
An Asynchronous Java Processor for Smart Card

YU Chun-pong

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Philosophy

in

Electronic Engineering

©The Chinese University of Hong Kong

July 2003

The Chinese University of Hong Kong holds the copyright of this thesis. Any

person(s) intending to use a part of whole of the materials in the thesis in a proposed

publication must seek copyright release from the Dean of the Graduate School.

Abstract of this thesis entitled:

An Asynchronous Java Processor for Smart Card

Submitted by YU Chun-pong

for the degree of Master of Philosophy in Electronic Engineering

at The Chinese University of Hong Kong in July 2003

This thesis presents the design of a low power asynchronous Java processor for

contactless smart card. The Java Card specifications of Sun Microsystems enable Java

technology to run on smart cards. By using a compiler, Java source codes can be

compiled to Java bytecodes. The Java processor is a microprocessor that can execute

the Java bytecodes.

The proposed Java processor can directly execute the Java bytecodes in a subset of the

instruction set defined in the Java Card Virtual Machine specification. The remaining

Java bytecodes are handled by software routines. Also, we intend to use asynchronous

circuit design technique to reduce the power consumption of the Java processor.

In order to simplify the design, we have considered the processor as a fixed-length

instruction set processor executing instructions with 8-bit opcodes and 16-bit

operands.

i

In this design, we use four-phase bundled-data protocol for normally opaque 1 atch

controller as the handshaking protocol in the asynchronous pipeline. In this thesis, we

also introduce some asynchronous control elements for this type of protocol.

ii

摘要

本論文介紹了一個適用於非接觸型智能卡的低功率異步Java處理器設計，昇陽

電腦公司(Sun Microsystems)的Java智能卡規格使Java技術能夠於智能卡中運

作。利用編譯器，Java原始碼能夠被編譯成Java bytecodes，而java處理器就是

能夠執行Java bytecodes的微處理器。

我們建議的 J a v a處理器能夠直接執行定義於 J a v a Card Virtual Machine

specification 的指令集中的一個子集的 Java bytecodes ’ 其餘的 Java bytecodes 貝[J

由軟件處理。另外，我們打算利用異步電路設計技術以減低Java處理器的功率

消耗。

爲了簡化設計，我們把那處理器設計爲一個能執行由8-bit opcode與16-bit

operand 糸且成的指令的 fixed-length instruction set processor�

在這個設計中’我們應用了適用於normally opaque latch controller的four-phase

bundle-data protocol作爲異步管線的聯絡協定。而在這論文中，我們亦會介紹一

些適用於此協定的異步控制原件。 -

iii

Acknowledgements

I would like to take this opportunity to thank my supervisor, Professor Choy

Chiu-Sing for his full support on my work throughout the period of study. Moreover, I

would like to thank all my peers and colleagues in ASIC/VLSI laboratory. They

include Chan Shek-Hang, Chan Wing-Kin, Ho Kin-Pui, Han Wei, Leung Pak-Keung,

Yeung Wing-Ki, Cheng Wang-Chi, Hon Kwok-Wai, Chan Chi-Hong, Chan Pak-Kee,

Cheng Wang-Tung, Kwok Yan-Lun, Shen Jun-Hua, Tang Siu-Kei and our laboratory

technician Mr. Yeung Wing-Yee. Also, I would like to thank my family members and

friends for their continuous support and encouragement.

¥

iv

Table of contents

Abstract of this thesis entitled: i
醒 iii
Acknowledgements iv
Table of contents v
List of Tables vi
List of Figures vii
Chapter 1 1

Introduction
1.1 Asynchronous design 1
1.2 Java processor for contactless smart card [3] 2
1.3 Motivation 3

Chapter 2 5
Asynchronous circuit design techniques

2.1 Overview 5
2.2 Handshake protocol 5
2.3 Asynchronous pipeline 7
2.4 Asynchronous control elements 9

Chapters 15
Asynchronous Java Processor

3.1 Instruction Set 15
3.2 Architecture of the java processor 17
3.3 Basic building blocks of the java processor 22
3.4 Token flow 32

Chapter 4 37
Results and Discussion

4.1 Simulation Results of test programs 37
4.2 Experimental result 41
4.3 Future work 42

Chapter 5 45
Conclusion ‘

Appendix 47
Chip micrograph for the java processor core 47
Pin assignment of the java processor 48
Schematic of the java processor 52
Schematic of the decoder 54
Schematic of the Stage2 of the java processor 55
Schematic of the stack 56
Schematic of the block of the local variables 57
Schematic of the 16-bit self-timed adder 58
The schematic and the layout of the memory cell 59

Reference 60

V

List of Tables

Table 3-1 Instructions in the subset 16
Table 3-2 hardware features 17
Table 3-3 Paths for each instruction 33
Table 4-1 Simulation Results 40
Table 4-2 Experimental Results 41
Table 4-3 Result comparison 41

vi

List of Figures

Figure 2-1 (a) bundled data channel (b) 2-phase bundled-data protocol (c)
4-phase bundled-data protocol 5

Figure 2-2 A delay-insensitive channel using the 4-phase dual-rail protocol 7
Figure 2-3 (a) asynchronous pipeline for simple logic (b) asynchronous pipeline

for self-timed logic 7
Figure 2-4 The normally opaque latch controller: (a) symbol, (b) STG and (c)

speed independent implementation [9] 7
Figure 2-5 Delay element used in [9] 8
Figure 2-6 (a) The proposed Delay element (b) Possible implementation 8
Figure 2-7 (a) fork I [2] (b) fork II (c) fork III 10
Figure 2-8 (a) Join [2] (b) Merge [2] 11
Figure 2-9 Three stage synchronous pipeline 11
Figure 2-10 Three stage asynchronous pipeline 12
Figure 2-11 Control circuit of the multiplexer 13
Figure 3-1 Execution of instructions: (a) iload index (b) istore index (c) iadd ...15
Figure 3-2 Block diagram of asynchronous Java processor (black boxes

represent latches) 19
Figure 3-3 Fork of request signals generated by the Decoder 20
Figure 3-4 Fork of request signals generated by the Stack 21
Figure 3-5 Schematic of block of local variables (black boxes represent latches) ••

22
Figure 3-6 Request signals transmitted by the latch controller of the Latch RW

~ 2 3
Figure 3-7 Stack (black boxes represent latches) 24
Figure 3-8 (a) Ram cell (b) Detection circuit (c) A column of the RAM 27
Figure 3-9 Fetch/decode unit (black boxes represent latches) 28
Figure 3-10 Request signals form the latch controller of the operand latch ••... 29
Figure 3-11 (a) Basic adder cell (b) 4-bit adder (c) 16-bit adder 30
Figure 3-12 Paths for transmitting control bits and data bits (path 1，path 2

and path 3 are the paths for transmitting control bits) 32
Figure 3-13 Execution of 'iload index，： (a) Step 1 (b) Step 2 33
Figure 3-14 Execution of 'sipush const': (a) Step 1 (b) Step 2 ； 34
Figure 3-15 Execution of ‘iadd，： (a) Step 1 (b) Step 2 (c) Step 3 34
Figure 3-16 Execution of 'if_scmpeq_w offset': (a) Step 1 (b) step2 (c) Step3..35
Figure 4-1 modified architecture of the Java processor 43

vii

Chapter 1 - Introduction *�

Chapter 1

Introduction

1.1 Asynchronous design

Nowadays, most fabricated integrated circuits are synchronous circuits. In a

synchronous system, all the logics are driven by a global clock signal. Such integrated

circuits are easy to design and test since the circuit can only operate after the

positive/negative edge of the clock signal. Also, there are many sophisticated design

tools to help designing a synchronous chipset.

However, in a synchronous system, since the clock signal and its driven logic will

continue to operate even if there is no useful work to perform, power is wasted for

unnecessary transistor switching.

In order to reduce the unessential power loss, asynchronous circuit design technique is

introduced. As in an asynchronous system, most transitions are useful work since all

the logics are data driven. [1] Also, other advantages of asynchronous circuits include

increasing the operating speed, alleviating clock slew problem and reducing the

emission of electro-magnetic noise. [2]

Page 1

Chapter 1 - Introduction ��

1.2 Java processor for contactless smart card [3]

A smart card is a device that has both processing power and memory and it is

packaged in the format defined by the International Standards Organization (ISO).

There are two types of smart card including memory smart card and intelligent smart

card.

The memory smart card is a purely memory storage card and it does not consist of a

microprocessor. Instead, some non-processor chipset that have hard wired logic is

used to control the access security. Once linked to the outside world, they are powered,

clocked and addressed totally under control of the outside world.

The intelligent smart card contains a memory module and a Central Processing Unit

(CPU) with the abilities to store and secure information, the power to make decisions

and read/write capabilities. Since the microprocessor chipset for storing and

manipulating data i s e mbedded, a smart o perating system can be built. Due to the

intelligence of the microprocessor, it can afford greater security. There are many

applications of smart card in various areas now. Currently, smart cards can be used for

payment of telephone calls, payment of parking and tolls, storage of identification and

medical records and access to some restricted areas.

Also, smart card can be classified as contact smart card and contactless smart. There

are some metallic contact pads on the surface of the contact smart card. The contacts

Page 2

Chapter 1 - Introduction ��

link the logics in the smart card with the read/write unit (Smart Card Reader) to

enable communication between them. Instead, for the contactless smart card,

electrical coupling is used for such communication. So, when the contactless smart

card is placed in close proximity to a reader, about less than 3 centimeters, input

modulated signal and power signal can be received by the logics in the contactless

smart card.

The Java Card specifications of Sun Microsystems enable Java technology to run on

smart cards. There are several benefits of the Java Card technology, such as

interoperable, Secure, multi-Application Capable and compatible with Existing

Standards. Java programming language is a high level language. By using a compiler,

Java source code can be compiled to Java bytecode. The Java processor is a

microprocessor that can execute the Java bytecode.

1.3 Motivation

Java Card technology enables programs written in the Java programming language to

run in smart cards. From software perspective, Java virtual machine defines a

stack-based processor for implementing java bytecodes. To implement it on

conventional 8-bit processors, such as Intel's 8051 and Motorola's 6805, a software

virtual machine is used to emulate its architecture. This not only occupies the limited

memories on the smart card but also slows down the operating speed of the java card.

Also，it is possible to design a microprocessor that can execute these bytecodes

directly in order to increase the operating performance. This type of synchronous java

Page 3

Chapter 1 - Introduction *�

processor for contact smart card is proposed in [4]. It consists of six stages:

Instruction Fetch, Instruction Decode, Operand Access, Execution, Memory Access

and Write back.

Since there are only a few proposed designs of such type of java processor and even

less in the contactless smart card context, a novel asynchronous java processor is

presented in this thesis.

Asynchronous circuit design technique is used for reducing the power consumption of

the java processor core since low power consumption is a very important constraint

for the application of contactless smart card.

Page 4

Chapter 2 - Asynchronous circuit design techniques ,�

Chapter 2

Asynchronous circuit design techniques

2.1 Overview

The operation of synchronous circuit is controlled by a clock signal. In an

asynchronous circuit, the clock signal is replaced by some form of handshaking.

There are two types of handshaking protocol including 2-phase protocol and 4-phase

protocol. For each protocol, there are different types of handshake cell for controlling

the operation of the asynchronous pipeline. [2]

Req
>

Ack <

Data

(a)

- D a t a : } (n X I I 3 (.
Req Req

Ack Ack •

(b) (c)
Figure 2-1 (a) bundled data channel (b) 2-phase bundled-data protocol (c) 4-phase
bundled-data protocol

2.2 Handshake protocol

The most popular handshake protocols are 2-phase bundled-data protocol, 4-phase

bundled-data protocol and 4-phase dual-rail protocol. The bundled data channel is

Page 5

Chapter 2 - Asynchronous circuit design techniques ,�

shown in figure 2-1(a). A request signal (Req) and an acknowledge signal (Ack) are

bundled with the data signal to control the communication between the sender and

receiver.

For the 2-phase bundled-data protocol, the information on the request and

acknowledge wires is encoded as signal transition as shown in figure 2-1(b). Both a 0

to 1 transition and a 1 to 0 transition represent "signal events". When the data from

the sender is valid, the request signal is changed from low to high. When the data is

received by the receiver, the acknowledge signal is changed from low to high or vice

versa. The 4-phase bundled-data protocol is shown in figure 2-1 (b). The term 4-phase

refers to the number of communication actions: (1) the sender issues data and sets

request high, (2) the receiver absorbs the data and sets acknowledge high, (3) the

sender responds by taking request low and (4) the receiver acknowledges this by

taking acknowledge low. [2] Ideally, the 2-phase bundled-data protocol is more

effective than 4-phase bundled-data protocol since the 1 to 0 transition of the 4-phase

bundled-data protocol seems to increase the complexity of the interface protocol and

costs unnecessary time and energy. However, the control elements used in the 2-phase

bundled-data protocol such as toggle, select and call [5] [6] are more complicated than

that of the 4-phase bundled-data protocol. Also, in order to detect the completion

signal of some self-timed circuit such as self-timed memory and self-timed adder [7],

the 2-phase bundled-data protocol does not work properly. In this situation, it has to

be converted to 4-phase bundled-data protocol by a 2-phase to 4-phase converter. [8]

We choose the 4-phase bundled-data protocol as the interface protocol for the

proposed processor design since there are a lot of control elements and self-timed

circuits utilized in the processor core.

Page 6

Chapter 2 - Asynchronous circuit design techniques ,�

Data " o ^ 0 1 / 1 0 ~) (00 ~) (
2n

(Ack Ack

Figure 2-2 A delay-insensitive channel using the 4-phase dual-rail protocol

The 4-phase dual-rail protocol encodes the request signal into the data signals using

two wires per bit of information as shown in figure 2-2. It is not selected for the

interface protocol used in the processor because the number of transistor switching is

quite large for this protocol (This will increase the power consumption).

2.3 Asynchronous pipeline

Request (Req) Request (Req)
LC |(C g j a p >[LC I 司 LC I； �| LC
^ Acknowledge (Ack) 丄 丄 Aĉ owledfle (Ack) � , X

Latch logic Latch Latch ^^^ 二二 ^^^ Latch
Data Data

(a) (b)

Figure 2-3 (a) asynchronous pipeline for simple logic (b) asynchronous pipeline for

self-timed logic

' . ^ I
Rin+ ——> Lt-——> Rout+ r'-'-]

Rin ~ ~ ~ Aout ^ ^ ^ i M
_ _ LL _ Ain+ > B+� Aout+ Rin 千 , _ X — Aout Ain ~ _____ ~ • Rout I I —̂—J+ !+ +L——7 i i Ain W Rout ” Rin- Lt+~~> Rout- ^ ^ C P ^ ^ ^

I ^ i Y
" Ain > B- Aout- vV J

� （b) (c)

Figure 2-4 The normally opaque latch controller: (a) symbol, (b) STG and (c) speed

independent implementation [9]

We use 4-phase bundled-data protocol in the processor design. The asynchronous

pipeline for simple logic circuit and the asynchronous pipeline for self-timed 1 ogic

Page 7

Chapter 2 - Asynchronous circuit design techniques ”

circuit are shown in figure 2-3(a) and figure 2-3(b) respectively. All the latches are

manipulated by the latch controllers (LC). Since the normally opaque latch controller is used,

all the latches will be closed after reset. When the latch controller receives a request signal,

the latch controlled by it will be opened and then closed to store the input data. The symbol,

STG and speed independent implementation of the normally opaque latch controller are

shown in figure 2-4(a), 2-4(b) and 2-4(c). [9] Before the rising edge of Rout, the data is valid.

The data may not be valid after the falling edge of the Aout.

I Ir-A V v ! r > - t > out
in ^

Figure 2-5 Delay element used in [9]

In 一 网 H 'nvBterchan^^- , 一 Out

(a)

o

——Latch —) Inverter chain Latch ~~

T X
In ‘

(b) •

Figure 2-6 (a) The proposed Delay element (b) Possible implementation

The delay element shown in figure 2-3(a) can provide a constant low-to-high

propagation delay that matches the worst case latency of the logic circuit. It is used to

generate a completion signal for the receiver. For this type of protocol, no delay is

needed to provide for the high-to-low propagation in the delay element. The delay

element used in [9] as shown in figure 2-5 can provide a fast high-to-low propagation

Pages

Chapter 2 - Asynchronous circuit design techniques ,�

delay but it wastes much power in this type of propagation when the delay is very

large since the energy used for this type of propagation is about directly proportional

to the required delay. In order to reduce the power consumption, we proposed a new

delay element as shown in figure 2-6(a). When the input signal changes from low to

high, the signal will propagate in the upper path through the inverter chain. When the

input signal changes from high to low, the signal will propagate in the lower path. For

the h igh-to-low propagation in the delay element, only a small amount of constant

energy is consumed. So, much power can be reduced when the delay is large. A

possible implementation is shown in Figure 2-6(b) and the toggle is replaced by two

level-sensitive 1 atches and two NOT gates. We have assumed that the delay of the

inverter chain is large enough to avoid the race hazard when both latches are

transparent and the signal can transmit through them at the same time. Simulation

result (0.35um CMOS process) shows that more than 40% of power dissipation on the

delay element is reduce using the circuit shown in Figure 2-6(b) when the matched

delay is more than 3ns.

Instead of the delay element, the completion signal is generated by a self-timed circuit

in the asynchronous pipeline shown in figure 2-3(b). Self-timed adders and self-timed

memories are used in the processor design.

2.4 Asynchronous control elements

There are three types of control elements including fork, join and merge used in the

processor core. In order to simplify the explanation, we only consider the control

elements for manipulating two request signals or two acknowledge signals in this

section.

Page 9

Chapter 2 - Asynchronous circuit design techniques ,�

The function of the fork element is to distribute the request signal(s) to receiver(s) and

collect the corresponding acknowledge signal(s) from the receiver(s). We call the fork

element in [2] as shown in figure 2-7(a) fork L The request signal (Rin) from sender

will always pass to both receivers by the fork I.

• Rout_A Rin - request signal from the sender
Rm ‘ ‘ Ain - acknowledge signal to the sender

• Rout_B Rout_A - request signal to the receiver A
广 Aout_A Aout_A - acknowledge signal from the receiver A

Ain f C Aoutî B Rout_B - request signal to the receiver B
- Aout_B - acknowledge signal from the receiver B

(a)

Rin ~ R o u t A "̂ n Rout_A

^ X) • Rout_B
•]——•Rout.B ——^
‘ ‘ ~ A i n _ A �t - A

sel / I

Ain A�ut-A ^ Aout_B
V ^ J ^ Aout.B N

sel

(b) (c)

Figure 2-7 (a) fork I [2] (b) fork II (c) fork III

For the Fork element II shown in Figure 2-7(b), either one of the receiver A and

receiver B will receive the request signal controlled by the signal sel generated by the

sender. If sel is 0，a request signal (Rout一A) is transmitted to the receiver A. If sel is 1，

a request signal (Rout_B) is transmitted to the receiver B.

The third fork element used in the processor core is fork III shown in figure 2-7 (c).

The request signal from the sender will always pass to the receiver A. Also, receiver B

will receive a request signal controlled by the signal sel generated by the sender. If sel

is 0, no request signal is transmitted to the receiver B • If sel is 1，a request signal

Page 10

Chapter 2 - Asynchronous circuit design techniques

(Rout—B) is transmitted to the receiver B. Also, similar to other data signals, the input

signal sel for the fork Il/fork III is valid before the rising edge of the rin signal.

Rin_A ^ N Rin_A - request signal form the sender A
Rin B • — C) • Rout Ain _ A - acknowledge signal to the sender A

_ Rin B - request signal from the sender B
Ain A Ain—B — acknowledge signal to the sender B

- 1 Aout Rout - request signal to the receiver
Ain B J Aout 一 acknowledge signal from the receiver

(a)

Rin_A

Ain_A ^ r A�ut

• Rout
Ain_B f C 二 ，

Rin_B ^ — —

(b)

Figure 2-8 (a) Join [2] (b) Merge [2]

The 4-phase join [2]and the 4-phase merge [2] are shown in figure 2-8(a) and 2-8(b)

respectively. For the 4-phase join, a request signal will be sent to the receiver if both

the sender A and sender B have transmitted request signals (Rin_A and Rin_B) to it.

For the 4-phase merge, a request signal will be sent to the receiver if one of the sender

A and sender B has transmitted a request signal (Rin_A or Rin—B) to it. .

" ^ A k • • IAT^A Logic一B
3 > Logic_A ； 2) "； d) ^) Logic D

Logic.C • ， 丨 -
elk T

Figure 2-9 Three stage synchronous pipeline

To see how they work, we consider a simple three-stage synchronous pipeline shown

in Figure 2-9. All the Flip-flops DFF are controlled by a clocjc signal elk. logic—A，

Page 11

Chapter 2 - Asynchronous circuit design techniques ,�

logic_B，logic_C and logic—D are combinational circuits. In this situation, only one of

the results of logic_B and logic_C is needed for the operation of logic D in the third

stage and the control bit for the MUX is generated by logic_A in the previous cycle.

For the synchronous pipeline, both logic_B and logic_C have to operate since they are

controlled by a single clock signal.

— ^ Control —

Logic.B | : > \ [L

_I
I I 1

sb signals) :

L_A ：^ Logic_A ： ^ L_C ：^ Logic_C • .

Figure 2-10 Three stage asynchronous pipeline

The asynchronous pipeline shown in Figure 2-10 can perform the same operation of

the synchronous pipeline shown in figure 2-9. However, for this asynchronous

pipeline, only one of logic—B and logic_C will operate when necessary. The normally

opaque latch controller LC controls the operation of the latches L A, L B, L_C or

L_D. The control bit con generated by logic—A is used to select one of the operations

of logic_B and logic—C so that the request signal can transmit through the fork

element II to one of the latch controllers LC. When there are more than two latch

controllers in the second stage, more AND gates, more control bits and the OR gate

with more input pins will be used for the fork element II.

Page 12

Chapter 2 - Asynchronous circuit design techniques ,�

There are two functions of the control circuit of the multiplexer shown in 2-10. The

first function is to transmit a request signal to the LC of L_D when it has received one

of the request signals from LC of L B and LC of L_C. So, this control circuit can be

implemented by using the merge element shown in 2-8(b). The second function is to

manipulate the control bits of the multiplexers for selecting one the data buses from

logic—B and logic_C.

iiHlfHl I lili JUtHliiJi •in 1 I w ,

ai—P i ri_P ^ rl_Q al Q 丨

' l E t t l R ^ ! i h bus-p bus_Q

IHBilf
ifelBlil

1 丨 / rout aout
mill'" Control circuit

Figure 2-11 Control circuit of the multiplexer

According to the two functions, the control circuit of the multiplexer shown in 2-11 is

designed. It is also used for the control circuits for multiplexing two buses used in the

java processor. ri_P and ri_Q are the request signals for bus P and bus Q respectively

and ai_P and ai_Q are the acknowledge signals for bus P and bus Q respectively.

When ri_P changes from low to high, the control bit of the multiplexer is set to zero in

order to select bus P. Similarly, when ri_Q changes from low to high, the control bit

of the multiplexer is set to one in order to select bus Q. The selection of the previous

access of the multiplexer is stored in node X. If the current selectjon is the same as the

Page 13

Chapter 2 - Asynchronous circuit design techniques ,�

previous selection, the request input signal will be directly transmitted to the output.

Otherwise, it will be transmitted through the delay element and change the value at

node X.

By using the handshake signals controlled by the control elements, we can control the

operations of the logic blocks in order to reduce the power consumption. However,

the larger the number of control elements we used in the design, the more complicated

is the handshake signal path. In other words, we increase the power consumption of

the handshaking signal path in order to reduce the unnecessary operations of the logic

blocks. So, before we use the control elements to distribute the request signals, we

need to evaluate whether the power consumption can be reduced.

Page 14

Chapter 3 - Asynchronous Java Processor

Chapter 3

Asynchronous Java Processor

3.1 Instruction Set

There are 256 instructions defined in the java card virtual machine specification [10].

However, most of them are inefficient to be implemented in a contactless smart card

processor. So, the processor designed for implementing a subset of this instruction set

is proposed in this thesis.

Sp /I
• \ _ A index sp^

Stack Local variables ^ - k

A • rr

~ i r ~ • ^ stack
A A index

Stack Local variables

(a) iE^

Stack

M H 、 ！ i d 门
A ^ ^ index q ^ + .

Stack Local variables stack

C = A + B

~ ~ h n index (c)
Stack Local variables

(b)

Figure 3-1 Execution of instructions: (a) iload index (b) istore index (c)
iadd

Instruction Description
sipush const Push an immediate data onto the stack
iload index Push a local variable onto the stack (figure 3:1(a))

Page 15

Chapter 3 - Asynchronous Java Processor

istore index A value is popped from the stack. A local variable is set to this
value (figure 3-1 (b))

iadd Two values are popped from the stack. The result of addition of
this two values is pushed onto the stack (figure 3-1(c))

isub Two values are popped from the stack. The result of subtraction
of this two values is pushed onto the stack

ishl Two values are popped from the stack. The result calculated by
left shifting one of the value by n bit(s) (n is the value of the
lower two bits of the other value)is pushed onto the stack

ishr Two values are popped from the stack. The result calculated by
right shifting one of the value by n bit(s) (n is the value of the
lower two bits of the other value)is pushed onto the stack

iand Two values are popped from the stack. The result calculated by
the bitwise AND of this two values is pushed onto the stack

ior Two values are popped from the stack. The result calculated by
the bitwise OR of this two values is pushed onto the stack

ixor Two values are popped from the stack. The result calculated by
the bitwise XOR of this two values is pushed onto the stack

if_scmpeq_w Two values are popped from the stack. Branch if the two values
offset are the same
if—scmplt—w Value 1 and Value2 are popped from the stack one by one.
offset Branch ifValue2 is less than Value 1
if_scmpge_w Value 1 and Value2 are popped from the stack one by one.
offset Branch if Value2 is greater than or equal to Value 1
goto offset Branch always
jsr offset. Jump subroutine
ret Return from subroutine. The return value is popped from the

stack
nop No operation
s2p A value is popped from the stack and the value is written to the

output port
p2s A value is read from the input port and the value is pushed onto

the stack
sleep Put the processor into sleep mode

Table 3-1 Instructions in the subset

Our proposed design is a 16-bit asynchronous Java processor that can directly execute

some useful instructions defined in [10] with 16-bit operands including register

read/write operations, arithmetic operations, logical operations and branch operations.

The rest of them including method invocation, method return, array operation and

object manipulation are handled by software routines. The summary of the subset is

given in table 3-1. ^

Page 16

Chapter 3 - Asynchronous Java Processor

Exception handling is not implemented in the Java processor. Also, the data type of

the operands for all instructions is fixed for 16-bit So, the operation for integers

(32-bit) can be simplified to the operation for short integers. (16-bit)

According to [10], the return value of the instruction Ret is read from a local variable.

Instead, this return value is read from the stack in our design in order to simplify the

architecture of the processor. Also, for ishl and ishr, 'n' should be the lower four bits

of the value on the top of the stack. The instructions s2p and p2s that are not defined

in [10] are added into the instruction set of the processor for manipulating the I/O port.

Also, the instruction sleep is added to the instruction set to support the sleep mode.

3.2 Architecture of the java processor

• 16-bit ALU
參 16X16-bitRAM

"' • 10 level 16-bit Stack
• 16-bit address bus
• One 16-bit input port and one 16-bit output port

Table 3-2 hardware features

In order to simplify the design, we have considered the processor as a 24-bit

fixed-length instruction set processor executing instructions with an 8-bit opcode and

a 16-bit operand. The hardware features are shown in table 3-2.

The java processor is a stack-based processor. So, its performance is limited by

frequent stack access. The technique of instruction folding used in picoJava design of

Page 17

Chapter 3 - Asynchronous Java Processor

Sun Microelectronics [11][12] can alleviate this problem. By using this technique,

more than one instruction are decoded before execution. Then a single operation is

used to represent the function of these instructions when necessary. However, this is

too complicated to realize in the Java processor core for the contactless smart card.

Instead, we use result-forwarding technique in order to increase the performance of

the processor. So, the data written to the stack is forwarded when the next instruction

is reading the element from the top of stack and this saves one write-stack operation.

Figure 3-2 shows a simplified pipelined architecture of the asynchronous Java

processor. Only the primary data path from the fetch unit to the ALU is depicted.

Other secondary data paths such as the link between the operand latch and the stack

are o mitted for c larity. Also, the 1 atch c ontrollers of all the 1 atches and the control

circuits of the request/acknowledge signal are not shown. Because it is a fixed length

instruction set processor, a simpler instruction decoder can be used to decode different

types of instruction. After reset, all latches and flip-flops have been initialized and the

processor is ready to operate. Since we use the normally opaque latch controller, the

latches of all functional blocks are closed before their latch controllers receive the

request signals. They will open and then close again to store the input data after their

latch controllers have received the request signals.

Page 18

Chapter 3 - Asynchronous Java Processor

mux

p n
Instr

Memory
/ mux \ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^ / mux \

^ ^ — — I Decode , — — ^ T ^
branch jsr/goto ret

^ ^ L a t c h 一 RW
" T ^ ~ ^ Q f ^ l t ^ g l S — I g l v a = s |

ft ‘

logic - branch +
I I

mux ^ ^ ^

Figure 3-2 Block diagram of asynchronous Java processor (black boxes represent latches)

When the latch for storing the PC (the top most latch) is updated, an instruction is

fetched from the instruction memory. Then both the PC and instruction are stored in

the input latch o f the d ecoder. A fter the instruction is d ecoded, a request s ignal i s

passed to the latch controller (not shown) of the Latch RW and then the control bits

for manipulating the read/write operation of the stack, block of local variables and the

I/O ports are stored in the Latch_RW. Also, other request signals are passed to other

functional blocks optionally depending on the decoded instruction at the same time.

Page 19

Chapter 3 - Asynchronous Java Processor

So, the fork III can be utilized to distribute the request signals. Since there are four

other request signals that can be transmitted by the decoder, the fork element that can

generate five request signals as shown in figure 3-3 is used in this situation.

Req from Decoder Ack to Decoder
t I I Control bits

�少 generated by the

Fork Element III f o r | 她 廿 “

generating five output
request signals

Req and Ack signals: | t t t t '[

丄I Xr^ J _ _ r 丄丨
CC of the L C o f [C o f ^ C o f CC of the
lef tmost PC latch operand . a t c h RW rightmost
M U X latch Latch_KW ^ ^

CC: control circuit LC: latch controller

Figure 3-3 Fork of request signals generated by the Decoder

These four other requests are transmitting to (1) control circuit of the left-most

multiplexer shown in figure 3-2 for updating the top-most latch that is used to store

the program counter (The new value of the program counter is the result of addition of

the old value of the program counter and the 16-bit operand fetched from the

instruction memory) if the instruction is a goto or a jump subroutine operation, (2)

control circuit of the right-most multiplexer for updating the t op-most latch that is

used to store the program counter if the current instruction is not a goto, unconditional

branch, jump subroutine or return operation, (3) the latch controller of the PC latch

(the left-most latch for storing the address of the decoded instruction), (4) the latch

controller of the operand latch.

Page 20

Chapter 3 - Asynchronous Java Processor

Req from Stack Ack to Stack Control bits
I I generated by the

J L Stack

Fork Element 11 for generating six
output request signals

I bnTrrrr~~it it it
Rcq and Ack signals: | ‘ 丨 ‘

J _ _ 丄 I Xr^ 丄 I 丄 I
；^C� f A c t i o n LCof C C o f t h e " ^ ， 让

I/O ports logical /branch addition rightmost , ,
operation ‘. , , , ^ local
. r , operation block MUX . , ,
block block variables

CC; control circuit LC: latch controller

Figure 3-4 Fork of request signals generated by the Stack

The control circuit shown in figure 2-11 can realize the control circuits of the

multiplexers shown in figure 3-2. The internal memory of the processor is represented

by the Stack (10 level stack) and the block of local variables (16X16bit RAM). The

stack can provide operands for the ALU (addition block, subtraction/branch block and

logical operation block), input data of the block of local variables, updated data of the

top most PC latch shown in figure 3-2 or updated data for the output ports. Since the

output data of the stack will be passed only to one of them for implementing an

instruction, the fork element II can realize this fork of request signals and the Req/Ack

signals are shown in Figure 3-4. Also, the data from the PC latch/operand latch, the

result of the ALU, the local variables and the data read from input port can be written

to the stack. The variable index (address of the memory) of a local variable is

provided by the operand latch. Data can be passed from the stack to the block of local

variables or from this block to the stack directly without passing through any latches

or functional blocks. The top most latch shown in figure 3-2 can also be updated by a

new address of branch instruction (result of addition of operand and PC) through the

left-most data path.

»»

Page 21

Chapter 3 - Asynchronous Java Processor

3.3 Basic building blocks of the java processor

3.3.1 Block of local variables

The 16X16bit RAM of the java processor realizes the block of local variables. The

address of the RAM (variable index) is provided by the operand latch shown in figure

3-2.

L 華 L 二 W

i

r i L I T . T — —
厂 Ack from Stack

c : v^ “
^ Req to Stack

Address from
operand latch Read.req Write.req Read—complete Write.complete

� �A d d r e s s

^ j — — J 16X16bit
— L C Self-timed memory Data_out . �

Input data ““
from stack � \ Data for Stack

^ � �D a t a j n

Block of
local

variables

Figure 3-5 Schematic of block of local variables (black boxes represent latches)

The schematic of the block of local variables is shown in the figure 3-5. A 16X16bit

self-timed memory is used. The structure of the block of local variables is very simple

Page 22

Chapter 3 - Asynchronous Java Processor

because the input data written to the block of local variables can only be read from the

stack and the output data read from the block of local variables can only be written to

the stack. Also, the address of self-timed memory (the variable index of the local

variable) can only be read from the operand latch shown in figure 3-2.

Two control bits, Read jv and Writejv, are read from the Latch_RW. If the

instruction involves a read operation from a local variable, the control bit Read jv is

set to 1. Otherwise, it is 0. Similarly, if the instruction involves a write operation to a

local variable, the control bit Writejv is set to 1. Otherwise, it is 0. In the processor

design, both read operation and write operation appeared in a single instruction are

not supported. So, Read jv and Writejv are never set to 1 at the same moment. The

other control bit Use_lv is used to indicate whether the current instruction involves a

read operation from the block of local variables or a write operation to it. When one of

the Read jv or Writejv is 1，Usejv is set to 1. Otherwise, it is 0. When U s e j v is 0，

the request signal to the block of local variables will reflect to the LC of Latch_RW.

Utch_RW

r T v .
c

u ，r ，r

Req/Ack: Stack. Block of I/O ports
local

variables

Figure 3-6 Request signals transmitted by the latch controller of the Latch_RW

As mentioned before, the Latch—RW shown in figure 3-5 provides control bits for the

read or write operation of the block of local variables, stack and I/O ports. So, the fork

Page 23

Chapter 3 - Asynchronous Java Processor

I for transmitting three request signals (and receive three acknowledge signals) as

shown in Figure 3-6 is used.

3.3.2 Stack

Latch.RW , p -

^ Latch RW

0 1

Input data Latch_stack_W S t a c k R e q _ t o _ s t a c k
from: T " , forward

generator Ackjrom.stack
Block of _ L k f V L_k 〜 ， , 1 ~ \ [X

local � \ A d r . — �J — — \
v^iables H D ^ lat̂ ^h^vriteda^g 10X16bitSelf- 1 1 ^
I / 0 _ _ > Latch_wnte_data tim—emory ^ Data read —

PC latch � [- / /
T k Req/Ack:

R e q / A c k -处U 乂 Read_stack.io[2:0] Block of

• K ^ local
Block of ^ X variables

local • ^ ^ " I/O ports
variables ——_

I/O ports , - �一 _ _ 产 NewPC

"' Operand • J +

latch

PC latch k ~ Branch/-

^ • Logical
ALU ^ i z z ^ operation

L … C I J
^

Figure 3-7 Stack (black boxes represent latches)

Stack is a very important component in the Java processor since all the operands of the

ALU operations are read from it and it can be a temporary register for data transfer.

The simplified structure of the stack is shown in figure 3-7. Some control signal paths

for the request and acknowledge signals are not shown and only some important

Page 24

Chapter 3 - Asynchronous Java Processor

control bits are shown. It can support 3 types of operations: 1) a single read from the

stack in an instruction, 2) a single write to the stack in an instruction and 3) both a

read operation and a write operation in an instruction. The stack supports the write

operation of one data, the read operation of one data and the read operation of two

data. Also, the result-forwarding technique is used in the processor design.

If the request signal from the LC of Latch_RW is received and the instruction

involves a write operation to the stack (a control bit Write一stack that is not shown is

1)，some control bits read from the Latch—RW are stored into the Latch—stack—W. The

input data written to the stack can be read from one of five fiinctional blocks and it is

selected by the data stored in the Latch_stack_W.

When the request signal for one of these five functional blocks is transmitted to the

stack, the data written to the stack will firstly store into the Latch—write—data shown in

figure 3-7. After receiving the next request signal from the LC of the Latch_RW, the

•.. next instruction is executed. If the next instruction involves the read operation of one

data, the data stored in the Latch—write_data will be directly forwarded as the output

data read from the top of the stack and the stack pointer will not be updated. If the

next instruction involves the read operation of two data, the data stored in the

Latch_write_data will be forwarded and a data is read from the self-timed memory.

(And then the stack pointer is updated)

If the next instruction does not involve a read operation, the data stored in the

Latch—write一data will be stored into the 10X16bit self-timed memory and the stack

pointer (address of the self-timed memory) will be updated.

Page 25

Chapter 3 - Asynchronous Java Processor

The read operation from the stack is quite similar to that from the block of local

variables. However, the read data from the stack can be written to one of six

functional blocks. Fork element II (as shown before in figure 3-4) shown in figure 3-7

can transmit a request signal to one of the six functional blocks controlled by control

bits Read_stack_to[2:0] read from the Latch_RW. The read operation starts when the

stack has received a request signal from the latch controller of the Latch一RW and a

control bit Read—stack is 1 (not shown). Since result-forwarding technique is used in

the processor design, the data can be read from the Latch_write—data or the self-timed

memory. Then a new value of the stack pointer is generated by the stack address

generator when the data (one or two) is read from the self-timed memory.

When the instruction involves both a read operation and a write operation, (both

Read-Stack and Write—stack are 1) the write operation does not start until the read

operation from the stack is completed.

3.3.3 Self-timed RAM

Two self-timed RAM is used in the java processor. One of them is for the stack

(10X16bit) and the other one is for the block of local variables (16*16bits). Delay

element is used to detect the completion signal of the write operation of these

self-timed memories. For the read operation, the completion can be easily detected by

monitoring the bit lines of the column of the self-timed RAM

Page 26

Chapter 3 - Asynchronous Java Processor

Read • Data Data.b

• O n r C r _ L ，二 y Completed

^H^̂ VAV
• 1 T

Data_out
(a) 一 (b)

Start t f

t I I ^ \ Word lines
——>

(>—Ram_cell —it
^ ^ " 一

Address . J - „ „ “
decoder • Ram_ceU

• 參

_ Data • Data_b

^ t F ^ —
Ram_cell

^ C ~
Detection 一 Completed

circuit
T"̂

Data_out[0]

... (c)

Figure 3-8 (a) Ram cell (b) Detection circuit (c) A column of the RAM

The Ram cell and the detection circuit are shown in figure 3-8(a) and 3-8(b)

respectively. The detection circuit can both store the data read from the stack and

detect the completion of the read operation. A column of the RAM is shown in figure

3.8(c). When the signal ‘Start，is 0，the signals on the bit lines of the column (Data and

Data_b) are precharged to 1. Also, the signal 'Completed' of the detection circuit is 0.

When the read operation starts, one of Data and Data_b is changed from 1 to 0. Then

the signal ‘ Completed' is changed to 1 and the output data ‘ Data out' can be read

Page 27

Chapter 3 - Asynchronous Java Processor

from the stack. After Data out is read by other functional block, the 'Start' will

change back to 0 and both signals Data and Data_b are precharged to 1 again. Then

the signal 'Completed' is changed back to 0. (The data read from the stack before is

stored on 'Data_out'). Since the memory size of self-timed memories in the processor

are very small, no sense amplifier is used.

y / ^
y / Return address

圓 I 厂 >：

— T ^ Control bits \
I ~ ‘ ~ 1 from decoder /
cc • ^ ^

� ^ ^ ^ ^ ^

§ ^ Instruction " A r^ � ^ — — ； o ^ ,
目 w memoir] / V 驗 r Contro bus)专丨

, r ' n Operand ^

^ ^ ^ i l j ^ k ^ x ^ J] n r i 一 m ”

厂 ^ tl tl K

^ ^ A ^ Control b i t s ' 人 I .
+ y ~ framclyoder �

1 g A ^ I
^ I ~

^ ^ ^ Branch target address

— C C , -
•

Figure 3-9 Fetch/decode unit (black boxes represent latches)

Page 28

Chapter 3 - Asynchronous Java Processor

3.3.4 Fetch/decode unit

The complete schematic of the fetch/decode unit including all the data paths and

request/acknowledge signals is shown in figure 3-9. LC is latch controllers and CC is

the control circuit of the multiplexer as shown before in figure 2-11.

The data width of the program counter (PC) is 16 bits and that of the instruction is 24

bits including an 8-bit opcode and a 16-bit operand. The decoder is a lookup table for

generating control bits. A delay element (not shown) in the decoder is used to generate

the completion signal for the handshake protocol.

(^^^^^ecode^nit^ o ——
Operand

“
Control bits

" T —
'" |-i—L .11 11 11

J U LJ

” tI 11
Req/Ack: Stack Block of Block for

local branch
variables operation

Figure 3-10 Request signals form the latch controller of the operand latch

The Latch_RW is used to store the control bits for the stack, the block of local

variables, the I/O ports and the ALU. Since the data stored in the PC latch and

operand latch can pass to two or more functional blocks as shown in figure 3-10，

some control bits generated by the decoder is also written to them.

Page 29

Chapter 3 - Asynchronous Java Processor

3.3.5 Self-timed adder

• p
yi — r ^ T ^ t M T ^ ~ Sum

Cin 1

Start ^

SO SI

4 = ! ? _ Q — — c o u t
「 1 2

- (a)

xO yO xl yl x2 y2 x3 y3

C i n l , I I I T , I I. T , I I , — — ^ _ L
xi yi xi yi xi yi xi yi

r l > o ^ start start "-start ~ start ,
Start - | > o < I ~ Cin 卞 Cout Cin 卞 Cout Cin 十 Cout Cin + Cout 一 Cout

Sum P Sum p Sum p Sum p
r̂. I r n ~ I H “ I H

sO si s2 53 C J OK

Sum_OK

(b)

x[15:0] y[15:0]

I I u T M , , T T
Xl3:0] y[3K)] x�3:0] yt3:0] x[3K)] yl3K)] xI3:0] y(3:0]

Start — Start Cout_OK 一 Start CouLOK - Start CouuOK - Start Cout OK — Cout OK
Cin — Cin 4-bit adder Cout — Cin 4-bit adder Cout 一 Cin 4-bit adder Cout 一 Cin 4-bit adder Cout — Cout—

Sum 3:0] Sum OK I Sum 3:0] Sun _0K I [gum丨3:0] SumOK _ Sum 3:0] Sum OK

Sum[15:0] r
SunuOK

(C)

Figure 3-11 (a) Basic adder cell (b) 4-bit adder (c) 16-bit adder

The self-timed adders used in the java processor are based on [7]. The basic adder cell

is shown in figure 3-11(a). The signal 'Start' is the start signal for the operation and

Page 30

Chapter 3 - Asynchronous Java Processor

the signal 'P ' is used to detect the completion for generating the carry out bit 'Cout'.

After reset, the Start is 1 and the Cout is 0. Before the Start is changed from 1 to 0，the

input bits xi, yi and Cin are valid and the signal 'P' is generated. If P is 0’ the values of

xi and yi are both equal to 0 or both equal to 1. In this situation, the value of the carry

out signal 'Cout' is equal to that of yi (or xi) for any value of the signal Cin. So, the

Cout can be calculated without waiting for the completion of the generation of Cin.

However, if P is 1, Cout cannot be calculated without the valid value of Cin.

The 4-bit adder is shown in figure 3-11(b). When the signal Start changes from 1 to 0，

the operation starts. Cout OK is the completion signal for generating Cout and

Sum OK is the completion signal for generating the sum. The 16-bit adder shown in

figure 3-11(c) is realized by four 4-bit adders

Page 31

Chapter 3 - Asynchronous Java Processor

3.4 Token flow

9
(^ranchA^ <20

r xxS；̂^

(Stack) <7

PC <5 (Fetch & Decode) 4 �O p e r a n d

f Local variables J (I/O ports)

Figure 3-12 Paths for transmitting control bits and data bits (path 1，path 2 and path 3 are
the paths for transmitting control bits)

The paths for transmitting control bits and data bits in the java processor are shown in

figure 3-12. Since the asynchronous circuit design technique is used, all the functional

blocks shown in this figure operate only when necessary. As mentioned before, Req

and Ack (not shown) are bundled with these paths to control the communication

between the functional blocks.

Instruction Paths involved
sipush const 1, 4，12

iload index 1，2，4，18，15
istore index 1，2，4，18，14

iadd 1 ,6 ,7 —
isub _ 1，8，9 -

- ‘ ‘ r ‘

Page 32

Chapter 3 - Asynchronous Java Processor

ishl I 1，10，11

ishr 1,10，11
iand 1, 10, 11
ior 1, 10, 11
ixor 1，10，11

if scmpeq w offset 1, 4, 5, 8，20, 21，22
if scmplt_w offset 1 ,4 ,5 ,8 , 20,21,22
if scmpge w offset 1, 4, 5, 8，20, 21, 22
goto offset None
jsr offset. 1, 5，13
ret 1, 19
nop None
s2p 1，3，16
p2s 1，3，17
sleep None

Table 3-3 Paths for each instruction

The paths for all instructions are shown in table 3-3. There is no data transfer when

executing goto, nop and sleep since these instructions are only executed in the

fetch-decode unit. In order to show how they work, some examples are given as

follows:

• iload index:

iP (^""stacT"^

(F e t c h & Decode) ~ ^ f Operand j / \

(^ ^ ^ v m ^ ^ (l ^ a l v a r i a ^

(a) (b)

Figure 3-13 Execution of 'iload index': (a) Step 1 (b) Step 2

Step 1: Control bits are transmitted to the stack, block of 1 ocal variables and the

operand latch. The variable index of the local variable is also transmitted to

Page 33

Chapter 3 - Asynchronous Java Processor

the operand latch. (Figure 3-13(a))

Step2: The data stored in operand latch (variable index) is transmitted to the block

of local variables. Then the data of the selected local variable is push onto

the stack. (Figure 3-13(b))

參 sipush const:

ft ^ ^

(a) (b)

Figure 3-14 Execution of'sipush const': (a) Step 1 (b) Step 2

Stepl: Control bits are transmitted to the stack and the operand latch. An

immediate data for the stack is also transmitted to the operand latch. (Figure

... 3-14(a))

Step2: The data stored in the operand latch is push onto the stack. (Figure 3-14(b))

• iadd:

o o
广 — — ^ _ _ ^ ^

(a) (b) (c)

Figure 3-15 Execution of'iadd': (a) Step 1 (b) Step 2 (c) Step 3

Page 34

Chapter 3 - Asynchronous Java Processor

Stepl: Control bits are transmitted to the stack. (Figure 3-15(a))

Step2: Two data are popped from the stack and transmitted to the block of addition.

(Figure 3-15(b))

Step3: The result of addition is pushed onto the stack. (Figure 3-15(c))

• if_scmpeq_w offset:

ft
O r 广 ~

PC <5 (Fetch & Decode) 4�Operand

(a)

(b) (c)

Figure 3-16 Execution of 'if_scmpeq_w offset': (a) Step 1 (b) step2 (c) Step3

Stepl: Control bits are transmitted to the stack, the operand latch and the PC latch.

Also, offset address for the branch operation is transmitted to the operand

latch and the PC of the current instruction is transmitted to the PC latch.

(Figure 3-16(a))

Step2: The data stored in the operand latch and the data stored in the PC latch is

Page 35

Chapter 3 - Asynchronous Java Processor

transmitted to the block of branch operation. Two data popped from the

stack is also written to this block and the branch target address is calculated.

(Figure 3-16(b))

Step3: The branch target address is written to the latch for storing the new PC in

the fetch/decode unit. (Figure 3-16(c))

Page 36

Chapter 4 - Results and Discussion

Chapter 4

Results and Discussion

4.1 Simulation Results of test programs

Three test programs for executing all the instructions are used to evaluate the

performance of the Java processor.

Program 1:

Address Instruction

00 nop

01 p2s Input port is set to 0003

02 istore 00

03 iload 00

... 04 sipush 0001

05 isub

06 istore 00

07 iload 00

08 s2p

09 iload 00

OA sipush 0000

OB if_scmpeq_w 0002

OC goto FFF7

OD sipush FFFF

Page 37

Chapter 4 - Results and Discussion

OE s2p

OF sleep

Result:

Data in the output port: 0002, 0001，0000，FFFF

Program 2:

Address Instruction:

00 p2s Input port is set to 0006

01 sipush 0001

02 ishl

03 sipush 0002

04 ishr

05 sipush OOOF

06 ixor

‘ 07 sipush 00C8

08 ior

09 sipush 006F •

OA iand

OB s2p

OC sleep

Result:

Data in the output port: 004C

Page 38

Chapter 4 - Results and Discussion

Program 3:

Address Instruction:

00 jsr 0004

01 sipush 0001

02 s2p

03 sleep

04 p2s Input port is set to 0002

05 sipush 0003

06 if一 scmplt_w 0003

07 sipush 0002

08 s2p

09 sipush 0003

OA sipush 0004

OB if_scmpge_w 0004

OC sipush 0003

.丨. OD s2p

OE ret

OF sipush 0004 ‘

10 s2p

11 ret

Result:

Data in the output port: 0003，0001

Page 39

Chapter 4 - Results and Discussion

Program MIPS Power (mW) MIPS/W

1 Ys i m

2 28 12.667

3 ^ 10.412 ^

Table 4-1 Simulation Results

The simulation results of the three programs done by software spectreS are shown in

table 4-1. However, the simulation is not accurate since all parasitic resistors and

capacitors of the metals connecting the logic cells are not included in this simulation.

Obviously, the actual performance can be much worse than the simulation result

shown in Table 4-1. So, measuring the fabricated chip is necessary for giving a better

evaluation of the performance.

The java processor is organized by the standard library cells and the memory cells for

the self-timed memories. The processor design is placed and routed by Silicon

‘ Ensemble. Also, a post layout Verilog-XL simulation is done for verification after

replacing all my library cells with standard library cells. For example, the memory

cells are replaced with flip-flops. This simulation result shows that the processor

works at 9MIPS when executing the bytecodes in program 1 •

¥

Page 40

Chapter 4 - Results and Discussion

4.2 Experimental result

Supply(V) MIPS Power (mW) MIPSAV

^ me

3 VL2 l O

^ 14̂ 2 ^

2 m 2 3 4 0 ^

Table 4-2 Experimental Results

The java processor chipset for testing is fabricated by 0.35um CMOS process. The

bytecodes of program 1 are stored in the rom of the java processor. The experimental

result shown in Table 4-2 is done by executing the bytecodes in the test program.

For a contactless smart card system, the external clock is 13.56MHz [13] and the

power consumption has to be less than 30mW. [14] The experimental result shows

that the power consumption of the processor is 14.1mW when the speed is 18.7 MIPS.

(At 3.3 V) Obviously, this can fulfill the requirement of the system of contactless

smart card. We can reduce the power consumption by decreasing the supply voltage.

Also, its power consumption is about equal to zero in the power down mode.

Supply voltage = 2.5V ‘
I CMOS MIPS Power (mW) MIPS/W

technology
Asynchronous
Q D I 8-bit 0.25um 23.8 28.0 850.3
microcontroller

i i 3]
Our design:
16-bit 0.35um 14.2 6.3 2254
asynchronous
java processor

Table 4-3 Result comparison „

Page 41

Chapter 4 - Results and Discussion

The result comparison of two processor designs is shown in table 4-3. The processor

for comparison is an asynchronous quasi-delay insensitive (QDI) 8-bit microprocessor

[13] fabricated with 0.25 |Lim technology. Both the architecture and the instruction set

of the two processors are different. However, they are also designed for the system of

contactless smart card.

When comparing the MIPSAV figures, the performance of our proposed design is

about 2.7 times better than that of the asynchronous QDI 8-bit microcontroller.

4.3 Future work

4.3.1 Architecture and instruction set

In order to increase the efficiency of the java processor, the instructions pop, pop2,

‘ iinc，ineg, iushr, if_scmple_w, if_scmpgt_w, saload and sastore are suggested to be

added into the subset. Among them, saload and sastore are two very important

instructions for accessing the memory and they are necessary for the java processor.

Also，as mentioned before, the definition of the instruction ret in the java processor is

different from that in [10]. So, we can modify the architecture of the java processor so

that the function of this instruction is the same as that defined in [10]

Page 42

Chapter 4 - Results and Discussion

广 f External memory�
(+) V interface J

"7：^ (^ranchA^ / /

(Stack) <7

PC <5 (Fetch & Decode) 4> Operand

(L o c a l variables) (I/O ports)

件

V ®

Figure 4-1 modified architecture of the Java processor

The modified architecture of the java processor is shown in figure 4-1. The data path

23 and the data path 24 are used for the instruction iinc. Also, in order to support the

instructions saload and sastore，an external memory interface is added into the design.

4.3.2 Interrupts

Interrupt i s currently n ot i mplemented i n the j ava p rocessor. E xtemal interrupt a nd

timer interrupt are essential for communication in the smart card system. These

interrupts can also be handled in the fetch/decode unit.

Page 43

Chapter 4 - Results and Discussion

4.3.3 Java program

A complete Java program for the smart card system is needed to be developed in order

to evaluate the performance of the Java processor. The Java program should be able to

communicate with the card reader, access the memory and perform

encryption/decryption of the input and the output data. Since some instructions

defined in [10] cannot be executed directly in the Java processor, some software

subroutines have to be written for executing the unsupported instructions.

Page 44

Chapter 5 —- Conclusion

Chapter 5

Conclusion

The architecture of a low power asynchronous java processor f or c ontactless smart

card is designed and it can directly execute the java bytecodes in a subset of the

instruction set defined in the Java Card Virtual Machine specification. They are

including the register read/write operations, ALU operations and branch operations.

The remaining java bytecodes are handled by software routines.

The java processor core are organized by the fetch unit, decode unit, stack, the block

of local variables and the ALU. It is a stack-based processor and the result-forwarding

technique is used in the stack in order to save some write operations to the stack Also,

.丨丨 self-timed adders and self-timed memories are used in order to increase the operating

performance of the asynchronous java processor.

In this design, we use four-phase bundled-data protocol for normally opaque latch

controller as the handshaking protocol in the asynchronous pipeline. The control

circuits of the asynchronous pipelines used in the java processor including fork, join

and merge are introduced. Also, a new delay element is proposed in order to reduce

the power consumption of the asynchronous pipeline.

The java processor chipset is fabricated using 0.35um CMOS process. The power

Page 45

Chapter 5 一 Conclusion

consumption of the chipset is 14.1mW when the operating speed is 18.7 MIPS and it

is suitable for the application of contactless smart card. Also, its power consumption is

about equal to zero in the power down mode.

Finally, in order to increasing the operation performance of the java processor, some

suggestions of the hardware and software design are given.

Page 46

Appendix

Appendix

Chip micrograph for the java processor core

(Size 1.2 i W)

I H p l i P H H I
_ •

l l l i i i M

Page 47 .

Appendix

Pin assignment of the Java processor

® �
@ @ ⑨⑨⑨
®® ® ®
® @ ® ⑨®®

© ® ® Bottom view ® ® @

© � � ® ® ®
� 0 广 a pin ��

© © 〇 ®®® ®®
© Q ® ®

"Piii
number Pin Name IN/OUT Description
1 GND IN
2 GND IN
3 Start ^ Start signal
4 Use_ext_mem IN Enable the external instruction

memory
5 R i n e x t m e m IN Request signal from the

external instruction memory
6 Rout_ext_mem OUT Request signal to the external

instruction memory
7 VDD IN
8 Rport [0] ~ IN Bit 0 of the read port
9 Rport[l] IN Bit 1 of the read port
10 Rport [2] IN Bit 2 of the read port
11 Rport [3] IN Bit 3 of the read port
12 Rport [4] IN Bit 4 of the read port
13 Rport [5] IN Bit 5 of the read port
14 Rport [6] IN Bit 6 of the read port
15 Rport [7] IN Bit 7 of the read port
16 Rjjort [8] IN Bits of the read j^ort |

Page 48 .

Appendix

17 Rport [9] I IN I Bit 9 of the read port
18 Rport[10] IN Bit 10 of the read port
19 Rport [11] IN Bit 11 of the read port
20 Rport [12] IN Bit 12 of the read port
21 “ Rport [13] “ IN Bit 13 of the read port
22 Rport [14] IN Bit 14 of the read port
23 Rport [15] IN Bit 15 of the read port
24 VDD IN
25 “ Wport [0] " o u t Bit 0 of the write port —
26 Wport [1] OUT Bit 1 of the write port
27 “ Wport [2] " o u t Bit 2 of the write port —
28 Wport [3] OUT Bit 3 of the write port
29 Wport [4] OUT Bit 4 of the write port
30 Wport [5] OUT Bit 5 of the write port
31 Wport [6] OUT Bit 6 of the write port
32 Wport [7] OUT Bit 7 of the write port
33 Wport [8] OUT Bit 8 of the write port
34 Wport [9] OUT Bit 9 of the write port
35 Wport [10] OUT Bit 10 of the write port
36 Wport [11] OUT Bit 11 of the write port
37 Wport [121 OUT Bit 12 of the write port
38 Wport [13] OUT Bit 13 of the write port
39 Wport [14] OUT Bit 14 of the write port
40 Wport [15] OUT Bit 15 of the write port ~
41 GND IN

Adr_ext一mem [0] OUT Bit 0 of the address bus of the
external instruction memory

~43 Adr_ext一mem [1] OUT Bit 1 of the address bus of the
external instruction memory

‘ ~44 Adr_ext_mem [2] OUT Bit 2 of the address bus of the
external instruction memory

45 Adr_ext_mem [3] OUT Bit 3 of the address bus of the
external instruction memory

"46 Adr_ext_mem [4] OUT Bit 4 of the address bus of the
external instruction memory

47 Adr_ext_mem [5] OUT Bit 5 of the address bus of the
external instruction memory

"48 Adr_ext_mem [6] OUT Bit 6 of the address bus of the
external instruction memory

49 Adr_ext一mem [7] OUT Bit 7 of the address bus of the
external instruction memory

"50 Adr_ext一mem [8] OUT Bit 8 of the address bus of the
external instruction memory

Adr_ext_mem [9] OUT Bit 9 of the address bus of the
external instruction memory

Adr_ext一mem [10] OUT Bit 10 of the address bus of the
external instruction memory

53 Adr—ext—mem [11] OUT Bit 11 of the address bus of the
I external instruction memory

Page 49 .

Appendix

Adr_ext一mem [12] OUT Bit 12 of the address bus of the
external instruction memory

Adr—ext—mem [13] OUT Bit 13 of the address bus of the
external instruction memory

"56 Adr_ext_mem [14] OUT Bit 14 of the address bus of the
external instruction memory

Adr_ext_mem [15] OUT Bit 15 of the address bus of the
external instruction memory

58 ~YDD IN —
59 "VDD IN —
60 Data_ext_mem [0] IN Bit 0 of the data bus of the

external instruction memory
Data一ext_mem [1] IN Bit 1 of the data bus of the

external instruction memory
62 Data_ext_mem [2] IN Bit 2 of the data bus of the

external instruction memory
Data—ext一mem [3] IN Bit 3 of the data bus of the

external instruction memory
64 Data一ext_mem [4] IN Bit 4 of the data bus of the

external instruction memory
65 Data_ext_mem [5] IN Bit 5 of the data bus of the

external instruction memory
66 Data—ext一mem [6] IN Bit 6 of the data bus of the

external instruction memory
Data_ext—mem [7] IN Bit 7 of the data bus of the

external instruction memory
Data一ext—mem [8] IN Bit 8 of the data bus of the

external instruction memory
Data—ext一mem [9] IN Bit 9 of the data bus of the

„. external instruction memory
Data一ext_mem [10] IN Bit 10 of the data bus of the

external instruction memory
~T\ Data_ext_mem [11] IN Bit 11 of the data bus of the

external instruction memory
72 Data_ext_mem [12] IN Bit 12 of the data bus of the

external instruction memory
73 Data_ext_mem [13] IN Bit 13 of the data bus of the

external instruction memory
74 Data一ext_mem [14] IN Bit 14 of the data bus of the

external instruction memory
"75 Data_ext_mem [15] IN Bit 15 of the data bus of the

external instruction memory
~T6 Data_ext_mem [16] IN Bit 16 of the data bus of the

external instruction memory
77 Data一ext_mem [17] Bit 17 of the data bus of the

external instruction memory
"78 Data_ext_mem [18] IN Bit 18 of the data bus of the

external instruction memory
79 Data_ext_mem [19] IN Bit 19 of the data bus of the

Page 50 .

Appendix

external instruction memory
Data_ext_mem [20] IN Bit 20 of the data bus of the

external instruction memory
~81 Data_ext_mem [21] IN Bit 21 of the data bus of the

external instruction memory
"82 Data_ext—mem [22] IN Bit 22 of the data bus of the

external instruction memory
Data—ext—mem [23] m Bit 23 of the data bus of the

external instruction memory
84 Resetb IN Reset signal

Page 51 .

Appendix

Schematic of the java processor

j

I I'F^^：：^：：^；：：：^：^^^：^：：^™^， I •
I : m m � � �爾 a ^ A | |

1 i ir- I

F ^ I ：

f " - - - l i t ii r
_ ， 1 丨丨

MiuHjmfmilm Ii I
t Wgr Fwch 二;

iBhr 脚截 i —

；？u ml - - — -•""iiM ‘ ;

,_昏， • ‘ - S s ®
HMMI ^-^im . �….—•….�.•• Ul • rnMrnMiwummmnii

I m "HB-.“..--.“.（.、广
pjhM* I «HkS

象 V I “一 -w-jrtum
1 ， • 〜

"SVS-�”-—�..v~_f-~-4~s-~1 • -»v - " • — J
4' — .4’-..̂*s>-…”：卜•. -.. mxk ̂**…如 一一一—一，一 n ；."…、+....... • m^'immm
‘ 二淑

q i
…“ -…

_ 幅风胸 < 1妙 垂,成风肩 •
麵 wbi 識 war •
：, _ i t > i C _ _ � l 偷 AiWrwi •

» nlii_<lijbiitntt»

i rinj:氍 jtw*
_ riitjrk miam

I | i | l i y i l i i — —
Us I • iuiû . • 1
T p A » m\m ii»«ir<？
/i ^ 0^«id”5:Oi> mm

I • fW* • I
• tmjextmi i««(jE<rwtt • |
• s*aK 9 I

Page 52 .

Appendix

I > ‘ •！‘ k

u 该、 TM^th - f

“ ！ J K O 今 t f � 會

i • i Sfi^r f

I • q I
I 會

I � I
j D<xockr � ‘. 辦 #
I ， f
I #
I f-' #
丨 喊御* •
I ：̂ A
I ' •

像 f .
m

. . 十 t

I •

mMMMNMft�、抽 Va ••'M i •̂.̂•(•̂•.•̂iAsvii./K̂A..-；"."̂、；"̂"̂:.:)；̂ :̂:*̂ /̂̂^̂:、,*, .,, -、‘.：.,-……乂••�.-..•,... .. . I- • I • -I - .1.111(1

j t ^ tcr* 知(
• 1 …O
i t--"-'̂ '- 奏二 I- . i (
I 卜 一 i t i x ^ i * I I t i t

I > - fj'A^wc- t j ^ 卜 i I
i f lae:! ‘ MM a«ra�i5嘧、拿 i i

- \ \ a i I
" � j
H I
i ifi \
I I
i > … � I .

I

0 "顧 Stage2 i
1 y 彩 I ‘
i 嚇 I
i I
I h".'..
i •‘ fiKjjkZ
< …-

< >
I I* —署
i
U wis

Page 53 .

Appendix

Schematic of the decoder

J
I ft

i
i

l l
i J

I i -

1 1

E i M 請 ,

y g ^ I

^ "1 — j J ^ S ^ i

\ = = = = = i

Page 54

Appendix

Schematic of the Stage2 of the java processor

f

I
— _ 一

SSa ；………•、…

— — 丄 — J T J

I 一 1—Ip| 國 I:

+

�

1 •

Page 55 .

Appendix

Schematic of the stack

i •M*' I
I r ,
I-f： 『 .

r t 1 Ii
I .—— i ^ ^ m : . I

\ - ^ 「.：:=:=ZIIZ::::===::. : « - i .

L E I � . . . f ^ ^ f J
I 们 ! ^

It �

\，,j^�；丨i ::丨！ L 一 一 • ^ 一 .：丨

' ？k i ifl '"T it p —-� I ： s • T i, i
p I ； ！11 i! i . !
g ! ： . 1 M I … ；
g t ‘ I' ii I ‘ ‘ “

墨丨丨 ii! n 1

1 : I: I I, i I ;
, i 1! I. .. .11一 ' I ' ' / ,
i j : … h I I, I ：]

. i • 丨 」 .

；i ra-' 1 n ' . - y

! i •
\i 11
丨 r '
i ‘ " i i 1 u ^ 11 丄 J H i
• \ ！二二•'"'•̂'，〜..一'.一‘丁. \

_ — 1 I
tl i
i

•i

Page 56

Appendix

Schematic of the block of the local variables

r - j .
i j jpy V' mi^ 腳(=1*

f — " dfWHmmni 1

I Memory

參

I：——

P
t
I — — — —

t Z Z I
|ZZJ .

I
Page 57 .

Appendix

Schematic of the 16-bit self-timed adder

i •
\f\j

£-

奢 l J

亭 : i
^

丨.....《：.—會！^

w
...广

f
Page 58 .

Appendix

The schematic and the layout of the memory cell

j : . .
細rr • I 上 們辦‘ I ^ ̂^鄉主！;

' II . . ' , > i i ,彻」•

；5

J i I i
I I I

V I
i

‘•'..""•."..I *«•'«•.‘",,;.“.；：

I r
i i t i p

： : :

y

Page 59 .

Reference �

Reference

[1] Endecott, P.B, "Superscalar instruction issue in an asynchronous microprocessor",

Computers and Digital Techniques, lEE Proceedings, Volume: 143 Issue: 5，

Sept. 1996，Pages 266 -272

[2] Jens Sparse)，Steve Furber, "Principles of Asynchronous Circuit Design", Kluwer

Academic Publishers, 2001

[3] Java Card Special Interest Group, "2 Smart Card Overview",

http://www.javacard.org/others/smart_card.htm.

[4] Zhang Jianjie, Li Feihui, Ge Yuanqing, Yue Zhenwu，Yang Zhilian, "A Java

processor suitable for applications of smart card", ASIC, 2001. Proceedings. 4th

International Conference, 2001, Pages: 736-739

[5] Taylor, G.S., Blair, G.M., "Reduced complexity two-phase micropipeline latch

controller", Solid-State Circuits, IEEE Journal of，Volume: 33 Issue: 10，Oct

1998，Page(s): 1590 -1593

[6] I. E. Sutherland, “Micropipelines", Commun. ACM, vol. 3 2，pp. 720-738, June

1989.

[7] Perri, S.，Corsonello, P., Cocorullo, G..，Cappuccino, G.., Staino,- G.., "VLSI

implementation of a fully static CMOS 56-bit self-timed adder using overlapped

execution circuits", Electronics, Circuits and Systems, 2001. ICECS 2001. The 8th

IEEE International Conference on，Volume: 2，2001, Page(s): 723 -727 vol.2

[8] Woods, J.V., Day, P., Furber, S.B., Garside, J.D., Paver, N.C., Temple, S.，

“AMULET 1: an asynchronous ARM microprocessor", Computers, IEEE

Transactions on，Volume: 46 Issue: 4，Apr 1997，Page(s): 385 -398

Page 60

http://www.javacard.org/others/smart_card.htm

Reference

[9] K. T. Christensen, P. Jensen, P. Korger, and J. Spars0, "The design of an

asynchronous TinyRISC TR4101 microprocessor core", In Proc. International

Symposium on Advanced Research in Asynchronous Circuits and Systems, Pages

108-119. IEEE Computer Society Press, 1998

[10] Sun Microsystems, "Java Card 2.2 Virtual Machine Specification",

http://java.sun.com/products/javacard, 2002

[11] M. O'Connor, H. McGhan, "PicoJava: A Direct Execution Engine for Java

Bytecode", IEEE Computer, 31，10，22，1998

[12] Lee-Ren Ton, Lung-Chung Chang, Min-Fu Kao, Han-Min Tseng, Shi-Sheng

Shang, Ruey-Liang Ma, Dze-Chaung Wang, Chung-Ping Chung, "Instruction

folding in Java processor", Parallel and Distributed Systems, 1997. Proceedings,

Pages 138-143

[13] Abrial, A.” Bouvier，J., Renaudin, M.，Senn, P., Vivet, P., “ A new contactless

smart card IC using an on-chip antenna and an asynchronous microcontroller",

Solid-State Circuits, IEEE Journal of，Volume: 36 Issue: 7，Jul 2001，Page(s):

1101 -1107

[14] Connie C.，Grimonprez G.," A RISC microprocessor for contactless smart cards",

EUROMICRO 97. ’New Frontiers of Information Technology', Proceedings of the

23rd EUROMICRO Conference，1-4 Sep 1997 Page(s): 658 -663

Page 61

http://java.sun.com/products/javacard

-:.--.>,-."-•「〜.

二

•
•

..

 ,

-
t

.,-.」•-、-.•-

-
.
J

:•_,,—-..

 .

 ,

 •

 -
 •

•
•
V

.
、
•
-
 .

 •

‘

•

二

.

-

二

V

 -

 .

 1

I
,

、
-
-
-
 .:

 .

W

•

.....

 .

•
•
-

•
•
•
v
r
.
l
:

.•-•’.)•「•：>•:

•

 ...,

•

‘

二

sr.-

？
广

h:.-二
 .：-/

 ..-.V

J

.

 ••二

 V

 -

.

.

.

.

.

 .

X

.

t

.
 ‘

 f
t

^
 ,

：

/

r

-

s

-
 .

 .
 ,,:,;.>••".、，•

：

 •

v....

V
 :•
:

•

.U-.

 ；

-

rv.........’

.

 ,、
：

 (
.
-
•
/
•
-
*
*
•
,
;
,
，
/
:
.
:
.

：

 .

 V
-
.
;
-

-T.-...

y

忍
讀
寒
：
：
：
，
：
.
.
、
一
、
、
I
f

_

c

:

？

:

“

气

蒙

二

1

.

.

.

；
 .

.

J
:
,
.
一

；

t
y

4
 筹
”
動
、
,

’

 ：
.

.

 .
.

i
-

 f

 ̂

1
-

I

 A
-

.

i

-

i

‘
 /

 !

 «

^

、-

^

-
 -

 *

i
v
k
.

.

J
/

.
 .
.
.

^

；
？

r

'

n

.

.

,

 .

I

工

、

.

.

.

 .

 .

，
/

“

.

/

.

：

“

》
-
：

/

-

.

•

.

.
i

•
 •

 .

I

.

,

,
、
•
 1

>

 v

？

.

.
y
.
.
/
:
"
-
.
;

....

v
i

:
-

•
:
:

「
-
:
.
-
-
 .

 .

 ,

 .

 .

,

i...

.

.t

-
.
1
 .

 -

 -

\
 s

.

.

私

‘
•
-
.

>

.

.

.

 ,

 .

.

V

-
 ,

 ,

 •

 .

.
^
U
M
-
^
'
r
:

.
)-
-

V
 v..

 ..•.、",、•

.
f

.

I

.

P

:
〜
 ..

、

,

」

；
-

.

.

.

•

 .
.
.
.
.
.
.
.
.

二

n

先
"
、
-

.

i

.

:

,

.

 ；
。

p
.
:

CUHK L i b r a r i e s

圓11__圓丨丨1

w

