hutchison Whampoa Ltd. Commerce k Industry 

11 0014.HK Hysan Development Co. Ltd. Properties 

12 0016.HK Sun Hung Kai Properties Ltd. Properties 

13 0017.HK New World Development Co. Ltd. Commerce k Industry 

14 0019.HK Swire Pacific Ltd. ’A’ Commerce & Industry 

15 0020.HK Weelock and Co Ltd Commerce & Industry 

16 0023.HK Bank of East Asia Ltd Finance 

17 0041.HK Great Eagle Holdings Ltd. Properties 

18 0044.HK Hong Kong Aircraft Engineering Co Ltd Commerce k Industry 

19 0049.HK Wheelock Properties Ltd. Properties 

20 0052.HK Fairwood Holdings Ltd. Commerce k Industry 

21 0057.HK Chen Hsong Holdings Ltd. Commerce & Industry 

22 0066.HK MTE Corporation Ltd. Commerce & IndustryS 

23 0069.HK Shangri-La Asia Ltd Commerce k Industry 

24 0083.HK Sino Land Co. Ltd. Properties 

25 0086.HK Sun Hung Kai k Co. Ltd Properties 

26 0096.HK Wing Lung Bank Ltd Finance 

Table B.l: Lists of companies included in the numerical experiments 
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Code Name Sector 

27 0097.HK Henderson Investment Ltd Commerce & Industry 

28 0101.HK Hang Lung Properties Ltd. Properties 

29 0101.HK Hang Lung Properties Ltd. Properties 

30 0116.HK Chow Sang Sang Holdings Ynternational Ltd. Commerce & Industry 

31 0123.HK Guangzhou Investment Co. Ltd. Finance 

32 0144.HK China Merchants Holdings (International) Co. Lrd. Commerce & Industry 

33 0145.HK Hong Kong Building and Loan Agency Ltd. Finance 

34 0165.HK China Everbright Ltd Commerce & Industry 

35 0173.HK K. Wah International Holdings Ltd. Commerce & Industry 

36 0203.HK Denway Motors Ltd Commerce & Industry 

37 0210.HK Prime Success International Group Ltd. Commerce & Industry 

38 0227.HK First Shanghai Investments Ltd. Commerce k Industry 

39 0242.HK Shun Tak Holdings Ltd Commerce & Industry 

40 0247.HK Tsim Sha Tsui Properties Ltd. Properties 

41 0267.HK CITIC Pacific Ltd. Commerce & Industry 

42 0291.HK China Resources Enterprise Ltd. Commerce & Industry 

43 0293.HK Cathay Pacific Airways Ltd Commerce & Industry 

44 0302.HK Wing Hang Bank Ltd Finance 

45 0303.HK Vtech Holdings Ltd. Commerce & Industry 

46 0308.HK China Travel International Investment Hong Kong Ltd Finance 

47 0322.HK Tingyi (Cayman Islands) Holdings Corp. Commerce h Industry 

48 0338.HK Sinopec Shanghai Petrochemical Co. Ltd. - H Shares Commerce h Industry 

49 0341.HK Caf de Carol Holdings Ltd. Commerce h Industry 

50 0347.HK Angang Steel Co Ltd. - H Shares Utilities 

51 0386.HK China Petroleum h Chemical Corporation -H Shares Commerce h Industry 

52 0388.HK Hong Kong Exchanges and Cleatinh Ltd Finance 

Table B.2: Lists of companies included in the numerical experiments 
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Code Name Sector 

53 0440.HK Dah Sing Financial Holdings Ltd Finance 

54 0480.HK HKR International Commerce k Industry 

55 0511.HK Television Broadcasts Ltd. Commerce & Industry 

56 0662.HK Asia Financial Holdings Ltd. Finance 

57 0683.HK Kerry Properties Ltd Commerce & Industry 

58 0754.HK Hopson Development Holdings Ltd Commerce & Industry 

59 0762.HK China Unicom Ltd. Commerce & Industry 

60 0857.HK PetroChina Co. Ltd. - H Shares Commerce & Industry 

61 0903.HK TPV Technology Ltd. Commerce k Industry 

62 0914.HK Anhui Conch Cement Co. Ltd. -H Shares Commerce & Industry 

63 0917.HK New World China Land Ltd. Properties 

64 0941.HK China Mobile Ltd. Commerce & Industry 

65 0983.HK Shui On Construction and Materials Ltd. Commerce k Industry 

66 0991.HK Datang International Power Generation Co. Ltd. - H Shares Utilities 

67 0992.HK Lenovo Group Ltd Commerce & Industry 

68 1038.HK Cheung Kong Infrastructure Holdings Ltd. Commerce & Industry 

69 1044.HK Hengan International Group Co Ltd Commerce & Industry 

70 1098.HK Road King Infrastructure Properties 

71 1111.HK Chong Hing Bank Ltd. Finance 

72 1114.HK Brilliance China Automative Holdings Ltd. Commerce & Industry 

73 1136.HK TCC International oldings Ltd. Commerce & Industry 

74 1171.HK Tanzhou Coal Mining Co Ltd. - H Shares Utilities 

75 1199.HK COSCO Pacific Ltd Commerce & Industry 

Table B.3: Lists of companies included in the numerical experiments 
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Graphical Results 
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Figure C.l: Actual return graph with investment bounds equal to 1.5 times the 

group capitalization rates for 1-week investment with expected return equal to 

0.2% 
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Figure C.4: Actual return graph with investment bounds equal to 1.5 times the 

group capitalization rates for 1-week investment with expected return equal to 

0.5% 
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Figure C.3: Actual return graph with investment bounds equal to 5 times the 

group capitalization rates for 1-week investment with expected return equal to 

0.2% 
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Figure C.4: Actual return graph with investment bounds equal to 1.5 times the 

group capitalization rates for 1-week investment with expected return equal to 

0.5% 
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I nves tmen t Da tes : 0 1 . 0 1 . 1 2 - 0 1 . 0 6 . 0 1 
Expec ted Re tu rn = 0.5。/。’ Per iod = 1 w e e k 
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Figure C.5: Actual return graph with investment bounds equal to 3 times the 

group capitalization rates for 1-week investment with expected return equal to 

0.5% 
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Figure C.4: Actual return graph with investment bounds equal to 1.5 times the 

group capitalization rates for 1-week investment with expected return equal to 

0.5% 
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I nves tmen t Da tes : 0 1 . 0 1 . 1 2 - 0 1 . 0 6 . 0 1 
Expec t ed Re tu rn = 0 . 8 % , Per iod = 1 w e e k 
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Figure C.7: Actual return graph with investment bounds equal to 1.5 times the 

group capitalization rates for 1-week investment with expected return equal to 

0.8% 
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Figure C.4: Actual return graph with investment bounds equal to 1.5 times the 

group capitalization rates for 1-week investment with expected return equal to 

0.5% 
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I nves tmen t Da tes : 0 1 . 0 1 . 1 2 - 0 1 . 0 6 . 0 1 
Expec ted Re tu rn = 0 . 8 % , Per iod = 1 w e e k 
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Figure C.9: Actual return graph with investment bounds equal to 5 times the 

group capitalization rates for 1-week investment with expected return equal to 

0.8% 
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Figure C . 4 : Actual return graph with investment bounds equal to 1.5 times the 

group capitalization rates for 1-week investment with expected return equal to 

0.5% 

86 
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Figure C. l l : Actual return graph with investment bounds equal to 3 times the 

group capitalization rates for 1-month investment with expected return equal to 

1% 
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Figure C . 4 : Actual return graph with investment bounds equal to 1.5 times the 

group capitalization rates for 1-week investment with expected return equal to 

0.5% 
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I nves tmen t Da tes : 0 1 . 0 1 . 1 2 - 0 1 . 0 6 . 0 1 
Expec ted Re tu rn = 3 % . Per iod = 1 m o n t h 
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Figure C.13: Actual return graph with investment bounds equal to 1.5 times the 

group capitalization rates for 1-month investment with expected return equal to 

3% 
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Figure C . 4 : Actual return graph with investment bounds equal to 1.5 times the 

group capitalization rates for 1-week investment with expected return equal to 

0.5% 
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I nves tmen t Da tes : 0 1 . 0 1 . 1 2 - 0 1 . 0 6 . 0 1 
Expec ted Re tu rn = 3 % , Per iod = 1 m o n t h 
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Figure C.15: Actual return graph with investment bounds equal to 5 times the 

group capitalization rates for 1-month investment with expected return equal to 

3% 
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Expec t ed Re t u rn = 5 % , Per iod = 1 m o n t h 

I l-inflnlty| 
0 . 2 5 _ 1-2 

-O . I -

- 0 . 1 5 • • 

—0.2 - -

- 0 . 2 5 -

i t • I I I , ‘ , 1 • L 
10 2 0 3 0 4 0 5 0 6 0 7 0 80 90 100 

Figure C . 4 : Actual return graph with investment bounds equal to 1.5 times the 

group capitalization rates for 1-week investment with expected return equal to 

0.5% 
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I nves tmen t Da tes : 0 1 . 0 1 . 1 2 - 0 1 . 0 6 . 0 1 
Expec t ed Re t u rn = 5 % , Per iod = 1 m o n t h 
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Figure C.17: Actual return graph with investment bounds equal to 3 times the 

group capitalization rates for 1-month investment with expected return equal to 

5% 
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Figure C . 4 : Actual return graph with investment bounds equal to 1.5 times the 

group capitalization rates for 1-week investment with expected return equal to 

0.5% 
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Figure C.19: Actual return graph with investment bounds equal to 1.5 times the 

group capitalization rates for 6-month investment with expected return equal to 

5% 
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Figure C . 4 : Actual return graph with investment bounds equal to 1.5 times the 

group capitalization rates for 1-week investment with expected return equal to 

0.5% 
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I nves tmen t Da tes : 0 1 . 0 1 . 1 2 - 0 1 . 0 6 . 0 1 
Expec ted Re tu rn = 5 % , Per iod = 6 m o n t h s 
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Figure C.21: Actual return graph with investment bounds equal to 5 times the 

group capitalization rates for 6-month investment with expected return equal to 

5% 
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Figure C.22: Actual return graph with investment bounds equal to 1.5 times the 

group capitalization rates for 6-month investment with expected return equal to 

10% 
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I nves tmen t Da tes : 0 1 . 01 , 12 — 01 .06 .01 
Expec t ed Re tu rn = 1 0 % . Per iod = 6 m o n t h s 

O.zsf ‘ ‘ “ ‘ ‘ ‘ l - i n f l ^ 
丨一 2 

0 . 2 - -

0.15 - -

S 0.1 - -

！ ：：:""^、 ； 

- 0 . 2 5 - -

10 20 3 0 4 0 50 6 0 7 0 80 90 100 

Figure C.23: Actual return graph with investment bounds equal to 3 times the 

group capitalization rates for 6-month investment with expected return equal to 

10% 
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Figure C.24: Actual return graph with investment bounds equal to 5 times the 

group capitalization rates for 6-month investment with expected return equal to 

10% 
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I nves tmen t Da tes : 0 1 . 0 1 . 1 2 - 0 1 . 0 6 . 0 1 
Expec t ed Re tu rn = 1 5 % , Per iod = 6 m o n t h s 
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Figure C.25: Actual return graph with investment bounds equal to 1.5 times the 

group capitalization rates for 6-month investment with expected return equal to 

15% 
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Figure C.26: Actual return graph with investment bounds equal to 3 times the 

group capitalization rates for 6-month investment with expected return equal to 

15% 
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Figure C.27: Actual return graph with investment bounds equal to 5 times the 

group capitalization rates for 6-month investment with expected return equal to 

15% 
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