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Abstract 

A MAG-^iIMU which is based on MEMS gyroscopes, accelerometers, and 
magnetometers is developed for real-time estimation of human hand motions. 
Appropriate filtering, transformation and sensor fusion techniques are combined in the 
Ubiquitous Digital Writing Instrument to record handwriting on any surface. In this 
thesis, we discuss the design of an extended Kalman filter (EKF) based on 
MAG-jilMU (Micro Inertial Measurement Unit with Magnetometers) for real-time 
attitude tracking and the implement to record handwriting. In classical IMU 
applications, the Kalman filter utilizes the gyroscope propagation for transient updates 
and correction by reference field sensors, such as gravity sensors, magnetometers or 
star trackers. A process model is derived to separate sensor bias and to minimize 
wide-band noise. The attitude calculation is based on quaternion which, when 
compared to Euler angles, has no singularity problem. According to this filter 
framework, a Complementary Attitude EKF is designed by integrating the 
measurement updates from accelerometers and magnetometers alternatively, in order 
to compensate the attitude observation error due to sensor limitations, such as inertial 
accelerations, magnetic field distortion, and attitude ambiguity along each reference 
field. Testing with synthetic data and actual sensor data proved the filter will rapidly 
converge and accurately track the rigid-body attitude. The pen-tip trajectory in space 
can be calculated in real-time based on the real-time attitude estimation. Our goal is to 
implement this algorithm for motion recognition of a 3D ubiquitous digital pen. 
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基於MEMS慣性數碼筆的姿態補償技術 

羅一倫 

香港中文大學 

自動化與電腦輔助工程學識程 

哲學碩士論文 

2006年9月 

摘要 

採用微米工藝的微機電系統(MEMS )技術，結合了機械感測結構與微電子技術， 

使得高精度感測器的成本降低，尺寸微型化。本文提出了集成磁力計以及MEMS 
加速度計、陀螺儀的捷連式微型慣性測量單元（MAG-^iIMU)的設計方案，應 

用於實時測量、記錄三維運動信息。通過多感測器融合技術，無源慣性制導技術， 

數字濾波算法，基於MAG卞IMU的新型數碼書寫系統(Ubiquitous Digital Writing 
Instrument)能夠實時地跟蹤、記錄三維運動筆跡，而無需額外感測器的輔助。 

本文硏習了剛體的三維姿態測量方法，及其對於空間位置跟蹤的應用，並設計了 

用於實時姿態跟蹤的擴展卡爾曼爐波器（Extended Kalman filter) °擴展卡爾曼爐 

波器是一種針對隨機雜訊的高效自回歸非線性數字濾波器。通過預測過程（Time 
update)中對陀螺儀測得的角速度進行姿態積分；以及在更新過程（Measurement 
update)中，採用磁力計測得的地磁場為參考進行姿態修正’濾波器能夠即時地 

預測並分離出陀螺儀的輸出偏壓，爐除隨機雜訊，從而得出空間姿態的最優估 

計。濾波器的姿態運算全部採用四元數（Quaternion)進行，避免了採用歐拉角 

運算中的奇異問題。更新過程的數學模型亦適用於重力加速度計、星象跟蹤儀及 

其組合反饋，且無需四元數的歸一化運算。基於此濾：波器的數學模型，本文提出 

了互補型姿態爐波器即在更新過程中交替地採用加速度計和磁力計作為姿態測 

量反饋，用以相互補償各自沿重力場和磁場方向的姿態盲区；測得磁場中的電磁 

幹擾；以及慣性加速度對重力場姿態測量的誤差。仿真模擬及書寫實驗數據驗證 

本演算法能夠快速、穩定、實時地跟縱數碼筆的空間姿態，完成對人手書寫動作 

的數碼記錄。 
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1. Introduction 

Three-dimensional position tracking can be directly obtained successfully by some 

existing technologies. For instance, the Global Positioning System (GPS) is widely 

used in land surveying, navigation and unmanned vehicle control [2]. Supported by 

the timing signals broadcasted from the networked GPS satellites, the GPS receiver 

can accurately determine its position in longitude, latitude and altitude in any weather 

and anywhere on earth. In Wide-Area Augmentation System (WAAS) since August 

2000，the accuracy of GPS position tracking is improved within 2 meters [3]. The 

precision can be further enhanced to about 1 cm by Differential GPS (DGPS) [4]. 

However, precise GPS receivers are bulky in size and not mobile. For example, one 

could not hold such receiver to track hand positions for handwriting recording. 

Moreover, indoor tracking applications may be very difficult to realize due to 

weakness of GPS signals. 

On the other hand, ultrasonic and infrared positioning systems with high accuracy 

have been developed for tracking handwriting motions, such as the Mimio [5] and 

e-Beam systems [6]. The basic operating principle of these systems is that, when two 

transceivers are fixed on white board as the position reference and broadcast 

ultrasonic or infrared timing signals, the two transceivers can measure the two 

distances to the reflector respectively by detecting the phase difference after receiving 

the echo wave from the reflector on the pen-tip,. This source positioning technology is 

high in accuracy and quick in response. However, the system can not track multiple 

objects simultaneously and it requires a set of receivers and a transceiver to operate 

which is not convenient for users. 

In this project, our overall goal is to develop a system to track handwriting motions 

without the need of wave sources such as ultrasonic or infrared signals. In sourceless 

navigation technology, such as inertial kinematics theory, accurate attitude is 

fundamental to determine and to keep track of the rigid-body position in space. Due to 

nonlinearity in the system dynamic equations, bias error and random walk noise from 

attitude sensors will be accumulated and magnified leading to nonlinear distortions in 

position tracking. 
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Attitude tracking is widely used in navigation, robotics, and virtual reality. Classically, 

the problem of distortions in position tracking is addressed by the Attitude Heading 

Reference System (AHRS) [7]，[8]. The AHRS utilizes gyroscope propagation for 

transient updates and correction by reference field sensors. However, classically, the 

performance is ensured by extremely accurate sensors and hardware filters. Due to its 

expensive cost and large system size, the AHRS has been limited in applications, 

especially for mobile human position tracking applications. 

With MEMS sensing technology, the inertial sensors could be built with low cost and 

small sizes. However, they suffer in accuracy when compared with bulkier sensors. 

Nevertheless, new reliable attitude tracking systems have been developed based on 

low cost gyroscope sensors and the Global Positioning System (GPS). For feedback 

correction, Euler angles are derived from GPS to represent spatial rotation and a 

Kalman filter is implemented to fuse with the attitude propagation. But GPS signals 

are not available for indoor applications and the GPS attitude has resolution limit for 

handwriting application [9]. 

For static applications such as the Unmanned Ground Vehicles (UGV) control [10], 

the MEMS accelerometers work reliable as gravity sensors. Euler angles can be 

derived directly [11]. However, during a dynamical situation, the accelerometer 

measurements for the gravitational accelerations will be interfered with the inertial 

accelerations, which then cannot be trusted for attitude. Further, the pitch attitude 

along the gravity axis cannot be determined. 

Magnetometers experience no such crosstalk disturbance in both situations. However, 

following the same approach, attitude ambiguity occurs along the magnetic field 

direction and Euler angles cannot be derived directly. Furthermore, the Earth magnetic 

field is overlapped by random noise from electromagnetic interference (EMI). 

A Ubiquitous Digital Writing Instrument has been developed by our group to capture 

and record human handwriting or drawing motions in real-time based on a MEMS 

Micro Inertial Measurement Unit (|iIMU) [1]. However, position tracking using this 

jilMU is not accurate due to sensor measurement noise and drifts. 

Thus, an extended Kalman filter is designed to improve system measurement 
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accuracy of an integrated gyroscopes and magnetometers device (MAG-|aIMU) [12]. 

For the digital writing instrument application, the MAG-|iIMU is affixed on a 

commercially available marker. During input hand motions, the filter tracks the 

real-time attitude of the pen with sensor bias separation and sensor random noise 

minimization. The attitude calculation is totally based on quaternion which computes 

faster and has no singularity problem compared to Euler angles. This filter also 

applies to other reference field sensors for feedback, such as accelerometers or star 

trackers. 

Based on this filter structure, a complementary extended Kalman filter for attitude is 

proposed to combine the accelerometers and magnetometers in the measurement 

update process. During the pause phase in handwriting, the complementary filter 

utilizes the accelerometers as gravity tilter for attitude reference feedback. During the 

writing phase, the measurement model switches to the magnetometers to avoid 

attitude error due to the inertial accelerations in gravity sensor, by assuming the 

magnetic field distortion is tolerable within one stroke. This measurement mixture can 

compensate attitude ambiguity along the reference field direction for each other and 

rectify electromagnetic inference in Earth magnetic field. 

1.1. Organization 

The remaining chapters of the dissertation are organized as follow. In Chapter 2，the 

design of the MAG-|aIMU system is introduced, including the hardware structure and 

software architecture. Chapter 3 and Chapter 4 describe the kinematics models of 

attitude determination and inertial position tracking. Chapter 5 reviews the details of 

the Kalman filter algorithm in optimization model and recursion framework. Chapter 

6 introduces the extended Kalman filter as its extension in nonlinear problem. We will 

describe the design of the quatemion-based attitude extended Kalman filter utilizing 

magnetometers feedback in Chapter 7. Based on the error model for state bias, the 

system plant can be improved to estimate and separate the bias drift. Simulation 

examples and experiment results will be discussed in Chapter 8. The Complementary 

Attitude EKF in measurement update process is proposed to improve handwriting 

capture performance by precise attitude. Chapter 9 presents the design of an unscented 

Kalman filter for attitude tracking in quaternion, which is the future work for research. 
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Simulation results demonstrate the superiority of unscented Kalman filter in accuracy 

and response time compared to the extended Kalman filter in nonlinear estimation. 

Finally, we present conclusions and proposed future improvements in Chapter 10. 
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2. Architecture of MAG-|LiIMU 

2.1. Hardware for Attitude Filter 

Figure 2.1 illustrates the block diagram of a wireless MAG-|iIMU with the real-time 

attitude filter system. The system can be divided into two parts. The first part is the 

hardware for the wireless sensing unit. The other part is the software for data access 

and 3D rotation sensing algorithms. 

1 3-D 3-D 3-D i 
\ Magnetometers Gyroscopes Accelerometers ; 

i „ _ f 7 T [w；.,w，，wjl̂  V^ \ 
！ Set/Reset Z � 广 , , l 
丨 — j l i x l � Y i 
] I 1 1 ” ” ” I 
I Set/Reset | ; 
； Module "̂"“ Micro Controller Bluetooth I 
i (ATmega32L) Module 1 
I MAG-|LIIMU 1 

Attitude ^ Extended Kalman Filter � , 
Sensor Bias < Computer, PDA, Cell phone � 

Figure 2.1: Wireless MAG-jxIMU block diagram 

The MAG-|LIIMU is developed for a wireless digital writing instrument and used to 

record human handwriting. The MAG卞IMU is a hybrid sensing system with inertial 

sensors and magnetometers. The '|iIMU' integrates the 3D accelerometers [13] and 

3D gyroscopes [14] with strapdown installation [1]. The 3D magnetometers, 'MAG' 

sensors，are added to measure the Earth magnetic field [15], [16], [17]. The sensor 

unit is affixed on a commercially available marker to measure the inertial and 

magnetic information in the pen's body frame. 

The output signals of the accelerometers \Ax, M, ^z] and the gyroscopes [cox, oiy, ^z], 

which are the body frame accelerations and the roll, pitch, yaw angular rates, 

respectively, are measured directly with an Atmega32L A/D converter microcontroller 
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[18]，[19]. The serial Bluetooth transceiver is implemented via a US ART connection 

with the MCU for wireless communications [20], [21]. The serial USB transceiver is 

integrated for transfer backup and hardware development [22]. The digital sample rate 

of the sensor unit is 200 Hz and the transmit baud rate is 57.6 Kbps via Bluetooth 

wireless connection, which ensures rapid response to human handwriting. 

Magnetic Sensor 

^ I ^ ^ ^ H p ^ F \ Gyroscopes 
Magnetic Sensor/ ^^^^^^ 

56x23xl5mm 

Figure 2.2: The Prototype of the MAG-^iIMU with Bluetooth Module 

Figure 2.2 shows the MAG-|iIMU version 1.1 with strapdown gyroscopes and 

magnetometers for attitude tracking test. The sensor system utilizes four-layer printed 

circuit board techniques for noise reduction. The dimensions are within 56x23x15mm. ’ ^ ^ ； ’ 

一 鋭 减 齢 M C U ^ P ^ g — t ， ： 

MAG-fllMU 65x24xl5mm 

Figure 2.3: MAG-|liIMU version 1.2 for Digital Writing Instrument application 

Figure 2.3 demonstrates the MAG-|iIMU version 1.2 combining accelerometers for 
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handwriting experiment. The sampling rate for nine-channel inertial and attitude 

sensors is 200 Hz. The dimensions of sensor unit are within 65x24x15mm. 

2.2. Handwriting Recording for a Digital Writing Instrument 

Figure 2.4 illustrates the MAG-|iIMU sensor structure of the digital writing system 

for position tracking. 

According to the strapdown kinematics theory [23], the body frame accelerations are 

transformed to the Earth frame by a Direct Cosine Matrix (DCM). After compensating 

for the gravitational and rotational accelerations, the translation accelerations integrate 

into 3D trajectories in space. Thus any 2D human handwriting is recorded in real time 

if the pen touches the white board plane. 

一 一 — » 

\ — ^IMU 一 A Rotation�� roll，� pitch，^ pitch，乙) （2.2.1 ) 

f ^=DCM{q) lAf , -G (2.2.2) 

Pe = W K (2 .2 .3) 

•‘ V 

Where j尉J； are the body frame accelerations: [Ax, Ay, Az]. q is the quaternion 

representing the pen attitude. G is the gravity vector: [0,0-g^] • 

謹 ； 遍 

X : / Y / h / 

Figure 2.4: The MAG-|liIMU System Structure for a wireless digital writing instrument 
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According to the kinematics equations, the accelerometers are design to mount as 

close to the pen-tip for more sensitivity for handwriting motion and depression for the 

rotational accelerations. The magnetometers are fixed on the pen bottom to reduce 

magnetic field distortion effect by the metal white board. 
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3. Inertial Tracking for Handwriting 

3.1. Spatial Descriptions and Transformations 

In order to record the human handwriting trajectory in real time, the position 

representation for the pen-tip and eraser center has the requirement for precision and 

consistency. We establish the writing surface as the universe coordinate system to 

which everything we infer and deduct can be referenced. According to the 

handwriting conventions, the Earth coordinate system, or the Earth frame is the 

preferred universe coordinate system for our research. We will describe all the 

position and orientations with respect to the Earth coordinate system or with respect to 

other Cartesian coordinate systems which are defined relative to the universe system. 

Consider the pen and the eraser as rigid body in space, either part of the digital writing 

system will move relative to the other. Assume there exits a Cartesian coordinate 

system or frame {B}, ^0-UVW , rigidly attached to the tracking target., the basic 

problem is to describe the position and orientation of the triad with respect to 

the reference coordinate system, the Earth frame. 

3.1.1. Vector Description and Position of a Frame 

{ B } 个 、 、 、 、 、 

^ Y ���� P 
、、、 

W “ / ] 
P. / i 

w / ； 

. J c H 
广 、 、 

u ^ 

Figure 3.1: Position vector representation in Cascadian coordinate system 

The body-attached coordinate system, or the body frame consists of the right handed 
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triad M,v, w of unit vectors orthogonal to each other, such that, 

uxv = w (3.1.1) 

A vector in a three-dimensional space, p ^SR^ is described by projecting the vector 

onto the corresponding unit axis of the reference coordinate system. 

P'U 

Pb + + = = P'U (3 .1.2) 
p. w 

In digital pen application, the vector p could be acceleration, velocity, angular rate, 

and position in the three-dimensional space. 

Thus the position vector of the body frame m,v,w can be derived by representing the 

coordinate origin in respect of the Earth frame. 

3.1.2. Coordinate Transformation and Orientation of a Frame 

Because the target for observation may rotate with respect to the Earth frame, the 

position vector is not enough to completely describe the body frame and the vectors to 

be referenced. For example, if the position vector p ^ in Figure 3.3 is known, which 

locates directly between the writing frame and the sensor unit in the pen, the pen-tip 

position still can not be determined. 

On the other hand, the same vector is required to be expressed with respect to 

different coordinate system for the corresponding target object. The description of a 

vector is different and has many alternatives. In digital pen application, the sensor unit 

is rigidly affixed on the pen body. Thus the inertial measurement is with respect to the 

body frame which is rotating along with the writing motion. However, the writing 

trajectory for recording is on a fixed plane surface which is defined as the Earth frame 

before. 

Thus a mapping for coordinate transformation is required to represent a vector from 

one frame to another, which is very useful when the vector with respect to the 
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destination frame is not observable. 

Figure 3.2 below demonstrates a specific example for the coordinate transformation. 

/ 
V / u 

v 二 I 

Figure 3.2: Vector representations W.R.T different reference frames by coordinate transform, which 

can be considered as the reverse process for vector rotation. 

The orientation of the body is achieved by a description of the coordinate system {B} 

relative to {£}. 

Define the XYZ as the Earth frame (the reference frame) and the ^ O ' - u v w 

as the body frame (the sensor frame). Suppose the observation p^ W.R.T. the body 

frame is measured as [w, v, w]l, the vector p^ W.R.T the Earth frame: [x, y, can be 

acquired by projection along the orthogonal axis of x , y j correspondingly. 

The coordinate transformation is obtained by matrix dot product for vector projection, 

Pe= y = y-pB = yu y^ y . ^ (3.1.3) 

- z L [^-PB] k Zv z j w 丄 

Where R^ is the rotation matrix from the body frame to the Earth frame, 

^u v̂ ^w 

= v̂ (3.1.4) 

And are the unit vectors representing the X, Y, Z axis W.R.T. the body frame 
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M,v,>v, such that ^ = 

According to the definition of a coordinate system, the x,y,z are unit vectors. As a 

result, 

|3̂，无| = 3^3? = + 太 ” 2 二 1 (3.1.5) 

And X, y, z are orthogonal to each other, 

= + 太 vVv+Xŵ M̂  =0 ( 3 . 1 . 6 ) 

Thus, according to Eq. ( 3.1.5 ) and Eq. ( 3.1.6 )，the rotation matrix R^ is a real 

orthogonal matrix. The square product of R^ is an identity matrix I shown below: 

X'X x-y x-z 
R ^ R F = Y - X Y - Y Y - Z = / ( 3 . 1 . 7 ) 

z -x z-y z 'Z 

Thus, Rf�， the inverse of matrix i^f，which represents the orientation, or coordinate 

transform from the Earth frame back to the body frame, equals to the matrix transpose 

of itself. 

P S = R F P E = R L P E ( 3 . 1 . 8 ) 

Where, R 卜 R 厂 、 ( 3 . 1 . 9 ) 

3.1.3. Kinematics for Digital Writing Instruments 

The location of a body frame coordinate system can be specified consisting of a 

position vector pf，pf G ^^ which locates its origin relative to that of the reference 

frame, and a rotation matrix R � f o r the body orientation, as shown in the Figure 3.3 

below [24], [25]. 
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{B] = {pf,Rl] (3.1.10) 

Once the body frame coordinate system is established, we can locate any point in the 

three dimensional space with a 3x1 position vector p 

p 7 = P 7 ' + P E ' (3.1.11) 

In digital pen application, the position vector W.R.T. the Earth frame, which is not 

directly observable, can be computed from the body frame sensor measurement and 

mapping by the rotation matrix by coordinate transformation: 

p f - p f + R l P s ' (3.1.12) 

Figure 3.3: Position description for a rigid-body object in space using body-attached coordinate 
system. 

The inertial information for motion sensors can be derived by differentiation of Eq. 

(3.1.12). 

Vi -Ve ^KVb ^ n w (3.1.13) 

Where A ! = — [ x , y , z Y = [ x , y , i f 二而x[je，_^，if = c d x R l , (3.1.14) 
dt 

—X = cd^xx (3.1.15) 
dt 

= (3.1.16) 
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d ^ ^ ^ 
— Z ^ c o x z (3.1.17) 
dt 

The differentiation of x,y,z denotes the changing rate for the direction of the 

corresponding coordinate axis by cross product. And cô  are the angular rates 

about the X, 7, Z axis with respect to the body frame, respectively. 

The absolute velocity of p in the Earth coordinate system is derived shown blow, 

v f ^ R p t ' (3.1.18) 

v f = v r ' + ^ x p f ( 3 . 1 . 1 9 ) 

Where v^^^ is the relative velocity of p W.R.T.^O'-uvw , represented W.R.T. 

Y^O-XYZ. 

The absolute acceleration of p in the Earth coordinate system is, 

= ^ v , + R ^ } (3.1.20) 
at at 

Where, dt ， (3.1.21) 

=a X pf + 而 X R 冗P p�/ ) 

and d is the angular acceleration. 

And, I 嗽 ？ } = 昨 广 ( 3.1.22 ) 
at 

Thus, the motion of the digital pen consists of the translation and the rotation. In order 

to record the pen tip position along to the human hand motion, the kinematics 

description of a rigid body include the translation acce lera t ion :^ = — v ^ " a n d 
dt 

rotation acceleration: a°/^^. 

+ 6 ) x ( ( y x p f ) + + R l r , ' ' ( 3.1.23 ) 

14 



where ^ = <wx v^^^ denote the relative velocity between the particle and rotation 

system with respect to the earth frame. 

L e t fl, = « X ( 3 . 1 . 2 4 ) 

is the tangential acceleration for the rate of change of the tangential speed, which 

is in the same direction of velocity in rotation frame. 

A„ =而X(而X岁《尸） ( 3 . 1 . 2 5 ) 

is the normal acceleration for the centrifugal force, which is tangential to the 

rotation cycle. 

FLC = 2 A ) X V F ^ ( 3 . 1 . 2 6 ) 

a^ is the Coriolis acceleration for the relative motion between the particle and the 

rotating body. 

- d E 二 o�P (3-1-27) 

df̂  stands for the relative acceleration between the particle and the rotating body. 

In digital pen application, the distance between the pen tip and sensor unit is fixed. 

Thus both the a^ and a尺 equal to zero. 

In general, the rotation acceleration is combined in tangential and normal direction, 

—.00* —' .— a^ /J 二 
E R ' ’ ( 3 . 1 . 2 8 ) 

=dx pf +a>x(3x 

Figure 3.4 below demonstrate the rotation accelerations and the direction of each 

component described in Eq. ( 3.1.23 ) to Eq. ( 3.1.27 ). A round table in X-7 plane is 

rotating along the Z axis about the table origin. A rectangular object is moving away 

from the table origin with velocity v^^^ in the blue arrow direction. The four 

components of acceleration caused by rotation are in different direction according to 
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the definition and cross product rule. The 石,and ，also 石� a n d Ur are 

orthogonal to each other. 

r 

广 4 、 
/ a / n 

Figure 3.4: Rotational accelerations of rigid body in space 

3.1.4. Vector Rotation 

The coordinate transform is obtained by projecting the vector after the current frame 

is rotated to the reference frame. An alternative interpretation is that the vector is 

rotated in the counter direction when represented in the current frame. Similarly, in 

one coordinate system, the vector rotation can be specified by vector description 

introduced before, with respect to the coordinated system counter rotated. 

As a result, the vector rotation can be achieved by rotation matrix in the same form 

defined by Eq. ( 3.1.3 )，in stead of the interpretation for rotation for current frame. 

Thus the rotation matrix of a vector equals to , which can be derived from Eq. 

(3.1.3 ) by the inverse or the transpose the coordinate transform matrix A � . 

= = = 4 (3.1.29) 

The rotation about a fixed axis in matrix form is shown below, 
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X f l 0 O x X 
少’ = 0 cos^ 一 sin後 y = RiX,^) y (3.1.30) 

z' 0 sin 卢 cos 於 z z 

Figure 3.5 illustrates the rotation for a vector and its relation with the coordinate 

transform in Chapter 3.1.2. In this simple example, the vector � / is rotated from 

P'to P along the Xaxis. Using Eq. ( 3.1.30 ), the rotated vector v^p can be obtained 

by Vqp' and R(X,</>). An alternative interpretation for this rotation process is the 

coordinate transform: assume OP' fixed, it is equivalent to rotate the coordinate 

system ^ 0 - X Y Z in the reverse direction - X ' Y ' Z \ The vector �Qp can 

still be calculated by P‘ W.R.T. J ^ O - X T Z ' using Eq. ( 3.1.3 )• 

Z 

z, ^ 

\ P' 

\ 1/ ‘ r 
\ / 

n ) 丨 , _ _ , 

X 

Figure 3.5: Single axis rotation: the vector OP is rotated about the Xaxis for angle O 

3.2. Euler Angles for Rotation in Space 

According to Euler，s rotation theory, any orientation in space can be represented in 

terms of three sequential rotations alone the specified axis of the body frame triad X, 7, 

Z individually. When using Euler angles, the type of axis should be considered 

according to the ordering of rotation. If the sequence of rotation is first about the X 

axis, then about the Y axis, and finally about the Z axis, the associated angles are 

signified by the reserved words "roll", "pitch" and "yaw" angle respectively. In 

convention, the rotation angles for "roll", "pitch" and "yaw" are designated using 

reserved symbols: 0, 6, y/ respectively. These three angles are called Euler angles. 
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Figure 3.6 illustrates a specific example of Euler angles' rotation. The rotation 

direction is determined by the right-hand rule, which is clockwise when looking 

towards the origin. The Euler angles:中，d, describes the orientation position from 

the reference frame: X, 7, Z to the end frame: X'\ Y'\ Z". 

Roll Pitch Yaw 

P Y^ 
X lx' x’“x” 

Figure 3.6: The rigid body rotation in Euler angles by Roll, Pitch and Yaw rotation sequences. 

The rotation matrix for each one-axis orientation can be derived from Eq. ( 3.1.3 ) and 

Eq. ( 3.1.29 ). The unit vectors w, v , w in coordinate transform matrix A equal to the 

position coordinates for the each rotated axis W.R.T. the start frame X, 7, Z. 

" ； c 1 「 1 0 0 Jx~\ [x~ 

/ = 0 coŝ zi — sin卢 y 二 R�X,(I)�y (3.2.1) 

z' 0 sin 於 cos 卢 z z 

jc'1 � c o s 没 0 sin 没 X x 
y = 0 1 0 / 二 没） / (3.2.2) 

z" -s in (9 0 cos (9 z’ z’ 
_ � �U» � —' 

� c o s y - s i n ^ 0 X’ X' 
y = sin^ cosy/ 0 y =R{Z,y/) y (3.2.3) 

z" 0 0 lJ[z"J [z" 

Thus, combine Eq. ( 3.2.1 )，Eq. ( 3.2.2 )，and Eq. ( 3.2.3 )，the Euler angles for the 

rigid body orientation, which is in term of the three individual rotation sequences, can 

be represented by one rotation matrix: the direction cosine matrix (DCM), when the 

Euler angles:龟，d，\p for roll, pitch, yaw are specified in Eq. ( 3.2.5 ), 

18 



U x" X X 

V = y =DCM{1//A^)s y =R(Z,ii/)R{Y,e)R(X,(/>) y (3.2.4) 

w z " z z 

cos^^/xos^ cosv^'sin^sin^-siin^cos^ cosy/‘ sin Qcos^+s in^ cos^ 

DCA^y/,6,(f))g = sin^^cos^ cos…os卢+sin…in^sin於 sin…in^cos於一cos…in後 （ 3 . 2 . 5 ) 

- s i n 沒 sin 於 cos 没 cos 卢 cos 没 

3.3. Euler Angles Attitude Kinematics 

The Euler angles can not be integrated directly from the body frame angular rates p, q, 

r since the sensing axis X, 7, Z in the body frame are rotated in sequence as this 

unique orientation description. 

Thus, the body rates can be obtained from the Euler angles derivative by counter 

process according to the specific orientation sequence. 

"a; 1 �0*1 � 0 ] �< -̂
cOy = R{X-(f>)R{Y-e)R{Z-\i/) 0 ^R{X-(l))R{Y-9) 9 +R{X-(I>) 0 (3.3.1) 

CO. „ 0 0 

L - JB L,J 匕_» L J 

Simplify and written in a matrix form， 

一 • n r —If— — 
(j) 1 tan ̂  sin ̂  - sin ̂  cos ̂  tan 没 cos 卢 cô  
0=0 coS(^ - s in^ (3.3.2) 
I// 0 sin ̂  sec ̂  cos^z^sec^JL^yJ^ 

3.4. Singular Problem 

The Euler angles define an orientation motion in three successive rotations: roll, pitch, 

and yaw about the X, Y, and Z axis respectively. However, the calculations of Euler 

angles are trigonometric functions which require costly computation time and will 

induce nonlinear error. This problem will be manifest since the attitude propagation 

matrix, defined in Eq. ( 3.3.2 )，will be singular when the pitch angle is equal to or 

close to 90 degrees [26]. 

The experimental results, shown in figures below, demonstrate the singularity 
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problem in attitude propagation by Euler method. In the test, the î IMU is speedily 

rotated along the yawing direction 90 degree backward and forward. Figure 3.7 below 

shows the angular velocity measured by the gyroscopes from the |j.IMU. 

Gyroscope Sensor Measurements 
201 I 1 1 1 IP 1 1 I ~ 

i i i i i i i Roll 
1 丨 丨 ！ 丨 丨 II 丨 Pi tch 

15 - ； [ -i i--r i - j -i — — — Y a w I -

° — I — 1 … … - i — 1 + l l l l f i — I — -
？ 丨 丨 丨 丨 丨 [ 丨 丨 i ^ 5 - -i - ； i- 1 -A - --；• 7-- •--； ：- -

I I I I I U j I J i I 
I 丨 丨 丨 丨 ： i 丨 i 
f -5-…-------1-………i…………丨………--1-----••--.-•+-•-••!—…I i………--

； ！ ： ： ： ： 

-10 - i -i i- …… …… -i i—- -
i i I I i I 

-15 - ^ 'r ^ "I !• -

-201 i i i i i i i i 
0 1 2 3 4 5 6 7 8 9 

Time (sec) 

Figure 3.7: Angular velocity measured by gyroscopes in the jilMU 

The attitude singularity occurred, as illustrated in Figure 3.8, as the yawing angle 

equals to or close to 90 degree because the attitude propagation matrix, defined in Eq. 

(3.3.2 ), become singular. Thus, this unexpected error can not be avoided. After the 

singular propagation, the attitude tracking algorithm requires recalibration and reset 

for initial attitude to fix the error and restart tracking. 

Euler Angles Singularity in Attitude Propagation 301 1 1 1 1 1 1 ] I -
i i i i i i i — ~ Roll Euler 
i 丨 i 丨 i 丨 i Pitch Euler 

25 - i. [ j i - i—J Yaw Euler 

! ! I ! I • I 
t I t I I I I I 

: S i n g u l a r Point! 
20 - F f f -与-M -： •-； ： ：-

I I I I I I I I 

rn s t I I I I t I I 
ro I I I I i t I I 

15 - 1- f } < -I -f ：--- ： -
变 ！ ' ！ ！ ！ ！ ！ ！ o> 
X I I i I I I I < ^ ! ! ! ! ! ! ! ! fc 10- r \r ； ； •： -i ； ： 

LU J ！ I I I 5 I ‘ 
I I I t I I > « I t t I I I I I I t I t I I I I - I I t I I I I I 

5 - r r : : I ； : 
I I I I I • I I 
1 1 1 1 1 ) 1 1 

i 丨 _ _ _ J i : 宇 
i i ； ^ ^ - - y y y g ： j | 
i i i i i i i i 

0 1 2 3 4 5 6 7 8 9 
Time (sec) 

Figure 3.8: Singular problem in attitude propagation using Euler method 
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However, attitude propagation using quaternion method, to be introduced in the next 

chapter, can avoid the singularity problem. As shown in Figure 3.9，quaternion 

propagation, tested with the same experimental data, will not result in attitude 

divergence, which can be proved in the next chapter. 

Attitude Propagation: Euler Angles VS Quaternion 
一 Attitude Roll 
•o 1 1 1 1 1 n 1 1 TO 4 L ^ •； ；• } •； I-Roll Euler ； ; ; ； ； [ 

^ 2 Roll Quaternion ‘ i- • -i.--.-j-M—-I i-
O)丄 ； r ^ ： ； cs r\ r 
c 0 1 J ’ + - I 

！ \ \ I ^ \J \ I I CD 2 ‘ I I ^ j_ I I I 
- � I I I I L_—T I r 1 

山 0 1 2 3 4 5 6 7 8 9 

Time (sec) 
_ Attitude Pitch 
2 1 I ！ ! ！ ！ ！ ！ ！ 

•^3- Pitch Euler j- •; r t "i -
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11 - […二-H i -
S 0 — i -I "i 1" t •！ I" -
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f � = f = 4 = M ^ V ^ | ? t f e t E E 3 … 一 -2 - ； -1 1- •! ；- -： I- A 1 1 1 1 1 1 1 1 i 
山 0 1 2 3 4 5 6 7 8 9 
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Figure 3.9: Attitude propagation using quaternion method compared to Euler angles 
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4. Attitude in Quaternion 

The complex numbers are abstract quantities in the form of x-\- yi. With complex 

representation, they are useful in computation and result in physically meaningful 

solution. The quaternion representation of rigid body rotations leads to convenient 

expressions [30]. A quaternion is four-dimensional complex numbers [26]，[32]. 

q 二 q�i+(hj+q�+q4 ( 3 . 4 . 1 ) 

Where qi, q2, qs, and q4 are the real numbers and j, and k are the unit vectors 

directed along the X, Y, and Z axis respectively. Thus, a quaternion can be described 

as linear combination of real part 如 and imaginary part q，which can be denoted as 

the rotation angle and the rotation axis for a orientation in space. 

According to the right-hand rule, the unit vector for the imaginary part has following 

property, 

/2 二 f =k2 二 - 1 (3.4.2) 

ij = -ji = k ( 3.4.3 ) 

jk = -kj = i ( 3.4.4 ) 

M = -汝 = J ( 3.4.5 ) 

Thus, quaternion multiplication is not communicative. 

4.1. Quaternion Operations 

Quaternion satisfies all of the axioms in addition and multiplication in the field, 

except the communicative law in multiplication. 

Let s be the scalar, and let, 

+ y ^ j (4.1.1) 
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= xji + yij + zik + 厂2 

The quaternion addition is defined as Eq. ( 4.1.2 ). The quaternions are added up 

according to the real part, and i, j and k of the imaginary part, individually. The 

quaternion addition is communicative. The summation of quaternions is the same as 

imaginary number if we consider the normal part as the fourth imaginary number. 

A 

=(太丨 + 又 2 y + Cy 丨 + 少2 ) j + (z 丨 + )众 + (r, +r,) (4.1.2 ) 

The scale multiplication of a quaternion is defined as, 

sq = sq + sq^ = sq^i + sq^j + sq^ (4.1.3 ) 

The multiplication of two quaternions is performed the same as the complex numbers 

multiplications, 

= + y j + + ''i + y i J + + h ) (4.1.4) 

Simplify using Eq. ( 3.4.2 ) to Eq. ( 3.4.5 ), the result is still a quaternion, 

4.1.1. Quaternion Conjugate 

Conjugate of a quaternion is the same as the field of complex number, which is take 

the opposite of the imaginary part. 

= - x ^ i - y i j - z^k + (4.1.6) 

( M 2 ) 、 “ ： （4.1.7) 
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4.1.2. Quaternion Norm 

= ^ = � . 8 ) 

A quaternion can be normalized by, 

(4.1.9) 
N{q) 

4.1.3. Quaternion Inverse 

The inverse of a quaternion performed as, 

* 

q-' = q , (4.1.10) 
{N{q)f 

4.2. Orientation Description in Quaternion 

After normalization for q, a unit quaternion n can be expressed in the vector and angle 

form: 

Q Q 
n = ~ - ~ = {e^i->rej + e^ k) sin — + cos — (4.2.1) 

夺 ’ ^ 2 2 

The orientation motion of vector u from the reference frame to the destination frame 

can be expressed by rotation about the vector e for d from the quaternion n. The 

rotation is performed through quaternion multiplication. 

v = n®u<S>n (4-2.2) 

Where n* is the quaternion conjugate which is defined as: 

n* = -n^i - n^j - n^k + n^ (4.2.3) 

This operation can be expressed by matrix multiplication: 
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v = n<S>u<S>n =Ru (4.2.4) 

义2 - ql - q\ + q] + ) 2{q,q, - q^q,) 

2(^1^2-^3^4) - q x ^ q l - q l + q ] 2(^2^3+^1^4) (4.2.5) 

Furthermore, two individual rotations can be simplified in one quaternion by 

combining the corresponding parameters with calculation of matrix product. 

Suppose, R{q'') = R{q)R{q') (4.2.6) 

Let q = [qi, ？2, qs. q^f，Substitute Eq. ( 4.2.5 ) directly into Eq. ( 4.2.6 ), the 

transform relation between q “ and q ’ in matrix form can be derived as, 

？3 -q! ？1 

q��= 1 ？4 ^ I q，=T(qW (4.2.7) 

-q! 

4,3. Attitude Kinematics in Quaternion 

Let quaternion q represents the orientation position between the previous frame and 

the current frame. Assume the rotation angle d is small, the Eq. ( 4.2.1 ) can be 

simplified by, 

” [cos 昏，(ei/ + e2>/ +。咖 in|]«[l，艾昏]二 [1，"̂，昏，f] (4.3.1) 

Comparison with Eq. ( 3.2.5 ) and Eq. ( 4.2.5 ) demonstrates the approximation in 

small angle for the direction cosine matrix in quaternion is related to that of the Euler 

angles by Eq. ( 4.3.1 ). Substitute into Eq. (4.2.7 )， 

！ = 極 洲 的 f (4.3.2) 
dt dt ^ dt 

Consider the q ‘ stands for the initial or previous frame attitude, which is constant. 
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【 = 權 ( 4 . 3 . 3 ) 
dt dt ^ 

Thus, in continuous form, 

m = ^{o) , )q i t ) (4.3.4) 

_ 0 (o, -co^ (O: 
, � 1 -co^ 0 CO又 CO 

Where, ^ (0；,)=- 少 (4.3.5) 
-0)^ 0 CO, 

一 CO太-cOy -(o^ 0 

/ ft+tit \ 

Thus, q{t + AO = exp q{t) (4.3.6) 

Using the procedures by evaluating the matrix exponential, Eq. ( 4.3.6 ) can be 

rewritten in a more convenient way for computation. 

冲 + A/)= c o s ( — + q{t) (4.3.7) 
— ‘ — 

Where, C o ] ( o \ (4.3.8 ) 

And / is a 4 x 4 identity matrix. 
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5. Kalman Filter 

Kalman filter is a recursive algorithm in discrete data linear fitting for real-time 

application. It is developed by R. E. Kalman in his famous paper published in 1960 

[36]. Due to the advantage in digital computation and support from digital filters, the 

Kalman filer takes the place of the Wiener filter in analog system, and has been the 

subject of extensive research and application in the area of statistic learning, computer 

vision, and autonomous navigation. 

The iterative process of the Kalman filter includes two steps. The time update step 

projects the current system state and its statistic information ahead in time according 

to system plant. The measurement update step adjusts the propagated estimate by an 

actual measurement based on statistic decision theory and Least-square method. 

Figure 5.1 below demonstrate the ongoing Kalman filtering loop. 

Kalman Filter 

r ~ 、 
Time Update Measurement Update 
(“Predict”） （“Correct”） 

_ J 

Figure 5.1: The real-time cycle of the discrete Kalman Filter [34] 

The Kalman filter is developed to estimate the system state ;c e ， o f a discrete-time 

control process that is governed by a linear stochastic differential equation, 

Xk = A^k-x + ^k^k-x (4.3.1 ) 

Where a measurement y e^" is referred for correction, 
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少 ; ( 4 . 3 . 2 ) 

In control theory, A is the system plant matrix with dimension m x m, relating the 

previous state A： — 1 to the state at the current step k. A is defined as be separated from 

the process noise. The m x / matrix B relates the optimal control input, w g to the 

state •x. The nxmmeasurement matrix C relates the measurement input, ；; g 5H"to 

the state x. In practice, A^ B and C can be constant or updated with each time step. 

The random variable w众 and v众 represents the noise in propagation process and 

measurement respectively. Assume Wk and Vk are independent, Gaussian noise with 

normal probability distributions. 

�A/" (O ,0 (4.3.3) 

P(v)�A/^O，及） (4.3.4) 

5.1. Time Update 

According to control theory and statistics, the system plant can be constructed as: 

Xk =从-i+BkUk-� (5.1.1) 

The projection of the system state covariance can be derived according to definition, 

) = + (5.1.2) 

Pk = cov(奴-丨)+ cov(w,.,) ( 5 1 3 ) 
=A c o v ( � _ i M � + 0 

In general, the Time update process is derived by Eq. ( 5.1.1 ) and Eq. ( 5.1.4 ). 
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5.2. Measurement Update 

The measurement update in Kalman filter is achieved by Least-square estimation 

based on maximum a posterior probability (MAP). 

Given a set of « observations taken during the time span, 

少三[少丨，少2，...，少,丨]『 (5.2.1) 

The statistic property of the observation measurements appears random due to the 

prevailing random noise mixed from sensor system, electro-magnetic interference 

(EMI), or uncertain misoperation in experiment. To determine the state vector x, we 

assume that measurement y equals to the observation vector, c{x, t), based on the 

mathematical model plus additive random noise, v. Thus, for each element of 少， 

兄 . + (5.2.2) 

Given a priori estimate Jc，and the statistical properties of v, the optimal state vector x 

can be achieved using Least-square method, which is to minimize the square 

difference (error covariance) between the observation prediction c(x) and the real 

observation measurement [27]. 

5.2.1. Maximum a Posterior Probability 

In statistics, maximum a posterior probability (MAP) is a kind of Bayesian estimation 

based on the cost function - 0(y)) defined as the delta function [28], [29]， 

'0，if cD-6'(v) < A 
R i O , O i y ) ) = \ ' y (5.2.3) 

[1, if > A 

Where 6{y) represents the vector space expanded by the observation y, and O is 

the true state of JC. The cost is either 1 or 0, depending on whether the estimation by 

observation: 6{y) is close enough to the true state O. Thus, the expected posterior 

loss function can be derived as, 
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4 m . Oiy)) I 少 ] = 尸 - e{y)\ > AI 力 

= 1 - 尸 力 

没(少广A ( 5 . 2 . 4 ) 

= 1 - J P ( 0 I 
0 � - A 

Figure 5.2 illustrates that, when A is small enough, the higher order terms can be 

omitted, so the approximation will be accurate enough for the integration. 

Eq. ( 5.2.4 ) illustrates that, in order to minimize the distance in statistics between the 

observations and the true state, it is the same to maximize the posterior 

probability | y). Thus, as shown in Figure 5.2, 0{y) should be selected as the 

maximum ofjP(0 | y). 

A 

iV 
eiy) €> 

Figure 5.2: Linear approximation for the expected posterior loss 

In filtering application, assume O as the state vector jc, 0{y) can be described by 

� according to the specific measurement model. Therefore maximization of the 

posterior probability is equivalent to evaluation through the system state x. 

0MAP (30 = argmax P(x 丨少） （5.2.5 ) 
X 

Given the Bayes' rule, />(;c | 力=尸(•^丄�)广) 

And the probability of observation is independent of the state ；!:. 
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^MAP = argmaxP(;； I x)P{x) (5.2.5) 

Furthermore, to maximize Eq. ( 5.2.5 ) for 没撤户，it is equivalent to maximize, 

argmaxP(;;)P(x) (5.2.7) 

5.2.2. Batch Least-Square Estimation 

Consider an ^-dimensional Gaussian classifier as, 

户 ⑶ = ^ e x p [ - | (叉-n y z - ( X - m (5.2.8) 

<̂12 ... 

Where, S , = . (5.2.9) 
• • • • 

=五[(太-MiXXj - M j ) ] ( 5.2.10 ) 

Define S. as the covariance matrix of system state set: [ x j , p is the mean vector of 

[Xj], and n is the dimension of the system. Scale Eq. ( 5.2.7 ) by logarithm function 

and rewrite in a more convenient way for calculation. 

argmaxPOO/^(jO == argmax[log(尸(力)+ log(P(x))] (5,2.11) 
X X 

As a result, the MAP optimization can be achieved by minimizing the loss function L 

defined as follows [30]，[31]， 

L = ] ^ [ y - c f R - \ y - c ] + ] ^ [ x - x f p - \ x - x ] (5.2.12) 

Where[_y-c] is the observation difference between the measurement set y and its 

predictions c. P and R are the inverse of the covariance matrix, as defined by Eq. 

(5.2.9 ) and Eq. ( 5.2.10 ), for jc and y , respectively. 
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In probability theory, the variance of a random variable is the measure of the 

stochastic dispersion, which indicates the distance from its expected value. Hence, the 

inverse covariance matrix and works as the weighting matrix related with 

the contribution of each priori estimation and observation, according to their accuracy 

and importance. 

Therefore, the evaluation for estimation will concentrate on the observations 兄.with 

relatively small variation o) when the corresponding measurement noise is depressed. 

The weight matrix for state P"' describes the uncertainty in the priori estimate x. In 

case of inadequate observations to correct the state estimation, P"' is fairly practical 

to utilize the information of the prior estimates. 

In order to locate the minimum of the loss function L with respect to x, dLldxmusX 

equal to zero. Therefore, 

_ = -[3； - cf + [x - x f p - ' = 0 (5.2.13) 
dx 

Where C is an « by w matrix which relates the unknown state with the observation set. 

The m is the dimension of vector x and n is the dimension of vector 

dc� dcy 5c, 
dxi 6x2 dx 饥 

Qc ^ ^ ^ 
C = dx, dx, dx„, (5.2.14) 

• • • • 

dx\ 8x2 dXm 

Where each element of dc jdxj are computed analytically from the observation 

model. If the observation plant is linear, the prediction of observation can be specified 

by Taylor expansion at a reference point XR . 

dc 
c = C(Xr ) + t � [ X - X穴] (5.2.15) 

ox 
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C = (5.2.16) 

However, if the observation model is nonlinear, and the higher order terms can not be 

ignored, the linearization process by the Jacobian matrix will cause nonlinear 

distortion in the estimation result. The expected mean and variance of the state and 

observation will depart from its true value, which can be deformed and rotated in 

shape. When serious situation occurred, the filter may have difficulty to maintain 

convergence. 

In general, each element of c can be evaluated at a different reference point with 

respect to the observation data block. This possibility will be useful in the later 

development of the sequential least-square algorithm. 

Substitute the expansion from Eq. ( 5.2.16 ) to Eq. ( 5.2.13 ). 

[ P " ' + C l R - ^ C^ ]jc = P" ' j c + C l R - ^ [ y - C R + Cj^Xj^ ] (5.2.17) 

X = + [尸-1 + ClR-'C, ]-i [ClR-' (y-c,) + P-' (X -X,)] (5.2.18) 

^ = + 冗代[(少一。尺）+ (义一太』 (5.2.19) 

Hence, the optimal estimator based on Least-square method is obtained [33]. If the 

observation function C is linear, a n d = x， t h e n Eq. ( 5.2.19 ) will provide the best 

estimation for the state ；c. At a fixed timespan, the state vector can be updated using 

prior estimations and block of measurements. When large information is available, the 

estimation can be supported by the entire observations if a mathematical model is 

available to relate the state parameters with the measurement values at each 

observation time. Furthermore, during every iteration step, the covariance matrix for 

weighting can be updated according to the priori estimates and observation data block 

based on stochastic analysis. Thus, the filter can be adaptive to distinct random noise 

with unknown probability distributions. However, the measurement data block 

requires large memory to store. High dimension in observation model involve more 

computational resources in matrix inverse and have difficulty in constructing the 

projection matrix C between measurement and state. Further, the filter may be lead by 
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early observations with large weights. 

Thus a sequential estimator, Kalman filter is proposed as the real-time estimator for 

new incoming observations. This causes the influence of earlier data on the current 

estimation to fade with time so that the filter does not lose sensitivity to current 

observation. 

5.2.3. Measurement Update in Kalman Filter 

According to previous formula deduction, if the reference point for expansion 
A 

evaluation is selected at the last optimal estimation, XR ， the sequential 

Least-Square estimator is derived from Eq. ( 5.2.19 ), 

、 您 i c , [ ( 八 + 暴 ( “ J (5.2.2。） 

As p-1, = cov(C,;c, . , )=五[(CA-iXCA-i广]=E[C,x,_,xl ,Cl] _ CkCT" 

Rewrite Eq. ( 5.2.20) in a simple form, 

A A Ck RI. ^ ^ . _ (5.2.21 ) 

"ft-l + ^k ^k ^k 

Where and are parameters associated with current observation k. 

Simplify Eq. ( 5.2.21 ) to avoid matrix inverse computation for P and Q, and let 
/V 

X - ， 

文k =、丨 + . ^r^l r ( h —cO (5.2.22) 

( 5.2.23 ) 

Where K^ is the Kalman gain, and rewritten in Eq. ( 5.2.24 )，the measurement 

update is shown below, 
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Kj^ =——__ ( 5 2.24 ) 

The covariance matrix can be updated from the measurement utilizing the 

Kalman gain in Eq. ( 5.2.24 ) from Eq. ( 5.2.23 ). 

) = cov(x,_, + K, [y, - c j ) (5.2.25 ) 

As previous state is irrelevant with the current observation, 

Pk = cov(Vi) + [y, - c j ) (5.2.26) 

= 一 ( 一 、 + 芽 i C r , (5 227) 

Thus, Pk = ( J -Ki^CkyPk- i ( 5.2.28 ) 

Because of the round off error, Pk may not maintain positive definite and therefore 

meaningless as covariance matrix. An alternative is to use the Joseph algorithm for the 

computation of Pk： 

P, + K , R X (5.2.29) 

This algorithm requires more computations than Eq. ( 5.2.28 )，but can ensure that Pk 

will remain positive definite. The Joseph algorithm can be verified by substituting Eq. 

(5.2.24 ) to Eq. ( 5.2.28 ) as follows, 

=Pk-\ + [ P k - \ C l � K工 - k I 

T T T T (5.2.30) 

= + Kk Ck Pk-\ Cfc Kk - Kk Q - Pk-\ Ck Kk + Kk Rk Kk 

= - - C ' J ^ J ] + Kf^Rj^Kl 

= [ / 一 Wk-x U - KkCk f + K,R,KI 
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Eq. ( 5.2.30 ) indicates that the two methods are analytically equivalent for any K 
defined by Eq. ( 5.2.24 ). 

In conclusion, Eq. ( 5.2.23 )，Eq. ( 5.2.24 ) and Eq. ( 5.2.28 ) verified the 

Measurement Update in the Kalman filter algorithm is optimal under Least-square 

optimization. 

Figure 5.3 below summaries the ongoing recursive process for the discrete Kalman 

filtering for real-time digital computation, 

rv 

Initial prior estimate •X。and 

. . D - Measurement input: VK 
Its error covariance JTQ < 

1 r \ f 

Measurement update: 
Time update: _ _ 

Xk = 
… .T „ Compute Kalman gain: 

PK = APU-I A +Q ^ ^ , 

i k 

Compute error covariance 

for update estimate: ^__ ^ 

K \ K ^ K Estimation output: Xj^ 

Figure 5.3: Block Diagram of Kalman Filter in Real Time Application [ 1 ] 

5.3. Kalman Filter Summary 

From the recursive estimation process, the Kalman filter estimates the state vector Xk 

directly based on all measurement observation up to current observation yk. The 

dynamic propagation and observation models are evaluated between filter cycles. The 

ongoing process of Kalman filter only requires memory for the previous step estimate, 

compared to intensive data block for observations and priori estimates in the Batch 

least-square estimator. The stochastic information leading to the feedback gain in the 

random noise control is compressed in the mean and covariance matrix, which is 

updated for each measurement. Thus, Kalman filter is useful for onboard application 
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because the process loop does not involve the estimation results and past observations. 

The computation complexity only depends on updating the state transition and state 

noise covariance matrix. In consequence, the Kalman filter is constantly capable to 

estimate the current state in real time. 

The complete equations of the time update and measurement update stage of the 

Kalman filter are listed in the Table 5.1 and Table 5.2 below. The equations in discrete 

model are for real-time application, which is preferable for digital systems. 

Table 5.1: KF time update equations 

x^ = + 5M (5.3.1) 

+ Q (5.3.2) 

After propagation for the system state and state error covariance ahead in the time 

update, these stochastic features of the system behavior are corrected in measurement 

update with least square error. 

Table 5.2: KF measurement update equations 

K , 二 P : C T � C P : C T + R ) - ' (5.3.3) 

\ = x l + K , { y , - C x l ) (5.3.4) 

= ( / - 明 (5.3.5) 

However, as proved in this chapter, the Kalman filter is the optimal solution to linear 

system. If the system plant is nonlinear, the filtering performance and estimation 

accuracy can not be guaranteed. Thus, the extended Kalman filter is introduced in the 

following chapter. 
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6. Extended Kalman Filter 

Kalman filter is the optimal estimator in linear fitting problem. In applications, the 

linear model can not describe all real systems. In such case, the Kalman filter model 

will ignore nonlinearity in propagation of the state mean and covariance. As a result, 

this may lose accuracy in the measurement update and cause error to compute the 

feedback gain [35]. 

The nonlinear system can be linearized to summation of Taylor's expansion. 

少 = m = f{x^d) = / (幻+ V / A + 去• V A ' +…… (5.3.1) 

The expansion involves infinite parameters for calculation. When is small, the 

Jacobian linearized approximation can be accurate enough and tolerable. 

+ (5.3.2) 

Apply the linearization method, normally first order derivative, to improve the 

estimation of the state mean and covariance, and combine the Least-square optimal 

feedback structure from Kalman filter，the nonlinear data fitting problem is addressed 

by the extended Kalman filter [34]. The accuracy of system approximation can 

improve if higher order term is considered. 

Eq. ( 5.3.3 ) and Eq. ( 5.3.4) below illustrate the equations of extended Kalman filter 

improved from Kalman filter. 

Xjt « Xjt + - ) + ( 5.3.3 ) 

yk 一 叉 + (5.3.4) 

Where x̂ . and y^ are the actual states, \ is the approximated state and y^ is 

the measurement vector. is the optimal estimation of previous step, w众 and v̂  

are random variables stand for the process and measurement noise. 
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A is the Jacobian matrix by the partial differentiation o f f with respect to jc. 

4 / J ] =；̂；：̂0/：-丨，"/：-1，0) (5.3.5) 
以m 

Wis the Jacobian matrix by partial differentiation o f f with respect to w. 

妒 [ ,’,】 =衆 (‘丨 , "』 (5.3.6) 

C is the Jacobian matrix by partial differentiation of c with respect to x. 

DCRN 
(5.3.7) 

Fis the Jacobian matrix by partial differentiation of c with respect to v. 

厂 [ / J ] = # f t ， 0 ) (5.3.8) 

Table 6.1 and Table 6.2 illustrate the complete equations of time update and 

measurement update stage of the extended Kalman filter. The error covariance 

propagation is enhanced by Jacobian linearization in Eq. ( 5.3.10). 

Table 6.1: EKF time update equations 

文：=/(义iM，"it-i，0) (5.3.9) 

P [ = A J \ - X + K . & - � . � ( 5 . 3 . 1 0 ) 

By linearization to compensate the error covariance, the measurement update of 

extended Kalman filter improved in Kalman gain in Eq. ( 5.3.11 ). 

The Eq. ( 5.3.12 ) for feedback is in the similar framework as Eq ( 5.3.4 ). in the 

Kalman filter. Eq. ( 5.3.13 ) could be substituded with Eq. ( 5.2.29 ) using Joseph 

algorithm for stable performance. 
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Table 6.2: EKF measurement update equations 

Kk = P ; C I ( C , P - C l + V , R , V [ ) - ' (5.3.11) 

(5.3.12) 

P,={I-K,C,)P- (5.3.13) 

As being the linearization approximation of nonlinear system:x^ « 

y,̂  « ，0))，the extended Kalman filter can be designed to operate more stably and 

accurately if higher order terms are analyzed, such as the Hessian matrix for the 

second derivative of the system [39]. However, constructing the partial derivative of a 

dynamic system can be difficult to implement. Furthermore, the higher order residuals 

of the system expansion request costly computational resource. 

In [37], an effective quaternion based extended Kalman filter has been designed. A 

Gauss-Newton algorithm is introduced to combine observations from the 

accelerometers and magnetometers to estimate the attitude as observation for 

measurement update. The EKF is implemented to minimize the error between this 

attitude estimation and the propagation from the gyroscopes. The attitude quaternion 

as system state is normalized in system plant during each time update step. 
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7. Attitude Extended Kalman Filter 

The extended Kalman filter consists of two stages. In the time update stage, the 

quaternion increment by the gyroscopes will propagate the attitude in time. In the 

measurement update stage, the difference between the estimated and the measured 

Earth magnetic vector is implemented as feedback to correct the propagation error 

[36]. 

Initial Prior Measurement Input: y^ 
Estimate: XQ 

In出Error Measurement Update: 
Covariance: 

毛=x~k+K,(y, - C 而 
] r 

Time Update: Compute Kalman Gain: 

� K, = ^ ^ 
^ C,P,-Cl +R； 

Compute Error Covariance for 
Update Estimate: 

< • 

Pk + K , R - X Estimation Output: JC, 

Figure 7.1: Block Diagram of Extended Kalman Filter Algorithm 

Figure 7.1 demonstrates the real-time recursive process of the extended Kalman filter 

algorithm. 

7.1. Time Update Model 

7.1.1. Attitude Strapdown Theory for a Quaternion 

In order to propagate the attitude in time, the quaternion kinematics equation is: 

q{t) = Cl{co,)q{t) (7.1.1) 
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_ 0 CO, -(O^ (O^ 
( . \ -co ̂  0 CO^ CO, 

Where 咖 J = 7 八 (7.1.2) 
2 COy -co^ 0 co^ 

-CO^ -COy -co^ 0 

= b i q ! (7.1.3) 

CO, = [co^ COy i y j (7.1.4) 

q(t) is the quaternion that denotes the current attitude for the system state, co-； are the 

current angular rates from the rate gyros for the system input. If At is small enough, 

the state matrix can be derived by the Euler method: Af = f - ~ 0， 

沖 + AO « ( / , + Ma)q{t) = {q{t\ co,,^, A,) (7.1.5 ) 

7.1.2. Error Model for Time Update 

Eq. ( 7.1.5 ) defines the nonlinear system propagation for the state q and input co in 

time update. In order to obtain an extended Kalman filter with a capability of 

gyroscope bias separation, the sensor bias model is implemented in the sate matrix by 

error dynamics analysis [39]，[40]. 

We define the state error of a gyro as 6co: 

①O^UE:①sensor 一 (7丄6) 

Sco{t) = Aco,,^{t) + w{t) (7.1.7) 

Where w(t) is a sensor's white noise, and Aco(t) is the gyro bias which is considered 

as constant since dt is small: 

^co{t ^ t ) = ^co{t) (7.1.8) 

The propagation of the attitude state error, bq can be obtained by partial differentiation 
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of Eq. (7.1.5 ): 

Sq{t + AO 二 + (7.1.9) 
dcD(t) dq{t) 

When time step dt and the previous 8q is small, we assume: 

礼'(,)Sq{t) « 0 . By Jacobian Linearization: 
DQ(T) 

碰 丄 ^ 《4 1 (7.1.10) 
dco{t) 2 -q^ q, q, 

-Q! - Q � 

From Eq. ( 7.1.5 ) and Eq. ( 7.1.9 )，the gyroscope bias can be separated from the 

system state: 

Qk 二 fcAqk-”①k,dt)-Sqk (7.1.11) 

Thus the Discrete Time Update is: 

qk =qk-\ + 城o)k -dt + Wi^So) (7.1.12) 

In the state space representation, 

(7.1.13) 

Where, x,̂  = [q^ A t y J ^ (7 .1 .14) 

, \IA +Q(cOk -AcOk_])-dt],-可M� …… 
J 众 = L 4 V k k \ ) \k Q 幽 (7.1.15) 

[ 0 I 

7.2. Measurement Update Model 

After extended Kalman filter estimation, the spatial magnetic field disturbance 
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becomes tolerable within one stroke and the Earth's magnetic field direction remains 

constant within the whiteboard. It can be utilized as reference for attitude in the 

measurement update. The three orthogonal magnetometers in the MAG-|iIMU 

measure the geomagnetic field with respect to (W.R.T.) the body frame. On the other 

hand, by coordinate transform using the propagated attitude, it can be estimated from 

the constant geomagnetic field WRT the Earth frame. Hence the difference between 

the magnetometer measurements and the transformed geomagnetic field is feedback 

in the measurement update of the extended Kalman filter to correct for the error in 

attitude propagation [41], [42]. 

Vector 歹&，q̂  are introduced to represent the geomagnetic field WRT the Earth frame 

and the magnetometer outputs, respectively. The two vectors are expanded into 

q u a t e r n i o n s : =[歹6 Of, Of. 

If quaternion n denotes the current attitude, by coordinate transform from Eq. (4.2.2 )， 

( 7 . 2 . 1 ) 

Multiply the quaternion n to both sides of Eq. ( 7.2.1 )，we obtain: 

= Q (7 .2 .2) 

- - [ � ] X 叫 ; 叫 " 二 。 （7.2.3) 
- - f b 0 � L � ' o j 

Where [孔 is the cross product matrix: 

T 0 -<H Q! _ 
S l = 0 - q , ( 7 . 2 . 4 ) 

--Q!义 0 _ 

From Eq. ( 7.2.3 ): 

T n = iJ ( 7 . 2 . 5 ) 
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Thus, there is no requirement for the state ^ to be a unit quaternion. Let C be the 

measurement matrix. The measurement update of the extended Kalman Filter is: 

y = Cq (7.2.7) 

7.2.1. Error Model for the Measurement Update 

According to error dynamics analysis [39], [40]，Let: 

「心 (7.2.8) 

Sy (7.2.9 ) 

W h e r e 匆办 e = 0，-^^Sq^ » 0 when the previous attitude state error is small. 
细BE 匆6 

From Eq. ( 11.1): 

H 仏 ％ 1 (7.2.10) 

-Q! 一 ( H _ 

Thus the Discrete Measurement Update is: 

(7.2.11) 

dy 

Where, K (7.2.12) 
石(H 
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7.3. Summary 

A mathematical derivation method is introduced to derive an extended Kalman filter 

to minimize random noise and input bias error. The attitude calculation is totally 

based on a quaternion. As proved in Eq. ( 7.2.5 )，the attitude quaternion q does not 

need to be unified in iteration. Further, any reference field sensor, such as star sensors 

and accelerometers, or a combination, can be applied to this process model. 
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8. Experiment Results 

8.1. Experiment for Attitude EKF based on MAG卞IMU 

In pervious work, the attitude extended Kalman filter is implemented using 

accelerometers for feedback. The measurement model for accelerometer tilter based 

attitude EKF can be modified from Eq. ( 7.2.6 ). The gravity as reference is along the 

negative Z direction in the Earth frame. Thus, 

广么1「-[(歹办 + 夺 ,。 1 1、 
C =— rp ( 8.1.1 ) 

2\_-{qt-qef 0 J 

Where, 0 - i f (8.1.2) 

However, accelerometers are reliable in motionless applications but are undependable 

during motion. Shown in Figure 8.1 and Figure 8.2 below, the experimental data from 

the MAG-|aIMU demonstrates that inertial accelerations interfere with gravitational 

accelerations, which cannot be separated from each other. In this experiment, the pen 

was rotated from 0 degree to 45 degree. Before rotation and afterward, the filter 

tracked quickly and accurately. However, during motion, the filter was affected by the 

accelerometers' Euler angles, which can be interpreted into two rotations because of 

the acceleration and deceleration. 

Attitude by Gyro Integration 
4 1 1 1 1 1 1 1 1 I 1 I I I « I I 

� I I I I I I t I 

2 --------r……-r……-—-/V……-̂ -……；…----；-……；……-

I ° ： 1 lA…-…；…二：：二-……；……-
(Y * _ I ^ I I I I » 

.21 1 1 I I I I I I 
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 

一 10,1 1 1 1 1 1 'I _ _ I , 
m I I I I I I I ‘ 
m I I • I • I _ 
£ l i l t I • • 

I I I I \ \ \ % fSk ^ « • -» 、 一 \ \ \ \ 

0 •••^•^^rrrpTT^:：^：：：^-…………{ { { { -
_ • • \ I l i l t 
XZ. • I I \ ^^ t I • I I 
O • I I \/ I I • t I 

• I I V I * I • t iiir* i I I I I I I I 
[.101 I 1 1 1 1 1 1 1 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 
^ 如 I 1 1 1 1 1 1 1 T 
S : • • J- 11 * ！ I ； 

I ^ -“•-…r……-r……-v-f\-……i-……j……-！-……i-------
T 0——i i -̂--r……:……：……：……！-------
<0 I • • • • • • • 
^ .201 i i i i i i i i 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 

Figure 8.1: Accelerometers EKF: Attitude by Gyroscope Propagation 
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Attitude vs. Time 
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Figure 8.2: Accelerometers EKF: Filter Result & Accelerometer Attitude 

8.1.1. Simulation Test 

Extensive simulation experiments are performed to check the convergence of the 

MAG Extended Kalman filter. The simulation software includes two parts: the sensor 

output generation and the real-time filtering. In order to generate the sensor output, 

the digital pen's physical properties and motion are modeled by the mass, inertia 

matrix, input forces and torques. The kinematics and dynamics module calculates the 

accelerations, angular rates and magnetic field strength under ideal conditions. The 

sensors' outputs are synthesized by aliasing the random Gaussian noise and constant 

sensor bias. For the filter part, the sensor outputs of angular rates and magnetic field 

strengths are processed by the extended Kalman filter in real-time. The attitude-in 

quaternion from the filter output is transformed into Euler angles for display. 

Figure 8.3 below shows the simulated sensor output. For rotational motion analysis, 

the input forces are set as [0, 0, 0]. In order to simulate a complex orientation, the 

torque vector in roll, pitch and yaw: [L, M, N] are set as: 

Z = 0 .01 - s in (0 .30 (8.1.3) 

M = 0 . 0 1 - c o s ( 0 . 3 0 (8.1.4) 
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Â  = 0.01 (8.1.5) 

The zero mean Gaussian noises are added to the ideal sensor outputs. The absolute 

maximum error amplitudes are 1.3 degree per second for the gyros and 0.04 Oersteds 

for the magnetometers respectfully. The initial attitude starts from 100 degrees in yaw 

angle. A constant sensor bias of 5 degrees per second is applied in yaw gyroscope 

output to verify the algorithm: 

Gyro Output 
1-21 '=； 1 1 1 1 1 

Roll Tru» ； 丨 ； 丨 ： 
1 “ Piioh Tru« ^ "J 1 "‘； ； 

i i 
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Figure 8.3: Synthetic Sensor Measurement 

8.1.2. Experiment Test 

Figure 8.4 illustrates the attitude result displayed in Euler angles. With the tracking 

ability of the extended Kalman filter, the initialization of the system state is simple. 

The attitude quaternion and gyro biases are set to zero. After iteration, the extended 

Kalman filter will estimate the gyro bias and remove it from the system state. 

According to magnetometer feedback, the filter's attitude estimation will converge 

and keep tracking automatically. The dash line in Figure 8.4 shows the attitude 

propagated by the raw output from the gyroscopes. As shown in the figure, the 

random noise and bias error causes a large drift in the rolling, pitching and yawing 

compared with the filter output. 
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Figure 8.4: Simulation Attitude Comparison: Filter Result & Gyroscope Propagation 

The extended Kalman filter was tested using real sensor measurements. The 

MAG-|iIMU transmits the digital sensor measurements to the computer wirelessly via 

the Bluetooth connection. The filter software in the computer processed the sensor 

data and calculated the attitude and sensor bias in real time. 

The MAG-|aIMU was held still for 4 seconds. Then continuous 90 degrees rotations 

were performed to test the tracking performance. The sensor module was rotated 

counterclockwise for 90 degrees and clockwise back to 0 degrees along the sensing 

axis of the roll gyroscope. At the end of the 7th rotation, the MAG-ialMU was 

suddenly held still again to test the convergence capability from dynamic input to 

static input. 

Figure 8.5, Figure 8.6 below show the six raw sensor output and the estimated attitude 

in Euler angles. Within the first iteration, the estimated attitude converged according 

to the observations from the magnetometers. The dash lines show the attitude 

propagated by raw output from the gyroscopes. The sensor errors accumulated and 

caused the attitude drift. 
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Figure 8.5: Real Senor Data from MAG卞IMU 
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Figure 8.6: Experiment Attitude Comparison: Filter Result & Gyroscope Propagation 
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8.2. Writing Application based on Attitude EKF Compensation 

The sensor measurements from MEMS accelerometers include gravitational 

accelerations as well as inertial accelerations. Due to spring mass model of sensor 

structure, these two terms can not be separated from each other. The gravitational 

accelerations denote the constant gravity force projected to the sensing axes, which 

can be used as a reference for pen attitude. The inertial accelerations specify the 

translation and rotation of rigid body when the pen is moving by handwriting. Hence, 

gravitational accelerations become a bias for inertial navigation which needs to be 

balanced. On the other hand, during handwriting, the inertial acceleration interfere the 

reference attitude calculation. 

Magnetometers for attitude reference don't have such disturbance because the 

magnetic field is irrelative to motion. However, the prevailing Electro Magnetic 

Interference (EMI) will influence the measurement of Earth magnetic field in 

direction and strength. For instance, a conductor can bend the magnetic flux of the 

Earth magnetic field because of magnetization. Besides, the Earth measurement may 

be interfered with additive magnetic field error. As part of electromagnetic field, 

magnetic field exists when there is a changing electric field, and vice versa. A 

changing electric field can be caused by AC current, coil, capacitor, and antenna effect 

of conductor for electromagnetic induction. Other additive magnetic source may 

directly induced by magnet, relay, monitors, transformer, and wireless communication 

device, such as mobile phone, Bluetooth. As a result, in real applications, the direction 

and strength of measured magnetic field changes with different position due to 

complex environment. 

Furthermore, attitude from the accelerometer or magnetometer has ambiguity along 

the reference field direction, which is in yaw and roll direction respectively. 

Assume the magnetic field noise is tolerable within one stroke space for handwriting 

application; the tracking problem of pen attitude is addressed by a complementary 

filter combining the ACC-EKF and MAG-EKF. In time update, the attitude is 

propagated by angular rates based on quaternion model. In measurement update, 

during handwriting, the magnetometer model is implemented as attitude reference 

with no inertial noise; and in motionless stage between strokes, the estimation error 
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caused by EMI can be rectified by accelerometers working as gravity tilter. The 

measurement update from the combination of ACC-EKF and MAG-EKF is 

complementary to filter the reference error and compensate the attitude ambiguity for 

each other. 

For complementary EKF, the measurement model of the attitude EKF, y = Cq, as 

introduced in Eq. ( 7.2.6 ). 

0 J (8.2.1) 

Where 歹办 is the measurement vector for the gravitational field or magnetic field as 

attitude reference. The q^ denotes the reference field vector in the Earth frame. 

q^ =[0 0 -1]^ is applied for accelerometer tilters and q^ =[1 0 0 ] � i s for 

magnetometers. 

However, for continuous handwriting, the magnetic field varies in direction and 

strength corresponding to different places such that q^ 0 0] . For the 

complementary attitude EKF, before switching from accelerometer attitude feedback, 

the magnetometer measurement should be synchronized for the magnetic reference 

difference. From Eq. ( 4.2.4 ) and Eq. ( 4.2.5 )，the measurement update model should 

be calibrated and initialized as, 

夺 e = N O R M _ .夺 J (8.2.2) 

'Ami + m^) 2(̂ 1̂ 3 -处?4) 
Where R{q)= 2(奶 一�304) A^L'IL +^1^4) (8.2.3) 

2(^1^3 + M 4 ) 2(^2^3 - M ^ ) --^2+^3+^4 

The q is latest the attitude filter tracking result and % is the first magnetometer 

observation after the switch. The writing and pause of hand motion status for the Sync 

Switch can be implemented by the Stroke Segment Kalman Filter which will be 

introduced later. Figure 8.7 below demonstrates the diagram of the complementary 

attitude EKF for real-time handwriting application. 
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Figure 8.7: Complementary Attitude EKF Diagram 

8.2.1. Stroke Segment Kalman Filter 

The stroke segment algorithm is proposed by [51] to separate the continuous pen-tip 

movement of character writing into independent strokes. The velocity of the pen-tip 

equals to zero at the turning point between two consecutive strokes. This Motionless 

phase in handwriting is important to compensate the error in attitude estimation and 

the position integration. 

In [51], the stroke segment is implemented based on the sample variance of inertial 

measurements. In probability theory, the variance of a random variable is a measure of 

the spread around its expected value. The sample variance is the approximation for 

variance with finite size N in real application. For the N sample set, the sample 

variance equals to the unbiased mean square error, which indicates the scale of values 

of the sample set. Hence, the intensity of handwriting motion can be described by the 

sample variance of corresponding acceleration sample set in real-time. 

For computational efficiency，a First-in First-out (FIFO) stack is preferred to store and 

process the successive sample data. The sample variance with window length N can 

be calculated as, 
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1 N 
叫 无)2 (8.2.4) 

Where x is the sample mean, 

_ 1 N 
^ = — Z ^ / (8.2.5) 

^ i=\ 

The writing or pause motion status for stroke segment can be determined as follows 

[51]. 

For a sampled time instance k，if |(/c) < cr,;! for jc = k,k + \,•",}<; +H ’ then k 

is the beginning k̂  of the stroke. 

For a sampled time instance k> ki+W，if|(/c) > cr,/̂  foric = k,k + \,…,k + H, 

then k-S is the end k: of this stroke. 

Where is a standard variance of over s samples until k, o•仇 is a 

threshold of the standard deviation. Pfis the minimum number of samples for writing 

a stroke, and H is the minimum number of samples to keep being less 

than <7出. 

As the unbiased motion intensity estimator of sample variance, the stroke segment 

algorithm does not have the concern of gravitational accelerations which is changing 

with pen attitude. The sample variance evaluates in stochastics from the entire sample 

set block. This macroscopic information can efficiently discriminate hand motions by 

writing or trembling. However, the ，W and H should be predefined. These 

parameters have to try and test in calibration. The recognition efficiency may vary 

with characters of different size, especially for different experimenter when the 

handwriting habit is different. 

As the approximation to the expected variance, the error in sample variance caused in 

sampling may magnify to motion segment error when the sample set data are 
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symmetric near inflexion point as illustrated in Figure 8.8 below， 

S a m p l e V a r i a n c e w i th W i n d o w Leng th : S = 4 
I 1 1 1 1 

- (0 .09 ,1 .0 .988) _ 
Meanl 0.939 • 丨 Accelerometer Output 

0 - 8 - ( 0 . 0 7 ^ 9 1 ) I I (0.13X891) ——• Sample Set 1 -

I I I I — • Sample Set 2 | 

�“ / I 1 1 I \ -
/ I I I I V(0.17,0.454) 

fO.4- Z 丨 I I I -
I 0.2- / I I I I I 一 -

I o / J I _ _ _ _ _ , 
g Mean2 = 0 厂 | 

-0.2 - Hand Tremble (0.21,-0.156)^ j -

-0.4 - \ l -

(0.23, - 0 . 4 5 � 

-0.6 - \ -

-0 a' 1 1 1 1 — 
0 0.05 0.1 0.15 0.2 0.25 

T i m e ( s e c ) 

Figure 8.8: Acceleration variance underestimates motion intensity (velocity) due to sampling error 

Suppose acceleration signal for handwriting is a one-interval sine wave of 2.5 Hz as 

demonstrated in blue curve. And the sample rate of the digital system is 50 Hz which 

satisfies the Nyquist sampling theorem. The window length for sample variance is 4 

for quick response. The sample variance for the first sample set equals to 0.0485. On 

the other hand, after one measurement, the sample variance for the second sample set 

equals to 0.3394. A trivial hand tremble signal simulated in black line has the same 

sample variance as the first sample set. However, the pen-tip is accelerating during 

first sample set around 0.1 second until the stroke ended at 0.4 second when the 

velocity decelerate to zero. 

Thus a Kalman filter is proposed to make use of the posterior motion information to 

address this problem. In time update, the variance of acceleration is propagated as the 

system state as follows. 

交 ( 8 . 2 . 6 ) 

Pk=Pk-l+Q (8-2.7) 

In measurement update, the estimation are updated by the sample variance 
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as follows, 

^ P[ 
Kk = ^ — (8.2.8) 

Pk一+R 

h (8.2.9) 

( 8 . 2 . 1 0 ) 
Pk 

Where 0(yk—N+\，. • •，jVyt) is the sample variance for the N data set until current k. 

k j 1 
O C y 众 _； ^ +1 ’ … i Y , { y t - - ( 8 . 2 . 1 1 ) 

\ ^ i=k-N+\ ^ j=k-N+\ 

The motion status of writing or pause can be judged by Kalman filter result for the 

sample variance versus a constant threshold. 

Figure 8.9 below demonstrates the experiment result to verify the segment 

performance. A zigzag line with 13 strokes is written to verify the response and 

stability of the algorithm. The window length is set to: N= 5. 
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Figure 8.9: Kalman smoother based stroke segment for motion status detection (1) 
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The stroke segment detail is shown in Figure 8.10 below. The Kalman filter tracks the 

sample variance with quick reaction corresponding to the start and end of each stroke. 

The variance drop at symmetric sample set near max value can be compensated by 

previous estimation. 

Kalman Smoother based Stroke Segment 
I I I I 1 i I 

4 - Variance of Acceleration X • - -
Kalman Smoother Variance | ； ； A 

3 _ Acceleration X [ ^ i j. M 
Stroke Segment ； I ； |\ ； H 

-2 - j ； \ " \ 丨 -

-4 - r i -i—4-/ I I — i j- -

-5 - I I '' "j -

-6 - i -i i- \fi i- -1 1 I I Ll I 
8 8.5 9 9.5 10 10.5 

Time (sec) 

Figure 8.10: Kalman smoother based stroke segment for motion status detection (2) 

8.2.2. Zero Velocity Compensation 

For handwriting tracking, the pen-tip position is propagated from accelerometers in 

real-time. The random noise and sensor bias in accelerometers will be accumulated 

and magnified due to the double integration process. To guarantee the position 

tracking accuracy, physical position reference should be introduced in feedback to 

correct the sensor error. 

As explained in the introduction Chapter, the digital writing instrument design is 

focused on source-less, high resolution and indoor applications. Thus popular 

technology for position feedback in navigations is not applicable, such as Global 

Positioning System (GPS), Ultrasonic, and Infrared system. Hence, the position 

correction is realized from the error measurement related in trajectory parameters. In 

[51], Zero Velocity Compensation (ZVC) algorithm is proposed based on zero 

velocity updates (ZUPTs). 
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During handwriting, the pen-tip velocity in segment between strokes equals to zero. 

This motionless status of hand movement can be detected by IMU based on the stroke 

segment algorithm. The pen-tip velocity is updated to zero and velocity difference is 

utilized to correct the entire acceleration during this stroke is corrected by assuming 

the error model for pen-tip velocity is linear when acceleration error is small. 

Figure 8.11 below demonstrate the ZVC process and the algorithm flowchart for 

real-time application. 
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Figure 8.11: Zero velocity compensation diagram [51 ] 

Due to high sample rate and short stroke writing, the writing experiment results 

demonstrate the performance for ZVC position correction. However, this algorithm is 

for offline process when the feedback information is available after each stroke. Thus, 

the error model of the accelerometer output should be analyzed and implemented for 

real-time application. 
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8.2.3. Complementary Attitude EKF for Writing Experiment 

The handwriting experiments are performed to verify the algorithm integration for the 

Digital Writing Instrument system and test the performance of attitude and position 

tracking for handwriting recording. 

Figure 8.12 below illustrates the writing experiment setup with the wireless Digital 

Writing Instrument based on M A G - | L I I M U . 

^ H H H 

【 零 J l 
Figure 8.12: Experiment setup for Digital Writing Instrument with MAG卞IMU 

In this experiment, an 8cm x 10cm capital letter ‘A，with four strokes is written on a 

horizontal plastic table in normal writing speed. During handwriting, the MAG-|iIMU 

measured the nine channel motion information of X, 7, Z acceleration, roll, pitch, yaw 

angular rate, and X, Y, Z magnetic field strength with 200 Hz sampling rate. After 

wireless transmission via Bluetooth, the Complementary Attitude EKF in computer 

estimated the pen attitude in real-time with dynamic switch to combine the 

accelerometer and the magnetometer update, controlled by Stroke Segment Kalman 

Filter. After coordinate transform by attitude tracking result, and Zero Velocity 

Compensation, the handwriting trajectory in the Earth frame was obtained stroke by 

stroke. Figure 8.13 below shows the nine-channel sensor output W.R.T. the body 

frame from the MAG-|iIMU. 
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Figure 8.13: Digital Writing Instrument sensor outputs 

The motion information for three-dimensional accelerations, angular rates and 

magnetic field strength W.R.T. the body frame are transformed after calibration 

experiments as shown in Figure 8.14. Random noise prevails in sensor observations. 

MAG-IMU Measurements for Attitude EKF 
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Figure 8.14: Nine-channel motion information W.R.T. the sensor frame 

Meanwhile, the body frame acceleration in X-axis is utilized to detect the writing or 

pause of hand motion by Stroke Segment Kalman Filter in real-time. This writing 
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status information can control the switching in measurement update. 
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Figure 8.15: Stroke Segment Kalman Filter as sync switch for measurement update 

The pen attitude in quaternion is estimated by the Complementary Attitude EKF in 

real-time. For comparison, the attitude is also displayed in Euler angles as shown in 

Figure 8.16. After 0.26 sec, the filter tracked to true attitude for 44.3 degree in roll. 
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Figure 8.16: Tracking result of Complementary Attitude EKF 

As shown in Figure 8.17 below, the acceleration W.R.T. the Earth frame are obtained 
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by coordinate transform according to the filter result for pen attitude in real-time. 
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Figure 8.17: Accelerations W.R.T. Earth frame by Complementary Attitude EKF 

Figure 8.18, Figure 8.19 and Figure 8.20 blow demonstrate the performance for 

accelerations coordinate transform from the sensor frame to the writing frame by the 

Complementary Attitude EKF quaternion output. For comparison, the transformed 

acceleration by noisy gyroscope propagation and the sensor measurement are shown 

in green and blue lines respectively. 
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Figure 8.18: Performance comparison for the acceleration coordinate transform in X-Axis 
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During handwriting, the pen attitude is changing with hand motion. The attitude error 

caused by noisy measurement will lead to nonlinear bias by coordinate transform for 

the Earth frame accelerations. 
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Figure 8.19: Performance comparison for the acceleration coordinate transform in Y-Axis 

As the pen-tip is moving on the write board which is the X-Y plane of the Earth 

coordinate system, the Earth frame acceleration in Z axis should equal to zero. 
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Figure 8.20: Performance comparison for the acceleration coordinate transform in Z-Axis 
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The real-time writing result for ‘A，is shown in Figure 8.21, which started from the 

origin (0,0). Due to noise and bias in the accelerometer measurements, the position 

error was accumulated and magnified by double integration and caused nonlinear drift 

and distortion in the writing trajectory. 
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Figure 8.21: Capital letter 'A' written by Complementary Attitude EKF 

Thus, the Zero Velocity Compensation is implemented to improve position accuracy 

[51]. The stroke segment is improved using the Z-axis acceleration in Earth frame by 

coordinate transform and the Complementary EKF tracking result. 
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Figure 8.22: Stroke segment according to the Earth frame acceleration 
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Figure 8.23, Figure 8.24 and Figure 8.25 illustrate the acceleration updated by ZVC. 

During the pause stage of writing, the velocity was set to zero and the position 

remained constant to avoid position drift. 

Acceleration Sensor Measurement 
Acc-X 

61 1 1 1 1 1 1 : 

i i i H i JM i I 一 "c 
； ； 1 ) ： I ； ； No ZVC 

< ； ； I “ ； 丨 1 / 丨 丨 

-6 -……i I i- i- i- -i -： -

-8-…-1 1 1 1……I.……i j j -
-IqI i i i i i i i 

3 3.5 4 4.5 5 5.5 6 6.5 

Time (sec) 

Figure 8.23: A""-axis acceleration updated by Zero Velocity Compensation 
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Figure 8.24: K-axis acceleration updated by Zero Velocity Compensation 
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Accelera t ion Sensor Measurement 
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Figure 8.25: Z-axis acceleration updated by Zero Velocity Compensation 

Figure 8.26 illustrates the velocity corrected by ZVC. The error accumulated in 

velocity calculation due to accelerometer noise and bias, and magnetic field distortion 

was rectified backwards after each stroke. When the sampling rate is high enough and 

magnetic field distortion within one stroke is tolerable, the higher order term can be 

omitted and the velocity error can be approximated in linear model. However, ZVC is 

offline algorithm. The letter should be written stroke by stroke to utilize velocity bias. 
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Figure 8.26: Velocity updated by Zero Velocity Compensation 
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After coordinate transform using Complementary EKF attitude and ZVC, the 

handwriting trajectory for ‘A’ is improved as shown in Figure 8.27. 

Writing Experiment Result (MAG-EKF+ZVC) 
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Figure 8.27: Writing result for ‘A，by Complementary Attitude EKF and ZVC 

Figure 8.28 below demonstrate the handwriting result during this experiment for 

comparison. The capitialized ‘A，is written by the marker in the Digital Writing 

Instrument on an A4 size paper. 

Figure 8.28: Handwriting result for ‘A，using DWI system during the position tracking experiment 
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Compared to Figure 8.27, there is drift error and distortion in Figure 8.29 obtained by 

coordinate transform using gyro attitude propagation and ZVC. 

Writing Experiment Result (ZVC) 
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Figure 8,29: Writing result for ‘A’ by gyro attitude propagation and ZVC 

Figure 8.30 and Figure 8.31 below illustrate the position tracking result for the pen-tip 

trajectory with and without Complementary Attitude EKF compensation. 
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Figure 8.30: Writing result for ‘B’ by Complementary Attitude EKF and ZVC 
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Writing Experiment Result (ZVC) 
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Figure 8.31: Writing result for ‘B，by gyro attitude propagation and ZVC 

Figure 8.32 below demonstrate the handwriting result during this experiment for 

position tracking comparison. 

Figure 8.32: Handwriting result for ‘B’ using DWI system during the position tracking experiment 

The writing experiment for the 'CMNS' is performed to verify the continuous attitude 

tracking as shown Figure 8.33. The 'CMNS' is written in normal handwriting speed 

with quick stop between the letters. 
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I J 
Figure 8.33: Handwriting result for 'CMNS' using DWI system during the position tracking 

experiment 

As shown in Figure 8.34, the Complementary Attitude EKF can estimate and keep 

tracking the pen attitude in space for the whole word. After Zero Velocity 

Compensation [51], the handwriting trajectory is obtained with tolerable position 

tracking error. 
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Figure 8.34: Writing result for ‘CMNS，by Complementary Attitude EKF and ZVC 
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Figure 8.35 below demonstrates the position tracking result without Complementary 

Attitude EKF. Without feedback correction, the pen attitude by gyro propagation was 

interfered with sensor noise and bias drift. The accumulated attitude error resulted in 

the transformed accelerations in Earth frame and finally caused nonlear distortions in 

handwriting position tracking. 
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Figure 8.35： Writing result for 'CMNS' by gyro attitude propagation and ZVC 
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9. Future Work 

9.1. Unscented Kalman Filter 

Based on the attitude extended Kalman filter, I have further investigated the unscented 

Kalman filter (UKF) for rotation tracking. The unscented Kalman filter is a recursive 

minimum mean square error (MMSE) estimator based on the Kalman filter and 

unscented transform, which is proposed by S. J. Julier and J. K. Uhlmann [43]. As 

proved in [44] and [45], the unscented Kalman filter is more accurate than the 

extended Kalman filter for nonlinear filtering and estimation. However, the UKF does 

not require derivation for the system plant and the computational costs of both 

algorithms are similar. I have designed an attitude unscented Kalman filter based on 

the mathematic model in the attitude EKF. Simulation results have proved the 

advantage in accuracy and response for attitude tracking. In the future, I suggest 

others to implement the attitude unscented Kalman filter for the Digital Writing 

Instrument System to improve handwriting position tracking. 

9.1.1. Least-square Estimator Structure 

As proofed in Chapter 5，the Kalman filter, as Least-square estimator (LSE), is the 

optimal solution to the linear fitting problem as illustrated in Table 5.1 and Table 5.2. 

Given the observation 少众 with Gaussian noise, the state Xĵ  can be estimated by 

propagation iterations based on state-space framework. In nonlinear systems, the filter 

estimations require taking expectations of the nonlinear function for the random 

variables , w and v. 

Xk = X k +Ki,[yi,-y'；；] (9 .1 .1) 

Where, Jc^ = ，w)] (9 .1 .2) 

K k = 乡 : ( 9 . 1 . 3 ) 
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rk=E[H{xl,v)] (9.1.4) 

The optimal feedback gain Kj, in Eq. ( 9.1.3 ) is analytically equivalent to Eq. 

(5.2.24 ). Kk requires stochastic evaluation for the cross-covariance matrices and 

the posterior covariance matrices with J；众=少众 一 j)厂.These calculations involve 

taking expectation of prior state estimates through nonlinear functions. 

However, the extended Kalman filter approximates the optimal terms by linearizing 

the state-space model as, Xĵ ^̂  w Axĵ  , yj^^ Cxĵ  , usually Jacobian of 

first-order, and then determining the posterior covariance matrices analytically for the 

linear system. Consequently, this approximation will introduce large error in the true 

posterior mean (the estimated states) and covariance of the transformed random 

variable, which will incur nonlinear distortion in the filter output. 

9.1.2. Unscented Transform 

The unscented Kalman filter improves the nonlinear approximation by combining the 

advantages from the particle filter [50], on the other hand, making use of unscented 

transform in stead of random sampling of points. 

The unscented transform projects the system state into stochastic feature set according 

to the probability characteristic. The expectations of nonlinear functions are 

approximated by the weighted mean approach of the transformed feature set. 
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Figure 9.1: Approximation of a one-dimensional Gaussian distribution by three feature points 
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The Gaussian probability density function can be specified by the mean and 

covariance as shown in Eq. ( 5.2.8 ). In the simplest case, one-dimensional Gaussian 

distribution can be described uniquely by three points shown in Figure 9.1 below. The 

middle point stands for the mean and the other two points restrict the covariance. 

Figure 9.2 below illustrate the Gaussian distribution in two-dimensional space. 

Consequently, the stochastic information of an ^-dimensional Gaussian random 

variable can be described by 2«+l selected sigma points. The middle point is for the 

mean and the others define the covariance. 

4 
I 10 

I S , T 

。： 

.so 

Figure 9.2: Approximation of a two-dimensional Gaussian distribution by five feature points 

Given a nxn covariance matrix P, a set of 2n sigma points can be generated from the 

columns (or rows) of the matrices ± -^{n + X)P (the positive and negative rows). This 

set of points is 3c mean. The scalar A is a scaling parameter to determine the spread 

of the sigma points around x . The equations of unscented transform for sigma points 

are listed below [46]. 

Table 9.1: Unscented transform equations 

； ( 9 . 1 . 5 ) 

/ = + + (9.1-6) 

/ = " +1，…，2« ’ ；二 — + 义 ( 9 . 1 . 7 ) 
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Figure 9.3 below illustrates the performance of projecting the Gaussian random 

variable by the unscented transform versus the extended Kalman filter. The actual 

sampling demonstrates the true mean and variance of the random variable after 

nonlinear transform. The extended Kalman filter approximates the nonlinear process 

to the first order accuracy. The estimated mean is shifted and the variance is rotated 

due to the linearization error. The unscented transform generates carefully selected 

sigma points. The spread of these sigma points through nonlinear dynamics is 

completely controlled to third order moments as proofed. The distribution of the 

propagated random variable is refined to the stochastic features. The estimation error 

is much smaller than the extended Kalman filter. 

Actual (sampling) UT Linearized (EKF) 

• - ； • 

covariance '-M^ '-' ‘ • sigma 
\ . Pomts 

% ,0' 0 
• 働 mean 
；々T.Ĵ  誉 I I 

••y = f(x) w, =f(x,) y = f(x) Pv= 
I • • + + 

农；二 177/它 • 乙了 

‘ ^ covariance namfoiwed 
sigma points 

Figure 9.3: Unscented transform for mean and covariance undergo nonlinear process [46] 

9.1.3. Unscented Kalman Filter 

The 2n+l generated sigma points are propagated through the nonlinear dynamic 

equations of the time update model in Eq. ( 9.1.8 ). The optimal estimation of the 

observation y can be achieved by the weighted mean of the transformed 2n+\ 

feature set in Eq. ( 9.1.10 ). As proofed by Julier and Uhlmann, to undergo nonlinear 

process, the propagation of mean and covariance is more accurate and feasible than 

the estimation of the system state [44]. The calculation of the projected mean and 

covariance is as accurate to the second order. However, there is no requirement for 
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constructing any derivatives. The unscented Kalman filter is feasible for 

non-differentiable system dynamics. 

For / = 0，…，2«， ；ir�=F[；IT/] (9.1.8) 

t̂ / =H[X；] (9.1.9) 

y = (9.1.10) 
;=0 

(9.1.11) 
;=0 

Where 妒 a n d ！^⑷ are the weighting parameters defined as follows, 

Table 9.2: UKF weighting parameters 

= XI {n + X) (9.1.12) 

+ + (9.1.13) 

For / = ! , • • • , = I / { 2 ( « + A)} (9.1.14) 

Where, X = (9.1.15) 

The constant parameter a determine the scaling factor X and is set to small 

positive number, typically 10"̂  < « <1. K is the secondary scaling parameter which 

is usually set to zero. P is the parameter to exploit the prior knowledge of the 

distribution of JC. (3 is set to 2 for Gaussian distribution [46]. 

The unscented transform preserves the first three moments of the given distribution. 

The scalar A is a tuning factor to control the higher order moments correspond to 

different distribution information. For scalar system when « = 1, A = 2 settles the， 

errors in the mean and covariance to the sixth order. For higher dimensional system, 

yl = 3 - « minimizes the mean-square error up to the fourth order [44]. 

The Kalman gain can be updated from the mean and covariance by unscented 
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transform. Hence, the unscented Kalman filter has advance accuracy compared to the 

extended Kalman filter. 

With the constant parameters defined in Table 9.2，the equations for the unscented 

Kalman filter (UKF) algorithm are listed in Table 9.3 to Table 9.6 below. 

Table 9.3: UKF initialization equations 

•^0=五[〜] (9.1.16) 

Po =可(X�-x,){x, 一文。广] (9.1.17) 

Firstly, the unscented Kalman filter is initialized by the distribution information of the 

initial mean and covariance matrix calculated from the training data. The 2n+l sigma 

points are generated as follows, 

Table 9.4: Unscented transform for sigma points 

+ (9.1.18) 

The time update and measurement update structure of unscented Kalman filter is 

similar with the Kalman filter. However, the propagation under nonlinear dynamic 

equations are improved by unscented transform. 

Table 9.5: UKF time update equations 

ZK\K-I =F[ZK-I] (9.1.19) 

2n 

••丨 （9.1.20) 
1=0 

In 

(9.1.21) 
1=0 

=H[XK\K-\\ (9.1.22) 

A一二 f x � a M (9.1.23) 
1=0 
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The system state is corrected by measurement update by the weighted mean approach. 

The updated state for mean and the covariance matrix {Jĉ ,̂?̂ } is taken to the time 

update for next iteration step. 

Table 9.6: UKF measurement update equations 

2n 
PYY = — 夕 - Y ^ F ( 9.1.24 ) 

(=0 

In 

P 砂 ⑷ [ 义 A M - Y ' J (9.1.25) 
/=0 

尺=P砂 P；丨 (9.1.26) 

( 9 . 1 . 2 7 ) 

P片-KPJCr (9.1.28) 

The unscented Kalman filter captures the mean and covariance as precise to the third 

order moments for any nonlinearity, while the extended Kalman filters only attain first 

order accuracy. On the other hand, the computational complexity of the unscented 

Kalman filter is in the same order of that of the extended Kalman filter. 

Some successful quaternion based attitude unscented Kalman filter has been 

developed in [46], [47] and [48]. In [46], the process noise wĵ  and measurement 

noise v众 are implemented as additional states into the system dynamics for 

unscented Kalman filter process. The projected mean and variance are also updated 

including the random noise wĵ  and v众.This approach may explore the capability of 

unscented transform to more complete extent. However, for the extra sigma points, 

the augmented filter will require twice or triple of computations compared with basic 

filter framework. 

Quaternion does not have singularity problem in Euler angles as illustrated in Chapter 

3.4. On the other hand, in sequential attitude filters, the quaternion in system state 

must be confined to a normalized constraint. However, the measurement model may 

violate this rule during feedback updates. Although brute normalization after each 
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recursion can still be a method, the filter does not track well when large error occurred. 

In [47], the UnScented QUatemion Estimator (USQUE) is developed to address this 

problem by introducing unconstrained quaternion error vector as system state and 

propagating the attitude outside the UKF. This algorithm is successful in accuracy, 

however cost in computations. Stated in [47], the USQUE is about 2.5 times slower 

than the EKF in [49]. 

As proofed in Chapter 7.2，the measurement model used in MAG-EKF does not 

require normalization during iterations. The computation is simplified by separate the 

quaternion rotation model into one matrix multiplication. Thus, an unscented Kalman 

filter based on strapdown gyroscopes and magnetometers for quaternion attitude 

tracking is designed as, 

In this UKF, the attitude is calculated in quaternion to avoid singularity. The attitude 

quaternion is applied as the system state. Given current sample for angular rates from 

gyroscope sensors, the attitude quaternion can be updated according to the 

quatemion-based attitude propagation model in Eq. ( 4.3.4 ). The system state System 

dynamics for time update can be derived as, 

尸=[/4 + - ) • dt\ (9.1.29) 

In measurement update, the three-dimensional magnetic field strengths from the 

magnetometer are utilized as attitude reference to correct the propagation error. 

„ 1 「 - [ ( 知 h - 互 ： ,。，。。、 
^ = T (六-.T n (9.1.30) 

The unscented Kalman filter for real-time application with discrete data can be 

implemented as illustrated in the Figure 9.4 below, 
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Measurement Input:少众 

" z 3 
Measurement Update: ^ 

P/t =Pk -灯yyKT 

_ f 个 f ] 
Weighted j ) - P y j 
Sample Mean: " • ^k 

)/ 一 ^ Weighted Sample 
T ^ 厂 C爾riance: 

； 2 « + i � h ，： z>u[]r 

” � 2n t 办 

{义介 f 广 2：巧[M]r 
一 1 � \2”+l PN T 

Unscented ) ( J ) ^；；^；^^^^ 似众 

Transform i ^ r 
r - ^ ~ ]/[ ]r 

In 0 

L̂  U-
Figure 9.4: The real-time recursive structure of the unscented Kalman filter 

9.2. Experiment Result 

The performance of the unscented Kalman filter is tested under extensive simulations. 

The attitude quaternion is displayed in Euler angles for better comparison. 

Assume the rigid object is rotated by torque L, M and N in roll, pitch and yaw 

direction respectively. The angular rates from gyroscopes and magnetic field strength 

from magnetometers are generated according to the Newton-Euler equations with 

additive Gaussian random noise. The sample rate is 200 Hz. 

Z = 0 .01-s in (0 .30 (9.2.1) 

M = 0 .01-008(0 .30 (9.2.2) 
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N = 0.02 ( 9 . 2 . 3 ) 

The sensor output versus the true value is displayed in Figure 9.5 below. 

Gyro Output 
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Figure 9.5: Sensor measurements for the unscented Kalman filter 

The attitude tracking result by UKF versus attitude propagated by noisy gyro outputs 

is shown in Figure 9.6 below. 

Attitude of Roll, Pitch, Yaw 
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Figure 9.6: Tracking output of the unscented Kalman filter 
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Due to selected sigma points by unscented transform, the UKF projects the nonlinear 

mapping of random distribution more accurately than the linear approximation of the 

EKF. Thus, the unscented Kalman filter can achieve faster convergence from 

inaccurate initial conditions. Figure 9.7 below demonstrates the comparison for 

tracking time of the UKF and EKF. Given a large initial attitude error of 90 degree in 

Yaw direction, compared to the 0.95 second of the EKF, the tracking time for UKF is 

only 0.03 second. Thus, the unscented Kalman filter is more sensitive in tracking and 

more stable for hash environment. For onboard applications, when severe EMI cause 

malfunction in memory for attitude of the system state, the attitude filter based on 

UKF can track back to the true state in a shorter time or restart with less cost. 

Attitude of Roll, Pitch, Yaw 
n 1 1 1 1 1 1 1 1 1 1— •4 a * • I • I I I I » » I 1 . b ； r T -J r r • r 飞 — 
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Figure 9.7: Tracking speed of unscented Kalman filter versus extended Kalman filter 

The unscented Kalman filter is superior in accuracy compared with EKF as shown in 

Figure 9.8 below. The dash lines represent the tracking result by extended Kalman 

filter in Euler angles. Due to linearization error, the attitude result deviates from the 

true value and diverge prone to noisy measurements as the tracking error 

accumulating. However, the UKF maintain good performance for tracking the true 

attitude. 
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Figure 9.8: Tracking accuracy of unscented Kalman filter versus extended Kalman filter 
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10. Conclusion 

A wireless Digital Writing Instrument based on MAG-|iIMU has been developed with 

three-dimensional accelerometers, gyroscopes and magnetometers with strapdown 

installment. Through Bluetooth connection, the motion data are transmitted to a 

computer with 200 Hz sampling rate for real-time process in attitude determination 

and position tracking. 

10.1.Attitude Extended Kalman Filter 

This thesis presents a complete design of an extended Kalman filter for real-time 

attitude estimation of a moving rigid body. We also discussed about a general 

approach to improve the extended Kalman filter to remove the input state's bias. The 

attitude representation is completely in quaternion, instead of Euler angles. The Euler 

angles have triangle functions which will cost more computation resources and cripple 

the filter due to the singularity problem. The measurement update is also applicable to 

other reference field sensors, such as accelerometer tilters. Further, no quaternion 

normalization is needed during filter iterations. 

10.2.Complementary Attitude EKF 

Base on this filter model, a Complementary Attitude EKF is designed to combine 

accelerometers and magnetometers in the measurement update, sensing gravity field 

and Earth magnetic field as reference, respectively. The measurement model is 

improved to synchronize the filter observation input when switching between the two 

sensors. During writing, the magnetometers contribute in attitude correction because 

the inertial acceleration measured by accelerometers will interfere for gravity attitude. 

When writing is paused, the filter utilizes the accelerometer in feedback to update the 

magnetic field distortion within the stroke. The attitude will be updated when the pen 

is static and the output from the accelerometers can be trusted as a gravity vector. Also, 

this long term correction will help eliminating magnetic field interference. The sensor 

sets corresponding to orthogonal attitude reference field can compensate the attitude 

ambiguity along the field axis for each other. 
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10.3.Unsceiited Kalman Filter 

The unscented Kalman filter as an advanced nonlinear estimator combines the 

Kalman filter and particle filter. A quaternion-based attitude unscented Kalman filter 

is developed based on magnetometers update. With similar computational resource 

cost, the performance of the unscented Kalman filter is superior compared to the 

extended Kalman filter in tracking accuracy and estimation response. 

Extensive experiments were conducted to verify the convergence performance of the 

extended Kalman filter. The filter achieved good results for all tests using ideal 

simulation data and actual sensor data. The filter can track the pen attitude with the 

MAG-|iIMU installed. The filter system is stable without the singularity or 

normalization problem even after consecutive, rapid 90 degree rotations. The writing 

experiment for whole system verifies the tracking or pen-tip movement is enhanced 

by the Complementary Attitude Kalman Filter. Based on the inertial position tracking 

technology, the handwriting trajectory in space is calculated stroke by stroke in order 

to correct accelerometer drift. 

10.4.Future Work 

In handwriting experiment, Zero Velocity Compensation [51] is introduced to correct 

drift error in MEMS accelerometers. This offline algorithm assumes the accelerometer 

error model is linear in velocity, and the accelerations can be updated backwards by 

clamping from the velocity drift at the end of each stroke. Hence, more experimental 

effort is required to set up precise motion stage and build motion database for MEMS 

accelerometer to analyze the error model. Thus the acceleration drift error in 

measurement can be compensated in real-time. 

As demonstrated in Chapter 9，the unscented Kalman filter is an advanced estimator 

for nonlinear system. The quick tracking response ensures the stable performance， 

especially for the switching in the measurement update. Therefore, the unscented 

Kalman filter will be implemented in the complementary framework for real-time 

attitude tracking. 
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Appendix A 

Schematics 

1. Digital Writing Instrument (main board section) 

2. Digital Writing Instrument (sensor board section 1) 

3. Digital Writing Instrument (sensor board section 2) 
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