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ABSTRACT 
Over the years the Internet has shown extraordinary scalability and robustness in spite 
of the explosive growth in geographical reach, user population size，as well as network 
traffic volume. This scalability and robustness is, in no small part, supported by the 
Internet's transport protocols, and the Transmission Control Protocol (TCP) in 
particular. Nevertheless, with the rapid growth of multimedia-rich contents in the 
Internet, such as audio and video, the many strengths of TCP in data delivery are 
slowly imposing bottlenecks in multimedia data delivery where different media data 
flows often have different needs for bandwidth. As TCP's congestion control 
algorithm enforces fair bandwidth sharing among traffic flows sharing the same 
network bottleneck, different media data flows will receive the same bandwidth 
irrespective of the actual needs of the multimedia data being delivered. This work 
addresses this limitation by proposing a new algorithm to achieve non-uniform 
bandwidth allocation among TCP flows originating from the same sender passing 
through the same network bottleneck to multiple receivers. The proposed algorithm, 
called Virtual Packet Substitution (VPS)，has four desirable features: (a) it allows the 
allocation of bottleneck bandwidth between a group of TCP flows; (b) the resultant 
traffic flows as a whole, maintain the same fair bandwidth sharing property with other 
competing TCP flows; (c) it can be implemented entirely in the sender's TCP protocol 
stack; and (d) it is compatible with and does not require modification to existing TCP 
protocol stack at the clients. Simulation results show that the proposed VPS algorithm 
can achieve accurate bandwidth allocation while still maintaining fair bandwidth 
sharing with competing TCP flows. 
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摘要 

多年來儘管地理範圍，用戶人口數量，以及網絡流量的爆炸性增長，互聯網仍 

然持續擴充和非常穩健。這種持續擴充和穩健的性質很大程度上是受惠於互聯 

網的傳輸控制協議（Transmission Control Protocol, TCP)�儘管如此，快速增長 

的網上多媒體內容，如視聽內容，令原本傳輸控制協議的優勢慢慢限制著多媒 

體數據放送，而不同的媒體數據往往有著不同的頻寬需求。因爲傳輸控制協議 

的擁塞控制算法（Congestion control)公平地分配瓶頸（bottleneck)頻寬給流經 

同一瓶頸的數據流，不同的數據流不論實際的需要亦會獲得同一頻寬。針對這 

個限制，本論文提出一個新的算法，去實現非平均頻寬分配給源自同一傳送端 

，經過同一瓶頸，而到達不同接收端的數據流。這個建議算法稱爲虛擬包替代 

(Virtual Packet Substitution, VPS) ’並擁有以下四個特點：（一）允許頻寬分配予 

經過同一瓶頸的數據流；（二）綜合流量與其他數據流的流量保持公平競爭；（ 

三）完全實施在傳送端的傳輸控制協議堆疊；和（四）兼容及無須修改接收端 

的傳輸控制協議堆疊。模擬結果表明虛擬包替代能夠精確地分配頻寬，同時維 

持和其他數據流公平地分享頻寬。 
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Chapter 1 
INTRODUCTION 

Over the years the Internet has shown extraordinary scalability and robustness in spite 
of the explosive growth in geographical reach, user population size, as well as network 
traffic volume. This scalability and robustness is, in no small part, supported by the 
Internet's transport protocols, and the Transmission Control Protocol (TCP) [4] in 
particular. The flow and congestion control algorithms in TCP ensure that network 
bandwidth is shared among competing traffic flows in a fair manner [5], and network 
congestions are automatically alleviated by throttling the sending rate at the source. 

Nevertheless, with the rapid growth of multimedia-rich contents in the Internet, 
such as audio and video, the many strengths of TCP in data delivery are slowly 
imposing bottlenecks in multimedia data delivery [1-3]. Specifically, TCP's 
congestion control algorithm enforces fair bandwidth sharing among traffic flows 
sharing the same network bottleneck. Thus two multimedia flows going through the 
same network bottleneck will receive the same bandwidth irrespective of the actual 
needs of the multimedia data being delivered. 

For example, suppose a multimedia server is sending two streams of video data Si 
and S2, of encoded video bit-rates 0.3 Mbps and 0.7Mbps respectively, through the 
same network bottleneck [17, 18] to two different clients. Now if the network 
bottleneck has 1Mbps available bandwidth, then in principle there is sufficient 
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bandwidth to transport both video streams. However, if the server simply sends both 
video streams using TCP or a TCP-friendly streaming protocol that emulates TCP's 
fair bandwidth sharing property, then each of the video streams will get half the 
available bandwidth, i.e.，0.5Mbps. Obviously, this is too much for Si at 0.3Mbps and 
insufficient for S2 at 0.7Mbps. 

Apparently, if the server knows the video streams' bit-rates and can control the 
transmission rates at the application layer, then it seems the problem can be solved by 
sending the video at their playback rates instead of the rates allowed by TCP. This 
approach, however, suffers from two limitations. First, while it is possible for the 
server application to send data at a rate lower than the rate allowed by TCP, the 
opposite is simply impossible as the application will soon be blocked from sending 
more data by the network programming API (e.g., sockets [6]) once the sender's 
transport buffer is full. Second, even if the server frees up bandwidth from a TCP flow 
by sending at a lower rate, the saved bandwidth may not be fully transferred to another 
specific TCP flow. 

To see why, suppose there are two other competing TCP flows S3 and S4 sharing 
the same bottleneck as the two video streams Si and S2, then any bandwidth, say C bps, 
freed up by the server (through sending Si at a lower rate) will be up for grab by the 
remaining three competing flows (S2, S3, and S4). Given TCP's fair bandwidth sharing 
property this means that each of the competing flows (S2, S3, and S4) will receive 
one-third of the freed bandwidth, i.e., C/3 bps. This dilution effect increases with more 
competing TCP flows sharing the same network bottleneck and thus differentiating 
bandwidth at the application layer is not effective in the Internet where it is not 
uncommon to have tens or hundreds of flows going through a network link. Chapter 
2.1 will further illustrate this limitation using simulations. 
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We tackle this problem in this work by proposing a new algorithm to achieve 
bandwidth allocation among TCP flows originating from the same sender passing 
through the same network bottleneck to multiple receivers. The proposed algorithm, 
called Virtual Packet Substitution (VPS), has four desirable features: (a) it allows the 
allocation of bottleneck bandwidth between a group of TCP flows; (b) the resultant 
traffic flows as a whole, maintain the same fair bandwidth sharing property with other 
competing TCP flows; (c) it can be implemented entirely in the sender's TCP protocol 
stack; and (d) it is compatible with and does not require modification to existing TCP 
protocol stack at the clients. 

The rest of the thesis is structured as follows. Chapter 2 investigates in detail why 
differentiating bandwidth at the application layer is ineffective and then reviews some 
previous related work in the literature. Chapter 3 presents the operating principles of 
the proposed VPS algorithm, and Chapter 4 and 5 discuss in detail the algorithms for 
ACK translation and bandwidth differentiation. Chapter 6 evaluates the proposed 
VPS using extensive simulations and Chapter 7 summarizes the work and discusses 
some future work. 
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Chapter 2 
BACKGROUND AND RELATED WORK 

This chapter presents results from simulated experiments to show that performing 
bandwidth differentiation at the application layer is ineffective, and then review some 
previous related work in the literature. 

2.1 Application-Layer Bandwidth 
Differentiation 
A network application can control its data transmission rate to a receiver by explicitly 
controlling the timings of data transmissions, subject to the flow and congestion 
controls of the transport protocol. Therefore to achieve bandwidth differentiation 
among multiple receivers connected to the same sender, it appears that one can simply 
control the relative data transmission timings for the respective receivers without 
modifying the transport protocol. While this may be true for transport protocols such 
as UDP, which has no flow or congestion control, the following experiment will show 
that this is ineffective for transport protocols that have built-in congestion control, 
such as TCP or TCP-friendly protocols (e.g., TFRC [26]). 

Let there be n TCP flows which share the same network bottleneck and is served 
by the same sender. The goal is to allocate the bottleneck bandwidth to the TCP flows 
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according to application-specified ratios {w], W2, ...， i . e . , flow i will be allocated 

a proportion of w. / ^力.Wj of the bottleneck bandwidth. Note that here the term 

bottleneck bandwidth refers to the total amount of bandwidth that would have been 
received by n ordinary TCP flows passing through the same network bottleneck, and 
so it will be smaller than the bottleneck link capacity in the presence of other 
competing TCP flows. 

Specifically, a network application typically sends data using a network API such 
as sockets [6]. By calling an API function such as socket's send() the application can 
submit data for transmission over the transport protocol. In case the application sends 
data faster than the rate the transport protocol can handle, data will accumulate in the 
socket buffer until it is full — at which point the send() function will either block until 
socket buffer becomes available again, or will return failure. The former case is 
commonly referred as blocking I/O and the latter case is commonly referred as 
non-blocking I/O, and both I/O models are widely supported in modem operating 
systems. 

If blocking I/O is employed, then the sender can simply use weighted round-robin 
to send data to the n receivers, i.e.，sending Wi units of data for receiver i in each round. 
In case a send() function call blocks the sender simply waits until it unblocks before 
continuing with the next send() call. In contrast, if non-blocking I/O is employed then 
whenever the send() call fails with a buffer full condition, indicating that the transport 
protocol cannot keep up with the data rate, the sender will have the option to skip the 
blocked flow and proceed to the next one. 

We implemented the above application-layer bandwidth differentiation algorithm 
using both blocking and non-blocking I/O models in the simulator NS2 [10]. The 
simulated network topology is depicted in Fig. 1, with 3 TCP flows controlled by the 
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sender and 3 other competing TCP flows serving as cross traffic. In the dump-bell 
topology the bottleneck link is configured with 10Mbps bandwidth. The bandwidth 
ratio for flow i is set to W / = l + ( / — w h e r e /={ 1,2,3} and the weight differential 
<i={l,2,".,10}. Results are averaged over 30 simulation runs. 

Fig. 2 shows the throughput of the three controlled TCP flows versus the 
bandwidth weight differential d. For example, with d=\ the three TCP flows should 
have throughput ratios of 1:2:3. When implemented using blocking mode I/O the three 
TCP flows can indeed achieve throughput ratios close to the target ratios. This is not 
surprising as the application sends data strictly according to the bandwidth ratios. By 
contrast, the three controlled TCP flows in the non-blocking I/O implementation do 
not exhibit any bandwidth differentiation at all. In fact their throughputs are the same 
regardless of the bandwidth ratio settings. 

To see why, consider the aggregate throughput of the three controlled TCP flows 
plotted in Fig. 3. Here we observe that the aggregate throughout in blocking I/O mode 
is substantially lower than those in non-blocking I/O mode. This is due to interaction 
between the application's bandwidth-differentiation algorithm and TCP's congestion 
control algorithm. Specifically, there are altogether 6 TCP flows in the network, of 
which 3 of them are under control by the application. Due to TCP's fair bandwidth 
sharing property we would expect the 6 flows to share the bottleneck bandwidth 
equally, say at C/bps. In other words while the application can send data slower than 
Cf, it cannot send data faster than Cf bps as the send() function call will either block 
under blocking mode or fail under non-blocking mode. 

In blocking mode this means that the flow with the highest bandwidth ratio can 
only send data at the fair share bandwidth Q, while the other flows of lower bandwidth 
ratio simply sends at rate below the fair share bandwidth due to the 
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bandwidth-differentiation algorithm. Thus the aggregate throughout of the three 
controlled TCP flows will become lower than 3C/, which is undesirable for the 
application. 

In contrast, under non-blocking I/O mode whenever the send() call fails (due to 
reaching the fair share bandwidth limit) the algorithm simply skips the current flow 
and proceeds to send data for the next flow in the round. This results in deviation from 
the target bandwidth ratios (due to skipped send() calls) but enables the other flows to 
send data even if one or more of the flows are already saturated. As a result the fair 
share bandwidth of all three flows can still be utilized in non-blocking I/O mode. 
However, as all TCP flows share the same long-term bandwidth the application ends 
up not being able to achieve bandwidth differentiation at all as evident in Fig. 2. 
Therefore irrespective of the I/O modes, performing bandwidth differentiation at the 
application layer is simply ineffective. One can either achieve bandwidth 
differentiation but not fair bandwidth sharing (via blocking I/O) or fair bandwidth 
sharing but not bandwidth differentiation (via non-blocking I/O), but not both 
simultaneously. 

^ 100Mbps 100Mbps TCP_sinki 

I / P TCP_sink2 

TCP, Q r ^ TCP-Sink4 

TCP, Q y \ P TCP_sink5 

TCPe Q j • TCP 一 sink6 
Fig. 1. Topology of the simulation for application-layer bandwidth differentiation. 12 
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2.2 Related Work 
Noting that differentiating bandwidth at the application-layer is ineffective, 
researchers have proposed various ways to achieve bandwidth differentiation at the 
transport layer. This section reviews these previous work and also related work in the 
areas of shared congestion management and flow partition. 

2.2.1. Bandwidth Differentiation 
Two previous studies [7-8] had investigated the problem of bandwidth differentiation. 
Mehra et al. [7] proposed a receiver-driven bandwidth allocation algorithm that can 
allocate bottleneck bandwidth among multiple TCP flows. The principle is to adjust 
the receiver's TCP receive windows and the delays in sending acknowledgements 
such that prioritized and weighted bandwidth sharing can be achieved. However, their 
algorithm can only allocate bandwidth among flows destined to the same receiver, 
whereas in this thesis the focus is to differentiate bandwidth for flows originating from 
the same sender to multiple receivers. 

In another study, Crowcroft and Oechslin [8] proposed the MulTCP congestion 
control algorithm to achieve differentiated end-to-end service. The principle is to 
change the rate at which a TCP flow increases and decreases its congestion window to 
make it behaves like N concurrent TCP flows. Bandwidth allocation can then be 
achieved by setting the multiplier N for each flow. The protocol is simple to implement 
and only limited coordination among multiple TCP flows is required. However, as the 
objective of MulTCP is not to minimize the impact to other competing ordinary TCP 
flows, it will nevertheless cause the competing ordinary TCP flows to lose some of 
their fair share of bandwidth. This is further analyzed in Chapter 6 which extensive 
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simulations are conducted to quantitatively compare MulTCP with the proposed VPS 
algorithm. 

2.2.2. Shared Congestion 
Management 
The underlying principle of bandwidth differentiation is to share congestion 
information of multiple data flows in regulating the transmission rate of individual 
flows. Similar principle has also been explored in the context of optimizing TCP 
performance. For example, J. Touch [30] proposed TCP control blocks (TCB) 
interdependence to cache and share TCP states, such as connection state, current RTT 
estimates, congestion control information, etc., among different TCP connections. The 
goal is to improve the transient performance of TCP, such as by using a cached 
congestion window size for a new TCP flow connecting to the same host in a previous 
connection to reduce the slow-start effect. These cached TCBs are consulted only 
during connection setup and teardown. In comparison, VPS takes the idea one step 
further by continuously sharing congestion information of multiple TCP flows during 
the whole connection period. 

Balakrishnan et al. [1] proposed a Congestion Manager (CM) architecture where 
all traffic flows originating from the same host are aggregated and managed as a single 
flow. The CM collects congestion information and exposes an API to application to 
enable them to query the network's characteristics. The primary goal is to combat the 
trend where increasingly more applications attempt to work-around TCP's congestion 
control and fair bandwidth sharing property by establishing multiple concurrent TCP 
flows to the same host, or switching to UDP altogether to gain unfair share of the 
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available bandwidth. When fully integrated with the network application the CM 
architecture can also assist network applications to adapt to congestion conditions 
without requiring them to perform congestion control or bandwidth probing on their 
own. 

2.2.3. Flow Partition 
The VPS algorithm performs bandwidth differentiation for flows sharing the same 
bottleneck. Thus VPS requires a method to identify and group such flows together — 
this is known as the flow partition problem. Since VPS is designed to be sender-driven, 
the flow partition mechanism should also be sender-driven such that no modification is 
required at the receiver. A number of such flow partition algorithms had been proposed 
in the literature, including the work by Lili Wang et al [22] and Ningning Hu et al. 
[23]. Lili Wang et al. proposed to use measured TCP throughput to derive path 
correlations as flows sharing the same bottleneck are expected to have correlated 
throughput. This approach is entirely passive in the sense that no probing packets need 
to be injected into the network. In contrast, Ningning Hu et al. proposed to send a train 
of probing packets with increasing time-to-live (TTL) values to identify the location of 
the path bottleneck. The idea is that when the TTL of the probing packets is 
decremented to zero, the intermediate routers are expected to discard the probing 
packets and send ICMP error reports back to the sender. By measuring the time gap 
between ICMP packets from each router, the sender can then infer the location of the 
path bottleneck. These flow partition algorithms, being sender-based, can be adopted 
for use with the proposed VPS algorithm. Therefore the rest of the thesis will simply 
assume flow partition has been performed and focus on a group of flows already 
known to share the same network bottleneck. 
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Chapter 3 
V P S PROTOCOL ARCHITECTURE 

There are two problems to overcome to enable bandwidth differentiation in TCP. First, 
the congestion control algorithm needs to be modified such that credits received (via 
acknowledgement packets) for data transmission can be reallocated from one flow to 
another flow. The goal is to allocate the bottleneck bandwidth to the TCP flows 
according to application-specified ratios {wu Wn}, i.e., flow i will be allocated a 
proportion of w. / ^力.Wj of the bottleneck bandwidth. Again the term bottleneck 

bandwidth refers to the total amount of bandwidth that would have been received by n 
ordinary TCP flows passing through the same network bottleneck, and so it will be 
smaller than the bottleneck link capacity in the presence of other competing TCP 
flows. Second, we need to regulate the aggregate traffic flows such that as a whole the 
group behaves in the same way as ordinary TCP flows so that other competing TCP 
flows (either from other hosts or from the same hosts but managed by ordinary TCP) 
will neither gain nor lose bandwidth. 
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Fig. 4. Protocol architecture and interfaces to application and network layers. 

Fig. 4 depicts the architecture of the proposed VPS algorithm. There are three 
core components, namely actual flows {A/}, virtual flows {V/}, and the VPS 
controller, all implemented inside the sender's transport layer. The application 
interfaces with the VPS algorithm through standard network programming APIs such 
as sockets [6]. When the server application creates a new TCP flow, e.g., by creating a 
new stream socket [6] or by accepting an incoming connection through a stream 
socket, VPS will create an actual flow and a virtual flow internally. Therefore for each 
group of TCP flows controlled by the VPS, the same number of actual flows and 
virtual flows will be created. The following sections explain details of the two types of 
flows and the VPS controller that interfaces between them. 

3.1 Virtual and Actual Flows 
In ordinary TCP when the application submits data for transmission, TCP will 
construct one or more TCP segments and then submit them, subject to the control of 
the congestion window and the receive window, to the IP layer for delivery. The 
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congestion window, denoted by cwnd is computed by the sender using the well-known 
Additive Increase Multiplicative Decrease (AIMD) algorithm [9] and this window 
limits how much unacknowledged data the sender can send at a time. Upon receiving 
data correctly, the receiver will send an acknowledgement packet (ACK) back to the 
sender, informing the sender of the highest sequence number received, denoted by Smax 
as well as the size of the receive window, denoted by rwnd, for flow control purpose. 
After receiving the ACK the sender can then send more TCP segments up to the 
sequence number AŜ âx+niin {cwnd,rwnd}. 

TCP's congestion control algorithm is instrumental to TCP's fair bandwidth 
sharing property. The problem is that it also limits the amount of data a TCP flow can 
transmit, and thus makes it impossible to transmit data faster than the fair share 
bandwidth, as is evident in the experiment in Section 2.1. This congestion control 
algorithm contradicts the goal to differentiate bandwidth among a group of TCP flows. 
Therefore in VPS the virtual flows are only responsible for running the standard TCP 
congestion control algorithms to determine how many TCP segments can be 
transmitted based on information received from ACKs and timeout events, and 
generate virtual packets accordingly. The VPS controller then collects the virtual 
packets from all virtual flows and then distributes them to the actual flows according to 
the desired bandwidth ratios, thus allowing some actual flows to send data faster than 
the fair share bandwidth. Note that there is no fixed mapping between virtual flows 
and actual flows. Virtual packets generated by a virtual flow can be redistributed to 
any of the actual flows, and an actual flow can receive virtual packets from more than 
one virtual flows. 

Now as the virtual flows generate virtual packets based on the same congestion 
control algorithm as that in ordinary TCP, the total rate at which virtual packets are 
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generated by all n virtual flows will mimic those of n ordinary TCP flows. Thus 
although the actual flows may send data at different rates, the aggregate throughput of 
all n actual flows will still mimic the aggregate throughput of n ordinary TCP flows 
and so VPS flows as a group can still maintain TCP's fair bandwidth sharing property. 

On the other hand, each actual flow interfaces with a socket to receive data from 
the application for transmission. The actual flow implements the rest of the TCP 
functions, including buffering, data transmission, RTT estimation, timeout and 
retransmission. Note that when an actual flow receives an actual ACK from the 
receiver it will pass it to the VPS controller, which then performs ACK translation to 
generate virtual ACK(s) for processing by the virtual flows. This will be explained in 
detail in Chapter 4. 

To ease discussion we adopt the terminologies {[ actual | virtual" 
[new|old|duplicate] [packet|ACK]} to represent the packets and ACKs. Packets and 
ACKs from actual flows and virtual flows are labeled with actual and virtual 
respectively. Packet is equivalent to data packet or TCP segment. New packets have 
sequence number higher than the maximum sequence number sent so far; otherwise 
the packets are called old packets. On the other hand, new ACKs have ACK number 
higher than the sender's highest ACK number, duplicate ACKs have ACK number 
equal to the sender's highest ACK number, and old ACKs have ACK number smaller 
than the sender's highest ACK number. Different kinds of packets and ACKs are 
processed in different ways and the details will be explained in Chapter 4 and 5. 
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3.2 VPS Controller 
The VPS controller is the bridge between virtual flows and actual flows. It has two 
functions. First, it collects virtual packets from the virtual flows and then redistributes 
them to the actual flows according to the desired bandwidth ratios. For example, 
consider the case of two flows with bandwidth ratio of w\ :W2=1:2, i.e., flow 1 and flow 
2 are to receive 1/3 and 2/3 of the bottleneck bandwidth respectively. Then for every 
three virtual packets generated by the two virtual TCP flows {Vi,V2}, the VPS 
controller will redistribute one of them to actual flow Ai，and two of them to actual 
flow A2. In this way the two actual TCP flows will receive bandwidth according to 
their respective ratios. However there are considerable complications to this process 
and the details will be explained in Chapter 5. 

Second, the VPS controller keeps track of the mappings between virtual TCP 
segments generated by virtual flows and the resultant actual TCP segments transmitted 
by actual flows so that incoming actual ACKs can be translated back into the 
corresponding virtual ACKs for congestion control processing by the virtual flows. 
Specifically, every time the VPS controller distributes a virtual packet to an actual 
flow by substituting a virtual TCP segment with an actual TCP segment, it creates a 
packet substitution record (PSR) with fields 

P S R 全 { A , d , A s e q , V i d , V s e q , S } 

where Vid and Aid are the virtual flow ID and actual flow ID respectively; Vseq and Aseq 
are the sequence numbers of the virtual TCP segment generated and the actual TCP 
segment transmitted respectively; and S is the state of the record, which can be in one 
of four states: unacknowledged (U), received (R), lost (L), or buffered (B). A PSR's 
state is initialized to the unacknowledged state upon creation. If the actual packet is 
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determined to be lost (e.g., by receiving duplicate ACKs or 'holes' in SACK blocks 
[11]), the state will be marked as lost. When the ACK for the actual packet arrives, the 
state will be changed to received after the actual ACK is translated into an virtual 
ACK. However in some cases the ACK translation must be delayed to prevent 
triggering false fast retransmission at the virtual flows (see Section 4.4) and in such 
cases the state of the PSR will be changed to buffered. 

To ease discussion we use the notation V/[/'] to represent a virtual TCP segment 
generated by virtual flow i with virtual sequence number and A,[/] to represent an 
actual TCP segment transmitted by actual flow i with actual sequence number j. An 
ACK of V/[/] (or A/[/]) means all packets up to V/[/] (or A/[/]) inclusively are received 
successfully. For simplicity, TCP segments are considered to be of unit size so the 
sequence numbers for consecutive TCP segments are consecutive integers. 

A c 二 : Ai I Ai[1] 11 Ai[2] I I Ai[3] 11 • • • • 
丨 丨 I AJ1] I 丨 丨 I A.[2] • • • 

PSRs AJ1], II Ai[2]，II 八2[1]，II Ai[3]，11 A“4], 11 AJ2], • • • 
mheap VJ1],U || V,[1],U || V,[2],U || V,[3],U |[ VJ2],U || vJsi.U 

1 , 1 1 
I , I t , 
1 , 1 1 
l i t ： 
» I t 
l i t 1 , 1 1 

V I ^ I ^ V I I VI[1] I 丨 I VI[2] II VI[3] I 丨 丨 … • 

, 二 ： 、 I V,[1] I I V.[2] I I VJ3] • • • 

Fig. 5. Packet Substitution Records (PSRs) and the links to the PSR lists. 
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Actual flow A, . … A … A r… A … 
PSRlist AJ1] Ai[2] Ai[3] A,[4] • • • 

Actual flow A2 丨 丨 A m I I A m • • . 
PSRlist ： 丨 八21” I 丨 

PSRs AJ11, II Ai[2]，II AJ1], II Ai[3], 11 A,[4], 11 AJ2], • • • 
inheap [ VJ1],R | | V,[1],U |[ V,[2],U [| V,[3],U | | V,[2],U [| V,[3],U 

I VI[1] I 丨 I VI [ 2 ] II VI[3] I 丨 丨 … 

V 二 : � I V,[1] I I V.[2] II V,[3] • • • 

Fig. 6. A scenario where Ai[l] is acknowledged (acknowledged PSRs are shaded in 
color). 

Each PSR is linked to its associated virtual flow and actual flow upon creation. 
Fig. 5 illustrates the relation between PSRs and the virtual/actual flows. In this 
example, the application opens two TCP flows with the bandwidth ratios of w\ :w2=l :2. 
If we consider the actual TCP segments in groups of three, i.e., {Ai[l],Ai[2]，A2[l]}, 
{Ai[3],Ai[4],A2[2]}, etc., we can see how the VPS control distributes the virtual 
packets according to the bandwidth ratios. In each case, two of every three virtual 
packets are distributed to flow 2, and one to flow 1. 

Now when an actual ACK is received, the VPS controller will lookup the 
corresponding PSR entry and generate a virtual ACK for virtual flow Vid with virtual 
sequence number Vseq. In other words the VPS controller performs a reverse 
substitution to translate the received actual ACK back to a virtual ACK for processing 
by the corresponding virtual TCP flow's congestion control algorithm. Consider the 
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example in Fig. 6，when the ACK^ of Ai[l] is received the corresponding PSR is 
marked as received. Next, the VPS controller will generate a virtual ACK of Vi[l] for 
virtual flow Vi. Similarly, when the ACKs of Ai[2] and 八2[1] arrives one after 
another, the VPS will generate virtual ACKs of V2[l] and Vi[2] respectively. 

There is, however, one more complication - most of today's Internet hosts run a 
variant of TCP called Reno with the SACK option [11] enabled by default^ With the 
SACK option the ACK packet may also include additional acknowledgements on 
discontinuous ranges of sequence numbers. The VPS in this case will generate, as 
needed, separate virtual ACKs for the corresponding virtual flows. Note that SACK 
blocks are stored in an option field within the TCP header and due to the option field's 
size limit a TCP ACK can contain at most three SACK blocks [11]. However, virtual 
ACKs generated by the VPS controller are not limited by the option field size and thus 
the VPS controller will generate as many SACK blocks as needed during ACK 
translation, which is described in detail in the next chapter. In the rest of the thesis the 
SACK option is assumed to be always enabled for both VPS and ordinary TCP. 

1 The ACK number of the ACK of Ai[ l ] is 2, which is one unit larger than the highest continuously 
received sequence number and represents the next pursuing sequence number. 
2 According to the statistics [13], about 90% of the host in the Internet use Windows 98, 2000, XP and 
Linux as the operating system and all these operating systems enable the SACK option by default 
[14-16]. 
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Chapter 4 
A C K TRANSLATION 

The ACK translation process described in Section 3.2 is only the simplest scenario, in 
which all packets are received successfully and the ACKs arrive in the same order as 
the corresponding transmitted packets. However in case of fast retransmit and fast 
recovery (Section 4.1)，timeout (Section 4.2), and out of sequence delivery (Section 
4.3 and 4.4), VPS will need to perform additional processing to ensure proper ACK 
translation and to reduce the generation of unnecessary virtual duplicate ACKs. On the 
other hand, it is also possible for one actual ACK to result in the generation of multiple 
virtual ACKs. This may increase data transmission burstiness and Section 4.5 
discusses the maxburst mechanism to address the issue. Finally, Section 4.6 analyzes 
the memory overhead consumed by the PSRs and the computation complexity in ACK 
translation. 

4.1 Fast Retransmit and Fast 
Recovery 
Fig. 7 shows the partial state diagram for fast retransmit and fast recovery in TCP Reno 
with SACK. For simplicity, states and events not related to fast retransmit and fast 
recovery are omitted. When a flow receives three duplicate ACKs, it will enter the fast 
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retransmit and fast recovery state. First, it retransmits the packet indicated by the 
highest ACK sequence number Smax, irrespective of the congestion window and the 
receive window. Second, it sets the maximum sequence number sent, denoted by Ssent, 
as the exit condition of the fast recovery state, denoted by recover. Third, it halves the 
congestion window cwnd. Fourth, it computes a variable called pipe [29] which counts 
the amount of unacknowledged data from 

pipe=Ssent - Smax — amouiit of data acknowledged in the scoreboard (1) 
After the initialization, pipe will be increased whenever packets are sent and decreased 
whenever ACKs are received. The variable pipe together with cwnd acts to constraint 
data transmission during the fast recovery state — new or old packets can only be sent 
when pipe is smaller than cwnd. During the fast recovery state, old packets will first be 
retransmitted before sending any new packets. When the ACK number of received 
ACKs exceeds recover, the flow leaves the fast recovery state to return to the 
congestion avoidance state. 

Fig. 8 depicts the state diagram of VPS actual flows for fast retransmit and fast 
recovery. It is similar to TCP where it enters the fast retransmit state upon receiving 
three actual duplicate ACKs, sets the variable recover to mark the exit condition of the 
fast recovery state, retransmits the actual packet indicated by the highest ACK number 
of the actual flow, and exits the fast recovery state when the ACK number of the newly 
arrived actual ACK exceeds recover. However, since actual flows in VPS do not 
perform congestion control, they do not compute or maintain the variables pipe and 
cwnd as in ordinary TCP, except for triggering temporary suspension to be discussed in 
Section 5.2. 
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厂 � ACK number Recover J ACK rc^ 
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ACI^^^^^^ retransmit packet 1 

^ ^ ^ send packets Ny^ j 
r 7 / To send packets / 

/ Slow start / /increase pipe J 

Fig. Z Partial TCP state diagram for fast retransmit and fast recovery. 

1 ACK number Recover / . , / 
/ Congestion — — 二 ACK received / / avoidance / , , � . ^^ J ( J actual A CK am ves^^^^^ 3 ^ ^ ^ ^ 

duplicate ACKs . ^^T^^ACK number < recover 
j j j 广& without virtual packets / / Fast retransmit / _ J fast recovery / — controller / 
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3 actual ( •J ( J � ACK number <recover! 

duplicate ACKs^.^"^ retransmit actual packet Nv & with virtual packets 
from controller 丄 

f ^ send actual packets Ny^ y 
/ Slow start / To send packets 

pipe and cwnd are utilized for the temporary suspension of actual flows, see Chapter 5 for details. Fig. 8. State diagram of VPS actual flows for fast retransmit and fast recovery. 
f =gd=n / ACK 一一er J ACK received ] 
( j decrease pipe 7 

virtual ACK arrives —T 3 virtual ̂ S. 
duplicate ACKs - ( number <recover / / Fast retransmit / / 厂 & pipe humd / / compute recover,~7 V Fast recovery / / h'rtual / 帅e, cwnd i / / duplicate ACKs^^ , ^ CK number < recover retransmit virtual packet &pipe < cwnd / 
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Fig. 9 State d寧m ofVPS flows for fast r咖 _ and fast recovery. 
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Actual flow A, •… . A … •，, I~̂  — 
PSRlist Ai[1] II A,[2] I A,[3] II A44] Ai[5丨 A,16] A,[7] AJ8] ^ ^ • . . 

I I H I i 1 I 因 I I 變 • • • 
P严 Ai[1l, II Ai[2】，II ̂ [1], II AM II Ail4�,II A,[2], 11 A,[5], It AM || [̂3], 11 || A,[8], || A,[4], in heap V.tlJ.R VJ11.R •’!• V,[3].R V,[2].R V,[3).R V44],R V,[5],R V,[6],R V,[7],R VJ4],R vJsj.R • . • 

； I ； ； . 1 ； ； ； ： ； ‘ ^ ^ 
： I ； ： j ； ； 1 1 ； ； 

P~U_ ： I ： , ： 1 ； ； I i 1 I ^~ 丨 i i 
Virtual flow V • ： 乂 ； 1 

PSRllT Vi[1� 丨 VJ2] VJ3] V,[4] V,[5] V,[61 兄�7� ； ； ••• 

, 二 ： 、 r^n^ . • • 
Fig. 10. All packets are acknowledged except 八2[1] which is lost in the network. 
Acknowledged PSRs are shaded. The instants at which actual flow A2 and virtual flow Vi 
enter the fast retransmit and fast recovery state are labeled with circles. 

Fig. 9 depicts the state diagram of VPS virtual flows for fast retransmit and fast 
recovery. It behaves in exactly the same way as TCP，except that it processes virtual 
ACKs generated by the VPS controller rather than actual ACKs sent by the receivers, 
and it generates virtual packets to the VPS controller rather than sending actual 
packets to the network. 

Fig. 10 illustrates the operation of fast retransmit and fast recovery in VPS. The 
example assumes all packets are successfully received, except that A2[l] is lost. The 
receiver of 八2[1] will send back duplicate ACKs upon receiving A2[2]，A2[3] and so on 
until A2[1] is recovered. These duplicate ACKs will cause actual flow A2 to enter the 
fast retransmit and fast recovery state. 

Now consider actual flow Ai. After Ai[l] and Ai[3] are acknowledged, virtual 
flow Vi will have its virtual packets V][l] and Vi[3] acknowledged. However Vi[2] is 
not acknowledged as it is associated with the lost actual packet 八2[1]. In this case the 
VPS controller will generate a virtual duplicate ACK of Vi[l] with SACK {V,[3]}^ 
3 The notation SACK {V,[/]} is used to acknowledge V,{/]. The notation SACK {V,[/]-V;,[y]} is used to 
acknowledge all sequence numbers between V/[/] and V^[y] inclusively. The notation SACK 
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(except for cases to be discussed in Section 4.4). Similarly, upon receiving the ACK of 
Ai[5] and the ACK of Ai[6], the VPS controller will generate virtual duplicate ACKs 
ofVi [ l ] with SACK {Vi[3]-Vi[4]} and Vi[l] with SACK {Vi[3]-Vi[5]} respectively. 
As virtual flow Vi has now received three duplicate ACKs of Vi[l], it enters the fast 
retransmit and fast recovery state. As a result, the congestion window of virtual flow 
Vi is halved and the virtual packet Vi[2] is retransmitted. 

4.2 Timeout 
A timeout event occurs when a TCP sender does not receive the ACK of a transmitted 
packet within the retransmission timeout limit, denoted by RTO [21]. Fig. 11 depicts 
the partial state diagram for TCP timeout. After transiting to the timeout state, the flow 
sets the maximum sequence number sent Ssem as the exit condition of the slow start 
state, denoted by recover. Moreover, it resets the congestion window cwnd to 1，sets 
the variable t_seqno pointing to the next sequence number to send to the highest ACK 
number Smax, and doubles the current RTO. Furthermore, it clears the SACK 
scoreboard (i.e., zeroing all of the SACK bits) since the timeout might indicate that the 
receiver has reneged [11]. Finally it retransmits the packet indicated by the highest 
ACK number. 

{V,[/]-V;t[y], is used to acknowledge discrete ranges of sequence numbers between V,[/] 
and Vxly], and between Vpiq] and V;-[5] inclusively. In real TCP SACK implementation, SACK 
information is stored in multiple SACK blocks if necessary. Each SACK block has a head and a tail 
sequence number. All sequence numbers between the head (inclusive) and the tail (exclusive) sequence 
numbers are acknowledged. 
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Fig. 11. Partial TCP state diagram for timeout. 
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Fig. 12. Partial state diagram of VPS actual flows for timeout. 
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a v o i d a n c e J during timeout set recover, . cwnd, t segno — v 
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Fig. 13. Partial state diagram of VPS virtual flows for timeout. 
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Actual flow A, - .. . ^ … . … „ … 
PSRlist AJ1] Ai[2] Ai[3] A,[4] • • • 

Actual flow A2 丨 丨 A m 丨 丨 Ar21 • • • 
PSRlist ： ； � L I J ： 丨 � 

PSRs AJ1]. II M2], II AJ1], II A,[3], 11 A,[4], 11 AJ2], • • • 
inheap VJIj.R || V,[1].L V,[2].R V,[3].R | | VJ^l.U |[ V,[3],U 

I Vi[1] I 丨 I Vi[2] II Vi[3] I 丨 丨 … 

V 二 : V2 I V,[1] I I V.[2] II V,[3] • • • 

Fig. 14. A scenario where A][l], A�[3] and 八2[1] are acknowledged but A][2] is lost 
(acknowledged PSRs are marked by shaded color). 

Fig. 12 and 13 depict the state diagrams for timeout in VPS actual flows and 
virtual flows respectively. Actual flow operates similarly to TCP except that they do 
not set cwnd, as congestion control is performed by the virtual flows. A virtual flow 
sets recover, cwnd and t一seqno after transiting to the timeout state, and then 
retransmits the virtual packet indicated by the highest ACK number of the virtual flow. 
Note that virtual flow does not need to clear its scoreboard as that is done by the actual 
flows when resetting the corresponding PSRs to the unacknowledged state. Virtual 
flow also does not maintain the RTO (it is maintained by the actual flows) as RTT 
measurements, and thus timeouts, are meaningful only for actual packets. When an 
actual flow triggers timeout, the corresponding virtual flow in the PSR of the 
retransmitted packet will then be triggered into the timeout state as well. 

Fig. 14 illustrates the timeout event in VPS. Packets Ai[l] and 八2[1] are 
acknowledged directly and Ai[3] indirectly via the SACK{Ai[3]} block of duplicate 
ACK of Ai[l]. After ACK translation virtual packets Vi[l], Vi[2] and Vi[3] will be 
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acknowledged. Assume that Ai[2] is lost and there is no further ACK received. After 
the retransmission timeout of actual flow Ai expires, actual flow A! will trigger 
timeout, clearing Ai[3] from the scoreboard, i.e., resetting its state to unacknowledged. 
Also, the packet indicated by the highest ACK number (i.e., Ai[2]) will be 
retransmitted. The virtual packet indicated in the PSR of Ai [2] is V2[l], so virtual flow 
V2 will be triggered to timeout, which resets the congestion window to 1 and 
retransmits virtual packet V2[l]. 

4.3 Packet and ACK Reordering 
Due to multi-path routing [27] and local parallelism [28], packets and ACKs are 
sometimes reordered in the network, which means the order of arrival is different from 
that of the original packet transmission. The following explains and compares the 
handling of packet and ACK reordering in TCP and VPS. 

First consider the reordering of ACKs as illustrated in Fig. 15 and 16. When 
packets Ai[3] and Ai[4] arrive at the receiver, the receiver sends back the ACK of 
Ai[3] and A�[4] to the sender. However suppose the two ACKs are reordered inside 
the network such that the sender now receives the ACK of Ai [4] before the ACK of 
Ai[3]. In TCP, when it receives the ACK of Ai[4]4 it increases the congestion window 
by one unit^ and the highest ACK number by two units^. When the ACK of Ai[3] 
arrives at a later time, it is regarded as an old ACK (i.e., the ACK number of the 
incoming ACK is lower than the flow's highest ACK number) and is simply discarded. 

4 The ACK of Ai[4] covers the ACK ofAi[3]. 
5 The congestion window {cwnd) is increased by k in slow start and k/cwnd in congestion avoidance. If 
ACK counting [31] is used, k is equal to 1. If Appropriate Byte Counting (ABC) [19] is used, k is 
adjusted by the increase on the number of previously unacknowledged bytes with a upper bound. 
6 The highest ACK number increases by the amount of acknowledged data, which is 2 in this case. 
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Actual flow Ai @ P 
PSR list 卜 [ 1 ] 卜 2 ] I A,[3] rA,[4] • • • 

Actual flow 八2 丨 i [ a 丨 ： A�91 
PSR list i I 八2[1] I I • •“ 
P , Ai[1]’ II A,[2], II AJ1], II Ai[3]，II A,[4], 11 A,[2], . • • 

mheap VJ1],R V�h，R | VJ2],R V,[3],R V,!；红R VJSl.U 

丨 丨 丨 … 

, 二 : � I V,[1] I I V.[2] II V.[3] • • • 

Fig. 15. A scenario where all packets are received but the order of ACK arrival is different 
from that of packet transmissions. The order of ACK arrival is indicated in small circles and 
acknowledged PSRs are marked by shaded color. 

^ Ai[3] Ai[4]卜 ^ A,[3] II A J 4 ] -
Receiver 广 Internet A Sender ACK of If ACK of 1 r \y Jack of If ACK of 1 

一 Ai[4] H Ai[3] ^ 1 A,[3] W Ai[4]广 
Reordered 

Fig. 16. ACK reordering. 

Reordered 
^ Ai[4] II Ai[3] Y ^ Ai[3] II A,[4]-

Receiver 广 Internet A Sender 
ACK of 1 TACK of A,[2] 1 r fACK of y ACK of A,[2]! 

-�Ai[4] ||SACK{Ai[4]}广 Ai[4] ||SACK{Ai[4]}广 
Fig. 17. Packet reordering. 

In VPS, when it receives the ACK of Ai [4], it generates virtual ACK ofVi [3] and 
virtual ACK of V2P]. Both ACKs increase the congestion window and the highest 
ACK number of their respective virtual flow by one unit. When the ACK of Ai[3] 
arrives at a later time, it is also regarded as an old ACK and is discarded. In this 
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example, the aggregate increment of the congestion window upon the two concerned 
ACKs is two in VPS but one in TCP. However, if Ai[3] and Ai[4] are mapped to the 
same virtual flow, then only one virtual ACK will be generated and the behavior of 
VPS will be the same as TCP. Also if Appropriate Byte Counting [19] is used instead 
of ACK counting [31]，the discrepancies will also be eliminated. 

Next consider the reordering of packets as shown in Fig. 17. When A! [3] and 
Al [4] are reordered inside the network such that Ai [4] arrives at the receiver first, then 
the receiver sends back an ACK of Ai[2] with SACK {Ai[4]} to the sender. 
Afterwards, when Ai[3] arrives, the receiver sends back an ACK of Ai[4]. In TCP, 
when it receives the ACK of Ai[2] with SACK {Ai[4]}, it will increase the duplicate 
ACK counter by one and update the scoreboard to record that Ai [4] has been received. 
Both the congestion window and the highest ACK number remain unchanged. When 
the ACK of Al [4] arrives at a later time, the flow increases the congestion window by 
one unit and the highest ACK number by two units. In addition, the duplicate ACK 
counter is reset and the “hole” (i.e., Ai[3]) in the scoreboard is filled. 

In VPS, when it receives the ACK of Ai[2] with SACK {Ai[4]}, it changes the 
PSR state of Ai [3] from unacknowledged to lost and generates a virtual ACK of V2[2]. 
This ACK increases the congestion window and the highest ACK of virtual flow V2 by 
one unit. When the ACK of Ai[4] arrives later, it changes the PSR state of Ai[3] from 
lost to received and generates a virtual ACK of Vi[3]. This ACK also increases the 
congestion window and the highest ACK of virtual flow Vi by one unit. Thus the total 
increment of the congestion window caused by the two ACKs is two in VPS but one in 
TCP. However, if Ai[3] and Ai[4] are mapped to the same virtual flow, the first ACK 
generated will be a duplicate ACK which does not change the congestion window and 
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the highest ACK number, while the second new ACK will update the congestion 
window and the highest ACK number in exactly the same way as TCP. 

4.4 False Duplicate ACK 
Suppression 
In case multiple receivers have different RTTs to the sender the ACK translation 
process may generate many false duplicate ACKs, resulting in unnecessary fast 
retransmit and fast recovery in the virtual flows. Fig. 18 illustrates this scenario with 
two receivers, of which receiver 2 has shorter propagation delay (and thus RTT) than 
receiver 1. Assume the sender transmits actual packets in the order shown in Fig. 18. 
Now as receiver 2 has shorter RTT, actual packet A2[2] arrives at receiver 2 earlier 
than Al [3] and Ai [4]，which are both transmitted before A2[2]. Consequently, the ACK 
of A2[2] arrives at the sender earlier than the ACKs of Ai [3] and Ai [4] as shown in Fig. 
19. 

While this RTT heterogeneity does not affect TCP, it may result in the generation 
of false duplicate ACKs in VPS. For example, although there is neither actual packet 
lost nor actual packet reordering, the ACK of 八2[2] will nonetheless generates a virtual 
duplicate ACK of V2[l] with SACK {V2[3]}, i.e., a false duplicate ACK. As the RTT 
difference between actual flow Ai and actual flow A2 is likely to persist, similar false 
virtual duplicate ACKs will be continuously generated and thus incorrectly triggers 
fast retransmit and fast recovery in the virtual flows. 
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— - — ^ ^ — - — > X ) ( ( ( ( ^ 

( Internet V 八2[1] - AJ3] - A^[4] _ 八2[2] -Sender 
) 广 ） { \ J \ J \ s J J 

Receiver 2+ 八2[1]-八2[2] V J v J shorter propagation delay 
Fig. 18. The order of packet arrival at the receivers is different from that of packet 
transmission due to different propagation delays of the two receivers. 

Actual flow A, ^ ^ r.i f P A roi 斧 A r� i f ^ A 
PSR list Ai[1� Ai[2] Ai[3] A,[4] _ • • 

二 ， 丨 丨 ^ ^ 丨 丨 • • • 

PSRs Ai[1]，II Ai[2]，II 八2[1]，II Ai[3], 11 A,[4], 11 A,[2]. • • • 
in heap VJ1],R | | VJ1],R 11 Vi[2],R || V,[3],U | | V,[2],U || 

I VI[1] I 丨 I VI [ 2 ] II VI [ 3 ] I 丨 丨 … 

V2[1] I V.[2] II V,[3] • • • 

Fig. 19. A scenario where all packets are received but the order of ACK arrival is different 
from that of packet transmission. The order of ACK arrival is indicated in small circles and 
acknowledged PSRs are marked by shaded color. 

To suppress these unnecessary duplicate ACKs the VPS controller will 
distinguish between lost and unacknowledged actual packets when performing ACK 
translation. Virtual duplicate ACK will only be generated for lost actual packets but 
not unacknowledged actual packets. Consider the example in Fig. 19, when the ACK 
of A2[2] is received the VPS controller will not generate an ACK for V2[3] as V2[2] (or 
Ai[4]) is still in the unacknowledged state. Instead, the PSR state of 八2[2] is set to 
buffered. Subsequently when the ACK of Ai[4] arrives, the VPS controller will 
generate a virtual ACK of V2[2]，follow by the buffered virtual ACK of V2[3]. The 
PSR state of Ai[4] and A2[2] are then both set to received. 
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Fig. 20. A scenario where all packets are received except Ai[3] but the order of ACK 
arrival is different from that of packet transmission. The order of ACK arrival is indicated in 
small circles and acknowledged PSRs are marked by shaded color. 

Note that the above suppression algorithm does not affect true duplicate ACKs. 
Consider the example in Fig. 20, all packets are received except Ai[3] which is lost in 
the network. When the ACK of Ai[2] with SACK {Ai[4]} arrives, the VPS controller 
sets the PSR state of Ai[3] to lost. Subsequently when the ACK of Ai[2] with SACK 
{Ai[4]-Ai[5]} arrives, the VPS controller will not suppress the duplicate virtual ACK 
for Vi[3] as the corresponding actual packet Ai[3] has already been declared lost. 
Therefore duplicate virtual ACKs triggered by lost actual packets are not affected by 
the suppression algorithm. 

4.5 Maxburst 
In both ordinary TCP and VPS an ACK may trigger the transmission of multiple 
packets and in extreme cases, may increase the burstiness of the outgoing traffic. To 
limit the burstiness Floyd [24] proposed the Maxburst mechanism to limit the 
maximum number of data segments that can be transmitted in response to any given 
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ACK. This Maxburst mechanism is adopted in VPS, with a maximum burst size of 4 as 
used in the study by Venkata N. Padmanabhan et al [25:. 

4.6 Memory Overhead and 
Computation Complexity 
Compared to ordinary TCP, VPS incurs additional memory overhead to maintain the 
PSRs and additional computations to perform ACK translation. Each PSR contains the 
actual flow number, the actual packet sequence number, the virtual flow number, and 
the virtual packet sequence number. Assuming four bytes for each of these four 
numbers and allocate one byte each for the state and for reference counting, then a PSR 
entry consumes 18 bytes memory storage. The PSRs can be implemented using data 
structures dynamically allocated from the heap. Each PSR entry is referenced by one 
actual flow and one virtual flow. A PSR entry can be deallocated when both the highest 
ACK sequence numbers of the actual flow and the virtual flow exceeds the PSR's 
actual and virtual sequence numbers respectively. Thus the number of active PSRs is 
related to the number of unacknowledged packets, which in turn is bounded from 
above by the product of the maximum window size multiplied by the number of actual 
flows in the system. As the maximum window size is a constant, the maximum 
memory overhead is proportional to the number of actual flows and thus of 0(«), 
where n is the number of actual flows. 

In addition to memory overhead, ACK translation needs to be performed for 
every actual ACK received, and so its computation complexity will be of significance 
in practice. When an actual ACK arrives, the VPS controller scans through the actual 
PSR list to look for the PSR entry corresponding to the newly arrived ACK, till the 
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highest ACK number or the tail of the last SACK blocks. The typical size of a PSR list 
is the minimum of the flow's receive window and the congestion window, but the 
maximum size of a PSR list is bounded by the number of flows times the maximum 
size of the receive window. Since the maximum size of the receive window is a 
constant, the computation complexity of the scanning operation is of 0{n), where n is 
the number of flows. 

Therefore both worst-case memory overhead and computation complexity are of 
O⑷，implying good scalability of the VPS algorithm. The typical overhead and 
complexity will be even smaller in practice. For example, in a simulation with 3 VPS 
flows and 3 TCP flows, and using the maximum receive window of 128 packets, the 
cumulative percentage of the number of iterations of scanning operation for each 
actual ACK received is plotted in Fig. 21. Note that in 40% of the cases only 2 
iterations of scanning operation are needed to process an actual ACK. Moreover, 90% 
of the cases execute fewer than 20 iterations of scanning operation to process an actual 
ACK. 

After scanning the PSR list the VPS controller generates one or more virtual 
ACKs. A non-delayed ACK typically acknowledges one packet and so the VPS 
controller generates one virtual ACK from one actual ACK. However, it is possible for 
an ACK to acknowledge multiple packets and virtual ACKs may also be buffered (c.f. 
Section 4.4). In these cases the VPS controller may generate multiple virtual ACKs 
from one actual ACK received. Fig. 22 plots the cumulative percentage of the number 
of virtual ACKs generated for every actual ACK received. The results show that in 
99.7% of the cases one actual ACK translates into one virtual ACK, and in only 0.3% 
of the cases one actual ACK generates two virtual ACKs. 
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Fig. 21. Cumulative percentage of the number of iterations of scanning operation for every 
actual ACK. 
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Fig. 22. Cumulative percentage of the number of iterations of ACK generation operation 
for every actual ACK. 
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Chapter 5 
BANDWIDTH DIFFERENTIATION 

VPS achieves bandwidth differentiation by a controlled substitution of virtual packets 
generated by the virtual flows to actual packets transmitted by actual flows. The 
following chapters present the algorithms employed by the VPS controller in 
distributing virtual packets to actual flows, discuss some subtle complexities in 
emulating the behavior of TCP flows, and describe the exceptional cases when data 
transmission is limited by constraints other than the congestion window. 

5.1 Distribution of Virtual Packets 
A virtual/actual flow may generate two types of virtual/actual packets, namely 
virtual/actual new packets and virtual/actual old packets. New packets refer to newly 
transmitted TCP segments using new sequence numbers while old packets refer to 
retransmitted TCP segments using old sequence numbers. Given a virtual old packet 
the VPS controller will only substitute an actual old packet for retransmission, i.e., 
retransmission generated by the virtual flows triggers only retransmission in the actual 
flows. 

In contrast, a virtual new packet may trigger the transmission of either actual new 
packets or actual old packets. In the former case a new PSR entry will be created to 
record the mapping between the virtual new packet and the actual new packet for 
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subsequent ACK translation. The latter case occurs when the selected actual flow has 
retransmission pending and in this case the actual flow will first retransmit an actual 
old packet without consuming the virtual new packet, which will be reused in the next 
round of virtual packet distribution. 

To reduce the burstiness of outgoing traffic the VPS controller distributes virtual 
packets to the actual flows using a weighed random distribution algorithm. 
Specifically, virtual packets are distributed in rounds and given the 
application-specified bandwidth ratios W/'s, the VPS controller will select actual flow i 
in theyth-round with probability 

P ( 。 - 〜 ） ( 2 ) 

“广lAK’厂〜、 ( ) V̂ eK. 

where V.j = w.. j is the cumulative weight of actual flow i at the yth round and A. is 

the cumulative number of virtual new packets distributed to actual flow i. When 
distributing a virtual new packet, K is the set of flows that: (a) have new packets to 
send; (b) are not limited by the TCP receive window; and (c) are not in the temporary 
suspension state (Section 5.2). When distributing a virtual old packet, K is the set of 
flows that: (a) have old packets to retransmit, and (b) are not in the temporary 
suspension state. When 厂众“=Â ,VA：, i.e., all actual flows have been distributed their 

application-specified share of bandwidth, the VPS controller will begin a new round of 
virtual packet distribution. 
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5.2 Temporary Suspension of Actual 
Flows 
In TCP, when the network is congested and a packet is dropped in the network, the 
sender will receive duplicate ACKs and eventually trigger fast retransmit and fast 
recovery. During fast retransmit and fast recovery, TCP will halve the congestion 
window and compute the amount of unacknowledged data, denoted by the variable 
pipe, from (1) described in Section 4.1. The flow will decrease pipe upon receiving 
ACKs. Actual packets, new or old, can only be sent if pipe is smaller than the 
congestion window. When the flow has just entered the fast retransmit state, pipe is 
usually about twice the size of the congestion window. Thus it takes time to receive 
sufficient ACKs to decrease pipe to within the congestion window size, and during 
that time the flow is effectively suspended from transmission. This behavior helps 
alleviate network congestion by deferring retransmission to allow the network 
congestion to ease. 

In VPS however, an actual flow transmits packets via receiving virtual packets 
from the VPS controller and thus is not subject to the same suspension mechanism as 
described earlier. To simulate this behavior in VPS an actual flow upon entering the 
recovery state will use the congestion window and pipe? from the corresponding 
virtual flow recorded in the PSR of the retransmitted packet to simulate the suspension 
behavior. If the corresponding virtual flow has not entered the fast retransmit state, the 
actual flow will estimate the congestion window size in fast retransmit state (i.e., half 

7 The actual flow will get local copies of cwnd and pipe from the corresponding virtual flow rather than 
sharing the variables. Also the actual flow and the virtual flow modify the variables independently. 
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of the current congestion window) and the value of pipe (i.e., current maximum 
sequence number - current highest ACK number — current size of SACK scoreboard). 
Otherwise the actual congestion window size and pipe will be computed and used 
directly. Similar to the virtual flows, the actual flow will decrease pipe upon receiving 
valid ACKs and leave the suspension state to resume normal transmission once pipe is 
smaller than the congestion window. 

5.3 Receive Window Limit 
The VPS controller distributes virtual new packets among actual flows that are able to 
send new or old packets. However, if the amount of unacknowledged data exceeds the 
actual flow's receive window, then it cannot send any more new packets. When an 
actual flow has an application-specified ratio much larger than the rest of the flows or 
when the bandwidth capacity is very large, the actual flow may run into the receive 
window limit. In this case the affected flow will not consume any more virtual packets 
(until the receive window become available again) and the unused virtual packets will 
be distributed to the rest of the actual flows. As a result the realized bandwidth ratios 
may not conform to the specification {w/'s} exactly. A simple solution is to enable the 
TCP window scale option [20] to increase the size of the receive window. 

5.4 Limited Data Transmission 
On the other hand if the application does not have data to transmit for a particular 
actual flow, then the actual flow will not participate in virtual packet distribution by 
the VPS controller. Similar to the case of running into receive window limit, the 
unused virtual packets will then be distributed to the rest of the eligible actual flows. 
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Thus for flows that have data to sent their bandwidth ratios in a round will still be 

maintained by the VPS controller, and the actual flows together will still behave in a 

TCP-friendly manner. 
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Chapter 6 
PERFORMANCE EVALUATION 

This chapter evaluates the performance of VPS using simulations and compares it to 
the standard TCP Reno [5, 12] and the MulTCP [8], of which the latter also supports 
bandwidth differentiation. To ease description we will use the name VPS flows to refer 
to traffic flows using the proposed bandwidth differentiation protocol and TCP flows 
to refer to traffic flows using the standard TCP protocol. 

6.1 Performance Metric 
To facilitate comparison, we define a metric to quantify the protocols' accuracy in 
allocating bandwidth according to the specified ratios. Let there be N flows with 
application-specified ratios {w\,W2,...,wm}. Let {厂1,厂2,...,厂yv} be the actual throughput 
measured in the simulation. Then for each flow we compute its allocation accuracy, 
denoted by Ai, from 

' ^ R (3) 

where the numerator is the actual proportion of bandwidth received and the 
denominator is the proportion as specified by the bandwidth ratios. Therefore if the 
protocol performs perfectly the two will be the same and the allocation accuracy will 
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be equal to 1. A value smaller/larger than 1 implies that the actual bandwidth received 
is less/more than that specified by the bandwidth ratios. 

To evaluate the overall accuracy for all flows we compute the overall allocation 
accuracy, denoted by 3，from 

/ \9 
y ^ ^ f 

A=仏〜“ (4) 

which ranges from 0 to 1, with 1 indicating perfect allocation and lower values 
indicating larger deviations from the specified bandwidth ratios. 

To evaluate the protocols' bandwidth sharing property, we define a fairness ratio, 
denoted by F, from 

F = ^ (5) 
vy 

where the numerator is the aggregate bandwidth of all VPS flows and the denominator 
is the aggregate bandwidth in the same simulation setup but with the VPS flows 
replaced by ordinary TCP flows. In our simulation the number of VPS flows and 
standard TCP flows are the same so a value of F=\ implies perfect fair sharing of 
bandwidth with competing TCP flows, and higher/lower values of F indicates that the 
VPS flows receive more/less bandwidth than ordinary TCP flows. 

6.2 Simulation Setup 
The simulator is developed using the NS2 version 2.28 simulator [10] with the 
network topology shown in Fig. 22. There are three types of network traffic, including 
N W S flows, NReno TCP flows and a UDP flow generating exponential background 
traffic at rate equal to 10% of the core bottleneck bandwidth. All flows pass through 
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the same bottleneck with少 Mbps bandwidth, and delay of 5, 25, and 50ms (labeled as 
short, mid and long respectively in the figures). The bottleneck link adopts the droptail 
queueing discipline. All other links have 100Mbps bandwidth and delay of 1, 5, and 
10ms (again labeled as short, mid and long respectively in the figures). Unless 
specified otherwise, we use N=3 VPS flows with application-specified bandwidth 
ratios of {1,2, 3} and three competing TCP Reno flows. For both TCP Reno and VPS 
flows we assume the sender always has data to send, and all senders and receivers have 
the SACK option enabled. Each simulation run lasts for 500s of simulated time and 
each point of data is an average of 30 simulation runs. 

VPS C J 100Mbps 100Mbps ( J VPS—sinki 
1/5/10ms 1/5/10ms 

r ^ \ / ( ) V P S _ s i n � 
RenOi ( ) \ yMbps / 一 

5/25/50ms / X ^ ^ 
i ) ^ — — ( J Reno—sinki 

R e , C X / 
/ \ ( ) Reno_sink/^ 

UDP UDP_sink 
Fig. 23. The simulation topology. 

6.3 Performance over Different Time 
Scales 
In this simulation, we set the capacity of the core bottleneck to be 1Mbps and run the 
simulation for 1000 seconds. Fig. 24 and 25 show the throughput (averaged over 
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1-second intervals) against time for VPS and MulTCP flows. We observe that while 
there are short-term variations due to TCP's congestion control algorithm, all three 
VPS flows closely conform to the specified bandwidth ratio at all times, including 
periods of slow start and congestion avoidance. In comparison, the three MulTCP 
flows exhibit more throughput fluctuations, and in some cases a flow with higher 
bandwidth ratio (e.g., flow 3 at time 15s) may receive even less bandwidth than a flow 
with lower bandwidth ratio (e.g., flow 2). 

This observation is due to the different ways VPS and MulTCP achieves 
bandwidth differentiation. In particular, MulTCP flows operate independently, each 
with a modified congestion control algorithm to achieve different sending rates. Thus 
packet loss events will affect only the corresponding MulTCP flow, which will then 
reduce its transmission rate. The other MulTCP flows, not being affected by the packet 
loss event, will continue to transmit at their current rate and so in the shorter time scale 
their bandwidth ratios may deviate from the specifications. By contrast, in VPS a 
packet loss event will affect the generation of virtual packets in a virtual flow but the 
effect will be reflected to all actual flows as the virtual packets are first pooled from all 
virtual flows before redistributing to the actual flows according to the 
application-specified bandwidth ratios. 

Fig. 26 and 27 further compare the allocation accuracies for different time scales, 
i.e., the length of the averaging interval used in computing throughput. The results 
show that VPS flows achieve allocation accuracy close to 1 for all time scales, with 
coefficient of variation (CoV) close to zero. The minor deviations at short time scales 
(e.g., Is) are due to variations during fast retransmit and fast recovery. By contrast, 
MulTCP exhibits significantly lower allocation accuracies at short time scales and 
cannot match VPS even at a time scale of 100 seconds. The CoV is also substantially 
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higher than VPS in all time scales, suggesting larger deviations from the 
application-specified bandwidth ratios. 

In the same experiment we also measured the fairness ratio of VPS，MulTCP and 
TCP Reno with SACK, and plotted the results in Fig. 28. In computing the fairness 
ratio the numerator of (5) uses the timescale under consideration (i.e., Is, 2s, 5s, 10s, 
20s, 50s or 100s) to calculate the throughputs, while the denominator of (5) uses the 
duration of the simulation (i.e.，1000s) to calculate the throughputs. We observe that 
VPS flows achieve fairness ratios close to 1, suggesting that the protocol can maintain 
fair bandwidth sharing with ordinary TCP flows. In comparison, fair bandwidth 
sharing is not part of the MulTCP protocol design goal and thus it is substantially more 
aggressive than ordinary TCP flows. This is undesirable as ordinary TCP flows sharing 
the same network bottleneck with MulTCP will suffer from lower bandwidth. 

Fig. 29 plots the CoV of the fairness ratios. All three protocols show increased 
variation in fairness over shorter time scales. We conjecture that this is due to the 
short-term dynamics of TCP's congestion control algorithm in exploring the available 
network bandwidth and in reacting to short-term congestions triggered by packet loss. 
As all three protocols employ similar AIMD algorithm in congestion control they 
exhibit similar CoV in the fairness ratios. 
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Fig. 24. Throughput averaged over 1-second interval against time for VPS flows. 

X 10̂  
4 � 

f \ f ^ t ^ I MulTCP flow 1 
35- / \ \ \ / [ —^― MulTCP flow 2 
• j \ I \ 1 Y *MulTCP flow 3 , 

mJfm 
。.： 

nl 1 1 1 1 ‘ ^ 
0 5 10 15 20 25 30 Time Is 

Fig. 25. Throughput averaged over 1-second interval against time for MulTCP flows. 
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Fig. 30. Accuracy against bottleneck bandwidth. 

6.4 Performance over Different 
Bottleneck Bandwidth 
In this simulation, the capacity of the bottleneck link is varied from 1Mbps to 10Mbps 
to study the impact of the bottleneck bandwidth on the algorithms' performance. Fig. 
30 and 31 plot the allocation accuracy and fairness respectively for different 
bottleneck bandwidth settings. VPS performs consistently in both metrics over 
bottleneck link capacity from 1Mbps to 10Mbps. By contrast, MulTCP not only has 
lower allocation accuracy, but the accuracy also deteriorates further at lower 
bottleneck bandwidth (e.g., at 1Mbps). The fairness performance of both VPS and 
MulTCP are consistent across the range of bottleneck bandwidth, with VPS similar to 
ordinary TCP and MulTCP considerably more aggressive than ordinary TCP. 
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Fig. 31. Fairness against bottleneck bandwidth. 

6.5 Performance over Different 
Application-specified Ratios 
In another experiment, we vary the bandwidth ratios to investigate the protocols' 
performance when the bandwidth ratios are wider apart. We define a ratio differential, 
denoted by d, to set the bandwidth ratio for flow i to equal to wr\+d(i-\), where i=\, 2 
or 3 and d varies from 1 to 10 in the simulation. Thus larger values of d will widen the 
difference of bandwidth ratios between successive flows. 

Fig. 32 to 35 plot the allocation accuracy and fairness for VPS and MulTCP with 
bottleneck bandwidth of 1Mbps and 10Mbps. Again, the VPS flows perform 
consistently over the entire parameter range with negligible variations in both 
allocation accuracy and fairness. By contrast, the allocation accuracy of MulTCP 
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decreases with wider bandwidth ratios as the higher-ratio MulTCP flows generate 
more bursty traffic, thus leading to more frequent packet loss. Also MulTCP becomes 
increasing more aggressive with wider bandwidth ratios as the higher-ratio MulTCP 
flows increase their congestion window at increasingly faster rates proportional to the 
bandwidth ratios. 
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Fig. 32. Accuracy against ratio difference with bottleneck bandwidth of 1Mbps. 
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Fig. 33. Accuracy against ratio difference with bottleneck bandwidth of 10Mbps. 
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Fig. 34. Fairness against ratio difference with bottleneck bandwidth of 1Mbps. 
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Fig. 35. Fairness against ratio difference with bottleneck bandwidth of 10Mbps. 
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Fig. 36. Accuracy against number of flows with bottleneck bandwidth of 1Mbps. 
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6.6 Performance over Different 
Number of Flows 
To investigate the protocols' scalability to more traffic flows, we re-run the 
experiments by varying the number of flows from 1 to 10 and plot the results in Fig. 36 
to 39 showing the allocation accuracy and fairness of VPS and MulTCP with 
bottleneck bandwidth of 1Mbps and 10Mbps. In terms of allocation accuracy，VPS 
performs consistently in all cases while MulTCP's allocation accuracy decreases for 
more number of flows when the bottleneck bandwidth is low (1Mbps). For fairness 
ratio, VPS flows exhibit small increases in the fairness ratio at larger number of flows. 
In contrast, MulTCP flows exhibit significant increases in the fairness ratio when the 
number of flows increases from 1 to 3. 
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Fig. 37. Accuracy against number of flows with bottleneck bandwidth of 10Mbps. 
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6.7 Heterogeneous Receivers 
The previous simulations include setups with short, medium, as well as long RTTs. 
Nonetheless the RTT is the same for all receivers in the simulation. To investigate the 
effect of receivers with different RTTs, we conducted another set of simulations by 
setting the propagation delay of the last link to the receivers to where x=l, 5 

or 10 for short, intermediate and long RTT respectively; i=\, 2 or 3 for flow 1, 2 or 3; 
and denotes the additional propagation delay factor and varies from 1 to 10 ms. 

Fig. 40 to 42 plot the allocation accuracy versus the extra delay factor y for 
bottleneck bandwidths of 1, 5, and 10Mbps respectively. As expected VPS can achieve 
an allocation accuracy of 1 in all three cases. Fig. 43 to 45 plots the fairness ratio 
versus the extra delay factor y for bottleneck bandwidths of 1, 5, and 10Mbps 
respectively. The results show that receivers of heterogeneous RTT do have a negative 
impact on the fairness ratio of VPS. In particular, VPS flows become less aggressive 
under heterogeneous RTTs. We conjecture that this is due increases in triggering false 
retransmit in the virtual flows as the RTT differentials continually result in virtual 
packets arriving out of order. Further investigation will be needed to pinpoint the cause 
and to develop algorithms to compensate for RTT heterogeneity. 
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Fig. 40. Accuracy against extra delay factor with bottleneck bandwidth of 1Mbps. 
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Fig. 41. Accuracy against extra delay factor with bottleneck bandwidth of 5Mbps. 
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Chapter 7 
CONCLUSIONS AND FUTURE WORK 

This work presented a Virtual Packet Substitution (VPS) algorithm for the allocation 
of bandwidth among TCP flows originating from the same sender passing through the 
same network bottleneck to multiple receivers. As the VPS algorithm assigns 
transmission quota strictly according to the specified bandwidth ratios, it can achieve 
perfect bandwidth allocation accuracy over time scales as short as one second. 
Moreover, VPS can maintain excellent fairness with competing TCP flows by 
computing the transmission quota from virtual flows running the standard TCP Reno 
congestion control algorithm. The capability to allocate non-uniform bandwidth 
between TCP flows opens many new possibilities for network services. For example, a 
service operator may use bandwidth differentiation to provide different quality of 
service to users of different subscription levels (i.e. more bandwidth for premium 
subscribers). A media server may dynamically adjust the bandwidth ratios to react to 
quality feedbacks from clients, and so on. This work merely introduces a new tool and 
more works are needed to explore the applications and optimization of the newfound 
tool to various network applications and services. 
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