
Weighted Constraint Satisfaction with Set

Variables

SIU Fai Keung

A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of

Master of Philosophy

in

Computer Science and Engineering

©The Chinese University of Hong Kong

August 2006

The Chinese University of Hong Kong holds the copyright of this thesis.

Any person(s) intending to use a part or whole of the materials in the thesis

in a proposed publication must seek copyright release from the Dean of the

Graduate School.

/ V , 大 ^ ^ N ^
/ 义/

1 ggt 1? 1
UNIVE 冗 I T Y 一越

SYSTEM/考//

-1

.i，

Thesis/Assessment Committee

Professor Young Fung Yu (Chair)

Professor Lee Ho Man Jimmy (Thesis Supervisor)

Professor Cai Leizhen (Committee Member)

Professor Javier Larrosa (External Examiner)

Abstract

Many problems in daily life, such as resource allocation, scheduling, timetabling,

configuration and satisfiability problems, can be modeled as finite domain con-

straint satisfaction problems (CSPs). Set variables are ubiquitous in modeling

many applications as CSPs. Various approaches to handle set variables are

proposed for classical CSPs. In contrast to containing hard constraints only

in classical CSPs, the ability to specify soft constraints with set variables in

weighted constraint satisfaction problems (WCSPs) can enhance the expres-

siveness of modeling. However, efforts on practical consistency algorithms for

WCSPs have only been on integer variables. The major problem associated

with set variable is its high complexity. A set variable with n possible set ele-

ments has set values in its domain. The time complexity to search such large

domain for solutions is high. As current local consistency enforcing algorithms

for WCSPs require constraints to be implemented as a cost tables, the ex-

plicit representation of set constraints in WCSPs also suffers from exponential

space requirement. In this thesis, we propose compact and efficient represen-

tation schemes for set variables and common unary, binary, and ternary set

constraints, as well as cardinality constraints. We adapt the classical notion of

set bounds consistency for WCSPs. Instead of reasoning consistency on an en-

tire set variable directly, we propose local consistency check at the set element

level, and demonstrate that this apparent "micro"-management of consistency

ii

does imply set bounds consistency at the variable level. In addition, we prove

that our framework captures classical CSPs with set variables, and degener-

ates to the classical case when the weights in a problem contain only 0 and

T. Last but not least, we verify the feasibility and efficiency of our proposal

with a prototype implementation, the efficiency of which is competitive against

ILOG Solver on classical problems and orders of magnitude better than WCSP

models using 0-1 variables to simulate set variables on soft problems.

iii

摘要

日常生活中的許多問題，比如資源分配、規劃、時間表安排、配置以及可滿

足性問題等，都可以建模為約束滿足問題，集合變量是約束滿足問題中常見

的變量類型。目前，已有許多方法處理在傳統滿足約束問題中的集合變量。

相對於傳統約束滿足問題，在加權約束滿足問題中，我們可以通過加入包含

集合變量的軟性約束來增强模型的表達能力。但是已有的加權約束滿足問題

的相容性算法只能處理整數變量，無法處理集合變量。同時，對於一個包含

n個元素的集合變量而言，其域的大小為。因此使用集合變量會增大時

間和空間的複雜性。搜索答案的時間複雜性大都取決於搜索空間的大小。然

而，搜索空間亦會因變量的域增大而相應增大。空間複雜性的增加是由於目

前的相容性算法要求以權值分佈表來表示約束。這種明顯列出約束中權值的

方法，極大地增加了空間的複雜性。針對這些問題，本文提出了高效表示集

合變量、常用的一、二、三元集合約束以及集合的個數約束的方法。同時在

傳統集合邊界相容性的基礎上，我們提出了在集合元素的層次上進行相容性

推理的方法。我們證明了這種表面上對相容性作微觀處理的方法，可以達到

集合變量上的相容性。除此之外，我們證明了我們所提出的框架，不但涵

蓋了包含集合變量的傳統約束滿足問題，而且在問題中的權值只有0和T

時，會退化成傳統的約束滿足問題。最後，我們用原型實驗證明了我們所

提出的方法的可行性及高效性。在解決傳統問題上，我們的效率可與ILOG

Solver相比。而在解決加權約束滿足問題上，我們的效率比以0-1變量來模

擬集合變量的方式有更明顯的優越性。

iv

Acknowledgments

I would like to express my gratitude to my supervisor, Professor Jimmy Lee.

He has brought me to this research area of constraint satisfaction in 2004. The

path to the current thesis topic is not smooth. Several attempts were made

in the past two years on other topics. Although the results of previous topics

were not encouraging, I received a lot of help from Jimmy. This experience

became the stepping stone for me on this thesis topic. I am very grateful for

his invaluable advice and continuous support for my research.

I would like to thank my examiners Professor Javier Larrosa, Professor

Fung Yu Young, and Professor Leizhen Cai. Their constructive comments

help improve the quality of the thesis a lot. It was memorable for me to have

oral defense with Javier while we were attending conference of AAAI-06 in

Boston.

Groupmates of our research groups have contributed lots of ideas and fun

for my research work. I thank Jeff Choi, Spencer Fung, Xiao Hui Ji, Gordon

Lam, Yat Chiu Law, and May Woo. I enjoyed much working with them in

the same office. In addition, I was often benefited by their sharing of research

experience.

Last but not the least, I would like to give my best wishes to my parents and

sisters for their endless support and understanding throughout my two-year

master program.
i

V

Contents

1 Introduct ion 1

1.1 (Weighted) Constraint Satisfaction 1

1.2 Set Variables 2

1.3 Motivations and Goals 3

1.4 Overview of the Thesis 4

2 Background 6

2.1 Constraint Satisfaction Problems 6

2.1.1 Backtracking Tree Search 8

2.1.2 Consistency Notions 10

2.2 Weighted Constraint Satisfaction Problems 14

2.2.1 Branch and Bound Search 17

2.2.2 Consistency Notions 19

2.3 Classical CSPs with Set Variables 23

2.3.1 Set Variables and Set Domains 24

2.3.2 Set Constraints 24

2.3.3 Searching with Set Variables 26

2.3.4 Set Bounds Consistency 27

3 Weighted Constraint Satisfaction with Set Variables 30

3.1 Set Variables 30

vi

3.2 Set Domains 31

3.3 Set Constraints 31

3.3.1 Zero-arity Constraint 33

3.3.2 Unary Constraints 33

3.3.3 Binary Constraints 36

3.3.4 Ternary Constraints 36

3.3.5 Cardinality Constraints 37

3.4 Characteristics 37

3.4.1 Space Complexity 37

3.4.2 Generalization 38

4 Consistency Notions and Algorithms for Set Variables 41

4.1 Consistency Notions 41

4.1.1 Element Node Consistency 41

4.1.2 Element Arc Consistency 43

4.1.3 Element Hyper-arc Consistency 43

4.1.4 Weighted Cardinality Consistency 45

4.1.5 Weighted Set Bounds Consistency 46

4.2 Consistency Enforcing Algorithms 47

4.2.1 Enforcing Element, Node Consistency 48

4.2.2 Enforcing Element Arc Consistency 51

4.2.3 Enforcing Element Hyper-arc Consistency 52

4.2.4 Enforcing Weighted Cardinality Consistency 54

4.2.5 Enforcing Weighted Set Bounds Consistency 56

5 Experiments 59

5.1 Modeling Set Variables Using 0-1 Variables 60

5.2 Softening the Problems 61

vii

5.3 Steiner Triple System 62

5.4 Social Golfer Problem 63

5.5 Discussions 66

6 Related Work 68

6.1 Other Consistency Notions in WCSPs 68

6.1.1 Pull Directional Arc Consistency 68

6.1.2 Existential Directional Arc Consistency 69

6.2 Classical CSPs with Set Variables 70

6.2.1 Bounds Reasoning 70

6.2.2 Cardinality Reasoning 70

7 Concluding Remarks 72

7.1 Contributions 72

7.2 Future Work 74

List of Symbols 76

Bibl iography 79

viii

List of Figures

2.1 A solution to the 4-queens problem 8

2.2 Backtracking tree search maintaining node and arc consistencies

for the 4-queens problem 15

2.3 A sample WCSP 17

2.4 An equivalent WCSP which is NC* 21

2.5 An equivalent WCSP which is AC* 23

2.6 Set domain for the course selection of a student 25

2.7 (a) An original domain for a set variable (b) A domain with 3

removed from the possible set 27

2.8 A complete search tree for a set variable 28

3.1 (a) 2 e A 3 作 （ b) = (c) 口 2 34

3.2 An example WCSP 35

4.1 (a) A WCSP which is not ENC (b) An equivalent WCSP which

is ENC 42

4.2 (a) A WCSP which is not EAC (b) An equivalent WCSP which

is EAC 44

ix

List of Tables

2.1 Projection functions for some common set constraints 29

3.1 Space complexity of set constraints of different arities with the

use of set variables and integer variables (e is the maximum

number of set elements in the sets) 38

3.2 Soft versions of common classical set constraints 39

5.1 Runtime and number of fails for solving classical Steiner Triple

System 63

5.2 Runtime and number of fails for solving soft Steiner Triple System 63

5.3 Runtime and number of fails for the classical Social Golfer Problem 65

5.4 Runtime and number of fails for the soft Social Golfer Problem . 65

X

Chapter 1

Introduction

Many problems in daily life, such as resource allocation, scheduling, timetabling,

configuration and satisfiability problems, can be modeled as finite domain con-

straint satisfaction problems (CSPs). When a problem is over-constrained or

involves preferences, we can model the problem as a weighted constraint satis-

faction problem (WCSP). In WCSP, costs are associated with tuples to reflect

the quality of the assignments. On the other hand, set variables are common

in modeling problems. Gervet [Ger97] demonstrated how set variables can be

handled in CSPs. The idea of using set interval as a set domain and reasoning

on the bounds give an efficient solving approach for CSPs with set variables.

1.1 (Weighted) Constraint Satisfaction

Constraint satisfaction problems (CSPs), defined in the sense of Mack worth

'Mac77], can be briefly stated as follows :

We are given a set of variables, a domain of possible values for

each variable, and a conjunction of constraints. Each constraint

is a relation defined over a subset of the variables, limiting the

combination of values that the variables in this subset can take. The

1

Chapter 1 Introduction 2

goal is to find a consistent assignment of values to the variables so

that all the constraints are satisfied simultaneously.

Constraints in classical CSPs can only be either fully satisfied or fully

violated. In many real life applications, we have to allow partially satisfied

constraints when the problems are over-constrained or involve preferences. For

example, there are multiple routes taking a traveler from the origin to the

destination. While the traveler can arrive at the destination via any one of the

routes, the cheapest and shortest route is often the preferred choice.

The weighted constraint satisfaction problem (WCSP) framework, one of

the soft constraint frameworks, allows us to specify preference and degree of

satisfaction (or violation) by associating costs to the tuples. WCSP is thus a

generalization of classical CSP. We can evaluate the quality of an assignment

with the costs given by the constraints. The lower the cost is, the higher the

quality of the assignment. Therefore, we are searching for the assignment with

minimum cost in a WCSP.

1.2 Set Variables

Integer variables suffice to model many combinatorial problems. In some cases,

however, unknowns in a problem can have set as values. For example, we might

be interested in finding what nurses should be serving in a particular shift in

a nurse rostering problem. A set variable in classical CSP takes on set values.

Since the domain size of a set variable is large, Gervet [Ger97] proposes that

the domain of a set variable is specified with a lower and upper bounds, which

are ordered by set inclusion. Any set which falls within the bounds is in the

domain of the set variable. The set constraints are composed of set relations,

such as subset equal (C) and equality (=), and set operators, such as union (U),

Chapter 1 Introduction 3

intersection (n) and different (\). Cardinality of a set variable can be restricted

with cardinality constraints. As set domain is specified as bounds, Gervet

introduces an approach to reason the domains on its bounds with respect to

the constraints and define set bounds consistency notions [Ger97 .

1.3 Motivations and Goals

The need for set variables is no exception with WCSPs. Our goal is to define

set variables for WCSPs as there are no existing framework for WCSPs to deal

with sets. A set variable with n possible set elements has a domain of size 2".

Domain consistency techniques [Lar02, LS03] developed for integer variables

cannot be practically adapted for set variables since these techniques require

all elements of a variable domain to be represented explicitly. Following Gervet

Ger97], we propose efficient set bounds consistency techniques in WCSPs for

set variables which reason only on the bounds of the variable domains [LS06 .

Constraints in WCSPs are cost functions, mapping tuples to costs. Instead

of specifying the cost' functions at the tuples (of set values) level, we devise a

general scheme for representing tuple costs according to costs associated with

the existence and inexistence of elements in the set values. This scheme is com-

pact and allows us to specify cost functions to all common set constraints, and

degenerates to classical CSPs with set variables when all costs are either 0 or T.

Node, arc, hyper-arc, and cardinality consistency notions and the associated

enforcement algorithms are defined for unary, binary, ternary, and cardinality

constraints at the set element level respectively. We show that these element

consistencies imply set bounds consistency [Ger97, MM97, HLS05] generalized

for WCSPs. We construct a prototype implementation of our algorithms by

modifying the ToolBar WCSP solver [BHdG+04]. Experiments are conducted

to compare our implementation against ILOG Solver [IL003] on classical set

Chapter 1 Introduction 4

CSPs, and against 0-1 variable emulation of set variables in ToolBar on soft-

ened versions of the same classical benchmarks. Results confirm that our im-

plementation is more efficient than ILOG Solver on classical problems and two

orders of magnitude better than WCSP models using 0-1 variable to simulate

set variables on soft problems.

1.4 Overview of the Thesis

The rest of the thesis is organized as follows. Chapter 2 provides the back-

ground to the thesis. We formally introduce classical CSPs and WCSPs, and

present the common solution techniques : backtracking tree search for classi-

cal CSPs and branch and bound search for WCSPs. Overview of consistency

notions, including node and arc consistencies, are given for both classical and

WCSPs. We also describe the use of set variables and the notion of set bounds

consistency in classical CSPs. In Chapter 3，we give the formal definition of

WCSPs with set variables. The representation schemes for set variables and

set constraints are described. We illustrate the approach to specify costs for

set constraints via cost functions at the element level. Local consistency no-

tions for WCSPs with set variables are presented in Chapter 4. The local

consistency notions include element level consistencies and weighted cardinal-

ity consistency. On top of them, we introduce weighted set bounds consistency

which is implied by maintaining the above consistencies. Complexity analysis

and proofs of correctness of the consistency algorithms are give a. In Chapter 5,

we report experimental results. We compare the performance of our prototype

implementation with ToolBar [BHdG+04]，a generic WCSP solver, and ILOG

Solver 6.0 [IL003], a classical CSP solver. Chapter 6 presents a review of re-

lated work on other consistency notions in WCSPs and current approaches to

Chapter 1 Introduction 5

handle set variables in classical CSPs. Chapter 7 concludes the thesis by sum-

marizing our contributions and shedding light on possible directions of future

research.

Chapter 2

Background

This chapter provides background to the thesis. We describe concepts of both

classical and weighted constraint satisfaction. In particular, we introduce set

variables in modeling problems for classical CSPs. We also illustrate the ben-

efits of enforcing local consistencies in the solution searching process.

2.1 Constraint Satisfaction Problems

A (classical) constraint satisfaction problem (CSP) is a tuple V =

where A:" is a finite set of variables . . . , Xn}, P is a finite set of variable

domains ...，/^(xn)}, and C is a finite set of constraints. A variable

Xi ^ X can only be assigned with a value from its variable domain D{xi) G V.

The initial domain Do{xi) for each variable Xi e X is the domain given once

a CSP is defined. Each constraint G C restricts the values that can be

taken by the variables aJi! ’...，Xj^ simultaneously. In this thesis, we consider

only finite domain CSPs in which each variable domain is finite. Without

loss of generality, the variable domains only contain integers, though they can

contain values of any types in general.

An assignment Xi a assigns the value a G D{xi) to the variable Xj. A

tuple t contains the assignments for a set of variables {xi. ^ aj\l < j < k}

6

Chapter 2 Background 7

where { x j j , . . . , C X and dj G D{xi.) for I < j < k. We denote the

variables in the tuple t by var{t). A complete assignment is a tuple containing

assignments for all variables in X .

A classical constraint ’•.. ’G C is a function which maps D{xi^) x .. • x

D(XiiJ to {true, false}. The set of variables {:ri” . . . , is a subset of It

is the scope of the constraint (7 “ ’… ’and denoted by ’ • " “ � . W i t h o u t

loss of generality, we denote C“’…’生知 as a conjunction of all the constraints with

scope (x'i^,. . . , ajj^} in a problem.

A projection 亡丄y of a tuple ^ to a set of variables V C var{t) is a tuple

t' such that t' C t and t' involves only variables in V. We abuse the notation

of constraint Cii,...,̂ ^ to take also a tuple t 二 {xi^ a i , . . . , Xi^ ak} as an

argument such that Ci^,…’= C“”‘,’if^(ai,..., a^). Given a constraint C and

a tuple t, where var(C) C var{t), the tuple t satisfies, or consistent with, the

constraint C if and only if C(t j^ar(C)) = true. Conversely, the tuple t violates,

or inconsistent with, the constraint C if and only if C(t J.var(C)) = false.

A solution to a CSP is a complete assignment which satisfies all the con-

straints in C simultaneously. In solving a CSP, we are searching for solutions

to the problem.

Examp le 2.1 The n-queens problem

The n-queens problem is to place n queens on a n x n chessboard so that

they do not attack one another. We can model the problem as a CSP by

using n variables rci，...，a:„ for each column of the chessboard. The value for

variable Xi denotes the position, in terms of row number, of the 'i-th queen in

the z-th column of the chessboard.. Thus, each variable domain is {1，..., n} .

For each pair of columns (?:, j) on the board, where G {1, . . .，n} and i + j ,

we have two constraints as follows :

1. 3Ci — Xj

Chapter 2 Background 8

2. \xi — Xj\

The first constraint forbids pair of queens to be located in the same row.

The model inherently does not allow any pair of queens to be located in the

same column as each variable can only take one value. The second constraint

forbids pair of queens to be placed in the same diagonal on the chessboard.

One of the solutions for 4-queens problem is depicted in Figure 2.1. The 4 x 4

squares represent a chessboard. Each letter Q represents a queen. The variable

for each column is labeled above the corresponding column while the values are

marked in the left hand side of the chessboard according to the row number.

Thus, the figure shows the solution {xi i—̂ 2,2:2 ^^ 4,0:3 1, X4 3}.

Xi X2 X3 X4

i| |Q|
2_Q
3 Q_
41 |Q|

Figure 2.1: A solution to the 4-queens problem

•

2.1.1 Backtracking Tree Search

A CSP can be solved by systematic search. The solution space of the problem

is traversed systematically as a tree structure. This method guarantees to find

all the solutions if the problem has ones. Otherwise it proves unsatisfiability of

the problem. Thus, systematic search is both sound and complete. In practice,

backtracking tree search algorithm [GB65, Gas77, BP81, DP87, Nad89], one of

systemic search algorithms, is used to solve CSPs. The backtracking tree

Chapter 2 Background 9

search described below traverses the tree of possible assignments in a depth-

first manner. Algorithm 2.1 gives the procedure for backtracking tree search

given in [Apt03] for finding a single solution.

Algor i thm 2.1: Backtracking tree search
1 Procedure backtrack , D, success)

2 begin

3 while D{xj) + 0 and -isuccess do

4 a G

5 D{xj) := D{xj) \ {a }
6 if cons (t, Xj H a) then

7 亡：=亡 U { x j H-> a }

8 success := { j = n)
9 if，success then

10 backtrack + 1, P , success)

11 end

12 begin

13 success := false

14 t := 0
15 backtrack(力，1，P, success)

16 end

The search starts with an empty tuple of assignment t. In the algorithm, it

incrementally extends the tuple with assignments. The order of choosing vari-

ables and values during search can be arbitrary, but experiments and analysis

shows that applying ordering heuristics can affect the efficiency of the search

ill many cases [BR75, Pur83, SS87，HE80, ZM88 .

While there are unassigned variables, also known as future variables, the

search chooses a variable with a value from the corresponding variable domain.

The selected value is removed from the domain to avoid choosing the same

value again. The function cons 0 checks if the current selected pair of variable

and value is consistent with the assignments in the tuple witli respect to the

Chapter 2 Background 10

constraints. If it is consistent, the new assignment is committed. Otherwise

another value is selected for the same process. The procedure proceeds with

the next unassigned variable, if any. When all the variables are assigned with

values, a solution is found.

In case of there is no alternative value in the domain, the search backtracks

to the previous state. The assignment of previous variable is undone and the

search considers other values in the domain for the previous variable. If the

search backtracks to the first variable with empty domain, then there is no

solution to the problem.

The search stops once it finds the first solution of the problem, but it can

be modified easily to search for all solutions.

2.1.2 Consistency Notions

A standard backtracking tree search, which described in previous subsection,

has some major drawbacks [Bar99]. One of the drawbacks is late detection

of the conflict among the assignments. Many studies are done to detect the

inconsistency sooner.

A CSP is a tuple V = {X, V, C) with a set of variables A', a set of variable

domains V and a set of constraints C. In the following, we introduce two

common consistency notions : node consistency and arc consistency.

Node Consistency

Node consistency [Mac77] deals with unary constraints. A variable Xi is node

consistent if and only if Va G D(Xi), Ci{a) is satisfied. A CSP is node consistent

if all variables are node consistent.

Algorithm 2.2 shows a procedure to enforce node consistency [Mac77]. For

each variable Xi, it retains only those domain values in D{xi) which satisfy the

Chapter 2 Background 11

unary constraint Ci,

Algor i thm 2.2: The node consistency algorithm
1 Procedure NC(Z)
2 begin

3 I D{xi) -.= D{xi)n{a\Ci{a)]
4 end

5 begin

6 for 2 := 1 to n do

7 [_ NC (z)

8 end

Example 2.2 Given variable x, its domain D[x) = {1 ,2 ,3 ,4 ,5 } , and a unary

constraint a: < 4. The variable x is not node consistent as a; h 4 and x 5 do

not satisfy the constraint. If the values 4 and 5 are removed from the domain

D[x), now with D[x) = {1, 2, 3}, the variable x becomes node consistent. •

Arc Consistency

Arc consistency [Mac77] deals with binary constraints. A pair of variables

[xi, Xj), where i ^ j, is arc consistent if and only if Va € D(xi), such that

Ci(a) is satisfied, there is a value b G D{xj) such that Cj{b) and Cij{a, b) are

satisfied. The value b G D{xj) is the binary support of the value a G D{xi) with

respect to Cij. A CSP is arc consistent if pair of variables are arc consistent.

A basic arc consistency enforcing algorithm, AC-1，is depicted in Algo-

rithm 2.3 [Mac77]. It first maintains node consistency for all variables. A

queue is then initialized with all the variable pairs which have corresponding

binary constraints in the CSP. For each pair of variables (xj, .Tj), the function

Revise 0 removes any value in D{xi) which does not have binary support in

D{x j) with respect to Ci�j. However, later when the algorithm revises D{x j)

Chapter 2 Background 12

Algor i thm 2.3: The first arc consistency algorithm (AC-1)
1 Procedure Revise (z,j)

2 begin

3 delete false
4 for a € D{xi) do

5 if ib e D{xj) such that b) = true then

6 B(xi) := D{xi) \ {a} ’
7 delete := true

8 return delete

9 end

10 Procedure AC-10

11 begin

12 for i 1 to n do

13 |_ NC ⑴

14
15 repeat

16 change := false ,
17 for {i,j) G Q do

18 L change := (Revise (i j) or change)

19 until，change

20 end

Chapter 2 Background 13

for the variable pair (J, k), some values in D{xj) maybe removed for arc consis-

tency. These removed values from D{xj) may be the original binary supports

for values in D{xi). As the values in D{xi) may lose their supports, the al-

gorithm iteratively checks all pairs of variables in the queue until there is no

change in a single pass to ensure all the values in the domains have correspond-

ing binary supports.

Algor i thm 2.4: The third arc consistency algorithm (AC-3)
1 Procedure AC-3 0

2 begin
3 for i := 1 to n do
4 |_ NC(0

6 while do
7 (/c,m) G Q
8 Q : = g \ { (A : , m) }
9 if Revise (A;, m) then

10 |_ g := (?U {(z, k) I Ci�k G C A i ^ m}

11 end

The algorithm AC-1 is inefficient because a single change in a variable

domain leads to an additional pass in the algorithm. In many cases, only a

small subset of variable domains are affected by each single change. A more

efficient arc consistency enforcing algorithm, AC-3, is designed to revise only

the affected variable domains in case of any changes. Algorithm 2.4 shows the

AC-3 algorithm [Mac77j. It is similar to AC-1 except it removes a variable

pair from the queue each time before checking for supports. When there is

a change in a variable domain D{xk), it inserts back only the variable pairs

which contain variable Xk in the scope of the corresponding binary constraint

to the queue.
J

Chapter 2 Background 14

There are more sophisticated and efficient arc consistency enforcing algo-

rithms which include AC-4 [MH86], AC-5 [Per92], AC-6 [Bes94], AC-7 [BFR99],

and AC2001 [BROl, ZYOl, BRYZ05]，but the fundamental concepts are the

similar. They all remove values from variable domains in a CSP to maintain

arc consistency.

Examp le 2.3 Given a CSP with variables xi and X2, and domains D { x i) =

{1,2，3,4，5} and D{x2) — {1,2，3}. We consider the constraint Xi - X2 — 2.

Variable pair {x\^x2) is not arc consistent while variable pair {x2, Xi) is. It is

because there are no values in D(x2) which satisfies the constraint for i-^ 1

and Xi I—> 2. By removing 1 and 2 from the variable pair {xi,x2)

becomes arc consistent with the constraint. •

Figure 2.2 shows a complete backtracking search tree for the 4-queens prob-

lem when node and arc consistencies are enforced. The search chooses variables

and values in lexicographic order. The node and arc consistencies enforcing

algorithms are incorporated to the backtracking tree search algorithm such

that consistency check and domain pruning are carried out after each variable

assignment. In the figure, each recent assignment is labeled on the edge con-

necting the previous node and the current node. The letter X denotes a value

being removed from the domain due to inconsistency. A leaf node marked as

fail when the node has empty domain. Otherwise the leaf node represents a

solution to the problem.

2.2 Weighted Constraint Satisfaction Problems

A weighted constraint satisfaction problem (WCSP) is a specific subclass of

valued CSP [SFV95] which associates costs to tuples. The costs are specified by

a valuation structure. The preferences in the problem can be expressed in terms

Chapter 2 Background 15

1| I I 厂

t===
- 3 = = = =

4

Xi X2X3X£^ Xi X2 X4 3:1^2 工 4 工 1 幻工 4

1 阿 X |X|X| 1| 1x1 1x1 1| 1x1 X| 1丨 | x | x
2 ~ Y X X —
4! I x | x | 4| x | x | 4| |x |x | 4|q|X x | x

X2 = 4： X2 = I

Xi X2 X3 X4 X2 工3

1| |X 1x1 1| I Q x l x l \ y /

Fail 3 ~ Y X - ^ ' ^ X X X Fail 4| 4| |X |X
2:3 = 1 2:3 = 4

rci X2 x^ X4 Xi X2 xs X4
1| |X QlXl 1| I Q XI X
2 工 m

4| I Q x|x| 4| |x q|x

0；4 = 3 X4 = 2

Xi Xi X'S X4
1| |X Qlxl 1| I Q XI X

2 互 m 2 = m

4| |Q |X |X | 4| |X|Q|X

Figure 2.2: Backtracking tree search maintaining node and arc consistencies
for the 4-queens problem

Chapter 2 Background 16

of costs. Thus, the WCSP framework provides a way to model optimization

problem.

Defin i t ion 2.1 A valuation structure is a triple S = {E, 0 , where E is

the set of costs totally ordered by y . The maximum and the minimum costs

are T and 丄 respectively. The binary operation © on combines costs.

A WCSP is a tuple V = (k, A', V,C)- ^ and V are the set of variables and

the set of domains respectively as in classical CSPs. C is a set of constraints.

Each constraint C G C is a cost function which maps assignments to costs.

The valuation structure used in WCSPs is 5(/c).

Defin i t ion 2.2 5(/c) = ([0,1，•..，k], ©, >) is a valuation structure, where

• A; € [1，...，oo

• 0 is defined as a 0 6 = min{k, a + 6}

• > is the standard order among naturals

In a WCSP with valuation structure 5(A;), we have 丄二 0 and T = k.

There is a zero-arity constraint Cq which represents the global lower bound of

the WCSP.

The cost of a tuple t, V(t), is a measure of quality of the tuple. The lower

the cost, the higher the quality. It is defined as the sum of all costs associated

with the constraints in the problem,

Cil’.. . , in eC’{;Eii }Cvar (0

The formula above is a slightly generalized form of Larrosa's definition

Lar02], which restricts discussion on only binary WCSPs. In this thesis, we

do not restrict the arity of the constraints.

Chapter 2 Background 17

T = 4
C0 = O

X\ X2

Figure 2.3: A sample WCSP

A tuple t is consistent if V(t) < T. In solving WCSPs, we are searching

for solutions which are complete consistent assignments with minimum cost.

Figure 2.3 shows a sample WCSP. In the figure, each oval represents a

variable. The circles inside an oval are the domain values which are labeled

besides the circles. The integers in the circles are the unary costs to the

corresponding values for the variable. A line joining two values in two variable

domains represents a binary constraint with costs given above the line.

2.2.1 Branch and Bound Search

WCSPs are usually solved by branch and bound search, which is a solving

technique for optimization problems. The search procedure is similar to tree

search in solving CSPs. However, it keeps the cost of a complete solution found

so far. Initially, the global lower bound, is set to 0 and the global upper

bound, T, is set to oo. After each variable assignment, the search evaluates

the current lower bound. If the current lower bound is higher than or equal

to T, the search backtracks to the previous assignment. Otherwise, the search

proceeds with another variable assignment. Once a complete assignment with

Chapter 2 Background 18

cost less than 丁 is found, T is set to the cost of the assignment. Therefore,

the search keeps narrowing the search space to find an optimal solution.

Algor i thm 2.5: Branch and bound search
1 Procedure LookAheadCz i—> a, CO

2 begin

3 C' := C' \ {Ci}
4 for Ci，j e C' do

5 for b e D{xj) do

6 |_ Cj{h) •.= Cj{h)®Ci^j{a,h)
7 L C'-.^C'MCi^j}

8 end

9 Procedure BranchAndBound(i, k,

10 begin

11 if X = 0 then

12 return C®

13 else

14 Xi e X
15 for a G D{xi) do

16 V' := V
17 C' := C
18 t' := t D {xi I—> a}

19 Vf :=vt® Ci{a)
20 LookAheadCz 1-4 a,C')
21 if LocalConsist (/c, Af \ {xi}, C) then

22 [_ k := BranchAndBoundCt', Vt',X\ {xi},V\C')

23 return k
24 end

Algorithm 2.5 shows a branch and bound search procedure [LS04]. The

tuple t contains variable assignments. The cost of the tuple is Vt. After selected

a variable and a value for the current assignment, LookAheadO transforms the

current problem to a subproblem in which the variable Xi is assigned with a.

LocalConsist () checks for local consistency for the transformed problem.

Chapter 2 Background 19

The search proceeds to another variable assignment only when the problem is

consistent.

2.2.2 Consistency Notions

Similar to the classical case, maintaining local consistencies can also reduce

the search space in WCSPs. Common local consistencies in WCSPs are star

node consistency and star arc consistency. More sophisticated consistency no-

tions include directional arc consistency [LS03], full directional arc consistency

LS03], and existential arc consistency [dGHZL05].

A WCSP is a tuple V = (/c, A", D, C) which associated with the valuation

structure S{k). X and V are a set of variables and a set of variable domains.

C is a set of constraints. Two WCSPs are said to be equivalent to each other

if they contain the same set of variables and define the same cost distribu-

tion on complete assignments [dGHZL05]. A consistency enforcing algorithm

transforms a WCSP P to an equivalent WCSP P' such that P' satisfies the re-

quirement of the corresponding consistency notion. Consistencies are enforced

by applying pruning inconsistent values and forcing supports. Supports can

be forced by sending costs between the constraints [CS04]. Subtraction is a

useful operation on costs when forcing supports.

Definit ion 2.3 Let a, 6 G { 0 , . . . , /c} such that a > b. The subtraction of b

from a [Lar02, LS04] is defined as :
f

a - b : if a ^ k]
aGb= <

I k : if a = k.

Node Consistency

A value a G D{xi) of variable Xi is star node consistent (NC*) [LS03] with

respect to Ci if Cg) 0 Ci{a) < T. Variable Xi is NC* with respect to Ci if :

Chapter 2 Background 20

• all its values are NC*, and

• 3a G D{xi) such that Ci{a)=丄.

Value a is a unary support for the variable Xi. The WCSP is NC* if every

variable is NC*.

Algor i thm 2.6: NC* algorithm
1 Procedure NC* {X, V, C)
2 begin

3 for Xi E do
4 V := argmin„e例而）

5 a := Ci{v)

6 C0 ：= Co © Q；

7 for a G D{xi) do

8 Ci[a) : = Ci[a) © a

9 for Xi e X do
10 for a € D{xi) do

11 if Ci{a) e C0 = T then

12 |_ D{xi) := D{xi) \ {a }

13 end

Algorithm 2.6 describes an algorithm for enforcing NC* [Lar02]. For each

variable xi in the problem, the algorithm finds the value v with minimum unary

cost by argmin. The unary cost Ci{v) is added to the global lower bound C0

as it is the minimum cost for the unary constraint Q . This cost is subtracted

from all the unary costs in Ci to maintain equivalence. A consistency check is

performed to remove any value with total cost, Ci 0 C0, equals to T.

Examp le 2.4 The variable Xi in WCSP in Figure 2.3 is not node consistent.

The equivalent WCSP, which is node consistent, is shown in Figure 2.4. Cost

1 is subtracted from the unary cost of each value in D{xi) and sent to C屯.

•

Chapter 2 Background 21

T = 4
C0 = 1

a；! X2

Figure 2.4: An equivalent WCSP which is NC*

Arc Consistency

A value a G D{xi) is arc consistency (AC) [LS03] with respect to constraint

Cij if it is node consistent and 3b E D{xj) such that Cij =丄.

Value 6 is a binary support of the value a. Variable Xi is AC if all its values

are AC with respect to constraint Qj. The WCSP is AC* if every variable is

AC and NC*.

Algorithm 2.7 shows the pseudocode for maintaining AC* [LS04]. The

algorithm holds a list of variables of the problem. For each variable Xi, the

algorithm finds a support for each value a in the variable domain D{xi) with

respect to constraint Cij in FindSupportsC). The support b is found so that

the minimum cost for Cij{a, b) with rĉ 1—> a is 丄 .T h e minimum cost is
I .

added to the unary cost Ci{a). This cost also subtracted from all the binary

costs Cij(a, c) for all values c G D(Xj). Lastly, the algorithm removes any

inconsistent value a G D{xi) such that Ci{a) = 丁.

Examp le 2.5 The WCSP in Figure 2.4 is NC* but not AC*. Since for every

value a G D{xi), the cost for Ci’2(a，1) is larger than 丄.The minimum binary

cost, which is 1, is subtracted from the binary constraint and sent to the unary

Chapter 2 Background 22

Algor i thm 2.7: AC* algorithm
1 Procedure FindSupports (z, j)
2 begin

3 for a G D{xi) do

4 a := mmb^Dixj){Ci,j{a,b)}

5 Ci{a) := Ci{a)®a
6 for b e D{xj) do

7 Ci�j(a, b) := Cij{a, b) Q a

8 end

9 Procedure PruneVar(0

10 begin

11 change := false

12 for a G D{xi) do

13 if Ci{a) = T then

14 D{xi) := D{xi) \ {a}
15 change := true

16 return change

17 end

18 Procedure AC* (A", D, C)

19 begin

20 Q := { 1 , 2 , . . . , n}
21 while Q ^ 0 do

22 j eQ
23 Q:=Q\ { j }
24 for Ci�j e C do
25 FindSupports (z, j)
26 if PruneVar ⑴ then

27 |_ Q : = Q U { z }

28 end

Chapter 2 Background 23

cost of X2 1. Figure 2.5 is the equivalent WCSP which is NC* and AC*.

T = 4
Q = 1 Av /A

Xi X2

Figure 2.5: An equivalent WCSP which is AC*

•

2.3 Classical CSPs with Set Variables

A set is a collection of distinct objects, and is characterized by what elements

belong to it and what elements do not. Each set is associated with a cardinality

which is the number of elements in the set. For example, the set S = {1, 2,3, 5}

has a cardinality |5| equal to four. In particular, the integer 1 belongs to the

set while the integer 4 does not. In this thesis, we restrict our discussion on

finite integer set variables in which all set domains contains values of finite

sets.

Many problems can be naturally modeled with set variables. Suppose we

are modeling the courses taken by a student in a semester. The student needs

to take two compulsory courses and two elective courses. The six available

courses are represented by integers from 1 to 6. Suppose the compulsory

courses are denoted by the integers 1 and 3 while 2, 4, 5 and 6 are the

Chapter 2 Background 24

numbers denoting the elective courses. We can use a set variable S to rep-

resent the courses taken by the student. The corresponding set domain is

D{S) = {u I {1, 3} C ti C {1，2，3,4,5,6}}. In addition, we also requires that

the cardinality of the set variable is four.

2.3.1 Set Variables and Set Domains

A set variable which can take up to n set elements has domain size 2". If we

model a set variable with the domain containing all the possible set values, the

time and space complexity makes solution searching impractical. In practice, a

set variable S has a set domain represented as an interval, which is bounded by

a required set RS{S) and a possible set P3{S). The required set and possible

set are also known as greatest lower bound and least upper hound of the set

domain respectively. The required set contains elements which must exist in

the set. In contrast, the possible set contains any elements which may exist in

the set. Any element does not in the possible set must not exist in the set. It

is clear that RS{S) C PS{S) and any set u such that RS{S) CuC PS{S) is

in the set domain. We denote a set domain bounded by RS(S) and PS{S) as

In the previous example, the required set is {1 ,3} and the possible set is

{1, 2 ,3 ,4 ,5 ,6} . The domain bounded by these two sets is shown in Figure

2.6. Each arc in the figure represents a subset relation such that the set value

below is a subset of the set value above on two end points of the arc.

2.3.2 Set Constraints

Set constraints are composed of common set relations and set operators. Set

relations include subset (C) and equality (=). Set operators include union (U),

intersection (fl), difference (\).

Chapter 2 Background 25

{1,2诞 5} {1,^,6} { 1 ^ . 6 } {1,3^5,6)

{1,2^ {13A,5} {^4,6) {^5,6]

{1.3}

Figure 2.6: Set domain for the course selection of a student

Chapter 2 Background 26

In addition, there are cardinality constraints to restrict the cardinality of

the sets.

Examp le 2.6 Steiner Triple System

A steiner triple system of order n is to find a set of n{n — l)/6 triples of distinct

integer elements in {1，...，n} such that no two triples have more than one

common element. We can model this problem with set variables. There are two

kinds of variables. The variables i E [1 , . . . , n(n—1)/6], represent the sets in

the problem. The variables A i j ^ i J 6 [l,n(n— l) /6] Az < j , are the auxiliary

variables for modeling. The domains are D{Si) = D{Aij) = [0 , . . . , { 1 , . . . , n } .

In this problem, we need to specify the cardinality constraints 岡 = 3 and

Aij\ < 1 and get the intersection using auxiliary variables SiOSj = Ai j�\/ i , j G

l , n (n - l) / 6] A z < ; . •

2.3.3 Searching with Set Variables

CSPs with set variables can be solved with backtracking tree search. When

branching occurs during the search, instead of assigning a value from the do-

main of a select variable, the search splits the search space into two. Given a

set variable S under consideration at a branching with a selected set element

a e S, the search proceeds with either a e S oi a ^ S. This splits the search

space into two at each branching point. For example, a variable has domain

0, {1, 2,3}J which is depicted in Figure 2.7(a). When we set 3 ^ 5 , the set

element 3 is removed 'from the possible set and the domain becomes [0, { 1 , 2 } .

The modified domain is shown in Figure 2.7(b) in which the broken lines are

connecting to the pruned set values. Figure 2.8 shows a complete search tree

for variable S with domain D{S) = [0, {1,2，3}]. The current domain at every

point of search tree is shown as a node. The search starts with the original do-

main. At each branching point, a set element a is picked from PS{S) \ RS{S)

Chapter 2 Background 27

{1 ,2 ,3} {1 ,2 ,3 }

{1 ,2 } {1 ,3 } {2 ,3} {1 ,2} {1 ,3 } {2 ,3 } IX X I IX X ;
{1 } {2 } {3} {1 } {2} {3 }

0 0

(a) (b)

Figure 2.7: (a) An original domain for a set variable (b) A domain with 3
removed from the possible set

in lexicographical order. Each left branch is traversed with a e S while right

branch is traversed with a 朱 S. Domain is narrowed during the tree traversal.

In each leaf nodes, the domain contains a single element which is assigned to

the variable S.

2.3.4 Set Bounds Consistency

Gervet [Ger97] defines local consistencies for set variables by reasoning the

bounds of domain. We denote doms{C) all the values in the domain of set

variable S that satisfy the constraint C.

Def in i t ion 2.4 A set variable S with set interval domain lRS{S), PS(S)] is

set hounds consistent with respect to a constraint C if and only if RS{S)=

门 c/om乂CO A PS{S) = [jdoms{C).

8

2

•
1

雷

<

i

s
 H
H

 “
 i
^
G
 {
e
【2
}
妄

 §
 {
S

 (
1
}

 H
s
 nn

 聲
 【{
e

<

於
兰

 H

 §

如

/
\
 /
\

\

K
s
么
丝
=

 智
 【{
s

 (
s

 i
 H
I
}
】H

 §

/
/
(
\
\

^
 I

F

忍

r

e

I

Chapter 2 Background 29

Set bounds consistency is enforced by applying projection functions as in

Ger97]. Each set constraint is associated with a set of projection functions

which state how to modify the bounds of the set domains in the scope to

maintain set bounds consistency. Projection functions of some common set

constraints are listed in Table 2.1.

Constraint Project ion Functions

~ ~ p s (s ,) ^ p s { s ,) n p s i s 2)
- � RS(S2) — RS{S2) U RSjSi)

Rsisi) — Rsisi) U RS{Ss) \ PS{S2)
o _q ps{s,)^ps{s,)nps(s3)

u — 63 丑风S3)—丑风S3) u J^S{Si) U RS(S^)
PSiSs) — PSjSs) n PS(Si) u PS(S2)
liS(Si) ^ RS(Si) U RS(S3)

c. nc^ - — \ ((^^(Si) n RS 腳 \ PS(Ss))
… 2 - 丑风S3)—丑风氏）u jis{Si) n

PSjSs) — PSjSs) n PSjSi) n PS(S2)
RS{Si)^ RS{Si)URS{S3)
PS{S,) — PS{S,) \ (P5(5 i) \ (FS(S,) \
RS 脱—RS{S2)

\ = p风— PS{S2) \ RS(Ss)
RSiSs) RS(S3) U RS{Si) \ RS[S2)

— PS[S^) n PS{S,) \ rs{S2)

Table 2.1: Projection functions for some common set constraints

Examp le 2.7 Given a CSP with set variables S\ and S2, with domains D{Si)=

{1 ,2 } , {1 ,2 ,3 ,4 ,5}) and D{S2) = [0, {1,2,3,4}] . By considering the con-

straint Si C S2, both set variables are not set bounds consistent. After

enforcing set bounds consistency, the domains become D(Si) = D{S2)=

[{1 ,2 } , {1 ,2 ,3 ,4 }] . •

Chapter 3

Weighted Constraint

Satisfaction with Set Variables

This chapter defines and introduces set variables in weighted constraint satis-

faction problems. We discuss the issue on how to specify a set constraint by

associating costs at the element level. We also show that the specification of

set variables in weighted CSPs is a generalization of that in classical CSPs.

3.1 Set Variables

A set is a collection of distinct objects. When we describe a set with respect

to a universal set, we are interested to know (1) what elements belong to the

set, (2) what elements do not belong to the set, and (3) how many elements

are in the set. From the first two points, we know the content of the set. The

last point gives the cardinality of the set. A set variable S in WCSPs can only

take a set value u from the domain D{S). In this thesis, we consider integer

sets. Thus, the domain of a set variable contains integer sets.

Each set variable Si is associated with its universal set Ui which contains

all the possible elements in the set values in the domain. In other words, the

universal set of a variable is the union over its initial domain Ui 二

30

Chapter 3 Weighted Constraint Satisfaction with Set Variables 31

The universal set ^ of a WCSP is the union of all the universal sets associated

with each set variable in the problem, U = (Ji W } .

Each set element in the universal set either exists or does not exist in the set

variable. The existence state of a set element a with respect to a set variable

S is a e S which can be evaluated to a truth value from {t, / } . We denote

E{S, a) as a set of truth values which contain the possible existence states of

set element a for set variable S.

The cardinality of a set variable S is denoted as |5|. It is the value corre-

sponding to the number of elements in the set value u when S is assigned with

u.

3.2 Set Domains

The domain of a set variable is bounded by two sets, the possible set and

required set, as in classical CSP. The possible set PS(S) of set variable S

contains all the set elements which may be contained in the variable. The

required set RS{S) of set variable S contains all the set elements which must

exist in the variable. The possible set and required set are also called lowest

upper hound and greatest lower hound respectively. The set domain is formed

by D{S) = {u\RS{S) CuC PS{S)}. The set variables can only take the set

values within the bounds inclusively. Initially, the range of possible cardinality

of each set variable S is set to {|i?5(5)|,..., |P5'(5)|}, which is the maximum

bounds for given RS{S) and PS{S).

3.3 Set Constraints

In classical CSPs with set variables, we are deciding whether a particular set

element should be contained in the set or not. In WCSPs, we associate the

Chapter 3 Weighted Constraint Satisfaction with Set Variables 32

costs for a particular set element to be contained in or excluded from the set

value. When we assign T to the existence (respectively inexistence) of a set

element, we prohibit the set variable to contain (respectively remove) the set

element. When the cost is less than T, we allow the existence (respectively

inexistence) of the set element with corresponding cost.

Set constraints defined here consider the existence state of each set element.

This nature allows us to express the common soft set constraints which include

element membership (a 6 Si, a • Si), equality [Si = Sj), subset [Si C Sj),

union [Si U Sj = Sk), intersection {Si n Sj = Sk), difference {Si\Sj = Sk), and

cardinality (|5i| = n, |5i| < n, > n) where n is a constant. Complementa-

tion of two sets can be implemented using difference.

In this thesis, we focus on unary, binary, ternary, and cardinality con-

straints. These constraints enable us to express the common set constraints

listed above with set variables. Since the performance of constraint prop-

agation will degrade when the arity of a constraint is high, higher arity of

constraints is usually decomposed to some primitive low arity constraints by

introducing auxiliary variables [Cle87, Ger97]. For example, the constraint

n 5*2 g U S4 can be decomposed to A = Ai, S3 U = A2 and

Ai C A2 with the introduction of two auxiliary set variables Ai and A2. How-

ever, our definitions and algorithms do not restrict the arity of the constraints

in theory.

Since the cost of a constraint is determined by the existence states of the

set elements, we decompose the cost of the constraint by the corresponding

element cost functions to reflect this relation. An element cost function maps

the possible existence states in E{S, a) of a set element to an element cost

The cost for the constraint is the sum of all the element costs given from

the set of element cost functions for that constraint. This approach gives

Chapter 3 Weighted Constraint Satisfaction with Set Variables 33

compact representation of constraints. Figure 3.1 shows the cases (a) 2 G

八 3 • 52, (b) Si = 5*2，and (c) C S2 as classical constraints in our

representation. A dotted rectangle represent a set variable. Each oval in the

rectangle is associated with a set element. The two circles in the oval represent

the existence states of the set element and contains the corresponding unary

costs. A circle drawn with broken line indicates an inconsistent existence state

which is removed from the set of possible existence states E of corresponding

set variable and set element. The binary costs between two set variables are

indicated on the lines representing constraints.

3.3.1 Zero-arity Constraint

As in WCSPs, there is a zero-arity constraint C$ in the problem. The cost of

the zero-arity constraint can be interpreted as the global lower bound of the

problem. The problem contains no solutions when = T.

3.3.2 Unary Constraints

A unary constraint Ci assigns costs to assignments to variable Si (Ci : D { S i) —

0，...，A:]). The corresponding unary element cost function, which assigns costs

for the existence � and inexistence (/) for each set element a ^Ui with respect

to set variable Si, is : {《，/} —> [0 , . . . , /c]. The unary cost of set value u

for variable Si is for constraint Ci is defined as Ci{u) = ^aeUi W � / a (� ^ 以).

In the WCSP in Figure 3.2(a), for example, the cost of 2 G is 0 while

that of 2 ^ 5i is 3 :

, � / 0 if a = it; =
3 i f a = / .

\

The cost C i ({ l , 2}) for the unary constraint Ci on {1 ,2 } equals the sum

Chapter 3 Weighted Constraint Satisfaction with Set Variables 34

Q = 0’ T 二 3

「 … i — r - 厂 2 、 …厂

； I t f 2 t f _ … / _ �

(a)
Q = 0，T = 3

「…厂 r - 厂 2 � … 厂 :

！ 而 (^ ； ^ (^ ； ^ ：•

： - - ： 1 X 3 . ： ： ： ： |K3. ： ：

； 1 t f 2 t f _ / _ _ �

(b)
0) = 0’ T = 3

: H f 2 t f 3 _ _ / _ _ �

(c)

Figure 3.1: (a) 2 G 5i A 3 ^ 52 (b) 5i 二 S) (c) 5i C S2

Chapter 3 Weighted Constraint Satisfaction with Set Variables 35

0) 二 0，T = 3
「 … 1 、 - - ? … 2 、 … 厂 3 、 … 厂 ：

:_ 而 ；

_: & ：

' _ l t f 2 t f 3 t f >

Figure 3.2: An example WCSP

of all the unary element costs :

Ci({l，2}) = ⑷ ① ⑴ ① 竹 l) / 3 (/)

= 1 0 0 0 0 = 1

As in integer WCSPs, we assume there is a unary constraint for each set

variable. The domain and unary constraints of a set variable are interchange-

able. When Ci{u) = T, the unary constraint prohibits the variable Si taking

the set value u\ otherwise it allows such assignment with cost Ci{u). As rea-

soning on each domain value for a set variable is impractical, we focus on the

bounds of a domain.

Def in i t ion 3.1 The domain hounds of a set variable Si is [RS{Si)^ PS (Si)

such that Va G ^(i) /a(/)eC0 = T and \/b e ⑷⑴①C ® < 丁.

When ^{i)/a{t) © < T, the unary element cost function allows the exis-

tence of the set element a in the set Si with the corresponding cost. Therefore

the set element a can exist in the set. When (p{i)/a{f) © C© = T, the unary

element cost function forbids the inexistence of the set element a, and the set

element a must exist in the set. According to the unary constraint Ci in Figure

3.2(a), we have PS�Si) = {1，2} and RS{Si) = {2 } since C0 = 0 and T = 3.

Chapter 3 Weighted Constraint Satisfaction with Set Variables 36

3.3.3 Binary Constraints

A binary constraint Ci j assigns costs to assignments to variables Si and Sj

{Cij : D[Si) X D{Sj) — [0 , . . . , k]). The corresponding binary element cost

function, which assigns costs for the existence states of a set element a G

Ui U Uj for set variables Si and Sj, is : 0 , / } x {亡’/} [0’...’A；:.

Since Ui may not be equal to Uj, \fa,p G {t, / } , the binary element cost

function (p{i,j)/a{ij c^) 二丁，Va 咨 Ui and = T,Va ^ Uj. The binary

constraint of the set variables Si and Sj can be defined as : Cij{u, v)=

T^a卿Kj 外’jVcM e 6 v).

Figure 3.2(a) shows the binary element costs among the set elements of Si

and S2- The costs are indicated on the lines linking the existence states of the

elements in the two sets. No lines are drawn if the cost is 0. According to the

figure, the element cost for 1 in Si and S2 is :

1 ii a = t /\ (3 = t\

= 3 ii a = f 0 = t.,

0 otherwise
\

The binary cost for = {1 ,2 ,3 } and S2 = {1 ,3 } is the sum of all the

binary element costs :

Ci2({1，2，3}’{1，3})

=< (̂1’2)/1(亡,力）® 巧l’2)/2(亡，/) ® V̂ (l’2)/3(i，亡）

= 1 © 1 © 0 = 2

3.3.4 Ternary Constraints

A ternary constraint Ciĵ k assigns costs to assignments to variables Si, Sj

and Sk [Ci丄k : D{Si) x D{Sj) x D{Sk) — [0 , . . . , k]). The corresponding

ternary element cost function, which assigns costs to the existence states of a

Chapter 3 Weighted Constraint Satisfaction with Set Variables 37

set element a eUi UUj UUk for variables Si, Sj and Sk, is (p{i,j,k)/a : {力，/} x

Similar to the case for the binary constraint, there may be an element

a e Ui U Uj U Uk where a • Ui. In this case, all the ternary element cost

functions taking a E Si return 丁 as the cost. This is also the same for variables

Sj and Sk, The ternary constraint of the set variables Si, Sj and Sk can be

defined as : Cu^k(u,v,

3.3.5 Cardinality Constraints

A cardinality constraint C^ assigns costs to assignments to a set variable Si

according to the cardinality of Si, It is decomposed as C\i\ = (Cos亡丨o Card)

where Card : D{Si) — N U {0} and Costm : N U {0} — [0’...，A;]. This

constraint first maps the assignment of the variable Si to its cardinality \Si

by using Card. It then assigns costs to |5i| by Cost\i\.

3.4 Characteristics

3.4.1 Space Complexity

The space complexity of constraint representation is greatly reduced with our

proposal. Table 3.1 tabulates the storage requirement for unary, binary, and

ternary set constraints in terms of number of costs specified when set variables

and integer variables are used. When we use integer variables to simulate set

variables, each set value in the set domain is mapped to an integer in the

integer domain. Thus, the domain size and space complexity of constraints for

integer variables grow exponentially with the number of set elements in the

sets. Set constraint specification is compact in our proposal in which the space

complexity is linear to the number of set elements in the sets.

Chapter 3 Weighted Constraint Satisfaction with Set Variables 38

Space Complexity

Ar i ty of Constraint Set Variables Integer Variables

Unary “ 2e
Binary 4e

Ternary “ 8e

Table 3.1: Space complexity of set constraints of different arities with the use
of set variables and integer variables (e is the maximum number of set elements
in the sets)

3.4.2 Generalization

Property 3.1 The classical versions of element membership, equality, subset,

union, intersection, difference, and cardinality constraints can be modeled in

our WCSP framework with element costs 0 and T.

Proof Cost functions, with costs 0 and T only, for the classical versions

of element membership, equality, subset, union, intersection, difference, and

cardinality constraints are listed in Table 3.2.

•

Definit ion 3.2 Given a classical CSP Vc = (^b, Vc�Cc) and a WCSP Vw =

(k, Xw, Vw^ Cw), Vc and Vw are equivalent to each other if and only if Xc 三

Xw and for each complete assignment in the problem t, V{t) = 0 in Pw if and

only if i is a solution of Pc.

Property 3.2 When a WCSP with set variables involves only 0 and T in the

element costs, the WCSP can be transformed into an equivalent problem with

classical set constraints only.

Proof Since set constraints in a WCSP are defined with corresponding ele-

ment cost functions, this property can be shown by transforming every element

Chapter 3 Weighted Constraint Satisfaction with Set Variables 39

Set Constraint Equivalent Cost Function

„ , , f T if Q； = / ;

外) / " � = i � o t h e r w i s e .

a 车 S, 外."“a) = I I ；[ti?e�wL.

Si = Sj 如 e u " , 鲁 K / ?) = { 0丁

S C Va e _ ZY, ’ � “ … 二 { 0丁 'il^J.^'^J =力

{ T if (Q = i V /? = 0 八 7 二 / ;
T ifa = / A ^ = / A 7 = i;
0 otherwise.

(T if (a = /V/? = /) A7 = ;̂
VaeiYiUi<j_UZ4’< (̂ij’fc)/a(c ,̂A\7)= { 丁 if a =艺八= i A 7 = / ;

[0 otherwise.

T if/? 二 =亡；

Si\Sj = "iaeUiU Ui U Ik�'Piij,k)/a{a, (3n)={ 丁 if a = / A : = / A ^ = t-
0 otherwise.

丨 一 = {。”=：：;

丨 胁 M q T 二

丨別 >-几 Mo”Jfir’
Table 3.2: Soft versions of common classical set constraints

Chapter 3 Weighted Constraint Satisfaction with Set Variables 40

cost function to an equivalent classical membership constraint. For each unary

element cost function, = 丁 becomes a • Si and � / a (/) 二 丁 becomes

a G Si. The transformations for binary element cost functions are listed below.

Cost Function Classical Constraint

外，：n/a{t,t) = T a^jSiH Sj)

nw/ajij) = iSi\Sj)

外 j) / a (/ ’ /) = 丁 I

The transformations for ternary element cost functions are similar. For

the cardinality constraints, we transform each n such that Cost\ii{n) 二丁 to

Si\ ^ n as a, classical constraint. •

Theorem 3.1 WCSPs with set variables subsumes classical CSPs with set

variables.

Proof This follows directly from Properties 3.1 and 3.2. •

Chapter 4

Consistency Notions and

Algorithms for Set Variables

This chapter defines some local consistency notions applied to WCSPs with

set variables. Examples are given to illustrate the concepts. We also give

algorithms to enforce these local consistencies for set variables and constraints.

We give the complexity and prove the correctness of the algorithms.

4.1 Consistency Notions

The costs of a set constraint are specified at the element level via element cost

functions. We can define local consistencies for the element cost functions as

follows.

4.1.1 Element Node Consistency

Definit ion 4.1 An existence state a of set element a is element node consis-

tent (ENC) with respect to unary constraint Ci if C免 0 (p(i)/a(o：) < T. A set

element a is ENC if

41

Chapter 4 Consistency Notions and Algorithms for Set Variables 42

C70 = 0’ T = 3

； I t f 2 t f 3 t / .

(a)
C0 = 2, T = 3

「…1、…厂2、…厂3、…厂：

； 1 ^ f 2 t f 3 t / .

(b)

Figure 4.1: (a) A WCSP which is not ENC (b) An equivalent WCSP which is
ENC

1. all its possible existence states in E{Si, a) are ENC with respect to unary

constraint Q , and

2. 3a e E(Si,a) such that � / “ � = 0 .

The existence state a is a support for the set element a, A set variable Si

is ENC with respect to unary constraint Ci if every set element is ENC. A

WCSP is ENC if every set variable Si is ENC.

Examp le 4.1 Figure 4.1(a) shows a WCSP with set variables, which is not

ENC since the set elements 1 in Si and 2 in S2 are not ENC. The minimum

cost for the existence states of 1 in Si is 1. For 2 in S2, where 五(6̂ 2, 2) = { t } ,

the only possible existence state, t, costs 1，which is also not 0. An equivalent

Chapter 4 Consistency Notions and Algorithms for Set Variables 43

WCSP is obtained if 1 is subtracted from the costs for set element 1 in Si and,

at the same time, 1 is also subtracted from the cost for set element 2 in S2.

This contributes a cost of 2 to the global lower bound, Qd. The result is shown

in Figure 4.1(b). •

4.1.2 Element Arc Consistency

Def in i t ion 4.2 An existence state a of set element a is element arc consis-

tent (EAC) with respect to binary constraint Ci,j if 3p G E{Sj, a) such that

(/9(ij)/a(Q；, P) = 0. An existence state p is a support of the existence state a. A

set element is EA C if all its possible existence states are EAC with respect to

the binary constraint Cjj . A set variable is EAC if every set element is EAC

with respect to binary constraint Ci^j. A WCSP is EAC if every set variable

is EAC and ENG.

Examp le 4.2 Figure 4.2(a) shows a WCSP with set variables, which is not

EAC since the existence state for 1 G 5i has no support in S2. The existence

state for 2 6 5*2 is not EAC because the binary cost associated with the only

existence state t is 1. Figure 4.2(b) shows an equivalent WCSP which is EAC.

The minimum binary cost for 1 G is subtracted from the binary constraint

and added to the unary cost of 1 G 5i. Similarly, the binary cost v?(i’2)/2(亡，亡）

is sent to the unary cost of 2 G 52- •

4.1.3 Element Hyper-arc Consistency

Def in i t ion 4.3 An existence state a of set element a is element hyper-arc con-

sistent (EHAC) with respect to ternary constraint Gi,j，k if 3/? G E{Sj, a), 7 G

E[Sk�a) such that <f(i,j’k)/a(o：, A 7) = 0. Existence states (3 and 7 are supports

of the existence state a. The set element is EH AC if all its possible existence

Chapter 4 Consistency Notions and Algorithms for Set Variables 44

C0 = 0, T = 3 • _ ,

• I t f 2 t _ / _ _3_ t _ _ f _

(a)

C® = 0, T = 3 … ，

；& (g ； ^ ：

. H f 2 t / _ _ _3_ t _ _ /_ _ �

(b)

Figure 4.2: (a) A WCSP which is not EAC (b) An equivalent WCSP which is
EAC

Chapter 4 Consistency Notions and Algorithms for Set Variables 45

states are EH AC with respect to ternary constraint Ci’j，k- A set variable is

EH AC if every set element is EH AC with respect to ternary constraint Ci,j,k.

A WCSP is EH AC if every set variable is EHAC and ENC.

4.1.4 Weighted Cardinality Consistency

For the cardinality constraint, we adopt a notion of weighted cardinality con-

sistency which maintains the maximum cardinality interval within

{\RS{Si)l...,\PS{Si)\}

for the corresponding set variable Si while removing the inconsistent cardinal-

ity from the bounds.

Def in i t ion 4.4 The cardinality upper hound and lower hound

of a set variable Si with respect to a cardinality constraint C\i\ are defined as

ii6(|5i|) = max A

lb{\Si\) = minA

where A = {|w| | u G D{Si) A C\i\{u) < T } .

Def in i t ion 4.5 A set variable Si is weighted cardinality consistent (WCC)

with respect to a cardinality constraint C\i\ if

1. the cardinality upper bound < |P5(5i)| and the cardinality lower

bound lb{\Si\) > \RS{Si)l

2. Cost\i\{lb{\Si\)) © Q) < T, and

3. Costiii{ub{\Si\))®Cfi, < T.

Chapter 4 Consistency Notions and Algorithms for Set Variables 46

4.1.5 Weighted Set Bounds Consistency

As in classical set CSPs, we do not reason about each domain value in the

set domain due to its high complexity. Instead, we enforce the consistency

by adjusting the bounds of a set domain. Since set constraints in WCSPs are

defined in terms of sum of element cost functions, we reason on the bounds of

a set domain by considering the cost for the existence of each set element.

Given a set variable S and a constraint C, we denote by wdomsiC) a set

containing all set values u such that

1. RS{S) QuQ PS�S�, and

2. such that { 5 u} C i and C{t) 0 C® < T.

Defini t ion 4.6 A set variable S with domain is weighted

set hounds consistent (WSBC) with respect to a constraint C if and only if

RS{S) = {^wdoms{C) A PS{S) = (Jwdoms(C).

Theorem 4.1 A set variable S is WSBC with respect to a unary constraint

Ci (or a binary constraint Cij or a ternary constraint Ci’j,k) if S is ENC with

respect to Ci (or EAC with respect to Q j or EHAC with respect to Cij^k)-

Proof By the definition of RS{S) and PS{S) for set variable 5, it is trivial

to show that any set element in RS(S) must exist and any set element not in

PS{S) must not exist. The following proves that no extra elements can be put

in RS{S) or taken out from P5 (5) when ENC (or EAC or EHAC) is enforced.

For unary constraint, suppose 3a ^ RS{Si) such that Vu G D[Si\ a ^ u

C i u) � Co = T. When Si is ENC, a 朱 RS{Si) implies C^ 0 � / a (/) < 丁. We

can always construct a set value v for Si such that Ci(v) 二 0. Now, we set

a ^ Si and form new a set value w with cost </?“)/«(/)’ then Ci(w) ® Q < T

leads to contradiction. For binary (or ternary) constraint, when Si is EAC (or

Chapter 4 Consistency Notions and Algorithms for Set Variables 47

EHAC) we can find a support for the set value w' for Si where a ^ w' with

cost 0 with respect to the binary (ternary) constraint. Therefore, a 朱 RS{Si).

On the other hand, suppose 3a G PS {Si) such that Vu 6 D{Si), a e u ^

C(u)®C(D = T. Since a e PS (Si), (力)< T. We can always construct

a set value v for Si such that Ci{v) = 0. Now we set a & Si and form a set value

w with cost (p(i)/ait), then Ci{w) © C0 < T leads to contradiction. Similar to

the above case, we can find a support for w' for Si where a e w' with cost 0

with respect to the binary (ternary) constraint. Therefore, a G PS{Si). •

Theorem 4.2 When a WCSP with set variables involves costs 0 and T only,

WSBC = SBC.

Proof By the definition of RS{S) and PS{S) for set variable 5, since Va G

RS(S), C0 © ^{i)/a{f) — T, any set value must contain element a. In addition,

since Va • PS{S), C ^ o � � = T , any set value must not contain a. Accord-

ing to Theorem 4.1, WSBC ensures that each set element a G PS{S)\RS{S)

can be extended to form a set value with cost C0 © < 丁. Since there

are costs 0 and T only, C© © � = 0 which implies that the set element

a can be contained in the set value. •

4.2 Consistency Enforcing Algorithms

The element consistencies can be enforced in a similar way as in enforcing

local consistencies in integer WCSPs. The enforcement procedures involve

sending costs from ternary and binary constraints to unary constraints and

from unary constraints to global lower bound C见 to obtain a support. The

costs subtracted from the constraints are added to the appropriate location to

preserve equivalence.

Chapter 4 Consistency Notions and Algorithms for Set Variables 48

4.2.1 Enforcing Element Node Consistency

Algorithm 4.1 shows the procedure for enforcing ENG. The function ENC() in-

volves two major steps. The first step forces unary support for each set element

a in the variable universe Ui for each set variable Si in FindUnarySupports 0 .

A minimum cost of ^{i)/a among the possible existence is determined. This

cost is added to the global lower bound and subtracted from the unary ele-

ment cost function In the second step, the domain of each set variable is

narrowed in PruneVar(). A set element a for set variable Si is removed from

PS{Si) if ^ii)/a{t) © Co = T or included in RS{Si) if 糊aiH � Q) = T.

For each set element of set variable, FindUnarySupports () and PruneVar ()

both have complexity 0 [1) as each set element has ma:x:imum two existence

states. Therefore, given a WCSP with n set variables and each with maximum

e set elements, the procedure ENC() has complexity 0{ne + ne) — 0{ne).

Theorem 4.3 Given a WCSP P, Algorithm 4.1 transforms P to P' such that

1. P' is equivalent to P, and

2. P' is ENG.

Proo f The procedure given in Algorithm 4.1 only involves basic operations

on the costs. In FindUnarySupportsO, the minimum cost of (p{i)/cL is added

to C0. At the same time, the same amount of cost is subtracted from !a

for all possible existence states. An equivalent on cost evaluation is preserved.

The cost operations in FindUnarySupportsO ensure that there is a unary

support for each set element of a set variable. Inconsistent existence states are

pruned in PruneVar(). Thus, the transformed problem is ENG. •

Chapter 4 Consistency Notions and Algorithms for Set Variables 49

Algor i thm 4.1: Enforcing element node consistency
1 Procedure FindUnarySupports (^i, a)

2 begin

3 c ：=

4 C% ：= C0 © c
5 for a e E(Si, a) do
6 |_ (p{i)/a{a) := (p(i)/a(a) 0 c

7 end

8 Procedure PruneVar a)

9 begin

10 change := false

11 if ^{i)/a{t) © C0 = T then

12 PS{Si) := PSi^Si) \ {a}
13 change :=true

14 if (P(i)/a{f) © C0 = T then

15 RS{Si) := RS{Si) U {a}

16 change := true

17 return change

18 end

19 Procedure ENC(;f,P,C)

20 begin

21 for Si e ^ do
22 for a €Ui do
23 FindUnarySupports (Si, a)

24 for Si E： ^ do
25 for a GUi do
26 PruneVar (^i, a)

27 end

Chapter 4 Consistency Notions and Algorithms for Set Variables 50

Algo r i t hm 4.2: Enforcing element arc consistency
1 Procedure FindBinarySupports(5i, Sj, a)
2 begin

3 for P e E{Sj,a) do

4 c := minĉ e£(Si’a)(約i’:0/a(Q；，/̂))

6 for a e E{Si, a) do

7 L ”�jVoiOL, P) '= ©C

8 FindUnarySupports(5j, a)
9 end

10 Procedure EAC(A",

11 begin

12 Q :=0
13 for Si e Af do

14 for a e Ui do
15 [L (3 : = Q U { (5 i , a) }

16 while Q ^ 0 do

17 (Si, a) e Q
18 Q:=Q\{(Si,a)}
19 for Cij G C do

20 FindBinarySupports (Si, Sj, a)

21 for Sm ^ ^ do
22 for a e Km do
23 if PruneVarC^m, a) then
24 [_ Q : = Q U { (5 ^ , a) }

25 e n d

Chapter 4 Consistency Notions and Algorithms for Set Variables 51

4.2.2 Enforcing Element Arc Consistency

The procedure for enforcing EAC is depicted in Algorithm 4.2. The func-

tion EAC() computes and stores in Q the set of all possible pairs of set vari-

able and set element. Each time a pair {Si, a) is picked out from Q. The

algorithm finds binary supports for a G Sj with constraints Qj G C in

FindBinarySupports 0 . A binary support for each existence state (3 of set

element a of set variable Sj is forced by sending minimum cost of

to the unary cost 灼、The cost is also subtracted from the binary costs

P)- Since the unary cost ^{j)/a{P) and a e Sj may not be ENC,

FindUnarySupportsO is called to force ENC. In the end of each iteration, all

set elements in each set variable are checked to prune any inconsistent existence

state in PruneVarO.

The procedure FindBinarySupports() has complexity (9(1) as each set

element has a maximum of two existence states. Given a WCSP with n set

variables and each with maximum e set elements. In EAC () , each pair of set

variable and set element can be re-inserted into Q once. The complexity of

EACO is thus 0{ne + {ne){n + ne)) =

Theorem 4.4 Given a WCSP P, Algorithm 4.2 transforms P to P' such that

1. P' is equivalent to P, and

2. P' is EAC.

Proof The procedure given in Algorithm 4.2 only involves basic operations

on the costs. In FindBinarySupports()，for each existence state P G E{Sj, a),

the minimum cost of (p{iJ)/a{a,P) for a e E{Si, a) is added to ip{j)/a{P).

At the same time, the same amount of cost is subtracted from ip{i,j)/a{a, P)

for all a G E{Si, a). An equivalent on cost evaluation is preserved.

Chapter 4 Consistency Notions and Algorithms for Set Variables 52

The cost operations in FindBinarySupports () ensure that there is a binary

support for each existence state of a set element for a set variable. Inconsistent

existence states are pruned in PruneVar () . Thus, the transformed problem is

EAC. •

4.2.3 Enforcing Element Hyper-arc Consistency

The procedure for enforcing EHAC is given in Algorithm 4.3. The procedure

is similar to the algorithm for enforcing EAC. All possible pairs of set variable

and set element are inserted to Q. Each time a pair a) is picked out from

Q and ternary supports are forced for each existence state of set element a in

set variable Sj and Sk- Supports are found by sending cost from the ternary

element cost function to unary cost function in FindTernarySupports () . As

the cost of unary cost function is changed, FindUnarySupportsO is called

to maintain ENC. Lastly, each set element in all set variables is checked in

PruneVar 0 to remove any inconsistent set element.

The procedure FindTernarySupports() has complexity (9(1) as each set

element has a maximum of two existence states and the procedure only handles

ternary supports. Given a WCSP of n set variables, each of which has a

maximum of e set elements. EHAC() has complexity 0{ne + (ne)(n^ + ne)) 二

0(n2e(n + e)).

Theorem 4.5 Given a WCSP P, Algorithm 4.3 transforms P to P' such that

1. P' is equivalent to P, and

2. P' is EHAC.

P r o o f The procedure given in Algorithm 4.3 only involves basic operations

on the costs. In FindTernarySupports () , for each existence state (3 € E(Sj, a),

Chapter 4 Consistency Notions and Algorithms for Set Variables 53

Algor i thm 4.3: Enforcing element hyper-arc consistency

1 Procedure FindTernarySupports Sj, a)
2 begin

3 for P e E{Sj,a) do

6 for a 6 E{Si, a),7 € E{Sk, a) do

7 L P�7) := Pn)Qc

8 FindUnarySupport s a)

9 for 7 G E{Sk, a) do

10 c '= \Timo,eE{Si,a)ME{Sj,a){9{i,3,k)/a[Oi^ l))
11 m / a C r) : = m / a (7) © c
12 for Q； € E{Su a),(3e E{Sj, a) do

13 L ” (5 , 7) := 丄fc)/a(a，7) e C

14 F i n d U n a r y S u p p o r t s a)
15 end

16 Procedure EHAC(Ar,D,C)

17 begin

18 Q : = 0
19 for G AT do

20 for a EUi do
21 |_ Q : = Q u { (5 i , a) }

22 while Q 一边 do
23 {Si, a) E Q

24 Q : = Q \ { (5 , , a) }
25 for Cij^k e C do

26 FindTernarySupports Sj, Sk, a)

27 for Sm G X do

28 for a ^Uk do
29 if PruneVar (^m, a) then

30 |_ Q'.= QD{{Sm.a)}

31 end

Chapter 4 Consistency Notions and Algorithms for Set Variables 54

the minimum cost of (̂ (i，j.’A;)/a(Q；，/?，7) for a G G E{Sk, a) is added

to (p{j)/a{l3). At the same time, the same amount of cost is subtracted from

J，幻/<̂ (<̂ ，/̂ ，7) for a G e E{Sk, a). Similar process is applied

for each existence state 7 e E、Sk,a). An equivalent on cost evaluation is

preserved.

The cost operations in FindTernarySupports () ensure that there is a

ternary support for each existence state of a set element for a set variable. In-

consistent existence states are pruned in PruneVar(). Thus, the transformed

problem is EHAC. •

4.2.4 Enforcing Weighted Cardinality Consistency

Algorithm 4.4 gives the procedure for enforcing weighted cardinality consis-

tency. In procedure WCC(), ReviseCardinality() is called for each set vari-

able. First, the cardinality lower and upper bounds are reset so that they are

within the interval {|i?S"(S"i)|’ … ， T h e n , the cardinality bounds are

reduced if the values of cardinality on the bounds are inconsistent. Lastly,

when the cardinality lower and upper bounds are equal to each other, the car-

dinality of the set variable is fixed and the cost of cardinalit), is send to the

global lower bound, Cq. Suppose = = k. If k = then

Si is fixed to RS{Si)\ otherwise if k = \PS(Si)l Si is fixed to PS{Si).

The complexity of ReviseCardinal ityO is 0{e) for each set variable with

a maximum of e set elements. When a WCSP has n set variables, WCC() has

complexity 0{ne).

Theorem 4.6 Given a WCSP P, Algorithm 4.4 transforms P to P' such that

1. P' is equivalent to P, and

2. P' is WCC.

Chapter 4 Consistency Notions and Algorithms for Set Variables 55

Algor i thm 4.4: Enforcing weighted cardinality consistency
1 Procedure ReviseCardinality

2 begin

3 /6(|5'I|) ：= max{lb{\Si\), \RS{Si)\)
4 := mm{ub(\Si\),\PSiSi)\)
5 while 0 Cg) = T do

6 |_ lb(\Si\) ：= lb{\Si\) + l
7 while © C© = T do

8 |_ :=ub(\Si\) - 1

9 if = w^d^il) then

10 Co := Co e Cos力

12 if lb{\Si\) = then

13 |_ PSiSi) := RS{Si)

14 if = \PS(Si)\ then

15 |_ RSiSi) := P 啦 ）

16 end

17 Procedure WCC(A', I), C)

18 begin

19 for Si eX do
20 ReviseCardinality (Si)

21 end

Chapter 4 Consistency Notions and Algorithms for Set Variables 56

P r o o f The procedure given in Algorithm 4.4 removes any inconsistency val-

ues of cardinality in FindTernarySupports(). Both and are

first revised so that they are within {|i?5(5i)|,..., |F5(5i)|}. The pruning

of values of cardinality is done by sequential checking starting from the two

bounds. Only inconsistency values of cardinality are removed. Cost is only

transferred from the cardinality constraint to the global lower bound when the

cardinality is fixed. Thus the transformed problem P' is equivalent to P and

is WCC. •

4.2.5 Enforcing Weighted Set Bounds Consistency

A lgo r i t hm 4.5: Enforcing weighted set bounds consistency (Part 1)
1 Procedure ReviseCardinalityForWSBC(5'i, Q)
2 begin

3 lb{\Si\) max{lb{\Si\), \RS(Si)\)
4 ub{\Si\) := mmiub{\Si\), |P5(5i)|)
5 whi le CW|i|(/6(岡)）© Cg = T do

6 |_ lb{\Si\) ：= + 1

7 whi le 岡)）0 Ce = T do

8 |_ := ub{\Si\) - 1

9 if then

10 Cd, ：= Co ©

11 = 0
12 if lb{\Si\) = \RS{Si)\ then

13 for a € PS{Si) \ RS{Si) do

14 |_ Q : = Q u { (5 i , a) }

15 |_ PS{Si) := RS{Si)

16 if = \PS{S.i)\ then

17 for a e PS{Si) \ RS(Si) do

18 |_ Q:=(3u{(5i,a)}
19 RS{Si) := PS(Si)

20 end

Chapter 4 Consistency Notions and Algorithms for Set Variables 57

Algor i thm 4.6: Enforcing weighted set bounds consistency (Part 2)
1 Procedure WSBC(;f, P , C)
2 begin

3 g : = 0
4 for Si e ^ do
5 for a eUi do
6 [_ (3 : = Q U { (5 i , a) }

7 while Q 0 do

8 {Si, a) e Q

9 Q:=Q\{{Sua)}
10 FindUnarySupports (St, a)
11 for Ci�j G C do

12 FindBinarySupports ⑶，Sj, a)

13 for Cij^k eC do
14 FindTe;rnarySiipports(«Si, Sj, Sk, a)

15 for Sm ^ ^ do

16 for a e Um do
17 if PruneVar (5m, a) then

18 [_ Q :=QU{{Sm,a)}
19 ReviseCardinalityForWSBCC^m, Q)

20 end

Chapter 4 Consistency Notions and Algorithms for Set Variables 58

The procedure for enforcing weighted set bounds consistency is depicted

in Algorithms 4.5 and 4.6. The procedure WSBCO incorporates algorithms for

enforcing ENC, EAC and EHAC by calling functions FindUnarySupports () ,

FindBinarySupports () and FindTernarySupports () for each pair of set vari-

able and set element in the problem. In each iteration, the global lower bound

may be changed after these functions are called. The algorithm scans for all

pairs of set variable and set element to prune any inconsistent existence states.

While some set domains have been changed which may affect the bounds of

the domain. ReviseCardinalityForWSBC() is called to ensure the set vari-

able is weighted cardinality consistent. It is a slight modification of the original

ReviseCardinal i tyO. It inserts pairs of set variable and set element to Q

whenever there are changed in their domains.

The complexity of ReviseCardinalityForWSBC () is (9(e) for a set variable

Si with a maximum of e set elements throughout the running of the algorithm.

Thus, the whole algorithm, WSBCO, has complexity 0{ne + ne{l + n + +

ne + ne)) = 0(n^e(n + e)).

Theorem 4.7 Given a WCSP P, Algorithms 4.5 and 4.6 transforms P to P'

such that

1. P' is equivalent to P, and

2. P' is WSBC. ，

Proof The procedure given in Algorithms 4.5 and 4.6 incorporates the pro-

cedures for enforcing ENC, EAC, EHAC and WCC. By Theorem 4.1, WSBC

is enforced when a problem is ENC, EAC, EHAC and WCC. •

Chapter 5

Experiments

We modified ToolBar [BHdG+04]，a generic integer WCSP solver, to handle

also set variables and conducted experiments to verify the feasibility of our

proposal. The comparison is made among our prototype implementation, the

original ToolBar and ILOG Solver 6.0 [IL003] (for classical cases only). While

our implementation and ILOG Solver use set variables in modeling, the prob-

lems are transformed to use 0-1 variables for the original ToolBar to solve. In

the rest of this chapter, we refer to our implementation as ToolBar-Set, the

original ToolBar as ToolBar-01, and ILOG Solver as ILOG.

We experimented on the Steiner Triple System and the Social Golfer Prob-

lem, which are well known set CSP benchmarks. We solved for all solutions to

make our results independent of search heuristics. Besides solving the prob-

lems as classical CSPs, we generated two soften versions for each instance to

compared the performance of solving WCSPs with set variables.

The experiments were conducted on a Sun Blade 2500 (2 x 1.6GHz US-IIIi)

machine with 2GB memory. We report the runtime in seconds and number of

fails in solving the problems. The time limit for solving each instance is 600

seconds. In each table, we use '-，to indicate non-termination within the time

limit. The shortest runtime are highlighted in bold for each problem instance.

59

Chapter 5 Experiments 60

5.1 Modeling Set Variables Using 0-1 Vari-

ables

ToolBar [BHdG+04] is a generic and efficient WCSP solver for solving integer

WCSPs. As ToolBar cannot handle set variables directly, we have to model

the problem using 0-1 variables. A 0-1 variable is an integer variable with

domain {0,1}.

The modeling approach is straight-forward. Whenever we have a set vari-

able Si with e possible set elements in the original set model, we use e 0-1

variables Xi^,..., Xî to represent Si in a 0-1 model by the following relation :

Va e Si if and only if Xî = 1

For each set variable Si with a unary set constraint we have, for each

set element a e Ui, a, unary element cost function (p(i)/a in set model and a

unary constraint C ! � i n 0-1 model such that :

=Ci“l)

m/a(f) = Odo)

For each set variable Si with a binary set constraint C^j, we have, for each

set element a G 从 a binary element cost function in set model and a

binary constraint C i ^ in 0-1 model such that, for a G / } :

where (3 6 {0 ,1} and a = it if and only \i (5 =1.

The transformation is similar for ternary constraints. We transform a car-

dinality constraint C\i\ for Si where \Ui\ = e in the set model to an e-ary

Chapter 5 Experiments 61

constraint such that

where a e u ii and only if = 1.

5.2 Softening the Problems

Steiner Triple System and the Social Golfer Problem are classical problems

containing only classical constraints. In order to generate soft versions of the

problem, we can impose more restrictions or relax the existing constraints. A

constraint becomes more restricted when we add preferences for the values in

the variable domains. A problem becomes more relaxed when we reduce the

costs in the constraints.

In the following experiments, we have two versions of softened problems :

Restricted and Relaxed. A Restricted version of a problem is generated by

randomly adding costs from 0 to 9 to the unary constraints. The original

problem is transformed such that we have preferences to the values. The

solution space is reduced since the constraints are more restrictive. On the

other hand, a Relaxed version of a problem is generated by randomly replacing

costs from 1 to T whenever the cost is 丁 in the original constraints. This

increases the search space as costs for violating a constraint is reduced from

T to a cost in {1 ’ . . .，T}. To measure the runtime for these two versions,

we generated 10 instances for each problem instance and report the average

runtime and average number of fails.

Chapter 5 Experiments 62

5.3 Steiner Triple System

The Steiner Triple System (prob044 in CSPLib [GW99]) of order n is to find

a set of n{n — l) /6 triples of distinct integer elements in {1’...，n} such that

no two triples have more than one common element. A Steiner tripe system of

order n exists when n modulo 6 equals to 1 or 3 [LR80]. An example solution

for n = 7 is :

{{1’ 2’ 3}, {1’ 4，5},{1,6, 7}，{2’ 4’ 6}, {2,5，7}，{3，4’ 7}, {3，5,6}}

We can model the problem as

• Variables :

- S e t s of triples in the problem :

Si,i G [1,... ,n{n - l)/6:

-Auxiliary variables :

j e [1，…，n{n — l)/6] M < j

• Domains :

• Constraints :

€ [l,...,n(n- l)/6] Az < j

—Each auxiliary variable holds the intersection of each pair of triples :

Si n Sj = Aij

—Each set contains exactly 3 elements :

= 3

- A n y two triples have at most one common element :

\Aij\ < 1

Chapter 5 Experiments 63

Classical

"n " I L O G ToolBar-Set ToolBar-01

Fails Time F ^ Time Fails
~6~~OlO 6195 0.05 6195 1.64 7858

7 31.52 1405878 16.84 1405878 - -

Table 5.1: Runtime and number of fails for solving classical Steiner Triple
System

Restricted Relaxed

n ToolBar-Set ToolBar-01 ToolBar-Set ToolBar-01

^ ^ T i m e Fails: Time Fails Time Fails =Time Fails:
T " 0.05 6195— 1.68 7858 0.21 35910 “ 2.84 13744—
T|~5.40 524729 263.51 490587 || 46.17 6619628 - -_

Table 5.2: Runtime and number of fails for solving soft Steiner Triple System

We focus on the problems up to order 7 due to the long solving time for the

problem of order 9. The runtime and number of fails of solving the problem

for all solutions are listed in Tables 5.1 and 5.2. We can observe that the

runtime of our implementation is about two times faster than ILOG Solver.

Our implementation is faster than that of the original ToolBar implementation

in order of two magnitudes.

5.4 Social Golfer Problem

The Social Golfer Problem (probOlO in CSPLib [GW99]) is to schedule g groups

of s golfers over w weeks so that no two golfers play in the same group twice.

The problem can be characterized by g-s-w. We denote each player with an

integer and use brackets to hold the players in each group. A solution for the

instance 3-2-3，which is 3 groups of 2 golfers for 3 weeks, of the problem is as

Chapter 5 Experiments 64

follows :

Week 1 : (1 2) (3 4) (5 6)

Week 2 : (1 3) (2 5) (4 6) ‘

Week 3 : (1 6) (2 3) (4 5)

We can model the problem as

• Variables :

- T h e i group of player in week j :

Gij. i G {l,...，^^}’j G {l’...，u;}

—Auxiliary variables :

Aij’id,i,k e {l,...,g}J,l e {l，...’i4’f — A;

• Domains :

• Constraints :

- E a c h group has size exactly s :

Cy = s

—Groups in the same week should contain distinct player ：

GijnGik =边，j — k

- E a c h auxiliary variable holds the intersection of two groups :

Gij n Gki = Aij^kb« k

- A n y two groups can share one player at most :

We reduce the search space of the problems by pre-assigning the players

for the first week. Tables 5.3 and 5.4 show the runtime and number of fails

Chapter 5 Experiments 65

Classical

g-s-w ILOG ToolBar-Set ToolBar-01

Time Fails Time Fails Time Fails
.3-2-4 ~~1.26 18449 0.60 1844^ 52.94 18450
3-2-5 ~ ~ 8 . 6 6 7 0 2 8 9 4 . 1 2 7 0 ： ^ - -

“3-3-3 ~ 0 . 2 8 6817 0.15 11.27 11166
3-3-4 ~~2.22 32737 1.29 32737" 231.83 63006
4-2-3 58.49 4 8 3 4 6 � 2 4 . 8 4 483461 - -

“4-3-2 "“~r.46 36145 0.69 36145" 43.12 96762
4-4-2 ~l3.1Q 285865" 6.28 285865 545.97 1408596

“5-2-2 1.99 10481 0.82 10481 59.93 13474
6-2-2 142.51 563669 55.60 563669 - - "

Table 5.3: Runtime and number of fails for the classical Social Golfer Problem

Restricted || Relaxed

g-s-w ToolBar-Set | ToolBar-01 ToolBar-Set ToolBar-01 一

Time FaUT—Time Fails Time Fails Time Fails
3 - 2 - 4 _ 0.13 8063 9 .87 6761 —0.98 47709 58.15 19915
3-2-5 1.40 58lQ^ 192.84 51893 —8.00 349072 - -
3-3-3 0.06 4 4 i r 3.51 4294 0.37 30867 ‘ 15.58 15037
3-3-4 0.58 27253 “ 91.33 3 1 9 ^ 5.77 375779 402.20 130965
4-2-3 0.97 104878 63.51 67827 30.27 976112 - -
4-3-2 - 0.05 7698 1.45 4416 0.95 601"^ 46.63 102534
4-4-2 0.27 45l47" 12.36 29982 1 4 . 2 3 1162358 — - -
5-2-2 0 . 0 5 6 7 2 9 1.77 4 2 3 4 0 . 8 9 1 7 5 4 6 61.95 1 3 8 2 1

6-2-2 0.81 121928 47.51 80562 || 59.05 930691 - ~ ~ T

Table 5.4: Runtime and number of fails for the soft Social Golfer Problem

Chapter 5 Experiments 66

of solving the problem. In solving classical instances, our implementation

is two times faster than ILOG solver. The original ToolBar implementation

has slower runtime. It cannot solve some instances within the time limit.

The comparison is consistent in solving soften versions of the problem. Our

implementation is two orders of magnitude faster than the original ToolBar

implementation. When the search space is increased, the original ToolBar

implementation fails to solve even more instances.

5.5 Discussions

The experimental results show that the performance of our implementation is

comparable with ILOG solver in solving classical instances. The runtime of

using ILOG solver is about two times the runtime of using our implementa-

tion for all the instances in the two benchmark problems. Since the actual

implementation and data striicturos used in ILOG solver are not disclosed, we

cannot provide a firm explanation for this phenomenon. However, the con-

stant ratio of the performance between ILOG solver and our implementation

suggests that these two solvers are using the same variable and value ordering

heuristics and enforcing the same level of local consistency, which is set bounds

consistency, during search. In other words, this also verifies that our proposal

is reduced to classical case when the costs in the problem are either 0 or T.

On the other hand, the comparison between our implementation and the

original ToolBar demonstrates the feasibility and efficiency of our proposal.

Since our implementation is designed to handle problems with set variables, the

performance of our implementation is better than the original ToolBar, which

is an integer WCSP solver. ToolBar has poor performance in solving problems

with set variables because (1) it does not have consistency enforcing algorithms

specialized for set variables, (2) modeling set variables using 0-1 variables

Chapter 5 Experiments 67

increases the number of variables to the problem, and (3) the propagation of

cardinality constraints is very poor as the cardinality constraints are n-ary

constraints for set variables with a maximum of n set elements.

Chapter 6

Related Work

Two classes of research are most related to work described in this dissertation ：

local consistencies in WCSPs and approaches to solve classical CSPs with

set variables. We first introduce other local consistency notions defined in

WCSPs in addition to star node consistency and star arc consistency which

are introduced in Chapter 2. Then, different approaches to handle set in

classical CSPs are described.

6.1 Other Consistency Notions in WCSPs

Two basic local consistency notions, star node consistency and star arc con-

sistency for WCSPs are introduced in Chapter 2. Stronger consistencies are

available. They are full directional arc consistency and existential directional

arc consistency.

6.1.1 Full Directional Arc Consistency

The definition of star arc consistency is based on simple support. Given a

binary constraint Q j , a value b 6 D{xj) is a simple support for a e D{xi)

when Ci’j(a, 6) = 丄 . A variable xi is arc consistent if every value a e D{xi) has

68

Chapter 6 Related Work 69

a simple support in constraint Q j . In contrast, given a binary constraint Cij ,

a value b G D{xj) is a full support for a G D{xi) when Cij(a, b)®Cj(b)=丄.A

variable Xi is full arc consistent (FAC) [Lar02, LS04] if every value a G D(xi)

has a full support in constraint Cij.

A full support b G D{xj) can be forced by sending the unary cost Cj{b) to

binary costs C�八a,b) for all a e D{xi). This is a reverse process of sending

costs from binary constraints to unary constraints in enforcing star arc consis-

tency. However, when value a G D{xi) has a full support b e D(xj) for binary

constraint Cj j , b G D{xj) may lose its full support in D{xi). There may be a

case that both a G D[xi) and b G D{xj) cannot be full arc consistent at the

same time which fails to terminate the FAC maintaining process.

The problem can be circumvented if we only enforce full arc consistency

in one direction. When the set of variables X is totally ordered by >, we can

have full directional arc consistency (FDAC) [Lar02, LS04]. A variable xi is

full directional arc consistent if every value a G D(xi) has a full support in

Ci�j such that j > i. FDAC does not have the problem as in FAC, but FDAC

is a weaker consistency notion than FAC.

6.1.2 Existential Directional Arc Consistency

As FDAC is a weaker consistency notion, de Givry et al. [dGHZL05] propose

existential arc consistency (EAC) which is a stronger consistency notion. A

variable Xi is existential arc consistent if there exists a G D(xi) such that

Ci{a)=丄 and it has a full support in constraint Ci,j. When a variable

Xi is not EAC, for each value a e D{xi) such that Ci{a)=丄，then V6 G

D{xj), Ci j (a , b) 0 Cj{b) > 丄.After enforcing full arc consistency, the variable

Xi becomes node inconsistent and cost is sent from unary constraints to the

global lower bound C访.De Givry et al. [dGHZLOS] also integrate EAC with

Chapter 6 Related Work 70

FDAC and defines existential directional arc consistency (EDAC). A WCSP

is EDAC if it is FDAC and EAC.

6.2 Classical CSPs with Set Variables

Different reasoning approaches are introduced to increase the efficiency of solv-

ing classical CSPs with set variables. Two important reasoning approaches are

bounds reasoning and cardinality reasoning.

6.2.1 Bounds Reasoning

A set variable with n possible set elements has a domain size 2". Searching

solutions in such large domain size is inefficient. Gervet [Ger97] proposes to

specify the set domain by an interval. The domain interval for set variable S

is specified by a greatest lower bound and an least upper bound, which are

also known as the required set RS{S) and the possible set PS{S) respectively.

The search, instead of choosing and assigning a set value u G D{S) to the set

variable S、narrows the domain interval by choosing a set element a e PS(S) \

RS{S) and putting a in RS{S) or removing a from PS{S). Each set constraint

is associated with a projection function. When enforcing local consistency,

the bounds of set domains of all variables in the scope of the constraint are

modified accordingly. Set bounds consistency is a local consistency notion on

set domains such that the domain of a set variable has minimum size and

contains all the consistent values with respect to a constraint.

6.2.2 Cardinality Reasoning

By specifying cardinality constraint for a set variable S, we can restrict the

possible values of |5|. However, other set constraints can also restrict the

Chapter 6 Related Work 71

possible cardinality of a variable. For example, the set constraint Si C Sj

specifies Si must be a subset of Sj, By taking account into the cardinalities, the

constraint Si C Sj also implies that |«9�| < \Sj\. Some implementations [ABOO,

MiilOl] of set solvers not only reason on the bounds of set domains, but also

perform cardinality reasoning. An additional propagation rule is associated

with each set constraint for cardinality propagation in those solvers.

Chapter 7

Concluding Remarks

Problems involving set variables are common. Set constraint solving tech-

niques are well studied in classical CSPs. The integer WCSP framework can

handle soft problems efficiently on the integer domain. However, the cur-

rent definitions for local consistency is impractical to process set variables in

WCSPs. We have proposed our definition of set variables with some local con-

sistency notions. In the following, we conclude the thesis by summarizing our

contributions and giving possible directions for future research.

7.1 Contributions

First, we give a formal definition of set variables and set constraints in WCSPs.

The domain of a set variable in WCSPs is specified as a set interval with the

required set and the possible set as the bounds of the interval. Any set that

falls within the bounds belongs to the set domain. A set constraint is a cost

function which maps a tuple of set values for the corresponding set variables in

the scope to a cost. If we express set constraints as cost tables as in the integer

domain, the space complexity, which is exponential to the possible number of

set elements, is high. We have proposed a compact representation scheme by

specifying costs at the element level via element cost functions, which assign

72

Chapter 7 Concluding Remarks 73

costs according to the existence states of set elements. This greatly reduces

the complexity of constraint specification. The cost for tuple with respect to

a set constraint can be computed by summing up all the costs from element

cost functions. Using this scheme, we can specify set constraints involving the

common operators and relations.

Second, enforcing node and arc consistencies on set variables is impractical

as in classical CSPs due to the large domain size. We have generalized the clas-

sical set bounds notion for WCSPs. Instead of direct reasoning on the bounds

of set domains, we enforce local consistencies with element cost functions. We

introduce consistency notions at the element level: namely, element node con-

sistency, element arc consistency, and element hyper-arc consistency. We also

introduce weighted cardinality consistency notion for cardinality constraints.

We show that weighted set bounds consistency with respect to a constraint

can be enforced by maintaining the element level consistencies or weighted

cardinality consistency accordingly.

Third, we have designed consistency algorithms for enforcing element node,

element arc and element hyper-arc consistencies as well as weighted set bounds

consistency in WCSPs with set variables. Complexity results and proof of cor-

rectness of these algorithms are also given. In order to verify the feasibility

and efficiency of our proposal, we incorporate our algorithms into ToolBar

BHdG+04]’ a generic WCSP solver. Experiments confirm that our implemen-

tation is two times faster than ILOG in solving most classical set problems

and two orders of magnitude faster than the original ToolBar in solving both

classical and soft set problems.

Chapter 7 Concluding Remarks 74

7.2 Future Work

We have introduced set variables, set constraints and consistency notions for

set variables to WCSPs in our work. Set-based WCSPs open up possibilities

for future research.

First, our proposal enables bounds reasoning on the variable domains with

respect to different set constraints. Integrating cardinality reasoning to the

solvers for classical CSPs can increase the performance of searching [MM97,

ABOO]. Cardinality projection functions can be derived by studying the set

constraints. However, the property of a set constraint in WCSP depends on the

cost distribution which can differ from one constraint to another. It would be

worth investigating the way to extract the information of cardinality restriction

from the cost distribution to increase the efficiency of solving WCSPs with set

variables.

Second, the local consistency notions which we adopt for element cost func-

tions are modified from the basic node and arc consistencies for WCSPs on

the integer domain. It would be interesting to study the benefit of stronger

consistency notions at the element level, such as ones based on full directional

arc consistency and existential arc consistency.

Third, Hawkins, Lagoon and Stuckey [HLS05] show how set variables in

classical CSPs can be represented by reduced ordered binary decision diagrams

(ROBDDs), and give efficient algorithm to enforce domain consistency. It will

be interesting to study if the same principle can be extended for WCSPs.

Forth, variable and value orderings can have great impact on search effi-

ciency. In our work, we use the basic variable and value ordering. The variables

are in lexicographical order while, at branching, we try to put a set element

of variable S from PS{S) \ RS[S) to RS{S) before removing it from PS[S).

Since set constraints in WCSPs are expressed in terms of costs, when we select

Chapter 7 Concluding Remarks 75

variable or set element for branching, we can study how costs can help to give

better variable and value ordering heuristics.

List of Symbols

T The maximum cost, page 16

丄 The minimum cost, page 16

A range of integers from I to u, page 7

L, U] A range of sets from L to U, page 24

�…�ik)/a An element cost function involving set variables

5 i i , . . . , Sik on the set element a, page 33

a © 6 The binary operation which combines costs a

and 6，page 16

aQb The binary operation which subtracts cost b

from cost a, page 19

C A finite set of constraints, page 6

C0 A zero-arity constraint, page 16

Cii…，ik A constraint involving variables , . . . , Xî ,,

page 6

Card A function mapping a set value to its cardinal-

ity, page 37

76

Chapter 7 Concluding Remarks 77

V A finite set of variable domains, page 6

D{xi) The set of possible values of variable Xi. page 6

Do{xi) The initial domain of variable Xi, page 6

doms{C) All the values in the domain of set variable S

that satisfy the constraint C, page 27

E{S, a) The set of possible existence states of set ele-

ment a for set variable 5, page 31

V A constraint satisfaction problem, page 6

PS{S) The possible set of set variable 5, page 24

RS{S) The required set of set variable 5, page 24

S(k) A valuation structure in WCSP with T = k,

page 16

Si A set variable in a problem, page 23

t A tuple containing the assignments for a set of

variables, page 6

U The universal set of a problem, page 31

Ui The universal set of set variable Si, page 30

V(亡） The cost of a tuple t, page 16

Chapter 7 Concluding Remarks 78

uar(C“”.”ifJ The set of variables appearing in the constraint

Cu’…’ik, page 7

var(t) The set of variables appearing in the tuple t,

page 7

wdoms{C) All the values in the domain of set variable S

that are consistent with constraint C, page 46

X A finite set of variables, page 6

Xi A variable in a problem, page 6

Xi^ a An assignment which assigns variable Xi with

value a, page 6

Bibliography

ABOO] Francisco Azevedo and Pedro Barahona. Modelling digital circuits

problems with set constraints. In Computational Logic, pages 414-

428, 2000. [71, 74；

Apt03] Krzysztof R. Apt. Principles of Constraint Programming. Cam-

bridge University Press, 2003. [9

Bar99] Roman Bartak. Constraint programming: In pursuit of the holy

grail. In Week of Doctoral Students (WDS99), volume Part IV,

pages 555-564, Prague, June 1999. MatFyzPress. [10

Bes94] Christian Bessiere. Arc-consistency and arc-consistency again. Ar-

tificial Intelligence, 65(1):179-190, 1994. [14；

BFR99] Christian Bessiere, Eugene C. Preuder, and Jean-Charles Regin.

Using constraint metaknowledge to reduce arc consistency com-

putation. Artificial Intelligence, 107(1):125-148, 1999. [14'

BHdG+04] S. Bouveret, F. Heras, S. de Givry, J. Larrosa, M. Sanchez,

and T. Schiex. ToolBar: a state-of-the-art platform for WCSP.

http://www.inra.fr/bia/T/degivry/ToolBar.pdf, 2004. [3，4’ 59,

6 0’ 73；

79

http://www.inra.fr/bia/T/degivry/ToolBar.pdf

BP81] C.A. Brown and P.W. Purdom Jr. How to search efficiently. In

Proceedings of the 7th International Joint Conference on Artificial

Intelligence, pages 588-594, 1981. [8

BR75] James R. Bitner and Edward M. Reingold. Backtrack program-

ming techniques. Communication of ACM, 18(ll):651-656, 1975.

9；

BROl] Christian Bessike and Jean-Charles Regin. Refining the basic

constraint propagation algorithm. In Proceedings of the Seven-

teenth International Joint Conference on Artificial Intelligence,

IJCAI 2001, pages 309-315, 2001. [14；

•BRYZ05] Christian Bessike, Jean-Charles Regin, Roland H. C. Yap, and

Yuanlin Zhang. An optimal coarse-grained arc consistency algo-

rithm. Artificial Intelligence, 165(2):165—185, 2005. [14；

Cle87] John G. Cleary. Logical arithmetic. Future Computing Systems,

2(2):125-149, 1987. [32

CS04] Martin C. Cooper and Thomas Schiex. Arc consistency for soft

constraints. Artificial Intelligence, 154(l-2):199-227, 2004. [19

dGHZLOS] Simon de Givry, Federico Heras, Matthias Zytnicki, and Javier

Larrosa. Existential arc consistency: Getting closer to full arc

consistency in weighted csps. In Proceedings of the Nineteenth

International Joint Conference on Artificial Intelligence, IJCAI

2005, pages 84-89, 2005. [19, 69；

DP87] D. Dechter and J. Pearl Network-based heuristics for constraint

satisfaction problems. Artificial Intelligence, 34:1-38, 1987. [8

80

Gas77] J. Gaschnig. A general backtracking algorithm that eliminates

most redundant tests. In Proceedings of the 5th International Joint

Conference on Artificial Intelligence, page 457, 1977. [8

GB65] S.W. Golomb and L.D. Baumert. Backtrack programming. Jour-

nal of the ACM, 12� : 516 -524 , 1965. [8]

Ger97] Carmen Gervet. Interval propagation to reason about sets: Def-

inition and implementation of a practical language. Constraints,

l(3):191-244, 1997. [1, 2, 3’ 27, 29’ 32’ 70j

;GW99J LP. Gent and T. Walsh. CSPLib: a benchmark library for con-

straints. Technical report, Technical report APES-09-1999, 1999.

Available from http://csplib.cs.strath.ac.uk/. A shorter version

appears in the Proceedings of the 5th International Conference

on Principles and Practices of Constraint Programming (CP-99).

62, 63:

HE80J R. Haralick and G. Elliott. Increasing tree search efficiency for

constraint satisfaction problems. Artificial Intelligence, 14(3):263-

313, oct 1980. [9

HLS05] Peter Hawkins, Vitaiy Lagoon, and Peter J. Stuckey. Solving

set constraint satisfaction problems using ROBDDs. Journal of

Artificial Intelligence Research, 24:109-156, 2005. [3, 74

:IL003] ILOG. ILOG Solver 6.0 Reference Manual, 2003. [3’ 4，59；

Lar02j Javier Larrosa. Node and arc consistency in weighted CSP. In

Proceedings of the Eighteenth National Conference on Artificial

Intelligence, pages 48-53，Edmonton, Canada, 2002. [3，16，19,

20，69

81

http://csplib.cs.strath.ac.uk/

LR80] C.C. Lindner and A. Rosa. Topics on steiner systems. Annals of

Discrete Mathematics, 7，1980. [62:

LS03] Javier Larrosa and Thomas Schiex. In the quest of the best form of

local consistency for weighted csp. In Proceedings of the Eighteenth

International Joint Conference on Artificial Intelligence，IJCAI

2003, pages 239-244，2003. [3，19，21]

LS04] Javier Larrosa and Thomas Schiex. Solving weighted csp by

maintaining arc consistency. Artificial Intelligence, 159(l-2):l-26,

2004. [18, 19，21，69

LS06] J.H.M. Lee and C.F.K. Siu. Weighted constraint satisfaction with

set variables. In Proceedings of the Twenty-First National Con-

ference on Artificial Intelligence, 2006. [3

Mac77] Alan K. Mack worth. Consistency in networks of relations. Artifi-

cial Intelligence, 8(1):99-118, 1977. [1’ 10，11’ 13:

MH86] Roger Mohr and T.C Henderson. Arc and path consistency re-

visited. Artificial Intelligence, 28:225-233, 1986. [14

MM97] Tobias Miiller and Martin Miiller. Finite set constraints in Oz. In

Prangois Bry, Burkhard Preitag, and Dietmar Seipel, editors, 13.

Workshop Logische Programmierung, pages 104-115, 1997. [3, 74

MiilOl] Tobias Miiller. Constraint Propagation in Mozart Doctoral

dissertation, Universitat des Saarlandes, Naturwissenschaftlich-

Technische Fakultat I, Fachrichtung Informatik, Saarbriicken,

Germany, 2001. [71；

82

Nad89] B.A. Nadel. Constraint satisfaction algorithms. Computational

Intelligence, 5:188-224, 1989. [8；

Per92] Mark Perlin. Arc consistency for factorable relations. Artificial

Intelligence, 53(2-3):329-342, 1992. [14

Pur83] Paul Walton Purdom. Search rearrangement backtracking and

polynomial average time. Artificial Intelligence, 21(1-2):117-133,

1983. [9；

SFV95] Thomas Schiex, Helene Fargier, and Gerard Verfaillie. Valued

constraint satisfaction problems: Hard and easy problems. In

Proceedings of the Fourteenth International Joint Conference on

Artificial Intelligence, IJCAI1995, pages 631-639, 1995. [14]

SS87] H.S. Stone and J.M. Stone. Efficient search techniques — An em-

pirical study of the A^-queens problem. IBM Journal of Research

and Development, 31:464-474, 1987. [9]

ZM88] Ramin Zabih and David McAllester. A rearrangement search

strategy for determining prepositional satisfiability. In Proceed-

ings of the Seventh National Conference on Artificial Intelligence,

pages 155—160，St. Paul, Minnesota, August 21-26 1988. AAAI

Press / The MIT Press. [9；

ZYOl] Y. Zhang and Roland H. C. Yap. Making AC-3 an optimal algo-

rithm. In Proceedings of the 17th International Joint Conference

on Artificial Intelligence, pages 316-321, 2001. [14

83

V
.

I

、•‘..

/ •.

I:" .
• -v ‘ .

• J . -• - \ .

..• " ‘ . . .
• • > ‘

. . , ‘ • - • • .丨• • . ‘ * . • . •- ''-•::,'’〜，.：.‘‘ .• 二 ‘..’ •.••：,.•.、 : . : � ；：；. ‘ . • ..< , . • • ' • .. • • . . • • . ’ . • . ， - ‘ • “ 、 - . , • . • ,, • ... , . , "...• 、•̂：. . “ . , ‘ : : : , , � . � W � , 〜 、 - • , : ； ,、：[.:, - • .； 、....：-:•: .•?..:.:::....-:、,-.'•,...

C U H K L i b r a r i e s

_1_圓111111
004359209

