
A Study of Time Series:
Anomaly Detection and Trend

Prediction

LEUNG Tat Wing

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Master of Philosophy
in

Computer Science and Engineering

©The Chinese University of Hong Kong
August 2006

The Chinese University of Hong Kong holds the copyright of this thesis. A n y

person(s) intending to use a part or whole of the materials in the thesis in

a proposed publication must seek copyright release from the Dean of the

Graduate School.

l_Y 道 — 屬

i(m 130 I I
产:，

Thesis / Assessment Committee

Professor WONG Man Hon (Chair)

Professor FU Wai Chee (Thesis Supervisor)

Professor LEUNG Ho Fung (Committee Member)

Professor X. Sean Wang (External Examiner)

Abstract of thesis entitled:
A Study of Time Series: Anomaly Detection and Trend Pre-

diction
Submitted by LEUNG Tat Wing
for the degree of Master of Philosophy
at The Chinese University of Hong Kong in July 2006

This paper discusses two important problems in time series.
Anomaly Detection: The problem of finding anomalous

subsequences has received much attention. However, most of
the anomaly detection algorithms need an explicit definition of
unusual pattern, which may be impossible to elicit from a do-
main expert. Using discords as anomaly definition is useful,
since discords only require one intuitive parameter (the length
of the subsequence). In this thesis, we introduce a new algo-
rithm for finding discords. By converting the sequences into
Haar wavelets, using the properties of Haar wavelets, we are
able to locate the discord by searching the wavelets from low
resolution to high resolution.

Trend Prediction: Time series trend prediction is not a new
topic. People in different areas use different approaches to solve
this problem. In spite of the many previous works, it is still a
very difficult problem, especially for financial data such as stock
price, bond price and index. It may be because of their high
volatility. We believe that analyzing the basic patterns of a time
series can provide us with a lot of information, since data points
in time series must reflect all the underlying generating principle
and correlation that exist between data points. In this thesis,

i

we propose an algorithm that applies the previous knowledge
about the movement of the stock price on moving average. And
we will show that this algorithm can develop effective investment
strategies.

ii

摘要

這篇論文將會討論兩個在時間序列上很重要的問題。

異常偵測：尋找異常子序列這個問題已經受到關注。但是，大部份的異常偵測演

算法都需要明確地定義甚麼是不正常的模式，這對於領域專家來說是不太可能。

利用I不一致」來做一個異常探測器是十分有用的，因爲它們只需要一個靠直覺

得知的參數（子序列的長度）。在本論文，我們會介紹一個新的演算法來尋找不

一致的子序列。我們建議轉化序列爲哈爾小波。以後再利用哈爾小波的特性，這

樣我們便能從低解像度到高像度去尋找不一致。

預計趨勢：時間序列的趨勢預計已經不是一個新課題。人們在不同的領域用不同

的方法去決解這個問題。雖然有很多以前的著作，但是這個問題仍然是十分困

難。特別是金融的數據，例如股票的價格、偾券的價格和一些指數。這可能是因

爲它們的高揮發度。我們相信分析時間序列的基本模式可以提供我們很多有用的

資料，因爲在時間序列的數據點一定會反映出所有潛在的生產原則及數據點之間

的相互關係。在本論文，我們提議的演算法將過往對於股票價格的資料應用在栘

動平均線上。我們會展示這個演算法能夠發展出一個有效的投資策略。

iii

Acknowledgement

I would like to express my sincere thanks to my supervisor Pro-
fessor Ada Wai-Chee Fu for her kindly guidance, support and
help throughout this dissertation. I would like to express my
special thanks and appreciation to Professor Man-Hon Wong
for his valuable comments.

I would also like to give my thanks to my fellow colleagues,
Albert Au-Yeung, Royce Cliing, Tilen Ma, Shirley Ng, Yuk-
Man Wong, Hei-Tat Lam, Pik-Wah Chan, Chi-Wing Wong and
Cheuk-Han Ngai. They have given me a joyful and wonderful
time in my research. These two years should not have been that
fruitful without them.

iv

This work is dedicated to my family for the support and
patience.

V

Contents

Abstract i

Acknowledgement iv

1 Introduction 1
1.1 Unusual Pattern Discovery 3
1.2 Trend Prediction 4
1.3 Thesis Organization 5

2 Unusual Pattern Discovery 6
2.1 Introduction 6
2.2 Related Work 7

2.2.1 Time Series Discords 7
2.2.2 Brute Force Algorithm 8
2.2.3 Keogh et al.'s Algorithm 10
2.2.4 Performance Analysis 14

2.3 Proposed Approach 18
2.3.1 Haar Transform 20
2.3.2 Discretization 22
2.3.3 Augmented Trie 24
2.3.4 Approximating the Magic Outer Loop • . 27
2.3.5 Approximating the Magic Inner Loop . . . 28
2.3.6 Experimental Result 28

2.4 More on discord length 42
2.4.1 Modified Haar Transform 42

vi

1

2.4.2 Fast Haar Transform Algorithm 43
2.4.3 Relation between discord length and dis-

cord location 45
2.5 Further Optimization 47

2.5.1 Improved Inner Loop Heuristic 50
2.5.2 Experimental Result 52

2.6 Top K discords 53
2.6.1 Utility of top K discords 53
2.6.2 Algorithm 58
2.6.3 Experimental Result 62

2.7 Conclusion 64

3 Trend Prediction 69
3.1 Introduction 69
3.2 Technical Analysis 70

3.2.1 Relative Strength Index 70
3.2.2 Chart Analysis 70
3.2.3 Dow Theory 71
3.2.4 Moving Average 72

3.3 Proposed Algorithm 79
3.3.1 Piecewise Linear Representation 80
3.3.2 Prediction Tree 82
3.3.3 Trend Prediction 84

3.4 Experimental Results 86
3.4.1 Experimental setup 86
3.4.2 Experiment on accuracy 87
3.4.3 Experiment on performance 88

3.5 Conclusion 90
t

4 Conclusion 92

Bibliography 94

vii

List of Figures

1.1 An electrocardiograms(ECG)of a patient 2
1.2 DOW Index from January 2000 to December 2005 2

2.1 A time series is transformed into PAA representa-
tion and then convert into a sequence of symbols
by using predetermined breakpoints 13

2.2 Keogh et al.'s idea is illustrated in this diagram . 14
2.3 An array of words for building an augmented trie 25
2.4 symbol is considered for splitting the root node.

All leaf nodes will be split, since no leaf node con-
tains only 1 word 26

2.5 symbol is considered. No tree node is split in
next iteration, since there is only 1 word mapped
to 'ac' 26

2.6 A time series discord (marked in bold line)was
found at position 2830 29

2.7 Number of times distance function is called by
Keogh et al.'s Algorithm and Our Proposed Al-
gorithm 35

2.8 The running time of Keogh et al.'s Algorithm and
Our Proposed Algorithm 40

2.9 After transformed /(x), it becomes (3 1 1 2 2 2 4
0) 44

2.10 After transformed f{x), it becomes (4 0 1 4 2 2
0 0) 44

viii

2.11 The overlapping area (marked in bold line) was
found from position 10871 to 11397 46

2.12 (top) Three discords were found. Discord loca-
tion: 310, length of discord: 50. Discord location:
423, length of discord: 51. Discord location: 233,
length of discord: 75. (bottom) One discord was
found. Discord location: 268, length of discord:
100 48

2.13 (top) Three discords were found. Discord loca-
tion: 428, length of discord: 50. Discord loca-
tion: 161, length of discord: 58. Discord location:
315, length of discord: 64. (bottom) Two dis-
cords were found. Discord location: 315, length
of discord: 100. Discord location: 79, length of
discord: 194 49

2.14 Number of times distance function is called by
original inner loop heuristic and improved inner
loop heuristic 55

2.15 Running time of original inner loop heuristic and
improved inner loop heuristic 57

2.16 The power consumption for a Dutch research fa-
cility from 1st January, 1997 to 31st December,
1997 63

2.17 The power consumption for a normal week 63
2.18 (top) The 1st discord of this sequence (bottom)

the 2nd discord of this sequence 64
2.19 Number of times distance function is called by

Brute force Algorithm and Our Proposed Algorithm 66

3.1 The head and shoulders pattern is generally re-
garded as a reversal pattern 71

ix

3.2 In Dow theory, a market can be modeled in three
trends. However, the third trends are usually ig-
nored 72

3.3 The original time series was smoothed by using
30-moving average. Now the trend of this time
series became much easy to observe. And the
turning points show us the time for buying and
selling the stocks 77

3.4 The original time series was smoothed by using
100-moving average. When the stock price is
above moving average, it is very clear that the
stock is in bullish behavior. Then in the second
half of moving average, the stock price is below
the moving average, so an down trend is identified. 78

3.5 Two moving averages were used. One is 30-exponential
moving average, another one is 100-exponential
moving average. By finding the intersection points
by two moving averages, we can identify the up
trends and down trends easily 79

3.6 Blue line is the original time series. Red line is
the Piecewise Linear Representation of the time
series 81

3.7 Blue line is the original time series. Red line is
the Piecewise Linear Representation of the time
series. We can continue to add vertices in an on-
line data stream 82

3.8 Our idea is illustrated in this diagram. First step,
we need to generate a moving average for a given
time series 84

V

3.9 Second step, when a new vertex is created at
we need to insert current chart pattern into the
prediction tree. Assume we want to use 3 vertices
to predict the trend, then we need to extract 3
previous vertices, convert them into SAX words
and insert them into predication tree. At the leaf
node, we compare the value Oi and value If
Oi is greater than Oi-i by user specified threshold
f, we increase the value of 'UP TREND' counter
by 1. If Oi is smaller than Oi_i by user speci-
fied threshold f, we increase the value of 'DOWN
TREND' counter by 1. Other, we increase the
value of 'NO TREND' counter by 1. In this case,
the last vertex is in up trend, so we insert this
pattern in 'Up Trend Tree' 85

3.10 (top) Raw data stream (bottom) Adjusted data
stream 87

3.11 The green circles indicate the trading phases. . . . 90

)

xi

List of Tables

2.1 All breakpoints for number of symbols from 3 to
7. For example, area under a N(0,1) Gaussian
curve from —oo to -0.67 is equal to 0.25 12

2.2 All breakpoints for number of symbols from 2 to
7. For example, area under a N(0,1) Gaussian
curve from - o o to -0.84 is equal to 0.2 23

2.3 The best alphabet size for different length of se-
quences in different datasets 41

2.4 Discord location for different length of discord . . 45

3.1 Correctness of trend prediction 88
3.2 Annual rate of return 89

xii

Chapter 1

Introduction

Nowadays, data mining is very important for different people
from different positions. Because of the advanced technology,
we can obtain a large amount of data easily. Unfortunately, it is
not easy to extract some useful information from the raw data.
And it is also well known there is no generic method to get mean-
ingful information from different type of data. Therefore, many
computer scientists in data mining community suggested many
approaches to mine different knowledge for different datasets.

We are especially interested in time series. As in many appli-
cations, time series have been found to be a natural and useful
form of data representation. The definition is shown in defi-
nition 1 and two time series examples are shown in figure 1.1
and 1.2.

Definition 1 Time Series: A time series T = t i , i s an
ordered set of n real values.

Many important applications around us involve time series
such as financial data, electrocardiograms(ECG) and other med-
ical records, weather changes, power consumption etc. As large
amounts of time series data are accumulated over time, it is
interesting to uncover interesting patterns on top of the large
datasets. Some researchers focus on motifs discovery [6, 21], as
finding approximately repeated subsequences is a core task for

1

C H A P T E R . 1. INTRODUCTION 2

fffffffffffT
' ' o MO 1000 1&00 2000 2500 3000 3500 4000 4S00

Figure 1.1: Aii electrocardiograms(ECG)of a patient

11S00

产 ：

: ”
200 400 600 800 1000 1200 1400 1600

Figure 1.2: D O W Index from January 2000 to December 2005

various data mining problems such as mining association rules in
time series. Some researchers focus on time series classification
problem [28, 34, 31]. Although classification, association rules
and frequent patterns are old problems in data mining commu-
nity, they become very challenging problems in time series.

In fact, there are many problems in time series such as clus-
tering, query by context, time series segmentation etc. In this
thesis, we focus on two problems. One is unusual pattern dis-
covery, and the other one is time series trend prediction.

We focus on these two problems, as they are very important.
When we are making decisions, most of time we need to ask two

C H A P T E R . 1. INTRODUCTION 3

questions. One is 'Is there any unusual event in current process'.
The other one is 'What is the future movement'. Hence, there
is a strong motivation to solve these two problems.

And we also find that these two problems can be solved by
using the same techniques. The first technique is discretization,
in fact many researchers will map time series into a sequence
of words. After this mapping, we can handle the original time
series by using existing string operation algorithms. For exam-
ple, subsequence matching problem can convert into substring
matching problem. The second technique is tree structure, it can
provide a fast way to locate any subsequence. The tree structure
can also help us to group the similar subsequences together and
locate the unusual subsequences.

1.1 Unusual Pattern Discovery

Most of the data mining algorithms target common features that
frequently occur. However, looking for the unusual pattern is
found to be useful in many cases. For example, an unusual
pattern in an ECG can point to some diseases, unusual pattern
in weather records may help to locate some critical changes in
environments.

Unfortunately, this problem is not easy. The major difficulty
is what is the definition of anomaly. Some existing algorithms
need an explicit definition of anomalies. It is not an easy task
even for domain experts. Some algorithms need users to provide
a collection of previously observed data, which is considered
normal. Then any newly observed pattern will be compared with
the normal dataset, so no specific model for normal behavior is
needed. However, we may not have enough data to define normal
behavior. And some anomalies may be contained in normal
dataset, we may need another algorithm to remove anomalies
from the normal dataset. This opens the possibility of a chicken

C H A P T E R . 1. INTRODUCTION 4

and egg paradox.
Lin et al. [24] and Keogh et al. [19] suggested a new definition

of anomaly in [24’ 19]. According to these authors, we can define
the most unusual time series subsequence by a single parameter
that is the length of the interesting subsequence. We are very
interested in this definition, as it is a new problem first suggested
in 2005. We find that there is still room for improvement to
existing algorithms.

In Chapter 2 of this thesis, we first have a brief review on
related work and background. Then we will discuss our proposed
algorithm in details. We will investigate this problem in different
aspects that were not considered in previous works. At the end
of Chapter 2, we will discuss the experimental results.

1.2 Trend Prediction

Comparing with unusual pattern discovery, time series trend
prediction is a very old topic. Although people from different
areas have put many efforts and much time on this problem,
there is no approach for solving this problem well. However,
it is very important in many decision making processes. For
example, an investor in a financial market may want to know
whether the DOW index will move in an up trend or a down
trend for the coming few months. It may affect his decision
in buying or selling a stock. As another example, government
may want to know the birth rate and the population size for the
coming years, as they may affect the government policies.

In fact, this problem is very challenging. As we have men-
tioned before, no one could solve this problem well especially for
financial data such as stock price, bond price and index. This
may be because of their high volatility. Some people suggested
the movement of stock price is a random process, that is the
chance for moving upward or moving downward is always 50%.

CHAPTER. 1. INTRODUCTION 5

However, some people suggested that past information can pro-
vide knowledge for trend prediction. Because of the difficulty
and the importance of this problem, there is a strong motiva-
tion for us to solve this problem.

In Chapter of 3 this thesis, we first review some commonly
used prediction techniques. Then, we discuss different types
of moving averages that are the widely used prediction tools
in financial community. We also demonstrate how a moving
curve can help us to predict the trend. Next, we will mention
our proposed algorithm for improving the performance of a well
known tool, moving average in details. At the end of Chapter 3,
we will discuss the experimental results.

1.3 Thesis Organization

In this thesis, we first describe the problem unusual pattern
discovery and the proposed algorithm in Chapter 2. Then, we
describe time series trend prediction and the proposed solution
in Chapter 3. Finally, we conclude our thesis in Chapter 4.

• End of chapter.

Chapter 2

Unusual Pattern Discovery

2.1 Introduction

Algorithm for finding the most unusual time series subsequence [19
was firstly proposed by Keogh et al" Such a subsequence is also
called as time series discord, which is the least similar to all
other subsequences. Time series discords have many uses in data
mining, including improving the quality of clustering [28, 13],
data cleaning and anomaly detection [30, 7, 14, 35, 38]. With
a comprehensive set of experiments, Keogh et al. demonstrated
the utilities of discords in different domains such as medicine,
surveillance and industry.

Keogh et al. also proposed an algorithm [19] based on early
pruning and reordering the search order to speed up the search.

Algorithm proposed by Keogh et al. needs users choose two
parameters, the cardinality of the SAX [23] alphabet size a, and
the SAX word size w. For the parameter a, extensive exper-
iments were carried out by many researchers. Results suggest
that a value of either three or four is the best for any task on
any dataset.

However, for parameter w, there is no suitable value for any
task on any dataset. Keogh et al. suggested that relatively
smooth and slowly changing datasets favor a smaller value of w;
otherwise a larger value w is more suitable. Unfortunately, we

6

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 7

still have questions on how to determine a time series is smooth
or not and what is the meaning of larger value of w [20 .

We propose a word size free algorithm by first converting
subsequences into Haar wavelets [27]，then using a breadth first
search to approximate the perfect search order for outer loop and
inner loop. We will discuss the perfect search later in section 2.3.

2.2 Related Work

2.2.1 Time Series Discords

Many algorithms have been proposed for detecting anomaly in a
time series database. However, most of them require many unin-
tuitive parameters. Time series discords [24,19], which were first
suggested by Keogh et al , are particular attractive as anomaly
detectors because they only require three parameters.

Now, we will define the discord step by step. First, in order
to distinguish an unusual pattern from a given time series, we
must need a distance function to measure the distance between
all pairs of subsequences. Therefore, we need to formally define
a distance measure Distance Measure(C, M).

Definition 2 Distance Measure: It is a function that has C
and M as inputs and returns a nonnegative value R, which is
said to be the distance from M to C. For subsequent defimitions
to work we require that the Distance Measure be symmetric, that
is, Distance Measure(C，M)=Distance Measure(M,C).

Euclidean distance measure is the most common one in the
literature that can fulfill the above requirement. For the rest
of this paper, we will use Euclidean distance as the distance
function.

Definition 3 Euclidean Distance: Given two series C and
M of length n, the Euclidean Distance between them is defined

CHAPTER 2. UNUSUAL PATTERN DISCOVERY 8

as:
Hfc

Distance Measure(C, M) = ^ (q - miY (2.1)
\i=i

Before calculating the distance between C and M, we must
ensure they are both normalized to have zero mean and standard
deviation of one. As it is well known [18] that it is meaningless
to compare time series with different offsets and amplitudes. In
this thesis, we assume that all the subsequences are normalized.

In general, the best matches of a given subsequence (apart
from itself) tend to be very close to the subsequence in question.
Such matches are called trivial matches. When finding discords,
we should exclude trivial matches; otherwise, we may fail to
obtain true patterns. Therefore, we need to formally define a
non-self match [24, 19，6 .

Definition 4 Non-self Match (By Keogh et al): Given a
time series T, containing a subsequence C of length n beginning
at position p and a matching subsequence M beginning at q, we
say that M is a non-self match to C if \p — q\ > n

We now can define time series discord [24, 19] by using the
definition of non-self matches:

Definition 5 Time Series Discord (By Keogh et al): Given
a time series T, the subsequence D of length n beginning at posi-
tion I is said to be the discord of T if D has the largest distance
to its nearest non-self match. That is, for all subsequence C
of T, non-self match Md of D, and non-self match Mc of C,
minimum Distance Measure of D to Md > minimum Distance
Measure of C to Mc-

2.2.2 Brute Force Algorithm

The brute force algorithm is the first simple and obvious al-
gorithm for finding discords. It simply considers all the possi-

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 9

ble subsequences and finds the distance to its nearest non-self
match. The subsequence which has the greatest such value is
the discord. Algorithm 1 illustrates the idea of the brute force
approach. However, time complexity of this algorithm is O(m^),
where m is the length of time series. Obviously, this algorithm
is not suitable for long time series.

A l g o r i t h m 1 B r u t e Force Algor i thm
1： / / I n i t i a l i z a t i on
2: discord d is tance = 0
3： discord locat ion = NaN
4：

5： / / B e g i n Ou te r Loop
6： for p = 1 to \T\ -71 +I d o
7： neares t non-self m a t c h dis tance = infinity
8： / / B e g i n Inner Loop
9： for = 1 to |T| - n + 1 d o

10： if \p — q\> n t h e n
11： Dist = Dis tance Measure(艺jj，..ip+ji—i, ...tg+ri-i)
12： if Dist < nearest non-self m a t c h d is tance t h e n
13： neares t non-self m a t c h dis tance = Dist
14： e n d if
15： e n d if
IG： e n d for
17： //End For Inner Loop

18： if neares t non-self m a t c h dis tance > discord d i s tance t h e n
19： discord d is tance = nearest non-self m a t c h d is tance
20： discord locat ion 二 p
21: e n d if
22： e n d for
23： / / E n d for Ou te r Loop
24:
25: / / R e t u r n Solut ion
26： R e t u r n (discord dis tance, discord location)

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 10

2.2.3 Keogh et al.'s Algorithm

Keogh et al. introduced a heuristic discord discovery algo-
rithm [24] based on the brute force algorithm and some ob-
servations. They found that actually we do not need to find
the nearest non-self match for each possible candidate subse-
quence. According to the definition of time series discord, a
candidate cannot be a discord, if we can find any subsequence
such that the distance between this subsequence to the current
candidate is smaller than the current smallest nearest non-self
match distance. This basis idea successfully prunes away a lot of
unnecessary searches and reduces a lot of computational time.

So Koegh et al. suggested two heuristics, one to determine
the order in which the outer loop visits the possible candidate
subsequences, and the other one to determine the order in which
the inner loop visits the subsequences for a given current candi-
date. The algorithm is shown in Algorithm 2.

S A X R e p r e s e n t a t i o n

The full name of SAX is Symbolic Aggregate Approximation, it
can convert a time series into a sequence of symbols. It was first
suggested by Lin et al. [23 .

In order to reduce the dimensions of a time series to save
computational time, the time series is first be symbolized [11.
A time series is divided into w segments, the average value of the
data falling within a same segment is calculated. These average
values are the new data points in the dimensionality-reduced
representation. This representation is known as Piecewise Ag-
gregate Approximation (PAA). After transforming a time se-
ries into PAA representation, we further transform it into a se-
quence of finite symbols. Since time series subsequences that
are normalized tend to have a highly Gaussian distribution, we
can determine the 'breakpoints' that produce same areas under

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 11

A l g o r i t h m 2 Keogh et al.'s algorithm
1： / / In i t ia l iza t ion
2: discord distance = 0
3： discord location = NaN
4:

5： / / B e g i n Outer Loop
()：for Each p in T ordered by heuristic Outer d o
7： nearest non-self match distance = infinity
8: / / B e g i n Inner Loop
9: for Each q in T ordered by heuristic Inner do

10： if \p- q\> n t h e n
11： Dist = Distance Measm-e(ip, tq, ...tq+n-i)
12： if Dist < discord distance t h e n
13： break;
14: e n d if
15： if Dist < nearest non-self match distance t h e n
K)： nearest non-self match distance — Dist
17： e n d if
18： e n d if
19： e n d for
20： / / E n d For Inner Loop
21： if nearest non-self match distance > discord distance t h e n
22： discord distance — nearest non-self match distance
23： discord location = p
24: e n d if
25： e n d for
26： / / E n d for Outer Loop
27:
28： / / R e t u r n Solution
29: Re tu rn (discord distance, discord location)

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 12

Gaussian curve.

Definition 6 Breakpoints (by Lin et al): Breakpoints are a
sorted list of numbers B = /？丄，/？之，Ai-i where a is the num-
ber of symbols such that area under a N(0，1) Gaussian curve
from Pi to Pi+i = 1/a (Pq and pa are defined as —oo and oo,
respectively).

These breakpoints can be determined by looking them up in
a statistical table. Table 2.2 gives the breakpoints for values of
a from 3 to 7.

Number of symbols a

一 3 I 4 I 5 I 6 I 7

-0.43 -0.67 -0.84 -0.97 -1.07

"2 -0.43 ~ 0 -0.25 -0.43 -0.57

0.67 0.25 ~ ~ 0 ~ ~ -0.18

0.84 0.18

0.97 0.57

Pe 1.07

Table 2.1: All breakpoints for number of symbols from 3 to 7. For example,

area under a N(0,1) Gaussian curve from —oo to -0.67 is equal to 0.25.

We can assign a symbol to each region, a PAA value is then
mapped to the symbol for the region that it falls in. Figure 2.1
illustrates the idea.

A p p r o x i m a t i n g t h e M a g i c O u t e r L o o p

We begin by sliding a window with length n across time series
T, extracting the subsequences, then converting all the normal-
ized subsequences into SAX words. All the words are placed in
an array where the index refers back to the original sequence.

CHAPTER 2. UNUSUAL PATTERN DISCOVERY 13

：：：

Figure 2.1: A time series is transformed into P A A representation and then

convert into a sequence of symbols by using predetermined breakpoints

Now all the SAX words can be embedded into an augmented
trie where the leaf nodes contain a linked list of all words that
map there. The count of the number of occurrences of each
word is stored to the rightmost column of the array. Figure 2.2
illustrates the idea.

Now we can prepare the search order of the outer loop. First,
we find the leaf node with smallest number of occurrences. All
the subsequences mapped to this node will be examined first.
For the rest of the subsequences, they are visited in random.
This heuristic can help us to approximate the location of discord,
as intuitively these subsequences are less similar to the rest of
the subsequences.

Approx imat ing the Magic Inner Loop

When the i仇 word is considered in the outer loop, we look up the
word that it maps to, by examining the i仇 word in the array. We
then find a node which gives us a longest matching path in the
trie, all the subsequences in this node are searched first. After
exhausted this set of subsequences, the unsearched subsequences
are visited in a random order. According to the experimental
results from Keogh et al., it is very efficient in grouping similar

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 14

1 1 1 1 1
, - . Raw time series

A I 1 1 1 1
0 \ ^ 1000 1500 2000 2500

1 Subsequence extracted

� Converted to SAX

A c a a
C ' \ Inserted into array

^ A u g m e n t e d T r i e

1 c a a 丄 c ^

：：TTTTT"? /

ZZ 二 /

(' ” - ") 二 丄 L i /

(m - n) +1 b C a 2 ‘

Figure 2.2: Keogh et al.'s idea is illustrated in this diagram

subsequences together. Then it can gives us a greater chance to
break the inner loop.

2.2.4 Performance Analysis

In the previous sections, we have introduce brute force algorithm
and Keogh et al.'s algorithm. Actually, they are nearly the same
except for the search order of the inner loop and outer loop. In
this section, we want to show the importance of the search order
and discuss more about the magic case.

Algorithm 3 shows us a generic framework for solving discord
discovery problem. By changing the heuristics for finding the
search order of the outer loop and inner loop, the performance
of this algorithm will be completely different. In fact, if we apply
sequential search order for both outer loop and inner loop, it will

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 15

A l g o r i t h m 3 Generic framework
1： / / In i t i a l i za t ion
2: discord distance = 0
3： discord location = NaN
4：

5: / / Begin Oute r Loop
()： for Each p in T ordered by heuristic Outer d o
7： nearest non-self match distance = infinity
8: / / B e g i n Inner Loop
9： f o r Each g in T ordered by heuristic Inner d o

10: if \p - q\> n t h e n
11: Dist = Distance Measure(t^, tq, .. .tq+n-i)
12: if Dist < discord distance t h e n
13： break;
14： e n d if
15: if Dist < nearest non-self match distance t h e n
16: nearest non-self match distance = Dist
17： e n d if
18： e n d if
19： e n d f o r
20： / / E n d For Inner Loop
21： if nearest non-self match distance > discord dis tance t h e n
22： discord distance = nearest non-self match distance
23： discord location = p
24： e n d if
25： e n d f o r
'26： / / E n d for Outer Loop
27:
28： / / R e t u r n Solution
29： Re tu rn (discord distance, discord location)

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 16

become a smarter brute force algorithm. If we apply Keogh et
al.'s suggested heuristic into this algorithm, it will become the
one that we have mentioned in section 2.2.3.

In order to have a better understanding of the importance of
the search order, we will consider 3 cases:

• Best case: We call it the magic case. In this case, we can
obtain prefect orderings. For outer loop, the subsequences
are sorted by descending order of the non-self distance to
their nearest neighbors, so the discord is placed at the first
position of the outer loop. For inner loop, the subsequences
are sorted by ascending order of the distance to the current
candidate in the outer loop.
In this case, for the first time running the inner loop, we
must complete the whole loop. However, after that we can
break the inner loop during the first iteration. It is because
we can obtain the true discord distance after first time run-
ning the inner loop and we can obtain the nearest neighbor
of the second candidate in the outer loop list at first it-
eration of the inner loop. Furthermore, it is trivial that
the distance between the second candidate and its nearest
neighbor must be smaller than the true discord, otherwise
the second candidate will be the discord. Thus, the inner
loop can be broken during the first iteration.

In order to make it clear, we use m to represent the length
of the discord and use n to represent the total length of the
given sequence. Obvious, the time complexity is equal to 1
occurrence of (m — n + 1) steps which comes from the first
inner loop plus (m — n) occurrences of single step of the
remaining inner loop, so it equals to 0{m).

• Average case: We call it the random case, as for both
inner loop and outer loop we just randomly order the sub-
sequences.

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 17

It is difficult to analyze the performance of the random
case, since it greatly depends on the data. However, we
can ensure that the performance must be bounded from
below 0(m) and from above 0{im?).

• Worst case: We call it the perverse case. It is exactly
the reverse orderings of the magic case. For outer loop, the
subsequences are sorted by ascending order of the non-self
distance to their nearest neighbors, so the true discord is
placed at last position of the outer loop. For inner loop, the
subsequences are sorted by descending order of the distance
to the current candidate in the inner loop.
Unlike the best case, this time we can not break the in-
ner loop for the first few iterations. It is because now the
true discord is placed at the end of the outer loop list.
It means we can not find the true discord until we exam-
ine the last subsequence in the outer loop list. Actually,
when we complete the first inner loop, we can obtain a
best_so_far-distance. However, this value can not help us
to break the inner loop in the future time. Based on the fea-
tures of the outer loop orderings and inner loop orderings,
the distance between the second candidate and its nearest
neighbor must be greater than the current best_so_far_distance
and we can only locate the nearest neighbor at the last it-
eration of the inner loop. Thus, it is impossible the break
the inner loop.

It is obvious that the time complexity is O(m^), as we must
go through (m —n) occurrences of the (m — n) steps of inner
loop calculation.

After this analysis, we know that the best solution of this
problem can not be better than 0{m) in time complexity. And
we also know that if we can approximate the magic orderings,
our solution will be very close to the best solution. More about

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 18

this analysis can found in this paper [24]. Keogh et al. suggested
a solution for approximating the best case. We found that there
is still room for improvement. Later, we will show that our
suggested solution is also close to magic case, which is more
close to parameterless.

2.3 Proposed Approach

We follow the framework of the algorithm in [24]. In this al-
gorithm, we extract all the possible candidate subsequences in
outer loop, then we find the distance to the nearest non-self
match for each candidate subsequence in inner loop. The candi-
date subsequence with the largest distance to its nearest non-self
match is the discord. We shall refer to this algorithm as the Base
Algorithm.

In the above algorithm, we discover that the heuristic search
order for both outer and inner can affect the performance. In
fact, if a sequential search order is used, this algorithm will
become a brute force algorithm. Note that the discord D is the
one that maximizes the minimum distance between D and any
other non-self subsequence E

m^x{mm{Dist{D, E))

The Outer heuristic should order the true discord first since it
will get the maximum value for discord distance which has the
best chance to prune other candidates at Line 12 in algorithm 4.
Given the subsequence p, the Inner heuristic order should pick
the subsequence q closest to p first, since it gives the smallest
Dist value, and which will have the best chance to break the
loop at Line 12 in algorithm 4. In this section, we will discuss
our suggested heuristic search order, so that the inner loop can
often be broken in the first few iterations, saving a lot of running
time.

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 19

A l g o r i t h m 4 Base Algorithm
1： / / In i t ia l iza t ion
2: discord distance = 0
3： discord location = NaN ,
4:
5： / / Begin Outer Loop
6： f o r Each p in T ordered by heuristic Outer d o
7： nearest non-self match distance = infinity
8： / / B e g i n Inner Loop
9： for Each ^ in T ordered by heuristic Inner do

10： if — > n t h e n
11： Dist = Distance Measiire(tp, ..ip+„_i, tq, ...tg+n-i)

12： if Dist < discord distance t h e n
13： break;
14： e n d if
15： if Dist < nearest non-self match distance t h e n
1()： nearest non-self match distance = Dist
17： e n d if
18： e n d if
19： e n d for
20： / / E n d For Inner Loop
21： if nearest non-self inatcli distance > discord distance t h e n
22: discord distance = nearest non-self match distance
23： discord location = p
24： e n d if
25： e n d for
26： / / E n d for Outer Loop
27：

28： / / R e t u r n Solution
29： Re tu rn (discord distance, discord location)

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 20

2.3.1 Haar Transform

The Haar wavelet Transform is widely used in different applica-
tions such as computer graphics, image, signal processing and
time series querying [27]. We propose to apply this technique to
approximate the time series discord, as the resulting wavelet can
represent the general shape of a time sequence. Haar transform
can be seen as a series of averaging and differencing operations
on a discrete time function. We compute the average and differ-
ence between every two adjacent values of f{x). The procedure
to find the Haar transform of a discrete function f{x) = (7 5 3
5) is shown below.
Example

Resolution Averages Coefficients
4 (7 5 3 5)
2 (6 4) (1 -1)

1 (5) (1)

Resolution 4 is the full resolution of the discrete function f{x).
In resolution 2, (6 4) are obtained by taking average of (7 5)
and (3 5) at resolution 4 respectively. (1-1) are the differences
of (7 5) and (3 5) divided by two respectively. This process is
continued until a resolution of 1 is reached. The Haar transform
H{f{x)) = (c c/q dl d\) = (511 -1) is obtained which is composed
of the last average value 5 and the coefficients found on the right
most column, 1, 1 and -1. It should be pointed out that c is the
overall average value of the whole time sequence, which is equal
to (7 + 5 + 3 + 5)/4 = 6. Different resolutions can be obtained
by adding difference values back to or subtract difference from
an average. For instance, (6 4) = (5+1 5-1) where 5 and 1 are
the first and second coefficient respectively.

Haar transform can be realized by a series of matrix multipli-
cations as illustrated in Equation (2.2). Envisioning the example

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 21

input signal x as a column vector with length n = 4, an inter-
mediate transform vector w as another column vector and Haar
transform matrix H

“x'q 1 [1 1 0 0] 卜 0
礎 1 —1 0 0 X A (2.2)

x； 2 0 0 1 1

d\ \ [0 0 1 - 1 [X3

The factor 1/2 associated with the Haar transform matrix can
be varied according to different normalization conditions. After
the first multiplication of x and H, half of the Haar transform
coefficients can be found which are c/J and d\ in w interleaving
with some intermediate coefficients Xq and x[. Actually, d j and
d\ are the last two coefficients of the Haar transform. Xq and x[

—f

are then extracted from w and put into a new column vector x'
=[xq x[0 x' is treated as the new input vector for trans-
formation. This process is done recursively until one element is
left in x'. In this particular case, c and (Iq can be found in the
second iteration.

Hence we can convert a time sequence into Haar wavelet by
computing the average and difference values between the adja-
cent values in the time series recursively. It can be also varied
according to different normalization conditions. The algorithm
shown in Algorithm 5 is using the orthonormal condition. This
transformation can preserve the Euclidean distance between two
time series, and is therefore useful in our algorithm. If we only
consider a prefix of the transformed sequences, the Euclidean
distance between two such prefixes will be a lower bounding es-
timation for the actual Euclidean distance, the longer the prefix
the more precise the estimation. Also note that the transfora-
tion can be computed quickly, requiring linear time in the size of
the time series. In our experiments, we find that normalization

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 22

factor of 1/ \/2 can give us a better performance comparing with
1/2, it may be because factor of 1 / v ^ can preserve the distance
of two sequences.

A l g o r i t h m 5 Haar t ransform
1： / / In i t i a l i za t ion
2: u = length of input vector
3： o u t p u t vector = input vector
4: d u m m y vector = all zeros
5：

6： / / s t a t e the conversion
7： w h i l e n > = 2 d o
8： n=n /2
9： for (i = ();?:< n; i + +) d o

10： d u m m y vector[?']=(output vector[2 * ou tpu t vector[2 “ + 1])/y/2
11： d u m m y vector[i+n]—(output vector[2*z]-output vector[2 *?!-}-l])/\/2
12: e n d for
13： for (z = 0; i < {n * 2); i + +) d o
14： o u t p u t vector[i] =di in imy vector[i]
15: e n d for
16： e n d w h i l e
17：

18： / / R e t u r n Solution
19： Re tu rn (ou tpu t vector)

2.3.2 Discretization

We shall impose the heuristic Outer and Inner orders based on
the Haar transformation of subsequences.We first transform all
of the incoming sequences by the Haar wavelet transform. In
order to reduce the complexity of time series comparison, we
would further transform each of the transformed sequences into
a sequence (word) of finite symbols. The alphabet mapping
is decided by discretizing the value range for each Haar wavelet
coefficient. The distribution of the haar wavelet coefficients may
affect the performance of our algorithm, but it will not affect
the correctness. We assume the coefficients are in Gaussian

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 23

distribution and in fact it can give us a petty good result. Now
we can determine the 'cutpoints'[23] by using a Gaussian curve.
The outpoints define the discretization of the i — th coefficient.

Definition 7 Outpoints (By Lin et al): Outpoints are a sorted
list of numbers B = /?i，…，/?a_i，where a is the number of
symbols in the alphabet, such that area under a N(0,1) Gaussian
curve from Pi to = 1!a
Po and /3a are defined as —oo and oo, respectively.

These breakpoints are determined by looking them up in a
statistical table. Table 2.2 gives the breakpoints for values of a
from 2 to 7.

Number of symbols a
2 | 3 丨 4 | 5 | 6 | 7 一

-0.43 -0.67 -0.84 -0.97 -1.07

I 2 0 -0.25 -0.43 -0.57

0.67 0.25 0 -0.18

~Ja 0.84 o l F 0.18

0.97 0.57 “

I I 1.07

Table 2.2: All breakpoints for number of symbols from 2 to 7. For example,

area under a N(0,1) Gaussian curve from —00 to -0.84 is equal to 0.2.

We then can make use of the cutpoints to map all Haar coef-
ficients into different symbols. For example, if the i仇 coefficient
from a Haar wavelet is in between (3q and Pi, it is mapped to
the first symbol 'a'. If the 一" coefficient is between Pj—i and jSj,
it will be mapped to the 产 symbol, etc. In this way we form a
word [23] for each subsequence.

Definition 8 Word mapping (By Lin et al): A word is a
string of alphabet A subsequence C of length n can be mapped

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 24

A

to a word C = Ci, C2,Cn- Suppose that C is transformed to a
Haar wavelet C = {ci, C2----, Let aj denote the 产 element
of the alphabet, e.g., cei 二 a and a2 = b, Let Bi = Pq, .../?�

be the Outpoints for the i-th coefficient of the Haar transform,.
A

Then the mapping from to a word C is obtained as follows:
Ci = a j <=> (2.3)

2.3.3 Augmented Trie

First, we transform all the normalized subsequences, which are
extracted by sliding a window with length n across time series T,
by means of the Haar transform. The transformed subsequences
are transformed into words by using our proposed discretization
algorithm. Finally, all the words are placed in an array with
a pointer referring back to the original sequences. Figure 2.3
illustrates this idea.

Next, we make use of the array to build an augmented t r ie
by an iterative method. At first, there is only a root node which
contains a linked list index of all words in the array. In each
iteration all the leaf nodes are split. In order to increase the
tree height from h to h+1, where h is the tree height before
splitting, the + 1产 symbol of each word under the splitting
node is considered. If we consider all the symbols in the word,
then the word length is equal to the subsequence length.

In previous work [24] a pre-selected word length is required
which is used by using a piecewise linear mechanism to com-
press the subsequences, and that also determine the trie height.
This means that user need to determine the word length before-
hand. Here we make use of the property of Haar wavelets to
dynamically adjust the effective word length according to the
data characteristics. The word length is determined by the fol-
lowing heuristic:

Word length heuristic: Repeating the above splitting pro-

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 25

1 1 1 I ‘

. 入 Raw lime series

\ I 1 I 1 '
0 \ 500 1000 1500 2000 2500

1 v ^ ^ i l Subsequence extracted

^ Converted to word

A c a a ... b
c, \

\ Inserted into array

1 c a a :: b

2 ^ a b :: a

3 c a a :: b

("'-")-i b b :: b

‘ ('"-") a c b :: c

("I-,0+1 b c a :: c

Figure 2.3： A n array of words for building an augmented trie

cess ill a breadth first manner in the construction of the trie
until (i) there is only one word in any current leaf node or (ii)
the 77"' symbol has been considered.

The Haar coefficient can help us to view a subsequence in
different resolutions, so the first symbol of each word gives us
the lowest resolution for each subsequence. In our algorithm,
more symbols are to be considered when the trie grow taller,
which means that higher resolution is needed for discovering
the discord. The reason why we choose to stop at the height
where some leaf node contains only one word (or subsequence)
is that the single word is much more likely to be the discord,
because it cannot be placed into the same node with any other
subsequence, so its distance to its nearest match would be far.

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 26

This is based on the property that Haar transform can preserve
the data nature even after a tail sequence is truncated. For a
word which appears with other words in the same trie node, such
words in the same node are similar at the resolution at that level,
hence they are closer to their nearest match. Hence the height
at that point implies that we can find an obvious winner to be
a candidate discord, and the trie height at that point stands for
a good choice for the effective length of the words that can be
used in the algorithm.

1 C a a :: b root

2 c a b ：： a

3 c a a ：: b

“ ： ： “ ： ： ： ： a b C

. . 了 了 I 20 11 1

..•：̂ 二 二 : 21 12 2

(m -«) -1 c b b ：： b (m-n) 90 3

(m -m) a c b ：： c (nn-n)+1 (m-n)-1

(w-”)+i b c a :: c

Figure 2.4: P'' symbol is considered for splitting the root node. All leaf nodes

will be split, sincc no leaf node contains only 1 word.

— ― “ m root
1 c a a :: b_ ^ ^

2 c a b :: a

垣 E A A ^^
a c a b c a b

_. — - 1 ： - ^ - 12 11 90 1 ::
(m-n)-i c b b •• h 20 (m-n) ：： 2 (m-n)-1

— — 2 1 (m-n)+1 3

(m -") c b X ^
(m-n)+l b c a :: c

Figure 2.5: symbol is considered. No tree node is split in next iteration,

since there is only 1 word mapped to 'ac'.

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 27

We found that the performance of this breadth first search
approach is pretty good, since it can efficiently group all the
similar subsequences under the same tree node and distance be-
tween subsequences under same node are very small.

2.3.4 Approximating the Magic Outer Loop

Heuristic: the leaf nodes in ascending order according to the
word count.

We search all the subsequences in the nodes with the small-
est count first, and we search in random order for the rest of
the subsequences. The intuition behind our Outer heuristic is
the following. When we are building an augmented trie, we are
recursively splitting all the leaf nodes until there is only one sub-
sequence in a leaf node. A trie node with only one subsequence
is more likely to be a discord since there are no similar nodes
that are grouped with it in the same node. This will increase the
chance that we get the true discord as the subsequence used in
the outer loop, which can then prune away other subsequences
quickly.

More or less, the trie height can reflect the smoothness of the
datasets. For smooth dataset, the trie height is usually small, as
we can locate the discord at low resolution. On the other hand,
the tire height is usually large for a more complex data set.

From this observation, it is obvious that the first subsequence
that map to a unique word is very likely to be an unusual pat-
tern. On the contrary, the rest of the subsequences are less likely
to be the discord. As there should be at least two subsequences
map to same tree node, the distance to their nearest non-self
match must be very small.

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 28

2.3.5 Approximating the Magic Inner Loop

When the i仇 subsequence P is considered in the outer loop, we
look up words in the i仇 entry of the array.

Heuristic: We find a node which gives us the longest match-
ing path to p in the trie, all the subsequences in this node are
searched first. After exhausting this set of subsequences, the un-
searched subsequences are visited in a random order.

The intuition behind our Inner heuristic is the following. In
order to break the inner loop, we need to find a subsequence
that has a distance to the i亡"word in the outer loop less than
the best_so_far discord distance, hence the smallest distance to
p will be the best to be used. As subsequences in a node with
a path close to p are very likely to be similar, by visiting them
first, the chance for terminating the search is increased.

2.3.6 Experimental Result

We first show the utility of time series discords, and then we
show that our algorithm is very efficient for finding discords.
The test datasets, which represent time series from different do-
mains, were obtained from 'The UCR Time Series Data Mining
Archive' [15 .

A n o m a l y D e t e c t i o n

Anomaly Detection in a time series database has received much
attention [30, 7, 14]. However, most of the anomaly detection
algorithms require many parameters. The beauty of using dis-
cords as anomaly detectors is that our algorithm only require
two simple parameters, one is the length of the discord, an-
other is the alphabet size that according to our experience 3
is the best for any dataset. To show the utility of discords for
anomaly detection, we investigated electrocardiograms (ECGs)
which are a time series of the electrical potential between two

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 29

points oil the surface of the body caused by a beating heart. In
the experiment, we set the length of the discord as 256 that is
approximately one full heartbeat and set the alphabet size to be
three.

81 1 1 1 1 1

6 - -

4 - -

:糊酬
•6 - I"

-81 1 1 1 1 1
0 1000 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0

Figure 2.6： A time series discord (marked in bold line)was found at position

2 8 3 0

111 figure 2.6, it is easy to discover the anomaly by eye. How-
ever, we may have many of ECGs in our database, it is impos-
sible to examine all of them manually.

T h e P e r f o r m a n c e of our A l g o r i t h m

From 5 datasets, 10 data sequences were picked. For each data
sequence, subsequences of lengths 512, 1024, 2048, 4096 and
8192 were randomly extracted, forming 5 derived datasets of
varying diiiiensions. In below figures, we compared the Keogh
et al.'s algorithm with our proposed algorithm in terms of num-
ber of times the Euclidean distance function is called. In this
experiment, we set the length of the discord as 128 and found

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 30

the discord on all the created subsequences. Each of the exper-
iments was repeated 10 trials and the average value was taken.

In this experiment, we did not measure the CPU time di-
rectly, in order to ensure that there was no implementation bias.
In fact, Keogh et al. discovered that the distance function ac-
counts for more than 99% of the running time. Due to the fair-
ness, it provides us another way to measure the running time.

Prom the figure 2.7, we found that there was no any spe-
cial value for word size which was suitable for any task on any
dataset. Keogh et al. suggested relatively smooth and slowly
changing datasets favor a smaller value of word size, whereas
more complex time series favor a larger value of word size. Be-
sides this factor, the length of the discord will also affect the
value of the optimal word size. The details will be given in the
next section.

Although we claimed that the distance function accounts for
more than 90% of the running time, people may be still in-
terested in total running. In this experiment, we measured the
CPU time directly. Both algorithms were implemented by ANSI
C. And the experiment was run in Dell Optiplex 280 Intel P4
3.2Ghz with 2GB RAM. Figure 2.8 showed that distance func-
tion is a good measure for comparing the real running time.

E x p e r i m e n t s o n A l p h a b e t S ize

Our proposed algorithm requires users to choose the value of one
parameter, the alphabet size. In fact, this value does not affect
the correctness of our algorithm, it only affects the performance.
In our algorithm, we want to map the discord to a unique or
rare word. On the other hand we try to group the other similar
subsequences together and map them into the same word. If the
alphabet size is too small, we do not have enough information
to distinguish a discord from the rest of other subsequences.
If the alphabet size is too large, almost all subsequences will

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 31

Buoy

1 鬚 . 1 . . . C

1 Keogh et al.'s Alg., word size 1
Q : Keogh et al.'s Alg., word size 2
® „ : X Keogh et al.'s Alg., word size 4
p Keogh etal.,s Alg” word size 8
•5 8192 . - o T ^ ^ ^ Q f e i f e s / X Keogh et al.'s Alg., word size 16
o 柳 6 2048 … I • i W L v C ^ Keogh et al.'s Alg., word size 32
2 1024 5 1 2，、广 Proposed Alg.

The length of Time Series

ECG

110-••； j J H J I ^ ^ ：

芸 5-"： ； Keogh et al.'s Alg., word size 1
Q : Keogh et al.'s Alg., word size 2
？ _ , Keogh et al.'s Alg., word size 4
p Keogh etal..s Alg., word size 8
•5 8192 义 Keogh et al.'s Alg., word size 16

d 如邪 2048 Keogh et al.'s Alg., word size 32
2 512 Proposed Alg.

The length of Time Series

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 32

ERP

s 2 .••：:...:】騰丨 ：：丨

I n s 〉 、 K e o g h et al.'s Alg., word size 1
己 X Keogh et al.'s Alg., word size 2
g „ ；. Keogh et al.'s Alg., word size 4
p “ 厂 Keogh et al.'s Alg., word size 8

•5 X Keogh et al.'s Alg., word size 16
d 4096 2048 . T Z T ^ ^ ^ ^ ^ - X Keogh et al.'s Alg., word size 32
2 1024 512 Proposed Alg.

The length of Time Series

Evaporator

i x i � � , � :

芸 1 “ • P I M Keogh et al.'s Alg., word size 1

？ „ .:.. Keogh etal..s Alg., word size 4
p 0 ^ Keogh et al.'s Alg., word size 8

•5 8192 . Z T ^ ' ^ ^ f l ^ ^ S ? ' X Keogh et al.'s Alg., word size 16
ri 如96 2048 Keogh et al.'s Alg., word size 32
Z 512 Proposed Alg.

The length of Time Series

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 33

Packet

JS 、.._; ： . . 離 g ；.

蔡 A s ^ Keogh et al.'s Alg., word size 1
Q : f ^ ^ K e o g h et al/s Alg., word size 2
® „ :..—I Keogh et al.'s Alg., word size 4
I 0 Keogh et al.'s Alg., word size 8

•B Keogh el al.'s Alg., word size 16
6 4096 2048 Keogh et al.'s Alg., word size 32
Z 1024 512 Proposed Alg.

The length of Time Series

Power

. 1 厂 、 � f ^

I 塵 —
Q : ^ ^ X Keogh et al.'s Alg., word size 2

2 1024 512 Proposed Alg.

The length of Time Series

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 34

Random Walk

i xiov f � . . : . � . . : . . .

1 Qc Keogh et al.'s Alg., word size 1
q O . 5 - : ； Keogh et al.'s Alg., word size 2
« X Keogh et al.'s Alg., word size 4
(1 ° - ^ - ^ - - ^ ^ ^ H H O f l P u S ^ ^ ^ y j ^ Keogh et al.'s Alg., word size 8
•s 8192 X Keogh et al.'s Alg., word size 16
^ 2048 X Keogh et al.'s Alg., word size 32
2 1024 5 1 2 P r o p o s e d Alg.

The length of Time Series

Steamgen

.22 15 , . : “

[。 - .

U 5- -； ： y Keogh et al.'s Alg., word size 1
D : ； Keogh et al.'s Alg., word size 2
® „ X Keogh et al.'s Alg., word size 4

" ^ Keogh et al.'s Alg., word size 8
•5 8192 X Keogh et al.'s Alg., word size 16
^ 4096 2048 X Keogh et al.'s Alg., word size 32
H 1024 5 1 2 ，〜广 Proposed Alg.

The length of Time Series

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 35

Tickwise

芸 05.〉..丨 Keogh et al.'s Alg., word size 1
Q 。 力 ： ； / Keogh et al.'s Alg., word size 2
$ „ ： X Keogh et al.'s Alg., word size 4
p ° Keogh et al.'s Alg., word size 8
•5 6192 . r r ^ ^ ^ ^ ^ S j ^ ^ S ^ X Keogh et al.'s Alg., word size 16
o 2048 X Keogh et al.'s Alg., word size 32
z 1024 512 Proposed Alg.

The length of Time Series

Wind

...: i

XI�:�丨

芸 2- •： • Keogh el al.'s Alg., word size 1
Q : Keogh et al.'s Alg., word size 2
® - X Keogh et al.'s Alg., word size 4
p ” ^ Keogh et al.'s Alg., word size 8
•5 8192 X Keogh et al.'s Alg., word size 16
o 4096 2048 Keogh et al.'s Alg., word size 32
2 1024 512 Proposed Alg.

The length of Time Series

Figure 2.7： Number of times distance fiiiictioii is called by Keogh et al.'s

Algorithm and Our Proposed Algorithm

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 36

Buoy

. . . . : .

1 2- •：' : ^ ^ B r Keogh et al.'s Alg., word size 1
S • ^ ^ M Keogh et al.'s Alg., word size 2
山 - : ; X Keogh et al.'s Alg., word size 4

“ X et al.'s Alg., word size 6
8192 . n c T ^ ^ ^ S l ^ S f l ^ X Keogh et al.'s Alg., word size 16

4 0 9 6 2048 Keogh et al.'s Alg., word size 32
i。24 512 Proposed Alg.

The length of Time Series

ECG

u . .: Keogh et al.'s Alg., word size 1
S • j ^ ^ K m B S S ^ ^ ^ ^ ^ j j ^ ^ ^ X Keogh et al.'s Alg., word size 2
山 - . : . : . < Keogh etal.'s Alg., word size 4

" y T Keogh et al.'s Alg., word size 8
8192 • / Keogh el al.'s Alg., word size 16

叫此 2048 ^ Z ^ T ^ ^ ^ ^ / Keogh et al.'s Alg., word size 32
512 Proposed Alg.

The length of Time Series

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 37

ERP

I 1. ‘ K e o g h et al.'s Alg., word size 1
,钱 1 ： g W / " S / j l ^ ^ ^ i f l t e r ^ ^ D ^ Keogh et al.'s Alg.. word size 2
山 - : • • / Keogh et al.'s Alg., word size 4

“ X Keogh et al.'s Alg., word size 8
8192 Keogh et al.'s Alg., word size 16

恥gb 2048 i n o T ^ ^ ^ ^ i P i X Keogh et al.'s Alg., word size 32
512 Proposed Alg.

The length of Time Series

Evaporator

S : O H £；；；；/ X Keogh et al.'s Alg., word size 2

山 n .. .fflWIi丨腿llill I Keogh et al.'s Alg., word size 4
“ " ^ - - B y ^ M I I B B l f t ^ ^ ^ S I F - y T Keogh et al.'s Alg., word size 8

8192 . S y ^ ' ^ I W a a S & ^ ^ s ^ / Keogh et al.'s Alg., word size 16
4096 2048 X Keogh et al.'s Alg., word size 32

1024 512 Proposed Alg.

The length of Time Series

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 38

Packet

1 2- f (^ B Keogh et al.'s Alg., word size 1
X : m l X Keogh et al.'s Alg., word size 2

n . . Keogh etal.'s Alg., word size 4
° • ^ • - - J ^ S H B f f l t e g ^ r ^ ^ ^ X Keogh et al.'s Alg., word size 8

8192 X Keogh et al.'s Alg., word size 16
如 9 6 2048 Keogh et al.'s Alg., word size 32

512 Proposed Alg.

The length of Time Series

Power

" 1 , i ^ ^ i f Keogh el al.'s Alg., word size 1
® ^ H i X Keogh et al.'s Alg., word size 2
山 n I ^ H X Keogh et al.'s Alg., word size 4

u Keogh et al.'s Alg., word size 8
8192 . r r r ^ ^ ^ ^ a i t e ^ ： ^ Keogh et al.'s Alg., word size 16

4096 2048 ^ n T T ^ ^ ^ - X Keogh et al.'s Alg., word size 32
512 Proposed Alg.

The length of Time Series

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 40

Tickwise

i 二彳
3 1 , .：• xC；；/ * •厂 Keogh et al.'s Alg., word size 1
S 1 : ^ ^ J ^ K e o g h et al.'s Alg., word size 2
山 n I H i X Keogh et al.'s Alg., word size 4

u) 义 Keogh et al.'s Alg., word size 8
8192 - T T ^ ^ i K B a & i ^ ^ Z T ' X Keogh et al.'s Alg., word size 16

如恥 2048 X Keogh et al.'s Alg., word size 32
1024 Proposed Alg.

The length of Time Series

Wind

i ^ J J ^ ^ ^ g ^ ^
o J； y Keogh et al.'s Alg., word size 1
X j L L 7 Z ^ n ^ ^ l J ^ Q ^ X Keogh et al.'s Alg., word size 2
山 n ' V • ^ f e j l X Keogh et al.'s Alg., word size 4

u y Keogh et al.'s Alg., word size 8
8192 州 X Keogh et al.'s Alg., word size 16

4096 2048 广 Keogh et al.'s Alg., word size 32
512 Proposed Alg.

The length of Time Series

Figure 2.8: T h e running time of Keogh et al.'s Algorithm and Our Proposed
Algorithm

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 41

be mapped to unique words. This suggests that the value of
alphabet size will affect the performance of our algorithm.

According to our experiments, a value of 3 is a petty good
choice for a large variety of datasets, so we simply hardcode the
value of alphabet size to 3 in our work for the default case. How-
ever, we believe that the performance of our proposed algorithm
will be better if we can find an optimal alphabet size for a given
dataset.

In order to confirm this, we tried to find the discords on dif-
ferent datasets with different alphabet sizes from 2 to 9. Then
we recorded the best alphabet size which gives the best perfor-
mance on average for the sequences in the same dataset with
the same length. The detailed figures were shown below.

Length of sequences
Dataset 512 1024 2048 4096 8192
Biirstiii 3 3 4 3 3

ECG 2 3 3 3 4
E I ^ 3 2 2 2 2

Packet 3 3 3 3 3
Power ~ T ~ 6 ~ 3 2

Random W a l k 2 3 2 2 3
Tickwise 3 3 ~ 2 2 3

Table 2.3: The best alphabet size for different length of sequences in different

datcisets

In general, sequences coming from the same dataset shared
the same optimal alphabet size. Note that this optimal alpha-
bet size worked very well on the entire dataset, although it could
not obtain the best performance on some sequences. This re-
sult suggests that a simple preprocessing for finding an optimal
alphabet size can further improve the performance of our sug-
gested method.

Also, 3 is good choice for the alphabet size. Although it could

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 42

not obtain the best result for some of the sequences, on average
it performed very well in different datasets.

2.4 More on discord length

In previous section, we have discussed our proposed algorithm.
However, we only focus on the discord length that is equal to 2\
where z is a positive integer. Fortunately, by slightly modifying
the haar transform process, this problem can be solved easily.
In this section, we will discuss this problem.

2.4.1 Modified Haar Transform

It is true that original haar transform only considers the se-
quences with length equal to 2\ where z is a positive integer.
However, by adding some tricks on the transformation, the orig-
inal process can apply on all cases. For example, the procedure
to find the Haar transform of a discrete function f{x) = (7 3 5
1 8) is shown below.
Example

Resolution Averages Coefficients
8 (7 3 5 1 8 0 0 0)
4 (5 3 4 0) (2 2 4 0)
2 (4 2) (1 2)
1 (3) (1)

As now there are only 5 elements in f{x), we must first add some
elements into / (x) , after that we can use the original process for
transformation. The simplest way is adding zeros. If the length
of the sequence is n, we should add — n zeros at the end
of the original sequence. Resolution 8 is the full resolution of
discrete function f'{x) after adding 3 zeros at the end of f(x).

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 43

Then we can treat it as a normal sequence for conversion. In
resolution 4, (5 3 4 0) are obtained by taking average of (7 3),
(5 1), (8 0) and (0 0) at resolution 8 respectively. (2 2 4 0) are
the differences of (7 3)，(5 1), (8 0) and (0 0) divided by two
respectively. This process is continued until resolution of 1 is
reached. The Haar transform H{f{x)) - (3 1 1 2 2 2 4 0) is
obtained which is composed of the last average value 3 and the
coefficients found on the right most column, 1, 1, 2, 2, 2, 4 and
0.

Although we can use this Haar wavelet to calculate the dis-
tance between subsequences, we will not do it. As we have
mentioned before, the distance function accounts for more than
99% of the running time, we do not want to add any overhead on
distance function. Obviously, the length of the subsequences are
increased after transformation. It means the computational time
of Euclidean distance between the transformed subsequences
must be longer than original subsequences. In this case, the
transformed subsequences are only used for heuristic outer loop
and heuristic inner loop. For the distance calculation, we will
use the original subsequences.

2.4.2 Fast Haar Transform Algorithm

Sometimes, we may need to find the discord of a range of discord
length. It seems that there is no smart method to solve this
problem, we can only run the algorithm for several times for
different discord lengths. However, we discovered that we can
have a minor optimization on Haar transform. Assume we have
2 functions, one is f(x) = (7 3 5 1 8), another one is f(x)=
(7 3 5 1 8 8). Obviously, if we add 8 into f(x) , it will become
f'(cc). Now, we convert both functions into haar wavelets, the
process is shown on figure 2.9 and figure 2.10.

In this example, it is not difficult to discover that most of

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 44

Averages Differences

Resolution 8 7 3 5 1 8 (?) 0 0

V V V V
Resolution 4 5 3 (J) 0 2 2 (J) 0

V V X /
Resolution 2 4 1 (2)

Resolution 1 ③ ①

Figure 2.9: After transformed f{x), it becomes (3 1 1 2 2 2 4 0)

Averages Differences

Resolution 8 7 3 5 1 8 ⑧ 0 0

V V V V
Resolution 4 5 3 ⑧ • 2 2 ⑥ o

V V V V

Resolution 2 4 (J) 1 (J)

Resolution 1 ④ ⑥

Figure 2.10: After transformed f'(x), it becomcs (4 0 1 4 2 2 0 0)

the intermediate averages and differences of different resolution
levels are the same. However, there are still some differences
between the two conversion processes. We have located the dif-
ferences in both figure 2.9 and figure 2.10 with circles. We can
see all the differences are related to the new added element 8. In
fact, for any f{x) and i7(/(x)), if we change one of the element
in f{x), the new H{f{x)) is the same as the old H{f{x)) except
the coefficients that are related to the changed element.

By using this property, if we need to find the discord of
lengths from a to b, where a < b < (total length of the time series)
and a and b are integers . First we can use a sliding window to
extract all the subsequences with length a and convert them
into haar wavelets for our algorithm. After finding the discord
of length a, we can make use of the previous data to prepare the

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 45

haar wavelets for all the subsequences with length a + 1. It can
help us to save part of the computation time, but we need extra
space for storing the intermediate averages and differences for
each subsequence.

2.4.3 Relation between discord length and discord lo-
cation

In this section, we want to show that discord location is always
the same regardless of the discord length. In other words, if we
find the data points from a to 6 are very different to other data
points, no matter of the discord length the result discord must
at least overlap with most of the data points from a to b. If
it is true, it also means the definition of discord is meaningful.
Otherwise, it means the discord location highly depends on the
discord length. It may not help us to locate the true discord of
a given time series.

In order to show that the definition of discord is meaningful,
we tried to find the discord of lengths 600, 700, 800, 900 and
1000 on a ECG. The result is shown in table 2.4.

Discord location

Length of discord Star t End

— 600 10871 “ 11470

700 10698 11397

™ 10695 11494

TO 10697 1 1 5 ^

iooo 10699 1 1 6 ^

Table 2.4: Discord location for different length of discord

We could discover all the discords overlap from data point
10871 to 11397. Hence, we plotted the original sequence and
the overlapping area on figure 2.11.

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 46

6.5. 1 1 1 1

6 - -

5.5 - _

s | | | | | | | | | | | | | -

4 • -

35' 1 1 ‘ 1
0 0.5 1 1.5 2 2.5

X10'

Figure 2.11: The overlapping area (marked in bold line) was found from

position 10871 to 11397

111 this experiment, we found that the discords always highly
overlap. It showed the definition of discord is meaningful, as
it could locate the real unusual pattern with different length of
discord. In fact, if we look at the figure 2.11 carefully, the high-
lighted part was the most unusual part comparing with other
subsequences. Although, the discord length can not affect the
final result very much, it is still important to choose a nieaiiing-
ful discord length. Normally, we want to locate the anomaly in
a sequence which may contain certain cycles, so it is good to set
the length of discords to be approximately one complete cycle.

If the sequence contains no cycle, it seems that we do not
have a good indicator to set the length of discord. However, it
is not true. We want, to show that even if we just choose the
leiigtli of discord randomly, we are still able to locate meaningful
discords. In this experiment, we tried to find a set of most
unusual patterns with different lengths. For example, if we set

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 47

the range of length is 50 to 100, we will first find the discord
for length 50. Then we will report this discord to the screen.
Next, we will find the discord for length 51. If the result discord
overlap with previous reported discord, the result discord will
be discarded. Otherwise, it will be reported to the screen also.

We randomly chose two sequences in a Random Walk dataset,
so there were no cycle in these two sequences. In each sequence,
we first found the discord set by setting the length of discord
from 50 to 200. Then we repeated the experiment again, but
this time we set the length of discord from 100 to 200. The
result is shown in figure 2.12 and figure 2.13.

Consider figure 2.12. When the range is 100 to 200, a single
discord found at location 268 with length 100. This result shows
that even if we use different ranges, we still discover the same
discord which is around location 250 to 350. However the range
from 50 to 200 finds one more discord at position 423.

Since the application of discords is to locate the anomaly, the
areas that are covered by a discord set is more important than
the exact location of each discords. Prom the result, using a
larger range of discord lengths can help to locate more anoma-
lies. In the experiment, using the larger range result in a set
of discords that totally covers a discord set generated with a
sub-range.

2.5 Further Optimization

In the previously mentioned inner loop heuristic, we visit all the
similar subsequences mapped to the same node with examining
candidate subsequence first. After this step, the rest of the
subsequences are visited in a random order. In fact, based on
some special properties [27], we now suggest another approach
to estimate the similarity between subsequences. This method
can further improve the performance of the proposed algorithm.

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 48

i| N^ :

V
-2 .5- y

-31 1 ‘ 1 1 ‘

0 100 200 300 400 500 600

j N^ I

-2.5- y

一 3 1 1 1 1 1 1
0 100 200 300 400 500 600

Figure 2.12： (top) Three discords were found. Discord location: 310, length

of discord： 50. Discord location: 423, length of discord： 51. Discord loca-

tion： 233, length of discord： 75. (bottom) O n e discord was found. Discord

locat ion： 268, length of discord: 100

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 49

21 . 1 , 1 1

：/
-2.5 [1 1 1 1 1

0 100 200 300 400 500 600

-2.5* ‘ ‘ ‘ ‘ ‘

0 100 200 300 400 500 600

Figure 2.13: (top) Three discords were found. Discord location： 428, length

of discord: 50. Discord location: 161, length of discord： 58. Discord location：

315, length of discord： 64. (bottom) T w o discords were found. Discord

location: 315, length of discord: 100. Discord location： 79, length of discord：

194

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 50

2.5.1 Improved Inner Loop Heuristic

Our enhancement is based on the fact that we can estimate the
distances between two subsequence from the distance between
the compressions (prefixes) of their Haar transforms. When we
estimate the distance we can use a prefix of the Haar transform
which in many cases can reflect the true comparison of distances.
In fact wavelets are near optimal for a large class of signals for
compression [8] and this ensures that this approach can often
give a good estimation of the true comparisons of distance.

Theorem 1 [27](By Fu et al.) Given two sequences X and
y, and the Haar transforms of X, Y are S and R respectively.
Lengths of X, Y, S and R are all (n>2 and n is a power of 2).

The Euclidean distance D{X, Y) = Slogan can be expressed in
terms of {C, Di, D2,Dn-i}, recursively by

Si+I = V2X ^{Sf + Dl + + …+ for 0< i < log2n - 1
So = C

Theorem 1 is very important, since it gives us some hints for
roughly estimating the distance between two sequences. Firstly
with a normalization factor of l/>/2, the Haar based Euclidean
distance is equal to the original Euclidean distance. Secondly, if
only first h dimensions of Haar transform are used in calculation
of Euclidean distance, then we can replace the h+1 力"to n*"
coefficients with O's in the transformed sequences, the result is
a lower bound on the actual distance. With Haar transform,
a prefix can preserve the low resolution information which is
found in many applications to preserve better the Euclidean
distance. Hence if two subsequences are very similar in the first
h dimensions, it means that very likely the overall structures of
two subsequences are very similar too.

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 51

Theorem 1 only can handle the distance between two Haar
wavelets. As we want to estimate the distance a Haar wavelet
and a word, we slightly modified the theorem suggested by Pu
et al..

Theorem 2 Given two sequences X and Y, where the Haar
A

transform of X is R and the word of Y is S (the word is ob-
tained by first transforming Y into Haar wavelet S, then S is
further symbolized into a word by using the algorithm in sec-

A

tion 2.3.2). Lengths of X, Y, R and S are all (n>2 and n is a
power of 2).
The mirmnurn Euclidean distance MinD(X,Y) is equal to Giog讽
can he expressed in terms o / { 五 0 , 五 i , 五 2 ’ 丑 n — i } , recursively
by

Gi+i = V2x ^{Ef + El + 碍+1 + …+ 码+1一1) /or 0<i<log2n-l (‘�

GQ = EQ

In order to improve on the inner search order heuristic, there
is no modification on the trie construction and outer loop heuris-
tic. We only need to note the current height of the trie. Imag-
ine that the i认 candidate subsequence is considered in the outer
loop. We look up the first h coefficients in the i呼 entry of the
array, then we can estimate the distance from the subse-
quence to different leaf nodes by using the first h dimensions (h
is the trie height). However, since the subsequences have been
encoded in terms of a fixed size alphabet, our computation is
based on the cutpoints in the alphabet. Let R be the i-th. sub-
sequence and the Haar transformed subsequence for R be given
by ri,r2, ...?v We try to estimate the distance between R and
a subsequence S that is stored in the trie. The subsequence
S = Si, ...Sji has been mapped by a piecewise linear mechanism
to a string of alphabets. Let Si be the alphabet that Si is being
mapped to. For each alphabet a there is a range of possible val-
ues for the alphabet, let U{a) be the upper limit of the values

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 52

for a and L{a) be the lower limit of the values for a. Based on
these values, we calculate the distance vector between R and S,
which is estimated by Eq, Ei,…,Eh by using equation 2.6.

- U{sj) if r j > U{sj)
Ej^i = T j - L{sj) if Tj < L{sj) (2.6)

0 otherwise
A

For example, ai = 0.5 and bi = b. If the alphabet size is 3, we
can look at the upper bound and the lower bound for alphabet
b at table 2.2. Then we know the upper bound is 0.43 and lower
bound is —0.43. Using equation 2.6, we know Eq is 0.07.

After finding the value of Eq, Eĥ we put zeros into
Eh+i, Eh+2,..., En-i. Now the minimum distance between a wavelet
and leaf nodes can be estimated by using theorem 2. According
to the distance from i认 subsequence to different leaf nodes, by
using theorem 2.

Revised Heuristic: For the inner loop for the i-th subse-
quence: According to the above Haar transform based distance
from the candidate subsequence to different leaf nodes, we
sort the leaf nodes in ascending order. In this sorted list of
leaf nodes, we randomly search all the subsequences in first leaf
nodes. After exhausting this set of subsequence, we repeat with
the next leaf node in the ordered list.

The reasoning is again that in order to break the inner loop,
we need to find a subsequence that has a distance to the i仇
subsequence p in the outer loop less than the best_so_far discord
distance, hence the smallest distance to p will be the best to be
try first.

2.5.2 Experimental Result

In figure 2.15, we compared the original heuristic inner loop
and improved heuristic inner loop. In this experiment, from 4

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 53

datasets, 10 data sequences were picked. For each data subse-
quence, subsequences of length 512, 1024, 2048, 4096 and 8192
were randomly extracted, forming 4 derived datasets of varying
dimensions.

Prom the experimental results, we found that the perfor-
mance of improved inner loop was better then the original inner
loop in all the cases. This result showed that our idea is cor-
rect. That means searching the similar candidate subsequences
can provide us better chance to break the inner loop comparing
with just searching the candidate subsequences randomly.

2.6 Top K discords

Sometimes, there will be more than one unusual patterns in a
given time series. However, until now we only focus on the most
unusual pattern. In this section, we will discuss top K discords.
First, we will show the utility of top K discords, then we will
talk about our algorithm for finding top K discords.

2.6.1 Utility of top K discords

As we have mentioned before, top K discords [24, 19] are very
useful in many applications. Before showing examples, we need
to formally define top K discords first.

Definition 9 K仇 Time Series Discord (By Keogh et al):
Given a time series T, the subsequence D of length n beginning
at position p is the K仇 discord of T if D has the K^^ largest
distance to its nearest non-self match, with no overlapping region
to the discord beginning at position pi, for all l<i < K. That
is，\p — Pi\>n.

For most applications, we do not only want to find the most
unusual subsequence only. Instead, we want to discover all the

CHAPTER 2. UNUSUAL PATTERN DISCOVERY 54

^ ^

"D 2.5 I~‘ ‘ “ -J
= • Oringial Heuristic Inner Loop Algorithm Z

o * Improved Heuristic Inner Loop Algorithm /

r /：

o' Wr ‘ 1 ‘
512 1024 2048 4096 8192

The length of Time Series

ERP
^ 3|| 丄 • ‘ 1

淫 A Oringial Heuristic Inner Loop Algorithm 1

JO A Improved Heuristic Inner Loop Algorithm /

I " /
云 2 /

512 1024 2048 4096 8192

The length of Time Series

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 55

Random Walk
2 1 I 1 1 1 2

兰 1 g . • Oringial Heuristic Inner Loop Algorithm /

2 A Improved Heuristic Inner Loop Algorithm /

« 1.6 - /

I 14 /

i 1. / y
w 0.8 -

| � 6 y ^

512 1024 2048 4096 8192

The length of Time Series

Tickwise
18| I I I 1 1

互 • Oringial Heuristic Inner Loop Algorithm j ‘

15 16 - * Improved Heuristic Inner Loop Algorithm / “

512 1024 2048 4096 8192

The length of Time Series

Figure 2.14: N u m b e r of times distance function is called by original inner

loop heuristic and improved inner loop heuristic

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 56

ECG
1.41~I 1 1 1 -I

• Oringial Heuristic Inner Loop Algorithm

12 • A Improved Heuristic Inner Loop Algorithm

I 1 /
r ,

512 1024 2048 4096 8192

The length of Time Series

ERP
1.4 I ~ I 1 1 1 — r

• Oringial Heuristic Inner Loop Algorithm

1.2 • A Improved Heuristic Inner Loop Algorithm -

i ^
qI ^ : ‘ ‘ ‘

512 1024 2048 4096 8192
The length of Time Series

2 L 4 P T E R U N U S U A L P A T T E R N s s c o v m Y 5 7

F l a n d o m W a l k

1 . 4 1 — I 1 1 _ 1

A O r i n g l a l H e u r i s t i c I n n e r 厂 o o f } A l g o r i t h m

^ w . A I m p r o v e d H e u r i s t i c I n n e r l . o o p A l g o r i t h m •

J t 4 . .

5 1 2 1 0 2 4 2 0 4 8 4 0 9 6 8 1 9 2

T h e l e n g t h o f T i m e S e r i e s

T i c k w i s e

1 . 4 1 — _ _ _ .

• O r i n g i a l H e u r i s t i c I n n e r l . o o p A l ^ l o r i t h m

1 . 2 • • l m p > r o v e d H e u r i s t i c I n n e r l - O O P I A l g o r i t h m .

r . /

r X V

/ /

e 。 4 J /
t 4 . _

5 1 2 1 0 2 4 2 0 4 8 4 0 9 6 8 1 9 2

T h e l e n g t h o f T i m e S e r i e s

F i g u r e 2 . 1 5 : R u n n i n g ; t h n e o f o r i g ; i n a l i n n e r l o o p h e u r i s t i c a n d i i n p r o v e d i n n e r

l o o p h e u r i s t i c

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 58

unusual subsequences. As a simple example, given a electrocar-
diogram of a patient, we may not be satisfied with knowing the
most unusual subsequence only, as it may not provide us with
enough information to make a diagnosis. In order to make a
correct diagnosis, trivially we may need to identify all the un-
usual subsequences which may be the symptoms of some serious
diseases. As another example, given a sales volume per day,
again we may not be satisfied with knowing the most unusual
subsequence. In fact, the unusual subsequences can probably
help us to discover peak periods and slack periods. This data
can be extremely useful for making new marketing strategies.

These are only two possible applications. Later we will demon-
strate the power of top K discords with real life examples. Before
that, we discuss our proposed solution for solving this problem
effectively and efficiently.

2.6.2 Algorithm

In fact, our proposed algorithm in previous section can help us
to find out the discord effectively. For the 2 " � 3 " discord,etc,
however, we need to add some tricks to our original algorithm.

Firstly, after finding a discord, we can remove some candidate
subsequences in candidates' list, by definition, there cannot be
any overlapping region between the top K discords. That means
if a subsequence D of length n beginning at position p is the
P亡 discord, then subsequences from position p-n+1 to position
p+n-1 cannot be the discord, etc.

Secondly, in our proposed algorithm earlier in order to break
the inner loop, we will try to find out the nearest neighbor of
each candidate subsequence. Although we do not actually find
the nearest neighbor, the nearest so far neighbor may help us to
break the inner loop efficiently.

Based on the above observations, we suggest a new algorithm

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 59

for finding top K discords. The pseudo code is shown is Algo-
rithm 6.

A l g o r i t h m 6 Finding top K discords

1： for i < K; i + + d o
2: discord distance [i] = 0
3： discord location [i]= NaN
4: //Begin Outer Loop
5： for Each p in T ordered by heuristic Outer do
(i: nearest non-self match distance = table of \vord[p] .nearest so far

neighbor distance
7： if nearest non-self match distance < discord distance[i] then
8： continue;

9： e n d if

10： / / B e g i n Inner Loop
11： for Each unexamined q in T ordered by heuristic Inner d o

12： if \p - q\ > n t h e n
13： Dist = Distance M e a s u r e (t p , … • • • i q + n - i)
14: if Dist < nearest non-self match distance then
15： nearest non-self match distance = Dist
1(3： table of word[p].nearest so far neighbor = nearest non-self

match distance
17： e n d if

18： if Dist < discord distance[i] then
19： break;
20: e n d if
21： e n d if

22： e n d for

23： / /End For Inner Loop

24: if nearest non-self match distance > discord distance[i] t h e n
25: discord distance[i] = nearest non-self match distance
2(5: discord location[i] 二 p

27： e n d if

28: e n d for

29： / /End for Outer Loop

30： remove candidate subsequences (discord location [i], n)
31： e n d for

32：

33： / /Ret ,u rn So lu t ion

34: Return (discord distance, discord location)

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 60

The basic idea of this algorithm is simple. First we will find
the P亡 discord, during this process we will record the nearest
so far neighbor of each candidate subsequence. The nearest so
far neighbor may help us to break the inner loop when we are
finding the next discord (The nearest so far neighbor finally
must equal to nearest neighbor). And also the inner loop search
order of each candidate subsequence is always the same, so we
just store the inner loop search order list for each candidate
subsequence. Then for every candidate subsequence, we can
remember all the examined subsequences in the inner loop and
every time we only check the unexamined subsequences. Second,
when we know the location of the discord, we will remove the
candidate subsequences which cannot be discord anymore from
the candidates' list. The algorithm is shown in Algorithm 7.

A l g o r i t h m 7 Remove Candida te Subsequences
1: s t a r t posi t ion = discord location - n + 1
2: if s t a r t posi t ion < 1 t h e n
3： s t a r t posit ion = 1
4: e n d if
5:
6： end posit ion = discord location + ii - 1
7： if s t a r t posit ion > N t h e n

8： s t a r t posit ion = N
9： e n d if

10：

11： f o r i = s t a r t position; i < end position; i + + d o
12： t ab le of \vord[p] .candidate subsequence = false
13： e n d for

J ^

At last, we must also modify the outer loop and inner loop
heuristic.

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 61

O u t e r L o o p H e u r i s t i c

For finding the first discord, we use the same procedure shown
in section 2.3.4 for approximating the magic outer loop. In fact,
we will use the same outer loop ordering for finding the sec-
ond discord, but the candidate subsequences which overlap the
first discord are removed from this outer loop ordering. In other
words, subsequences which are not in the candidates' list are re-
moved from the outer loop ordering, as they can not be discord.

The idea is simple. As our proposed outer loop heuristic
in section 2.3.4 can effectively separate the discords from the
normal subsequences, discords will be mapped to different leaf
nodes with single subsequence and different groups of similar
normal subsequences will be mapped to different leaf nodes too.
It means the further splitting of leaf nodes cannot help us locate
the discords, so we will just use the same outer loop heuristic or-
dering. Since the subsequences which overlap with first discord
cannot be second discords, we will remove all these subsequences
from the outer loop ordering.

I n n e r L o o p H e u r i s t i c

The inner loop heuristic is almost the same as section 2.3.5. The
difference is that we will record all the nearest so far distance
and the inner loop heuristic search order for each candidate sub-
sequence.

The idea is that in order to break the inner loop, we need to
find a subsequence that has a distance to the current examin-
ing subsequence in the outer loop less than best so far distance.
In fact, we already know the nearest so far neighbor for each
subsequence, after finding the first discord. If we use this infor-
mation for the second discord, the nearest so far distance may
be small enough to break the inner loop. Sometimes we may not
break the inner loop at once, but we do not need to compare the

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 62

current examining subsequence with all the subsequences again.
For example, when the i仇 candidate subsequence is consid-

ered in the outer loop, we look up the word and the the nearest
so far neighbor of the i仇 entry of the array. If the nearest so
far neighbor is small enough to break the inner loop, we can
break the loop at once. Otherwise, if we already examined the
distance between the i认 candidate subsequence and the first 10
subsequences in the inner loop heuristic ordering. This time we
can continue to search for nearest neighbor starting from the

subsequences in the inner loop heuristic. If the distance be-
tween the i认 candidate subsequence and the 23认 subsequence
is small enough to break the inner loop, we can record the new
nearest so far neighbor and latest searching position of the in-
ner loop heuristic order. In other words, we only examine the
unexamined subsequences only.

2.6.3 Experimental Result

In this section, we show that the definition of top K discords is
meaningful. We will show this by a real life example. In this
example, we tried to find top 2 discords from a dataset that
measured the power consumption for a Dutch research facility
for the entire year of 1997. Our objective was finding the 2 most
unusual weeks. We did not require the week should start from
Monday to Sunday, so the week could be any 7 days. Note that
in this experiment, we set the length of discord to be 750 which
was longer than the a week, as we needed to ensure that the
discord length must long enough to cover the whole week. The
result was shown in figure 2.16.

It was not easy to find out the differences between the top
2 discords and the rest of the subsequences by eyes. However,
we may find out some interesting patterns, if we compared the
top 2 discords with normal subsequences in details. Figure 2.17

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 63

2 2 0 0 I • • .
2nd discord

H i l l II
IffliPHipiWI

e v i n L I » » « *
n n S 1 1 5 2 2 5 3 3 5 4

X I O"*

Figure 2.16: The power consiiinption for a Dutch research facility from 1st.

.January, 1997 to 31st December, 1997

shows the power demands for a normal week, we found that the
power coiisuiiiption from Monday to Friday was relatively high.

2200 Tuesday Thursday Saturday

厕 . M o n d a y . Wednesday J Friday Sunday

A N I n ^
IKW - ‘ 1
1400 •

1CO0 J ^ iw V V -^Nlftf^
800 1 1 1 1 i 1 i

0 100 200 300 400 500 600 700 800

Figure 2.17: The power consumption for a normal week

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 64

Figure 2.18 show the top 2 unusual weeks. From the result,
we could locate the top 2 unusual weeks that all contained two
holidays. More information about this dataset can be found in
paper [33 .

Liberation Day Ascension Thursday ,

dAAjLJJ
Sunday \ [\ f\ Christmas

Figure 2.18: (top) The 1st discord of this sequence (bottom) the 2nd discord

of this sequence

Then we want to show the performance of our proposed al-
gorithm. As brute force is the only to solve the top K discords
problem, we compared brute force algorithm to our proposed
algorithiii. In this experiment, we continued to find the discords
in 4 datasets until there was no potential candidate left in the
candidates' list.

2.7 Conclusion

Unusual pattern discovery was discussed in this chapter. We
used discords suggested by Keogh et al. as anomaly detectors.

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 65

云 ECG

0) 6.51~. 1 1 1 —I
o • Brute force Algorithm l

！H T Proposed Algorithm

O) 3.5 1 ‘ ‘
O 512 1024 2048 4096 8192

The length of Time Series

云 ERP

_0) 6.51~I 1 1 — 1 ‘
^ • Brute force Algorithm a ‘

CO • Proposed Algorithm r

6 ^ y
z

o

oT 3.51~‘ 1 1 ‘ ^
O 512 1024 2048 4096 8192

The length of Time Series

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 66

Random Walk
0) 6.51I 1 1 1 1
Q • Brute force Algorithm j

• Proposed Algorithm

vZ
O) 3.51~‘ ‘ ‘ 1 ‘ o 512 1024 2048 4096 8192

The length of Time Series

^ Tickwise

O 6.51I 1 1 1 1
Q • Brute force Algorithm
.w • Proposed Algorithm .

oT 3.51~‘ 1 1 1 ‘
O 512 1024 2048 4096 8192

The length of Time Series

Figure '2.19: Number of times distance function is called by Brute force

Algorit h m and Our Proposed Algorithm

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 67

Then we discussed the Keogh et al.'s algorithm in details. Be-
cause of the weakness of Keogh et al.'s algorithm (word size),
we proposed a novel algorithm to efficiently find discords using
the characteristics of Haar wavelet.

Comparing with Keogh et al.'s algorithm, our proposed so-
lution only need two parameters one is alphabet size, another
one is length of discord. And a lot of experiments were done
to show that our approach was effective and efficient. For the
alphabet size, we find that a simple preprocessing for finding an
optimal parameter can further improve the performance of our
algorithm. And according to our experience a value of 3 is best
for any dataset, so we just hardcode the value of alphabet size
to three for the rest of the experiments.

We also proposed an improved inner loop heuristic which
could further improve the performance of our solution. Again,
experiments were done to show the power of this new heuristic.

At last, we extended our algorithm from finding the most
unusual subsequence into top K unusual subsequences. As for
most applications, we may not be satisfied with knowing the the
most unusual subsequence only. We may want to locate all the
unusual subsequences which may be useful for decision making
or analysis. Based on the Top K discords definition proposed
by Keogh et a l , we proposed a new algorithm by modifying the
original algorithm which was discussed in section 2.3.

Un summary, we found that discord is a very good anomaly
detector, since it can apply to different datasets without any
domain knowledge. Although someone may think that it is easy
to discover the anomaly by eyes, no one can deny that it is im-
possible to examine a huge dataset manually. By extending this
idea into top K discord, we are able to discover more interesting
subsequences. In fact, it makes our algorithm more suitable for
solving real life problems.

In this work, we focused on finding unusual time series with

CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 68

one dimension only. In the future, we want to extend our algo-
rithm for handling time series with more than one dimension.
Moreover, we want to extent our algorithm for discovering dis-
cords on data streams, as most of the time we need real time
anomaly detectors for monitoring different datasets.

• End of chapter.

Chapter 3

Trend Prediction

3.1 Introduction

Time series prediction is not a new topic. People in different ar-
eas use different approaches to solve this problem. For example
some computer scientists believe that neural network can build
up a prediction machine [10] automatically by using massive
historical data, stock market analysts believe that moving aver-
age [9, 26] can smooth a time series and make it easier to identify
trends, and statisticians believe that time series can be modeled
with simple equations [32]. In spite of the many previous works,
it is still a very difficult problem, especially for financial data
such as stock price, bond price and index. It may be because
of their high volatility. Some people even suggested that it was
impossible to deduce the future from the past. However, people
in finance community have shown the power of moving average
on trend identification. Unfortunately, they found that using
a simple moving average curve sometime may not give them a
satisfactory result [12]. We believe that analyzing the basic pat-
terns of a time series can provide us with a lot of information,
since data points in a time series must reflect all the underly-
ing generating principal and correlation that exist between data
points. In this chapter, we propose an algorithm that applies
the previous knowledge about the movement of the stock price

69

C H A P T E R . 3. TREND PREDICTION 70

on moving average. And we will show that this algorithm can
help develop effective investment strategies.

3.2 Technical Analysis

As we focus on financial data, we first review some commonly
used trend prediction methods in the financial community. The
methods that make use of the past prices to deduce the future
trend are generally called technical analysis. In fact, technical
analysis has been used for a long time, and it is still widely used
now. In this section, we will introduce several technical analysis
tools, which are all easy to use.

3.2.1 Relative Strength Index

Relative Strength Index[2] is a good tool to determine the over-
bought and oversold position. In technical analysis, overbought
means that the price of the asset is overvalued and may expe-
rience a pullback. An oversold usually means that the price of
the asset is undervalued and the price of the asset my increase
later.

Definition 10 m-relative strength Index (m-RSI)

RSI = 100 T ^ ^ j (3.1)
1 . average of m days up closes ^ ‘

average of m days' down doses
The range of RSI is from 0 to 100. If the RSI is smaller than

30’ the asset is usually considered as oversold. When the RSI is
larger than 70, then asset will be considered as overbought.

3.2.2 Chart Analysis

Some chartists believe that a variety of chart patterns [1, 22
can be good trend indicators. It is because the movement of the

C H A P T E R . 3. TREND PREDICTION 71

prices can be considered as the change in demand and supply. It
means that chart pattern is a concise picture which consolidates
the forces of supply and demand, so understanding the chart
pattern, we can know the future movement of the prices.

HEAD , \
LEFT SHOULDER A RIGHT SHOULDER

A/ ™ V\
HEAD AND SHOULDERS

Figure 3.1: T h e head and shoulders pa t t e rn is generally regarded as a reversal
p a t t e r n

3.2.3 Dow Theory

Dow theory [1] is one of the most famous forecasting methods.
It assumes that a stock price reflects everything that is known
by general public. It models the stock market in three trends:

• Primary trend: it represents the broad trend of the market.
This trend can last for a few months to several years.

• Secondary trend: it runs counter to the primary trend. It
can be also treated as the corrective reaction. This trend
can last for a few months.

• Third trend: it can view as daily fluctuations. This trend
can last for up to a few weeks

C H A P T E R . 3. TREND PREDICTION 72

Base on this model and a set of guidelines, investors are able
to identify the primary trend and react accordingly.

\ Secondary

\ Trend

\ V \ \
Index \ \ ^八 / \

Primary z - - Z \ / A /

Trend

Time

Figure 3.2: In Dow theory, a market can be modeled in three trends. How-
ever, t he th i rd t rends are usually ignored

S

Investors are interested in the primary trends, since they can
last for a longer period and easy to identify. On the other hand,
investors usually ignore the third trends. Due to the randomness
of daily fluctuations, it is difficult to forecast the third trends.

3.2.4 Moving Average

B a s i c c o n c e p t o f m o v i n g a v e r a g e

Moving averages [26，29, 12] are widely used in the finance com-
munity, as they are easy to use. The basic concept is calculating
an average of data in a moving sliding window, so the fluctua-
tions are reduced.

Definition 11 m-moving average: Given a time series {^i,亡2,亡3,.•.亡n}，

C H A P T E R . 3. TREND PREDICTION 73

m-moving average at time q is equals to
1 g + m - l

MA(m,q) = — J： U (3.2)
m i=q

The procedure for calculation is shown below

Time Value 4-inoving average

一 1 12.50 -

~ 2 13.40 -

3 11.70 -

4 10.90 12.13

5 15.80 12.95

— 6 16.80 13.80

— 7 14.50 14.50

~ 8 19.10 16.55

9 28.10 19.63

10 27.10 22.20

11 7.23 20.38

— 1 2 3.13 16.39

For computation convenience, the moving average can be
written as a recursion function.

Definition 12 m-moving average: Given a time series {ti,力2, h , . . . t n }

and m-moving at time q — 1 is MA(jn,q — 1). The m-moving
average at time q is equals to

MA{m, q) = MA(m, g - 1)-h - (t , - Vm) (3.3)
TTt

Some people will call the moving average introduced above
the simple moving average. In simple moving average, all the
data points have an equal weight. In order to calculate a new
moving average, the oldest data point will be discarded and a
new data point will be added. Clearly, the discarded data points

C H A P T E R . 3. TREND PREDICTION 74

have no impact on the current moving average. Because of this
disadvantage of simple moving average, exponential moving av-
erage was introduced.

Exponential moving average never removed data points in
calculation. Instead, it puts more emphasis on recent data. For
the less recent data points, they only have a small impact on the
moving average. Because of this feature, it can react quicker to
recent price changes than a simple moving average and reduce
the lag.

Definition 13 m-exponential moving average: Given a time se-
ries {̂ 1,亡2,亡3, ..in} and m-exponential moving at time q — 1 is
EMA{m, q — 1). The m-exponential moving average at time q
is equals to

EMAim, q) = {l- K)EMA{m, g - 1) + Ktq (3.4)

K is equal to 2/(1 + m) and EMA{m^m) = MA(m, m)

The procedure for calculation is shown below

Time Value Previous 4-exponential moving average 4-exponential moving average

1 “ 12.50 - -

2 13.40 - -

^ 3 ^ 11.70 - -

4 “ 10.90 - 12.13

5 1 5 . 8 0 12.13 — 13.60

6 1 6 . 8 0 13.60 — 14.88 “

7 “ 14.50 14.88 14.73

8 19.10 14.73 16.48

9 2 8 . 1 0 16.48 21.13

10 27.10 21.13 23.52

11 “ 7.23 23.52 17.00

12 “ 3.13 17.00 11.45

C H A P T E R . 3. TREND PREDICTION 75

In exponential moving average. We use the constant weight
factor K in calculation and this constant factor only depends on
the specified period of the moving average. Imagine that if there
is a dramatically change in the price, intuitively we should pay
more attention to this change. However, exponential moving
average totally ignores the rate of change of the price.

The last type of moving average that we want to introduce
is adaptive moving average. It is very similar to exponential
moving average, but this time we do not use constant weight
factor K. Instead, we update the factor according to the new
prices.

Definition 14 m-adaptive moving average: Given a time se-
ries {力1,力2，力3，…亡n} and m-adaptive moving at time q — 1 is
AMA{m^ q — 1). The m-adaptive moving average at time q is
equals to

AMA(m, q) = {\- km,q)AMA{m, g - 1) + km,qtq (3.5)

J — tq —亡g—m /Q

AMA(m, m) = MA[m, m) and in order to calculate AMA{m, q),
we need to calculate km,q

The procedure for calculation is shown below
We have discussed three different moving average, they are

simple moving average, exponential moving average and adap-
tive moving average. Then we will introduce the usage of moving
average in trend identification.

T r e n d i d e n t i f i c a t i o n u s i n g m o v i n g average

As past data is used to form moving average, moving average is
good for trend identification [26, 3] and trend following. There
are many methods for using moving average in trend prediction.

C H A P T E R . 3. TREND PREDICTION 76

Time Value Previous 4-adaptive moving average k 4-adaptive moving average

1 12.50 - __- -

2 13.40 - - -

3 11.70 - - -

4 10.90 - - 12.13

5 15.80 12.13 0.40 13.59

6 16.80 13.59 0.40 14.89

7 14.50 14.89 0.31 14.77

8 19.10 14.77 0.64 17.54

9 ~28.1Q 17.54 — 0.72 25.23

""To 27.10 25.23 26.37

26.37 j m 22.33

~ T 2 20.33 0.47 13.30
I I I I

In this section, we will introduce three simple approaches. The
first approach uses the direction of the moving average to deter-
mine the trend. In other words, if the price moves in up trend,
moving average is also in an up trend. And the price moves in
down trend, moving average is also in a down trend. The change
in trend can be observed from the turning points (At turning
points, the slope of the moving average changes from positive
to negative or negative to positive) on the moving average. The
turning points could tell us the time for buying and selling. In
general, when the slope of the moving average changes from
positive to negative, we should sell all the stocks on hand. Oth-
erwise, we should buy the stocks, since an up trend is identified
when the slope of the moving average changes from negative to
positive.

The second approach uses the location of the price to deter-
mine the trend. We will consider the relative position of price to
the moving average. When the price is above the moving aver-
age, the up trend is identified. Now the market can be viewed in

C H A P T E R . 3. TREND PREDICTION 77

Capital One Financial Corp (July.1999 - May.2001)
^'iu 1 1 1 1 1 1 1 1 1

'⑴- 感 I “ 、 -

m \ m f̂
’\ k

1印昨丨 iV f . . -

\；\ m f ! ' I

1 � • 觀 J) \ \ I ‘ — COF (Daily) "
I I' ‘ ——30-Moving Average

'' I #
1001 1 1 1-1 1 1 1 1 1 1

a yj im isu an 300 asci 400 450 son

Figure 3.3： The original time series was smoothed by using 30-moving aver-

age. N o w the trend of this time series became much easy to observe. A n d

t he turning points show us the time for buying and selling the stocks.

bullish behavior, investors can invest in the security. However,
when the price is below the moving average, the down trend is
identified. The market can be viewed in bearish behavior, it is
not a good period for investment,.

The third approach uses the relative position of the shorter
moving average to the longer moving average. The shorter mov-
ing average can show the short term trend of the stock price and
the longer moving average can show the long term trend of the
stock price. If the shorter moving average is above the longer
moving average, it means that comparing with the past, now
the stock perform very well. Then an up trend is identified. If
the shorter moving average is below the longer moving average,
it means that comparing with the past, now the stock perform
badly. Then a down trend is identified.

Now, we have introduced three different moving averages and

C H A P T E R . 3. TREND PREDICTION 78

Cisco Systems Inc. (Mar.1999 - Jul.2001)
901 1 1 [1 1 • I I I

• C S C O (Daily)
——100-Mo\ing Average

80 - . -

w ^
2 0 ； -

10 ' 1 1 I I I I I 1 1
0 50 100 150 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0

Figure 3.4: The original time series was smoothed by using lOO-moviiig av-

erage. W h e n the stock price is above moving average, it is very clear that

the stock is in bullish behavior. Then in the second half of moving average,

the stock price is below the moving average, so an down trend is identified.

three different methods for trend prediction. For moving aver-
ages, both simple moving average and exponential moving av-
erage are easy to calculate. Simple moving average cannot cap-
ture the chances quickly, but it can generate a smooth curve for
analysis. Exponential moving average can capture the chances
quickly, but it may be too sensitive and generate false trend sig-
nals. Adaptive moving average is good at capturing the chances
quickly, but it is not easy to calculate. From these three dif-
ferent trend prediction methods, people in financial community
usually suggest it depends on investor's trading and investing
style and preferences.

C H A P T E R . 3. TREND PREDICTION 79

Inter-Tel Inc. (Jul,1997 - Apr,200)
351 1 -1 , 1 ,

P ^ INTL (Da i l^
—30-EMA
—100-EMA

51 -J 1 1 1 1
0 100 200 300 400 500 600

Figure 3.5: T w o moving averages were used. One is 30-exporiential moving

average, another one is 100-expoiientia.l moving average. By finding the

intersection points by two moving averages, we can identify the up trends

and down trends easily.

3.3 Proposed Algorithm

As a moving average is widely used, we want to further improve
the performance of an moving average.

Before go into details, we will first give a brief outline about
our suggested algorithm. The main idea of our method is that we
want to make use of the previous knowledge about the move-
ment of the stock to improve the performance of the moving
average. In our algorithm, when there is a new data point, we
will update the moving average curve. Then we will check if
there any change of trend signal generating by moving average.
If yes, we will insert the previous chart pattern into a prediction
tree. We then use the current chart pattern and prediction tree
to do another prediction. When both moving average and pre-

CHAPTER. 3. TREND PREDICTION 80

diction tree give the same answer, we will confirm either an up
trend or a down trend is identified. The algorithm is shown in
Algorithm 8.

Algorithm 8 Proposed Algorithm 一

1： //Initialization
2: result from moving average = NULL
3： result from prediction tree = NULL
4:

5： //Main Algorithm
6： while there is a new data point do

7： update the moving average curve

8： result from moving average = check is there any change in trend
9： if result from moving average ！ = no change then
10： insert into prediction tree(previous chart pattern)
11： result from prediction tree = prediction next trend (current chart

pattern)
12: if result from prediction tree = = result from moving average then
13： new trend was identified

14： end if

15： end if

16： end while

Next, we will discuss using the Piecewise Linear Representa-
tion to capture the chart patterns. Then we show the details on
inserting chart patterns into the prediction tree and using the
prediction tree for trend prediction.

3.3.1 Piecewise Linear Representation

Due to different needs, researchers suggested several represen-
tations of time series[25, 16, 27]. We have discussed Symbolic
Mapping in previous chapter. In this section, we will focus on
the most frequently used representation that is Piecewise Linear
Representation.

In Piecewise Linear Representation [37, 36, 5, 17], a time se-
ries is approximated by different line segments. Normally, num-
ber of line segments will be much less than the number of data

C H A P T E R . 3. TREND PREDICTION 81

points in the original time series. Because of this observation,
this representation makes the storage, transmission and compu-
tation of the data more efficient.

/Vv
V v

Figure 3.6: Blue line is the original time series. Red line is the Piecewise

Linear Representation of the time series.

Ill this thesis, we propose a new Piecewise Linear Representa-
tion method which can represent a time series T in K meaningful
line segments. When the slope of the given line segment is pos-
itive, it means the time series is in up trend. When the slope of
the given line segment is negative, it means the time series is in
down trend.

Definition 15 Vertex: Any K line segments can be represented
by a set of vertices. Each vertex is represented by three elements

Pi is the start time of the {i + line segment and it is also
the end time of the line segment. Vi is the value of the time
series at time 'pi. s,； is slope of the {i + line segment, it can
be either positive or 'negative.

C H A P T E R . 3. TREND PREDICTION 82

Now, we have defined vertex. Then we can introduce our
method for finding vertices on an online data stream. First
vertex is established at the start of the data stream. Imagine
that we are at time pi + 1, we will compare the value of the data
stream at pi and pi + 1. If fy.^i is smaller than tp̂ and all the
data points from last vertex (time Pi-i) to time Pi are monotonic
increasing. Then a new vertex is created with negative slope. On
the other hand, If /,内+] is larger than tp. and all the data points
from last vertex / � _ i to Pi are monotonic decreasing. Then a

new vertex is created with positive slope.

IA
I . L 1 i I i

• U 1——p. Li i_L^

to t, t̂ tg to ti t2 tg t̂ to ti t2 tg t, tg

(a) (b) (c)

Figure 3.7: Blue line is the original time series. Red line is the Piecewise

Linear Representation of the time series. W e can coDtimie to add vertices in

an online data stream.

3.3.2 Prediction Tree

Using our proposed segmentation algorithm, any time series can
be converted into different line segments with zigzag sharp. As
we have mentioned before, the line segments can be represented
by a set of vertices. In order to study the previous chart pattern

C H A P T E R . 3. TREND PREDICTION 83

efficiently, the vertices then will be furthered converted into a
sequence of symbols using the discretization algorithm in sec-
tion 2.3.2. After converting vertices into SAX words, we are
ready to build a prediction tree.

In our algorithm, we do not only use the original time series
to predict the trend, as there are a lot of fluctuations. Instead,
we use a moving average, since it can smooth the original time
series. It means we build a moving curve on the original time
series, then we divide this moving curve into different segments.
Each segment can tell use the original time series is moving in
up trend or down trend. And in each vertex, we also store the
value of the original time series. For example, a vertex created
at time pi will store the value of the moving average Vi at time
Pi and the value of the original time series Oi at time Pi.

As we want to make use of k previous vertices to make a pre-
diction, we will extract the k previous vertices (not include the
new created vertex which is called as current vertex). Then con-
verting the value of the vertices into a sequence of symbols and
insert into a tree. At the leaf nodes, we will keep three counters,
one is for counting the number of cases that the the original time
series value in current vertex Oi is greater the original time series
value in previous vertex Oj_i by a user specified threshold f, an-
other one is for counting the number of cases that Oi is smaller
than Oi-i by a threshold f, the last one is for counting the num-
ber of cases which does not fulfill either one of the previous two
conditions. This process only occurs when a new vertex is es-
tablished, so it will not create much computation burden which
is one of the big problems for massive stream data management.

In our algorithm, two prediction trees are used, one is for up
trend and one is for down trend. If the trend of the previous
vertex is up, we will insert the new data into the 'Up Trend
Tree'. Otherwise, the new data will be inserted into the 'Down
Trend Tree'.

C H A P T E R . 3. TREND PREDICTION 84

\ a /

Figure 3.8： Our idea is illustrated in this diagram. First step, we need to

generate a moving average for a given time series

3.3.3 Trend Prediction

When a new vertex was established, the current line segment
must be either in up trend or down trend. However, it is not
enough for financial data stream. The main problem is we do
not know how much will the stock price increase. It is difficult
to give a precise range for the prediction, but it is important
to know if the stock price will decrease or increase by a user
specified threshold. This specified threshold can be treated as
the user required profit on the investment.

When a new vertex is established, we extract the k-1 previous

CHAPTER. 3. TREND PREDICTION 85

Piecewise Linear Representation

1 fN
V y ：

J Prediction Tree^^^^^^

SAX A / �

Figure 3.9： Second step, when a new vertex is created at]).“ we need to

insert current chart pattern into the prediction tree. Assume we want to use

3 vertices to predict the trend, then we need to extract 3 previous vertices,

convert them into S A X words and insert them into predication tree. At the

leaf node, we compare the value o/ and value Oi_i. If 0, is greater than o.j_i

by user specified threshold f, we increase the value of 'UP T R E N D ' counter

by 1. If Oi is smaller than i by user specified threshold f, we increase the

value of ' D O W N T R E N D ' counter by 1. Other, we increase the value of 'NO

T R E N D ' counter by 1. In this case, the last vertex is in up trend, so we

insert, this pat.t.em in 'Up Trend Tree’

vertices and current vertex, convert the values of the vertices
into a sequence of symbols. Then we will look up this sequence
of symbols in the 'Up Trend Tree’, if the trend of the current
vertex is up. We will look up this sequence of symbols in the
，Down Trend Tree', if the trend of the current vertex is down.
At last, we will compare the value of three counters at the tree
node and return the result of the prediction. The final result
can be 'UP TREND', 'DOWN TREND' or 'NO TREND，，we

will clioose the one that the counter value is the greatest among

C H A P T E R . 3. TREND PREDICTION 86

all three counters.
A trend will be confirmed if both moving average and predic-

tion tree give the same result. If we cannot look up the sequence
of symbols in the prediction tree, we will trust the result from
moving average.

3.4 Experimental Results

3.4.1 Experimental setup

We obtained the stock prices of different listed companies from
'YAHOO Finance' [4]. In our experiment, we only used the ad-
justed closing price, since closing price is more important com-
paring with opening price, daily high price and daily low price.
We did not use the closing price directly, as we wanted to ignore
the fluctuations caused by stock split and stock merge cases.

In stock merge, the current stock price will increase dramati-
cally, so we need to decrease all the data points after the merge
point according the to the merge ratio. For example, if two
shares of stock will merge into one share of stock, we will de-
crease all the data points by 50% after the merge point.

In stock split, the current stock price will decrease dramati-
cally, so we need to increase all the data points after the merge
point according the to the split ratio. For example, if one shares
of stock will split into four share of stock, we will increase all
the data points by 400% after the split point.

In our experiments, we may need to set up a prediction tree
for our proposed algorithm, so we will use first 1,000 data points
to train up a tree. Then the remaining data points will be used
to perform our experiments. For the parameters, we fixed the
user specified threshold as 10% of the previous price and for the
length of moving average, we chose the best length from 20, 30,
50 and 100 by using the training result from the first 1,000 data

«
o

C H A P T E R . 3. TREND PREDICTION 87

points.
And the two experiments are very common in comparing the

perforiiiaiice of prediction algorithms [36, 37, 22, 12 .

Raw data stream

I、丨yifpi" s,。_

Adjusted data stream

』

/ v^
I 产

J
Figure 3.10: (top) Raw data stream (bottom) Adjusted data stream.

3.4.2 Experiment on accuracy

111 this experiment, we want to test the prediction accuracy of
our algoritliin. Both our algorithm and moving average can
generate up trend and down trend signals. The signals tell us
that the price will move in an up trend or in a down trend.
Now we can test the accuracy by using coming trend signal. For
example, we receive a down trend signal at time p^ and the stock

C H A P T E R . 3. TREND PREDICTION 88

price is o^. The prediction will be correct, if the stock price is
smaller than o^ when we receive a new trend signal.

We compared our algorithm with simple moving averages in 5
datasets. The test date range was from the date that the com-
pany became a listed company to 31st December, 2005. Our
algorithm won in all 5 cases. It suggested that previous knowl-
edge about the movement of the stock price can improve the
performance of the moving average.

Our Proposed Algorithm Moving Average

E R T S 57.69% 47.88%

C〇F — 56.25% 48.82%

A M G N — 47.52% 44.83% 一

M X I M 51.72% 52.17%

Q L G C ~ ~ 57.97% 39.32%

Average 55.55% 48.82% —

Table 3.1: Correctness of trend prediction

3.4.3 Experiment on performance

Since we are focusing on financial data, we do not want to de-
velop a trend predication algorithm only. In fact, we want to
develop an effective investment strategy. As we have mentioned
before, moving averages can be used to determine when we buy
the stocks and when we sell the stocks. In this experiment, we
want to show that our algorithm is much better than moving
averages in term of buy/sell indicators.

In this experiment, we will assume that we have 10,000 dollars
on hand. If an up trend is confirmed, we will use all the money
on hand to buy the stock and stock price will be equal to the
stock price of next day after the up trend is confirmed. And if
a down trend is confirmed, we will sell all the stock on hand.

C H A P T E R . 3. TREND PREDICTION 89

However, we may not sell the stock on the day that the down
trend is confirmed. We will sell the stock when the trend is down
and the stock price is higher than the previous buying price. At
the last data point in our dataset, we will calculate the total
value of the asset on hand. It will be equal to the total value of
the stock plus the total money on hand.

We compared our algorithm with simple moving averages and
，buy and hold' in 15 datasets. The test date range was from 1st
January, 2004 to 31st December, 2005. For 'buy and hold', we
use all the money to buy a stock at the beginning and we hold
it until the last day. Our algorithm won in most of the cases.
It was because our algorithm could successfully avoid making
buy/sell decision in a small up trend or down trend.

B u y and Hold Moving Average Our Proposed Algorithm

A T Y T — 11.91% 1.16% 3.02%

C S C O - 2 9 . 3 8 % - 3 2 . 8 0 % -33.14%

H P (^ 2 7 . 1 7 % - 2 0 . 4 1 % “ - 1 9 . 2 4 %

I B M - 8 . 6 6 % 1 0 . 4 4 % 4 . 0 8 % ~

M X O - 4 0 . 5 7 % - 1 . 3 0 % “ - 4 . 8 4 %

M S F T 7.79% 9.02% “ 9.83%

O R C L -7.08% -10.19% -17.82%

Y H O 6 ~ 7 2 . 5 1 % 7 9 . 1 5 % 7 4 . 9 3 %

S U N W 23.96% 14.11% — 22.18%

C R E A F -14.60% 15.29% “ 19.26%

A D B E 89.29% 44.26% 36.84%

INTC -20.83% -7.47% — -10.46%

D E L L -12.63% -24.30% -25.91%

S Y M C 0.75% 24.36% ~ ~ 26.45%

T M I C 43.68% 36.14% 65.57%

Average 9.55% 9.16% 10.05%

Table 3.2: Annual rate of re turn

C H A P T E R . 3. TREND PREDICTION 90

111 fact, it is evident that a stock can go through both trending
and trading phases. During a trading phase, the stock price may
move ill short up trend or short down trend, since the primary
trend has not established yet. However, the moving average does
not work well in trading period. And our proposed algorithm
can also perform well in trading period.

Ford Motor (July, 1997 - Dec.2000)
70 1 1 1 1 1 1 I I ~~-1

— F o r d (Daily)
I l l ——30-Moving Average

： V
2 0 1 _J J I — i 1 1 1 1

0 100 200 300 400 500 600 700 800 900 1000

Figure 3.11: The green circles indicate the trading phases.

3.5 Conclusion

Time series trend prediction was discussed in this chapter. We
iiiaiiily concentrated on financial data such as stock price, index
and bond price, as it is nearly a main job for people working
ill this area. We introduced some common approaches which
are widely used in the financial community. Relative strength
index, chart analysis, Dow theory and moving average are all
widely used, as they are easy to use. Especially moving average,

C H A P T E R . 3. TREND PREDICTION 91

it can smooth time series and reduce the fluctuations. It can
also help the fund manager to determine when he should buy
the stock or when he should sell the stock.

We proposed a new algorithm that use the previous moving
patterns of a stock to improve the performance of simple moving
average. Prom the experimental results, we showed that our
solution was more accurate than the simple moving average. We
then applied this algorithm on an investment strategy. Again
our solution is better than moving average in term of rate of
return.

In this work, we only focused on trend prediction. However,
sometimes we want to predict a possible range that the incoming
value may fall in. We want to extend our algorithm on prediction
of a range rather a trend.

• End of chapter.

Chapter 4

Conclusion

In this thesis, two important problems in time series were ad-
dressed. The first one is finding unusual subsequence. Accord-
ing to our definition, the most unusual subsequence D is the
one that maximizes the minimum distance between D and any
other non-self subsequence E

m^x{mm{Dist{D, E))

We proposed a method for solving this problem. We also in-
vestigated this problem in different aspects such as the effect of
alphabet size and length of discord. The idea of top K discords
was introduced in this thesis too. And a lot of experiments were
done to prove that our solution is effective and efficient.

The second one is trend prediction. The problem is simple,
at every time step we want to know the future data points will
move upward or downward. However, the solution is not simple.
We proposed an algorithm that make use of the past prices to
deduce the future trend. Experiments showed our solution is
better than a famous approach, moving average.

We do believe solutions to those two problem are very useful
for people who need to handle time series. Imagine, when we
need to make decisions by analyzing time series, very often we
need to know the future movement of time series and all the
existing unusual subsequences. In fact, in this thesis, we showed

92

CHAPTER 4. CONCLUSION 93

a lot of real life applications in different areas. They are useful,
as they are core problems of many complicated problems.

• End of chapter.

Bibliography

1] Chart pattern, http://www.chartpatterns.com.

2] Investopedia, http://www.investopedia.com.

3] Stock charts.com, http://www.stockcharts.com.

4] Yahoo finance, http://finance.yahoo.com.

5] Proceedings of the 20th International Conference on Data
Engineering, ICDE 2004, 30 March - 2 April 2004, Boston,
MA, USA. IEEE Computer Society, 2004.

6] B. Chill, E. Keogh, and S. Lonardi. Probabilistic discov-
ery of time series motifs. In KDD，03: Proceedings of the
ninth ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 493-498, New York,
NY, USA, 2003. ACM Press.

'7] D. Dasgupta and S. Forrest. Novelty detection in time series
data using ideas from immunology, 1995.

8] D. L. Donoho. Unconditional bases are optimal bases for
data compression and for statistical estimation. In Applied
and Computational Harmonic Analysis, 1(1), pages 100-
115, 1992.

9] H. Dourra and P. Siy. Investment using technical analysis
and fuzzy logic. Fuzzy Sets Syst, 127(2):221-240, 2002.

94

http://www.chartpatterns.com
http://www.investopedia.com
http://www.stockcharts.com
http://finance.yahoo.com

BIBLIOGRAPHY 95

10] A. L. Erkki. Time series prediction competition: The cats
benchmark.

11] R. Gesine, S. Sophie, and S. W. Michael. Probabilistic and
statistical properties of words: An overview. Journal of
computationnal Biology, 7(1-2): 1-46, 2000.

12] R. Jiang and K. Szeto. Extraction of investment strategies
based on moving average: A gentic algorithm approach. In
CIFEr，03: Proceedings of IEEE International Conference
on Computational Intelligence for Financial Engineering,
2003.

13] E. Keogh. Exact indexing of dynamic time warping, 2002.

14] E. Keogh, S. Lonardi, and B. Chiu. Finding surpris-
ing patterns in a time series database in linear time and
space. In Proceedings of The Eighth ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining (KDD，02), Edmonton, Alberta, Canada, July
2002.

15] E. Keogh and T.Folias. The ucr time series data
mining archive, ht tp:/ /www.cs.ucr.edu/�eamonn/tsdma/

index.html.

16] E. J. Keogh, S. Chu, D. Hart, and M. J. Pazzani. An
online algorithm for segmenting time series. In ICDM ,01:
Proceedings of the 2001 IEEE International Conference on
Data Mining, pages 289-296, Washington, DC, USA, 2001.
IEEE Computer Society.

17j E. J. Keogh, S. Chu, D. Hart, and M. J. Pazzani. An online
algorithm for segmenting time series. In ICDM, pages 289-
296, 2001.

http://www.cs.ucr.edu/%e3%80%9ceamonn/tsdma/

BIBLIOGRAPHY 96

.18] E. J. Keogh and S. Kasetty. On the need for time series
data mining benchmarks: A survey and empirical demon-
stration. Data Min. KnowL Discov., 7(4):349-371, 2003.

19] E. J. Keogh, J. Lin, and A. W.-C. Fu. Hot sax: Efficiently
finding the most unusual time series subsequence. In ICDM,
pages 226-233, 2005.

20] E. J. Keogh, S. Lonardi, and C. A. Ratanamahatana. To-
wards parameter-free data mining. In KDD, pages 206-215,
2004.

'21] E. J. Keogh and C. A. Ratanamahatana. Exact indexing
of dynamic time warping. Knowl Inf. Syst, 7(3):358-386,
2005.

22] W. Leigh, N. Modani, and R. Rightower. A computational
implementation of stock charting: abrupt volume increase
as signal for movement in new york stock exchange com-
posite index. Decis. Support Syst, 37(4):515-530, 2004.

23] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic rep-
resentation of time series, with implications for streaming
algorithms. In DMKD ,03: Proceedings of the 8th ACM
SIGMOD workshop on Research issues in data mining and
knowledge discovery, pages 2-11, New York, NY, USA,
2003. ACM Press.

24] J. Lin, E. J. Keogh, A. W.-C. Pu, and H. V. Herle. Approx-
imations to magic: Finding unusual medical time series. In
CBMS, pages 329-334，2005.

25] J. Lin, E. J. Keogh, S. Lonardi, and B. Y. chi Chiu. A
symbolic representation of time series, with implications for
streaming algorithms. In DMKD, pages 2—11，2003.

26] S. Loft house. Investment management.

BIBLIOGRAPHY 97

27] K. pong Chan and A. W.-C. Pu. Efficient time series match-
ing by wavelets. In ICDE, pages 126-133, 1999.

28] C. A. Ratanamahatana and E. J. Keogh. Making time-
series classification more accurate using learned constraints.
In SDM, 2004.

29] J. Schwager. Getting started in technical analysis. John
wiley and sons inc, 1999.

30] C. Shahabi, X. Tian, and W. Zhao. TSA-tree: A wavelet-
based approach to improve the efficiency of multi-level sur-
prise and trend queries on time-series data. In Statistical
and Scientific Database Management, pages 55-68, 2000.

31] V. S.-M. Tseng and C.-H. Lee. Cbs: A new classification
method by using sequential patterns. In SDM, 2005.

32] R. van der Weide. Go-garch: a multivariate gen-
eralized orthogonal garch model. Journal of Ap-
plied Econometrics, 17(5):549-564, 2002. available at
http://ideas, repec. org/a / jae / j apmet / v 17y2002i5p549-
564.html.

33] J. J. van Wijk and E. R. van Selow. Cluster and calendar
based visualization of time series data. In INFO VIS^ pages
4-9, 1999.

34] L. Wei, E. J. Keogh, H. V. Herle，and A. Mafra-Neto.
Atomic wedgie: Efficient query filtering for streaming times
series. In ICDM, pages 490-497, 2005.

35] L. Wei, N. Kumar, V. Lolla，E. J. Keogh, S. Lonardi, and
C. A. Ratanamahatana. Assumption-free anomaly detec-
tion in time series. In SSDBM, pages 237-240, 2005.

36] H. Wu, B. Salzberg，G. C. Sharp, S. B. Jiang, H. Shirato,
and D. Kaeli. Subsequence matching on structured time

http://ideas

BIBLIOGRAPHY 98

series data. In SIGMOD ,05: Proceedings of the 2005 ACM
SIGMOD international conference on Management of data,
pages 682-693, New York, NY, USA, 2005. ACM Press.

37] H. Wu, B. Salzberg, and D. Zhang. Online event-driven sub-
sequence matching over financial data streams. In SIGMOD
'04： Proceedings of the 2004 ^CM SIGMOD international
conference on Management of data, pages 23-34, New York,
NY, USA, 2004. ACM Press.

38] Y. Zhu and D. Shasha. Efficient elastic burst detection in
data streams. In KDD, pages 336-345, 2003.

.
 .

 .
.

 .—

 .

,
 V.

•

 .

 .

 .

.

 -

 .

.
 .

 •

 .

 •
•

J
r
/

.
 ...

.
 ’
-
.
(
•

 r

 .
.

..v̂

.
 ...

 -
X

 .

•
 •

 t
l

 •
 -

 V
’

 .、

.’•-
 【、

....

•
 •

 >

 •
 .

 .

 .

 I

 .

’

.

-

)

 ：，：二

—

—

：

.

：

.

、

.

•
•

4

•

 .

-
«
.

.
'

•
-
,

,
.
.
,
:
-
.

々
.
-
:
.
.
-
.

.
 ..

 ...

 •

 •

 •
.

-
:
-
,
:
.
.
.
.
.
 .
-

.
 :
:
.
.
v
‘
：
，
i
r

〔
.
.

 •

•
 •

 ,

 .V

 .
.
.
-
:
;
:
>
.
.

.
 .

.

.

 .

.
二

 .)、、"：：••

;
,

 •

 r

一
 •
-
、•

 ...

 t

 、•.-.-•

•

•

 •
*
.
，

 ...

 V

 :
 •

 ...

•

•

.

 ..

-
、
(
‘

•
 J

.
广
.

:
-
 .

 •

 •

 r

 :
 ’

•

 .

 ,
.
〈.

 V.

 -

,

？

-
 .

 :

 -

 ..

 ...

 ..
V

；：、•

•

.

.
.
.

-

•

；
 -
.
,
,
-
-
、
.
，
.
•
*
,
-
.

)

-....——
 ：.，.-..:.

 -
-
.
.

‘
"
.
.
.
r
气
〕
.
.
.
二

.

.

 .
•
•

 .
•
•

•

：

：

 .
•
.
-

 .
.
.
.
；

.

.

 ...

 -
.

•

 .
.
.
.
:
:

.

.
 .
-
.

•

 .
.
.

一

！

\

•

 -
.

.
 .
.
,

•
.

 •..•.••

 .
-

 •

 •

 •
-
-

 .

.

.
•

•

.

.

 .:

(

/
 ..

 .
,
.
.

.

.

\

 •
•
•

 ：.

..

」

.

.

；

.

.

」

V

 -

•

 •.

：

.
.
.
.

•

 .

C U H K L i b r a r i e s

圓••llllllll
004359191

