
Asymmetric Reversible Parametric Sequences
Approach to Design a Multi-Key Secure
Multimedia Proxy: Theory, Design anc

Implementation

Yeung Siu Fung

A Thesis Submitted in Partial Fulfillment �

of the Requirements for the Degree of

Master of Philosophy

in

Department of Computer Science Engineering

©The Chinese University of Hong Kong

June, 2003

The Chinese University of Hong Kong holds the copyright of this thesis. Any

person(s) intending to use a part or the whole of the materials in this thesis

in a proposed publication must seek copyright release from the Dean of the

Graduate School.

2 8 腦 ffl)i|

Asymmetric Reversible Parametric
Sequences Approach to Design a

Multi-Key Secure Multimedia Proxy:
Theory, Design and Implementation

submitted by

Yeung Siu Fung

for the degree of Master of Philosophy

at the Chinese University of Hong Kong

Abstract
Because of the limited server and network capacities for streaming applications,

multimedia proxies are commonly used to cache multimedia objects such that,

by accessing nearby proxies, clients can enjoy smaller start-up latencies and re-

ceive a better quality-of-service (QoS) guarantee (e.g, reduced packet loss and

delay jitters for their multimedia requests). However, the use of multimedia

proxies increases the risk that multimedia data are exposed to unauthorized

access by intruders. In this paper, we present a framework for implementing

a secure multimedia proxy or, more generally, a secure proxy architecture for

audio and video streaming applications. The framework employs a notion of

asymmetric reversible parametric sequence to provide the following security

properties: (i) data confidentiality during transmission, (ii) end-to-end data

confidentiality, (iii) data confidentiality against proxy intruders, and (iv) data

confidentiality against member collusion. Our framework is grounded on a

multi-key RSA technique such that system resilience against attacks is prov-

ably strong given standard computability assumptions. We also propose the

ii

use of a set of encryption configuration parameters (ECP) to trade off proxy en-

cryption throughput against the presentation quality of audio/video obtained

by unauthorized parties. Implementation results show that we can simulta-

neously achieve high encryption throughput and extremely low audio/video

quality (in terms of audio fidelity, and peak signal to noise ratio and visual

quality of decoded video frames) during unauthorized access.

I

iii

摘要

由於受g桐服器和網絡負荷上限的限制‘代理伺服器常—利用於串^？^多

媒體播放的應用當中。代理彳剛g器會把多媒_•存起來，藉由從！^的

代理同服器中存取資料，用戶端可以以"fflm的起始逮度[較少的網

絡延遲〕禾 [m —的 [較少的封包流失〕去享用串流式多媒•放

的服務。可是‘代理側艮器_用1；§€ 了 入 侵 輯 的 未 受 • 取

的可能性。在這份論文中，我們展M面薩出链性的多媒献理個艮器

的mm。买•門更書及化ff^ ‘ 這 是 串 f e t 的 影 傲 d ® ^ 音 播 • 應

用系統而設計的安全代理伺服器的架構。這偭架構採用了一偭名爲

pni^iwtric sequence" 念，藉以

性：

1.資料傅輸時的安全性

2.端對端的資料安全性

3 .資料 _戈理個艮器入侵者脑全性

4.資料對於备苜間串謀攻®的@1生

我們的 ^ ^驢於 " i m i i m « y R S A ”的術之上，因此基於“®的胃惟機

可算性假設，我們的架ttJ^非常有能力柢澳入侵者的攻单。我們亦都提議使

' " e j H S B ^ coiifi^u-atioii pnmneteiTS (ECP)” 的 # ® [在 加

密吞吐呈和H?口密資料的破壞鍵之閒作出櫃銜。具醒贼果顯示出我們

的 ^ ^ 巨 _ _ 連 ？ 『 搞 度 的 • 加 密 • 至 禾 的 已 加 密 資 料 • •

〔以未經受榧者所能獲得的蟹音赏宠、萵峯巩_訊比、及解碼後的苗面質

宠來銜呈 ‘ 〕

iv

Acknowledgment
I owe great thanks to my advisor, Prof. John C.S. Lui. I appreciate for

his concrete contributions to my work and to my development, and for the

enlightment he gave to me on various fields such as presentation skills. I am

very grateful that he let me pursue my interests in doing my reserach, from

decision of research topic to selection of project extensions. I'm sure that I

cannot finish this thesis without his help and guidance, so I must say thank

you to him again.

I would also like to thank students in our research study group; thanks

Patrick for giving me enlightment in finding my research topic. Thanks Alex

for answering me a lot of questions. And thanks Kwok Tai for being my best

friend in graduate school.

My final acknowledgment goes to my parents for their support and love,

especially for my mother's care.

V

Contents

Abstract ii

Acknowledgement v

1 Introduction 1

2 Multi-Key Encryption Theory 7

2.1 Reversible Parametric Sequence 7

2.2 Implementation of ARPSF 11

3 Multimedia Proxy: Architectures and Protocols 16

3.1 Operations to Request and Cache Data from the Server 16

3.2 Operations to Request Cached Data from

the Multimedia Proxy 18

3.3 Encryption Configuration Parameters (ECP) 19

4 Extension to multi-level proxy 24

5 Secure Multimedia Library (SML) 27

5.1 Proxy Pre-fetches and Caches Data 27

5.2 Client Requests Cached Data From the Proxy 29

6 Implementation Results 31

7 Related Work 40

vi

8 Conclusion 42

A Function Prototypes of Secure Multimedia Library (SML) 44

A.l CONNECTION AND AUTHENTICATION 44

A.1.1 Create SML Session 44

A.1.2 Public Key Manipulation 44

A.1.3 Authentication 45

A.1.4 Connect and Accept 46

A.1.5 Close Connection 47

A.2 SECURE DATA TRANSMISSION 47

A.2.1 Asymmetric Reversible Parametric Sequence and En-

cryption Configuration Parameters 47

A.2.2 Bulk Data Encryption and Decryption 48

A.2.3 Entire Data Encryption and Decryption 49

A.3 Secure Proxy Architecture 49

A.3.1 Proxy-Server Connection 49

A.3.2 ARPS and ECP 49

A.3.3 Initial Sever Encryption 50

A.3.4 Proxy Re-Encryption 51

A.3.5 Client Decryption 51

Bibliography 52

vii

List of Tables

6.1 Effect of Ep and Ei on the encryption throughput p (in unit of

MBytes/s) and the average number of MPEG-1 streams M when

Eb = l 32

6.2 Effect of Ei and Eb on the encryption throughput p (in MBytes/s)

for (a) Ep = 0.257 and (b) Ep = 0.171 33

6.3 Effect of Ep and Ei on the peak signal-to-noise ratio SNRpeak on

MPEG-1 video when Eb = 1 34

6.4 Effect of Ep and Ei on the peak signal-to-noise ratio SNRpeak on

Quicklime video when 五& = 1 35

6.5 Effect of discarding encrypted data on the peak signal-to-noise ratio

SNRpeak when Eb = 1 and Ep 二 0.043 36

6.6 Effect of EP and EI on the signal-to-noise ratio SNR on MP3 audio

when Eb = 1 37

viii

List of Figures

1.1 Encryption using a secret key between the server and the proxy. 2

1.2 End-to-end encryption using a secret key between the server,

the proxy, and the clients 2

1.3 Heterogeneous secret keys between the server-proxy pair and

the proxy-client pairs 3

2.1 A graphical representation of two RPSF sequences 8

2.2 A graphical representation of an ARPSJ sequence for the secure

multimedia proxy considering one proxy layer 9

3.1 Operations between the source video server S and the proxy V,

and operations between the proxy V and the client I, for (a)

non-cached video object and (b) cached video object 22

3.2 Illustration of ECP with Spkt = 1400, Ei = 2, Ep = 0.5, and

E b = 4 23

4.1 A graphical representation of a multi-level proxy architecture. . 25

6.1 Quality of five consecutive MPEG-1 video frames under different

ECP parameters 38

6.2 Quality of five consecutive Quicktime video frames under differ-

ent ECP parameters 39

ix

Chapter 1

Introduction

Advancement in digital audio/video and compression technologies has led to

the recent wide deployment of continuous media streaming over the Internet.

A wide range of applications such as video-on-demand, distance learning, and

corporate telecasts and narrowcasts are now enabled by the ability to stream

audio/video data from servers to clients across a wide area network. However,

because of the high bandwidth requirement (e.g., a high quality video stream-

ing application usually has a bandwidth requirement of over 1 Mb/s) and the

long duration nature of digital video (e.g., from tens of minutes to several

hours), server and network bandwidths are major limiting factors in achieving

a scalable and high quality streaming service. Consequently, there has been

a lot of research on developing techniques for bandwidth-efficient distribution

of multimedia data to a large client population. One common solution, for

example, is to use a multimedia proxy to perform some form of data caching

(say, prefix caching), of popular audio/video objects, so that clients can access

the cached data from their nearby proxies to reduce startup delay and conserve

bandwidth.

One major problem with the multimedia proxy approach is the risk of

revealing the original multimedia data to unauthorized parties. For example,

when the original multimedia data are sent from a server to a multimedia

proxy, anyone that eavesdrops on the communication link between the source

1

Chapter 1 Introduction 2

and the multimedia proxy can gain access to the audio/video information.

Some common approaches to counter the problem are:

^ ― ^ PROXY ：'" CLIENT'I"^

^ ^ 1
cache decrypted content 、 ''

Figure 1.1: Encryption using a secret key between the server and the proxy.

(^ PROXY r~CLIENT 1 ~ ^ .

^ ― 1 , , - 、 、 、 一 - 一 一 c 肩

SERVER 一丨 1 ^ {
\ /、、、 / \ ^ \ / �� CLIENT 2

、一 � � �r � y l ^
cache encrypted content 、-'

V /

Figure 1.2: End-to-end encryption using a secret key between the server, the
proxy, and the clients.

1. Encryption using a secret key between the server and the proxy:

Figure 1.1 illustrates an approach of using a secret key between the server

and the proxy for the encryption. Under this approach, the server and

the proxy will exchange a secret key X for encrypting the audio/video

data. The source encrypts the data based on the secret key X and

sends the encrypted data to the proxy. The proxy, upon receiving the

encrypted data, can perform decryption and cache the audio/video data

in clear form. There are several problems with this approach, including:

Chapter 1 Introduction 3

PROXY 广 N
(^ CLIENT 1

^ ― 1 , , � > # - " 0— — C ; ; A #
SERVER) ^ ^

^ ^ � ’ (CLIENT 2 ^

cache encrypted content 、 、 - ^ ^ ^ ^)

Figure 1.3: Heterogeneous secret keys between the server-proxy pair and the
proxy-client pairs.

• Data insecurity at the proxy: Since the cached data at the proxy

are the original multimedia data, any intruder who gains access to

the proxy's storage can access the original data. Note that this is a

major security issue since multimedia data are large in size, implying

the necessity to use multiple disks. Intruders who gain access to any

of the storage devices may be able to obtain the original multimedia

content.

• Data insecurity between the proxy and clients: Since data transfer

between the proxy and its clients can be over an insecure channel,

one can eavesdrop on this channel and gain access to the original

multimedia data.

2. End-to-end encryption using a secret key between the server，

the proxy, and the clients: Figure 1.2 illustrates an approach of ap-

plying end-to-end encryption using a secret key between the server, the

proxy, and the clients. Under this approach, the server, the proxy, and

all the clients behind the multimedia proxy will share a common secret

key X . The source encrypts the multimedia data based on X and sends

the data to the multimedia proxy. The proxy, upon receiving the en-

crypted data, caches the encrypted data in its local storage. Whenever

Chapter 1 Introduction 4

a client wants to access the multimedia data, the encrypted copy will be

sent to that client. Since all clients behind the multimedia proxy know

the common secret key, clients can decrypt and extract the original mul-

timedia data. An intruder can still eavesdrop on the communication link

between the proxy and the client, but it will not be able to decrypt the

data. The major problem with this approach is that there is a high risk of

revealing the secret key A'. The reason is that a proxy needs to support

a large number of clients, and if any of these clients is compromised, an

intruder can use the revealed secret key X to gain access to the original

multimedia data.

3. Heterogeneous secret keys between the server-proxy pair and

the proxy-client pairs: Figure 1.3 illustrates an approach of using

heterogeneous secret keys between the server-proxy pair and the proxy-

client pairs. Under this approach, the server encrypts the multimedia

data based on a common secret key X that is shared between the server

and the proxy only. Upon receiving the data, the proxy caches the en-

crypted data in its local storage. Whenever a client, say i, wants to

access the multimedia data, the proxy will (1) decrypt the data based

on the secret key A", (2) encrypt the data based on a common secret key

A't, which is shared between the multimedia proxy and the client i. The

client i, upon receiving the encrypted data, can gain access to the original

data because it knows the common secret key A'j. The potential problem

with this approach is that it requires high computational overhead at the

multimedia proxy, because the proxy needs to perform decryption and

encryption for every admitted client. This can be a major scalability

problem which limits the number of concurrent clients that the proxy

can support, and if the proxy is compromised, an intruder can obtain

the secret key JM.

Chapter 1 Introduction 5

In this paper, we present a proxy encryption framework having the following

security properties:

• The multimedia proxy will only cache the encrypted multimedia data

and data decryption will only happen at the endpoints (e.g, the clients).

Therefore, the original multimedia data will not be revealed at any in-

termediate node.

• The multimedia proxy will perform encryption operations only (i.e., the

proxy will not perform any decryption); this reduces the computational

overhead at the multimedia proxy, and hence allows one to build a more

scalable proxy to support a higher number of concurrent clients. Also,

even when a multimedia proxy is compromised, an intruder cannot obtain

any useful information.

• Data encryption and decryption operations are based on well accepted

encryption theory that it is computationally infeasible to extract the

original multimedia data without knowledge of the expected decryption

key.

• Membership collusion can be avoided, such that given (1) the decryption

key of client i, (2) the encrypted data of client j, and (3) possibly all the

encryption keys, the intruder still cannot derive the original multimedia

data.

• The proposed approach can be extended to a multi-level proxy frame-

work; for example, a peer-to-peer architecture.

The rest of the paper is organized as follows. In Chapter 2, we present

multi-key encryption based on the asymmetric reversible parametric sequence.

We then present a practical algorithm to implement an asymmetric reversible

parametric sequence to achieve the claimed security properties for a multi-

media proxy server. In Chapter 3, we present our proxy system architecture

Chapter 1 Introduction 6

and the proxy-server and client-proxy communication protocols. In Chapter

4, we illustrate how multi-key encryption can be extended to a multi-layer

proxy architecture. Chapter 5 presents the Secure Multimedia Library (SML),

a software library for developing secure multimedia applications in our archi-

tecture. In Chapter 6, we report implementation results that illustrate the

achievable encryption data rate using our technique on a commodity Pentium

machine, and give quantitative and qualitative analysis of the encrypted au-

dio/video quality. Related work on multimedia proxies is presented in Chapter

7. Chapter 8 concludes.

Chapter 2

Multi-Key Encryption Theory

In this chapter, we state the theory behind the design of a multi-key secure

video proxy. The main theory is based on the reversible parametric sequence

(HPS) [5]. We first present the formal definition of RPS and its utilities. We

then present an implementation of RPS using the multi-key RSA technique.

2.1 Reversible Parametric Sequence

Let f : I N � I N he di function which has the following property: if F =

f[X, e), it is computationally infeasible to find e given that we know X and Y.

Assume that we have a finite sequence {e。，ei, • • • , cn} of TV + 1 elements,

where the elements are not necessarily unique. Define a finite data transfor-

mation sequence V = {I)_i , D o , D m } based on the function f and the finite

sequence {ei}o<KN such that

D - i = original data

Di = / (A - i , e i) for 0 < i < N .

We have the following definitions of a reversible parametric sequence (RPS).

Definition 1 is a reversible parametric sequence of the function / , denoted

7

Chapter 2 Multi-Key Encryption Theory 8

as RPSj, if for all {X,Y) G IN^ and -I < i < j < N, there exists a com-

putable function Qij such that

Di = nij(Dj) for - l < i < j < N .

Definition 2 A RPS/ is called a symmetric reversible parametric sequence of

f , denoted as SRPSj , if the function Hj-j can be computed from the knowledge

of the sub-sequence {e i+i , . . . , ej}.

Definition 3 A RPS/ is called an asymmetric reversible parametric sequence

of / , denoted as ARPSj, if it is computationally infeasible to determine the

function flij based on the knowledge of the sub-sequence {e i+i , . . . , ej}.

D_1 Do Di ^ ^ D2 ^ ^ Dn

Figure 2.1: A graphical representation of two RPSf sequences.

To understand the concepts, we use a graph to represent a reversible para-

metric sequence RPSJ. Figure 2.1 illustrates two RPSF sequences. In the

figure, the original data are transformed to Do using Dq = f{D, cq). If

ei + e*, then the intermediate data Di will not be equal to D*, for 1 < i < Â .

For a symmetric reversible parametric sequence SRPSj, one can compute the

original data D_i if given the data Dj (or D” and the sequence { e � , •. • , ej}

(or {eg, • • • for 0 < j < Â . In other words, given the information

{ e o , … , e j } and Dj, one can construct a decryption function n _ i j so as to

obtain the original data For an asymmetric reversible parametric se-

quence ARPSj, one cannot derive the original data Z)_i even if given the data

Chapter 2 Multi-Key Encryption Theory 9

Video Proxy
产 » (CLIENT 1)

- (g) - (CL::ENT 2)

^ e^
Source （ CLIENT ^

Figure 2.2: A graphical representation of an ARPSj sequence for the secure
multimedia proxy considering one proxy layer.

Dj (or D'j) and the knowledge of the sequence {eo , . . . , ej} (or { e j , …， e � }) ,

for 0 < i < Â .

One can use the properties of an asymmetric reversible parametric sequence

ARPSf to implement a secure multimedia proxy. To illustrate, consider a

graphical representation of an ARPSj sequence in Figure 2.2. The multimedia

proxy can request Dq, the encrypted version of the original data from the

source. Based on an encrypted key eo, the source will transmit the encrypted

data DO to the proxy, and the encrypted data Dq will be cached at the proxy's

local storage. When a client i requests the data, the proxy will further encrypt

the encrypted data Dq using the encryption key and send the resulting

encrypted data Di to client i. Client i, upon receiving Di, can decrypt the data

to obtain the original data D一i, if client i is given a decryption function n_i’i

(this is a property of reversible parametric sequences). In addition, when the

encryption is carried out using an asymmetric reversible parametric sequence,

then even when an entity holds on to all the encryption keys ei for 0 < i < it

still cannot decrypt any of the encrypted data Di being cached, for 0 < i < Â ,

in order to obtain the original data D一i.

In general, one can use an asymmetric reversible parametric sequence ARPSj

to implement a secure multimedia proxy which has the following properties:

• Data confidentiality during transmission: Since the original data

Chapter 2 Multi-Key Encryption Theory 10

D - i are encrypted, an intruder who eavesdrops on the communication

link between the source and the multimedia proxy can only access Dq

and will not be able to extract the original data. The same property

holds when an intruder eavesdrops on the link between the multimedia

proxy and a client i. The intruder can only access Di and will not be

able to extract the original data.

• End-to-end data confidentiality: By the property of the RPSF, de-

cryption of the original data only takes place at the endpoints (e.g.,

the receiving clients). The multimedia proxy and clients only store the

data encrypted as Dq and DI. Hence, even if an intruder gains access

to the proxy's or client's local storage, the original data D - i will not be

revealed.

• Data confidentiality against proxy intruders: If an intruder com-

promises the proxy server or a client's machine, and if the encryption

process is an SRPSj, then the intruder, on knowing Cq and Cj, can gain

access to D一i. This is because the function n_i’o can be computed from

the knowledge of cq and/or €{ such that the original data can be revealed

by = n_i ’o(A)). One example of this situation is when the en-

cryption is carried out using a common secret key eo between the proxy

and the source. In this case, access to eo and Dq can reveal the original

data D一I. On the other hand, if the encryption process is an ARPSj,

then even if eo and ê are compromised, the original data D - i cannot

be revealed, because the decryption function n_i’o is computationally

infeasible to determine in this case.

• Data confidentiality against member collusion: If the encryption

process is SRPSj, member collusion is possible when a client j gains

access to

Chapter 2 Multi-Key Encryption Theory 11

1. Ci and ej (where > 0),

2. the encrypted data Di, and

3. the decrypting function

In this case, client j (i.e., the intruder) can access the original data

For example,

1. Given e,-, the intruder can obtain Qô i and thus obtain Do = Qo,i(Di).

2. Given the knowledge of ej and Dq, the intruder can obtain Dj by

Dj = f{Do,ej),

3. Since the intruder knows the decryption function floj , the original

data are revealed by

D-i = ^-lADj).

However, if the encryption process is an ARPSf, the intruder cannot

reveal the original data D_i because the function Qo’i is computationally

infeasible to determine.

2.2 Implementation of ARPSf

In the previous section, we present the desirable properties of an ARPS func-

tion. However, we still need a practical and efficient algorithm to realize a

secure multimedia proxy server. In our work, we use a multi-key RSA ap-

proach to implement an ARPSf. We first present a basic overview of RSA.

We then extend the concept to a multi-key RSA framework.

For standard RSA (or single-key RSA), one needs to generate two distinct

large prime numbers p and q. Let us define

n = p . q, and (j) 二 (j) — V) . [q — 1).

Chapter 2 Multi-Key Encryption Theory 12

To encrypt a given data item one has to find an encryption key cq such

that the integer eo satisfies

1 < eo < <f), and gcd(eo’0) = 1.

To encrypt the data D_i, we generate a cipher C based on the encryption key

eo wherein

C = p_i”Omod n.

The cipher C can be transmitted over an insecure channel. The receiver needs

to have a decryption key do to decrypt the cipher. This decryption key do is

an integer and is selected based on the following criteria:

1 < do < 小,and (e。）. do = l(mod cj)).

Upon receiving the cipher, the receiver can decrypt the cipher C and obtain

the original data D- i by

= (C严mod n.

Let us present the extension of the single-key RSA technique to a multi-

key RSA technique. Consider the source as an example. The source needs

to generate two large prime numbers, say p and q. In addition, it needs to

generate a sequence of encryption keys {ei}o<i<N such that

I < ei <(/) and (2.1)

gcd(e“ cj)) = 1 for 0 < z < Â . (2.2)

Moreover, one needs to generate a corresponding sequence of decryption keys

di. The decryption key di has to satisfy the following two criteria:

1 < di < 小 and (2.3)

(eo • ti) 'di = l (mod 0). (2.4)

Chapter 2 Multi-Key Encryption Theory 13

Efficient computation of these decryption keys di can be easily achieved using

the Extended Euclidean Algorithm [7]. The source will send n and the en-

cryption keys ei over a secure channel to the multimedia proxy, while it will

encrypt the original data D_i using eo and generate a cipher Dq using

Do = (D _ i ” m o d n . (2.5)

The encrypted data Dq can be sent over an insecure channel. Upon receiving

the cipher Do, the proxy can store the encrypted data in its local storage.

Whenever a client i wants to access the data from the proxy, the proxy can

retrieve the encrypted data Dq from its local storage, and encrypt Dq using

the encryption key ê by

Di = (DoY'mod n. (2.6)

The source (or the proxy) can send the decryption key di and n to client i

over a secure channel. The encrypted data Di, on the other hand, can be sent

over an insecure channel. Client i, upon receiving the encrypted data Di, can

decrypt the data using di by:

D - i = = (AO'^'mod n. (2.7)

Example: To illustrate, consider the following simple example. Suppose that

the two primes are p = 5 and q = 7 {in reality, p and q will have to be large).

Accordingly, n = 5 x 7 = 35 and (/> = (5 - 1) x (7 - 1) = 24. Let there be three

encryption keys: cq = 5, ei = 11 and ê = 13. If the original data = 10,

the cached data at the multimedia proxy will be

Do = (lO^)mod 35 = 5,

When client 1 requests the data, the source will generate a decryption key di

such that (5 x ll)di = 1 mod 24. Using the Extended Euclidean Algorithm,

we have di = 7. Therefore, the encrypted data for client 1 is

Di = {DoY'mod n = (5^^)mod 35 = 10

Chapter 2 Multi-Key Encryption Theory 14

and client 1 can decrypt the data Di and get back the original data D- i by

D- i = 广mod n = (lO^)mod 35 = 10.

When client 2 requests the data, the source will generate a decryption key d]

such that (5 x 13)d2 = 1 mod 24. Using the Extended Euclidean Algorithm,

we have d) = 17. Therefore, the encrypted data for client 1 is

D2 = {DoY^mod n = mod 35 = 5

and client 2 can decrypt the data D2 and get back the original data D_i by

Z)一 1 = (£>2)如 mod n = (517) mod 35 = 10.

Theorem 4 The above proxy encryption framework is a reversible parametric

sequence.

Proof: To show that the above framework is a reversible parametric sequence,

we need to show that given DI, for z > 1, we can extract Dq and D^i. Without

loss of generality, let us consider Di as the given input. The generation of Di

is via

Di = {DoY'inod n. = [(Z)_i)'°mod nf' mod n.

= (D _ i) e o � o d 7 1 .

Let the extracted result be R and equal to

R = (Di产mod n = [(D_i”.eimod nf i mod n

= (D 一

Since the encryption key eo and the decryption key di are generated such that

Co • ei • di = fc . (p — 1) . (g — 1) + 1 where k is an integer, we can rewrite the

extracted result R as

R = [(LLi)(Z)_i”(P-i)(g-i)] mod n.

Chapter 2 Multi-Key Encryption Theory 15

Based on Euler's theorem [7] that = 1 mod n, we have the following

expressions:

R = (D_i)(D_i)补= (LLi)lWg-i) = D_imod p,

Because p and q are primes, based on the Chinese Remainder Theorem [7], we

have

R = 广 = L>_i(mod n) =

Therefore, given Di, one can extract D_i given the knowledge of d]_. We can

apply a similar procedure so that given Do, one can extract Di with another

corresponding decryption key. In summary, given DI, one can extract Dq and

the original data if the corresponding decryption key is known. I

Theorem 5 The above proxy encryption procedure is an asymmetric reversible

parametric sequence.

Proof: To show that the above framework is an asymmetric reversible para-

metric sequence, all we need to show is that given the encrypted data Di, for

« > 0, it is impossible to obtain the original data D_i, even if one has the

knowledge of {eo, ei, cn} and n.

Since we use an RSA encryption method, finding the decryption keys in

Equations (2.3)-(2.4) amounts to finding the two prime factors p and q, which

is well accepted to be computationally infeasible if p and q are large and prop-

erly chosen. Therefore, it is computationally infeasible to find ^lij. I

Chapter 3

Multimedia Proxy:

Architectures and Protocols

In this chapter, we describe in detail our server-proxy-client architecture. The

multimedia server the multimedia proxy V and various clients have been

implemented in the C language on a Linux platform. Security features such

as key generation, encryption and decryption are implemented using the GNU

Multiply Precision (GMP 4.0) library, which provides arbitrary precision arith-

metic on integers, rational numbers, and floating-point numbers. Note that

GMP 4.0 provides one of the fastest possible arithmetic libraries for applica-

tions that need higher precision than what is directly supported by the basic

C types.

3.1 Operations to Request and Cache Data

from the Server

Let us first consider the case wherein the multimedia data are not yet cached

at the proxy. Figure 3.1a illustrates the operations between the multimedia

server S and the proxy V, and the operations between the proxy V and the

client i for requesting and caching the multimedia data. These operations are:

16

Chapter 3 Multimedia Proxy: Architectures and Protocols 17

1. Initiate connection: The client i sends a multimedia request and its

certificate to certify its identity to the proxy V, and the proxy V forwards

the request to the multimedia server S. (Client z's certificate is eCerti =

(u“ where Ui and Vi are z's public and private keys, respectively,

for RSA cryptography, and {D}K denotes information D encrypted with

key k.) The multimedia server keeps a record of the public key for each of

its authenticated clients. To vertify the identity of the requesting client,

the multimedia server <S decrypts {wi}^^ using Ui as the decryption key.

The request will only be granted if the decrypted message equals to Ui

and match the public key of i in the server's authorized list. It relies

on the fact that only genuine client i has the secret key Vi, so that

only client i itself can generate this {“山‘）which when decrypts using

Ui will produce the same Ui as the copy stored by the server. If the

authentication is successful, then the server S will proceed to the key

generation operation.

2. Key generation: The server randomly generates two large prime num-

bers p and q, and computes the prime product n = p-q, the pseudo-prime

product (j) = (n — 1) • (p— 1), the encryption key eo, re-encryption key e—

and the corresponding decryption key di via Equations (2.1) and (2.2)*

. T h e server S saves the parameters </>, eo and n with a unique identifier

ID. It then replies back to the proxy V with the re-encryption key ê ,

which is encrypted using the proxy's public key; and the correspond-

ing decryption key di, which is encrypted using the client z's public key.

Note that the proxy V cannot extract the decryption key DI, but only

the client i can perform the decryption to extract di.

*In practice, the server S can pre-generate a set of encryption keys {e,} and decryption
keys {di} per multimedia object per each of its authorized clients.

Chapter 3 Multimedia Proxy: Architectures and Protocols 18

3. Decryption key retrieval: The proxy V replies with an acknowledg-

ment back to the client i with the encrypted di. The client i decrypts

using its own private key to retrieve the decryption key di.

4. Data encryption and streaming: The multimedia server S uses the

encryption key Cq and n to encrypt the multimedia data packets. The

degree of encryption is based on the encryption configuration parameters

(ECP) which we will describe in Section 3.3. The multimedia server S

then streams the encrypted data packets to the proxy V via an ordi-

nary and possibly insecure channel. Upon receiving the encrypted data

packets, the proxy V caches the data without decryption or modification.

5. Data re-encryption and streaming: The proxy V uses the re-encryption

key ei and n to re-encrypt the already encrypted multimedia data pack-

ets in the cache. The encryption is based on the same ECP setting as

what the server S used. The proxy V then streams the re-encrypted

data packets to the client i via an ordinary and possibly insecure chan-

nel. Upon receiving the re-encrypted data packets, the client i can use

the decryption key di to decrypt the received multimedia data packets.

3.2 Operations to Request Cached Data from

the Multimedia Proxy

We consider the case wherein the multimedia data are already cached at the

proxy. Figure 3.1b illustrates the operations between the multimedia server S

and the proxy V, and the operations between the proxy V and the client j for

requesting multimedia data that are already cached by the proxy V. These

operations are:

Chapter 3 Multimedia Proxy: Architectures and Protocols 19

1. Initiate connection: The client j sends a request to the proxy V with

its certificate. The proxy V forwards the request to the server S with a

specified unique identifier ID. The multimedia server S needs to authen-

ticate that the request is indeed from the client j. If the authentication

succeeds, the server S will go on to the key generation operation.

2. Key generation: The server S randomly generates a re-encryption

key Cj and a corresponding decryption key dj based on the 小’ n and eo

identified by ID. It then sends back to the proxy V the re-encryption key

Cj, which is encrypted using the proxy's public key; and the decryption

key dj, which is encrypted using the client j ' s public key. Again, the

proxy V cannot extract the decryption key dj.

3. Decryption key retrieval: The proxy V replies back to the client j

with the encrypted decryption key. The client j decrypts using its own

private key to retrieve the decryption key dj.

4. Data re-encryption and streaming: The proxy V uses the re-encryption

key ej and n to re-encrypt the cached multimedia data packets based on

the previous ECP setting. It then streams the re-encrypted data packets

to the client j via an ordinary and possibly insecure channel. Upon re-

ceiving the re-encrypted data packets, the client j can use the decryption

key dj to decrypt the received multimedia data packets.

3.3 Encryption Configuration Parameters (ECP)

Differ from normal text documents, multimedia objects do not require entire

encryption for proper protections. For example, a MPEG-1 stream consists of

three types of frames, i.e. I-frames: Interpolative, P-frames: Predictive, and

B-frames: Bipredictional. I-frames are inserted for every 12 to 15 frames, and

operations such as playback, forward and review can only start at I-frames.

Chapter 3 Multimedia Proxy: Architectures and Protocols 20

Thus, encryption on all the I-frames would provide enough protection but only

require about 0.8% encrytpion operations compared to entire encryption.

In a qualitative analysis, the degree of partial encryption affect the cliop-

piness of the playback of the encrypted video without a proper decryption

key. In applications such as video-on-demand, online-lectures, etc., system

throughput or system performance is most important and encryption security

could be a trade-off. In this paper, we propose to use a general encryption

method that can reduce the encryption overhead at the server and the proxy,

decryption overhead at the end-clients, for a variety of commonly used video

encoding formats (such as MPEG-1, MPEG-2, MP3 and Quicktime). We ex-

ploit the observation that, for video encoding that accounts for inter-frame

data dependencies, a video stream only needs to be encrypted up to a certain

percentage for decoding to be practically useless by an unauthorized viewer,

in that either the video cannot be decoded, or the quality of the decoded video

will be so poor that it is unacceptable for viewing. In general, ECP specifies a

packet based encryption pattern given by four adjustable parameters, namely

• Spkt, the expected number of bytes in a data packet.

• Ei - the multimedia stream is to be partitioned into successive groups

each having Ei consecutive packets, and a single packet encryption op-

eration is to be applied to the first packet of each group.

• Ep ~ for the packet in which the packet encryption operation is to be

applied, Ep specifies the fraction of data within the packet that should

be encrypted.

• Eb - for the packet in which the encryption operation is to be applied,

Eb specifies the number of encryption blocks that should be evenly dis-

tributed within that encryption packet.

In our current implementation, we use UDP as the transport protocol for

Chapter 3 Multimedia Proxy: Architectures and Protocols 21

video data transmission. The entire multimedia stream will be divided into

UDP packets with each packet having a pay load size of Spkt = 1400 bytes. For

every Ei > 1 consecutive UDP packets, we will select the last UDP packet

for encryption. For the encrypted packet, it will be further divided up into

sub-blocks and only some of the sub-blocks will be encrypted. In our current

implementation, the sub-block size is chosen to be 4 bytes less than the RSA

key length (e.g., 60 bytes for 512-bit RSA) and the encryption will be based

on this sub-block unit size. The total length of data to be encrypted within

a packet is equal to Ep x Spkt rounded up to the nearest multiple of the sub-

block size. The encrypted sub-blocks will then be regrouped as E^ consecutive

blocks of data, and the blocks will be distributed evenly across the whole

packet. Once an ECP configuration is selected for a particular video object,

the same configuration will be used by the server, the proxy and the end-client

on their encryption or decryption operations.

Figure 3.2 illustrates a possible set of encryption configuration parameters

for a multimedia streaming application, where the packet size Spkt is equal to

1400 bytes, Ei = 2 (i.e., out of every two consecutive packets, we select the

last one for encryption), the fraction Ep is equal to 0.5, and Ei = A blocks are

to be evenly distributed across an encrypted packet. The four configuration

parameters allow us to achieve varying degrees of encryption and levels of

audio/video quality for the decoded stream. In Chapter 6, we illustrate the

computational and quality tradeoffs implied by these parameters.

Chapter 3 Multimedia Proxy: Architectures and Protocols 22

Server Proxy Client i
..vOCer^ Reciuest

authentication
and key

generation fe Re rieve ei

—
— R e t r i e v e di

Data “ — ^ ^ ^
encryption � � �g � Di ta

ro-enc rypticm

Data
decryption

� ^ ^

(a)
Server Proxy Client j

^ ^ ^ ^ ^ e ^ i S S t C e C ^ R e q u e s t

authentication ___—-
and key-

generation . , Rei :rievG ej

Retrieve dj

Data “
encryption Dt ta “ ^

re-encryption

Data
decryption

(b)

P is the public key of the proxy and C is the public key of the client,
and {D}k denotes information D encrypted with key k.

Figure 3.1: Operations between the source video server S and the proxy V, ‘
and operations between the proxy V and the client z, for (a) non-cached video
object and (b) cached video object.

Chapter 3 Multimedia Proxy: Architectures and Protocols 23

p a c k e t 0 p a c k e t 1 p a c k e t 2 p a c k e t 3 p a c k e t 4

(1 4 0 0 K B) I (1 4 0 0 K B) ^ 』 (l A O O K B) ‘ 』 (1 4 0 0 K B) ^ 』 （ 1 4 0 0 K B) ^

§ ^ ^ ^ 冬 冬 、 矢 >

L̂ I 防 L ^

网 encrypted
凶 blocks
曰 encrypted

Figure 3.2: Illustration of ECP with Spkt = 1400, Ei = 2, Ep = 0.5, and
Eb = 4.

Chapter 4

Extension to multi-level proxy

In this chapter, we describe how the multi-key secure proxy architecture can be

extended to a multi-level proxy architecture. By multi-level proxy, we refer to a

system in which a client can also play the role of a multimedia proxy and deliver

encrypted multimedia data to other clients. Such multi-level proxies are very

common. For example, we use multiple layers of web proxies in the Internet

to serve information with a better quality of service (e.g., lower response time

in getting a file resource). A multi-level proxy architecture can also be used in

a peer-to-peer network such that clients within a peer group can quickly and

securely share multimedia data among themselves.

Figure 4.1 illustrates a multi-level proxy architecture. In the figure, a proxy

is represented by a circle and we arrange the proxies into different layers. The

source has an encryption generator, which is represented by a "square" near the

source. For secure multimedia transmission, this encryption generator needs

to:

1. Generate two large prime numbers p and q.

2. Compute n = p • q and 小=[p — 1) - [q — 1).

3. Generate a set of encryption keys {ei}o<i<N such that 1 < Cj < </> and gcd(ei, </>)=

1, where N is the number of proxies the encryption generator is willing

24

Chapter 4 Extension to multi-level proxy 25

r ^ © ^

f : Do 门 D2

Source

Figure 4.1: A graphical representation of a multi-level proxy architecture.

to support. Note that by selecting two very large prime numbers p and

q, we can potentially generate a very large set of encryption keys.

4. Distribute each encryption key and n to each proxy on an on-demand

basis. For example, the encryption generator will transmit the encryption

key and n to the proxy i over a secure channel.

Each proxy and the encryption generator will simply perform data input en-

cryption. For example, to perform encryption, proxy i simply needs to perform

Di = (Di一‘ mod n. To illustrate, consider the top most layer in Figure 4.1:

• The source will transmit Dq to proxies 1, 2, and 3 where Dq = (D—i”�mod n.

• Proxy 1 will transmit Di to proxy 4, where Di = D^q mod n = mod n.

• Proxy 4 will transmit D4 to proxy 5, where D4 = D̂ ^ mod n = (Z)_i”oeie4 mod n.

• This operation will repeat until the data reach the client at the end of

the chain.

Chapter 4 Extension to multi-level proxy 26

This implies that all cached data along all the proxies are made secure and are

encrypted potentially using different keys.

When a client of proxy k wishes to perform the data decryption, k needs

to obtain the decryption key from the encryption generator and then deliver it

to the client. Let {eij^>o} denote the set of encryption keys used by the proxies

between the source and the proxy k. The decryption key <4 is selected such

that

(eii . e‘2 • • • eiiJ . 4 = 1 (mod (j)).

For example, consider the client at the top layer in Figure 4.1. The encryption

generator needs to generate de such that

(eo • ei • 64 • 65 • ee) • o?6 = 1 (mod </>).

This decryption key will be encrypted using a particular end-client's public key

and transmitted to proxy 6, possibly through an insecure channel, and then

the proxy 6 can transmit this decryption key to that designated client within

its domain.

Chapter 5

Secure Multimedia Library

(SML)

We have implemented a prototype secure multimedia proxy system. The proto-

type is based on our Secure Multimedia Library (SML), which is a C language

API that implements the secure proxy protocol described in Chapter 3. SML

consists of a set of functions which can be used to develop a secure multimedia

streaming system, both for the simple client-server architecture and the proxy-

assisted architecture. SML is an open source project* . In this chapter, we

briefly introduce the programming interface of SML. We present two scenarios

and use example codes to demonstrate how to use SML API in these scenarios.

A complete listing of functions in the SML library is given at the appendix.

5.1 Proxy Pre-fetches and Caches Data

Prior to any client's request, the multimedia proxy may prefetch multimedia

data from the source server during the proxy's idle time. Doing so can reduce

the start-up latency experienced by the clients. The proxy first initializes an

SML session, and then connects to the source in anonymous mode using:

* Detailed documentation, source code, and demonstration programs can be
downloaded at http: //www. cse. cuhk. edu. hk/~cslui/ANSRlab/sof tware. html and
http: //www. cs. purdue. edu/homes/yau/sml. html.

27

Chapter 5 Secure Multimedia Library (SML) 28

SML.SESSION proxy;

SML_InitSession(&proxy)；

SML一Connect(&proxy， "source—addr"， source—port);

Meanwhile, the source server is continually waiting for an incoming connec-

tion. An SML session between the source and the proxy is established when

the source accepts the proxy connection request, as follows:

SML.SESSION server, *session;

SML_InitSession(&server)；

session = SML一Accept(feserver, port_to_bind, "client_key_list");

The SML .Accept function will generate a set of encryption and decryption

keys, and associate them with the newly established session. Also, the accept

function may associate a default ECP setting with the SML session, or one

can install an explicit set of ECP parameters using the following function call:

SML一InitRps(session, Ei, Ep, Eb, Spkt, RPS_MULTI_KEY_RSA, key一length);

Once an SML session is set up, the source sends the chosen ECP setting to

the proxy (e.g., the proxy needs the ECP to determine the network packet

size for serving the cached multimedia data) through the established network

connection:

SML_SendRps(session)；

The ECP is received by the proxy through the function call:

SML.ReceiveRps(&proxy)；

With the knowledge of the ECP by both sides, the source server may

start encrypting the original multimedia data contents, denoted by D, and

transmitting the encrypted contents, denoted by D', to the proxy. The size of

data in each transmitted packet can be less than or equal to the specified ECP

packet size - the send function provided by SML will perform any necessary

data padding:

SML_TcpSendEncryptRps(session, data—packet, data.length)；

Chapter 5 Secure Multimedia Library (SML) 29

The proxy then caches in its local storage the encrypted multimedia data

packets received from the source:

SML_TcpReceiveRps(&proxy， data.packet, data_length)；

5.2 Client Requests Cached Data From the

Proxy

In this scenario, suppose a certified client, say z, requests the previously cached

data D' from the proxy. The client i first loads its certificate eCerti (see Section

3.1) used to identify itself:

SML.SESSION client;

SML_InitSession(&client)；

SML.LoadKeyPair(&client, "key_pair_file", "password", CRYPTO_KEY_RSA)；

The client then connects to the proxy using the proxy's address and binding

port:

SML.Connect(&client, "proxy_addr", proxy—port);

The proxy acts like the source server in accepting the connection request

from the client. It then needs to use another SML session to forward the

request to the actual server. That SML session must be established with the

client's public key signature for proper authentication by the server:

SML_Signature signature;

SML_InitSignature(&signature)；

session_to_client = SML_Accept(&proxy, proxy_biiiding_port， NULL)；

SML_GetClientSignature(session_to_client, fcsignature)；

SML_SetClientSignature(&session_to_server, signature)；

SML_Connect(&session_to_server, "server_addr", server_port)；

The proxy now holds two connections - one with the source server and the

other with the client. Because the multimedia data D' are already cached by

the proxy, the source does not need to perform any data encryption. Rather,

Chapter 5 Secure Multimedia Library (SML) 30

it needs to generate (i) a client-specific encryption key, ej, to be used by the

proxy to encrypt D' (the resulting data are denoted as D") for sending to the

client, and (ii) the corresponding decryption key, di, for the client to decrypt

D" received from the proxy to get back the original data D. To prevent the

proxy from obtaining di, the source encrypts di with z's public key to give d\.

The source then sends both Cj and d'- to the proxy. In addition, it loads the

ECP setting used for encryption and sends the ECP to the proxy:

SML_LoadRpsSetting(&server, "rps_ecp.dat", "password")；

SML.SendRpsSett ing(&server)；

The proxy forwards and the ECP to the client, using:

RPS rps;

RPS_Init(&rps)；

SML_ReceiveRpsSetting(&session_to_server)；

SML_GetRpsSetting(&session_to_server,&rps)；

SML_SetRpsSetting(session_to_client, rps)；

SML_SeiidIlpsSetting(sessioii_to_clieiit)；

The proxy encrypts the cached D' with Ci and sends the resulting data D" to

the client:

SML_TcpSendReEncryptRps(&session_to_client, data_packet, data_size)；

Finally, the client decrypts D" using di to retrieve the original multimedia

data D:

SML_ReceiveRpsSetting(&client)；

SML_TcpReceiveDecryptRps(&client, data_packet, data_size)；

Chapter 6

Implementation Results

In this chapter, we present our implementation results which quantify the

encryption throughput, the signal-to-noise ratio (SNR) of decoded audio for

an audio streaming application, and the peak signal-to-noise ratio (PSNR) and

the visual quality of the decoded video for a video streaming application, in

the context of our secure multimedia proxy architecture.

In our implementation, we use the ECP in Section 3.3 to control the amount

of encryption applied to blocks of audio/video data. The experimental results

are taken on an 800 MHz Pentium-Ill Linux machine with 256 MBytes of main

memory. For the video experiments (Experiments 1, 2, and 3), the input data

are a set of video sequences, each being an 18 MByte MPEG-1 stream or a

4.47 MByte Quicktime stream.

Experiment 1 (Encryption Throughput Analysis):

In this experiment, we consider the effect of the parameters Ep and Ei on the

encryption throughput, which is denoted as p (in MBytes/s). Assume that we

are encrypting an MPEG-1 video stream with an average bit rate of 1.5 Mb/s.

Given the assumption, the average number of concurrent MPEG-1 streams

that a proxy can support is M, where M = p/(1.5/8). Table 6.1 illustrates

the encryption throughput p and the average number of concurrent MPEG-1

streams (M) under different values of Ep and Ei, when Eb = 1.

As we can observe from Table 6.1, if we encrypt 25.7% of each video

31

Chapter 6 Implementation Results 32

一 II Ep = 0.257 I Ep 二 0.214 I E p = 0 . 1 『

“ _ p M ~ | p M ~ p M
1 = 1 2.13= 11.36 "THT" 13.50 ~3.11 16.60 =
1 ^ = 2 4.10 ~ 21.87 ~4M~ 25.81 —5.91 32.52"

5 9.06" 48.32 T o T T 54.24 ~11.56 61.65 _
Ej = 10 I 11.64 62.08 | 10.70 57.10 11.70 62.40

II Ep = 0.120 I Ep = 0.086 I Ep = 0.043 “

p I M I f) I M I 一 p I M
1 II 4.05 21.60 II 5.8 30.90 11 10.10 53.90"

Ej = " T ~ 7.54 “ 40.20 ~ [o W 54.19 U T l f 62.77
5 11.64" 62.08 11.76 62.72 —11.78 62.82'
10 11.73 62.56 11.73 62.56 || 11.82 63.04

Table 6.1: Effect of Ep and Ei on the encryption throughput p (in unit of MBytes/s)
and the average number of MPEG-1 streams M when EB = 1.

packet (i.e., Ei = 1), the encryption throughput achieved is only around

2.13 MBytes/s, which implies that we can only concurrently handle about

11 MPEG-1 streams. On the other hand, if we encrypt one video packet for

every 10 packets (i.e., Ei = 10) and for each video packet encrypted, we en-

crypt only 4.3% of its data (i.e., Ep = 0.043), then the encryption throughput

improves to 11.82 MBytes/s, which implies that we can concurrently support

about 63 MPEG-1 streams. In general, the smaller the value of Ep and the

higher the value of Ei, the higher the achieved encryption throughput, and the

higher the number of concurrent video streams that can be supported.

Table 6.2 illustrates the effect of Ei and Eb under two different encryption

percentage parameters Ep. As we can observe, the parameter Eb has little

effect on the encryption throughput.

Experiment 2 (Peak Signal-to-Noise Analysis):

In this experiment, we consider the effect on the video quality as we vary

the parameters Ei, Ep, and Eb. One way to quantitatively evaluate the video

quality is by the peak signal-to-noise ratio. In general, for a frame size of m x n

Chapter 6 Implementation Results 33

encryption throughput p (MB/sec)
— 1 I Ei = 2 I 5 I Ei = 10

1 2.13 4.10 9.06 11.64
2.12 “ 4.09 ~ 9 W ~ 11.66

3 2.12 4.09 9.07 11.65

(a) Ep = 0.257

encryption throughput p (MB/sec)
r~ Ej = 1 I Ej = 2 I 5 Ei = 10

3.11 5.91 11.56 11.70
Eb = 了 3.11 “ 5.89 11.72 —

1 ^ = 4 3.11 5.89 11.60 11.72

(b) Ep = 0.171

Table 6.2: Effect of Ei and Eb on the encryption throughput p (in MBytes/s) for
(a) Ep = 0.257 and (b) Ep = 0.171.

with a total of I frames and 3 color channels (i.e., red, green, and blue, each

represented by a 8-bit number), the peak signal-to-noise ratio (SNRpeak) is

calculated using the following equation:

SNRpeak = 10 X logio 7 ； — — ^ ^
(E二 1 E;;=I EUI \
、 3mnl)

where Pi[cc, y, z, c) means that the pixel value at coordinates (x^y) in the z-th

frame for color channel c, where c = 1, c = 2, and c = 3 correspond to the

color channels red, green, and blue, respectively. In our experiment, the values

of m,n, and I are 640, 480, and 1000, respectively. Values of Pi are obtained

from the video frames decoded by a client which does not have access to the

decryption key, while values of P2 are obtained from the original video frames.

Note that a lower value of SNRpeak indicates that the encrypted stream is

more distorted from the original video stream.

Chapter 6 Implementation Results 34

peak signal-to-noise ratio SNRpeak
— I Ep = 0.257 II Ep = 0.214 Ep = 0.171

1 7.83 = 8 . 0 1 — 8.52
" E T ^ T " 9.13 8.30 8.70

5 11.17 9.81 10.73
10 II 13.06 11.26 12.87

peak signal-to-noise ratio SNRpeak
Ep = 0.120 Ep = 0.086 Ep = 0.043

9.32 9.39 8.85
" ^ = 2 9.48 一9.87 — 9.51
" ^ = 5 10.81 — 1 1 . 3 9 — 11.33

= 10 II 12.60 13.26 12.82

Table 6.3: Effect of Bp and Ei on the peak signal-to-noise ratio SNRpeak on MPEG-
1 video when Eb = 1.

Table 6.3 and Table 6.4 illustrate the peak signal-to-noise ratio SNRpeak

for different values of Ep and Ei with Eb = I for MPEG-1 and Quicktime

video, respectively. Note that even when we encrypt one out of 10 video

packets, and for a selected packet, we only encrypt 4.3% of the data, we can

still obtain, a very low value of SNRpeak- This experiment indicates that (1) we

can apply this encryption technique for different video formats (e.g., MPEGl

or Quicktime) and, (2) we only need to encrypt a small fraction of the video

data to achieve both high encryption throughput and high video distortion.

Experiment 3 (Comparison of visual quality of encrypted video):

In this experiment, we consider the effect of the ECP parameters E{, Ep and

Eb on the visual quality of the video. Figure 6.1 illustrates the quality of five

consecutive MPEG-1 video frames* . Figure 6.1(a) is the original video frames

that a client can decode given access to the decryption key. Figures 6.1(b)-(e)

are the corresponding five video frames when decoded without the decryption

*The original and encrypted video/audio clips used in the experiments can be viewed or
downloaded at http: //www. cse. cuhk. edu. hk/~cslui/ANSRlab/software/sml

Chapter 6 Implementation Results 35

peak signal-to-noise ratio SNRpeak
— 11 Ep = 0.257 II Ep = 0.214 Ep = 0.171

1 11.38 II 11.56 II 11.72
"Ej = 2 12.15 12.13 12.27
Ei = 5 — 12.63 12.48 “ 12.57

、 Ei = 10 12.97 12.76 12.84

peak signal-to-noise ratio SNRpeak
|~Ep 二 0.120 II Ep = 0.086 Ep = 0.043

"Ej = 1 ^^12.13 = 12.28 = 12.48

"Ej = 2 12.55 12.48 12.77
Ei = 5 12.97 “ 12.84 — 12.98

1 = 1 0 II 13.24 12.98 13.09

Table 6.4: Effect of Ep and Ei on the peak signal-to-noise ratio SNRpeak on Quick-
time video when EF, = 1.

key. Note that the video quality is the worst when the ECP parameters are

Ei = 1 and Ep = 0.043, which corresponds to encrypting 4.3% of the data

for every video packet. Note that when we select Ei = 10, Ep = 0.043, and

Eb = 1 (this corresponds to Figure 6.1(e)), the visual quality of the video is

still unacceptable for viewing. This shows that we can achieve high encryp-

tion throughput (i.e., around 11.82 MBytes/s or about 63 concurrent MPEG-1

streams from Table 6.1) and, at the same time, ensure that those clients which

do not possess the decryption keys will get unacceptable video quality on view-

ing. Figure 6.2 shows the corresponding results for five consecutive Quicktime

video frames. Similar conclusions can be drawn from the Quicktime results.

Experiment 4 (Discarding encrypted data analysis):

In this experiment, we consider the effect on the video quality when an au-

thorized party just try to discard all of the encrypted data before decoding an

encrypted stream without having the proper decryption key. We consider two

different ways to discard those encrypted data. The first one is to drop all of

the encrypted data, and the second one is to fill all of the encrypted data with

Chapter 6 Implementation Results 36

encryption throughput p (MB/sec)
direct drop fillzero

飞 = 1 8.85^ 8.26 = 8.26

9.51 8.70 8.60
飞 = 5 l l . a y 9.45 10.10
f E j = 10 I 12.82 10.54 11.10

(a) MPEG-1 streams

encryption throughput p (MB/sec)
direct drop fillzero

1 12.48= 13.08 ° 12.46
2 12.77— 13.11 12.76

1 = 5 12.98— 13.05 12.97
10 13.09 13.07 13.09

(b) QuickTime streams

(direct: decode directly; drop: drop encrypted data; fillzero: fill encrypted data with zeros.)

Table 6.5: Effect of discarding encrypted data on the peak signal-to-noise ratio
SNRpeak when Eb = 1 and Ep = 0.043.

zeros.

Table 6.5 illustrates the peak signal-to-noise ratio SNRpeak for dropping

encrypted data and filling encrypted data with zeros under four different ECP

encryption schemes. Note that we get similar, or even lower values of SNRpeak

when discarding encrypted data, compared to direct decoding of the encrypted

streams. Figure 6.1(e-g) and 6.2(e-g) show the five video frames decoded in

each streams respectively, they suggested that discarding encrypted data does

not help in improving the visual quality. This experiment indicates that an

unauthorized party cannot get a better decoding quality by means of discarding

the encrypted video data.

Experiment 5 (Signal-to-Noise Analysis for Audio Streaming Appli-

cation):

Chapter 6 Implementation Results 37

In this experiment, we consider the effect on the audio quality as we vary the

parameters Ei, Ep and Eb. The audio clip used in this experiment is a MPEG-1

layer 3 encoded audio file at bit rate 128 kb/s. We compute the signal-to-noise

ratio {SNR) with the Matlab program using the following equation:

original听

^^=i(original{i) — cipher

where original{V) denotes the z-th sample in the wave form decoded from

the original audio stream, and cipher{i) denotes the i-th sample in the wave

form decoded from the encrypted audio stream without the decryption key.

In this experiment, n equals 44100, which means that samples from the first

one second of the audio stream are used. Note that a lower value of SNR

indicates that the encrypted audio stream is acoustically more distorted from

the original audio stream, while an SNR value of infinity indicates that the

measured samples are exactly identical to those in the original audio stream.

Table 6.6 illustrates the signal-to-noise ratio SNR for different values of Ei

and Ep, when Ei = 1. Again, we observe that one does not need to encrypt

all the audio packets to sufficiently distort the audio signal. In general, our

proposed ECP method allows one to simultaneously achieve high encryption

throughput and low audio fidelity during unauthorized access.

signal-to-noise ratio SNR
II Ep = 0.214 II Ep = 0.171 Ep = 0.120 || Ep = 0.086 || Ep = 0.043

Ej = 1 — 0.9104 “ 0.7720 “ 0.8571 11 0.8429 11 0 .8264~
'Ei = 2 — 0.5831 - 0.5608 _ 0.5614 — 0.5585 一 0.5707
Ei = 5 0.5479 “ 1.0334 “ 1.0360 — 13.6172 2.3095
Ei = 10 1.0494 1.0494 1.0494 || 25.1848 || 25.1849

Table 6.6: Effect of EP and EI on the signal-to-noise ratio SNR on MPS audio
when Eb = 1.

Chapter 6 Implementation Results 38

B H H h B B B B B B
(a) Original frames

b ^ B H ^ H B ^ h ^ E H B ^ H

(b) Encrypted frames with Ei 二 IQ, Ep = 0.043 and E^ = 1.

• B H I H B H H B H ••••• m H H

(c) Encrypted frames with Ei 二 Ep = 0.043 and Eb = 1.

國國國國國
l i S H B B i d i S B H B i S I ^ H k t i d H H I i & i i B H I i

(d) Encrypted frames with Ei = 2, Ep = 0.043 and Eb = 1.

(e) Encrypted frames with Ei = 1, Ep = 0.043 and Et = 1.

•國國隨翻
(f) Encrypted frames with Ei = Ep = 0.043 and Eb = 1. (encrypted data are filled with zeros.)

i g m m g i i m i g m i g g i
(g) Encrypted frames with Ei = 1, Ep = 0.043 and Eb = 1. (encrypted data are being dropped.)

Figure 6.1: Quality of five consecutive MPEG-1 video frames under different
ECP parameters.

Chapter 6 Implementation Results 39

I^jI^^^H B^^ f̂̂ ^Bi HÎ B^B^w BBÎ MB^S
I S R S ^ S H H H m ^ l H B I S

(a) Original frames

m S B H H H H HHEH m B
(b) Encrypted frames with Ei = 10, Ep = 0.043 and Eb = 1.

H n H n H P H

(c) Encrypted frames with Ei = b, Ep = 0.043 and Eb = 1.

• • • • •

(d) Encrypted frames with Ei = 2, Ep = 0.043 and Eb = 1.

I H H W H I H H I H I
(e) Encrypted frames with Ei = 1̂ Ep = 0.043 and E^ = 1.

m m m m i m m m m i m u g

B ^ h E B B ^ S H ^ H I S B I I b I k
(f) Encrypted frames with Ei = 1, Ep = 0.043 and £ ' 5 = 1 . (encrypted data are filled with zeros.)

••••國
(g) Encrypted frames with Ei = 1, Ep = 0.043 and Et,= l- (encrypted data are being dropped.)

Figure 6.2: Quality of five consecutive Quicktime video frames under different
ECP parameters.

Chapter 7

Related Work

Recent research on video proxies has mainly focused on caching strategies and

replacement algorithms. Sen and Towsley [8] present how prefix caching at a

proxy can help to shield clients from large start-up delay, low throughput, and

high packet loss. Guo et al. [3] propose the use of a prefix-caching proxy in

conjunction with a periodic broadcasting technique to improve system scala-

bility. Focusing on implementation and protocol issues, Cruber et al. [2] show

how to realize proxy prefix caching by using the Real-Time Streaming Protocol

(RTSP). Rejaie et al. [6] present a fine-grained replacement algorithm for a

multimedia proxy, which targets layered-encoded streams. Kangasharju et al.

4] present a caching model of layered-encoded multimedia streams, and pro-

pose utility heuristics whose performance are evaluated through their caching

model.

There are only a small number of papers emphasizing security issues in a

video proxy. Griwodz et al. [1] propose an approach in which the proxy stores

the major part of the video streams which are intentionally corrupted. The

proxy can distribute the corrupted part via multicast transmission, while the

origin server will supply the part for data reconstruction in a unicast manner.

Since the original server must perform data encryption for each client, this is

not a scalable solution. Tosun and Feng [10] propose a much more scalable

approach based on a lightweight encryption algorithm for multimedia streams.

40

Chapter 7 Related Work 41

When a client makes a request, the proxy will decrypt the locally stored en-

crypted data and encrypt it again using the client's encryption key. The major

drawback with their approach is that the use of light-weight encryption offers

no proven resilience against attacks on data confidentiality. Furthermore, the

need for decryption operations at the proxy results in higher computational

overhead. Shi and Bhargava [9] present an MPEG video encryption algorithm

called VEA such that one can encrypt a video stream multiple times (each

with, say, a client-specific key) and still decrypt the video in a single opera-

tion using a composite decryption key. However, VEA is not resilient against

plaintext attack. Hence, while the approach is highly efficient, more deter-

mined adversaries can obtain the VEA secret key with feasible efforts.

Chapter 8

Conclusion

We have presented the design and implementation of a multi-key secure multi-

media proxy architecture. Our design is based on the notion of an asymmetric

reversible parametric sequence (ARPS). We discussed how ARPS can be ap-

plied to a general client-proxy-server architecture. To practically achieve the

confidentiality properties of ARPS, we presented a multi-key RSA technique,

and proved that the technique realizes an ARPS. In summary, our theoret-

ical results show that the proposed architecture can achieve comprehensive

data confidentiality that is provably resilient against attacks, given standard

computability assumptions. We have an implementation of our multimedia

streaming architecture - consisting of server, proxy and client — on commodity

Pentium III/800 MHz machines running Linux. Our implementation results

empirically demonstrate how a set of four ECP parameters can trade off en-

cryption throughput against amount of data to protect, for a number of stan-

dard MPEG-1 and Quicktime video sequences, and a number of MP3 audio

sequences. Our results indicate that it is possible to simultaneously achieve

high encryption throughput and extremely low audio/video quality (in terms

of decoded audio SNR and both PSNR and the visual quality of decoded

video frames) during unauthorized access. For example, by using Ei = 10

and Ep = 0.043, a single Pentium III/800 MHz machine can concurrently

42

Appendix Conclusion 43

sustain more than 64 distinct MPEG-1 video streams, while giving good pro-

tection for the original video data. We also presented our Secure Multimedia

Library (SML) that provides a comprehensive API for building secure multi-

media streaming applications based on the asymmetric parametric sequence.

We believe that the proposed system offers an effective approach for delivering

multimedia contents in a secure manner.

Appendix A

Function Prototypes of Secure

Multimedia Library (SML)

A.l CONNECTION AND AUTHENTICATION

A.1.1 Create SML Session

SML uses a SML_SESSION to identify each unique connection. For example,

when a proxy is serving two concurrent end clients while accessing the source

server, there will be three active SML_SESSION's in the proxy where each

SML-SESSION has its own underlying transport layer sockets, encryption pa-

rameters, and connection states. To create a new SML_SESSION, a proxy

needs to declare and call the initialization function:

SML.SESSION session;

SML_InitSession(SML_SESSION* session)；

A.1.2 Public Key Manipulation

SML uses public key cryptography to perform client authentication and session

key encryption. SML has functions for key generation, key saving, and key

retrieval. These function calls enable the creation of new key pair with a

certain bit length, the storing of a key pair in a file with password protection,

44

Appendix A Function Prototypes of Secure Multimedia Library (SML) 45

and the loading of a key pair from the file. Currently, SML only supports the

RSA method (however, hooks are provided to extend it to other methods).

One can use the constant CRYPTO-KEYJISA to specify the key type to be

RSA. The key creation and key saving/loading functions are:

SML_CreateKeyPair(SML_SESSION* session,

int bit—length, int public—exponent, int key—type);

SML_SaveKeyPair(SML_SESSION* session,

char* key_filename, char* password)；

SML_LoadKeyPair(SML_SESSION* session,

char* key.filename, char* password, int key_type)；

There are also helper functions that enable key manipulation without an

SML-SESSION. In fact, the above functions invoke the following lower level

functions for doing the real work. To use these lower level functions, one needs

to declare and initialize a CRYPTO_KEY_PAIR variable. The helper function

prototypes are:

CRYPTO_InitKeyPair(CRYPTO_KEY_PAIR* pair)；

CRYPTO_CreateKeyPair(CRYPTO_KEY_PAIR* pair,

int bit—length, int public_enponent, int key—type);

CRYPTO.SaveKeyPair(CRYPTO_KEY_PAIR pair,

char* key.filename, char* password)；

CRYPTO.LoadKeyPair(CRYPTO_KEY_PAIR* pair，

char* key.filename, char* password, int key_type)；

A.1.3 Authentication

SML has an authentication protocol integrated into its connect and accept

functions, which gives the server the ability to verity the identity of a requesting

client. The authentication is based on the correctness of the client's public

key signature and the identification of the client's public key compared to that

saved by the server. The server keeps a list of the public keys of all its approved

clients, and the public key list file must be specified in the accept function call

which will be described in the next section. SML provides helper functions for

manipulating the public key list file, includomg adding an entry to, removing

I

Appendix A Function Prototypes of Secure Multimedia Library (SML) 46

an entry from, and searching for an entry in the list file. Each entry in the

list file consists of a user name and the user's public key in plaintext. These

helper functions are:

CRYPTO.AddKeyToListFile(CRYPTO.KEY key,

char* user_name, char* key_list.filename)；

CRYPTO_RemoveKeyFromListFile(CRYPTO_KEY key,

char* key_list.filename)；

CRYPTO_RemoveUserFroiriListFile(char* user.name,

char* key_list.filename)；

BOOL CRYPTO_QueryUserFromListFile(char* user.naitie,

int user_name_buf_size, CRYPTO_KEY key, char* key—list—filename);

The first function will create a new file if the file specified by the filename

does not exist. The second function and third function allow to delete an

entry either by specifying the user name or the user's public key. The last

function will search for the specified user's public key in the list file. It returns

TRUE and the corresponding user name if the user exists, and returns FALSE

otherwise.

A.1.4 Connect and Accept

A client connects to a server by calling the connect function with the server

host address and the server's listening port. A server waits on a port for in-

coming clients by calling the accept function. The accept function blocks until

a connection is established or when an error occurs. Notice that the accept

function, on success, returns a pointer to a new SML.SESSION which corre-

sponds to the newly established connection, while the original SML.SESSION

can be used to wait for other incoming client requests.

SML.SESSION* SML.Accept(SML_SESSION* session,

int port_to_listen, char* key_list.filename)；

BOOL SML.Connect(SML.SESSION* session,

char* server_host_name, int server_listening_port)；

Appendix A Function Prototypes of Secure Multimedia Library (SML) 47

A.1.5 Close Connection

Once an SML.SESSION is finished or when one wishes to shut down a connec-

tion immediately, the destroy function can be called to release any allocated

resources and close the underlying transport layer socket.

SML.DestroySession(SML.SESSION* session)；

A.2 SECURE DATA TRANSMISSION

A.2.1 Asymmetric Reversible Parametric Sequence and

Encryption Configuration Parameters

SML uses the Asymmetric Reversible Parametric Sequence

(ARPS) for the encryption and decryption of bulk data. To reduce complexity,

SML uses encryption configuration parameters (ECP) to control the extent of

encryption and decryption on the bulk data. ECP values and ARPS parame-

ters can be configured at the server side. The client side must then receive and

use the server-selected setting in order to perform proper decryption. These

related functions are:

SML_InitRpsSetting(SML.SESSION* session,

int EI, int EP, int EB, int pkt.size,

RPS.ALGORITHM, int rps.key bit.length)；

SML_SendRpsSetting(SML_SESSION* session)；

SML_ReceiveRpsSetting(SML_SESSION* session)；

The first function is used by a server to configure the ECP setting and gen-

erate a pair of ARPS encryption and decryption keys for the given SML_SESSION.

The second to last parameter specifies the ARPS algorithm to be used. It must

be MULTIJ<EY_RSA for the current version. The last parameter specifies the

bit length of the ARPS keys to be generated. In order for the client to achieve

proper data decryption, the client must have the same ECP setting and the

Appendix A Function Prototypes of Secure Multimedia Library (SML) 48

corresponding ARPS decryption key. One can use the second and third func-

tions to send the ECP setting and decryption key to the client. All the secret

information sent will be encrypted using the client's public key.

A.2.2 Bulk Data Encryption and Decryption

SML integrates data encryption and decryption with network socket functions.

Thus, only a single function call is required to encrypt data and send the data

though the network, or to receive data from the network and decrypt the data.

SML provides both TCP and UDP versions of the functions. Notice, how-

ever, that SML will neither handle packet loss nor out-of-order packets when

the UDP functions are used. The reason why we do not provide packet loss

recovery and in-order packet delivery is that different multimedia streaming

applications may have different delivery requirements. Therefore, we allow

users to adapt SML use to their own application needs. To encrypt or decrypt

data using the configured ECP setting and APRS keys, one simply allocates

the required memory buffers and calls the following functions:

SML_TcpSendEncryptRps(SML_SESSION* session,

char* send_buffer, int buffer_size)；

SML_UdpSendEncryptRps(SML_SESSION* session,

char* send_buffer, int buffer_size)；

SML.TcpReceiveDecryptRps(SML.SESSIOM* session，

char* receive.buffer, int buffer.size)；

SML.UdpReceiveDecryptRps(SML.SESSION* session，

char* receive_buffer, int buffer—size)；

Note that packets of size smaller than or equal to the packet size specified in

the function SML_InitRps() can be used. (However, packets of larger size are

not allowed.) SML will automatically perform packet padding when necessary.

Appendix A Function Prototypes of Secure Multimedia Library (SML) 49

A.2.3 Entire Data Encryption and Decryption

For certain information other than entertainment audio/video, full data en-

cryption may be preferred for security reasons. SML also provides function

calls to encrypt and decrypt all data, without using ECP. Both TCP and

UDP are supported. Since total data encryption or decryption does not de-

pend on the ECP setting, the packet size will not be limited by that specified

in the function SML_InitRps() in this case. The related functions are:
SML.TcpSendEncrypt(SML.SESSION* session,

char* send_buffer, int buffer_size)；

SML.UdpSendEncrypt(SML.SESSION* session,

char* send_buffer, int buffer_size)；

SML.TcpReceiveDecrypt(SML.SESSION* session,

char* receive_buffer, int buffer_size)；

SML.UdpReceiveDecrypt(SML.SESSION* session,

char* buffer, int buffer_size)；

A.3 Secure Proxy Architecture

A.3.1 Proxy-Server Connection

As described previously, a server needs to identify public keys from approved

clients - these keys will be used to encrypt the decryption key required by

a client, which should be kept secret even from the proxy. Therefore, the

proxy should forward the client's public key (received from the client side

SML_SESSION) to the server (sent through the server side SML.SESSION

before calling the connect function). These related functions are:

SML.GetClientPublicKey(SML.SESSION *session, CRYPTO_KEY *key)；

SML.SetClientPublicKey(SML.SESSION *session, CRYPTO_KEY key)；

A.3.2 ARPS and ECP

SML performs ARPS cryptography. In order for the cryptography to work

correctly, both ECP and the ARPS parameters must be preserved during a

Appendix A Function Prototypes of Secure Multimedia Library (SML) 50

chain of encryption, re-encryption and decryption. For example, the first time

a proxy requests a particular multimedia object from a server, the server can

select its own ECP setting and randomly generate the ARPS parameters for

the SML_SESSION. However, when another client requests that cached object

from the proxy, the proxy must request from the server a new re-encryption

and decryption key pair based on the previously chosen ARPS parameters,

and the proxy must use the previously chosen ECP setting.

The server can use the following functions to store and retrieve HPS set-

tings. However, it is not necessary to deal with re-encryption key generation

since both the functions

SMLJnitRpsSettingO and SML_LoadRpsSetting() will internally generate a

random re-encryption key pair, and the decryption keys will be encrypted

using the authorized client's public key.

SML_SaveRpsSetting(SML_SESSION* session, char* filename);

SML_LoadRpsSetting(SML_SESSION* session， char* filename);

Similar to the public key issue, a multimedia proxy is required to retrieve

the ARPS setting from the server side's SML_SESSION and then use the same

setting in the client side's SML_SESSION. One can use the following get and

set functions to achieve this requirement.

SML_GetRpsSetting(SML_SESSION *session, RPS.SETTING *rps)；

SML_SetRpsSetting(SML_SESSION *session, RPS.SETTING rps)；

A.3.3 Initial Sever Encryption

If a client requests a multimedia object which is not cached by the proxy, the

proxy needs to request the object from the server. The server simply encrypts

the data packets using the functions described in Session A.2.2 as in the client-

server scenario. However, instead of decrypting the data packets, the proxy

caches them without any decryption and modification. Note that the proxy

does not have the capability to decrypt the data packets since the decryption

Appendix A Function Prototypes of Secure Multimedia Library (SML) 51

key is encrypted using the client's public key. The following SML functions

will receive the data packets without performing any decryption operations.

int SML.TcpReceiveRps(SML.SESSION* session,

char* packet.buffer, int buffer_size)；

int SML.UdpReceiveRps(SML.SESSION* session,

char* packet.buffer, int buffer_size)；

Since the size of data packets may change after ARPS encryption, the above

two functions will return the actual size of the data received. And since the

packet size may increase after encryption, one may need to allocate a buffer of

a size larger than the plaintext data packet size. The following function allows

to determinate the maximum packet size required:

int SML_GetMaxRpsPacketSize(SML_SESSION* session)；

A.3.4 Proxy Re-Encryption

A proxy will receive the APRS re-encryption key along with other settings

during the SML_ReceiveRpsSetting() function call. The proxy can use the

following functions to re-encrypt those cached data packets.

SML_TcpSendReEncryptRps(SML_SESSION* session,

char* packet.buffer, int packet.size)；

SML.UdpSendReEncryptRps(SML.SESSION* session，

char* packet_biiffer, int packet_size)；

A.3.5 Client Decryption

A client will receive the ARPS decryption key along with other settings during

the SML_ReceiveRpsSetting() function call. The client can simply use the

same decryption functions described in Session A.2.2 to retrieve the plaintext

data packets.

Bibliography

1] Carsten Griwodz, Oliver Merkel, J ana Dittmann, and Ralf Steinmetz.

Protecting vod the easier way. In Proceeding of the 6th ACM International

Multimedia Conference^ pages 21-28, September 1998.

2] Stephane Gruber, Jennifer Rexford, and Andrea Basso. Protocol consid-

erations for a prefix-caching proxy for multimedia streams. In Proceed-

ings of the 9th International World Wide Web Conference, Amsterdam,

Netherlands, May 2000.

3] Yang Guo, Subhabrata Sen, and Don Towsley. Prefix caching assisted

periodic broadcast: Framework and techniques to support streaming for

popular videos. In IEEE ICC, 2002.

4] J. Kangasharju, F. Hartanto, M. Reisslein, and K. W. Ross. Distributing

layered encoded video through caches. In Proceedings of IEEE Infocom

2001, pages 1791-1800, Anchorage, Alaska, April 2001.

5] Refik Molva and Alain Pannetrat. Scalable multicast security in dynamic

groups. In Proceeding of the 6th ACM Conference on Computer and Com-

munications Security, pages 101-111, November 1999.

6] Reza Rejaie, Mark Handley, Haobo Yu, and Deborah Estrin. Proxy

caching mechanism for multimedia playback streams in the internet. In

Proceedings of the 4th International Web Caching Workshop, San Diego,

CA., March 1999.

52

7] Bruce Schneier. Applied Cryptography. John Wiley and Sons, New York,

1996.

8] Subhabrata Sen and Don Towsley. Proxy prefix caching for multimedia

streams. In IEEE INFOCOM, New York, March 1999.

9] Changgui Shi and Bharat Bhargava. A fast mpeg video encryption algo-

rithm. In Proceeding of the 6th ACM International Multimedia Confer-

ence, pages 81-88, September 1998.

10] Ali Saman Tosun and Wu chi Feng. Secure video transmission using

proxies. In Technical Report, Computer and Information Science, Ohio

State Univeristy, 2002.

53

M

• •UDhDO

_圓1_11丨1
sa.LJBjqLH >|Hn3

