
A Study of Time Series: 
Anomaly Detection and Trend 

Prediction 

LEUNG Tat Wing 

A Thesis Submitted in Partial Fulfilment 
of the Requirements for the Degree of 

Master of Philosophy 
in 

Computer Science and Engineering 

©The Chinese University of Hong Kong 
August 2006 

The Chinese University of Hong Kong holds the copyright of this thesis. A n y 

person(s) intending to use a part or whole of the materials in the thesis in 

a proposed publication must seek copyright release from the Dean of the 

Graduate School. 



l_Y 道 — 屬 

i( m 130 I I 
产:， 



Thesis / Assessment Committee 

Professor WONG Man Hon (Chair) 

Professor FU Wai Chee (Thesis Supervisor) 

Professor LEUNG Ho Fung (Committee Member) 

Professor X. Sean Wang (External Examiner) 



Abstract of thesis entitled: 
A Study of Time Series: Anomaly Detection and Trend Pre-

diction 
Submitted by LEUNG Tat Wing 
for the degree of Master of Philosophy 
at The Chinese University of Hong Kong in July 2006 

This paper discusses two important problems in time series. 
Anomaly Detection: The problem of finding anomalous 

subsequences has received much attention. However, most of 
the anomaly detection algorithms need an explicit definition of 
unusual pattern, which may be impossible to elicit from a do-
main expert. Using discords as anomaly definition is useful, 
since discords only require one intuitive parameter (the length 
of the subsequence). In this thesis, we introduce a new algo-
rithm for finding discords. By converting the sequences into 
Haar wavelets, using the properties of Haar wavelets, we are 
able to locate the discord by searching the wavelets from low 
resolution to high resolution. 

Trend Prediction: Time series trend prediction is not a new 
topic. People in different areas use different approaches to solve 
this problem. In spite of the many previous works, it is still a 
very difficult problem, especially for financial data such as stock 
price, bond price and index. It may be because of their high 
volatility. We believe that analyzing the basic patterns of a time 
series can provide us with a lot of information, since data points 
in time series must reflect all the underlying generating principle 
and correlation that exist between data points. In this thesis, 
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we propose an algorithm that applies the previous knowledge 
about the movement of the stock price on moving average. And 
we will show that this algorithm can develop effective investment 
strategies. 
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摘要 

這篇論文將會討論兩個在時間序列上很重要的問題。 

異常偵測：尋找異常子序列這個問題已經受到關注。但是，大部份的異常偵測演 

算法都需要明確地定義甚麼是不正常的模式，這對於領域專家來說是不太可能。 

利用I不一致」來做一個異常探測器是十分有用的，因爲它們只需要一個靠直覺 

得知的參數（子序列的長度）。在本論文，我們會介紹一個新的演算法來尋找不 

一致的子序列。我們建議轉化序列爲哈爾小波。以後再利用哈爾小波的特性，這 

樣我們便能從低解像度到高像度去尋找不一致。 

預計趨勢：時間序列的趨勢預計已經不是一個新課題。人們在不同的領域用不同 

的方法去決解這個問題。雖然有很多以前的著作，但是這個問題仍然是十分困 

難。特別是金融的數據，例如股票的價格、偾券的價格和一些指數。這可能是因 

爲它們的高揮發度。我們相信分析時間序列的基本模式可以提供我們很多有用的 

資料，因爲在時間序列的數據點一定會反映出所有潛在的生產原則及數據點之間 

的相互關係。在本論文，我們提議的演算法將過往對於股票價格的資料應用在栘 

動平均線上。我們會展示這個演算法能夠發展出一個有效的投資策略。 
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Chapter 1 

Introduction 

Nowadays, data mining is very important for different people 
from different positions. Because of the advanced technology, 
we can obtain a large amount of data easily. Unfortunately, it is 
not easy to extract some useful information from the raw data. 
And it is also well known there is no generic method to get mean-
ingful information from different type of data. Therefore, many 
computer scientists in data mining community suggested many 
approaches to mine different knowledge for different datasets. 

We are especially interested in time series. As in many appli-
cations, time series have been found to be a natural and useful 
form of data representation. The definition is shown in defi-
nition 1 and two time series examples are shown in figure 1.1 
and 1.2. 

Definition 1 Time Series: A time series T = t i , i s an 
ordered set of n real values. 

Many important applications around us involve time series 
such as financial data, electrocardiograms(ECG) and other med-
ical records, weather changes, power consumption etc. As large 
amounts of time series data are accumulated over time, it is 
interesting to uncover interesting patterns on top of the large 
datasets. Some researchers focus on motifs discovery [6, 21], as 
finding approximately repeated subsequences is a core task for 
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Figure 1.2: D O W Index from January 2000 to December 2005 

various data mining problems such as mining association rules in 
time series. Some researchers focus on time series classification 
problem [28, 34, 31]. Although classification, association rules 
and frequent patterns are old problems in data mining commu-
nity, they become very challenging problems in time series. 

In fact, there are many problems in time series such as clus-
tering, query by context, time series segmentation etc. In this 
thesis, we focus on two problems. One is unusual pattern dis-
covery, and the other one is time series trend prediction. 

We focus on these two problems, as they are very important. 
When we are making decisions, most of time we need to ask two 
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questions. One is 'Is there any unusual event in current process'. 
The other one is 'What is the future movement'. Hence, there 
is a strong motivation to solve these two problems. 

And we also find that these two problems can be solved by 
using the same techniques. The first technique is discretization, 
in fact many researchers will map time series into a sequence 
of words. After this mapping, we can handle the original time 
series by using existing string operation algorithms. For exam-
ple, subsequence matching problem can convert into substring 
matching problem. The second technique is tree structure, it can 
provide a fast way to locate any subsequence. The tree structure 
can also help us to group the similar subsequences together and 
locate the unusual subsequences. 

1.1 Unusual Pattern Discovery 

Most of the data mining algorithms target common features that 
frequently occur. However, looking for the unusual pattern is 
found to be useful in many cases. For example, an unusual 
pattern in an ECG can point to some diseases, unusual pattern 
in weather records may help to locate some critical changes in 
environments. 

Unfortunately, this problem is not easy. The major difficulty 
is what is the definition of anomaly. Some existing algorithms 
need an explicit definition of anomalies. It is not an easy task 
even for domain experts. Some algorithms need users to provide 
a collection of previously observed data, which is considered 
normal. Then any newly observed pattern will be compared with 
the normal dataset, so no specific model for normal behavior is 
needed. However, we may not have enough data to define normal 
behavior. And some anomalies may be contained in normal 
dataset, we may need another algorithm to remove anomalies 
from the normal dataset. This opens the possibility of a chicken 
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and egg paradox. 
Lin et al. [24] and Keogh et al. [19] suggested a new definition 

of anomaly in [24’ 19]. According to these authors, we can define 
the most unusual time series subsequence by a single parameter 
that is the length of the interesting subsequence. We are very 
interested in this definition, as it is a new problem first suggested 
in 2005. We find that there is still room for improvement to 
existing algorithms. 

In Chapter 2 of this thesis, we first have a brief review on 
related work and background. Then we will discuss our proposed 
algorithm in details. We will investigate this problem in different 
aspects that were not considered in previous works. At the end 
of Chapter 2, we will discuss the experimental results. 

1.2 Trend Prediction 

Comparing with unusual pattern discovery, time series trend 
prediction is a very old topic. Although people from different 
areas have put many efforts and much time on this problem, 
there is no approach for solving this problem well. However, 
it is very important in many decision making processes. For 
example, an investor in a financial market may want to know 
whether the DOW index will move in an up trend or a down 
trend for the coming few months. It may affect his decision 
in buying or selling a stock. As another example, government 
may want to know the birth rate and the population size for the 
coming years, as they may affect the government policies. 

In fact, this problem is very challenging. As we have men-
tioned before, no one could solve this problem well especially for 
financial data such as stock price, bond price and index. This 
may be because of their high volatility. Some people suggested 
the movement of stock price is a random process, that is the 
chance for moving upward or moving downward is always 50%. 
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However, some people suggested that past information can pro-
vide knowledge for trend prediction. Because of the difficulty 
and the importance of this problem, there is a strong motiva-
tion for us to solve this problem. 

In Chapter of 3 this thesis, we first review some commonly 
used prediction techniques. Then, we discuss different types 
of moving averages that are the widely used prediction tools 
in financial community. We also demonstrate how a moving 
curve can help us to predict the trend. Next, we will mention 
our proposed algorithm for improving the performance of a well 
known tool, moving average in details. At the end of Chapter 3, 
we will discuss the experimental results. 

1.3 Thesis Organization 

In this thesis, we first describe the problem unusual pattern 
discovery and the proposed algorithm in Chapter 2. Then, we 
describe time series trend prediction and the proposed solution 
in Chapter 3. Finally, we conclude our thesis in Chapter 4. 

• End of chapter. 



Chapter 2 

Unusual Pattern Discovery 

2.1 Introduction 

Algorithm for finding the most unusual time series subsequence [19 
was firstly proposed by Keogh et al" Such a subsequence is also 
called as time series discord, which is the least similar to all 
other subsequences. Time series discords have many uses in data 
mining, including improving the quality of clustering [28, 13], 
data cleaning and anomaly detection [30, 7, 14, 35, 38]. With 
a comprehensive set of experiments, Keogh et al. demonstrated 
the utilities of discords in different domains such as medicine, 
surveillance and industry. 

Keogh et al. also proposed an algorithm [19] based on early 
pruning and reordering the search order to speed up the search. 

Algorithm proposed by Keogh et al. needs users choose two 
parameters, the cardinality of the SAX [23] alphabet size a, and 
the SAX word size w. For the parameter a, extensive exper-
iments were carried out by many researchers. Results suggest 
that a value of either three or four is the best for any task on 
any dataset. 

However, for parameter w, there is no suitable value for any 
task on any dataset. Keogh et al. suggested that relatively 
smooth and slowly changing datasets favor a smaller value of w; 
otherwise a larger value w is more suitable. Unfortunately, we 
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still have questions on how to determine a time series is smooth 
or not and what is the meaning of larger value of w [20 . 

We propose a word size free algorithm by first converting 
subsequences into Haar wavelets [27]，then using a breadth first 
search to approximate the perfect search order for outer loop and 
inner loop. We will discuss the perfect search later in section 2.3. 

2.2 Related Work 

2.2.1 Time Series Discords 

Many algorithms have been proposed for detecting anomaly in a 
time series database. However, most of them require many unin-
tuitive parameters. Time series discords [24,19], which were first 
suggested by Keogh et al , are particular attractive as anomaly 
detectors because they only require three parameters. 

Now, we will define the discord step by step. First, in order 
to distinguish an unusual pattern from a given time series, we 
must need a distance function to measure the distance between 
all pairs of subsequences. Therefore, we need to formally define 
a distance measure Distance Measure(C, M). 

Definition 2 Distance Measure: It is a function that has C 
and M as inputs and returns a nonnegative value R, which is 
said to be the distance from M to C. For subsequent defimitions 
to work we require that the Distance Measure be symmetric, that 
is, Distance Measure(C，M)=Distance Measure(M,C). 

Euclidean distance measure is the most common one in the 
literature that can fulfill the above requirement. For the rest 
of this paper, we will use Euclidean distance as the distance 
function. 

Definition 3 Euclidean Distance: Given two series C and 
M of length n, the Euclidean Distance between them is defined 
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as: 
Hfc 

Distance Measure(C, M) = ^ ( q - miY (2.1) 
\i=i 

Before calculating the distance between C and M, we must 
ensure they are both normalized to have zero mean and standard 
deviation of one. As it is well known [18] that it is meaningless 
to compare time series with different offsets and amplitudes. In 
this thesis, we assume that all the subsequences are normalized. 

In general, the best matches of a given subsequence (apart 
from itself) tend to be very close to the subsequence in question. 
Such matches are called trivial matches. When finding discords, 
we should exclude trivial matches; otherwise, we may fail to 
obtain true patterns. Therefore, we need to formally define a 
non-self match [24, 19，6 . 

Definition 4 Non-self Match (By Keogh et al): Given a 
time series T, containing a subsequence C of length n beginning 
at position p and a matching subsequence M beginning at q, we 
say that M is a non-self match to C if \p — q\ > n 

We now can define time series discord [24, 19] by using the 
definition of non-self matches: 

Definition 5 Time Series Discord (By Keogh et al): Given 
a time series T, the subsequence D of length n beginning at posi-
tion I is said to be the discord of T if D has the largest distance 
to its nearest non-self match. That is, for all subsequence C 
of T, non-self match Md of D, and non-self match Mc of C, 
minimum Distance Measure of D to Md > minimum Distance 
Measure of C to Mc-

2.2.2 Brute Force Algorithm 

The brute force algorithm is the first simple and obvious al-
gorithm for finding discords. It simply considers all the possi-
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ble subsequences and finds the distance to its nearest non-self 
match. The subsequence which has the greatest such value is 
the discord. Algorithm 1 illustrates the idea of the brute force 
approach. However, time complexity of this algorithm is O(m^), 
where m is the length of time series. Obviously, this algorithm 
is not suitable for long time series. 

A l g o r i t h m 1 B r u t e Force Algor i thm 
1： / / I n i t i a l i z a t i on 
2: discord d is tance = 0 
3： discord locat ion = NaN 
4： 

5： / / B e g i n Ou te r Loop 
6： for p = 1 to \T\ -71 +I d o 
7： neares t non-self m a t c h dis tance = infinity 
8： / / B e g i n Inner Loop 
9： for = 1 to |T| - n + 1 d o 

10： if \p — q\> n t h e n 
11： Dist = Dis tance Measure(艺jj，..ip+ji—i, ...tg+ri-i) 
12： if Dist < nearest non-self m a t c h d is tance t h e n 
13： neares t non-self m a t c h dis tance = Dist 
14： e n d if 
15： e n d if 
IG： e n d for 
17： //End For Inner Loop 

18： if neares t non-self m a t c h dis tance > discord d i s tance t h e n 
19： discord d is tance = nearest non-self m a t c h d is tance 
20： discord locat ion 二 p 
21: e n d if 
22： e n d for 
23： / / E n d for Ou te r Loop 
24: 
25: / / R e t u r n Solut ion 
26： R e t u r n (discord dis tance, discord location) 
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2.2.3 Keogh et al.'s Algorithm 

Keogh et al. introduced a heuristic discord discovery algo-
rithm [24] based on the brute force algorithm and some ob-
servations. They found that actually we do not need to find 
the nearest non-self match for each possible candidate subse-
quence. According to the definition of time series discord, a 
candidate cannot be a discord, if we can find any subsequence 
such that the distance between this subsequence to the current 
candidate is smaller than the current smallest nearest non-self 
match distance. This basis idea successfully prunes away a lot of 
unnecessary searches and reduces a lot of computational time. 

So Koegh et al. suggested two heuristics, one to determine 
the order in which the outer loop visits the possible candidate 
subsequences, and the other one to determine the order in which 
the inner loop visits the subsequences for a given current candi-
date. The algorithm is shown in Algorithm 2. 

S A X R e p r e s e n t a t i o n 

The full name of SAX is Symbolic Aggregate Approximation, it 
can convert a time series into a sequence of symbols. It was first 
suggested by Lin et al. [23 . 

In order to reduce the dimensions of a time series to save 
computational time, the time series is first be symbolized [11. 
A time series is divided into w segments, the average value of the 
data falling within a same segment is calculated. These average 
values are the new data points in the dimensionality-reduced 
representation. This representation is known as Piecewise Ag-
gregate Approximation (PAA). After transforming a time se-
ries into PAA representation, we further transform it into a se-
quence of finite symbols. Since time series subsequences that 
are normalized tend to have a highly Gaussian distribution, we 
can determine the 'breakpoints' that produce same areas under 
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A l g o r i t h m 2 Keogh et al.'s algorithm 
1： / / In i t ia l iza t ion 
2: discord distance = 0 
3： discord location = NaN 
4: 

5： / / B e g i n Outer Loop 
()：for Each p in T ordered by heuristic Outer d o 
7： nearest non-self match distance = infinity 
8: / / B e g i n Inner Loop 
9: for Each q in T ordered by heuristic Inner do 

10： if \p- q\> n t h e n 
11： Dist = Distance Measm-e(ip, tq, ...tq+n-i) 
12： if Dist < discord distance t h e n 
13： break; 
14: e n d if 
15： if Dist < nearest non-self match distance t h e n 
K)： nearest non-self match distance — Dist 
17： e n d if 
18： e n d if 
19： e n d for 
20： / / E n d For Inner Loop 
21： if nearest non-self match distance > discord distance t h e n 
22： discord distance — nearest non-self match distance 
23： discord location = p 
24: e n d if 
25： e n d for 
26： / / E n d for Outer Loop 
27: 
28： / / R e t u r n Solution 
29: Re tu rn (discord distance, discord location) 
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Gaussian curve. 

Definition 6 Breakpoints (by Lin et al): Breakpoints are a 
sorted list of numbers B = /？丄，/？之，Ai-i where a is the num-
ber of symbols such that area under a N(0，1) Gaussian curve 
from Pi to Pi+i = 1/a (Pq and pa are defined as —oo and oo, 
respectively). 

These breakpoints can be determined by looking them up in 
a statistical table. Table 2.2 gives the breakpoints for values of 
a from 3 to 7. 

Number of symbols a 

一 3 I 4 I 5 I 6 I 7 

-0.43 -0.67 -0.84 -0.97 -1.07 

"2 -0.43 ~ 0 -0.25 -0.43 -0.57 

0.67 0.25 ~ ~ 0 ~ ~ -0.18 

0.84 0.18 

0.97 0.57 

Pe 1.07 

Table 2.1: All breakpoints for number of symbols from 3 to 7. For example, 

area under a N(0,1) Gaussian curve from —oo to -0.67 is equal to 0.25. 

We can assign a symbol to each region, a PAA value is then 
mapped to the symbol for the region that it falls in. Figure 2.1 
illustrates the idea. 

A p p r o x i m a t i n g t h e M a g i c O u t e r L o o p 

We begin by sliding a window with length n across time series 
T, extracting the subsequences, then converting all the normal-
ized subsequences into SAX words. All the words are placed in 
an array where the index refers back to the original sequence. 
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：：： 

Figure 2.1: A time series is transformed into P A A representation and then 

convert into a sequence of symbols by using predetermined breakpoints 

Now all the SAX words can be embedded into an augmented 
trie where the leaf nodes contain a linked list of all words that 
map there. The count of the number of occurrences of each 
word is stored to the rightmost column of the array. Figure 2.2 
illustrates the idea. 

Now we can prepare the search order of the outer loop. First, 
we find the leaf node with smallest number of occurrences. All 
the subsequences mapped to this node will be examined first. 
For the rest of the subsequences, they are visited in random. 
This heuristic can help us to approximate the location of discord, 
as intuitively these subsequences are less similar to the rest of 
the subsequences. 

Approx imat ing the Magic Inner Loop 

When the i仇 word is considered in the outer loop, we look up the 
word that it maps to, by examining the i仇 word in the array. We 
then find a node which gives us a longest matching path in the 
trie, all the subsequences in this node are searched first. After 
exhausted this set of subsequences, the unsearched subsequences 
are visited in a random order. According to the experimental 
results from Keogh et al., it is very efficient in grouping similar 
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1 1 1 1 1 
, - . Raw time series 

A I 1 1 1 1 
0 \ ^ 1000 1500 2000 2500 

1 Subsequence extracted 

� Converted to SAX 

A c a a 
C ' \ Inserted into array 

^ A u g m e n t e d T r i e 

1 c a a 丄 c ^ 

：：TTTTT"? / 

ZZ 二 / 

( ' ” - " ) 二 丄 L i / 

(m - n ) +1 b C a 2 ‘ 

Figure 2.2: Keogh et al.'s idea is illustrated in this diagram 

subsequences together. Then it can gives us a greater chance to 
break the inner loop. 

2.2.4 Performance Analysis 

In the previous sections, we have introduce brute force algorithm 
and Keogh et al.'s algorithm. Actually, they are nearly the same 
except for the search order of the inner loop and outer loop. In 
this section, we want to show the importance of the search order 
and discuss more about the magic case. 

Algorithm 3 shows us a generic framework for solving discord 
discovery problem. By changing the heuristics for finding the 
search order of the outer loop and inner loop, the performance 
of this algorithm will be completely different. In fact, if we apply 
sequential search order for both outer loop and inner loop, it will 
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A l g o r i t h m 3 Generic framework 
1： / / In i t i a l i za t ion 
2: discord distance = 0 
3： discord location = NaN 
4： 

5: / / Begin Oute r Loop 
()： for Each p in T ordered by heuristic Outer d o 
7： nearest non-self match distance = infinity 
8: / / B e g i n Inner Loop 
9： f o r Each g in T ordered by heuristic Inner d o 

10: if \p - q\> n t h e n 
11: Dist = Distance Measure(t^, tq, .. .tq+n-i) 
12: if Dist < discord distance t h e n 
13： break; 
14： e n d if 
15: if Dist < nearest non-self match distance t h e n 
16: nearest non-self match distance = Dist 
17： e n d if 
18： e n d if 
19： e n d f o r 
20： / / E n d For Inner Loop 
21： if nearest non-self match distance > discord dis tance t h e n 
22： discord distance = nearest non-self match distance 
23： discord location = p 
24： e n d if 
25： e n d f o r 
'26： / / E n d for Outer Loop 
27: 
28： / / R e t u r n Solution 
29： Re tu rn (discord distance, discord location) 
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become a smarter brute force algorithm. If we apply Keogh et 
al.'s suggested heuristic into this algorithm, it will become the 
one that we have mentioned in section 2.2.3. 

In order to have a better understanding of the importance of 
the search order, we will consider 3 cases: 

• Best case: We call it the magic case. In this case, we can 
obtain prefect orderings. For outer loop, the subsequences 
are sorted by descending order of the non-self distance to 
their nearest neighbors, so the discord is placed at the first 
position of the outer loop. For inner loop, the subsequences 
are sorted by ascending order of the distance to the current 
candidate in the outer loop. 
In this case, for the first time running the inner loop, we 
must complete the whole loop. However, after that we can 
break the inner loop during the first iteration. It is because 
we can obtain the true discord distance after first time run-
ning the inner loop and we can obtain the nearest neighbor 
of the second candidate in the outer loop list at first it-
eration of the inner loop. Furthermore, it is trivial that 
the distance between the second candidate and its nearest 
neighbor must be smaller than the true discord, otherwise 
the second candidate will be the discord. Thus, the inner 
loop can be broken during the first iteration. 

In order to make it clear, we use m to represent the length 
of the discord and use n to represent the total length of the 
given sequence. Obvious, the time complexity is equal to 1 
occurrence of (m — n + 1) steps which comes from the first 
inner loop plus (m — n) occurrences of single step of the 
remaining inner loop, so it equals to 0{m). 

• Average case: We call it the random case, as for both 
inner loop and outer loop we just randomly order the sub-
sequences. 
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It is difficult to analyze the performance of the random 
case, since it greatly depends on the data. However, we 
can ensure that the performance must be bounded from 
below 0(m) and from above 0{im?). 

• Worst case: We call it the perverse case. It is exactly 
the reverse orderings of the magic case. For outer loop, the 
subsequences are sorted by ascending order of the non-self 
distance to their nearest neighbors, so the true discord is 
placed at last position of the outer loop. For inner loop, the 
subsequences are sorted by descending order of the distance 
to the current candidate in the inner loop. 
Unlike the best case, this time we can not break the in-
ner loop for the first few iterations. It is because now the 
true discord is placed at the end of the outer loop list. 
It means we can not find the true discord until we exam-
ine the last subsequence in the outer loop list. Actually, 
when we complete the first inner loop, we can obtain a 
best_so_far-distance. However, this value can not help us 
to break the inner loop in the future time. Based on the fea-
tures of the outer loop orderings and inner loop orderings, 
the distance between the second candidate and its nearest 
neighbor must be greater than the current best_so_far_distance 
and we can only locate the nearest neighbor at the last it-
eration of the inner loop. Thus, it is impossible the break 
the inner loop. 

It is obvious that the time complexity is O(m^), as we must 
go through (m —n) occurrences of the (m — n) steps of inner 
loop calculation. 

After this analysis, we know that the best solution of this 
problem can not be better than 0{m) in time complexity. And 
we also know that if we can approximate the magic orderings, 
our solution will be very close to the best solution. More about 
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this analysis can found in this paper [24]. Keogh et al. suggested 
a solution for approximating the best case. We found that there 
is still room for improvement. Later, we will show that our 
suggested solution is also close to magic case, which is more 
close to parameterless. 

2.3 Proposed Approach 

We follow the framework of the algorithm in [24]. In this al-
gorithm, we extract all the possible candidate subsequences in 
outer loop, then we find the distance to the nearest non-self 
match for each candidate subsequence in inner loop. The candi-
date subsequence with the largest distance to its nearest non-self 
match is the discord. We shall refer to this algorithm as the Base 
Algorithm. 

In the above algorithm, we discover that the heuristic search 
order for both outer and inner can affect the performance. In 
fact, if a sequential search order is used, this algorithm will 
become a brute force algorithm. Note that the discord D is the 
one that maximizes the minimum distance between D and any 
other non-self subsequence E 

m^x{mm{Dist{D, E)) 

The Outer heuristic should order the true discord first since it 
will get the maximum value for discord distance which has the 
best chance to prune other candidates at Line 12 in algorithm 4. 
Given the subsequence p, the Inner heuristic order should pick 
the subsequence q closest to p first, since it gives the smallest 
Dist value, and which will have the best chance to break the 
loop at Line 12 in algorithm 4. In this section, we will discuss 
our suggested heuristic search order, so that the inner loop can 
often be broken in the first few iterations, saving a lot of running 
time. 



CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 19 

A l g o r i t h m 4 Base Algorithm 
1： / / In i t ia l iza t ion 
2: discord distance = 0 
3： discord location = NaN , 
4: 
5： / / Begin Outer Loop 
6： f o r Each p in T ordered by heuristic Outer d o 
7： nearest non-self match distance = infinity 
8： / / B e g i n Inner Loop 
9： for Each ^ in T ordered by heuristic Inner do 

10： if — > n t h e n 
11： Dist = Distance Measiire(tp, ..ip+„_i, tq, ...tg+n-i) 

12： if Dist < discord distance t h e n 
13： break; 
14： e n d if 
15： if Dist < nearest non-self match distance t h e n 
1()： nearest non-self match distance = Dist 
17： e n d if 
18： e n d if 
19： e n d for 
20： / / E n d For Inner Loop 
21： if nearest non-self inatcli distance > discord distance t h e n 
22: discord distance = nearest non-self match distance 
23： discord location = p 
24： e n d if 
25： e n d for 
26： / / E n d for Outer Loop 
27： 

28： / / R e t u r n Solution 
29： Re tu rn (discord distance, discord location) 
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2.3.1 Haar Transform 

The Haar wavelet Transform is widely used in different applica-
tions such as computer graphics, image, signal processing and 
time series querying [27]. We propose to apply this technique to 
approximate the time series discord, as the resulting wavelet can 
represent the general shape of a time sequence. Haar transform 
can be seen as a series of averaging and differencing operations 
on a discrete time function. We compute the average and differ-
ence between every two adjacent values of f{x). The procedure 
to find the Haar transform of a discrete function f{x) = ( 7 5 3 
5) is shown below. 
Example 

Resolution Averages Coefficients 
4 (7 5 3 5) 
2 (6 4) (1 -1) 

1 (5) (1) 

Resolution 4 is the full resolution of the discrete function f{x). 
In resolution 2, (6 4) are obtained by taking average of (7 5) 
and (3 5) at resolution 4 respectively. (1-1) are the differences 
of (7 5) and (3 5) divided by two respectively. This process is 
continued until a resolution of 1 is reached. The Haar transform 
H{f{x)) = (c c/q dl d\) = (511 -1) is obtained which is composed 
of the last average value 5 and the coefficients found on the right 
most column, 1, 1 and -1. It should be pointed out that c is the 
overall average value of the whole time sequence, which is equal 
to (7 + 5 + 3 + 5)/4 = 6. Different resolutions can be obtained 
by adding difference values back to or subtract difference from 
an average. For instance, (6 4) = (5+1 5-1) where 5 and 1 are 
the first and second coefficient respectively. 

Haar transform can be realized by a series of matrix multipli-
cations as illustrated in Equation (2.2). Envisioning the example 
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input signal x as a column vector with length n = 4, an inter-
mediate transform vector w as another column vector and Haar 
transform matrix H 

“x'q 1 [ 1 1 0 0 ] 卜 0 
礎 1 —1 0 0 X A (2.2) 

x； 2 0 0 1 1 

d\ \ [ 0 0 1 - 1 [ X3 

The factor 1/2 associated with the Haar transform matrix can 
be varied according to different normalization conditions. After 
the first multiplication of x and H, half of the Haar transform 
coefficients can be found which are c/J and d\ in w interleaving 
with some intermediate coefficients Xq and x[. Actually, d j and 
d\ are the last two coefficients of the Haar transform. Xq and x[ 

—f 

are then extracted from w and put into a new column vector x' 
=[xq x[ 0 x' is treated as the new input vector for trans-
formation. This process is done recursively until one element is 
left in x'. In this particular case, c and (Iq can be found in the 
second iteration. 

Hence we can convert a time sequence into Haar wavelet by 
computing the average and difference values between the adja-
cent values in the time series recursively. It can be also varied 
according to different normalization conditions. The algorithm 
shown in Algorithm 5 is using the orthonormal condition. This 
transformation can preserve the Euclidean distance between two 
time series, and is therefore useful in our algorithm. If we only 
consider a prefix of the transformed sequences, the Euclidean 
distance between two such prefixes will be a lower bounding es-
timation for the actual Euclidean distance, the longer the prefix 
the more precise the estimation. Also note that the transfora-
tion can be computed quickly, requiring linear time in the size of 
the time series. In our experiments, we find that normalization 
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factor of 1/ \/2 can give us a better performance comparing with 
1/2, it may be because factor of 1 / v ^ can preserve the distance 
of two sequences. 

A l g o r i t h m 5 Haar t ransform 
1： / / In i t i a l i za t ion 
2: u = length of input vector 
3： o u t p u t vector = input vector 
4: d u m m y vector = all zeros 
5： 

6： / / s t a t e the conversion 
7： w h i l e n > = 2 d o 
8： n=n /2 
9： for (i = ();?:< n; i + + ) d o 

10： d u m m y vector[?']=(output vector[2 * ou tpu t vector[2 “ + 1])/y/2 
11： d u m m y vector[ i+n]—(output vector[2*z]-output vector[2 *?!-}-l])/\/2 
12: e n d for 
13： for (z = 0; i < {n * 2); i + + ) d o 
14： o u t p u t vector[i] =di in imy vector[i] 
15: e n d for 
16： e n d w h i l e 
17： 

18： / / R e t u r n Solution 
19： Re tu rn (ou tpu t vector) 

2.3.2 Discretization 

We shall impose the heuristic Outer and Inner orders based on 
the Haar transformation of subsequences.We first transform all 
of the incoming sequences by the Haar wavelet transform. In 
order to reduce the complexity of time series comparison, we 
would further transform each of the transformed sequences into 
a sequence (word) of finite symbols. The alphabet mapping 
is decided by discretizing the value range for each Haar wavelet 
coefficient. The distribution of the haar wavelet coefficients may 
affect the performance of our algorithm, but it will not affect 
the correctness. We assume the coefficients are in Gaussian 
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distribution and in fact it can give us a petty good result. Now 
we can determine the 'cutpoints'[23] by using a Gaussian curve. 
The outpoints define the discretization of the i — th coefficient. 

Definition 7 Outpoints (By Lin et al): Outpoints are a sorted 
list of numbers B = /?i，…，/?a_i，where a is the number of 
symbols in the alphabet, such that area under a N(0,1) Gaussian 
curve from Pi to = 1!a 
Po and /3a are defined as —oo and oo, respectively. 

These breakpoints are determined by looking them up in a 
statistical table. Table 2.2 gives the breakpoints for values of a 
from 2 to 7. 

Number of symbols a 
2 | 3 丨 4 | 5 | 6 | 7 一 

-0.43 -0.67 -0.84 -0.97 -1.07 

I 2 0 -0.25 -0.43 -0.57 

0.67 0.25 0 -0.18 

~Ja 0.84 o l F 0.18 

0.97 0.57 “ 

I I 1.07 

Table 2.2: All breakpoints for number of symbols from 2 to 7. For example, 

area under a N(0,1) Gaussian curve from —00 to -0.84 is equal to 0.2. 

We then can make use of the cutpoints to map all Haar coef-
ficients into different symbols. For example, if the i仇 coefficient 
from a Haar wavelet is in between (3q and Pi, it is mapped to 
the first symbol 'a'. If the 一" coefficient is between Pj—i and jSj, 
it will be mapped to the 产 symbol, etc. In this way we form a 
word [23] for each subsequence. 

Definition 8 Word mapping (By Lin et al): A word is a 
string of alphabet A subsequence C of length n can be mapped 
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A 

to a word C = Ci, C2,Cn- Suppose that C is transformed to a 
Haar wavelet C = {ci, C2----, Let aj denote the 产 element 
of the alphabet, e.g., cei 二 a and a2 = b, .... Let Bi = Pq, .../?� 

be the Outpoints for the i-th coefficient of the Haar transform,. 
A 

Then the mapping from to a word C is obtained as follows: 
Ci = a j <=> (2.3) 

2.3.3 Augmented Trie 

First, we transform all the normalized subsequences, which are 
extracted by sliding a window with length n across time series T, 
by means of the Haar transform. The transformed subsequences 
are transformed into words by using our proposed discretization 
algorithm. Finally, all the words are placed in an array with 
a pointer referring back to the original sequences. Figure 2.3 
illustrates this idea. 

Next, we make use of the array to build an augmented t r ie 
by an iterative method. At first, there is only a root node which 
contains a linked list index of all words in the array. In each 
iteration all the leaf nodes are split. In order to increase the 
tree height from h to h+1, where h is the tree height before 
splitting, the + 1产 symbol of each word under the splitting 
node is considered. If we consider all the symbols in the word, 
then the word length is equal to the subsequence length. 

In previous work [24] a pre-selected word length is required 
which is used by using a piecewise linear mechanism to com-
press the subsequences, and that also determine the trie height. 
This means that user need to determine the word length before-
hand. Here we make use of the property of Haar wavelets to 
dynamically adjust the effective word length according to the 
data characteristics. The word length is determined by the fol-
lowing heuristic: 

Word length heuristic: Repeating the above splitting pro-
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1 1 1 I ‘ 

. 入 Raw lime series 

\ I 1 I 1 ' 
0 \ 500 1000 1500 2000 2500 

1 v ^ ^ i l Subsequence extracted 

^ Converted to word 

A c a a ... b 
c, \ 

\ Inserted into array 

1 c a a :: b 

2 ^ a b :: a 

3 c a a :: b 

("'-")-i b b :: b 

‘ ('"-") a c b :: c 

("I-,0+1 b c a :: c 

Figure 2.3： A n array of words for building an augmented trie 

cess ill a breadth first manner in the construction of the trie 
until (i) there is only one word in any current leaf node or (ii) 
the 77"' symbol has been considered. 

The Haar coefficient can help us to view a subsequence in 
different resolutions, so the first symbol of each word gives us 
the lowest resolution for each subsequence. In our algorithm, 
more symbols are to be considered when the trie grow taller, 
which means that higher resolution is needed for discovering 
the discord. The reason why we choose to stop at the height 
where some leaf node contains only one word (or subsequence) 
is that the single word is much more likely to be the discord, 
because it cannot be placed into the same node with any other 
subsequence, so its distance to its nearest match would be far. 
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This is based on the property that Haar transform can preserve 
the data nature even after a tail sequence is truncated. For a 
word which appears with other words in the same trie node, such 
words in the same node are similar at the resolution at that level, 
hence they are closer to their nearest match. Hence the height 
at that point implies that we can find an obvious winner to be 
a candidate discord, and the trie height at that point stands for 
a good choice for the effective length of the words that can be 
used in the algorithm. 

1 C a a :: b root 

2 c a b ：： a 

3 c a a ：: b 

“ ： ： “ ： ： ： ： a b C 

. . 了 了 I 20 11 1 

..•：̂  二 二 : 21 12 2 

(m -«) -1 c b b ：： b (m-n) 90 3 

(m -m) a c b ：： c (nn-n)+1 (m-n)-1 

(w-”)+i b c a :: c 

Figure 2.4: P'' symbol is considered for splitting the root node. All leaf nodes 

will be split, sincc no leaf node contains only 1 word. 

— ― “ m root 
1 c a a :: b_ ^ ^ 

2 c a b :: a 

垣 E A A ^^ 
a c a b c a b 

_. — - 1 ： - ^ - 12 11 90 1 :: 
(m-n)-i c b b •• h 20 (m-n) ：： 2 (m-n)-1 

— — 2 1 (m-n)+1 3 

(m -") c b X ^ 
(m-n)+l b c a :: c 

Figure 2.5: symbol is considered. No tree node is split in next iteration, 

since there is only 1 word mapped to 'ac'. 
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We found that the performance of this breadth first search 
approach is pretty good, since it can efficiently group all the 
similar subsequences under the same tree node and distance be-
tween subsequences under same node are very small. 

2.3.4 Approximating the Magic Outer Loop 

Heuristic: the leaf nodes in ascending order according to the 
word count. 

We search all the subsequences in the nodes with the small-
est count first, and we search in random order for the rest of 
the subsequences. The intuition behind our Outer heuristic is 
the following. When we are building an augmented trie, we are 
recursively splitting all the leaf nodes until there is only one sub-
sequence in a leaf node. A trie node with only one subsequence 
is more likely to be a discord since there are no similar nodes 
that are grouped with it in the same node. This will increase the 
chance that we get the true discord as the subsequence used in 
the outer loop, which can then prune away other subsequences 
quickly. 

More or less, the trie height can reflect the smoothness of the 
datasets. For smooth dataset, the trie height is usually small, as 
we can locate the discord at low resolution. On the other hand, 
the tire height is usually large for a more complex data set. 

From this observation, it is obvious that the first subsequence 
that map to a unique word is very likely to be an unusual pat-
tern. On the contrary, the rest of the subsequences are less likely 
to be the discord. As there should be at least two subsequences 
map to same tree node, the distance to their nearest non-self 
match must be very small. 



CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 28 

2.3.5 Approximating the Magic Inner Loop 

When the i仇 subsequence P is considered in the outer loop, we 
look up words in the i仇 entry of the array. 

Heuristic: We find a node which gives us the longest match-
ing path to p in the trie, all the subsequences in this node are 
searched first. After exhausting this set of subsequences, the un-
searched subsequences are visited in a random order. 

The intuition behind our Inner heuristic is the following. In 
order to break the inner loop, we need to find a subsequence 
that has a distance to the i亡"word in the outer loop less than 
the best_so_far discord distance, hence the smallest distance to 
p will be the best to be used. As subsequences in a node with 
a path close to p are very likely to be similar, by visiting them 
first, the chance for terminating the search is increased. 

2.3.6 Experimental Result 

We first show the utility of time series discords, and then we 
show that our algorithm is very efficient for finding discords. 
The test datasets, which represent time series from different do-
mains, were obtained from 'The UCR Time Series Data Mining 
Archive' [15 . 

A n o m a l y D e t e c t i o n 

Anomaly Detection in a time series database has received much 
attention [30, 7, 14]. However, most of the anomaly detection 
algorithms require many parameters. The beauty of using dis-
cords as anomaly detectors is that our algorithm only require 
two simple parameters, one is the length of the discord, an-
other is the alphabet size that according to our experience 3 
is the best for any dataset. To show the utility of discords for 
anomaly detection, we investigated electrocardiograms (ECGs) 
which are a time series of the electrical potential between two 



CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 29 

points oil the surface of the body caused by a beating heart. In 
the experiment, we set the length of the discord as 256 that is 
approximately one full heartbeat and set the alphabet size to be 
three. 

81 1 1 1 1 1 

6 - -

4 - -

:糊酬 
•6 - I" 

-81 1 1 1 1 1 
0 1000 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0 

Figure 2.6： A time series discord (marked in bold line)was found at position 

2 8 3 0 

111 figure 2.6, it is easy to discover the anomaly by eye. How-
ever, we may have many of ECGs in our database, it is impos-
sible to examine all of them manually. 

T h e P e r f o r m a n c e of our A l g o r i t h m 

From 5 datasets, 10 data sequences were picked. For each data 
sequence, subsequences of lengths 512, 1024, 2048, 4096 and 
8192 were randomly extracted, forming 5 derived datasets of 
varying diiiiensions. In below figures, we compared the Keogh 
et al.'s algorithm with our proposed algorithm in terms of num-
ber of times the Euclidean distance function is called. In this 
experiment, we set the length of the discord as 128 and found 
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the discord on all the created subsequences. Each of the exper-
iments was repeated 10 trials and the average value was taken. 

In this experiment, we did not measure the CPU time di-
rectly, in order to ensure that there was no implementation bias. 
In fact, Keogh et al. discovered that the distance function ac-
counts for more than 99% of the running time. Due to the fair-
ness, it provides us another way to measure the running time. 

Prom the figure 2.7, we found that there was no any spe-
cial value for word size which was suitable for any task on any 
dataset. Keogh et al. suggested relatively smooth and slowly 
changing datasets favor a smaller value of word size, whereas 
more complex time series favor a larger value of word size. Be-
sides this factor, the length of the discord will also affect the 
value of the optimal word size. The details will be given in the 
next section. 

Although we claimed that the distance function accounts for 
more than 90% of the running time, people may be still in-
terested in total running. In this experiment, we measured the 
CPU time directly. Both algorithms were implemented by ANSI 
C. And the experiment was run in Dell Optiplex 280 Intel P4 
3.2Ghz with 2GB RAM. Figure 2.8 showed that distance func-
tion is a good measure for comparing the real running time. 

E x p e r i m e n t s o n A l p h a b e t S ize 

Our proposed algorithm requires users to choose the value of one 
parameter, the alphabet size. In fact, this value does not affect 
the correctness of our algorithm, it only affects the performance. 
In our algorithm, we want to map the discord to a unique or 
rare word. On the other hand we try to group the other similar 
subsequences together and map them into the same word. If the 
alphabet size is too small, we do not have enough information 
to distinguish a discord from the rest of other subsequences. 
If the alphabet size is too large, almost all subsequences will 
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Buoy 

1 鬚 . 1 . . . C 

1 Keogh et al.'s Alg., word size 1 
Q : Keogh et al.'s Alg., word size 2 
® „ : X Keogh et al.'s Alg., word size 4 
p Keogh etal.,s Alg” word size 8 
•5 8192 . - o T ^ ^ ^ Q f e i f e s / X Keogh et al.'s Alg., word size 16 
o 柳 6 2048 … I • i W L v C ^ Keogh et al.'s Alg., word size 32 
2 1024 5 1 2，、广 Proposed Alg. 

The length of Time Series 

ECG 

110-••； j J H J I ^ ^ ： 

芸 5-"： ； Keogh et al.'s Alg., word size 1 
Q : Keogh et al.'s Alg., word size 2 
？ _ , Keogh et al.'s Alg., word size 4 
p Keogh etal..s Alg., word size 8 
•5 8192 义 Keogh et al.'s Alg., word size 16 

d 如邪 2048 Keogh et al.'s Alg., word size 32 
2 512 Proposed Alg. 

The length of Time Series 
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ERP 

s 2 .••：:...:】騰丨 ：：丨 

I n s 〉 、 K e o g h et al.'s Alg., word size 1 
己 X Keogh et al.'s Alg., word size 2 
g „ ；. Keogh et al.'s Alg., word size 4 
p “ 厂 Keogh et al.'s Alg., word size 8 

•5 X Keogh et al.'s Alg., word size 16 
d 4096 2048 . T Z T ^ ^ ^ ^ ^ - X Keogh et al.'s Alg., word size 32 
2 1024 512 Proposed Alg. 

The length of Time Series 

Evaporator 

i x i � � , � : 

芸 1 “ • P I M Keogh et al.'s Alg., word size 1 

？ „ .:.. Keogh etal..s Alg., word size 4 
p 0 ^ Keogh et al.'s Alg., word size 8 

•5 8192 . Z T ^ ' ^ ^ f l ^ ^ S ? ' X Keogh et al.'s Alg., word size 16 
ri 如96 2048 Keogh et al.'s Alg., word size 32 
Z 512 Proposed Alg. 

The length of Time Series 
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Packet 

JS 、.._; ： . . 離 g ；. 

蔡 A s ^ Keogh et al.'s Alg., word size 1 
Q : f ^ ^ K e o g h et al/s Alg., word size 2 
® „ :..—I Keogh et al.'s Alg., word size 4 
I 0 Keogh et al.'s Alg., word size 8 

•B Keogh el al.'s Alg., word size 16 
6 4096 2048 Keogh et al.'s Alg., word size 32 
Z 1024 512 Proposed Alg. 

The length of Time Series 

Power 

. 1 厂 、 � f ^ 

I 塵 — 
Q : ^ ^ X Keogh et al.'s Alg., word size 2 

2 1024 512 Proposed Alg. 

The length of Time Series 
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Random Walk 

i xiov f � . . : . � . . : . . . 

1 Qc Keogh et al.'s Alg., word size 1 
q O . 5 - : ； Keogh et al.'s Alg., word size 2 
« X Keogh et al.'s Alg., word size 4 
(1 ° - ^ - ^ - - ^ ^ ^ H H O f l P u S ^ ^ ^ y j ^ Keogh et al.'s Alg., word size 8 
•s 8192 X Keogh et al.'s Alg., word size 16 
^ 2048 X Keogh et al.'s Alg., word size 32 
2 1024 5 1 2 P r o p o s e d Alg. 

The length of Time Series 

Steamgen 

.22 15 , . : “ 

[ 。 - . 

U 5- -； ： y Keogh et al.'s Alg., word size 1 
D : ； Keogh et al.'s Alg., word size 2 
® „ X Keogh et al.'s Alg., word size 4 

" ^ Keogh et al.'s Alg., word size 8 
•5 8192 X Keogh et al.'s Alg., word size 16 
^ 4096 2048 X Keogh et al.'s Alg., word size 32 
H 1024 5 1 2 ，〜广 Proposed Alg. 

The length of Time Series 
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Tickwise 

芸 05.〉..丨 Keogh et al.'s Alg., word size 1 
Q 。 力 ： ； / Keogh et al.'s Alg., word size 2 
$ „ ： X Keogh et al.'s Alg., word size 4 
p ° Keogh et al.'s Alg., word size 8 
•5 6192 . r r ^ ^ ^ ^ ^ S j ^ ^ S ^ X Keogh et al.'s Alg., word size 16 
o 2048 X Keogh et al.'s Alg., word size 32 
z 1024 512 Proposed Alg. 

The length of Time Series 

Wind 

...: i ....... 

XI�:�丨 

芸 2- •： • Keogh el al.'s Alg., word size 1 
Q : Keogh et al.'s Alg., word size 2 
® - X Keogh et al.'s Alg., word size 4 
p ” ^ Keogh et al.'s Alg., word size 8 
•5 8192 X Keogh et al.'s Alg., word size 16 
o 4096 2048 Keogh et al.'s Alg., word size 32 
2 1024 512 Proposed Alg. 

The length of Time Series 

Figure 2.7： Number of times distance fiiiictioii is called by Keogh et al.'s 

Algorithm and Our Proposed Algorithm 



CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 36 

Buoy 

. . . . : . 

1 2- •：' : ^ ^ B r Keogh et al.'s Alg., word size 1 
S • ^ ^ M Keogh et al.'s Alg., word size 2 
山 - : ; X Keogh et al.'s Alg., word size 4 

“ X et al.'s Alg., word size 6 
8192 . n c T ^ ^ ^ S l ^ S f l ^ X Keogh et al.'s Alg., word size 16 

4 0 9 6 2048 Keogh et al.'s Alg., word size 32 
i。24 512 Proposed Alg. 

The length of Time Series 

ECG 

u . .: Keogh et al.'s Alg., word size 1 
S • j ^ ^ K m B S S ^ ^ ^ ^ ^ j j ^ ^ ^ X Keogh et al.'s Alg., word size 2 
山 - . : . : . < Keogh etal.'s Alg., word size 4 

" y T Keogh et al.'s Alg., word size 8 
8192 • / Keogh el al.'s Alg., word size 16 

叫此 2048 ^ Z ^ T ^ ^ ^ ^ / Keogh et al.'s Alg., word size 32 
512 Proposed Alg. 

The length of Time Series 
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ERP 

I 1. ‘ K e o g h et al.'s Alg., word size 1 
,钱 1 ： g W / " S / j l ^ ^ ^ i f l t e r ^ ^ D ^ Keogh et al.'s Alg.. word size 2 
山 - : • • / Keogh et al.'s Alg., word size 4 

“ X Keogh et al.'s Alg., word size 8 
8192 Keogh et al.'s Alg., word size 16 

恥gb 2048 i n o T ^ ^ ^ ^ i P i X Keogh et al.'s Alg., word size 32 
512 Proposed Alg. 

The length of Time Series 

Evaporator 

S : O H £；；；；/ X Keogh et al.'s Alg., word size 2 

山 n .. .fflWIi丨腿llill I Keogh et al.'s Alg., word size 4 
“ " ^ - - B y ^ M I I B B l f t ^ ^ ^ S I F - y T Keogh et al.'s Alg., word size 8 

8192 . S y ^ ' ^ I W a a S & ^ ^ s ^ / Keogh et al.'s Alg., word size 16 
4096 2048 X Keogh et al.'s Alg., word size 32 

1024 512 Proposed Alg. 

The length of Time Series 
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Packet 

1 2- f ( ^ B Keogh et al.'s Alg., word size 1 
X : m l X Keogh et al.'s Alg., word size 2 

n . . Keogh etal.'s Alg., word size 4 
° • ^ • - - J ^ S H B f f l t e g ^ r ^ ^ ^ X Keogh et al.'s Alg., word size 8 

8192 X Keogh et al.'s Alg., word size 16 
如 9 6 2048 Keogh et al.'s Alg., word size 32 

512 Proposed Alg. 

The length of Time Series 

Power 

" 1 , i ^ ^ i f Keogh el al.'s Alg., word size 1 
® ^ H i X Keogh et al.'s Alg., word size 2 
山 n I ^ H X Keogh et al.'s Alg., word size 4 

u Keogh et al.'s Alg., word size 8 
8192 . r r r ^ ^ ^ ^ a i t e ^ ： ^ Keogh et al.'s Alg., word size 16 

4096 2048 ^ n T T ^ ^ ^ - X Keogh et al.'s Alg., word size 32 
512 Proposed Alg. 

The length of Time Series 
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Tickwise 

i 二彳 
3 1 , .：• xC；；/ * •厂 Keogh et al.'s Alg., word size 1 
S 1 : ^ ^ J ^ K e o g h et al.'s Alg., word size 2 
山 n I H i X Keogh et al.'s Alg., word size 4 

u ) 义 Keogh et al.'s Alg., word size 8 
8192 - T T ^ ^ i K B a & i ^ ^ Z T ' X Keogh et al.'s Alg., word size 16 

如恥 2048 X Keogh et al.'s Alg., word size 32 
1024 Proposed Alg. 

The length of Time Series 

Wind 

i ^ J J ^ ^ ^ g ^ ^ 
o J； y Keogh et al.'s Alg., word size 1 
X j L L 7 Z ^ n ^ ^ l J ^ Q ^ X Keogh et al.'s Alg., word size 2 
山 n ' V • ^ f e j l X Keogh et al.'s Alg., word size 4 

u y Keogh et al.'s Alg., word size 8 
8192 州 X Keogh et al.'s Alg., word size 16 

4096 2048 广 Keogh et al.'s Alg., word size 32 
512 Proposed Alg. 

The length of Time Series 

Figure 2.8: T h e running time of Keogh et al.'s Algorithm and Our Proposed 
Algorithm 
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be mapped to unique words. This suggests that the value of 
alphabet size will affect the performance of our algorithm. 

According to our experiments, a value of 3 is a petty good 
choice for a large variety of datasets, so we simply hardcode the 
value of alphabet size to 3 in our work for the default case. How-
ever, we believe that the performance of our proposed algorithm 
will be better if we can find an optimal alphabet size for a given 
dataset. 

In order to confirm this, we tried to find the discords on dif-
ferent datasets with different alphabet sizes from 2 to 9. Then 
we recorded the best alphabet size which gives the best perfor-
mance on average for the sequences in the same dataset with 
the same length. The detailed figures were shown below. 

Length of sequences 
Dataset 512 1024 2048 4096 8192 
Biirstiii 3 3 4 3 3 

ECG 2 3 3 3 4 
E I ^ 3 2 2 2 2 

Packet 3 3 3 3 3 
Power ~ T ~ 6 ~ 3 2 

Random W a l k 2 3 2 2 3 
Tickwise 3 3 ~ 2 2 3 

Table 2.3: The best alphabet size for different length of sequences in different 

datcisets 

In general, sequences coming from the same dataset shared 
the same optimal alphabet size. Note that this optimal alpha-
bet size worked very well on the entire dataset, although it could 
not obtain the best performance on some sequences. This re-
sult suggests that a simple preprocessing for finding an optimal 
alphabet size can further improve the performance of our sug-
gested method. 

Also, 3 is good choice for the alphabet size. Although it could 
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not obtain the best result for some of the sequences, on average 
it performed very well in different datasets. 

2.4 More on discord length 

In previous section, we have discussed our proposed algorithm. 
However, we only focus on the discord length that is equal to 2\ 
where z is a positive integer. Fortunately, by slightly modifying 
the haar transform process, this problem can be solved easily. 
In this section, we will discuss this problem. 

2.4.1 Modified Haar Transform 

It is true that original haar transform only considers the se-
quences with length equal to 2\ where z is a positive integer. 
However, by adding some tricks on the transformation, the orig-
inal process can apply on all cases. For example, the procedure 
to find the Haar transform of a discrete function f{x) = ( 7 3 5 
1 8) is shown below. 
Example 

Resolution Averages Coefficients 
8 (7 3 5 1 8 0 0 0) 
4 (5 3 4 0) (2 2 4 0) 
2 (4 2) (1 2) 
1 (3) (1) 

As now there are only 5 elements in f{x), we must first add some 
elements into / (x) , after that we can use the original process for 
transformation. The simplest way is adding zeros. If the length 
of the sequence is n, we should add — n zeros at the end 
of the original sequence. Resolution 8 is the full resolution of 
discrete function f'{x) after adding 3 zeros at the end of f(x). 
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Then we can treat it as a normal sequence for conversion. In 
resolution 4, (5 3 4 0) are obtained by taking average of (7 3), 
(5 1), (8 0) and (0 0) at resolution 8 respectively. (2 2 4 0) are 
the differences of (7 3)，(5 1), (8 0) and (0 0) divided by two 
respectively. This process is continued until resolution of 1 is 
reached. The Haar transform H{f{x)) - (3 1 1 2 2 2 4 0) is 
obtained which is composed of the last average value 3 and the 
coefficients found on the right most column, 1, 1, 2, 2, 2, 4 and 
0. 

Although we can use this Haar wavelet to calculate the dis-
tance between subsequences, we will not do it. As we have 
mentioned before, the distance function accounts for more than 
99% of the running time, we do not want to add any overhead on 
distance function. Obviously, the length of the subsequences are 
increased after transformation. It means the computational time 
of Euclidean distance between the transformed subsequences 
must be longer than original subsequences. In this case, the 
transformed subsequences are only used for heuristic outer loop 
and heuristic inner loop. For the distance calculation, we will 
use the original subsequences. 

2.4.2 Fast Haar Transform Algorithm 

Sometimes, we may need to find the discord of a range of discord 
length. It seems that there is no smart method to solve this 
problem, we can only run the algorithm for several times for 
different discord lengths. However, we discovered that we can 
have a minor optimization on Haar transform. Assume we have 
2 functions, one is f(x) = (7 3 5 1 8), another one is f(x)= 
(7 3 5 1 8 8). Obviously, if we add 8 into f(x) , it will become 
f'(cc). Now, we convert both functions into haar wavelets, the 
process is shown on figure 2.9 and figure 2.10. 

In this example, it is not difficult to discover that most of 
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Averages Differences 

Resolution 8 7 3 5 1 8 ( ? ) 0 0 

V V V V 
Resolution 4 5 3 ( J ) 0 2 2 ( J ) 0 

V V X / 
Resolution 2 4 1 ( 2 ) 

Resolution 1 ③ ① 

Figure 2.9: After transformed f{x), it becomes (3 1 1 2 2 2 4 0) 

Averages Differences 

Resolution 8 7 3 5 1 8 ⑧ 0 0 

V V V V 
Resolution 4 5 3 ⑧ • 2 2 ⑥ o 

V V V V 

Resolution 2 4 ( J ) 1 ( J ) 

Resolution 1 ④ ⑥ 

Figure 2.10: After transformed f'(x), it becomcs (4 0 1 4 2 2 0 0) 

the intermediate averages and differences of different resolution 
levels are the same. However, there are still some differences 
between the two conversion processes. We have located the dif-
ferences in both figure 2.9 and figure 2.10 with circles. We can 
see all the differences are related to the new added element 8. In 
fact, for any f{x) and i7(/(x)), if we change one of the element 
in f{x), the new H{f{x)) is the same as the old H{f{x)) except 
the coefficients that are related to the changed element. 

By using this property, if we need to find the discord of 
lengths from a to b, where a < b < (total length of the time series) 
and a and b are integers . First we can use a sliding window to 
extract all the subsequences with length a and convert them 
into haar wavelets for our algorithm. After finding the discord 
of length a, we can make use of the previous data to prepare the 
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haar wavelets for all the subsequences with length a + 1. It can 
help us to save part of the computation time, but we need extra 
space for storing the intermediate averages and differences for 
each subsequence. 

2.4.3 Relation between discord length and discord lo-
cation 

In this section, we want to show that discord location is always 
the same regardless of the discord length. In other words, if we 
find the data points from a to 6 are very different to other data 
points, no matter of the discord length the result discord must 
at least overlap with most of the data points from a to b. If 
it is true, it also means the definition of discord is meaningful. 
Otherwise, it means the discord location highly depends on the 
discord length. It may not help us to locate the true discord of 
a given time series. 

In order to show that the definition of discord is meaningful, 
we tried to find the discord of lengths 600, 700, 800, 900 and 
1000 on a ECG. The result is shown in table 2.4. 

Discord location 

Length of discord Star t End 

— 600 10871 “ 11470 

700 10698 11397 

™ 10695 11494 

TO 10697 1 1 5 ^ 

iooo 10699 1 1 6 ^ 

Table 2.4: Discord location for different length of discord 

We could discover all the discords overlap from data point 
10871 to 11397. Hence, we plotted the original sequence and 
the overlapping area on figure 2.11. 
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6.5. 1 1 1 1 

6 - -

5.5 - _ 

s | | | | | | | | | | | | | -

4 • -

35' 1 1 ‘ 1 
0 0.5 1 1.5 2 2.5 

X10' 

Figure 2.11: The overlapping area (marked in bold line) was found from 

position 10871 to 11397 

111 this experiment, we found that the discords always highly 
overlap. It showed the definition of discord is meaningful, as 
it could locate the real unusual pattern with different length of 
discord. In fact, if we look at the figure 2.11 carefully, the high-
lighted part was the most unusual part comparing with other 
subsequences. Although, the discord length can not affect the 
final result very much, it is still important to choose a nieaiiing-
ful discord length. Normally, we want to locate the anomaly in 
a sequence which may contain certain cycles, so it is good to set 
the length of discords to be approximately one complete cycle. 

If the sequence contains no cycle, it seems that we do not 
have a good indicator to set the length of discord. However, it 
is not true. We want, to show that even if we just choose the 
leiigtli of discord randomly, we are still able to locate meaningful 
discords. In this experiment, we tried to find a set of most 
unusual patterns with different lengths. For example, if we set 
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the range of length is 50 to 100, we will first find the discord 
for length 50. Then we will report this discord to the screen. 
Next, we will find the discord for length 51. If the result discord 
overlap with previous reported discord, the result discord will 
be discarded. Otherwise, it will be reported to the screen also. 

We randomly chose two sequences in a Random Walk dataset, 
so there were no cycle in these two sequences. In each sequence, 
we first found the discord set by setting the length of discord 
from 50 to 200. Then we repeated the experiment again, but 
this time we set the length of discord from 100 to 200. The 
result is shown in figure 2.12 and figure 2.13. 

Consider figure 2.12. When the range is 100 to 200, a single 
discord found at location 268 with length 100. This result shows 
that even if we use different ranges, we still discover the same 
discord which is around location 250 to 350. However the range 
from 50 to 200 finds one more discord at position 423. 

Since the application of discords is to locate the anomaly, the 
areas that are covered by a discord set is more important than 
the exact location of each discords. Prom the result, using a 
larger range of discord lengths can help to locate more anoma-
lies. In the experiment, using the larger range result in a set 
of discords that totally covers a discord set generated with a 
sub-range. 

2.5 Further Optimization 

In the previously mentioned inner loop heuristic, we visit all the 
similar subsequences mapped to the same node with examining 
candidate subsequence first. After this step, the rest of the 
subsequences are visited in a random order. In fact, based on 
some special properties [27], we now suggest another approach 
to estimate the similarity between subsequences. This method 
can further improve the performance of the proposed algorithm. 
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i| N^ : 

V 
-2 .5- y 

-31 1 ‘ 1 1 ‘ 

0 100 200 300 400 500 600 

j N^ I 

-2.5- y 

一 3 1 1 1 1 1 1 
0 100 200 300 400 500 600 

Figure 2.12： (top) Three discords were found. Discord location: 310, length 

of discord： 50. Discord location: 423, length of discord： 51. Discord loca-

tion： 233, length of discord： 75. (bottom) O n e discord was found. Discord 

locat ion： 268, length of discord: 100 
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21 . 1 , 1 1 

：/ 
-2.5 [ 1 1 1 1 1 

0 100 200 300 400 500 600 

-2.5* ‘ ‘ ‘ ‘ ‘ 

0 100 200 300 400 500 600 

Figure 2.13: (top) Three discords were found. Discord location： 428, length 

of discord: 50. Discord location: 161, length of discord： 58. Discord location： 

315, length of discord： 64. (bottom) T w o discords were found. Discord 

location: 315, length of discord: 100. Discord location： 79, length of discord： 

194 
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2.5.1 Improved Inner Loop Heuristic 

Our enhancement is based on the fact that we can estimate the 
distances between two subsequence from the distance between 
the compressions (prefixes) of their Haar transforms. When we 
estimate the distance we can use a prefix of the Haar transform 
which in many cases can reflect the true comparison of distances. 
In fact wavelets are near optimal for a large class of signals for 
compression [8] and this ensures that this approach can often 
give a good estimation of the true comparisons of distance. 

Theorem 1 [27](By Fu et al.) Given two sequences X and 
y, and the Haar transforms of X, Y are S and R respectively. 
Lengths of X, Y, S and R are all (n>2 and n is a power of 2). 

The Euclidean distance D{X, Y) = Slogan can be expressed in 
terms of {C, Di, D2,Dn-i}, recursively by 

Si+I = V2X ^{Sf + Dl + + …+ for 0< i < log2n - 1 
So = C 

Theorem 1 is very important, since it gives us some hints for 
roughly estimating the distance between two sequences. Firstly 
with a normalization factor of l/>/2, the Haar based Euclidean 
distance is equal to the original Euclidean distance. Secondly, if 
only first h dimensions of Haar transform are used in calculation 
of Euclidean distance, then we can replace the h+1 力"to n*" 
coefficients with O's in the transformed sequences, the result is 
a lower bound on the actual distance. With Haar transform, 
a prefix can preserve the low resolution information which is 
found in many applications to preserve better the Euclidean 
distance. Hence if two subsequences are very similar in the first 
h dimensions, it means that very likely the overall structures of 
two subsequences are very similar too. 
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Theorem 1 only can handle the distance between two Haar 
wavelets. As we want to estimate the distance a Haar wavelet 
and a word, we slightly modified the theorem suggested by Pu 
et al.. 

Theorem 2 Given two sequences X and Y, where the Haar 
A 

transform of X is R and the word of Y is S (the word is ob-
tained by first transforming Y into Haar wavelet S, then S is 
further symbolized into a word by using the algorithm in sec-

A 

tion 2.3.2). Lengths of X, Y, R and S are all (n>2 and n is a 
power of 2). 
The mirmnurn Euclidean distance MinD(X,Y) is equal to Giog讽 
can he expressed in terms o / { 五 0 , 五 i , 五 2 ’ 丑 n — i } , recursively 
by 

Gi+i = V2x ^{Ef + El + 碍+1 + …+ 码+1一1) /or 0<i<log2n-l (‘� 

GQ = EQ 

In order to improve on the inner search order heuristic, there 
is no modification on the trie construction and outer loop heuris-
tic. We only need to note the current height of the trie. Imag-
ine that the i认 candidate subsequence is considered in the outer 
loop. We look up the first h coefficients in the i呼 entry of the 
array, then we can estimate the distance from the subse-
quence to different leaf nodes by using the first h dimensions (h 
is the trie height). However, since the subsequences have been 
encoded in terms of a fixed size alphabet, our computation is 
based on the cutpoints in the alphabet. Let R be the i-th. sub-
sequence and the Haar transformed subsequence for R be given 
by ri,r2, ...?v We try to estimate the distance between R and 
a subsequence S that is stored in the trie. The subsequence 
S = Si, ...Sji has been mapped by a piecewise linear mechanism 
to a string of alphabets. Let Si be the alphabet that Si is being 
mapped to. For each alphabet a there is a range of possible val-
ues for the alphabet, let U{a) be the upper limit of the values 



CAIAPTER 2. UNUSUAL PATTERN DISCOVERY 52 

for a and L{a) be the lower limit of the values for a. Based on 
these values, we calculate the distance vector between R and S, 
which is estimated by Eq, Ei,…,Eh by using equation 2.6. 

- U{sj) if r j > U{sj) 
Ej^i = T j - L{sj) if Tj < L{sj) (2.6) 

0 otherwise 
A 

For example, ai = 0.5 and bi = b. If the alphabet size is 3, we 
can look at the upper bound and the lower bound for alphabet 
b at table 2.2. Then we know the upper bound is 0.43 and lower 
bound is —0.43. Using equation 2.6, we know Eq is 0.07. 

After finding the value of Eq, Eĥ  we put zeros into 
Eh+i, Eh+2,..., En-i. Now the minimum distance between a wavelet 
and leaf nodes can be estimated by using theorem 2. According 
to the distance from i认 subsequence to different leaf nodes, by 
using theorem 2. 

Revised Heuristic: For the inner loop for the i-th subse-
quence: According to the above Haar transform based distance 
from the candidate subsequence to different leaf nodes, we 
sort the leaf nodes in ascending order. In this sorted list of 
leaf nodes, we randomly search all the subsequences in first leaf 
nodes. After exhausting this set of subsequence, we repeat with 
the next leaf node in the ordered list. 

The reasoning is again that in order to break the inner loop, 
we need to find a subsequence that has a distance to the i仇 
subsequence p in the outer loop less than the best_so_far discord 
distance, hence the smallest distance to p will be the best to be 
try first. 

2.5.2 Experimental Result 

In figure 2.15, we compared the original heuristic inner loop 
and improved heuristic inner loop. In this experiment, from 4 
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datasets, 10 data sequences were picked. For each data subse-
quence, subsequences of length 512, 1024, 2048, 4096 and 8192 
were randomly extracted, forming 4 derived datasets of varying 
dimensions. 

Prom the experimental results, we found that the perfor-
mance of improved inner loop was better then the original inner 
loop in all the cases. This result showed that our idea is cor-
rect. That means searching the similar candidate subsequences 
can provide us better chance to break the inner loop comparing 
with just searching the candidate subsequences randomly. 

2.6 Top K discords 

Sometimes, there will be more than one unusual patterns in a 
given time series. However, until now we only focus on the most 
unusual pattern. In this section, we will discuss top K discords. 
First, we will show the utility of top K discords, then we will 
talk about our algorithm for finding top K discords. 

2.6.1 Utility of top K discords 

As we have mentioned before, top K discords [24, 19] are very 
useful in many applications. Before showing examples, we need 
to formally define top K discords first. 

Definition 9 K仇 Time Series Discord (By Keogh et al): 
Given a time series T, the subsequence D of length n beginning 
at position p is the K仇 discord of T if D has the K^^ largest 
distance to its nearest non-self match, with no overlapping region 
to the discord beginning at position pi, for all l<i < K. That 
is，\p — Pi\>n. 

For most applications, we do not only want to find the most 
unusual subsequence only. Instead, we want to discover all the 
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unusual subsequences. As a simple example, given a electrocar-
diogram of a patient, we may not be satisfied with knowing the 
most unusual subsequence only, as it may not provide us with 
enough information to make a diagnosis. In order to make a 
correct diagnosis, trivially we may need to identify all the un-
usual subsequences which may be the symptoms of some serious 
diseases. As another example, given a sales volume per day, 
again we may not be satisfied with knowing the most unusual 
subsequence. In fact, the unusual subsequences can probably 
help us to discover peak periods and slack periods. This data 
can be extremely useful for making new marketing strategies. 

These are only two possible applications. Later we will demon-
strate the power of top K discords with real life examples. Before 
that, we discuss our proposed solution for solving this problem 
effectively and efficiently. 

2.6.2 Algorithm 

In fact, our proposed algorithm in previous section can help us 
to find out the discord effectively. For the 2 " � 3 " discord,etc, 
however, we need to add some tricks to our original algorithm. 

Firstly, after finding a discord, we can remove some candidate 
subsequences in candidates' list, by definition, there cannot be 
any overlapping region between the top K discords. That means 
if a subsequence D of length n beginning at position p is the 
P亡 discord, then subsequences from position p-n+1 to position 
p+n-1 cannot be the discord, etc. 

Secondly, in our proposed algorithm earlier in order to break 
the inner loop, we will try to find out the nearest neighbor of 
each candidate subsequence. Although we do not actually find 
the nearest neighbor, the nearest so far neighbor may help us to 
break the inner loop efficiently. 

Based on the above observations, we suggest a new algorithm 
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for finding top K discords. The pseudo code is shown is Algo-
rithm 6. 

A l g o r i t h m 6 Finding top K discords 

1： for i < K; i + + d o 
2: discord distance [i] = 0 
3： discord location [i]= NaN 
4: //Begin Outer Loop 
5： for Each p in T ordered by heuristic Outer do 
(i: nearest non-self match distance = table of \vord[p] .nearest so far 

neighbor distance 
7： if nearest non-self match distance < discord distance[i] then 
8： continue; 

9： e n d if 

10： / / B e g i n Inner Loop 
11： for Each unexamined q in T ordered by heuristic Inner d o 

12： if \p - q\ > n t h e n 
13： Dist = Distance M e a s u r e ( t p , … • • • i q + n - i ) 
14: if Dist < nearest non-self match distance then 
15： nearest non-self match distance = Dist 
1(3： table of word[p].nearest so far neighbor = nearest non-self 

match distance 
17： e n d if 

18： if Dist < discord distance[i] then 
19： break; 
20: e n d if 
21： e n d if 

22： e n d for 

23： / /End For Inner Loop 

24: if nearest non-self match distance > discord distance[i] t h e n 
25: discord distance[i] = nearest non-self match distance 
2(5: discord location[i] 二 p 

27： e n d if 

28: e n d for 

29： / /End for Outer Loop 

30： remove candidate subsequences (discord location [i], n) 
31： e n d for 

32： 

33： / /Ret ,u rn So lu t ion 

34: Return (discord distance, discord location) 
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The basic idea of this algorithm is simple. First we will find 
the P亡 discord, during this process we will record the nearest 
so far neighbor of each candidate subsequence. The nearest so 
far neighbor may help us to break the inner loop when we are 
finding the next discord (The nearest so far neighbor finally 
must equal to nearest neighbor). And also the inner loop search 
order of each candidate subsequence is always the same, so we 
just store the inner loop search order list for each candidate 
subsequence. Then for every candidate subsequence, we can 
remember all the examined subsequences in the inner loop and 
every time we only check the unexamined subsequences. Second, 
when we know the location of the discord, we will remove the 
candidate subsequences which cannot be discord anymore from 
the candidates' list. The algorithm is shown in Algorithm 7. 

A l g o r i t h m 7 Remove Candida te Subsequences 
1: s t a r t posi t ion = discord location - n + 1 
2: if s t a r t posi t ion < 1 t h e n 
3： s t a r t posit ion = 1 
4: e n d if 
5: 
6： end posit ion = discord location + ii - 1 
7： if s t a r t posit ion > N t h e n 

8： s t a r t posit ion = N 
9： e n d if 

10： 

11： f o r i = s t a r t position; i < end position; i + + d o 
12： t ab le of \vord[p] .candidate subsequence = false 
13： e n d for 

J ^ 

At last, we must also modify the outer loop and inner loop 
heuristic. 
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O u t e r L o o p H e u r i s t i c 

For finding the first discord, we use the same procedure shown 
in section 2.3.4 for approximating the magic outer loop. In fact, 
we will use the same outer loop ordering for finding the sec-
ond discord, but the candidate subsequences which overlap the 
first discord are removed from this outer loop ordering. In other 
words, subsequences which are not in the candidates' list are re-
moved from the outer loop ordering, as they can not be discord. 

The idea is simple. As our proposed outer loop heuristic 
in section 2.3.4 can effectively separate the discords from the 
normal subsequences, discords will be mapped to different leaf 
nodes with single subsequence and different groups of similar 
normal subsequences will be mapped to different leaf nodes too. 
It means the further splitting of leaf nodes cannot help us locate 
the discords, so we will just use the same outer loop heuristic or-
dering. Since the subsequences which overlap with first discord 
cannot be second discords, we will remove all these subsequences 
from the outer loop ordering. 

I n n e r L o o p H e u r i s t i c 

The inner loop heuristic is almost the same as section 2.3.5. The 
difference is that we will record all the nearest so far distance 
and the inner loop heuristic search order for each candidate sub-
sequence. 

The idea is that in order to break the inner loop, we need to 
find a subsequence that has a distance to the current examin-
ing subsequence in the outer loop less than best so far distance. 
In fact, we already know the nearest so far neighbor for each 
subsequence, after finding the first discord. If we use this infor-
mation for the second discord, the nearest so far distance may 
be small enough to break the inner loop. Sometimes we may not 
break the inner loop at once, but we do not need to compare the 
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current examining subsequence with all the subsequences again. 
For example, when the i仇 candidate subsequence is consid-

ered in the outer loop, we look up the word and the the nearest 
so far neighbor of the i仇 entry of the array. If the nearest so 
far neighbor is small enough to break the inner loop, we can 
break the loop at once. Otherwise, if we already examined the 
distance between the i认 candidate subsequence and the first 10 
subsequences in the inner loop heuristic ordering. This time we 
can continue to search for nearest neighbor starting from the 

subsequences in the inner loop heuristic. If the distance be-
tween the i认 candidate subsequence and the 23认 subsequence 
is small enough to break the inner loop, we can record the new 
nearest so far neighbor and latest searching position of the in-
ner loop heuristic order. In other words, we only examine the 
unexamined subsequences only. 

2.6.3 Experimental Result 

In this section, we show that the definition of top K discords is 
meaningful. We will show this by a real life example. In this 
example, we tried to find top 2 discords from a dataset that 
measured the power consumption for a Dutch research facility 
for the entire year of 1997. Our objective was finding the 2 most 
unusual weeks. We did not require the week should start from 
Monday to Sunday, so the week could be any 7 days. Note that 
in this experiment, we set the length of discord to be 750 which 
was longer than the a week, as we needed to ensure that the 
discord length must long enough to cover the whole week. The 
result was shown in figure 2.16. 

It was not easy to find out the differences between the top 
2 discords and the rest of the subsequences by eyes. However, 
we may find out some interesting patterns, if we compared the 
top 2 discords with normal subsequences in details. Figure 2.17 
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Figure 2.16: The power consiiinption for a Dutch research facility from 1st. 

.January, 1997 to 31st December, 1997 

shows the power demands for a normal week, we found that the 
power coiisuiiiption from Monday to Friday was relatively high. 
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Figure 2.17: The power consumption for a normal week 
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Figure 2.18 show the top 2 unusual weeks. From the result, 
we could locate the top 2 unusual weeks that all contained two 
holidays. More information about this dataset can be found in 
paper [33 . 

Liberation Day Ascension Thursday , 

dAAjLJJ 
Sunday \ [\ f\ Christmas 

Figure 2.18: (top) The 1st discord of this sequence (bottom) the 2nd discord 

of this sequence 

Then we want to show the performance of our proposed al-
gorithm. As brute force is the only to solve the top K discords 
problem, we compared brute force algorithm to our proposed 
algorithiii. In this experiment, we continued to find the discords 
in 4 datasets until there was no potential candidate left in the 
candidates' list. 

2.7 Conclusion 

Unusual pattern discovery was discussed in this chapter. We 
used discords suggested by Keogh et al. as anomaly detectors. 
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Then we discussed the Keogh et al.'s algorithm in details. Be-
cause of the weakness of Keogh et al.'s algorithm (word size), 
we proposed a novel algorithm to efficiently find discords using 
the characteristics of Haar wavelet. 

Comparing with Keogh et al.'s algorithm, our proposed so-
lution only need two parameters one is alphabet size, another 
one is length of discord. And a lot of experiments were done 
to show that our approach was effective and efficient. For the 
alphabet size, we find that a simple preprocessing for finding an 
optimal parameter can further improve the performance of our 
algorithm. And according to our experience a value of 3 is best 
for any dataset, so we just hardcode the value of alphabet size 
to three for the rest of the experiments. 

We also proposed an improved inner loop heuristic which 
could further improve the performance of our solution. Again, 
experiments were done to show the power of this new heuristic. 

At last, we extended our algorithm from finding the most 
unusual subsequence into top K unusual subsequences. As for 
most applications, we may not be satisfied with knowing the the 
most unusual subsequence only. We may want to locate all the 
unusual subsequences which may be useful for decision making 
or analysis. Based on the Top K discords definition proposed 
by Keogh et a l , we proposed a new algorithm by modifying the 
original algorithm which was discussed in section 2.3. 

Un summary, we found that discord is a very good anomaly 
detector, since it can apply to different datasets without any 
domain knowledge. Although someone may think that it is easy 
to discover the anomaly by eyes, no one can deny that it is im-
possible to examine a huge dataset manually. By extending this 
idea into top K discord, we are able to discover more interesting 
subsequences. In fact, it makes our algorithm more suitable for 
solving real life problems. 

In this work, we focused on finding unusual time series with 
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one dimension only. In the future, we want to extend our algo-
rithm for handling time series with more than one dimension. 
Moreover, we want to extent our algorithm for discovering dis-
cords on data streams, as most of the time we need real time 
anomaly detectors for monitoring different datasets. 

• End of chapter. 



Chapter 3 

Trend Prediction 

3.1 Introduction 

Time series prediction is not a new topic. People in different ar-
eas use different approaches to solve this problem. For example 
some computer scientists believe that neural network can build 
up a prediction machine [10] automatically by using massive 
historical data, stock market analysts believe that moving aver-
age [9, 26] can smooth a time series and make it easier to identify 
trends, and statisticians believe that time series can be modeled 
with simple equations [32]. In spite of the many previous works, 
it is still a very difficult problem, especially for financial data 
such as stock price, bond price and index. It may be because 
of their high volatility. Some people even suggested that it was 
impossible to deduce the future from the past. However, people 
in finance community have shown the power of moving average 
on trend identification. Unfortunately, they found that using 
a simple moving average curve sometime may not give them a 
satisfactory result [12]. We believe that analyzing the basic pat-
terns of a time series can provide us with a lot of information, 
since data points in a time series must reflect all the underly-
ing generating principal and correlation that exist between data 
points. In this chapter, we propose an algorithm that applies 
the previous knowledge about the movement of the stock price 

69 
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on moving average. And we will show that this algorithm can 
help develop effective investment strategies. 

3.2 Technical Analysis 

As we focus on financial data, we first review some commonly 
used trend prediction methods in the financial community. The 
methods that make use of the past prices to deduce the future 
trend are generally called technical analysis. In fact, technical 
analysis has been used for a long time, and it is still widely used 
now. In this section, we will introduce several technical analysis 
tools, which are all easy to use. 

3.2.1 Relative Strength Index 

Relative Strength Index[2] is a good tool to determine the over-
bought and oversold position. In technical analysis, overbought 
means that the price of the asset is overvalued and may expe-
rience a pullback. An oversold usually means that the price of 
the asset is undervalued and the price of the asset my increase 
later. 

Definition 10 m-relative strength Index (m-RSI) 

RSI = 100 T ^ ^ j (3.1) 
1 . average of m days up closes ^ ‘ 

average of m days' down doses 
The range of RSI is from 0 to 100. If the RSI is smaller than 

30’ the asset is usually considered as oversold. When the RSI is 
larger than 70, then asset will be considered as overbought. 

3.2.2 Chart Analysis 

Some chartists believe that a variety of chart patterns [1, 22 
can be good trend indicators. It is because the movement of the 
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prices can be considered as the change in demand and supply. It 
means that chart pattern is a concise picture which consolidates 
the forces of supply and demand, so understanding the chart 
pattern, we can know the future movement of the prices. 

HEAD , \ 
LEFT SHOULDER A RIGHT SHOULDER 

A/ ™ V\ 
HEAD AND SHOULDERS 

Figure 3.1: T h e head and shoulders pa t t e rn is generally regarded as a reversal 
p a t t e r n 

3.2.3 Dow Theory 

Dow theory [1] is one of the most famous forecasting methods. 
It assumes that a stock price reflects everything that is known 
by general public. It models the stock market in three trends: 

• Primary trend: it represents the broad trend of the market. 
This trend can last for a few months to several years. 

• Secondary trend: it runs counter to the primary trend. It 
can be also treated as the corrective reaction. This trend 
can last for a few months. 

• Third trend: it can view as daily fluctuations. This trend 
can last for up to a few weeks 
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Base on this model and a set of guidelines, investors are able 
to identify the primary trend and react accordingly. 

\ Secondary 

\ Trend 

\ V \ \ 
Index \ \ ^八 / \ 

Primary z - - Z \ / A / 

Trend 

Time 

Figure 3.2: In Dow theory, a market can be modeled in three trends. How-
ever, t he th i rd t rends are usually ignored 

S 

Investors are interested in the primary trends, since they can 
last for a longer period and easy to identify. On the other hand, 
investors usually ignore the third trends. Due to the randomness 
of daily fluctuations, it is difficult to forecast the third trends. 

3.2.4 Moving Average 

B a s i c c o n c e p t o f m o v i n g a v e r a g e 

Moving averages [26，29, 12] are widely used in the finance com-
munity, as they are easy to use. The basic concept is calculating 
an average of data in a moving sliding window, so the fluctua-
tions are reduced. 

Definition 11 m-moving average: Given a time series {^i,亡2,亡3,.•.亡n}， 



C H A P T E R . 3. TREND PREDICTION 73 

m-moving average at time q is equals to 
1 g + m - l 

MA(m,q) = — J： U (3.2) 
m i=q 

The procedure for calculation is shown below 

Time Value 4-inoving average 

一 1 12.50 -

~ 2 13.40 -

3 11.70 -

4 10.90 12.13 

5 15.80 12.95 

— 6 16.80 13.80 

— 7 14.50 14.50 

~ 8 19.10 16.55 

9 28.10 19.63 

10 27.10 22.20 

11 7.23 20.38 

— 1 2 3.13 16.39 

For computation convenience, the moving average can be 
written as a recursion function. 

Definition 12 m-moving average: Given a time series {ti,力2, h , . . . t n } 

and m-moving at time q — 1 is MA(jn,q — 1). The m-moving 
average at time q is equals to 

MA{m, q) = MA(m, g - 1)-h - ( t , - Vm) (3.3) 
TTt 

Some people will call the moving average introduced above 
the simple moving average. In simple moving average, all the 
data points have an equal weight. In order to calculate a new 
moving average, the oldest data point will be discarded and a 
new data point will be added. Clearly, the discarded data points 
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have no impact on the current moving average. Because of this 
disadvantage of simple moving average, exponential moving av-
erage was introduced. 

Exponential moving average never removed data points in 
calculation. Instead, it puts more emphasis on recent data. For 
the less recent data points, they only have a small impact on the 
moving average. Because of this feature, it can react quicker to 
recent price changes than a simple moving average and reduce 
the lag. 

Definition 13 m-exponential moving average: Given a time se-
ries {̂ 1,亡2,亡3, ..in} and m-exponential moving at time q — 1 is 
EMA{m, q — 1). The m-exponential moving average at time q 
is equals to 

EMAim, q) = {l- K)EMA{m, g - 1) + Ktq (3.4) 

K is equal to 2/(1 + m) and EMA{m^m) = MA(m, m) 

The procedure for calculation is shown below 

Time Value Previous 4-exponential moving average 4-exponential moving average 

1 “ 12.50 - -

2 13.40 - -

^ 3 ^ 11.70 - -

4 “ 10.90 - 12.13 

5 1 5 . 8 0 12.13 — 13.60 

6 1 6 . 8 0 13.60 — 14.88 “ 

7 “ 14.50 14.88 14.73 

8 19.10 14.73 16.48 

9 2 8 . 1 0 16.48 21.13 

10 27.10 21.13 23.52 

11 “ 7.23 23.52 17.00 

12 “ 3.13 17.00 11.45 
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In exponential moving average. We use the constant weight 
factor K in calculation and this constant factor only depends on 
the specified period of the moving average. Imagine that if there 
is a dramatically change in the price, intuitively we should pay 
more attention to this change. However, exponential moving 
average totally ignores the rate of change of the price. 

The last type of moving average that we want to introduce 
is adaptive moving average. It is very similar to exponential 
moving average, but this time we do not use constant weight 
factor K. Instead, we update the factor according to the new 
prices. 

Definition 14 m-adaptive moving average: Given a time se-
ries {力1,力2，力3，…亡n} and m-adaptive moving at time q — 1 is 
AMA{m^ q — 1). The m-adaptive moving average at time q is 
equals to 

AMA(m, q) = {\- km,q)AMA{m, g - 1) + km,qtq (3.5) 

J — tq —亡g—m /Q 

AMA(m, m) = MA[m, m) and in order to calculate AMA{m, q), 
we need to calculate km,q 

The procedure for calculation is shown below 
We have discussed three different moving average, they are 

simple moving average, exponential moving average and adap-
tive moving average. Then we will introduce the usage of moving 
average in trend identification. 

T r e n d i d e n t i f i c a t i o n u s i n g m o v i n g average 

As past data is used to form moving average, moving average is 
good for trend identification [26, 3] and trend following. There 
are many methods for using moving average in trend prediction. 
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Time Value Previous 4-adaptive moving average k 4-adaptive moving average 

1 12.50 - __- -

2 13.40 - - -

3 11.70 - - -

4 10.90 - - 12.13 

5 15.80 12.13 0.40 13.59 

6 16.80 13.59 0.40 14.89 

7 14.50 14.89 0.31 14.77 

8 19.10 14.77 0.64 17.54 

9 ~28.1Q 17.54 — 0.72 25.23 

""To 27.10 25.23 26.37 

26.37 j m 22.33 

~ T 2 20.33 0.47 13.30 
I I I I 

In this section, we will introduce three simple approaches. The 
first approach uses the direction of the moving average to deter-
mine the trend. In other words, if the price moves in up trend, 
moving average is also in an up trend. And the price moves in 
down trend, moving average is also in a down trend. The change 
in trend can be observed from the turning points (At turning 
points, the slope of the moving average changes from positive 
to negative or negative to positive) on the moving average. The 
turning points could tell us the time for buying and selling. In 
general, when the slope of the moving average changes from 
positive to negative, we should sell all the stocks on hand. Oth-
erwise, we should buy the stocks, since an up trend is identified 
when the slope of the moving average changes from negative to 
positive. 

The second approach uses the location of the price to deter-
mine the trend. We will consider the relative position of price to 
the moving average. When the price is above the moving aver-
age, the up trend is identified. Now the market can be viewed in 
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Figure 3.3： The original time series was smoothed by using 30-moving aver-

age. N o w the trend of this time series became much easy to observe. A n d 

t he turning points show us the time for buying and selling the stocks. 

bullish behavior, investors can invest in the security. However, 
when the price is below the moving average, the down trend is 
identified. The market can be viewed in bearish behavior, it is 
not a good period for investment,. 

The third approach uses the relative position of the shorter 
moving average to the longer moving average. The shorter mov-
ing average can show the short term trend of the stock price and 
the longer moving average can show the long term trend of the 
stock price. If the shorter moving average is above the longer 
moving average, it means that comparing with the past, now 
the stock perform very well. Then an up trend is identified. If 
the shorter moving average is below the longer moving average, 
it means that comparing with the past, now the stock perform 
badly. Then a down trend is identified. 

Now, we have introduced three different moving averages and 
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Cisco Systems Inc. (Mar.1999 - Jul.2001) 
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Figure 3.4: The original time series was smoothed by using lOO-moviiig av-

erage. W h e n the stock price is above moving average, it is very clear that 

the stock is in bullish behavior. Then in the second half of moving average, 

the stock price is below the moving average, so an down trend is identified. 

three different methods for trend prediction. For moving aver-
ages, both simple moving average and exponential moving av-
erage are easy to calculate. Simple moving average cannot cap-
ture the chances quickly, but it can generate a smooth curve for 
analysis. Exponential moving average can capture the chances 
quickly, but it may be too sensitive and generate false trend sig-
nals. Adaptive moving average is good at capturing the chances 
quickly, but it is not easy to calculate. From these three dif-
ferent trend prediction methods, people in financial community 
usually suggest it depends on investor's trading and investing 
style and preferences. 
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Inter-Tel Inc. (Jul,1997 - Apr,200) 
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Figure 3.5: T w o moving averages were used. One is 30-exporiential moving 

average, another one is 100-expoiientia.l moving average. By finding the 

intersection points by two moving averages, we can identify the up trends 

and down trends easily. 

3.3 Proposed Algorithm 

As a moving average is widely used, we want to further improve 
the performance of an moving average. 

Before go into details, we will first give a brief outline about 
our suggested algorithm. The main idea of our method is that we 
want to make use of the previous knowledge about the move-
ment of the stock to improve the performance of the moving 
average. In our algorithm, when there is a new data point, we 
will update the moving average curve. Then we will check if 
there any change of trend signal generating by moving average. 
If yes, we will insert the previous chart pattern into a prediction 
tree. We then use the current chart pattern and prediction tree 
to do another prediction. When both moving average and pre-
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diction tree give the same answer, we will confirm either an up 
trend or a down trend is identified. The algorithm is shown in 
Algorithm 8. 

Algorithm 8 Proposed Algorithm 一 

1： //Initialization 
2: result from moving average = NULL 
3： result from prediction tree = NULL 
4: 

5： //Main Algorithm 
6： while there is a new data point do 

7： update the moving average curve 

8： result from moving average = check is there any change in trend 
9： if result from moving average ！ = no change then 
10： insert into prediction tree(previous chart pattern) 
11： result from prediction tree = prediction next trend (current chart 

pattern) 
12: if result from prediction tree = = result from moving average then 
13： new trend was identified 

14： end if 

15： end if 

16： end while 

Next, we will discuss using the Piecewise Linear Representa-
tion to capture the chart patterns. Then we show the details on 
inserting chart patterns into the prediction tree and using the 
prediction tree for trend prediction. 

3.3.1 Piecewise Linear Representation 

Due to different needs, researchers suggested several represen-
tations of time series[25, 16, 27]. We have discussed Symbolic 
Mapping in previous chapter. In this section, we will focus on 
the most frequently used representation that is Piecewise Linear 
Representation. 

In Piecewise Linear Representation [37, 36, 5, 17], a time se-
ries is approximated by different line segments. Normally, num-
ber of line segments will be much less than the number of data 
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points in the original time series. Because of this observation, 
this representation makes the storage, transmission and compu-
tation of the data more efficient. 

/Vv 
V v 

Figure 3.6: Blue line is the original time series. Red line is the Piecewise 

Linear Representation of the time series. 

Ill this thesis, we propose a new Piecewise Linear Representa-
tion method which can represent a time series T in K meaningful 
line segments. When the slope of the given line segment is pos-
itive, it means the time series is in up trend. When the slope of 
the given line segment is negative, it means the time series is in 
down trend. 

Definition 15 Vertex: Any K line segments can be represented 
by a set of vertices. Each vertex is represented by three elements 

Pi is the start time of the {i + line segment and it is also 
the end time of the line segment. Vi is the value of the time 
series at time 'pi. s,； is slope of the {i + line segment, it can 
be either positive or 'negative. 
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Now, we have defined vertex. Then we can introduce our 
method for finding vertices on an online data stream. First 
vertex is established at the start of the data stream. Imagine 
that we are at time pi + 1, we will compare the value of the data 
stream at pi and pi + 1. If fy.^i is smaller than tp̂  and all the 
data points from last vertex (time Pi-i) to time Pi are monotonic 
increasing. Then a new vertex is created with negative slope. On 
the other hand, If /,内+] is larger than tp. and all the data points 
from last vertex / � _ i to Pi are monotonic decreasing. Then a 

new vertex is created with positive slope. 

IA 
I . L 1 i I i 

• U 1——p. Li i_L^ 

to t, t̂  tg to ti t2 tg t̂  to ti t2 tg t, tg 

(a) (b) (c) 

Figure 3.7: Blue line is the original time series. Red line is the Piecewise 

Linear Representation of the time series. W e can coDtimie to add vertices in 

an online data stream. 

3.3.2 Prediction Tree 

Using our proposed segmentation algorithm, any time series can 
be converted into different line segments with zigzag sharp. As 
we have mentioned before, the line segments can be represented 
by a set of vertices. In order to study the previous chart pattern 
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efficiently, the vertices then will be furthered converted into a 
sequence of symbols using the discretization algorithm in sec-
tion 2.3.2. After converting vertices into SAX words, we are 
ready to build a prediction tree. 

In our algorithm, we do not only use the original time series 
to predict the trend, as there are a lot of fluctuations. Instead, 
we use a moving average, since it can smooth the original time 
series. It means we build a moving curve on the original time 
series, then we divide this moving curve into different segments. 
Each segment can tell use the original time series is moving in 
up trend or down trend. And in each vertex, we also store the 
value of the original time series. For example, a vertex created 
at time pi will store the value of the moving average Vi at time 
Pi and the value of the original time series Oi at time Pi. 

As we want to make use of k previous vertices to make a pre-
diction, we will extract the k previous vertices (not include the 
new created vertex which is called as current vertex). Then con-
verting the value of the vertices into a sequence of symbols and 
insert into a tree. At the leaf nodes, we will keep three counters, 
one is for counting the number of cases that the the original time 
series value in current vertex Oi is greater the original time series 
value in previous vertex Oj_i by a user specified threshold f, an-
other one is for counting the number of cases that Oi is smaller 
than Oi-i by a threshold f, the last one is for counting the num-
ber of cases which does not fulfill either one of the previous two 
conditions. This process only occurs when a new vertex is es-
tablished, so it will not create much computation burden which 
is one of the big problems for massive stream data management. 

In our algorithm, two prediction trees are used, one is for up 
trend and one is for down trend. If the trend of the previous 
vertex is up, we will insert the new data into the 'Up Trend 
Tree'. Otherwise, the new data will be inserted into the 'Down 
Trend Tree'. 
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\ a / 

Figure 3.8： Our idea is illustrated in this diagram. First step, we need to 

generate a moving average for a given time series 

3.3.3 Trend Prediction 

When a new vertex was established, the current line segment 
must be either in up trend or down trend. However, it is not 
enough for financial data stream. The main problem is we do 
not know how much will the stock price increase. It is difficult 
to give a precise range for the prediction, but it is important 
to know if the stock price will decrease or increase by a user 
specified threshold. This specified threshold can be treated as 
the user required profit on the investment. 

When a new vertex is established, we extract the k-1 previous 
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Piecewise Linear Representation 

1 fN 
V y ： 

J Prediction Tree^^^^^^ 

SAX A / � 

Figure 3.9： Second step, when a new vertex is created at ]).“ we need to 

insert current chart pattern into the prediction tree. Assume we want to use 

3 vertices to predict the trend, then we need to extract 3 previous vertices, 

convert them into S A X words and insert them into predication tree. At the 

leaf node, we compare the value o/ and value Oi_i. If 0, is greater than o.j_i 

by user specified threshold f, we increase the value of 'UP T R E N D ' counter 

by 1. If Oi is smaller than i by user specified threshold f, we increase the 

value of ' D O W N T R E N D ' counter by 1. Other, we increase the value of 'NO 

T R E N D ' counter by 1. In this case, the last vertex is in up trend, so we 

insert, this pat.t.em in 'Up Trend Tree’ 

vertices and current vertex, convert the values of the vertices 
into a sequence of symbols. Then we will look up this sequence 
of symbols in the 'Up Trend Tree’, if the trend of the current 
vertex is up. We will look up this sequence of symbols in the 
，Down Trend Tree', if the trend of the current vertex is down. 
At last, we will compare the value of three counters at the tree 
node and return the result of the prediction. The final result 
can be 'UP TREND', 'DOWN TREND' or 'NO TREND，，we 

will clioose the one that the counter value is the greatest among 
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all three counters. 
A trend will be confirmed if both moving average and predic-

tion tree give the same result. If we cannot look up the sequence 
of symbols in the prediction tree, we will trust the result from 
moving average. 

3.4 Experimental Results 

3.4.1 Experimental setup 

We obtained the stock prices of different listed companies from 
'YAHOO Finance' [4]. In our experiment, we only used the ad-
justed closing price, since closing price is more important com-
paring with opening price, daily high price and daily low price. 
We did not use the closing price directly, as we wanted to ignore 
the fluctuations caused by stock split and stock merge cases. 

In stock merge, the current stock price will increase dramati-
cally, so we need to decrease all the data points after the merge 
point according the to the merge ratio. For example, if two 
shares of stock will merge into one share of stock, we will de-
crease all the data points by 50% after the merge point. 

In stock split, the current stock price will decrease dramati-
cally, so we need to increase all the data points after the merge 
point according the to the split ratio. For example, if one shares 
of stock will split into four share of stock, we will increase all 
the data points by 400% after the split point. 

In our experiments, we may need to set up a prediction tree 
for our proposed algorithm, so we will use first 1,000 data points 
to train up a tree. Then the remaining data points will be used 
to perform our experiments. For the parameters, we fixed the 
user specified threshold as 10% of the previous price and for the 
length of moving average, we chose the best length from 20, 30, 
50 and 100 by using the training result from the first 1,000 data 
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points. 
And the two experiments are very common in comparing the 

perforiiiaiice of prediction algorithms [36, 37, 22, 12 . 

Raw data stream 

I、丨yifpi" s,。_ 

Adjusted data stream 

』 

/ v^ 
I 产 

J 
Figure 3.10: (top) Raw data stream (bottom) Adjusted data stream. 

3.4.2 Experiment on accuracy 

111 this experiment, we want to test the prediction accuracy of 
our algoritliin. Both our algorithm and moving average can 
generate up trend and down trend signals. The signals tell us 
that the price will move in an up trend or in a down trend. 
Now we can test the accuracy by using coming trend signal. For 
example, we receive a down trend signal at time p^ and the stock 
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price is o^. The prediction will be correct, if the stock price is 
smaller than o^ when we receive a new trend signal. 

We compared our algorithm with simple moving averages in 5 
datasets. The test date range was from the date that the com-
pany became a listed company to 31st December, 2005. Our 
algorithm won in all 5 cases. It suggested that previous knowl-
edge about the movement of the stock price can improve the 
performance of the moving average. 

Our Proposed Algorithm Moving Average 

E R T S 57.69% 47.88% 

C〇F — 56.25% 48.82% 

A M G N — 47.52% 44.83% 一 

M X I M 51.72% 52.17% 

Q L G C ~ ~ 57.97% 39.32% 

Average 55.55% 48.82% — 

Table 3.1: Correctness of trend prediction 

3.4.3 Experiment on performance 

Since we are focusing on financial data, we do not want to de-
velop a trend predication algorithm only. In fact, we want to 
develop an effective investment strategy. As we have mentioned 
before, moving averages can be used to determine when we buy 
the stocks and when we sell the stocks. In this experiment, we 
want to show that our algorithm is much better than moving 
averages in term of buy/sell indicators. 

In this experiment, we will assume that we have 10,000 dollars 
on hand. If an up trend is confirmed, we will use all the money 
on hand to buy the stock and stock price will be equal to the 
stock price of next day after the up trend is confirmed. And if 
a down trend is confirmed, we will sell all the stock on hand. 
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However, we may not sell the stock on the day that the down 
trend is confirmed. We will sell the stock when the trend is down 
and the stock price is higher than the previous buying price. At 
the last data point in our dataset, we will calculate the total 
value of the asset on hand. It will be equal to the total value of 
the stock plus the total money on hand. 

We compared our algorithm with simple moving averages and 
，buy and hold' in 15 datasets. The test date range was from 1st 
January, 2004 to 31st December, 2005. For 'buy and hold', we 
use all the money to buy a stock at the beginning and we hold 
it until the last day. Our algorithm won in most of the cases. 
It was because our algorithm could successfully avoid making 
buy/sell decision in a small up trend or down trend. 

B u y and Hold Moving Average Our Proposed Algorithm 

A T Y T — 11.91% 1.16% 3.02% 

C S C O - 2 9 . 3 8 % - 3 2 . 8 0 % -33.14% 

H P ( ^ 2 7 . 1 7 % - 2 0 . 4 1 % “ - 1 9 . 2 4 % 

I B M - 8 . 6 6 % 1 0 . 4 4 % 4 . 0 8 % ~ 

M X O - 4 0 . 5 7 % - 1 . 3 0 % “ - 4 . 8 4 % 

M S F T 7.79% 9.02% “ 9.83% 

O R C L -7.08% -10.19% -17.82% 

Y H O 6 ~ 7 2 . 5 1 % 7 9 . 1 5 % 7 4 . 9 3 % 

S U N W 23.96% 14.11% — 22.18% 

C R E A F -14.60% 15.29% “ 19.26% 

A D B E 89.29% 44.26% 36.84% 

INTC -20.83% -7.47% — -10.46% 

D E L L -12.63% -24.30% -25.91% 

S Y M C 0.75% 24.36% ~ ~ 26.45% 

T M I C 43.68% 36.14% 65.57% 

Average 9.55% 9.16% 10.05% 

Table 3.2: Annual rate of re turn 
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111 fact, it is evident that a stock can go through both trending 
and trading phases. During a trading phase, the stock price may 
move ill short up trend or short down trend, since the primary 
trend has not established yet. However, the moving average does 
not work well in trading period. And our proposed algorithm 
can also perform well in trading period. 

Ford Motor (July, 1997 - Dec.2000) 
70 1 1 1 1 1 1 I I ~~-1 

— F o r d (Daily) 
I l l ——30-Moving Average 

： V 
2 0 1 _J J I — i 1 1 1 1 

0 100 200 300 400 500 600 700 800 900 1000 

Figure 3.11: The green circles indicate the trading phases. 

3.5 Conclusion 

Time series trend prediction was discussed in this chapter. We 
iiiaiiily concentrated on financial data such as stock price, index 
and bond price, as it is nearly a main job for people working 
ill this area. We introduced some common approaches which 
are widely used in the financial community. Relative strength 
index, chart analysis, Dow theory and moving average are all 
widely used, as they are easy to use. Especially moving average, 
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it can smooth time series and reduce the fluctuations. It can 
also help the fund manager to determine when he should buy 
the stock or when he should sell the stock. 

We proposed a new algorithm that use the previous moving 
patterns of a stock to improve the performance of simple moving 
average. Prom the experimental results, we showed that our 
solution was more accurate than the simple moving average. We 
then applied this algorithm on an investment strategy. Again 
our solution is better than moving average in term of rate of 
return. 

In this work, we only focused on trend prediction. However, 
sometimes we want to predict a possible range that the incoming 
value may fall in. We want to extend our algorithm on prediction 
of a range rather a trend. 

• End of chapter. 



Chapter 4 

Conclusion 

In this thesis, two important problems in time series were ad-
dressed. The first one is finding unusual subsequence. Accord-
ing to our definition, the most unusual subsequence D is the 
one that maximizes the minimum distance between D and any 
other non-self subsequence E 

m^x{mm{Dist{D, E)) 

We proposed a method for solving this problem. We also in-
vestigated this problem in different aspects such as the effect of 
alphabet size and length of discord. The idea of top K discords 
was introduced in this thesis too. And a lot of experiments were 
done to prove that our solution is effective and efficient. 

The second one is trend prediction. The problem is simple, 
at every time step we want to know the future data points will 
move upward or downward. However, the solution is not simple. 
We proposed an algorithm that make use of the past prices to 
deduce the future trend. Experiments showed our solution is 
better than a famous approach, moving average. 

We do believe solutions to those two problem are very useful 
for people who need to handle time series. Imagine, when we 
need to make decisions by analyzing time series, very often we 
need to know the future movement of time series and all the 
existing unusual subsequences. In fact, in this thesis, we showed 

92 
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a lot of real life applications in different areas. They are useful, 
as they are core problems of many complicated problems. 

• End of chapter. 
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