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Abstract 

Many problems in daily life, such as resource allocation, scheduling, timetabling, 

configuration and satisfiability problems, can be modeled as finite domain con-

straint satisfaction problems (CSPs). Set variables are ubiquitous in modeling 

many applications as CSPs. Various approaches to handle set variables are 

proposed for classical CSPs. In contrast to containing hard constraints only 

in classical CSPs, the ability to specify soft constraints with set variables in 

weighted constraint satisfaction problems (WCSPs) can enhance the expres-

siveness of modeling. However, efforts on practical consistency algorithms for 

WCSPs have only been on integer variables. The major problem associated 

with set variable is its high complexity. A set variable with n possible set ele-

ments has set values in its domain. The time complexity to search such large 

domain for solutions is high. As current local consistency enforcing algorithms 

for WCSPs require constraints to be implemented as a cost tables, the ex-

plicit representation of set constraints in WCSPs also suffers from exponential 

space requirement. In this thesis, we propose compact and efficient represen-

tation schemes for set variables and common unary, binary, and ternary set 

constraints, as well as cardinality constraints. We adapt the classical notion of 

set bounds consistency for WCSPs. Instead of reasoning consistency on an en-

tire set variable directly, we propose local consistency check at the set element 

level, and demonstrate that this apparent "micro"-management of consistency 
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does imply set bounds consistency at the variable level. In addition, we prove 

that our framework captures classical CSPs with set variables, and degener-

ates to the classical case when the weights in a problem contain only 0 and 

T. Last but not least, we verify the feasibility and efficiency of our proposal 

with a prototype implementation, the efficiency of which is competitive against 

ILOG Solver on classical problems and orders of magnitude better than WCSP 

models using 0-1 variables to simulate set variables on soft problems. 
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摘要 

日常生活中的許多問題，比如資源分配、規劃、時間表安排、配置以及可滿 

足性問題等，都可以建模為約束滿足問題，集合變量是約束滿足問題中常見 

的變量類型。目前，已有許多方法處理在傳統滿足約束問題中的集合變量。 

相對於傳統約束滿足問題，在加權約束滿足問題中，我們可以通過加入包含 

集合變量的軟性約束來增强模型的表達能力。但是已有的加權約束滿足問題 

的相容性算法只能處理整數變量，無法處理集合變量。同時，對於一個包含 

n個元素的集合變量而言，其域的大小為。因此使用集合變量會增大時 

間和空間的複雜性。搜索答案的時間複雜性大都取決於搜索空間的大小。然 

而，搜索空間亦會因變量的域增大而相應增大。空間複雜性的增加是由於目 

前的相容性算法要求以權值分佈表來表示約束。這種明顯列出約束中權值的 

方法，極大地增加了空間的複雜性。針對這些問題，本文提出了高效表示集 

合變量、常用的一、二、三元集合約束以及集合的個數約束的方法。同時在 

傳統集合邊界相容性的基礎上，我們提出了在集合元素的層次上進行相容性 

推理的方法。我們證明了這種表面上對相容性作微觀處理的方法，可以達到 

集合變量上的相容性。除此之外，我們證明了我們所提出的框架，不但涵 

蓋了包含集合變量的傳統約束滿足問題，而且在問題中的權值只有0和T 

時，會退化成傳統的約束滿足問題。最後，我們用原型實驗證明了我們所 

提出的方法的可行性及高效性。在解決傳統問題上，我們的效率可與ILOG 

Solver相比。而在解決加權約束滿足問題上，我們的效率比以0-1變量來模 

擬集合變量的方式有更明顯的優越性。 
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Chapter 1 

Introduction 

Many problems in daily life, such as resource allocation, scheduling, timetabling, 

configuration and satisfiability problems, can be modeled as finite domain con-

straint satisfaction problems (CSPs). When a problem is over-constrained or 

involves preferences, we can model the problem as a weighted constraint satis-

faction problem (WCSP). In WCSP, costs are associated with tuples to reflect 

the quality of the assignments. On the other hand, set variables are common 

in modeling problems. Gervet [Ger97] demonstrated how set variables can be 

handled in CSPs. The idea of using set interval as a set domain and reasoning 

on the bounds give an efficient solving approach for CSPs with set variables. 

1.1 (Weighted) Constraint Satisfaction 

Constraint satisfaction problems (CSPs), defined in the sense of Mack worth 

'Mac77], can be briefly stated as follows : 

We are given a set of variables, a domain of possible values for 

each variable, and a conjunction of constraints. Each constraint 

is a relation defined over a subset of the variables, limiting the 

combination of values that the variables in this subset can take. The 
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Chapter 1 Introduction 2 

goal is to find a consistent assignment of values to the variables so 

that all the constraints are satisfied simultaneously. 

Constraints in classical CSPs can only be either fully satisfied or fully 

violated. In many real life applications, we have to allow partially satisfied 

constraints when the problems are over-constrained or involve preferences. For 

example, there are multiple routes taking a traveler from the origin to the 

destination. While the traveler can arrive at the destination via any one of the 

routes, the cheapest and shortest route is often the preferred choice. 

The weighted constraint satisfaction problem (WCSP) framework, one of 

the soft constraint frameworks, allows us to specify preference and degree of 

satisfaction (or violation) by associating costs to the tuples. WCSP is thus a 

generalization of classical CSP. We can evaluate the quality of an assignment 

with the costs given by the constraints. The lower the cost is, the higher the 

quality of the assignment. Therefore, we are searching for the assignment with 

minimum cost in a WCSP. 

1.2 Set Variables 

Integer variables suffice to model many combinatorial problems. In some cases, 

however, unknowns in a problem can have set as values. For example, we might 

be interested in finding what nurses should be serving in a particular shift in 

a nurse rostering problem. A set variable in classical CSP takes on set values. 

Since the domain size of a set variable is large, Gervet [Ger97] proposes that 

the domain of a set variable is specified with a lower and upper bounds, which 

are ordered by set inclusion. Any set which falls within the bounds is in the 

domain of the set variable. The set constraints are composed of set relations, 

such as subset equal (C) and equality (=), and set operators, such as union (U), 
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intersection (n) and different (\). Cardinality of a set variable can be restricted 

with cardinality constraints. As set domain is specified as bounds, Gervet 

introduces an approach to reason the domains on its bounds with respect to 

the constraints and define set bounds consistency notions [Ger97 . 

1.3 Motivations and Goals 

The need for set variables is no exception with WCSPs. Our goal is to define 

set variables for WCSPs as there are no existing framework for WCSPs to deal 

with sets. A set variable with n possible set elements has a domain of size 2". 

Domain consistency techniques [Lar02, LS03] developed for integer variables 

cannot be practically adapted for set variables since these techniques require 

all elements of a variable domain to be represented explicitly. Following Gervet 

Ger97], we propose efficient set bounds consistency techniques in WCSPs for 

set variables which reason only on the bounds of the variable domains [LS06 . 

Constraints in WCSPs are cost functions, mapping tuples to costs. Instead 

of specifying the cost' functions at the tuples (of set values) level, we devise a 

general scheme for representing tuple costs according to costs associated with 

the existence and inexistence of elements in the set values. This scheme is com-

pact and allows us to specify cost functions to all common set constraints, and 

degenerates to classical CSPs with set variables when all costs are either 0 or T. 

Node, arc, hyper-arc, and cardinality consistency notions and the associated 

enforcement algorithms are defined for unary, binary, ternary, and cardinality 

constraints at the set element level respectively. We show that these element 

consistencies imply set bounds consistency [Ger97, MM97, HLS05] generalized 

for WCSPs. We construct a prototype implementation of our algorithms by 

modifying the ToolBar WCSP solver [BHdG+04]. Experiments are conducted 

to compare our implementation against ILOG Solver [IL003] on classical set 
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CSPs, and against 0-1 variable emulation of set variables in ToolBar on soft-

ened versions of the same classical benchmarks. Results confirm that our im-

plementation is more efficient than ILOG Solver on classical problems and two 

orders of magnitude better than WCSP models using 0-1 variable to simulate 

set variables on soft problems. 

1.4 Overview of the Thesis 

The rest of the thesis is organized as follows. Chapter 2 provides the back-

ground to the thesis. We formally introduce classical CSPs and WCSPs, and 

present the common solution techniques : backtracking tree search for classi-

cal CSPs and branch and bound search for WCSPs. Overview of consistency 

notions, including node and arc consistencies, are given for both classical and 

WCSPs. We also describe the use of set variables and the notion of set bounds 

consistency in classical CSPs. In Chapter 3，we give the formal definition of 

WCSPs with set variables. The representation schemes for set variables and 

set constraints are described. We illustrate the approach to specify costs for 

set constraints via cost functions at the element level. Local consistency no-

tions for WCSPs with set variables are presented in Chapter 4. The local 

consistency notions include element level consistencies and weighted cardinal-

ity consistency. On top of them, we introduce weighted set bounds consistency 

which is implied by maintaining the above consistencies. Complexity analysis 

and proofs of correctness of the consistency algorithms are give a. In Chapter 5, 

we report experimental results. We compare the performance of our prototype 

implementation with ToolBar [BHdG+04]，a generic WCSP solver, and ILOG 

Solver 6.0 [IL003], a classical CSP solver. Chapter 6 presents a review of re-

lated work on other consistency notions in WCSPs and current approaches to 
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handle set variables in classical CSPs. Chapter 7 concludes the thesis by sum-

marizing our contributions and shedding light on possible directions of future 

research. 



Chapter 2 

Background 

This chapter provides background to the thesis. We describe concepts of both 

classical and weighted constraint satisfaction. In particular, we introduce set 

variables in modeling problems for classical CSPs. We also illustrate the ben-

efits of enforcing local consistencies in the solution searching process. 

2.1 Constraint Satisfaction Problems 

A (classical) constraint satisfaction problem (CSP) is a tuple V = 

where A:" is a finite set of variables . . . , Xn}, P is a finite set of variable 

domains ...，/^(xn)}, and C is a finite set of constraints. A variable 

Xi ^ X can only be assigned with a value from its variable domain D{xi) G V. 

The initial domain Do{xi) for each variable Xi e X is the domain given once 

a CSP is defined. Each constraint G C restricts the values that can be 

taken by the variables aJi! ’...，Xj^ simultaneously. In this thesis, we consider 

only finite domain CSPs in which each variable domain is finite. Without 

loss of generality, the variable domains only contain integers, though they can 

contain values of any types in general. 

An assignment Xi a assigns the value a G D{xi) to the variable Xj. A 

tuple t contains the assignments for a set of variables {xi. ^ aj\l < j < k} 

6 



Chapter 2 Background 7 

where { x j j , . . . , C X and dj G D{xi.) for I < j < k. We denote the 

variables in the tuple t by var{t). A complete assignment is a tuple containing 

assignments for all variables in X . 

A classical constraint ’•.. ’G C is a function which maps D{xi^) x .. • x 

D(XiiJ to {true, false}. The set of variables {:ri” . . . , is a subset of It 

is the scope of the constraint (7 “ ’… ’and denoted by ’ • " “ � . W i t h o u t 

loss of generality, we denote C“’…’生知 as a conjunction of all the constraints with 

scope (x'i^,. . . , ajj^} in a problem. 

A projection 亡丄y of a tuple ^ to a set of variables V C var{t) is a tuple 

t' such that t' C t and t' involves only variables in V. We abuse the notation 

of constraint Cii,...,̂ ^ to take also a tuple t 二 {xi^ a i , . . . , Xi^ ak} as an 

argument such that Ci^,…’= C“”‘,’if^(ai,..., a^). Given a constraint C and 

a tuple t, where var(C) C var{t), the tuple t satisfies, or consistent with, the 

constraint C if and only if C(t j^ar(C)) = true. Conversely, the tuple t violates, 

or inconsistent with, the constraint C if and only if C(t J.var(C)) = false. 

A solution to a CSP is a complete assignment which satisfies all the con-

straints in C simultaneously. In solving a CSP, we are searching for solutions 

to the problem. 

Examp le 2.1 The n-queens problem 

The n-queens problem is to place n queens on a n x n chessboard so that 

they do not attack one another. We can model the problem as a CSP by 

using n variables rci，...，a:„ for each column of the chessboard. The value for 

variable Xi denotes the position, in terms of row number, of the 'i-th queen in 

the z-th column of the chessboard.. Thus, each variable domain is {1，..., n} . 

For each pair of columns (?:, j ) on the board, where G {1, . . .，n} and i + j , 

we have two constraints as follows : 

1. 3Ci — Xj 
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2. \xi — Xj\ 

The first constraint forbids pair of queens to be located in the same row. 

The model inherently does not allow any pair of queens to be located in the 

same column as each variable can only take one value. The second constraint 

forbids pair of queens to be placed in the same diagonal on the chessboard. 

One of the solutions for 4-queens problem is depicted in Figure 2.1. The 4 x 4 

squares represent a chessboard. Each letter Q represents a queen. The variable 

for each column is labeled above the corresponding column while the values are 

marked in the left hand side of the chessboard according to the row number. 

Thus, the figure shows the solution {xi i—̂  2,2:2 ^^ 4,0:3 1, X4 3}. 

Xi X2 X3 X4 

i| |Q| 
2_Q 
3 Q_ 
41 |Q| 

Figure 2.1: A solution to the 4-queens problem 

• 

2.1.1 Backtracking Tree Search 

A CSP can be solved by systematic search. The solution space of the problem 

is traversed systematically as a tree structure. This method guarantees to find 

all the solutions if the problem has ones. Otherwise it proves unsatisfiability of 

the problem. Thus, systematic search is both sound and complete. In practice, 

backtracking tree search algorithm [GB65, Gas77, BP81, DP87, Nad89], one of 

systemic search algorithms, is used to solve CSPs. The backtracking tree 
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search described below traverses the tree of possible assignments in a depth-

first manner. Algorithm 2.1 gives the procedure for backtracking tree search 

given in [Apt03] for finding a single solution. 

Algor i thm 2.1: Backtracking tree search 
1 Procedure backtrack , D, success) 

2 begin 

3 while D{xj) + 0 and -isuccess do 

4 a G 

5 D{xj) := D{xj) \ {a } 
6 if cons (t, Xj H a) then 

7 亡：=亡 U { x j H-> a } 

8 success := { j = n) 
9 if，success then 

10 backtrack + 1, P , success) 

11 end 

12 begin 

13 success := false 

14 t := 0 
15 backtrack(力，1，P, success) 

16 end 

The search starts with an empty tuple of assignment t. In the algorithm, it 

incrementally extends the tuple with assignments. The order of choosing vari-

ables and values during search can be arbitrary, but experiments and analysis 

shows that applying ordering heuristics can affect the efficiency of the search 

ill many cases [BR75, Pur83, SS87，HE80, ZM88 . 

While there are unassigned variables, also known as future variables, the 

search chooses a variable with a value from the corresponding variable domain. 

The selected value is removed from the domain to avoid choosing the same 

value again. The function cons 0 checks if the current selected pair of variable 

and value is consistent with the assignments in the tuple witli respect to the 
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constraints. If it is consistent, the new assignment is committed. Otherwise 

another value is selected for the same process. The procedure proceeds with 

the next unassigned variable, if any. When all the variables are assigned with 

values, a solution is found. 

In case of there is no alternative value in the domain, the search backtracks 

to the previous state. The assignment of previous variable is undone and the 

search considers other values in the domain for the previous variable. If the 

search backtracks to the first variable with empty domain, then there is no 

solution to the problem. 

The search stops once it finds the first solution of the problem, but it can 

be modified easily to search for all solutions. 

2.1.2 Consistency Notions 

A standard backtracking tree search, which described in previous subsection, 

has some major drawbacks [Bar99]. One of the drawbacks is late detection 

of the conflict among the assignments. Many studies are done to detect the 

inconsistency sooner. 

A CSP is a tuple V = {X, V, C) with a set of variables A', a set of variable 

domains V and a set of constraints C. In the following, we introduce two 

common consistency notions : node consistency and arc consistency. 

Node Consistency 

Node consistency [Mac77] deals with unary constraints. A variable Xi is node 

consistent if and only if Va G D(Xi), Ci{a) is satisfied. A CSP is node consistent 

if all variables are node consistent. 

Algorithm 2.2 shows a procedure to enforce node consistency [Mac77]. For 

each variable Xi, it retains only those domain values in D{xi) which satisfy the 
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unary constraint Ci, 

Algor i thm 2.2: The node consistency algorithm 
1 Procedure NC(Z) 
2 begin 

3 I D{xi) -.= D{xi)n{a\Ci{a)] 
4 end 

5 begin 

6 for 2 := 1 to n do 

7 [_ NC (z) 

8 end 

Example 2.2 Given variable x, its domain D[x) = {1 ,2 ,3 ,4 ,5 } , and a unary 

constraint a: < 4. The variable x is not node consistent as a; h 4 and x 5 do 

not satisfy the constraint. If the values 4 and 5 are removed from the domain 

D[x), now with D[x) = {1, 2, 3}, the variable x becomes node consistent. • 

Arc Consistency 

Arc consistency [Mac77] deals with binary constraints. A pair of variables 

[xi, Xj), where i ^ j, is arc consistent if and only if Va € D(xi), such that 

Ci(a) is satisfied, there is a value b G D{xj) such that Cj{b) and Cij{a, b) are 

satisfied. The value b G D{xj) is the binary support of the value a G D{xi) with 

respect to Cij. A CSP is arc consistent if pair of variables are arc consistent. 

A basic arc consistency enforcing algorithm, AC-1，is depicted in Algo-

rithm 2.3 [Mac77]. It first maintains node consistency for all variables. A 

queue is then initialized with all the variable pairs which have corresponding 

binary constraints in the CSP. For each pair of variables (xj, .Tj), the function 

Revise 0 removes any value in D{xi) which does not have binary support in 

D{x j ) with respect to Ci�j. However, later when the algorithm revises D{x j ) 
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Algor i thm 2.3: The first arc consistency algorithm (AC-1) 
1 Procedure Revise (z,j) 

2 begin 

3 delete false 
4 for a € D{xi) do 

5 if ib e D{xj) such that b) = true then 

6 B(xi) := D{xi) \ {a} ’ 
7 delete := true 

8 return delete 

9 end 

10 Procedure AC-10 

11 begin 

12 for i 1 to n do 

13 |_ NC ⑴ 

14 
15 repeat 

16 change := false , 
17 for {i,j) G Q do 

18 L change := (Revise ( i j ) or change) 

19 until，change 

20 end 
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for the variable pair (J, k), some values in D{xj) maybe removed for arc consis-

tency. These removed values from D{xj) may be the original binary supports 

for values in D{xi). As the values in D{xi) may lose their supports, the al-

gorithm iteratively checks all pairs of variables in the queue until there is no 

change in a single pass to ensure all the values in the domains have correspond-

ing binary supports. 

Algor i thm 2.4: The third arc consistency algorithm (AC-3) 
1 Procedure AC-3 0 

2 begin 
3 for i := 1 to n do 
4 |_ NC(0 

6 while do 
7 (/c,m) G Q 
8 Q : = g \ { ( A : , m ) } 
9 if Revise (A;, m) then 

10 |_ g := (?U {(z, k) I Ci�k G C A i ^ m} 

11 end 

The algorithm AC-1 is inefficient because a single change in a variable 

domain leads to an additional pass in the algorithm. In many cases, only a 

small subset of variable domains are affected by each single change. A more 

efficient arc consistency enforcing algorithm, AC-3, is designed to revise only 

the affected variable domains in case of any changes. Algorithm 2.4 shows the 

AC-3 algorithm [Mac77j. It is similar to AC-1 except it removes a variable 

pair from the queue each time before checking for supports. When there is 

a change in a variable domain D{xk), it inserts back only the variable pairs 

which contain variable Xk in the scope of the corresponding binary constraint 

to the queue. 
J 
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There are more sophisticated and efficient arc consistency enforcing algo-

rithms which include AC-4 [MH86], AC-5 [Per92], AC-6 [Bes94], AC-7 [BFR99], 

and AC2001 [BROl, ZYOl, BRYZ05]，but the fundamental concepts are the 

similar. They all remove values from variable domains in a CSP to maintain 

arc consistency. 

Examp le 2.3 Given a CSP with variables xi and X2, and domains D { x i ) = 

{1,2，3,4，5} and D{x2) — {1,2，3}. We consider the constraint Xi - X2 — 2. 

Variable pair {x\^x2) is not arc consistent while variable pair {x2, Xi) is. It is 

because there are no values in D(x2) which satisfies the constraint for i-^ 1 

and Xi I—> 2. By removing 1 and 2 from the variable pair {xi,x2) 

becomes arc consistent with the constraint. • 

Figure 2.2 shows a complete backtracking search tree for the 4-queens prob-

lem when node and arc consistencies are enforced. The search chooses variables 

and values in lexicographic order. The node and arc consistencies enforcing 

algorithms are incorporated to the backtracking tree search algorithm such 

that consistency check and domain pruning are carried out after each variable 

assignment. In the figure, each recent assignment is labeled on the edge con-

necting the previous node and the current node. The letter X denotes a value 

being removed from the domain due to inconsistency. A leaf node marked as 

fail when the node has empty domain. Otherwise the leaf node represents a 

solution to the problem. 

2.2 Weighted Constraint Satisfaction Problems 

A weighted constraint satisfaction problem (WCSP) is a specific subclass of 

valued CSP [SFV95] which associates costs to tuples. The costs are specified by 

a valuation structure. The preferences in the problem can be expressed in terms 
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Figure 2.2: Backtracking tree search maintaining node and arc consistencies 
for the 4-queens problem 
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of costs. Thus, the WCSP framework provides a way to model optimization 

problem. 

Defin i t ion 2.1 A valuation structure is a triple S = {E, 0 , where E is 

the set of costs totally ordered by y . The maximum and the minimum costs 

are T and 丄 respectively. The binary operation © on combines costs. 

A WCSP is a tuple V = (k, A', V,C)- ^ and V are the set of variables and 

the set of domains respectively as in classical CSPs. C is a set of constraints. 

Each constraint C G C is a cost function which maps assignments to costs. 

The valuation structure used in WCSPs is 5(/c). 

Defin i t ion 2.2 5(/c) = ([0,1，•..，k], ©, > ) is a valuation structure, where 

• A; € [1，...，oo 

• 0 is defined as a 0 6 = min{k, a + 6} 

• > is the standard order among naturals 

In a WCSP with valuation structure 5(A;), we have 丄二 0 and T = k. 

There is a zero-arity constraint Cq which represents the global lower bound of 

the WCSP. 

The cost of a tuple t, V(t), is a measure of quality of the tuple. The lower 

the cost, the higher the quality. It is defined as the sum of all costs associated 

with the constraints in the problem, 

Cil’.. . , in eC’{;Eii }Cvar (0 

The formula above is a slightly generalized form of Larrosa's definition 

Lar02], which restricts discussion on only binary WCSPs. In this thesis, we 

do not restrict the arity of the constraints. 
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T = 4 
C0 = O 

X\ X2 

Figure 2.3: A sample WCSP 

A tuple t is consistent if V(t) < T. In solving WCSPs, we are searching 

for solutions which are complete consistent assignments with minimum cost. 

Figure 2.3 shows a sample WCSP. In the figure, each oval represents a 

variable. The circles inside an oval are the domain values which are labeled 

besides the circles. The integers in the circles are the unary costs to the 

corresponding values for the variable. A line joining two values in two variable 

domains represents a binary constraint with costs given above the line. 

2.2.1 Branch and Bound Search 

WCSPs are usually solved by branch and bound search, which is a solving 

technique for optimization problems. The search procedure is similar to tree 

search in solving CSPs. However, it keeps the cost of a complete solution found 

so far. Initially, the global lower bound, is set to 0 and the global upper 

bound, T, is set to oo. After each variable assignment, the search evaluates 

the current lower bound. If the current lower bound is higher than or equal 

to T, the search backtracks to the previous assignment. Otherwise, the search 

proceeds with another variable assignment. Once a complete assignment with 
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cost less than 丁 is found, T is set to the cost of the assignment. Therefore, 

the search keeps narrowing the search space to find an optimal solution. 

Algor i thm 2.5: Branch and bound search 
1 Procedure LookAheadCz i—> a, CO 

2 begin 

3 C' := C' \ {Ci} 
4 for Ci，j e C' do 

5 for b e D{xj) do 

6 |_ Cj{h) •.= Cj{h)®Ci^j{a,h) 
7 L C'-.^C'MCi^j} 

8 end 

9 Procedure BranchAndBound(i, k, 

10 begin 

11 if X = 0 then 

12 return C® 

13 else 

14 Xi e X 
15 for a G D{xi) do 

16 V' := V 
17 C' := C 
18 t' := t D {xi I—> a} 

19 Vf :=vt® Ci{a) 
20 LookAheadCz 1-4 a,C') 
21 if LocalConsist (/c, Af \ {xi}, C) then 

22 [_ k := BranchAndBoundCt', Vt',X\ {xi},V\C') 

23 return k 
24 end 

Algorithm 2.5 shows a branch and bound search procedure [LS04]. The 

tuple t contains variable assignments. The cost of the tuple is Vt. After selected 

a variable and a value for the current assignment, LookAheadO transforms the 

current problem to a subproblem in which the variable Xi is assigned with a. 

LocalConsist ( ) checks for local consistency for the transformed problem. 
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The search proceeds to another variable assignment only when the problem is 

consistent. 

2.2.2 Consistency Notions 

Similar to the classical case, maintaining local consistencies can also reduce 

the search space in WCSPs. Common local consistencies in WCSPs are star 

node consistency and star arc consistency. More sophisticated consistency no-

tions include directional arc consistency [LS03], full directional arc consistency 

LS03], and existential arc consistency [dGHZL05]. 

A WCSP is a tuple V = (/c, A", D, C) which associated with the valuation 

structure S{k). X and V are a set of variables and a set of variable domains. 

C is a set of constraints. Two WCSPs are said to be equivalent to each other 

if they contain the same set of variables and define the same cost distribu-

tion on complete assignments [dGHZL05]. A consistency enforcing algorithm 

transforms a WCSP P to an equivalent WCSP P' such that P' satisfies the re-

quirement of the corresponding consistency notion. Consistencies are enforced 

by applying pruning inconsistent values and forcing supports. Supports can 

be forced by sending costs between the constraints [CS04]. Subtraction is a 

useful operation on costs when forcing supports. 

Definit ion 2.3 Let a, 6 G { 0 , . . . , /c} such that a > b. The subtraction of b 

from a [Lar02, LS04] is defined as : 
f 

a - b : if a ^ k] 
aGb= < 

I k : if a = k. 

Node Consistency 

A value a G D{xi) of variable Xi is star node consistent (NC*) [LS03] with 

respect to Ci if Cg) 0 Ci{a) < T. Variable Xi is NC* with respect to Ci if : 
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• all its values are NC*, and 

• 3a G D{xi) such that Ci{a)=丄. 

Value a is a unary support for the variable Xi. The WCSP is NC* if every 

variable is NC*. 

Algor i thm 2.6: NC* algorithm 
1 Procedure NC* {X, V, C) 
2 begin 

3 for Xi E do 
4 V := argmin„e例而） 

5 a := Ci{v) 

6 C0 ：= Co © Q； 

7 for a G D{xi) do 

8 Ci[a) : = Ci[a) © a 

9 for Xi e X do 
10 for a € D{xi) do 

11 if Ci{a) e C0 = T then 

12 |_ D{xi) := D{xi) \ {a } 

13 end 

Algorithm 2.6 describes an algorithm for enforcing NC* [Lar02]. For each 

variable xi in the problem, the algorithm finds the value v with minimum unary 

cost by argmin. The unary cost Ci{v) is added to the global lower bound C0 

as it is the minimum cost for the unary constraint Q . This cost is subtracted 

from all the unary costs in Ci to maintain equivalence. A consistency check is 

performed to remove any value with total cost, Ci 0 C0, equals to T. 

Examp le 2.4 The variable Xi in WCSP in Figure 2.3 is not node consistent. 

The equivalent WCSP, which is node consistent, is shown in Figure 2.4. Cost 

1 is subtracted from the unary cost of each value in D{xi ) and sent to C屯. 

• 
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T = 4 
C0 = 1 

a；! X2 

Figure 2.4: An equivalent WCSP which is NC* 

Arc Consistency 

A value a G D{xi) is arc consistency (AC) [LS03] with respect to constraint 

Cij if it is node consistent and 3b E D{xj) such that Cij =丄. 

Value 6 is a binary support of the value a. Variable Xi is AC if all its values 

are AC with respect to constraint Qj. The WCSP is AC* if every variable is 

AC and NC*. 

Algorithm 2.7 shows the pseudocode for maintaining AC* [LS04]. The 

algorithm holds a list of variables of the problem. For each variable Xi, the 

algorithm finds a support for each value a in the variable domain D{xi) with 

respect to constraint Cij in FindSupportsC). The support b is found so that 

the minimum cost for Cij{a, b) with rĉ  1—> a is 丄 .T h e minimum cost is 
I . 

added to the unary cost Ci{a). This cost also subtracted from all the binary 

costs Cij(a, c) for all values c G D(Xj). Lastly, the algorithm removes any 

inconsistent value a G D{xi) such that Ci{a) = 丁. 

Examp le 2.5 The WCSP in Figure 2.4 is NC* but not AC*. Since for every 

value a G D{xi), the cost for Ci’2(a，1) is larger than 丄.The minimum binary 

cost, which is 1, is subtracted from the binary constraint and sent to the unary 
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Algor i thm 2.7: AC* algorithm 
1 Procedure FindSupports (z, j) 
2 begin 

3 for a G D{xi) do 

4 a := mmb^Dixj){Ci,j{a,b)} 

5 Ci{a) := Ci{a)®a 
6 for b e D{xj) do 

7 Ci�j(a, b) := Cij{a, b) Q a 

8 end 

9 Procedure PruneVar(0 

10 begin 

11 change := false 

12 for a G D{xi) do 

13 if Ci{a) = T then 

14 D{xi) := D{xi) \ {a} 
15 change := true 

16 return change 

17 end 

18 Procedure AC* (A", D, C) 

19 begin 

20 Q := { 1 , 2 , . . . , n} 
21 while Q ^ 0 do 

22 j eQ 
23 Q:=Q\ { j } 
24 for Ci�j e C do 
25 FindSupports (z, j) 
26 if PruneVar ⑴ then 

27 |_ Q : = Q U { z } 

28 end 
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cost of X2 1. Figure 2.5 is the equivalent WCSP which is NC* and AC*. 

T = 4 
Q = 1 Av /A 

Xi X2 

Figure 2.5: An equivalent WCSP which is AC* 

• 

2.3 Classical CSPs with Set Variables 

A set is a collection of distinct objects, and is characterized by what elements 

belong to it and what elements do not. Each set is associated with a cardinality 

which is the number of elements in the set. For example, the set S = {1, 2,3, 5} 

has a cardinality |5| equal to four. In particular, the integer 1 belongs to the 

set while the integer 4 does not. In this thesis, we restrict our discussion on 

finite integer set variables in which all set domains contains values of finite 

sets. 

Many problems can be naturally modeled with set variables. Suppose we 

are modeling the courses taken by a student in a semester. The student needs 

to take two compulsory courses and two elective courses. The six available 

courses are represented by integers from 1 to 6. Suppose the compulsory 

courses are denoted by the integers 1 and 3 while 2, 4, 5 and 6 are the 
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numbers denoting the elective courses. We can use a set variable S to rep-

resent the courses taken by the student. The corresponding set domain is 

D{S) = {u I {1, 3} C ti C {1，2，3,4,5,6}}. In addition, we also requires that 

the cardinality of the set variable is four. 

2.3.1 Set Variables and Set Domains 

A set variable which can take up to n set elements has domain size 2". If we 

model a set variable with the domain containing all the possible set values, the 

time and space complexity makes solution searching impractical. In practice, a 

set variable S has a set domain represented as an interval, which is bounded by 

a required set RS{S) and a possible set P3{S). The required set and possible 

set are also known as greatest lower bound and least upper hound of the set 

domain respectively. The required set contains elements which must exist in 

the set. In contrast, the possible set contains any elements which may exist in 

the set. Any element does not in the possible set must not exist in the set. It 

is clear that RS{S) C PS{S) and any set u such that RS{S) CuC PS{S) is 

in the set domain. We denote a set domain bounded by RS(S) and PS{S) as 

In the previous example, the required set is {1 ,3} and the possible set is 

{1, 2 ,3 ,4 ,5 ,6} . The domain bounded by these two sets is shown in Figure 

2.6. Each arc in the figure represents a subset relation such that the set value 

below is a subset of the set value above on two end points of the arc. 

2.3.2 Set Constraints 

Set constraints are composed of common set relations and set operators. Set 

relations include subset (C) and equality (=). Set operators include union (U), 

intersection (fl), difference (\). 
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{1,2诞 5} {1,^,6} { 1 ^ . 6 } {1,3^5,6) 

{1,2^ {13A,5} {^4,6) {^5,6] 

{1.3} 

Figure 2.6: Set domain for the course selection of a student 
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In addition, there are cardinality constraints to restrict the cardinality of 

the sets. 

Examp le 2.6 Steiner Triple System 

A steiner triple system of order n is to find a set of n{n — l)/6 triples of distinct 

integer elements in {1，...，n} such that no two triples have more than one 

common element. We can model this problem with set variables. There are two 

kinds of variables. The variables i E [1 , . . . , n(n—1)/6], represent the sets in 

the problem. The variables A i j ^ i J 6 [l,n(n— l) /6] Az < j , are the auxiliary 

variables for modeling. The domains are D{Si) = D{Aij) = [0 , . . . , { 1 , . . . , n } . 

In this problem, we need to specify the cardinality constraints 岡 = 3 and 

Aij\ < 1 and get the intersection using auxiliary variables SiOSj = Ai j�\/ i , j G 

l , n ( n - l ) / 6 ] A z < ; . • 

2.3.3 Searching with Set Variables 

CSPs with set variables can be solved with backtracking tree search. When 

branching occurs during the search, instead of assigning a value from the do-

main of a select variable, the search splits the search space into two. Given a 

set variable S under consideration at a branching with a selected set element 

a e S, the search proceeds with either a e S oi a ^ S. This splits the search 

space into two at each branching point. For example, a variable has domain 

0, {1, 2,3}J which is depicted in Figure 2.7(a). When we set 3 ^ 5 , the set 

element 3 is removed 'from the possible set and the domain becomes [0, { 1 , 2 } . 

The modified domain is shown in Figure 2.7(b) in which the broken lines are 

connecting to the pruned set values. Figure 2.8 shows a complete search tree 

for variable S with domain D{S) = [0, {1,2，3}]. The current domain at every 

point of search tree is shown as a node. The search starts with the original do-

main. At each branching point, a set element a is picked from PS{S) \ RS{S) 
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{1 ,2 ,3} {1 ,2 ,3 } 

{1 ,2 } {1 ,3 } {2 ,3} {1 ,2} {1 ,3 } {2 ,3 } IX X I IX X ; 
{1 } {2 } {3} {1 } {2} {3 } 

0 0 

(a) (b) 

Figure 2.7: (a) An original domain for a set variable (b) A domain with 3 
removed from the possible set 

in lexicographical order. Each left branch is traversed with a e S while right 

branch is traversed with a 朱 S. Domain is narrowed during the tree traversal. 

In each leaf nodes, the domain contains a single element which is assigned to 

the variable S. 

2.3.4 Set Bounds Consistency 

Gervet [Ger97] defines local consistencies for set variables by reasoning the 

bounds of domain. We denote doms{C) all the values in the domain of set 

variable S that satisfy the constraint C. 

Def in i t ion 2.4 A set variable S with set interval domain lRS{S), PS(S)] is 

set hounds consistent with respect to a constraint C if and only if RS{S)= 

门 c/om乂CO A PS{S) = [jdoms{C). 
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Set bounds consistency is enforced by applying projection functions as in 

Ger97]. Each set constraint is associated with a set of projection functions 

which state how to modify the bounds of the set domains in the scope to 

maintain set bounds consistency. Projection functions of some common set 

constraints are listed in Table 2.1. 

Constraint Project ion Functions 

~ ~ p s ( s , ) ^ p s { s , ) n p s i s 2 ) 
- � RS(S2) — RS{S2) U RSjSi) 

Rsisi) — Rsisi) U RS{Ss) \ PS{S2) 
o _q ps{s,)^ps{s,)nps(s3) 

u — 63 丑风S3)—丑风S3) u J^S{Si) U RS(S^) 
PSiSs) — PSjSs) n PS(Si) u PS(S2) 
liS(Si) ^ RS(Si) U RS(S3) 

c. nc^ - — \ ((^^(Si) n RS 腳 \ PS(Ss)) 
… 2 - 丑风S3)—丑风氏）u jis{Si) n 

PSjSs) — PSjSs) n PSjSi) n PS(S2) 
RS{Si)^ RS{Si)URS{S3) 
PS{S,) — PS{S,) \ (P5(5 i ) \ (FS(S,) \ 
RS 脱—RS{S2) 

\ = p风— PS{S2) \ RS(Ss) 
RSiSs) RS(S3) U RS{Si) \ RS[S2) 

— PS[S^) n PS{S,) \ rs{S2) 

Table 2.1: Projection functions for some common set constraints 

Examp le 2.7 Given a CSP with set variables S\ and S2, with domains D{Si)= 

{1 ,2 } , {1 ,2 ,3 ,4 ,5} ) and D{S2) = [0, {1,2,3,4}] . By considering the con-

straint Si C S2, both set variables are not set bounds consistent. After 

enforcing set bounds consistency, the domains become D(Si) = D{S2)= 

[ {1 ,2 } , {1 ,2 ,3 ,4 } ] . • 
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Weighted Constraint 

Satisfaction with Set Variables 

This chapter defines and introduces set variables in weighted constraint satis-

faction problems. We discuss the issue on how to specify a set constraint by 

associating costs at the element level. We also show that the specification of 

set variables in weighted CSPs is a generalization of that in classical CSPs. 

3.1 Set Variables 

A set is a collection of distinct objects. When we describe a set with respect 

to a universal set, we are interested to know (1) what elements belong to the 

set, (2) what elements do not belong to the set, and (3) how many elements 

are in the set. From the first two points, we know the content of the set. The 

last point gives the cardinality of the set. A set variable S in WCSPs can only 

take a set value u from the domain D{S). In this thesis, we consider integer 

sets. Thus, the domain of a set variable contains integer sets. 

Each set variable Si is associated with its universal set Ui which contains 

all the possible elements in the set values in the domain. In other words, the 

universal set of a variable is the union over its initial domain Ui 二 

30 
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The universal set ^ of a WCSP is the union of all the universal sets associated 

with each set variable in the problem, U = (Ji W } . 

Each set element in the universal set either exists or does not exist in the set 

variable. The existence state of a set element a with respect to a set variable 

S is a e S which can be evaluated to a truth value from {t, / } . We denote 

E{S, a) as a set of truth values which contain the possible existence states of 

set element a for set variable S. 

The cardinality of a set variable S is denoted as |5|. It is the value corre-

sponding to the number of elements in the set value u when S is assigned with 

u. 

3.2 Set Domains 

The domain of a set variable is bounded by two sets, the possible set and 

required set, as in classical CSP. The possible set PS(S) of set variable S 

contains all the set elements which may be contained in the variable. The 

required set RS{S) of set variable S contains all the set elements which must 

exist in the variable. The possible set and required set are also called lowest 

upper hound and greatest lower hound respectively. The set domain is formed 

by D{S) = {u\RS{S) CuC PS{S)}. The set variables can only take the set 

values within the bounds inclusively. Initially, the range of possible cardinality 

of each set variable S is set to {|i?5(5)|,..., |P5'(5)|}, which is the maximum 

bounds for given RS{S) and PS{S). 

3.3 Set Constraints 

In classical CSPs with set variables, we are deciding whether a particular set 

element should be contained in the set or not. In WCSPs, we associate the 
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costs for a particular set element to be contained in or excluded from the set 

value. When we assign T to the existence (respectively inexistence) of a set 

element, we prohibit the set variable to contain (respectively remove) the set 

element. When the cost is less than T, we allow the existence (respectively 

inexistence) of the set element with corresponding cost. 

Set constraints defined here consider the existence state of each set element. 

This nature allows us to express the common soft set constraints which include 

element membership (a 6 Si, a • Si), equality [Si = Sj), subset [Si C Sj), 

union [Si U Sj = Sk), intersection {Si n Sj = Sk), difference {Si\Sj = Sk), and 

cardinality (|5i| = n, |5i| < n, > n) where n is a constant. Complementa-

tion of two sets can be implemented using difference. 

In this thesis, we focus on unary, binary, ternary, and cardinality con-

straints. These constraints enable us to express the common set constraints 

listed above with set variables. Since the performance of constraint prop-

agation will degrade when the arity of a constraint is high, higher arity of 

constraints is usually decomposed to some primitive low arity constraints by 

introducing auxiliary variables [Cle87, Ger97]. For example, the constraint 

n 5*2 g U S4 can be decomposed to A = Ai, S3 U = A2 and 

Ai C A2 with the introduction of two auxiliary set variables Ai and A2. How-

ever, our definitions and algorithms do not restrict the arity of the constraints 

in theory. 

Since the cost of a constraint is determined by the existence states of the 

set elements, we decompose the cost of the constraint by the corresponding 

element cost functions to reflect this relation. An element cost function maps 

the possible existence states in E{S, a) of a set element to an element cost 

The cost for the constraint is the sum of all the element costs given from 

the set of element cost functions for that constraint. This approach gives 
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compact representation of constraints. Figure 3.1 shows the cases (a) 2 G 

八 3 • 52, (b) Si = 5*2，and (c) C S2 as classical constraints in our 

representation. A dotted rectangle represent a set variable. Each oval in the 

rectangle is associated with a set element. The two circles in the oval represent 

the existence states of the set element and contains the corresponding unary 

costs. A circle drawn with broken line indicates an inconsistent existence state 

which is removed from the set of possible existence states E of corresponding 

set variable and set element. The binary costs between two set variables are 

indicated on the lines representing constraints. 

3.3.1 Zero-arity Constraint 

As in WCSPs, there is a zero-arity constraint C$ in the problem. The cost of 

the zero-arity constraint can be interpreted as the global lower bound of the 

problem. The problem contains no solutions when = T. 

3.3.2 Unary Constraints 

A unary constraint Ci assigns costs to assignments to variable Si (Ci : D { S i ) — 

0，...，A:]). The corresponding unary element cost function, which assigns costs 

for the existence � and inexistence ( / ) for each set element a ^Ui with respect 

to set variable Si, is : {《，/} —> [0 , . . . , /c]. The unary cost of set value u 

for variable Si is for constraint Ci is defined as Ci{u) = ^aeUi W � / a ( � ^ 以). 

In the WCSP in Figure 3.2(a), for example, the cost of 2 G is 0 while 

that of 2 ^ 5i is 3 : 

, � / 0 if a = it; = 
3 i f a = / . 

\ 

The cost C i ( { l , 2}) for the unary constraint Ci on {1 ,2 } equals the sum 
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Q = 0’ T 二 3 

「 … i — r - 厂 2 、 …厂 

； I t f 2 t f _ … / _ � 

(a) 
Q = 0，T = 3 

「…厂 r - 厂 2 � … 厂 : 

！ 而 ( ^ ； ^ ( ^ ； ^ ：• 

： - - ： 1 X 3 . ： ： ： ： |K3. ： ： 

； 1 t f 2 t f _ / _ _ � 

(b) 
0 ) = 0’ T = 3 

: H f 2 t f 3 _ _ / _ _ � 

(c) 

Figure 3.1: (a) 2 G 5i A 3 ^ 52 (b) 5i 二 S) (c) 5i C S2 
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0 ) 二 0，T = 3 
「 … 1 、 - - ? … 2 、 … 厂 3 、 … 厂 ： 

:_ 而 ； 

_: & ： 

' _ l t f 2 t f 3 t f > 

Figure 3.2: An example WCSP 

of all the unary element costs : 

Ci({l，2}) = ⑷ ① ⑴ ① 竹 l ) / 3 ( / ) 

= 1 0 0 0 0 = 1 

As in integer WCSPs, we assume there is a unary constraint for each set 

variable. The domain and unary constraints of a set variable are interchange-

able. When Ci{u) = T, the unary constraint prohibits the variable Si taking 

the set value u\ otherwise it allows such assignment with cost Ci{u). As rea-

soning on each domain value for a set variable is impractical, we focus on the 

bounds of a domain. 

Def in i t ion 3.1 The domain hounds of a set variable Si is [RS{Si)^ PS (Si) 

such that Va G ^(i ) /a( / )eC0 = T and \/b e ⑷⑴①C ® < 丁. 

When ^{i)/a{t) © < T, the unary element cost function allows the exis-

tence of the set element a in the set Si with the corresponding cost. Therefore 

the set element a can exist in the set. When (p{i)/a{f) © C© = T, the unary 

element cost function forbids the inexistence of the set element a, and the set 

element a must exist in the set. According to the unary constraint Ci in Figure 

3.2(a), we have PS�Si) = {1，2} and RS{Si) = {2 } since C0 = 0 and T = 3. 
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3.3.3 Binary Constraints 

A binary constraint Ci j assigns costs to assignments to variables Si and Sj 

{Cij : D[Si) X D{Sj) — [0 , . . . , k]). The corresponding binary element cost 

function, which assigns costs for the existence states of a set element a G 

Ui U Uj for set variables Si and Sj, is : 0 , / } x {亡’/} [0’...’A；:. 

Since Ui may not be equal to Uj, \fa,p G {t, / } , the binary element cost 

function (p{i,j)/a{ij c^) 二丁，Va 咨 Ui and = T,Va ^ Uj. The binary 

constraint of the set variables Si and Sj can be defined as : Cij{u, v)= 

T^a卿Kj 外’jVcM e 6 v). 

Figure 3.2(a) shows the binary element costs among the set elements of Si 

and S2- The costs are indicated on the lines linking the existence states of the 

elements in the two sets. No lines are drawn if the cost is 0. According to the 

figure, the element cost for 1 in Si and S2 is : 

1 ii a = t /\ (3 = t\ 

= 3 ii a = f 0 = t., 

0 otherwise 
\ 

The binary cost for = {1 ,2 ,3 } and S2 = {1 ,3 } is the sum of all the 

binary element costs : 

Ci2({1，2，3}’{1，3}) 

=< (̂1’2)/1(亡,力）® 巧l’2)/2(亡，/) ® V̂ (l’2)/3(i，亡） 

= 1 © 1 © 0 = 2 

3.3.4 Ternary Constraints 

A ternary constraint Ciĵ k assigns costs to assignments to variables Si, Sj 

and Sk [Ci丄k : D{Si) x D{Sj) x D{Sk) — [0 , . . . , k]). The corresponding 

ternary element cost function, which assigns costs to the existence states of a 
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set element a eUi UUj UUk for variables Si, Sj and Sk, is (p{i,j,k)/a : {力，/} x 

Similar to the case for the binary constraint, there may be an element 

a e Ui U Uj U Uk where a • Ui. In this case, all the ternary element cost 

functions taking a E Si return 丁 as the cost. This is also the same for variables 

Sj and Sk, The ternary constraint of the set variables Si, Sj and Sk can be 

defined as : Cu^k(u,v, 

3.3.5 Cardinality Constraints 

A cardinality constraint C^ assigns costs to assignments to a set variable Si 

according to the cardinality of Si, It is decomposed as C\i\ = (Cos亡丨o Card) 

where Card : D{Si) — N U {0} and Costm : N U {0} — [0’...，A;]. This 

constraint first maps the assignment of the variable Si to its cardinality \Si 

by using Card. It then assigns costs to |5i| by Cost\i\. 

3.4 Characteristics 

3.4.1 Space Complexity 

The space complexity of constraint representation is greatly reduced with our 

proposal. Table 3.1 tabulates the storage requirement for unary, binary, and 

ternary set constraints in terms of number of costs specified when set variables 

and integer variables are used. When we use integer variables to simulate set 

variables, each set value in the set domain is mapped to an integer in the 

integer domain. Thus, the domain size and space complexity of constraints for 

integer variables grow exponentially with the number of set elements in the 

sets. Set constraint specification is compact in our proposal in which the space 

complexity is linear to the number of set elements in the sets. 
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Space Complexity 

Ar i ty of Constraint Set Variables Integer Variables 

Unary “ 2e 
Binary 4e 

Ternary “ 8e 

Table 3.1: Space complexity of set constraints of different arities with the use 
of set variables and integer variables (e is the maximum number of set elements 
in the sets) 

3.4.2 Generalization 

Property 3.1 The classical versions of element membership, equality, subset, 

union, intersection, difference, and cardinality constraints can be modeled in 

our WCSP framework with element costs 0 and T. 

Proof Cost functions, with costs 0 and T only, for the classical versions 

of element membership, equality, subset, union, intersection, difference, and 

cardinality constraints are listed in Table 3.2. 

• 

Definit ion 3.2 Given a classical CSP Vc = (^b, Vc�Cc) and a WCSP Vw = 

(k, Xw, Vw^ Cw), Vc and Vw are equivalent to each other if and only if Xc 三 

Xw and for each complete assignment in the problem t, V{t) = 0 in Pw if and 

only if i is a solution of Pc. 

Property 3.2 When a WCSP with set variables involves only 0 and T in the 

element costs, the WCSP can be transformed into an equivalent problem with 

classical set constraints only. 

Proof Since set constraints in a WCSP are defined with corresponding ele-

ment cost functions, this property can be shown by transforming every element 
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Set Constraint Equivalent Cost Function 

„ , , f T if Q； = / ; 

外 ) / " � = i � o t h e r w i s e . 

a 车 S, 外."“a) = I I ；[ti?e�wL. 

Si = Sj 如 e u " , 鲁 K / ? ) = { 0丁 

S C Va e _ ZY, ’ � “ … 二 { 0丁 'il^J.^'^J =力 

{ T if (Q = i V /? = 0 八 7 二 / ; 
T ifa = / A ^ = / A 7 = i; 
0 otherwise. 

( T if (a = /V/? = / ) A7 = ;̂ 
VaeiYiUi<j_UZ4’< (̂ij’fc)/a(c ,̂A\7)= { 丁 if a =艺八= i A 7 = / ; 

[ 0 otherwise. 

T if/? 二 =亡； 

Si\Sj = "iaeUiU Ui U Ik�'Piij,k)/a{a, (3n)={ 丁 if a = / A : = / A ^ = t-
0 otherwise. 

丨 一 = {。”=：：; 

丨 胁 M q T 二 

丨別 >-几 Mo”Jfir’ 
Table 3.2: Soft versions of common classical set constraints 
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cost function to an equivalent classical membership constraint. For each unary 

element cost function, = 丁 becomes a • Si and � / a ( / ) 二 丁 becomes 

a G Si. The transformations for binary element cost functions are listed below. 

Cost Function Classical Constraint 

外，：n/a{t,t) = T a^jSiH Sj) 

nw/ajij) = iSi\Sj) 

外 j ) / a ( / ’ / ) = 丁 I 

The transformations for ternary element cost functions are similar. For 

the cardinality constraints, we transform each n such that Cost\ii{n) 二丁 to 

Si\ ^ n as a, classical constraint. • 

Theorem 3.1 WCSPs with set variables subsumes classical CSPs with set 

variables. 

Proof This follows directly from Properties 3.1 and 3.2. • 



Chapter 4 

Consistency Notions and 

Algorithms for Set Variables 

This chapter defines some local consistency notions applied to WCSPs with 

set variables. Examples are given to illustrate the concepts. We also give 

algorithms to enforce these local consistencies for set variables and constraints. 

We give the complexity and prove the correctness of the algorithms. 

4.1 Consistency Notions 

The costs of a set constraint are specified at the element level via element cost 

functions. We can define local consistencies for the element cost functions as 

follows. 

4.1.1 Element Node Consistency 

Definit ion 4.1 An existence state a of set element a is element node consis-

tent (ENC) with respect to unary constraint Ci if C免 0 (p(i)/a(o：) < T. A set 

element a is ENC if 

41 
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C70 = 0’ T = 3 

； I t f 2 t f 3 t / . 

(a) 
C0 = 2, T = 3 

「…1、…厂2、…厂3、…厂： 

； 1 ^ f 2 t f 3 t / . 

(b) 

Figure 4.1: (a) A WCSP which is not ENC (b) An equivalent WCSP which is 
ENC 

1. all its possible existence states in E{Si, a) are ENC with respect to unary 

constraint Q , and 

2. 3a e E(Si,a) such that � / “ � = 0 . 

The existence state a is a support for the set element a, A set variable Si 

is ENC with respect to unary constraint Ci if every set element is ENC. A 

WCSP is ENC if every set variable Si is ENC. 

Examp le 4.1 Figure 4.1(a) shows a WCSP with set variables, which is not 

ENC since the set elements 1 in Si and 2 in S2 are not ENC. The minimum 

cost for the existence states of 1 in Si is 1. For 2 in S2, where 五(6̂ 2, 2) = { t } , 

the only possible existence state, t, costs 1，which is also not 0. An equivalent 
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WCSP is obtained if 1 is subtracted from the costs for set element 1 in Si and, 

at the same time, 1 is also subtracted from the cost for set element 2 in S2. 

This contributes a cost of 2 to the global lower bound, Qd. The result is shown 

in Figure 4.1(b). • 

4.1.2 Element Arc Consistency 

Def in i t ion 4.2 An existence state a of set element a is element arc consis-

tent (EAC) with respect to binary constraint Ci,j if 3p G E{Sj, a) such that 

(/9(ij)/a(Q；, P) = 0. An existence state p is a support of the existence state a. A 

set element is EA C if all its possible existence states are EAC with respect to 

the binary constraint Cjj . A set variable is EAC if every set element is EAC 

with respect to binary constraint Ci^j. A WCSP is EAC if every set variable 

is EAC and ENG. 

Examp le 4.2 Figure 4.2(a) shows a WCSP with set variables, which is not 

EAC since the existence state for 1 G 5i has no support in S2. The existence 

state for 2 6 5*2 is not EAC because the binary cost associated with the only 

existence state t is 1. Figure 4.2(b) shows an equivalent WCSP which is EAC. 

The minimum binary cost for 1 G is subtracted from the binary constraint 

and added to the unary cost of 1 G 5i. Similarly, the binary cost v?(i’2)/2(亡，亡） 

is sent to the unary cost of 2 G 52- • 

4.1.3 Element Hyper-arc Consistency 

Def in i t ion 4.3 An existence state a of set element a is element hyper-arc con-

sistent (EHAC) with respect to ternary constraint Gi,j，k if 3/? G E{Sj, a), 7 G 

E[Sk�a) such that <f(i,j’k)/a(o：, A 7) = 0. Existence states (3 and 7 are supports 

of the existence state a. The set element is EH AC if all its possible existence 
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C0 = 0, T = 3 • _ , 

• I t f 2 t _ / _ _3_ t _ _ f _ 

(a) 

C® = 0, T = 3 … ， 

；& ( g ； ^ ： 

. H f 2 t / _ _ _3_ t _ _ /_ _ � 

(b) 

Figure 4.2: (a) A WCSP which is not EAC (b) An equivalent WCSP which is 
EAC 
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states are EH AC with respect to ternary constraint Ci’j，k- A set variable is 

EH AC if every set element is EH AC with respect to ternary constraint Ci,j,k. 

A WCSP is EH AC if every set variable is EHAC and ENC. 

4.1.4 Weighted Cardinality Consistency 

For the cardinality constraint, we adopt a notion of weighted cardinality con-

sistency which maintains the maximum cardinality interval within 

{\RS{Si)l...,\PS{Si)\} 

for the corresponding set variable Si while removing the inconsistent cardinal-

ity from the bounds. 

Def in i t ion 4.4 The cardinality upper hound and lower hound 

of a set variable Si with respect to a cardinality constraint C\i\ are defined as 

ii6(|5i|) = max A 

lb{\Si\) = minA 

where A = {|w| | u G D{Si) A C\i\{u) < T } . 

Def in i t ion 4.5 A set variable Si is weighted cardinality consistent (WCC) 

with respect to a cardinality constraint C\i\ if 

1. the cardinality upper bound < |P5(5i)| and the cardinality lower 

bound lb{\Si\) > \RS{Si)l 

2. Cost\i\{lb{\Si\)) © Q) < T, and 

3. Costiii{ub{\Si\))®Cfi, < T. 
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4.1.5 Weighted Set Bounds Consistency 

As in classical set CSPs, we do not reason about each domain value in the 

set domain due to its high complexity. Instead, we enforce the consistency 

by adjusting the bounds of a set domain. Since set constraints in WCSPs are 

defined in terms of sum of element cost functions, we reason on the bounds of 

a set domain by considering the cost for the existence of each set element. 

Given a set variable S and a constraint C, we denote by wdomsiC) a set 

containing all set values u such that 

1. RS{S) QuQ PS�S�, and 

2. such that { 5 u} C i and C{t) 0 C® < T. 

Defini t ion 4.6 A set variable S with domain is weighted 

set hounds consistent (WSBC) with respect to a constraint C if and only if 

RS{S) = {^wdoms{C) A PS{S) = (Jwdoms(C). 

Theorem 4.1 A set variable S is WSBC with respect to a unary constraint 

Ci (or a binary constraint Cij or a ternary constraint Ci’j,k) if S is ENC with 

respect to Ci (or EAC with respect to Q j or EHAC with respect to Cij^k)-

Proof By the definition of RS{S) and PS{S) for set variable 5, it is trivial 

to show that any set element in RS(S) must exist and any set element not in 

PS{S) must not exist. The following proves that no extra elements can be put 

in RS{S) or taken out from P5 (5 ) when ENC (or EAC or EHAC) is enforced. 

For unary constraint, suppose 3a ^ RS{Si) such that Vu G D[Si\ a ^ u 

C i u ) � Co = T. When Si is ENC, a 朱 RS{Si) implies C^ 0 � / a ( / ) < 丁. We 

can always construct a set value v for Si such that Ci(v) 二 0. Now, we set 

a ^ Si and form new a set value w with cost </?“)/«(/)’ then Ci(w) ® Q < T 

leads to contradiction. For binary (or ternary) constraint, when Si is EAC (or 
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EHAC) we can find a support for the set value w' for Si where a ^ w' with 

cost 0 with respect to the binary (ternary) constraint. Therefore, a 朱 RS{Si). 

On the other hand, suppose 3a G PS {Si) such that Vu 6 D{Si), a e u ^ 

C(u)®C(D = T. Since a e PS (Si), (力)< T. We can always construct 

a set value v for Si such that Ci{v) = 0. Now we set a & Si and form a set value 

w with cost (p(i)/ait), then Ci{w) © C0 < T leads to contradiction. Similar to 

the above case, we can find a support for w' for Si where a e w' with cost 0 

with respect to the binary (ternary) constraint. Therefore, a G PS{Si). • 

Theorem 4.2 When a WCSP with set variables involves costs 0 and T only, 

WSBC = SBC. 

Proof By the definition of RS{S) and PS{S) for set variable 5, since Va G 

RS(S), C0 © ^{i)/a{f) — T, any set value must contain element a. In addition, 

since Va • PS{S), C ^ o � � = T , any set value must not contain a. Accord-

ing to Theorem 4.1, WSBC ensures that each set element a G PS{S)\RS{S) 

can be extended to form a set value with cost C0 © < 丁. Since there 

are costs 0 and T only, C© © � = 0 which implies that the set element 

a can be contained in the set value. • 

4.2 Consistency Enforcing Algorithms 

The element consistencies can be enforced in a similar way as in enforcing 

local consistencies in integer WCSPs. The enforcement procedures involve 

sending costs from ternary and binary constraints to unary constraints and 

from unary constraints to global lower bound C见 to obtain a support. The 

costs subtracted from the constraints are added to the appropriate location to 

preserve equivalence. 
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4.2.1 Enforcing Element Node Consistency 

Algorithm 4.1 shows the procedure for enforcing ENG. The function ENC() in-

volves two major steps. The first step forces unary support for each set element 

a in the variable universe Ui for each set variable Si in FindUnarySupports 0 . 

A minimum cost of ^{i)/a among the possible existence is determined. This 

cost is added to the global lower bound and subtracted from the unary ele-

ment cost function In the second step, the domain of each set variable is 

narrowed in PruneVar(). A set element a for set variable Si is removed from 

PS{Si) if ^ii)/a{t) © Co = T or included in RS{Si) if 糊aiH � Q) = T. 

For each set element of set variable, FindUnarySupports () and PruneVar () 

both have complexity 0 [1 ) as each set element has ma:x:imum two existence 

states. Therefore, given a WCSP with n set variables and each with maximum 

e set elements, the procedure ENC() has complexity 0{ne + ne) — 0{ne). 

Theorem 4.3 Given a WCSP P, Algorithm 4.1 transforms P to P' such that 

1. P' is equivalent to P, and 

2. P' is ENG. 

Proo f The procedure given in Algorithm 4.1 only involves basic operations 

on the costs. In FindUnarySupportsO, the minimum cost of (p{i)/cL is added 

to C0. At the same time, the same amount of cost is subtracted from !a 

for all possible existence states. An equivalent on cost evaluation is preserved. 

The cost operations in FindUnarySupportsO ensure that there is a unary 

support for each set element of a set variable. Inconsistent existence states are 

pruned in PruneVar(). Thus, the transformed problem is ENG. • 
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Algor i thm 4.1: Enforcing element node consistency 
1 Procedure FindUnarySupports (^i, a) 

2 begin 

3 c ：= 

4 C% ：= C0 © c 
5 for a e E(Si, a) do 
6 |_ (p{i)/a{a) := (p(i)/a(a) 0 c 

7 end 

8 Procedure PruneVar a) 

9 begin 

10 change := false 

11 if ^{i)/a{t) © C0 = T then 

12 PS{Si) := PSi^Si) \ {a} 
13 change :=true 

14 if (P(i)/a{f) © C0 = T then 

15 RS{Si) := RS{Si) U {a} 

16 change := true 

17 return change 

18 end 

19 Procedure ENC(;f,P,C) 

20 begin 

21 for Si e ^ do 
22 for a €Ui do 
23 FindUnarySupports (Si, a) 

24 for Si E： ^ do 
25 for a GUi do 
26 PruneVar (^i, a) 

27 end 
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Algo r i t hm 4.2: Enforcing element arc consistency 
1 Procedure FindBinarySupports(5i, Sj, a) 
2 begin 

3 for P e E{Sj,a) do 

4 c := minĉ e£(Si’a)(約i’:0/a(Q；，/̂ )) 

6 for a e E{Si, a) do 

7 L ”�jVoiOL, P) '= ©C 

8 FindUnarySupports(5j, a) 
9 end 

10 Procedure EAC(A", 

11 begin 

12 Q :=0 
13 for Si e Af do 

14 for a e Ui do 
15 [ L ( 3 : = Q U { ( 5 i , a ) } 

16 while Q ^ 0 do 

17 (Si, a) e Q 
18 Q:=Q\{(Si,a)} 
19 for Cij G C do 

20 FindBinarySupports (Si, Sj, a) 

21 for Sm ^ ^ do 
22 for a e Km do 
23 if PruneVarC^m, a) then 
24 [_ Q : = Q U { ( 5 ^ , a ) } 

25 e n d 
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4.2.2 Enforcing Element Arc Consistency 

The procedure for enforcing EAC is depicted in Algorithm 4.2. The func-

tion EAC() computes and stores in Q the set of all possible pairs of set vari-

able and set element. Each time a pair {Si, a) is picked out from Q. The 

algorithm finds binary supports for a G Sj with constraints Qj G C in 

FindBinarySupports 0 . A binary support for each existence state (3 of set 

element a of set variable Sj is forced by sending minimum cost of 

to the unary cost 灼、The cost is also subtracted from the binary costs 

P)- Since the unary cost ^{j)/a{P) and a e Sj may not be ENC, 

FindUnarySupportsO is called to force ENC. In the end of each iteration, all 

set elements in each set variable are checked to prune any inconsistent existence 

state in PruneVarO. 

The procedure FindBinarySupports() has complexity (9(1) as each set 

element has a maximum of two existence states. Given a WCSP with n set 

variables and each with maximum e set elements. In EAC () , each pair of set 

variable and set element can be re-inserted into Q once. The complexity of 

EACO is thus 0{ne + {ne){n + ne)) = 

Theorem 4.4 Given a WCSP P, Algorithm 4.2 transforms P to P' such that 

1. P' is equivalent to P, and 

2. P' is EAC. 

Proof The procedure given in Algorithm 4.2 only involves basic operations 

on the costs. In FindBinarySupports()，for each existence state P G E{Sj, a), 

the minimum cost of (p{iJ)/a{a,P) for a e E{Si, a) is added to ip{j)/a{P). 

At the same time, the same amount of cost is subtracted from ip{i,j)/a{a, P) 

for all a G E{Si, a). An equivalent on cost evaluation is preserved. 
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The cost operations in FindBinarySupports () ensure that there is a binary 

support for each existence state of a set element for a set variable. Inconsistent 

existence states are pruned in PruneVar () . Thus, the transformed problem is 

EAC. • 

4.2.3 Enforcing Element Hyper-arc Consistency 

The procedure for enforcing EHAC is given in Algorithm 4.3. The procedure 

is similar to the algorithm for enforcing EAC. All possible pairs of set variable 

and set element are inserted to Q. Each time a pair a) is picked out from 

Q and ternary supports are forced for each existence state of set element a in 

set variable Sj and Sk- Supports are found by sending cost from the ternary 

element cost function to unary cost function in FindTernarySupports () . As 

the cost of unary cost function is changed, FindUnarySupportsO is called 

to maintain ENC. Lastly, each set element in all set variables is checked in 

PruneVar 0 to remove any inconsistent set element. 

The procedure FindTernarySupports() has complexity (9(1) as each set 

element has a maximum of two existence states and the procedure only handles 

ternary supports. Given a WCSP of n set variables, each of which has a 

maximum of e set elements. EHAC() has complexity 0{ne + (ne)(n^ + ne)) 二 

0(n2e(n + e)). 

Theorem 4.5 Given a WCSP P, Algorithm 4.3 transforms P to P' such that 

1. P' is equivalent to P, and 

2. P' is EHAC. 

P r o o f The procedure given in Algorithm 4.3 only involves basic operations 

on the costs. In FindTernarySupports ( ) , for each existence state (3 € E(Sj, a), 
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Algor i thm 4.3: Enforcing element hyper-arc consistency 

1 Procedure FindTernarySupports Sj, a) 
2 begin 

3 for P e E{Sj,a) do 

6 for a 6 E{Si, a),7 € E{Sk, a) do 

7 L P�7) := Pn)Qc 

8 FindUnarySupport s a ) 

9 for 7 G E{Sk, a) do 

10 c '= \Timo,eE{Si,a)ME{Sj,a){9{i,3,k)/a[Oi^ l)) 
11 m / a C r ) : = m / a ( 7 ) © c 
12 for Q； € E{Su a),(3e E{Sj, a) do 

13 L ” ( 5 , 7) := 丄fc)/a(a，7) e C 

14 F i n d U n a r y S u p p o r t s a ) 
15 end 

16 Procedure EHAC(Ar,D,C) 

17 begin 

18 Q : = 0 
19 for G AT do 

20 for a EUi do 
21 |_ Q : = Q u { ( 5 i , a ) } 

22 while Q 一边 do 
23 {Si, a) E Q 

24 Q : = Q \ { ( 5 , , a ) } 
25 for Cij^k e C do 

26 FindTernarySupports Sj, Sk, a) 

27 for Sm G X do 

28 for a ^Uk do 
29 if PruneVar (^m, a) then 

30 |_ Q'.= QD{{Sm.a)} 

31 end 
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the minimum cost of (̂ (i，j.’A;)/a(Q；，/?，7) for a G G E{Sk, a) is added 

to (p{j)/a{l3). At the same time, the same amount of cost is subtracted from 

J，幻/<̂ (<̂ ，/̂ ，7) for a G e E{Sk, a). Similar process is applied 

for each existence state 7 e E、Sk,a). An equivalent on cost evaluation is 

preserved. 

The cost operations in FindTernarySupports () ensure that there is a 

ternary support for each existence state of a set element for a set variable. In-

consistent existence states are pruned in PruneVar(). Thus, the transformed 

problem is EHAC. • 

4.2.4 Enforcing Weighted Cardinality Consistency 

Algorithm 4.4 gives the procedure for enforcing weighted cardinality consis-

tency. In procedure WCC(), ReviseCardinality() is called for each set vari-

able. First, the cardinality lower and upper bounds are reset so that they are 

within the interval {|i?S"(S"i)|’ … ， T h e n , the cardinality bounds are 

reduced if the values of cardinality on the bounds are inconsistent. Lastly, 

when the cardinality lower and upper bounds are equal to each other, the car-

dinality of the set variable is fixed and the cost of cardinalit), is send to the 

global lower bound, Cq. Suppose = = k. If k = then 

Si is fixed to RS{Si)\ otherwise if k = \PS(Si)l Si is fixed to PS{Si). 

The complexity of ReviseCardinal ityO is 0{e) for each set variable with 

a maximum of e set elements. When a WCSP has n set variables, WCC() has 

complexity 0{ne). 

Theorem 4.6 Given a WCSP P, Algorithm 4.4 transforms P to P' such that 

1. P' is equivalent to P, and 

2. P' is WCC. 
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Algor i thm 4.4: Enforcing weighted cardinality consistency 
1 Procedure ReviseCardinality 

2 begin 

3 /6(|5'I|) ：= max{lb{\Si\), \RS{Si)\) 
4 := mm{ub(\Si\),\PSiSi)\) 
5 while 0 Cg) = T do 

6 |_ lb(\Si\) ：= lb{\Si\) + l 
7 while © C© = T do 

8 |_ :=ub(\Si\) - 1 

9 if = w^d^il) then 

10 Co := Co e Cos力 

12 if lb{\Si\) = then 

13 |_ PSiSi) := RS{Si) 

14 if = \PS(Si)\ then 

15 |_ RSiSi) := P 啦 ） 

16 end 

17 Procedure WCC(A', I), C) 

18 begin 

19 for Si eX do 
20 ReviseCardinality (Si) 

21 end 
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P r o o f The procedure given in Algorithm 4.4 removes any inconsistency val-

ues of cardinality in FindTernarySupports(). Both and are 

first revised so that they are within {|i?5(5i)|,..., |F5(5i)|}. The pruning 

of values of cardinality is done by sequential checking starting from the two 

bounds. Only inconsistency values of cardinality are removed. Cost is only 

transferred from the cardinality constraint to the global lower bound when the 

cardinality is fixed. Thus the transformed problem P' is equivalent to P and 

is WCC. • 

4.2.5 Enforcing Weighted Set Bounds Consistency 

A lgo r i t hm 4.5: Enforcing weighted set bounds consistency (Part 1) 
1 Procedure ReviseCardinalityForWSBC(5'i, Q) 
2 begin 

3 lb{\Si\) max{lb{\Si\), \RS(Si)\) 
4 ub{\Si\) := mmiub{\Si\), |P5(5i)|) 
5 whi le CW|i|(/6(岡)）© Cg = T do 

6 |_ lb{\Si\) ：= + 1 

7 whi le 岡 )）0 Ce = T do 

8 |_ := ub{\Si\) - 1 

9 if then 

10 Cd, ：= Co © 

11 = 0 
12 if lb{\Si\) = \RS{Si)\ then 

13 for a € PS{Si) \ RS{Si) do 

14 |_ Q : = Q u { ( 5 i , a ) } 

15 |_ PS{Si) := RS{Si) 

16 if = \PS{S.i)\ then 

17 for a e PS{Si) \ RS(Si) do 

18 |_ Q:=(3u{(5i,a)} 
19 RS{Si) := PS(Si) 

20 end 
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Algor i thm 4.6: Enforcing weighted set bounds consistency (Part 2) 
1 Procedure WSBC(;f, P , C) 
2 begin 

3 g : = 0 
4 for Si e ^ do 
5 for a eUi do 
6 [_ ( 3 : = Q U { ( 5 i , a ) } 

7 while Q 0 do 

8 {Si, a) e Q 

9 Q:=Q\{{Sua)} 
10 FindUnarySupports (St, a) 
11 for Ci�j G C do 

12 FindBinarySupports ⑶，Sj, a) 

13 for Cij^k eC do 
14 FindTe;rnarySiipports(«Si, Sj, Sk, a) 

15 for Sm ^ ^ do 

16 for a e Um do 
17 if PruneVar (5m, a) then 

18 [_ Q :=QU{{Sm,a)} 
19 ReviseCardinalityForWSBCC^m, Q) 

20 end 



Chapter 4 Consistency Notions and Algorithms for Set Variables 58 

The procedure for enforcing weighted set bounds consistency is depicted 

in Algorithms 4.5 and 4.6. The procedure WSBCO incorporates algorithms for 

enforcing ENC, EAC and EHAC by calling functions FindUnarySupports ( ) , 

FindBinarySupports ( ) and FindTernarySupports () for each pair of set vari-

able and set element in the problem. In each iteration, the global lower bound 

may be changed after these functions are called. The algorithm scans for all 

pairs of set variable and set element to prune any inconsistent existence states. 

While some set domains have been changed which may affect the bounds of 

the domain. ReviseCardinalityForWSBC() is called to ensure the set vari-

able is weighted cardinality consistent. It is a slight modification of the original 

ReviseCardinal i tyO. It inserts pairs of set variable and set element to Q 

whenever there are changed in their domains. 

The complexity of ReviseCardinalityForWSBC () is (9(e) for a set variable 

Si with a maximum of e set elements throughout the running of the algorithm. 

Thus, the whole algorithm, WSBCO, has complexity 0{ne + ne{l + n + + 

ne + ne)) = 0(n^e(n + e)). 

Theorem 4.7 Given a WCSP P, Algorithms 4.5 and 4.6 transforms P to P' 

such that 

1. P' is equivalent to P, and 

2. P' is WSBC. ， 

Proof The procedure given in Algorithms 4.5 and 4.6 incorporates the pro-

cedures for enforcing ENC, EAC, EHAC and WCC. By Theorem 4.1, WSBC 

is enforced when a problem is ENC, EAC, EHAC and WCC. • 
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Experiments 

We modified ToolBar [BHdG+04]，a generic integer WCSP solver, to handle 

also set variables and conducted experiments to verify the feasibility of our 

proposal. The comparison is made among our prototype implementation, the 

original ToolBar and ILOG Solver 6.0 [IL003] (for classical cases only). While 

our implementation and ILOG Solver use set variables in modeling, the prob-

lems are transformed to use 0-1 variables for the original ToolBar to solve. In 

the rest of this chapter, we refer to our implementation as ToolBar-Set, the 

original ToolBar as ToolBar-01, and ILOG Solver as ILOG. 

We experimented on the Steiner Triple System and the Social Golfer Prob-

lem, which are well known set CSP benchmarks. We solved for all solutions to 

make our results independent of search heuristics. Besides solving the prob-

lems as classical CSPs, we generated two soften versions for each instance to 

compared the performance of solving WCSPs with set variables. 

The experiments were conducted on a Sun Blade 2500 (2 x 1.6GHz US-IIIi) 

machine with 2GB memory. We report the runtime in seconds and number of 

fails in solving the problems. The time limit for solving each instance is 600 

seconds. In each table, we use '-，to indicate non-termination within the time 

limit. The shortest runtime are highlighted in bold for each problem instance. 

59 
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5.1 Modeling Set Variables Using 0-1 Vari-

ables 

ToolBar [BHdG+04] is a generic and efficient WCSP solver for solving integer 

WCSPs. As ToolBar cannot handle set variables directly, we have to model 

the problem using 0-1 variables. A 0-1 variable is an integer variable with 

domain {0,1}. 

The modeling approach is straight-forward. Whenever we have a set vari-

able Si with e possible set elements in the original set model, we use e 0-1 

variables Xi^,..., Xî  to represent Si in a 0-1 model by the following relation : 

Va e Si if and only if Xî  = 1 

For each set variable Si with a unary set constraint we have, for each 

set element a e Ui, a, unary element cost function (p(i)/a in set model and a 

unary constraint C ! � i n 0-1 model such that : 

=Ci“l) 

m/a(f) = Odo) 

For each set variable Si with a binary set constraint C^j, we have, for each 

set element a G 从 a binary element cost function in set model and a 

binary constraint C i ^ in 0-1 model such that, for a G / } : 

where (3 6 {0 ,1} and a = it if and only \i (5 =1. 

The transformation is similar for ternary constraints. We transform a car-

dinality constraint C\i\ for Si where \Ui\ = e in the set model to an e-ary 
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constraint such that 

where a e u ii and only if = 1. 

5.2 Softening the Problems 

Steiner Triple System and the Social Golfer Problem are classical problems 

containing only classical constraints. In order to generate soft versions of the 

problem, we can impose more restrictions or relax the existing constraints. A 

constraint becomes more restricted when we add preferences for the values in 

the variable domains. A problem becomes more relaxed when we reduce the 

costs in the constraints. 

In the following experiments, we have two versions of softened problems : 

Restricted and Relaxed. A Restricted version of a problem is generated by 

randomly adding costs from 0 to 9 to the unary constraints. The original 

problem is transformed such that we have preferences to the values. The 

solution space is reduced since the constraints are more restrictive. On the 

other hand, a Relaxed version of a problem is generated by randomly replacing 

costs from 1 to T whenever the cost is 丁 in the original constraints. This 

increases the search space as costs for violating a constraint is reduced from 

T to a cost in {1 ’ . . .，T}. To measure the runtime for these two versions, 

we generated 10 instances for each problem instance and report the average 

runtime and average number of fails. 
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5.3 Steiner Triple System 

The Steiner Triple System (prob044 in CSPLib [GW99]) of order n is to find 

a set of n{n — l ) /6 triples of distinct integer elements in {1’...，n} such that 

no two triples have more than one common element. A Steiner tripe system of 

order n exists when n modulo 6 equals to 1 or 3 [LR80]. An example solution 

for n = 7 is : 

{{1’ 2’ 3}, {1’ 4，5},{1,6, 7}，{2’ 4’ 6}, {2,5，7}，{3，4’ 7}, {3，5,6}} 

We can model the problem as 

• Variables : 

- S e t s of triples in the problem : 

Si,i G [1,... ,n{n - l)/6: 

-Auxiliary variables : 

j e [1，…，n{n — l)/6] M < j 

• Domains : 

• Constraints : 

€ [l,...,n(n- l)/6] Az < j 

—Each auxiliary variable holds the intersection of each pair of triples : 

Si n Sj = Aij 

—Each set contains exactly 3 elements : 

= 3 

- A n y two triples have at most one common element : 

\Aij\ < 1 



Chapter 5 Experiments 63 

Classical 

"n " I L O G ToolBar-Set ToolBar-01 

Fails Time F ^ Time Fails 
~6~~OlO 6195 0.05 6195 1.64 7858 

7 31.52 1405878 16.84 1405878 - -

Table 5.1: Runtime and number of fails for solving classical Steiner Triple 
System 

Restricted Relaxed 

n ToolBar-Set ToolBar-01 ToolBar-Set ToolBar-01 

^ ^ T i m e Fails: Time Fails Time Fails =Time Fails: 
T " 0.05 6195— 1.68 7858 0.21 35910 “ 2.84 13744— 
T|~5.40 524729 263.51 490587 || 46.17 6619628 - -_ 

Table 5.2: Runtime and number of fails for solving soft Steiner Triple System 

We focus on the problems up to order 7 due to the long solving time for the 

problem of order 9. The runtime and number of fails of solving the problem 

for all solutions are listed in Tables 5.1 and 5.2. We can observe that the 

runtime of our implementation is about two times faster than ILOG Solver. 

Our implementation is faster than that of the original ToolBar implementation 

in order of two magnitudes. 

5.4 Social Golfer Problem 

The Social Golfer Problem (probOlO in CSPLib [GW99]) is to schedule g groups 

of s golfers over w weeks so that no two golfers play in the same group twice. 

The problem can be characterized by g-s-w. We denote each player with an 

integer and use brackets to hold the players in each group. A solution for the 

instance 3-2-3，which is 3 groups of 2 golfers for 3 weeks, of the problem is as 
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follows : 

Week 1 : (1 2) (3 4) (5 6) 

Week 2 : (1 3) (2 5) (4 6) ‘ 

Week 3 : (1 6) (2 3) (4 5) 

We can model the problem as 

• Variables : 

- T h e i group of player in week j : 

Gij. i G {l,...，^^}’j G {l’...，u;} 

—Auxiliary variables : 

Aij’id,i,k e {l,...,g}J,l e {l，...’i4’f — A; 

• Domains : 

• Constraints : 

- E a c h group has size exactly s : 

Cy = s 

—Groups in the same week should contain distinct player ： 

GijnGik =边，j — k 

- E a c h auxiliary variable holds the intersection of two groups : 

Gij n Gki = Aij^kb« k 

- A n y two groups can share one player at most : 

We reduce the search space of the problems by pre-assigning the players 

for the first week. Tables 5.3 and 5.4 show the runtime and number of fails 
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Classical 

g-s-w ILOG ToolBar-Set ToolBar-01 

Time Fails Time Fails Time Fails 
.3-2-4 ~~1.26 18449 0.60 1844^ 52.94 18450 
3-2-5 ~ ~ 8 . 6 6 7 0 2 8 9 4 . 1 2 7 0 ： ^ - -

“3-3-3 ~ 0 . 2 8 6817 0.15 11.27 11166 
3-3-4 ~~2.22 32737 1.29 32737" 231.83 63006 
4-2-3 58.49 4 8 3 4 6 � 2 4 . 8 4 483461 - -

“4-3-2 "“~r.46 36145 0.69 36145" 43.12 96762 
4-4-2 ~l3.1Q 285865" 6.28 285865 545.97 1408596 

“5-2-2 1.99 10481 0.82 10481 59.93 13474 
6-2-2 142.51 563669 55.60 563669 - - " 

Table 5.3: Runtime and number of fails for the classical Social Golfer Problem 

Restricted || Relaxed 

g-s-w ToolBar-Set | ToolBar-01 ToolBar-Set ToolBar-01 一 

Time FaUT—Time Fails Time Fails Time Fails 
3 - 2 - 4 _ 0.13 8063 9 .87 6761 —0.98 47709 58.15 19915 
3-2-5 1.40 58lQ^ 192.84 51893 —8.00 349072 - -
3-3-3 0.06 4 4 i r 3.51 4294 0.37 30867 ‘ 15.58 15037 
3-3-4 0.58 27253 “ 91.33 3 1 9 ^ 5.77 375779 402.20 130965 
4-2-3 0.97 104878 63.51 67827 30.27 976112 - -
4-3-2 - 0.05 7698 1.45 4416 0.95 601"^ 46.63 102534 
4-4-2 0.27 45l47" 12.36 29982 1 4 . 2 3 1162358 — - -
5-2-2 0 . 0 5 6 7 2 9 1.77 4 2 3 4 0 . 8 9 1 7 5 4 6 61.95 1 3 8 2 1 

6-2-2 0.81 121928 47.51 80562 || 59.05 930691 - ~ ~ T 

Table 5.4: Runtime and number of fails for the soft Social Golfer Problem 



Chapter 5 Experiments 66 

of solving the problem. In solving classical instances, our implementation 

is two times faster than ILOG solver. The original ToolBar implementation 

has slower runtime. It cannot solve some instances within the time limit. 

The comparison is consistent in solving soften versions of the problem. Our 

implementation is two orders of magnitude faster than the original ToolBar 

implementation. When the search space is increased, the original ToolBar 

implementation fails to solve even more instances. 

5.5 Discussions 

The experimental results show that the performance of our implementation is 

comparable with ILOG solver in solving classical instances. The runtime of 

using ILOG solver is about two times the runtime of using our implementa-

tion for all the instances in the two benchmark problems. Since the actual 

implementation and data striicturos used in ILOG solver are not disclosed, we 

cannot provide a firm explanation for this phenomenon. However, the con-

stant ratio of the performance between ILOG solver and our implementation 

suggests that these two solvers are using the same variable and value ordering 

heuristics and enforcing the same level of local consistency, which is set bounds 

consistency, during search. In other words, this also verifies that our proposal 

is reduced to classical case when the costs in the problem are either 0 or T. 

On the other hand, the comparison between our implementation and the 

original ToolBar demonstrates the feasibility and efficiency of our proposal. 

Since our implementation is designed to handle problems with set variables, the 

performance of our implementation is better than the original ToolBar, which 

is an integer WCSP solver. ToolBar has poor performance in solving problems 

with set variables because (1) it does not have consistency enforcing algorithms 

specialized for set variables, (2) modeling set variables using 0-1 variables 
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increases the number of variables to the problem, and (3) the propagation of 

cardinality constraints is very poor as the cardinality constraints are n-ary 

constraints for set variables with a maximum of n set elements. 



Chapter 6 

Related Work 

Two classes of research are most related to work described in this dissertation ： 

local consistencies in WCSPs and approaches to solve classical CSPs with 

set variables. We first introduce other local consistency notions defined in 

WCSPs in addition to star node consistency and star arc consistency which 

are introduced in Chapter 2. Then, different approaches to handle set in 

classical CSPs are described. 

6.1 Other Consistency Notions in WCSPs 

Two basic local consistency notions, star node consistency and star arc con-

sistency for WCSPs are introduced in Chapter 2. Stronger consistencies are 

available. They are full directional arc consistency and existential directional 

arc consistency. 

6.1.1 Full Directional Arc Consistency 

The definition of star arc consistency is based on simple support. Given a 

binary constraint Q j , a value b 6 D{xj) is a simple support for a e D{xi) 

when Ci’j(a, 6 ) = 丄 . A variable xi is arc consistent if every value a e D{xi) has 
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a simple support in constraint Q j . In contrast, given a binary constraint Cij , 

a value b G D{xj) is a full support for a G D{xi) when Cij(a, b)®Cj(b)=丄.A 

variable Xi is full arc consistent (FAC) [Lar02, LS04] if every value a G D(xi) 

has a full support in constraint Cij. 

A full support b G D{xj) can be forced by sending the unary cost Cj{b) to 

binary costs C�八a,b) for all a e D{xi). This is a reverse process of sending 

costs from binary constraints to unary constraints in enforcing star arc consis-

tency. However, when value a G D{xi) has a full support b e D(xj) for binary 

constraint Cj j , b G D{xj) may lose its full support in D{xi). There may be a 

case that both a G D[xi) and b G D{xj) cannot be full arc consistent at the 

same time which fails to terminate the FAC maintaining process. 

The problem can be circumvented if we only enforce full arc consistency 

in one direction. When the set of variables X is totally ordered by >, we can 

have full directional arc consistency (FDAC) [Lar02, LS04]. A variable xi is 

full directional arc consistent if every value a G D(xi) has a full support in 

Ci�j such that j > i. FDAC does not have the problem as in FAC, but FDAC 

is a weaker consistency notion than FAC. 

6.1.2 Existential Directional Arc Consistency 

As FDAC is a weaker consistency notion, de Givry et al. [dGHZL05] propose 

existential arc consistency (EAC) which is a stronger consistency notion. A 

variable Xi is existential arc consistent if there exists a G D(xi) such that 

Ci{a)=丄 and it has a full support in constraint Ci,j. When a variable 

Xi is not EAC, for each value a e D{xi) such that Ci{a)=丄，then V6 G 

D{xj), Ci j (a , b) 0 Cj{b) > 丄.After enforcing full arc consistency, the variable 

Xi becomes node inconsistent and cost is sent from unary constraints to the 

global lower bound C访.De Givry et al. [dGHZLOS] also integrate EAC with 
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FDAC and defines existential directional arc consistency (EDAC). A WCSP 

is EDAC if it is FDAC and EAC. 

6.2 Classical CSPs with Set Variables 

Different reasoning approaches are introduced to increase the efficiency of solv-

ing classical CSPs with set variables. Two important reasoning approaches are 

bounds reasoning and cardinality reasoning. 

6.2.1 Bounds Reasoning 

A set variable with n possible set elements has a domain size 2". Searching 

solutions in such large domain size is inefficient. Gervet [Ger97] proposes to 

specify the set domain by an interval. The domain interval for set variable S 

is specified by a greatest lower bound and an least upper bound, which are 

also known as the required set RS{S) and the possible set PS{S) respectively. 

The search, instead of choosing and assigning a set value u G D{S) to the set 

variable S、narrows the domain interval by choosing a set element a e PS(S) \ 

RS{S) and putting a in RS{S) or removing a from PS{S). Each set constraint 

is associated with a projection function. When enforcing local consistency, 

the bounds of set domains of all variables in the scope of the constraint are 

modified accordingly. Set bounds consistency is a local consistency notion on 

set domains such that the domain of a set variable has minimum size and 

contains all the consistent values with respect to a constraint. 

6.2.2 Cardinality Reasoning 

By specifying cardinality constraint for a set variable S, we can restrict the 

possible values of |5|. However, other set constraints can also restrict the 
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possible cardinality of a variable. For example, the set constraint Si C Sj 

specifies Si must be a subset of Sj, By taking account into the cardinalities, the 

constraint Si C Sj also implies that |«9�| < \Sj\. Some implementations [ABOO, 

MiilOl] of set solvers not only reason on the bounds of set domains, but also 

perform cardinality reasoning. An additional propagation rule is associated 

with each set constraint for cardinality propagation in those solvers. 



Chapter 7 

Concluding Remarks 

Problems involving set variables are common. Set constraint solving tech-

niques are well studied in classical CSPs. The integer WCSP framework can 

handle soft problems efficiently on the integer domain. However, the cur-

rent definitions for local consistency is impractical to process set variables in 

WCSPs. We have proposed our definition of set variables with some local con-

sistency notions. In the following, we conclude the thesis by summarizing our 

contributions and giving possible directions for future research. 

7.1 Contributions 

First, we give a formal definition of set variables and set constraints in WCSPs. 

The domain of a set variable in WCSPs is specified as a set interval with the 

required set and the possible set as the bounds of the interval. Any set that 

falls within the bounds belongs to the set domain. A set constraint is a cost 

function which maps a tuple of set values for the corresponding set variables in 

the scope to a cost. If we express set constraints as cost tables as in the integer 

domain, the space complexity, which is exponential to the possible number of 

set elements, is high. We have proposed a compact representation scheme by 

specifying costs at the element level via element cost functions, which assign 
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costs according to the existence states of set elements. This greatly reduces 

the complexity of constraint specification. The cost for tuple with respect to 

a set constraint can be computed by summing up all the costs from element 

cost functions. Using this scheme, we can specify set constraints involving the 

common operators and relations. 

Second, enforcing node and arc consistencies on set variables is impractical 

as in classical CSPs due to the large domain size. We have generalized the clas-

sical set bounds notion for WCSPs. Instead of direct reasoning on the bounds 

of set domains, we enforce local consistencies with element cost functions. We 

introduce consistency notions at the element level: namely, element node con-

sistency, element arc consistency, and element hyper-arc consistency. We also 

introduce weighted cardinality consistency notion for cardinality constraints. 

We show that weighted set bounds consistency with respect to a constraint 

can be enforced by maintaining the element level consistencies or weighted 

cardinality consistency accordingly. 

Third, we have designed consistency algorithms for enforcing element node, 

element arc and element hyper-arc consistencies as well as weighted set bounds 

consistency in WCSPs with set variables. Complexity results and proof of cor-

rectness of these algorithms are also given. In order to verify the feasibility 

and efficiency of our proposal, we incorporate our algorithms into ToolBar 

BHdG+04]’ a generic WCSP solver. Experiments confirm that our implemen-

tation is two times faster than ILOG in solving most classical set problems 

and two orders of magnitude faster than the original ToolBar in solving both 

classical and soft set problems. 
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7.2 Future Work 

We have introduced set variables, set constraints and consistency notions for 

set variables to WCSPs in our work. Set-based WCSPs open up possibilities 

for future research. 

First, our proposal enables bounds reasoning on the variable domains with 

respect to different set constraints. Integrating cardinality reasoning to the 

solvers for classical CSPs can increase the performance of searching [MM97, 

ABOO]. Cardinality projection functions can be derived by studying the set 

constraints. However, the property of a set constraint in WCSP depends on the 

cost distribution which can differ from one constraint to another. It would be 

worth investigating the way to extract the information of cardinality restriction 

from the cost distribution to increase the efficiency of solving WCSPs with set 

variables. 

Second, the local consistency notions which we adopt for element cost func-

tions are modified from the basic node and arc consistencies for WCSPs on 

the integer domain. It would be interesting to study the benefit of stronger 

consistency notions at the element level, such as ones based on full directional 

arc consistency and existential arc consistency. 

Third, Hawkins, Lagoon and Stuckey [HLS05] show how set variables in 

classical CSPs can be represented by reduced ordered binary decision diagrams 

(ROBDDs), and give efficient algorithm to enforce domain consistency. It will 

be interesting to study if the same principle can be extended for WCSPs. 

Forth, variable and value orderings can have great impact on search effi-

ciency. In our work, we use the basic variable and value ordering. The variables 

are in lexicographical order while, at branching, we try to put a set element 

of variable S from PS{S) \ RS[S) to RS{S) before removing it from PS[S). 

Since set constraints in WCSPs are expressed in terms of costs, when we select 
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variable or set element for branching, we can study how costs can help to give 

better variable and value ordering heuristics. 
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