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摘要 

在這篇論文中，我們硏究了兩個可以自動分析和挖掘有用數據的系統。 

第一個系統叫做事件與主題债查系統 (event and topic discovery system)� 

我們應用一個兩層的分層式聚類算法 ( two - leve l hierarchical unsupervised 
learning a l g o r i t h m ) ,從中英文新聞數據中找到未知的主題和事件信息。 

在下層結構中，事件信息將從新聞信息中得到，新聞是按照年代順序 

排列的。我們應用信息提取 ( information extraction)的方法從新聞内容中 

自動獲取名字(named entity)和内容詞組(content t e r m ) � 因爲新聞是時時 

刻刻都發生的，所以我們的系統支持增量聚類 ( incrementa l clustering)� 

在高層結構中，新聞的主題從事件中產生。我們用相關模型 ( r e l e v a n c e 
m o d e l j的方法來決定事件和主題之間的關系。 

第二個系統是新聞相關系統 (s tory link detection s y s t e m ) �這個系統的 

目的是判斷兩條新聞是否像關於同一個主題。新聞相關系統應用了自動 

主題類別判斷(automatica topic type categorization)的辦法把新聞劃分到 

一些事先規定好的主題類別中去。根據這些主題類別的信息，我們可以 

判斷新聞代表(story representation)中每個部分的重點。 

我們進行了 一系列試驗來測試事件主題賴查系統和新聞相關系統， 

並且對試驗的結果進行了分析和説明。 
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Abstract 

In this thesis, we investigate two systems that can analyze 
news documents and find useful information automatically. The 
first system is called event and topic discovery system. A two 
level hierarchical unsupervised learning algorithm is employed to 
discover event and topic information not known to the system 
from news stories of different languages, including English and 
Chinese. At the lower level, events are discovered from incom-
ing news stories in chronological order. Information extraction 
technique is used for automatically extracting useful terms such 
as named entities. Since news stories are coming around-the-
clock, incremental clustering technique is used for the discovery 
task. At the higher level, topics are discovered from the gener-
ated event information. We use a relevance model to determine 
the relationship of an event and a topic. 

The second system is the story link detection system. It aims 
at determining whether two stories are related to the same topic 
or not. The story link detection approach makes use of an auto-
matic topic type categorization method to classify a story into 
some general topic types. After a story is automatically assigned 
to a set of topic types, different emphasis will be placed on dif-
ferent parts of story representation during the link detection 
process. 

We have conducted experiments on the event and topic dis-
covery system and the story link detection system with large-
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scale real-word news corpora. The performance and effectiveness 
of two approaches are demonstrated and analyzed. 
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Chapter 1 

Introduction 

The rapid growth of the Internet and the wide availability of electronic doc-

uments bring challenges to the traditional query-driven information retrieval 

(IR) technology. People are more likely to access news stories from diverse 

sources. The content of these news documents may come from multilingual 

languages. However, it is impossible for people to browse all or most of the 

news story content in the archive in order to know what events occurred or 

what happened. Query-based retrieval is useful only when you know precisely 

the nature of the facts you are seeking. Users will have difficulty formulating 

the "right query" or "right level of abstraction", or checking all the poten-

tially relevant stories. Therefore it is very useful if a system can analyze 

these news documents and find the useful information automatically. 

Consider, for example, a person has just returned from an extended va-

cation and needs to find out quickly what happened in the world during 

his absence. Reading the entire news collection is a daunting task. Intelli-

gent assistance from the computer for discovering unseen topics and events 

is clearly very useful. The Topic Detection and Tracking (TDT) evaluation 

project, organized by Defense Advanced Research Projects Agency (DARPA) 

and National Institute of Standards and Technology (NIST), provides news 

1 



CHAPTER 1. INTRODUCTION 2 

corpora for investigation and evaluation. One of the important tasks being 

evaluated by TDT is the topic detection task, which aims to detect and track 

topics not previously known to the system [29]. In addition to topics, we in-

vestigate an approach that can discover events. Another issue is that the 

news may come from different sources in different languages, in particular, 

Chinese and English. Another task investigated by TDT is the story link 

detection problem. 

1.1 The Definition of Topic and Event 

A "topic" is defined to be a seminal event or activity, along with all directly 

related events and activities [23]. An "event" is defined as a specific piece 

of incident or activity usually occurs in a short period of time. The relation 

between topic and event is shown in Figure 1.1. A topic usually contains a 

sequence of events. For instance, "Tony Blair Visits China in October, 1998" 

is a sample topic and it includes several events, such as the preparations for 

visit, his meeting with Chinese leaders, his interview on Chinese national 

television and so on. Each piece of event contains a set of news stories and 

is usually reported in different sources and in different languages. 

1.2 Event and Topic Discovery 

1.2.1 Problem Definition 

The problem of event and topic discovery is defined to be the task of discov-

ering events and topics not previously known to the system. The flow of the 

discovery problem is depicted in Figure 1.2. The input data are processed 

in chronological order, in Chinese or English. The discovery system needs to 
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topic 

event 1 event 2 . . . 

story 1 story 3 
story 2 • 
story 4 

參 

Figure 1.1: The relation between events and topics 

make a judgment whether an incoming story belongs to a new event or an 

existing event that has been discovered previously. Another judgment is to 

determine whether the incoming story belongs to a new topic or an existing 

topic. After such processing, the system can identify a set of events and a 

set of topics. 

1.2.2 Characteristics of the Discovery Problems 

Several characteristics emerge in our discovery problem. The data we deal 

with comes from multilingual news sources. First, the news story cannot be 

used directly for the unsupervised learning. To capture the major idea of each 

news story, we need to extract semantics such as named entities and story 

content terms to represent the story. Unsupervised learning is performed on 

the extracted information. Second, news stories discussing the same event 

tend to be released closely. This suggests that Iconsidering the release time 

information during the discovery process will be helpful. Third, there is a 
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Figure 1.2: Event and topic discovery problem 
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significant distinction between different languages. Therefore, we need to 

take into account this language difference in our discovery approach. 

1.2.3 Our Contributions 

Most of existing approaches are designed to deal with the discovery of only 

topics or only events. They do not consider to discover them at the same time. 

Moreover, although the news stories arrive continuously, they do not conduct 

the discovery incrementally. We have developed a hierarchical unsupervised 

learning algorithm to automatically discover events and topics from news of 

different sources in different languages, namely, English and Chinese. To 

allow the incorporation of existing events or topics, we design an incremental 

discovery approach so that it can load the previously discovery result in 

the system. To take into account the effect of different distributions for 

different languages, we also design a language normalization scheme during 

the discovery process. 

1.3 Story Link Detection 

1.3.1 Problem Definition 

Another important task being evaluated by TDT is the story link detection 

problem. The aim is to find out whether two given stories are related to 

the same topic or not. The stories may come from different sources. The 

definition of "topic" is described in Chapter 1.1. Story link detection is an 

important problem because it provides a fundamental tool for other intelli-

gent tasks, such as topic detection and topic tracking. Topic tracking aims 

to associate incoming stories with topics that are known to the system. A 

solution for link detection can act as a kernel function from which these tasks 
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or other intelligent applications can be built. 

The flow of the story link detection is depicted in Fig 1.3. The story 

link detection system can make a judgment whether an incoming story pairs 

belong to the same topic or not. It also gives a confidence score of the 

decision. The input data are story pairs which may come from different 

sources in different languages, namely, Chinese and English. 

Link detection result 
Story pair 

Story Link Detection 
1 > 

System 乂 N � ) 

Figure 1.3: Story link detection task 

1.3.2 Our Contributions 

We investigate a link detection approach which employs an automatic topic 

type categorization model. Automatic topic type categorization models are 

trained for classifying a story to broad topic types. Examples of topic types 

are "Elections", "Scandal/Hearings", "Accident", and "Celebrity/Human In-

terest News", etc. We automatically extract key terms to represent the 

stories. The story representation consists of people names, geographical lo-

cation names, organization names and content terms. A story related to 

"Accident" may emphasize more on the geographical location names while 

the people names may play a more important role in the stories related to 

"Celebrity/Human Interest News". Our link detection system uses an au-

tomatic topic type categorization method to decide how to distribute the 
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contribution on each kind of named entity and content term component in 

the story representation. 

1.4 Thesis Organization 

The remaining parts of the thesis are organized as follows: Chapter 2 will 

describe some related work on the event and topic discovery problem and the 

story link detection problem of other research groups. Chapter 3 will give 

the design of the event and topic discovery system as well as the story link 

detection system. The two systems have similar components except some 

components. The details of the event and topic discovery approach will be 

discussed in Chapter 4. Chapter 5 will present the experimental performance 

and analysis of the event and topic discovery component. In Chapter 6, we 

will discuss the story link detection approach supported by an automatic 

topic type categorization method and a language normalization method. Its 

experimental results will be given in Chapter 7. Conclusions and future 

directions will be presented in Chapter 8. 

• End of chapter. 



Chapter 2 

Literature Review 

There are many research groups working on the topic detection problem of 

the Topic Detection and Tracking (TDT) evaluation project, including Uni-

versity of Massachusetts (UMass), BBN Technologies, IBM Research Center, 

Carnegie Mellon University (CMU) and National Taiwan University (NTU). 

Most existing approaches focus only on "topics". Moreover, several research 

groups have investigated the link detection problem such as CMU, UMass, 

and NTU. We will also discuss their methods in this chapter. 

2.1 University of Massachusetts (UMass) 

2.1.1 Topic Detection Approach 

University of Massachusetts (UMass) employed a modification of a single 

pass clustering algorithm in their detection system in TDTl [3]. They used 

feature extraction and selection techniques to build a query representation 

for the story's content. A threshold is estimated for each query which deter-

mines binary decisions. The new story is compared against earlier queries in 

memory. If a new story exceeds an existing query's threshold, the story is 

assumed to discuss the topic represented in the query, otherwise it contains 

8 



CHAPTER 2. LITERATURE REVIEW 9 

a new event. After the new story is made a decision, the existing queries will 

be rebuilt by adding the new story's query. 

They applied the same threshold model to the TDT2 detection task [26 . 

They improved the time component by incorporating the number of days 

between stories, while in TDTl the time component is based on a story 

sequence number. 

In TDT3 [2], their detection system supports two models of comparing a 

story to previously seen material, namely, agglomerative centroid clustering 

and k-nearest neighbor comparison. Other important issues in their approach 

are the problem of determining the right similarity function and weighting of 

individual features that occur in the stories. They considered four similar-

ity functions: cosine, weighted sum, language models, and Kullbach-Leiblar 

divergence. The feature weighting methods they employed are TF*IDF, TF 

and IDF, where TF refers to term frequency and IDF refers to inverse doc-

ument frequency. Instead of developing new methods in TDT 2000，they 

spent a fair amount of time rearchitecting the cca^, learning to deal with 

its peculiarities and correct bugs detracted substantially from research [1 . 

Therefore, their TDT 2000 approach is very similar to those used in TDT3. 

2.1.2 Story Link Detection Approach 

UMass began their research on the Story Link Detection in TDT3 [2]. They 

tried several similarity measures and weighting schemes. Similarity measures 

sampled were cosine, weighted sum, language model, and Kullbach-Leiblar 

divergence. Weighting schemes sampled were TF*IDF, IDF and TF. 

In TDT 2000, they did not report any novel results but some preliminary 

results that showed their improvements in link detection [1]. They explored 
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how a query expansion technique from IR could smooth the compared stories, 

and how score normalization depending on language mix can improve results. 

They used relevance modeling, a statistical language modeling technique 

related to query expansion, to the TDT 2001 link detection task [20]. The 

relevance modeling is used to enhance the topic model estimate associated 

with a news story, boosting the probability of words that are associated with 

the story even when they do not appear in the story. They used a modified 

form of Kullbach-Leiblar divergence as the similarity comparison method. 

2.2 BBN Technologies 

BBN developed their topic detection system in TDT2 and TDT3. BBN used 

an incremental A:-means algorithm for clustering stories [28]. This algorithm 

processes stories one at a time and sequentially. For each story it undergoes 

a two-step process used two types of metrics, namely, selection metrics and 

thresholding metrics. The selection metric takes a story and outputs cluster 

scores such that the most similar cluster is found. They used the BBN topic 

spotting metric as the selection metric. The goal of a thresholding metric is to 

make a decision whether or not a story should be merged with a cluster. They 

utilized a hybrid of the BBN topic spotting metric with a more conventional 

cosine distance metric. 

When determining whether a story should merge an existing topic cluster 

or create a new topic seed, they used a two-level normalization approach. 

First, they normalized the similarity score with respect to stories certain to 

be off-topic. Then, the score is normalized with respect to clusters of various 

sizes all of which are unlikely to be on the same topic as the test story. 

In TDT3, BBN investigated a translation system so that their topic de-
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tection system can deal with the multi-lingual news data, namely Chinese 

and English [21]. They segmented the original Mandarin document, looked 

up each Mandarin word in the bilingual dictionary. The quality of simple 

translation is not very good. Therefore, They used pinyin to extend the 

lookup translation and estimated non-uniform prior translation probabilities 

using the observations of aligned sentences in a parallel corpus. Additional, 

they devised an algorithm for iteratively improving a translation using co-

occurrence statistics. 

In addition to the TDT project, BBN also provided a topic discovery 

system which created topics from a collection of news stories and provided 

human understandable topic labels for each discovered topic instead of the 

list of stories related to the discovered topic [27]. The OnTopic^^ system at 

BBN uses a Hidden Markov Model to model multiple topics in documents 

explicitly. The algorithm for finding topics in the corpus has two high-level 

steps. First, they found descriptive phrases in the corpus. Next, they deter-

mined an initial set of topics, based on the key-phrases that occur in each 

document. They then used the Estimate-Maximize algorithm to determine 

the full set of words and phrases that are statistically associated with each 

of topics. 

2.3 IBM Research Center 

IBM conducted a two-tiered clustering approach in TDT3 [13]: each clus-

ter is composed of several microclusters. News stories are initially assigned 

to microclusters. Then, at the end of the deferral period, microclusters are 

grouped into the actual clusters. They used a symmetrized version of the 

Okapi formula to score the similarity of two stories. Each microcluster inter-
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nally is the centroid of the stories contained in the microcluster. The score 

of a document with a microcluster becomes the mean of the scores of that 

document with the stories contained in the microcluster. Microcluster is as-

signed to a cluster by assigning it to the same cluster as the most similar 

microcluster, or starting a new cluster if none of the scores are sufficiently 

high. 

The weighting scheme they adopted is both time-dependent and microcluster-

dependent. The two-tiered clustering is used to reduce cohesion and make 

cluster assignments more dependent upon the topic and less dependent upon 

the source. Min-IDF technique is used to avoid different word statistics as-

sociated with each source. Min-IDF is to compute source-specific IDFs, and 

then, for scoring, choose the minimum, across all sources, of the source-

specific IDFs. Therefore the topical effects and source-based effects caused 

by "disproportionately common" for each source will be lowered. 

2.4 Carnegie Mellon University (CMU) 

2.4.1 Topic Detection Approach 

Carnegie Mellon University (CMU) developed their topic detection system 

from TDTl [32]. They employed the conventional vector space model which 

uses the bag-of-terms representation. A story is represented using a vector of 

weighted terms. The normalized vector sum of documents in a cluster is used 

to represent the cluster, and called the prototype or centroid of the cluster� 

Terms in a story vector or a cluster prototype are statistically weighted using 

the term frequency (TF) and the Inverse Document Frequency (IDF) and are 

appropriately normalized. They used the standard cosine similarity to mea-

sure the similarity between the story and cluster prototype vectors. They 
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investigated two clustering method. The first method is an agglomerative (hi-

erarchical) algorithm based on group-average clustering (GAG). The second 

method is a single-pass algorithm (INCR) which generates a non-hierarchical 

partition of the input collection. GAC is designed for batch processing, and is 

used for retrospective detection. INCR is designed for sequential processing, 

and is used for both retrospective and on-line detection. 

The CMU topic detection system for TDT2 [7] was largely based on pre-

vious retrospective and online detection systems used in the TDTl. They 

used the vector space model to represent stories as weighted unigram models. 

They also used temporally-sensitive versions of their incremental and hierar-

chical GAC clustering algorithms to detect new topics within the 3 deferral 

periods. 

In TDT3, they combined agglomerative clustering and single-pass cluster-

ing with different term-weighting schemes (TF-IDF and language-modeling 

based) [31]. The GACIncr system is a cosine-similarity based clustering 

system. When a new stbry \h the deferral window is processed, a greedy 

agglomerative clustering algorithm can optionally be applied. If this option 

is turned off, only singleton clusters will be present in the look-ahead set. 

They call the system which works with only singleton-clusters in the deferral 

window set "Incr.VSM". Each cluster containing a story from the deferral 

window is compared to previously seen clusters. If a suitable match is found, 

the clusters will be merged. 

The Incr.LM system works almost identically to the GAC Incr/Incr.VSM 

system, with the difference being the comparison criteria. The Incr.LM sys-

tem does not allow the option of clustering within the deferral window. Clus-

ters are represented using language models trained with EM on member sto-



CHAPTER 2. LITERATURE REVIEW 14 

ries. When hard decisions must be made, the likelihood of each cluster in 

the deferral window with the existing clusters will be computed. If a suitable 

match is found, those clusters will be merged. 

The BORG.det system incorporates both the GACIncr and Incr.LM meth-

ods. They used a very simple voting scheme. Each method runs using its 

own distinct threshold. Whenever a hard decision of a cluster in the deferral 

window is requested, each method votes on whether to combine it with an 

existing member or create a new entry. If either method votes to combine 

with an existing member, the action is taken. Otherwise, a new member is 

added. 

2.4.2 Story Link Detection Approach 

CMU developed two link detection systems in TDT3 [6]. The first of their 

systems, identified as CMU-1, uses incremental TF*IDF weighted cosine sim-

ilarity measures to determine whether or not two documents discuss the same 

topic. Documents are' stop-worded, stemmed, and converted to binary term 

vectors. The second system, identified as CMU-2 in the evaluation, is also 

based on weighted cosine similarity measures, though with different weighting 

and thresholds. The logarithm of the term frequency is used and the TF*IDF 

statistics are derived solely from the test stories as they are processed, rather 

than having been initialized from the six-month training corpus. 

2.5 National Taiwan University (NTU) 

2.5.1 Topic Detection Approach 

In TDT3, National Taiwan University (NTU) focused on Mandarin text [8 . 

They employed a Chinese named entity system used in MUC7 to identify 
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people names, organization names, locations names and some other named 

entities like date/time expressions and monetary and percentage expressions. 

At most 50 terms are selected to represent story and topic cluster. In the 

version used in TDT3, only named entities are used. They used a two-

threshold scheme to determine the relationship between a news story and a 

topic cluster. 

NTU presented their updated topic detection algorithms for Chinese and 

English-Chinese topic detection in [9]. Named entities, other nouns and verbs 

are cue patterns to relate news stories describing the same topic. They used 

lexical translation and name transliteration to translate Chinese story vector 

representation to English. The two-threshold detection algorithm is similar 

as before. They employed Top-N-weighted strategy and LRU+Weighting 

strategy to group a story vector representation to its related topic represen-

tation. The Top-N-weighted strategy selects N terms with larger weights 

from the two vectors. LRU+Weighting strategy is more complex. They 

kept a certain iiuriiber of candidate terms for each topic and replaced the 

least-recently-used terms. 

2.5.2 Story Link Detection Approach 

NTU presented their link detection approach in [10]. Each story in a given 

pair is represented as a vector with TF*IDF weights. Then the cosine func-

tion is used to measure the similarity of two stories. They tried to use 

different lexical items to represent story, such as nouns & compound nouns, 

nouns h verbs h compound nouns, nouns & adjectives h compound nouns, 

nouns & verbs & adjectives & compound nouns. The story pairs whose simi-

larity are higher than a predefined threshold are kept in a database for story 
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expansion. Stories are segmented into small passages according to the dis-

cussing topics and compute passage similarity instead of document similarity. 

For multilingual story pairs, they employed a simple approach to translate 

a Chinese story into an English one. IF a Chinese word corresponds to more 

than one English word corresponds to more than one English word, these 

English words are all selected without disambiguating them. 

• End of chapter. 



Chapter 3 

System Overview 

In this chapter, we discuss the framework of our event and topic discovery 

system and story link detection system. These two systems consist of six 

modules, namely, story preprocessing, information extraction, gloss transla-

tion, term frequency and term weight calculation, event and topic discovery 

component and story link detection component. 

Figure 3.1 depicts the system overview of event and topic discovery sys-

tem .A news story is first passed through the story preprocessing module. 

In this module, segmented sentence will be generated from the word token 

provided from the news sources. Next, useful story terms will be extracted 

to represent the news stories. The terms include named entities and story 

content terms. We make use of a transformation-based error-driven tagger 

to automatically extract people named entities, geographical location named 

entities and organization named entities from the news stories. Since we 

process news stories from multiple language sources, in particular English 

and Chinese, we translate the Chinese terms in the story representation into 

English by the gloss translation module so that the subsequent steps can be 

performed based on an uniform representation. In the term weight calcula-

tion module, we calculate the corresponding weight of each term and form 

17 
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a four-dimensional vector space representation for each story. Finally, our 

event and topic discovery component will perform unsupervised learning on 

the story representation based on a relevance model technique. The discovery 

result on the event and topic can be generated. 

The architecture of story link detection system is shown in Figure 3.2. 

The first four modules are the same as those in the event and topic discov-

ery system. The multilingual news stories pass through story preprocessing 

module, information extraction module, gloss translation module and term 

weight calculation module and form uniform four-dimensional vector space 

representation. After that, the story link detection component can make de-

cision on story pairs whether two news stories are related to the same topic 

or not. 

3.1 News Sources 

,The. corpora we used in our investigation are provided by Linguistic Data 

Consortium (LDC)i. The TDT2 corpus spans the first six months of 1998 

and contains news data collected daily from 8 news sources in two languages 

(English and Mandarin Chinese). We used TDT2 corpus for training the 

"Relevance corpus" and "Topic Categorization Models" which will be used 

in the event and topic discovery component and the story link detection 

component respectively. The English sources of TDT2 corpus are: 

• New York Times Newswire Service� " 

• Associated Press Worldstream Service 

• Cable News Network, "Headline News" 

1 Linguistic Data Consortium URL: http://www.ldc.upenn.edu 

http://www.ldc.upenn.edu
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Figure 3.1: Overview of the event and topic discovery system 
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Figure 3.2: Overview of the story link detection system 
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• MS-NBC, “News with Brian Williams" 

• Public Radio International, "The World" 

• Voice of America, English news programs 

The Chinese sources of TDT2 corpus are: 

• Xinhua News Agency 

• Zaobao News Agency 

• Voice of America, Mandarin Chinese news programs 

The TDT3 corpus provided by LDC spans between October and Decem-

ber in 1998 from both English and Mandarin sources. We used TDT3 corpus 

mainly for testing the event and topic discovery and story link detection re-

sult. In addition to the 8 sources contained in TDT2 corpus, TDT3 corpus 

has two more English sources: 

• National Broadcasting Company, "NBC Nightly News" 

• MS-NBC, "News with Brian Williams" 

These corpora are collections of news from both text and speech. There 

are two types of data. The first one is the original source text data from 

newswire or manual broadcast transcript. The data are in tokenized format. 

Each English word or Mandarin GB character is assigned a unique identifier 

and presented on a separate line with a tag "recid". An example of the text 

source format is shown in Table 3.1. 

The second kind is related to broadcast data. The Mandarin and English 

broadcast news data have been processed by speech recognition software 
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< W recid=l> Two 
< W recid二2> months 
< W recid=3> after 
< W recid=4> a 
< W recid=5> hurricane 
< W recid=6> mauled 
< W recid=7> this 
< W recid=8> country, 
< W recid=9> it 
< W recid=10> is 
< W recid=ll> still 
< W recid=12> unclear 
< W recid=13> how 
< W r e c i d = 1 4 � m a n y 
< W recid=15> Hondurans 
< W recid=16> died 
< W recid=17> in 
< W recid=18> the 
< W recid=19> storm. 

Table 3.1: A sample of tokenized text data 
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< W recid=l Bsec=15.98 Dur=0.30 Clust=l C o n f = 0 . 7 6 � ^ 
< W recid=2 Bsec=16.28 Dur=0.23 Clust=l Conf=0.91> 的 

< W recid=3 Bsec=16.51 Dur=0.29 Clust=l Conf=0.90> 主要 

< W recid=4 Bsec=16.80 Dur=0.33 Clust=l Conf=0.98> 内容 

< W recid=5 Bsec=17.13 Dur=0.31 Clust=l Conf=0.95> 有 

< X Bsec=17.44 Dur=0.59 Conf=NA> 
< W recid=6 Bsec=18.03 Dur=0.31 Clust=l Conf=0.98> 美国 

< W recid=7 Bsec=18.34 Dur=0.38 Clust=l Conf=0.94> 政府 

< W recid=8 Bsec=18.72 Dur=0.35 Clust=l Conf=0.95> 采取 

< W recid=9 Bsec=19.07 Dur=0.32 Clust=l C o n f = 0 . 9 0 �果断 

< W recid=10 Bsec=19.39 Dur=0.42 Clust=l C o n f = 0 . 9 6 �行动 

< X Bsec=19.81 Dur=0.24 Conf=NA> 
< W recid=ll Bsec=20.05 Dur=0.34 Clust=l C o n f = 0 . 9 0 �向 

< W recid=12 Bsec=20.39 Dur=0.92 Clust=l Conf=0.95> 国际货币基金 

< W recid=13 Bsec=21.31 Dur=0.47 Clust=l Conf=0.98> 组织 

< W recid=14 Bsec二21.79 Dur=0.42 Clust=l Conf=0.90> 提供 

<W recid=15 Bsec=22.21 Dur=0.13 Clust=l Conf=0.87> 的 

< W recid=16 Bsec=22.34 Dur=0.30 Clust=-1 Conf=0.76> 一百 

< W recid=17 Bsec=22.64 Dur=0.30 Clust=l Conf=0.87> 八十 

< W recid=18 Bsec=22.94 Diir=0.10 Cl”.st二 1 Conf=0.90> 亿 

< W recid=19 Bsec=23.04 Dur=0.41 Clust=l Conf=0.94> 美元 

< X Bsec=23.45 Dur=0.59 Conf=NA>  

Table 3.2: A sample of tokenized broadcast data 

provided by Dragon Systems and the BBN Byblos respectively. The data is in 

token stream form without story boundary or punctuation. Each Mandarin 

word is assigned a unique "recid", with information on starting time and 

duration period. An example of the text source format is shown in Table 3.2. ： 
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作为新兴的旅游城€ 

深圳曰前评选出十十大旅游景点， 

以吸引更多海内外游客前来游览观光。 

Table 3.3: A sample of Chinese sentence segmentation 

A new study indicates Americans are eating more vegetables . 
It important because eating better helps reduce the risk of cancer . 
But mom might not like this part so much . 
Many of the vegetables aren，t green or leafy they 're deep fried . 

Table 3.4: A sample of English sentence segmentation 

3.2 Story Preprocessing 

Since the news sources are in word token format, we need to group them into 

sentences for subsequent processing. Each sentence is stored in a separate 

line. A new sentence is generated if a delimiter punctuation such as question 

mark, comma, period is met. The sentence boundary of broadcast news is 

identified by the silence period of two tokens. If the silence period is longer 

than a predefined threshold, we decide chat a new sentence starts from the 

next token. An example of a Chinese news story after the sentence segmen-

tation process is shown in Table 3.3. Since the last few words of English 

broadcast a news always contain news source name and a reporter name 

which have nothing to do with the news content. The reporter name ap-

pears very near the news source name, for example, "JACK SMITH A. B. C. 

NEWS". These information may reduce the quality of content term extrac-

tion. Therefore, we remove the last few words corresponding to news source 

terms, such as "ABC", "CNN","PRr, from the English broadcast news sto-

ries. An example of an English news story after the sentence segmentation 

process is shown in Table 3.4. 
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作为新兴的旅游城市， 

深圳日前评选出十十大旅游景点， 

以吸引更多海内外游客前来游览观光。 

Table 3.5: A sample of word segmentation generated from Table 3.3 

After the Chinese news data has been sentence segmented. We employ 

a software provided by LDC which uses dynamic programming technique 

to perform word segmentation. The continuous singular terms will be com-

bined into meaningful words. An example of word segmentation is shown in 

Table 3.5. 

3.3 Information Extraction 

In this step, we will extract useful information to represent news stories. 

A transformation-based error-driven linguistic tagger for each language, one 

for English and one for Chinese, is employed to perform this information 

.. extraction task [4]. There are two steps in this tagger: learning end tag-

ging [5]. We first manually annotate a training corpus with part-of-speech 

and named entity information. The named entities that we consider include 

people names, geographical location names, and organization names. In the 

learning step, a compact set of rules including lexicons, contextual rules and 

lexical rules can be trained from the corpus. After the learning process, the 

set of learned rules can be used to conduct tagging for an unseen news story. 

A sample of tagged Chinese sentence is shown in Table 3.6. In this example, 

深圳 is tagged as a geographical location name, others are tagged by their 

part-of-speech information. 

The story key terms are extracted according to their tags. There are four 

kinds of story key terms, namely, people named entities, geographical location 
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作为 / vgn新兴 / a的 /usde旅游 /ng城市 /ng ,/, 
深圳 / s曰前 / n g评选 / n g出十 / v c十大 / n g旅游 / n g景点 / n g ,/, 
以 / p吸引 / v g n更多 / a海内外 / n g游客 / n g前来 / v v游览 / n g观光 / n g � / � 

Table 3.6: A sample of segmented Chinese sentence after tagging with part-
of-speech and named entity information 

named entities, organization named entities, and story content terms. Those 

terms not belonging to the three kinds of named entities are processed by stop 

word removal, and stemming. These terms are considered as story content 

terms. An example of story key terms extracted is shown in Table 3.7. The 

two columns represent the sentence number where the term appears and the 

term itself. For example, "2 深圳” means that 深圳 appears as a geographical 

location name in the second sentence of the story once. 

3.4 Gloss Translation 

The news stories that we process come from multiple languages. It is difficult 

to conduct comparison between Chinese and English stones diiectly. Our 

approach is to conduct gloss translation on the extracted story key terms 

of Chinese stories into English so that we can perform subsequent mining 

process based on a uniform representation [18]. Full-fledged translation is 

not necessary since our purpose is to conduct event and topic discovery as 

well as story link detection rather than machine translation. 

The gloss translation is conducted sentence by sentence. For each Chinese 

term C in a sentence, we first look up C in an existing bilingual lexicon. 

The current bilingual lexicon used in our experiments was obtained from 

Linguistic Data Consortium (LDC). The lexicon returns a set of English 

terms {J^i,. . . , Em} which are possible translations of C. The next step 
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<PLACE> 
2深圳 

< / P L A C E � 

<TERM> 
1新兴 

1旅游 

1城市 

2曰前 

2评选 

2出十 

2十大 

2旅游 

2景点 

3吸引 

3更多 

3多的 

3海内 

3游客 

3前来 

3游览 

3观光 

< / T E R M � 

Table 3.7: A sample extracted story key term information 
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is to conduct term disambiguation so that appropriate English translation 

terms can be assigned a higher weight. Our term disambiguation algorithm 

makes use of a parallel corpus. We use the Hong Kong News parallel corpus 

obtained from LDC. It contains 18,146 aligned pair of parallel documents in 

English and Chinese. The documents are mainly government announcements 

and news. We performed automated sentence alignment for each pair of 

documents based on a length based alignment algorithm [14]. Then the 

sentences are indexed by an IR engine. Given the Chinese term C to be 

translated, we first retrieve the relevant Chinese sentences containing C. The 

next step is to collect the corresponding English sentence from the parallel 

corpus for each retrieved Chinese sentence. Let the set of collected English 

sentences be Pe- A score called usage factor is proposed to calculate the 

relative importance of the translation. The terms contained in these English 

sentences are used to compute the usage factor of each Ei in {Ei,...，Em} 

as: 

TT(E ) - HPE,E“Y[Pe，权) (o IN 

where f{PE,Ei) represents the term frequency of Ei in Pe and Y(Pe , Ei) 

represents the inverse sentence frequency oi Ei in Pe- By changing the bilin-

gual lexicon and parallel corpus accordingly, our gloss translation approach 

can be easily adapted to other language. 

For example, the Chinese term 重要 can be translated as "importance" 

and "magnitude" as indicated in the bilingual lexicon. Suppose that, "magni-

tude" appears four times within two extracted sentences while "importance" 

appears six times within four extracted sentences. Therefore the usage factor 
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<PLACE> 

2 Shenzhen 1.000000 

< /PLACE> 

<TERM> 

1 develop 0.271186 
1 newli 0.016950 
1 emerg 0.686441 
1 rise 0.016950 
1 come 0.008475 
1 tourist 0.066390 
1 journei 0.004149 
1 tour 0.551867 
1 tourism 0.087137 
1 travel 0.273859 
1 trip 0.016598 
< / T E R M � 

Table 3.8: A sample of English terms glossy translated from Chinese story 
key terms shown in Table 3.7 

for each translation can be calculated as: 

4 * 2 
U (“magnitude,,�= 0.25 

4 * 2 + 6 * 4 
4 * 2 

U (“importance”�= 0.75 
� ) 4 * 2 + 6 * 4 

Table 3.8 is a sample of gloss translation of Chinese story key terms shown 

in Table 3.7. The first column is the sentence number that a translated key 

term appears. The second column is the English translation term. The third 

column is the usage factor. 



CHAPTER 3. SYSTEM OVERVIEW 30 

3.5 Term Weight Calculation 

We use a four-dimensional vector space representation for each news story. 

The representation comprises of four components, namely, people name com-

ponent Rp{S), geographical location name component Ri{S), organization 

name component Ro{S), and content term component Rc{S). Each compo-

nent is represented by a set of weighted terms shown as follows: 

Ri{S) = (w{S,h),w{S,l2),..-) 

where w{S, pi), w{S, /j), w{S, Oi), and w{S, q ) represent the weights of the 

corresponding people name p,:’ geographical location name k, organization 

name Oj, and content term q in the story S respectively. Each component 

contains the story key terms we have •jXl：acted in the previous step. 

The weight of each term is determined by several factors. One factor is 

the term frequency defined as the number of occurrence of a term in the 

story. The term frequency is also adjusted by the relative location of the 

term in the content of the story. Another factor is the incremental document 

frequency. Precisely, we calculate the term weight as given in Equation 3.2. 

w(S,t) = f(S,t)I{t) (3.2) 

where w{S, t) is the weight of the term t in the story 5; f[S, t) is the adjusted 

term frequency of the story term t in the story 5; I{t) represents the inverse 

document frequency of the term t. 
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The way to calculate / ( 5 , t) is different according the source language of 

the story. If the story is in English, t) is calculated by Equation 3.3. 

膨 ) = i : ( l - 遏 ） (3.3) 

where Ki represents the sentence number of the z-th appearance of the term 

t in the story 5; L{S) represents the total number of sentences in the story 

5; a is a parameter for controlling the contribution of the relative location 

information. 

For a Chinese story, we use its gloss translation to represent it. The 

adjust term frequency f(S, t) of a translated English term t is calculated as: 

nS,和[�1-a条、勵 (3.4) 

where U{ti) is the i-th appearance of t in story S. Note that, t may be 

generated from different Chinese terms. For example, "beautiful" may come 

from the English translation of “美丽” and “很好，，.Then, we will compute 

f{S, “beautifur) by combining' air usage factor together, which may be gen-

erated from different Chinese terms. We choose those terms with weights 

larger than a threshold to represent the story. 

Table 3.9 shows an example of a story representation. Each term in 

the each story component is unique. A term identification (TERM-ID) is 

assigned to each term as shown in the first column. The weight of each term 

is shown in the second column. 

3.6 Event And Topic Discovery 

For the event and topic discovery task, we aim at discovering events and 

topics automatically from a large set of news stories. Most of the existing 
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<PEOPLE> 

< /PEOPLE> 
<PLACE> 
2708 0.334226 Shenzhen 

< / P L A C E � 

<ORG> 

< /ORG> 
<TERM> 
2724 0.153617 sight-seeing 
2729 0.146114 sight-see 
2756 0.135658 umbilicu 
2755 0.135658 pegui 
2751 0.135658 epicentrum 
2754 0.135658 omphalo 
2748 0.135658 centric 
2768 0.132998 sightse 
2767 0.132998 rubber-neck 
574 0.132883 burg 

< / T E R M �  

Table 3.9: A sample of story representation after gloss translation 
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approaches only focus on the topic level. We investigate the challenge for the 

event and topic discovery problem. 

We develop a hierarchical clustering algorithm for the discovery task, 

which uses a modified agglomerative centroid clustering for grouping news 

stories for events and grouping events for topics. Event and topic have sim-

ilar representation with the representation a of news story. The similarity 

between event and news story is computed by the cosine-similarity measure. 

Relevance model is employed to calculate the relationship confidence between 

events and topics. Because we deal with multiple languages, we investigate a 

language normalization approach to balance the difference between the clus-

tering properties of different languages. A time adjustment scheme is also 

applied to control the relationship between a story and an event with respect 

to time. The details will be presented in Chapter 4. 

3.7 Story Link Detection 

We investigate a link detection approach which employs an automatic topic 

type categorization model. The automatic topic type categorization model 

is trained for classifying a story to broad topic types so that we can assign 

some topic type characteristic to the news story. Specifically, it controls how 

to distribute the contribution of each component of the story representation. 

We use the cosine-similarity measure to compute the similarity between 

the representations of two stories. We make use of a language normalization 

approach for dealing with news stories from multiple languages. The details 

of the story link detection module is presented in Chapter 6. 

• End of chapter. 



Chapter 4 

Event And Topic Discovery 

4.1 Overview of Event and Topic discovery 

The event and topic discovery task aims at discovering events and topics 

not previously known to the system. The definitions of event and topic are 

described in Section 1.1. Unsupervised learning based on text clustering is 

employed to conduct the discovery task. There are some existing methods 

on text clustering. A clustering algorithm called CBC (Clustering By Com-

mittee) introduced in [25], produces good quality clusters in the document 

clustering task. It initially discovers a set of tight clusters scattered in the 

similarity space. The algorithm proceeds by assigning elements to their most 

similar committee. Inderjit et al. described a local search procedure called 

"first-variation" that refines a given clustering by incrementally moving data 

points between clusters, thus achieving a higher objective function value [11:. 

Liu et al. proposed a clustering method that strives to achieve a high accu-

racy of clustering and the capability of estimating the number of clusters in 

the document corpus [22]. They employed a richer feature set to represent 

each document and used the Gaussian Mixture Model (GMM) together with 

the Expectation-Maximization (EM) algorithm to conduct an initial cluster-

34 
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ing. A self-refinement process via discriminative feature identification and 

cluster label voting is iteratively applied until the convergence of clusters. 

The model selection capability is achieved by introducing randomness in the 

cluster initialization stage, and then discovering a value C for the number 

of clusters N by which running the clustering process for a fixed number of 

times yields sufficiently similar results. Ding et al. provided a method for 

clustering high dimensional data using adaptive dimension reductions [12 . 

We employ a two level hierarchical unsupervised learning component to 

conduct the event and topic discovery. It can be divided into two main parts: 

event discovery component and topic discovery component. Both of the 

discovery components are based on agglomerative clustering. The similarity 

between a news story and an event is computed by the cosine-similarity 

measure [16], while we use relevance model to measure the difference between 

an event and a topic. Time adjustment scheme and language normalization 

scheme are also designed in the event discovery component. 

The ovei view of the event and topic discovery approach is shown in Fig-

ure 4.1. Since news stories are arriving around-the-clock, the discovery sys-

tem is designed so that it can conduct learning incrementally. Previously dis-

covery result will be loaded into the event and topic discovery system to ini-

tialize the system. Then, new discovery can be conducted based on the loaded 

data. The input news stories are processed in chronological order. Each time 

we deal with a batch of news stories stored in source files. Each source file 

consists of about 25 to 40 stories over a specific period of time from a cer-

tain source. For example, a file named 19981231_1553_1649_APW_ENG.tkn 

indicates that the file contains news stories from 15:53 to 16:49 on December 

31th in 1998 reported by Associated Press Worldstream Service. The release 
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previously discovered 
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Figure 4.1: Overview of event and topic discovery component 



CHAPTER 4. EVENT AND TOPIC DISCOVERY 37 

time information of a news story will be used in the time adjustment scheme. 

The batch of stories will first be processed in the event discovery component. 

After that, the generated event information will be fed into the topic discov-

ery component. After the topics of those events are obtained, a new batch of 

stories will be loaded into the event and topic discovery module, topic and 

event reports will be produced when all of the news stories are examined. 

4.2 Event Discovery Component 

Each event has similar vector space representation with news stories. The 

event representation is composed of four components: people named en-

tity component, geographical location named entity component, organization 

named entity component, and content term component. The similarity be-

tween a story and an event is computed based on their representations. When 

a story is decided to be related with an event, the event representation will 

be updated to include the newly added news story information. 

4.2.1 Overview of Event Discovery Algorithm 

We use an event list to maintain all event information. Figure 4.2 depicts the 

framework of the event discovery component. First, a batch of news story 

is loaded. Each story in the batch is compared to all existing events in the 

event list according to the similarity measure. The closest event which has 

the highest similarity score with the story can be determined. If the final 

normalized similarity 6/ of the story to the closest event is larger than a user 

defined threshold the story will be added to the event. In this case, the 

event representation, together with other event information such as the event 

release time and the event language indicator, will be updated. The event 
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Figure 4.2: Design of the event discovery process 
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will be tagged as "updated" for the topic discovery process. Otherwise, the 

story will form a new cluster on its own representing a new event. The new 

event will be added to the event list and tagged as "updated". By changing 

this threshold 9e, we can adjust the granularity of events. 

4.2.2 Similarity Calculation 

The similarity measure between a story and an event is calculated according 

to the cosine-similarity measure, together with a time adjustment scheme 

and a language normalization scheme. 

Overall Design 

For each component of the story and event representation, a similarity score 

is calculated by processing the weights of the terms in the component. For 

instance, we compute the similarity score Sp between the people name com-

ponent of the story S and the event E by the following formula: 

� =I E k L 叫 (4.1) 

w{S,pi)w{E,pk) when pi = pk o � 

= i n 1 (4.2) 
0 when pi / pk 

where w{S, p) is the weight of the people name p in the story S and w{E,p) 

represents the weight of the people name p in the event E. Sp is in the range 

of [0，1]. If (5p is equal to 0，it means that the people named entity component 

of two representations are totally dissimilar. If 6p is equal to 1, it means that 

the two components are the same. 

We can compute the similarity score 6i for the geographical location name 

component; So for the organization name component; and 6c for the content 

term component in a similar manner. The combined similarity, Sa, is a 



CHAPTER 4. EVENT AND TOPIC DISCOVERY 40 

weighted sum of these similarity scores: 

� =知 H ^ p + m i + (̂ oM̂ o + M l - W p - y f ^ i - H ô) (4.3) 

where Wp, W；, and Wq are the corresponding component weights. Note that 

Wp, Wi, and Wo are in range of [0,1]. + + Wo is no more than 1. By 

adjusting these component weights, we can specify the relative contribution 

of each component to the final similarity. The higher the component weight, 

the more emphasis will be placed on the related component. For example, 

if we specify that Wp is equal to 0, it means that we do not consider people 

named entity component similarity at all. If we specify that Wp is equal to 

1, while others are equal to 0, it means that we only consider people named 

entities. 

Time Adjustment Scheme 

It is common that stories reporting the same event are released in a short 

time window (e.g., several days). The number oi stories related to the 

event will drop drastically after a period of time. Therefore we introduce a 

time adjustment factor T to place more emphasis on the news stories that 

happen near the event release time. The time adjustment factor T is derived 

from the linear function as shown in Figure 4.3. Figure 4.3 gives the formula: 

了 = { 1.0 + 丨城产丨 (。 _ 1) when \dates — datee\ < t (斗斗） 

0 when \dates — datee| > t 

where dates is the release date of a news story 5; datee is the release time 

of an event E, which is calculated by the average release days of all stories 

belonging to the event; Lp is the time adjustment parameter. We assume 

that when a news story happens more than t days away from an event, it is 

not likely that the story is related to the event. 
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Figure 4.3: The linear function of time adjustment factor 

As mentioned before, the release date of a news story can be obtained 

from the name of source file. For example, a story in a source file named 

19981001_1553_1649_APW_ENG.tkn happened in the 271th (9*30 + 1) day 

of the year 1998. Suppose an event contains 3 member stories, which are 

released on the 262th, 264th, 266th day of the year 1998 respectively. Then 

the release time of the event is: 

datee = 262T.266 ‘ 
=264 

Therefore this event is assumed to be released on the 264th day of year 1998. 

By setting the time adjustment parameter, Lp to 0.5 and t to 10, we can 

calculate the time adjustment factor T as: 

T = 1 . 0 + I 战 � o — e el ( 丄 厂 1) 

= + 1) 
=0.65 

Assume the combined cosine-similarity �b e t w e e n the story and the 

event, is equal to 0.8. Then this Sa will be modulated by the time adjustment 

factor T. It means that the similarity will be discounted by 0.65 and equals 
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to 0.52 (i.e. 0.8 * 0.65 = 0.52). The higher the time adjustment factor, the 

less similarity between the event and a story will be discounted. 

Language Normalization Scheme 

Another important factor we need to consider is that the news stories are 

coming from multiple languages. After the gloss translation process, distri-

bution of the English terms translated from Chinese may be different from 

that of the English terms coming from English stories. Therefore, we employ 

a language normalization scheme to adjust the difference. 

In order to compare the language difference between stories and events. 

We employ a language indicator Is for each story. Is is set to 1 for an English 

news story and 0 for a Chinese news story. The language indicator for an 

event is computed by the mean of the language indicators of all member 

stories. 

From the event language indicator, we may know the language distribu-

tion of news stories related to the even^. a he normalization scheme employed 

to adjust the language difference is given in Equation 4.5: 

€ = { (1 一 7 � * 仇 + � “ - le) * ^/m + /e * ^e when ^ < h (4 5) 
(1 - le) * <7c+ {le - h) * /̂m + “ * i/e wheil /g > h 

where Ig is the language indicator of news story 5; k is the language indi-

cator of event E; g�is the Chinese normalization factor. It indicates the 

similarity discount when the news story comes from Chinese sources, and all 

of the stories related to the event are also from Chinese. Qe is the English 

normalization factor. It indicates the similarity discount when the news story 

comes from English sources, and all of the stories related to the event are 

also from English."爪 is the multilingual normalization factor. It indicates 

the similarity discount when the news story comes from Chinese sources and 
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all of the stories related to the event are from English, or when the news 

story comes from English sources and all of the stories related to the event 

are from Chinese. 

For example, suppose that Qc is equal to 0.8; Qe is equal to 0.9; Qm is 

equal to 1，the language normalization factor i between an English story S 

and a event E that contains two English stories and one Chinese story can 

be calculated as: 

k = l ± i± i±M = 0.667 
^ = (1 - ls)*9c-^ {Is - le)冬 gm + k* ge 

= ( 1 - 1) * 0.8 + (1 - 0.667) * 1 + 0.667 * 0.9 
=0.9333 

In addition to the time adjust factor T, the combined similarity score 

Sa will also be modified by the language normalization factor L The final 

similarity score 6f is computed as given in Equation 4.6: 

(5/ 二 ; ( 4 . 6 ) 

4.2.3 Story and Event Combination 

When a story is decided to be related to an existing event, the story infor-

mation needs to be included into the event. The event information needs to 

be updated to incorporate the event representation, the event release time 

and the event language indicator. 

As mentioned above, an event has similar representation as a news story. 

The content of the event representation will be modified when a news story is 

added to the event cluster. The news story representation may contain some 

new terms to the event and some terms that the event representation has 

already covered. New terms, for instance ti, will be inserted into the event 
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representation. The weight of the newly inserted term becomes w{S, ti)/{n-\-

1), where n is the number of news stories that already exist in the event and 

w{S, ti) is the weight of term U in story S. The weight of existing term, say 

tj, will be updated as {w{E^tj) * n + w{S, ti))/{n + 1), where w{E,tj) is the 

weight of term tj in the event E before updating. The weight of other terms 

in the event, say tk, will be n * w[E, tk)/(n + 1). 

The event release time is computed as the mean of the release time of 

all stories related to the event. The updated release time is {datCe * n + 

dates)/{n + 1). The event language indicator is calculated by a similar 

method. The updated language indicator is ls)l{n + 1). 

4.2.4 Event Discovery Output 

We follow the topic evaluation method described in TDT2002 project to 

evaluate the topic and event result. The format of the event report and topic 

report is presented according to the evaluation requirement. A sample of the 

event output report is shown lu Table 4.1. 

The report has five columns, the first column is a unique index integer 

starts from one to indicate the event. The second column is the name of 

the source file to which the news story belongs. The third column is the 

starting "recid" of the story in the source file. From the source file name 

and the “redd”，we can easily locate the news story from the corpus. The 

event discovery decision should be either YES or NO as described in the 

fourth column. YES means that the news story is related to the event. NO 

indicates that the news story is not related to the target event. The fifth 

column indicates the decision confidence which is obtained from the similarity 

score of the news story and the event. 
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detection^ystem YES 1 RECID 
1 tkn/19981001_0023_1310JCIN_MAN.tkn 1 YES 0.02967 
1 tkn/19981001_0023_1310JCIN_MAN.tkn 390 YES 0.02967 
2 tkn/19981001_0023_1310JCIN_MAN.tkn 735 YES 0.06745 
3 tkn/19981001.0023_1310_XIN_MAN.tkn 1128 YES 0.04077 
3 tkn/19981001_0023_1310J(IN_MAN.tkn 1871 YES 0.04077 
3 tkn/19981001_0023.1310_XIN_MAN.tkn 3006 YES 0.05925 
1 tkn/19981001_0023_1310_XIN_MAN.tkn 3529 YES 0.05905 
4 tkn/19981001_0023_1310JCIN_MAN.tkn 3793 YES 0.05346 
5 tkn/19981001_0023_1310JCIN_MAN.tkn 4328 YES 0.05099 
6 tkn/19981001_0023_1310_XIN_MAN.tkn 5021 YES 0.05144 
7 tkn/19981001_0023_1310JX:iN_MAN.tkn 5351 YES 0.02215 
8 tkn/19981001_0023_1310_XIN_MAN.tkn 5933 YES 0.04395 
9 tkn/19981001_0023_1310_XIN_MAN.tkn 6417 YES 0.02895 
10 tkn/19981001-0023_1310JCIN_MAN.tkn 6740 YES 0.05963 
3 tkn/19981001_0023_1310_XIN_MAN.tkn 7070 YES 0.03589 
11 tkn/19981001_0023_1310_XIN_MAN.tkn 7893 YES 0.01732 
8 tkn/19981001_0023_1310_XIN_MAN.tkn 8770 YES 0.04968 

Table 4.1: A sample of event report 

4.3 Topic Discovery Component 

After one batch of news stories have been processed, the event information 

will be fed to the topic discovery module for further learning the relationship 

between the events. We use the concept of topics to group related events. 

The topic representation is similar to the story and event representation 

mentioned above. An event is compared to a topic according to relevance 

models. The relevance model is derived from [20]. It attempts to expand the 

terms characterizing an event or a topic. 
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Figure 4.4: Design of the topic discovery process 
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4.3.1 Overview of Topic Discovery Algorithm 

We use the agglomerative clustering approach to design the topic discovery 

process. A relevance model method is employed to compare the relationship 

between topics and events. 

Figure 4.4 depicts the framework of the topic discovery module. The 

event list which contains all existing event information will be fed to the 

discovery module. There are two kinds of events in the event list. Some 

events are marked as "updated" which means that they contain new story 

information from the event discovery component. Others are marked as 

"non-updated" which means that they are not changed in the last batch of 

event discovery. For those "non-updated" events, we will keep the previous 

decision on them. For the "updated" event, if it has been assigned to an 

existing topic previously, the related topic information needs to be modified. 

If an event is newly added in the event discovery component, we will compute 

the similarity between the event and all existing topics by a relevance model 

and select the most relevant topic. If the similarity score between the event 

and the closest topic is smaller than a predefined threshold 9t, the event will 

be inserted to the topic and the topic information will be modified according 

to the event. Otherwise, a new topic will be created in the topic list. The 

procedure will continue until there are no more event left in the event list. 

4.3.2 Relevance Model 

A topic has similar four-dimensional vector space representation as a story 

or an event. Because a topic involve a seminal event together with all re-

lated events, it contains a large amount of information. Therefore, it will 

not be enough just using the terms in the vector representation to compare 
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the relationship of an event and a topic. We use relevance model, a statisti-

cal language modeling technique related to query expansion, to enlarge the 

representation of topics and events. Important terms that associated with 

the topic and event are found even thought they do not appear in the vector 

representations. 

Corpus Preparation 

A background corpus containing a large number of news documents is first 

prepared and indexed by an IR engine. We used TDT2 corpus as described 

in Section 3.1 to build the background corpus. Since the quality of newswire 

news stories is better than that of the broadcast news stories, we choose the 

story key terms of the newswire stories instead of the whole corpus. The story 

key terms are extracted by the Information Extraction module described in 

Section 3.3. After that, key terms from the same news story will be combined. 

Table 4.2 shows a portion of the relevance corpus we prepared. Note that 

the terms are stemmed. 

Using Relevance Model Retrieval 

For each event, we use the terms in its vector representation as a query 

((/!,•••, Qk) for the background corpus. The news documents in the back-

ground corpus are ranked by P{D\qi,…，r/^), where D is a document in the 

background corpus. But P{D\qi,... ,qk) cannot be used directly because it 

is too close to zero. Consider the following formula: 

狐 … , 砍 ) = (4.7) 

Because P{qi, • - •,Qk) and P{D) are constants across the queries, so we make 

use of P{D\qi^ • • • ̂ Qk) to determine the rank. Assume that qi,... ,qk are 
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independent, we have 

k 
Pfe,...，％|>0) = ;QPfe|D) (4.8) 

i=l 
(4.9) 

where (伪I乃)is very small because P{qi\D) is a small number less 

than 1. It will be difficult to extract any related document because the score 

cannot be comparable. To solve this problem, we use nf=i to 

represent P{D\qi,…，收)，because: 

A; k 
I l P f e l i ^ ) 〜 I l P f e l 巧 ( 4 . 1 0 ) 
z=l i=l 

After the documents in the background corpus are ranked, we choose the 

top n documents and extract the terms in these n documents to form the rele-

vance model M. There are a large amount of terms in these n documents, we 

select the top k terms with the highest related score to the relevance model 

P(iu|M)，where P[w\M) = Y^D^M P{'^\D)P{D\M). is approxi-

mately computed by P(Z%i，...，q::), which is estimated by HfLi 尸(仍 I 乃)"左 

instead. P{w\D) is calculated using maximum likelihood estimate as shown 

ill Equation 4.11 

P{w\D)=镜 （4.11) 

where fyj^o is the number of times w appears in document D, \D\ is the total 

number of terms of document D. The relevance model of topic is formed in 

a similar way. 

Relevance Score Calculation 

Armed with the relevance model, we can compute the similarity A between 

the relevance model of event Me and the relevance model of each topic 
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Ma using Kullback-Leibler (KL) divergence measure. The KL divergence 

measure is a measure of the dissimilarity of two distributions. The smaller 

the value, the more similar the two relevance models are. The KL divergence 

measure is given below: 

= (4.12) 

Because the KL divergence is asymmetric, we calculate A as follows: 

A = D{MA\\ME) + D{ME\\MA) (4.13) 

4.3.3 Event and Topic Combination 

When an event is decided to be related to a topic, its representation infor-

mation need to be combined into the topic. The topic representation will be 

used to form the relevance module for the similarity calculation. Each topic 

is represented by a centroid, which is an average of the vector representations 

of the events in the topic. Similar with the merging of events and stories, 

the event representation may CA7ntain some new terms and some terms that 

the topic representation has already covered. New terms, for instance ti, will 

be inserted into the topic representation. The weight of the newly inserted 

term becomes w[E^ti)/{n-\-l)^ where n is the number of events that already 

exist in the topic and w[E, ti) is the weight of term U in event E. The weight 

of existing term, say tj, will be updated as {w{T, tj) * n + w{E, ti))/{n + 1)， 

where w{T, tj) is the weight of term tj in the topic T before updating. For 

other terms, say tk, in the topic T, the weight will be n * w{T,tk)/{n + 1). 

4.3.4 Topic Discovery Output 

The topic report has similar format as the event report. A sample of a topic 

report is shown in Table 4.3. The first column of topic report is the event 
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indicator. The event indicator is a unique index integer starts from one to 

indicate the topic. Other columns are the same with those in the event topic. 

• End of chapter. 
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.1 1 APW19980104.0002 

.W 
Pol Pot Thailand Khmer Rouge Cambodia mysteri 
surround deepen sundai foreign minist claim leader fled 
China earlier chines diplomat deni ... 
I 2 APW19980104.0012 
.W 
Seven Selkirk Mountains skier kill person miss avalanch hit 
separ ski parti southeast british Columbia polic saturdai 
Kokanee Glacier bodi ... 
.1 3 APW19980104.0020 
.W 
Pat Rafter Sweden Thomas Enqvist Australia U.S. play 
time open win beat 6-3 1-6 7-5 sundai hopman cup mix 
team tenni tournam Rafter Annabel ... 
.1 4 APW19980104.0021 
.W 
China Xinjiang member gang kill peopl crime spree peop^ 
execut murder robberi charg remot northwestern region 
offici newspap Xinjiang Daily ... 
.1 5 APW19980104.0035 
.W 
polic rare sumatran tiger wild villag trap fear kill peopl 
year report sundai Sumatra Jakarta news resid villag fa jar 
bulan island kilomet ... 

Table 4.2: A portion of the background corpus for the relevance model 
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detection^ystem YES 1 RECID 

1 tkn/19981101_0008_1121JCIN_MAN.tkn 1 YES 1.000000 

2 tkn/19981101_0008_1121JKIN_MAN.tkn 464 YES 0.258833 

3 tkn/19981101_0008_1121_XIN_MAN.tkn 858 YES 0.344798 

4 tkn/19981101_0008_1121JKIN_MAN.tkn 2361 YES 0.435078 

4 tkn/19981101_0008_1121_XIN_MAN.tkn 2861 YES 0.435078 

3 tkn/19981101_0008_1121JCIN_MAN.tkn 3394 YES 0.344798 

5 tkn/19981101_0008_1121JCIN_MAN.tkn 4580 YES 0.330094 

6 tkn/19981101_0008_1121JCIN_MAN.tkn 4771 YES 1.000000 

4 tkn/19981101_0008_1121_XIN_MAN.tkn 5238 YES 0.300382 

7 tkn/19981101_0008_1121JCIN_MAN.tkn 5664 YES 0.218491 

8 tkn/19981101_0008_1121J(IN_MAN.tkn 5908 YES 0.399329 

9 tkn/19981101_0008_1121JX:iN_MAN.tkn 6261 YES 0.256721 

10 tkn/19981101-0008-l]21JCIN_MAN.tkn 6588 YES 0.237190 

: 8 tkn/19981101-0008_1121_XIN.MAN.tkn 7146 YES 0.399329 

11 tkn/19981101_0008_1121JCIN_MAN.tkn 7394 YES 0.285169 

12 tkn/19981101_0008_1121JX:iN_MAN.tkn 7722 YES 0.258100 

13 tkn/19981101_0008_1121JCIN_MAN.tkn 8185 YES 0.469067 

14 tkn/19981101_0008_1121_XIN_MAN.tkn 8500 YES 0.332590 

15 tkn/19981101_0008_1121_XIN_MAN.tkn 9037 YES 0.221480 

Table 4.3: A sample of topic report 



Chapter 5 

Event And Topic Discovery 
Experimental Results 

W e have conducted experiments on event and topic discovery. In this chapter, 

we present the evaluation methodology, parameter tuning process, and the 

discovery result. 

5.1 Testing Corpus 

W e used TDT3 corpus to conduct the experir/ienti on the event and topic 

discovery system. W e have discussed the TDT3 corpus in Chapter 3.1. It 

contains 1,956 files. Each file includes about 40 stories. There are 43,612 

stories in total covering three months data from October to December in 

1998. The stories are arranged in chronological order. The topic discovery 

experiments were conducted on the whole TDT3 data. We selected news sto-

ries in November 1998 from the corpus containing 15,260 stories to evaluate 

the event discovery performance. 

120 topics are annotated by NIST for topic discovery evaluation purpose. 

Appendix A gives the description of all topics. To evaluate the performance 

of event discovery, we manually collected sample events from the corpus. W e 

54 
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selected seven topics which contain 160 stories in total in November 1998. 

The seven topics are shown as follows: 

• Anti-Doping Proposals 

The International Olympic Committee adopts a package of drug sanc-

tions, and announces the formation of an anti-doping agency in 1998. 

• North Korean Food Shortages 

Food crisis and famine in North Korea from winter 1995 to 1998. 

• SwissAirlll Crash 

SwissAir Flight 111 crashes. The crash occurred on 9/2/98; the inves-

tigation continued through the fall of 1998. 

• Michigan Prosecutes Kevorkian 

Dr. Jack Kevorkian is arrested and charged with murder, assisted 

suicide and delivery of a controlled substance in late November and 

early December, 1998. 

• Taipei Mayoral Elections 

Taiwan's Nationalist Party claims victory in Taipei mayoral race in 

1998. 

• Shuttle Endeavor Mission for Space Station 

Space Shuttle Endeavor is sent into space on a mission to start assem-

bling the international space station from 12/4/98 to 12/16/98. 

• China Closes GITIC Bank ‘ 
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The People's Bank shuts down the Guangdong International Trust and 

Investment Corp. (GITIC) in October 6, 1998. 

For each selected topic, we read all the November news stories and classi-

fied them into events. W e obtained a list of 64 sample events. Some sample 

events related to the topic "Anti-Doping Proposals" are given as follows: 

• 一名国际反兴奋剂专家戴•科文在11月10号警告说,假如在悉尼奥运会之 

前不采用血液检查的话，反兴奋剂的战争将面临失败的危险。 

• French lawmakers adopted a bill that gave France one of the world 's 

toughest anti-doping laws on November 19, 1998. 

• The fight against doping in sports got a million-dollar boost from the 

White House on November 25, 1998. 

• All Olympic sports, except for soccer, tennis and cycling, agreed to a 

package of measures aimed at .unifying the fight against banned drugs 

on November 27, 1998. 丨 

The full set of events are given in Appendix B. 

5.2 Evaluation Methodology 

W e follow the topic detection evaluation method described in TDT2002 

project [23] to evaluate the event and topic discovery results. Event discovery 

performance is evaluated by measuring the discovery performance separately 

for each event, in terms of "miss" and "false alarm". "Miss" means that a 

story is determined as not related to a certain event but actually it is. "False 

alarm" means that a story is decided to be related to an event but actually 
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it is not. Performance will be evaluated on a set of predefined sample events 

known as event keys. Each event key is mapped to an appropriate system 

output event to which it matches the best. The best matching system event 

is defined to be the one that produces the lowest detection cost. After this 

matching process, the event discovery performance is measured by the de-

tection cost, which is a combination of the error probabilities. The detection 

cost is defined in Equation 5.1: 

Ccost — Crfi Piji Ptar g et + Cf Pf Pnon-target 
(5.1) 

where Cm and C/ are the cost of a miss and a false alarm respectively. Pm and 

Pf are the conditional probability of a miss and a false alarm respectively. 

Ptarget and Pnon-target are a priori target probabilities (Noted that Ptarget = 

1 — Pnon-target)- Ccost is the lowei bound of the discovery performance. Since 

the value of Ccost varies with the application, Ccost should be normalized so 

that Cnorm caii be no less than one without extracting information from the 

source 'lata. The normalization fc rmula is given as follows: 、. 

C^orm = Ccost (5 2) 
min(C^Pfar5e<? Cf Pnon-target) 

Cnorm IS a cost metric. The lower the value, the better is the performance. 

The TDT2002 project specifies Cm as 1, Cj as 0.1，and Ptarget as 0.02. Hence 

the range of Cnorm is in (0, 5.9). 

There are two possible methods for estimating error probabilities, called 

story-weighted scheme and event-weighted scheme. For the story-weighted 

method, equal weight is assigned to each decision for each story, and errors 

are accumulated over all events. The event-weighted method accumulates 

errors separately for each event and then averages the error probabilities 

over events, with equal weight assigned to each event. The event-weighted 
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method is chosen for evaluation because the high variability in the number of 

stories per event. It is important to reduce the contribution of event variance 

by equalizing the contribution of different events. 

The topic discovery performance can be evaluated using similar evaluation 

method as event discovery. Therefore, the detection cost is the same as in 

Equation 5.1. The only difference is that sample topics known as topic keys 

should be used instead of event keys. Similarly, the Ccost is normalized by 

Equation 5.2. Topic-weighted scheme is employed to estimate the detection 

error probabilities. Topic-weighted method is similar with the event-weighted 

method. It accumulates error separately for each topic and then averages the 

error probabilities with topics. 

5.3 Experimental Results on Event Discov-
ery 

In this section, we present experimental results on event discovery. First, we 

have conducted a tuning process using a small amount of data to determine 

the language normalization factors, time adjustment parameter Lp, and sim-

ilarity threshold Qe- After that, we conducted event discovery experiment 

using the tuned parameters. We also compared our event discovery system 

with the one that does not use time adjustment scheme. 

5.3.1 Parameter Tuning 

W e conducted the parameter tuning using the first ten days of news from 

November 1st to November 10th 1998. It contains 5,099 news stories. 1,638 

of them are Chinese stories and others are English stories. 
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Language normalization factor tuning 

Table 5.1 shows the language normalization factor tuning process. We ran 

32 sets of language normalization factors. First we set multilingual language 

normalization factor Qm as 1.0, and varied Chinese language normalization 

factor Qc and English language normalization factor Qe with 0.4, 0.6, 0.8 and 

1.0. The best performance, which corresponds to 0.0795, is achieved when 

Qc is 0.6 and Qe is 0.8. Then we set Qm as 0.8 and conducted the similar sets 

of runs. After all the runs were conducted, the best performance achieved 

when Qm is 1.0, QC is 0.6, and Qe is 0.8. 

Time adjustment parameter tuning 

Table 5.2 shows the time adjustment parameter Lp tuning process. Note that 

the smaller the Lp, the more discount will be put to the similarity because of 

time difference. From Table 5.2, the best performance is 0.0656 when Lp is 

set to 0.2. W e also tested the event discovery system that does not use the 

time adjustment scheme. All the other parameters are kept the same values. 

The performance is 0.1268 which is not as good as the result using the time 

adjustment scheme. 

Similarity threshold tuning 

W e varied the similarity threshold in the tuning process. The performance 

is shown in Table 5.3. When 6e equals to 0.2, it has the best performance, 

which is equal to 0.0656. 

5.3.2 Event Discovery Result 

After the parameters have been tuned, we have conducted event discovery 

on news stories from November 1998. The tuned parameters are as follows: 
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Language Normalization Factor 

(Chinese, English, Multilingual) 

7"l.0，1.0,1.0) (1.0,0.8,1.0) I (1.0,0.6,1.0) (1.0,0.4,1.0) 

0.0889 0 . 0 8 3 9 0 . 0 8 8 6 “ 0.0935 ~ 

(0.8,1.0,1.0) (0.8,0.8,1.0)" (0.8,0.6,1.0) (0.8,0.4,1.0) 

0.0844^ 0.0837 0.0835 0.0859 

(0.6,1.0,1.0) (0.6,0.8,1.0) (0.6,0.6,1.0) (0.6,0.4,1.0̂ " 

0.0811 0.0795 0.0832 0.0856 

7~0.4’1.0’1.0) "(0.4,0.8,1.0) "(0.4,0.6,1.0) “ (0.4,0.4,1-0) 

0.1457 0.1234^ 0.1256 “ 0.1344 

"(1.0,1.0,0.8) (1.0，0.8’0.8) (1.0,0.6,0.8) (1.0,0.4,0.^ 

~ 0 . 0 9 3 5 0 . 0 8 8 7 0.0895 0.1023 

(0.8,1.0,0.8) (0.8,0.8,0.8)" (0.8,0.6,0.8) (0.8,0.4,0.8) 

^ 0 . 0 9 9 8 0 . 0 8 7 7 0.0910 0.0932 

"(0.6,1.0,0.8) (0.6,0.8,0.8) "(0.6,0.6,0.8) (0.6,0.4,0.8) 

0.1034^ 0.0995 0.1003 0.1098 

(0.4,1.0,0.8) "(0.4,0.8,0.8) (0.4,0.6,0.8) “ (0.4,0.4,0.8) 

0.1332^ 0.1118 “ 0.1228 0.1359__ 

Table 5.1: Peri'oririance measured by Cnorm on event discovery under different 
language normalization factor sets in the tuning process. Note that the lower 
the cost, the better is the performance. 

Chinese normalization factor g。is set to 0.6; ge is set to 0.8; Qm is set to 1.0; 

Lp is set to 0.2; 9e is set to 0.2. The event discovery result as measured by 

Cnorm is 0.0986. 

W e further investigate the effect of 9e on the discovery performance as 

shown in Table 5.4 and Figure 5.1. 

In Figure 5.1, the value of Pj is enlarged 100 times so that it is in the 

same range with Pm and Cnorm- With the increasing of threshold 6e, the 

granularity of event is cut down. Pj decreases and Pm increases generally. 
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Time adjustment Discovery 

parameter Lp Performance 

0.1 0.0663 

— 0.2 0.0656 

0.3 “ 0.0795 — 

0.4 0.0891 

0.5 0.0920 

— 0.6 — 0.0918 

0.7 0.0928 

Table 5.2: Performance measured by Cnorm on event discovery under different 
time adjustment parameter in the tuning process. Note that the lower the 
cost, the better is the performance. 

Similarity Discovery 

Threshold Performance Cnorm 

— 0 . 1 0 一 0.1120 
0.15 0.1270 

0.20 ~ ~ 0.0656 

0.25 0.0853 

0.30 0.0877 

0.35 0.0910 — 

0.40 0.0972 

Table 5.3: Performance measured by Cnorm on event discovery under different 
similarity threshold 9e in the tuning process. Note that the lower the cost, 
the better is the performance. 



CHAPTER 5. EVENT AND TOPIC DISCOVERY EXPERIMENTAL RESULTSbb 

Similarity Pm Pf Discovery Performance 

Threshold Oe Cnorm (Standard Deviation) 

0.10 0.0904 "aOQ17 0.0987 (0.733) 

0-15 0.1052 "5.0011 0.1107 (0.213) 

0.20 0.0944 "0.0009 0.0986 (0.206) 

0.25 o.iof 0.0006 0.1102 (0.217) 

0.30 0.1235 0.0004 0.1252 (0.238) 

Table 5.4: Performance measured by Cnorm on event discovery under differ-
ent similarity threshold 6e, Note that the lower the cost, the better is the 
performance. The standard deviation of Cnorm of is shown in the bracket. 

When 6e is equal to 0.2, it has the best performance. 

W e further conducted an experiment to compare our event discovery sys-

tem with the one that does not use the time adjustment scheme. W e con-

ducted the investigation by also varying the language normalization factors. 

The results of the comparison is shown in Table 5.5. The event discovery 

system with time adjustment scheme overall performs better than the system 

th«U does not use the time adjustment scheme. 

5.4 Experimental Results on Topic Discovery 

In our topic discovery method, besides the parameters that exist in the event 

discovery component, there is another parameter needed to be determined, 

namely, the relevance similarity threshold 久.We have conducted a parameter 

tuning process using the first five days data of TDT3 corpus from October 

1st to October 5th 1998. It contains 2,245 news stories. 717 of them are 

Chinese stories and others are English stories. 
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Event discovery threshold 

Figure 5.1: Performance measured by Cnorm on event discovery under differ-
ent similarity threshold Qe' Note that the lower the cost, the better is the 
performance. 



CHAPTER 5. EVENT AND TOPIC DISCOVERY EXPERIMENTAL RESULTSbb 

With or Without Language Normalization Factor 

time adjustment (Chinese, English, Multilingual) 

(1.0，0.8，1.0) (1.0,0.6,1.0) 一 

with time adjustment 0.1097 0.1299 

without time adjustment 0.1155 0.1258 

— (0.8，0.8,1.0) (0.8，0.6,1.0) 

with time adjustment 0.0993 0.1096 

without time adjustment 0.1109 0.1254 

"(06,0.8,1.0) (0.6,0.6,1.0) ~ 

with time adjustment 0.0986 0.1059 

without time adjustment 0.1102 0.1234 

~̂ ,0.8，1.0) (0.4,0.6,1.0) 

with time adjustment 0.1231 0.1245 

without time adjustment 0.1445 0.1498 

Table 5.5: Performance of event discovery system with and without the time 
adjustment scheme. The performance is measured by Cnorm- Note that the 
lower the cost, the better is the performance. 

5.4.1 Parameter Tuning 

W e varied the relevance similarity threshold 9t and conducted event discovery. 

The performance is shown in Table 5.6. When Be is set to 0.2, Cnorm performs 

best, which is equal to 0.4299. 

5.4.2 Topic Discovery Results 

After the parameters have been tuned, we conduct event discovery on news 

stories for the whole TDT3 corpus. The tuned parameters are as follows: 

Chinese normalization factor g。is set to 0.6; Qe is set to 0.8; Qm is set to 1.0; 

Lp is set to 0.2; 6e is set to 0.2; and dt is set to 0.2. The topic discovery result 

as measured by Cnorm is 0.6238. 
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Similarity Discovery 

Threshold Ot Performance 

0.15 ~ ̂ ^0.4301 

0.20 - ̂ ^0.4299 

0.25 - 0.4533 

0.30 0.4795 

一 0.35 “ 0.5037 

Table 5.6: Performance measured by Cnorm on topic discovery under different 
similarity threshold Ot in the tuning process. Note that the lower the cost, 
the better is the performance. 

Similarity P^ Pf Discovery 

Threshold 6t Performance Cnorm 

0.10 0.6007 0.0062 0.6311 

0.15 0.6012 "aooi^ 0.6247 

0.20 0.6027 0.0043 0.6238 

0.25 0.6102 0.0045 0.6323 

Table 5.7: Performance measured by Cnorm on topic discovery under differ-
ent similarity threshold 9t, Note that the lower the cost, the better is the 
performance • 

y- ‘ • 

W e further investigate the effect of 9t on the discovery performance as 

shown in Table 5.7 and Figure 5.2. 

In Figure 5.2, the value of Pf is enlarged 100 times so that it is in the 

same range with Pm and Cnorm' With the decreasing of threshold 6t, the 

granularity of event is cut down. Pf decreases and Pm increases generally. 

When 6t is equal to 0.2, it has the best performance. 

• End of chapter. 
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Figure 5.2: Performance measured by Cnorm on topic discovery under differ-
ent similarity threshold Qf Note that the lower the cost, the better is the 
performance. 



Chapter 6 

Story Link Detection 

The story link detection task aims at finding out whether two given stories 

are related to the same topic or not. We propose a link detection approach 

which addresses this problem in two steps: 1) using a supervised learning 

algorithm to classify news story to topic type categories, and 2) perform story 

link detection based on automatically classified topic type [15]. Yang et al. 

proposed a method which makes use of training data of old topics to learn 

useful statistics for the prediction of new topics [33]. Different from story 、 

link detection, they focus on the problem of detecting, in a chronologically 

ordered stream of stories, the first story that discusses a topic. Stories are 

automatically routed to the corresponding topic by the classifier at the first 

level before they are sent to the second level for novelty detection. In this 

chapter, we are investigating the story link detection problem. 

6.1 Topic Types 

The T D T 2002 Annotation Guide [24] provides twelve broad topic types 

with corresponding rules of interpretation in order to give a guideline on 

what constitutes "related" topics. These twelve topic types are like some 

67 
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general topic categories. Topics generally fall into these general categories. 

The twelve topic types and some sample topics under each topic type are 

illustrated in Table 6.1. 

The stories related to the same topic type share some characteristics, 

especially on how different kinds of named entities should be emphasized. 

For example, a story related to "Accidents" may emphasize more on the ge-

ographical location named entity while the people named entity may play 

a more important role in the stories related to "Celebrity/Human Interest 

News". Our link detection approach uses an automatic topic type categoriza-

tion method to decide how to distribute the weight on each kind of named 

entity and story term component in the story representation. W e use the co-

sine similarity measure to compare two stories. Similarity will be calculated 

for each component of the story representation. The final similarity score 

is a weighted sum of each component similarity. Each component weight is 

determined based on the result of automatic topic type categorization. The 
I 

higher Uie component weight, the more emphasis is to the corresponding part 

of representation. 

6.2 Overview of Link Detection Component 

Figure 6.1 shows the framework of our story link detection component. First, 

each story is automatically classified into 12 topic types. Topic type catego-

rization scores, which indicate the degree that the story is related to a topic 

type, are produced. After that, component weights are calculated accord-

ing to topic type categorization scores. Categorization model of each topic 

type for each language, is learned from a training corpus via a supervised 

learning method beforehand. The supervised learning algorithm that we em-
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Topic Type Sample Topic Under a Topic Type 

Elections Taipei Mayoral Elections: Taiwan's Nationalist Party 

claims victory in Taipei mayoral race in December, 1998. 

Scandals Olympic Bribery Scandal: Bribery is admitted in Salt 

/Hearings Lake City's bid to host the 2002 Olympic Games in 

December, 1998 

Legal/Criminal Pinochet Trial: Pinochet, who ruled Chile from 1973 

Cases -1990, is arrested on charges of genocide and torture 

during his reign, 1998. 

Natural Hurricane Mitch: Hurricane Mitch, which forms in late 

Disasters September 1998, forms over warm ocean waters, killing 

thousands and causing millions of dollars in damage. 

Nigerian Gas Line Fire: An explosion and fire erupted 

Accidents in a damaged government owned gasoline pipeline, 

killing over 1000 people in October 17, 1998. 

Acts of Indonesia/East Timor Conflict: Pro-independence 

Violence or War groups in East Timor clash with Indonesian military 

forces in November and December, 1998 

Science and AIDS Vaccine Testing Begins: The first full-scale 

DiS'-fvery News human trials of AIDS vaccine, Aidsvax, 199C ；. 

Financial News Euro Introduced: The Euro, a new common currency 

of Europe, is introduced on January 1, 1999 

Anti-Doping Proposals: The International Olympic 

New Laws Committee adopts a package of drug sanctions, and 

announces the formation of an anti-doping agency 

in November, 1998 

Sports News ATP Tennis Tournament: 1998 Shanghai Open 

Political and Tony Blair Visits China: Tony Blair visits mainland 

Diplomatic China and Hong Kong from October. 6th to 10th, 

Meetings  

Celebrity/Human Joe DiMaggio Illness: Dimaggio spends 99 days in the 

Interest News hospital for lung cancer and pneumonia treatments 

from October 21st, 1998 to January 18th, 1999 

Table 6.1: Topic types and sample topics under each topic type 
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ploy is Support Vector Machines (SVM) due to its good performance on text 

categorization [17. 

The similarity of the story pair is computed by augmenting the cosine 

similarity measure by the component weights on the two story representa-

tions. Since we process news stories from multilingual news stories, we make 

use of a language normalization scheme to deal with the difference in simi-

larity measure for different language pairs. If the final normalized similarity 

is larger than a user-defined threshold 9i, the story pair is decided to be on 

the same topic, otherwise, they are not related. By changing this link detec-

tion threshold 6i, we can adjust the sensitive of our link detection system. 

After all the story pairs have been processed, a link detection report will be 

generated. 

6.3 Automatic Topic Type Categorization 

An automatic text categorization technique is used for classifying each story 

to a set of topic types. For each topic type, there are two categorization 

models, which are trained from two training corpora produced from two 

language sources, English and Chinese. 

6.3.1 Training Data Preparation 

W e used TDT2 corpus provided by DARPA and NIST to prepare the train-

ing data for topic type categorization. As described in Section 3.1, TDT2 

corpus contains news articles collected daily from six English sources and 

three Mandarin sources in the period of January 1998 through June 1998. 

There are 100 topics manually identified by NIST. Each topic contains a set 

of stories in the corpus and is classified to one of twelve topic types. We 
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Figure 6.1: Overview of the story link detection component 
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collected those stories in the topics that are related to a topic type and form 

a set of on-topic stories for that topic type. Other stories in the corpus are 

regarded as off-topic for the topic type. 

For each topic type and language source, we build a training corpus. A 

training corpus consists of sample stories which are known to be on-topic or 

off-topic. Each story in the training corpus is represented in a similar way 

as described in Section 3.5. The corpus representation is as follows: 

(fi,w{Si,ti),w{Si,t2),...,w{Si,tm) ) (6.1) 

where w(Si, tj) represents the weight of the corresponding term tj in story Si, 

and fi is the on-topic indicator of story Si. If fi equals to 1, Si is a positive 

example and belongs to the topic type. If fi equals to -1，Si is a negative 

example and is off-topic. 

6.3.2 Feature Selection 

Some terms are not very informative to the categorization o'. topic types. For 

example, terms such as "Senate", "Congress" are not very indicative to the 

"Accidents" topic type. Also the high dimension of data makes the text cat-

egorization process not effective. We employ a feature selection algorithm to 

determine more informative terms and select those useful terms to build the 

categorization model. The feature selection algorithm used in our approach 

is the information gain (IG) measure [30], which measures the number of bits 

of information obtained for category prediction by knowing the presence or 

absence of a term in a document. The IG is calculated as: 

G�=-Pr{h)logPr{h) 
•^Pr{t)Pr{h\t)logPr{h\t) (6.2) 

-\-Pr{r)Pr{h\t)logPr{h\i) 
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where t is a unique term that appears in the corpus, h represents the on-

topic story in the training corpus. Pr{h) represents the probability of the 

on-topic story in the training corpus. Pr{h\t) represents the probability of 

on-topic story in the stories that contain t. Pr{t) is the probability of the 

term t appears in the whole training corpus. Pr{i) is the probability of term 

t that does not appear in the training corpus. Pr{h\t) is the probability of 

on-topic story in the stories not containing t. 

With the information gain method, we obtain a feature score for each 

term for each topic type and language. After that, we rank the terms in 

descending order according to the scores. Those terms with high feature 

scores will be extracted to build the training data. 

6.3.3 Training and Tuning Categorization Model 

Support Vector Machines (SVM) is used to train a categorization model. 

There is a useful parameter in SVM training known as cost factor. This 

cost factor controls the degree by which training cr̂ op' on positive examples 

outweigh errors on negative examples. We explore a suitable value for this 

cost factor via a parameter tuning process. 

In order to conduct parameter tuning, we divide each training corpus into 

two parts. The first part is used for training a model. The second part is 

used for evaluating the classification performance of the trained model so as 

to facilitate the tuning process. To train a model, a value is chosen for the 

cost factor and the training process is invoked. The classification performance 

of the trained model is measured by F-measure, which is defined as: 

^ _ 2{Precision){Recall) 幻 

Precision + Recall 

where F denotes F-measure; Precision is the percentage of the stories das-
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sified positive that are really on-topic; Recall measures the percentage of the 

on-topic stories that are correctly classified. We varied the cost factor and 

conducted the training process repeatedly. We chose the value of cost factor 

that has the best classification performance and used it to train the final 

classifier with the whole set of training data. 

6.4 Link Detection Algorithm 

6.4.1 Story Component Weight 

The topic type categorization will be incorporated into the link detection 

method. Specifically, the story component weights are calculated taking into 

account of the topic type categorization scores. Given a pair of stories Si 

and S2. The steps of computing the story component weight are: 

1 • Categorize each story to the set of twelve topic types and get the score 

rriij {i — 1, 2; j = 1,2,..., 12), which stands for the degree of the story 

belonging to a particular story type, i :’pe'J:;ies a story in a story pair 

and S2. j stands for a twelve story type. If rriij is negative which 

means that the story i is totally not related to topic type j, we assign 

ruij as zero. 

2. Normalize each uiij with a normalization score. We test each topic 

type category with TDT2 news stories and use the average of the scores 

related to each topic type category as the normalization constant. rUij 

is divided by this normalization constant. 

3. Combine the topic type scores of two stories by taking the average. 
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The combined score m^ (A: = 1, 2,..., 12) is calculated as follows. 

mii + m2i 
爪 i = “ 2 ^ (6.4) 

4. For each topic type category, we define a set of component weight 

Wo^, Wck (A; = 1,2,..., 12) for each component of represen-

tation according to the nature of the topic type. Wo^, Wc^ 

are all in the range of [0,1] and satisfy: 

+ + = l (/C = l’2，...，12) (6.5) 

The higher the component weight, the more emphasis will be place on 

the corresponding representation component. 

5. The weight on the each story representation component is then allo-

cated according to the combined score rrik and Wp,̂ , Wi^, Wof̂ , VFcfc， 

{k -- 1, 2,…，12) as follows: 

— 知 〜 . ， 如 y m >0 
Lq爪q ‘… L q 饥q〉u (6.6) 

Wpd when T>q'mq = 0 

where mjt is the combined topic type score of the story pair. Wpd is the 

predefined component weight for the stories which are related to none 

of the topic type categories. Wp is the combined weight for the people 

name components of the story pairs. Similarly, we can get the combined 

weight of the geographical location name components Wi, the combined 

weight of organization name component Wo and the combined weight 

of content term component Wc- Wpd is calculated as the mean of Wp^ 

for each topic type as follows: 

Ĥ P = ^ (6.7) 
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6.4.2 Story Link Similarity Calculation 

Our link detection system uses the cosine similarity score to measure the 

similarity between two stories [19]. The similarity formula is similar to Equa-

tion 4.2 described in Section 4.2.2. We make use of a language normalization 

scheme to deal with the difference in similarity measure for different language 

pairs. 

W e design three language normalization factors. The final similarity Sf 

is given as follows: 

6f = 6b^N (6.8) 

where Sf is the final similarity score of the two stories; N is the language 

normalization factor. We examine the nature of stories in the story pair. 

Then we set the value of N as Nc, Ne or Nm according to the nature of the 

stories. The three language normalization factors are: 

• Chinese Normalization Factor /v̂  ‘. 

It is used to compute the final similarity when both of the stories in 

the story pair are Chinese stories. 

• English Normalization Factor Ne 

It is used to compute the final similarity when both of the stories in 

the story pair are English stories. 

• Multilingual Normalization Factor Nm 

It is used to compute the final similarity when one of the story in 

the story pair is English story and the other story in the story pair is 

Chinese story. 
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An example of the language normalization is shown in Figure 6.2. Sup-

pose that Nc is 0.6; Ne is 0.8; and N m is 1.0. There are four stories. Two of 

them are Chinese and the other two are English. These four stories form four 

story pairs. The similarity of the Chinese story pair is 0.8. The similarity 

of the English story pair is 0.9. The similarity of the two multilingual story 

pair is 0.7 and 0.6. Then the final similarities are 0.48，0.72, 0.7, and 0.6 

respectively. If we set the threshold 9i as 0.65, the English story pair and the 

multilingual story pair which contains Chinese Story 1 and English Story 2 

are considered as on-topic. The other two story pairs are not. 

6.5 Story Link Detection Output 

After all the story pairs have been processed, we evaluate the story link 

detection result by the T D T 2002 evaluation method. The format of the 

story link detection report is shown in Figure 6.2. 

Thfi first two columns are the story pointer to the two stories, which 
‘ ！ . ‘、：• 

correspond to the file name and the story name. The third column is the 

decision of whether the two stories are related. YES means that the two 

stories are related. N O indicates that they are not related. The fourth 

column is the confidence score of the decision. The higher the confidence 

score, the more likely the decision is correct. 

• End of chapter. 
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Chinese Story 1 English Story 1 

Chinese Story 2 q g 0.6 

English Story 2 0.7 0.9 

Chinese Story 1 English Story 1 

0.8 * 0.6 0.6*1.0 

Chinese Story 2 =o .48 =0 . 6 

, 
0 . 7 * 1 . 0 0.9 * 0.8 

English Story 2 j = o.72 

Chinese normalization factor (Nc) : 0.6 

English normalization factor (Ne): 0.8 

Multil ingual normalization factor (Nm): 1.0 

Figure 6.2: An example of language normalization scheme 
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asl/19981001_0130_0200_CNN_HDL.asl:CNN19981001.0130.0433 
tkn/19981001-0400_0600_ZBN_MAN.tkn:ZBN19981001.0001 N O 
0.002203 
tkn/19981001_0931_1012_APW_ENG.tkn:APW19981001.0598 
as0〉19981001」000_1100_VOA_MAN.as0:V〇M19981001.1000.1974 
N O 0.004536 
tkn/19981001_0400_0600_ZBNJVIAN.tkn:ZBN19981001.0001 
asl/19981001_1130_1200-CNN_HDL.asl:CNN19981001.1130.1030 
YES 0.021262 
tkn/19981001_0400_0600_ZBN_MAN.tkn:ZBN19981001.0001 
tkn/19981001_1204_1239_APW_ENG.tkn:APW19981001.0837 N O 
0.002263 
tkn/19981001_0400_0600_ZBN_MAN.tkn:ZBN19981001.0001 
tkn/19981001」553_1649_APW_ENG.tkn:APW19981001.1184 
YES 0.039406 
tkn/19981001_0400_0600_ZBN_MAN.tkn:ZBN19981001.0001 
asl/19981001A830_1900_NBC_NNW.asl:NBCl998100L18a0.0438 
N O 0.00797G ‘ 
tkn/19981001_0400_0600-ZBN_MAN.tkn:ZBN19981001.0001 
tkn/19981001_1832_2019_NYT_NYT.tkn:NYT19981001.0321 N O 
0.008507 
tkn/19981001-0400_0600_ZBN_MAN.tkn:ZBN19981001.0001 
tkn/19981001_2047_2156_NYT_NYT.tkn:NYT19981001.0424 N O 
0.013525 

Table 6.2: A sample of the story link detection report 



Chapter 7 

Link Detection Experimental 
Results 

In order to evaluate our story link detection result, we have conducted ex-

periment on the TDT3 corpus. In this chapter, we introduce the evaluation 

method. We also describe our experiment settings and analyze the link de-

tection result in the following sections. 

7.1 TestJng Corpus ,.:...��. 

W e used TDT3 corpus to test the story link detection approach. The TDT3 

corpus has been described in Chapter 3.1. It contains the news stories col-

lected daily from October to December in 1998 from 11 news sources. In 

our experiment, we used the native language newswire text and the audio 

broadcast news. The news sources come from multiple languages, including 

English and Chinese. There are a total of 43,612 stories in the TDT3 corpus. 

12,336 are in Chinese and 31,278 are in English. 23,205 news stories are 

newswire text and 20,407 are broadcast news stories. Evaluation is done on 

a set of story pairs sufficient to provide reliable estimates of error probability. 

13,613 pairs of stories are selected from TDT3 corpus to test the link detec-

80 
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tion performance. 4,440 of them are Mandarin Chinese story pairs; 4,604 of 

them are English story pairs; and the rest are multilingual story pairs. The 

correct answer is prepared by NIST for evaluating purpose. 

7.2 Topic Type Categorization Result 

Recall that there is an automaitc topic type categorization task in the link de-

tection system. In this section, we will report the categorization performance. 

The link detection performance will be described in subsequent sections. 

The performance of the topic type categorization for English News is 

shown in Table 7.1. The best performance of the topic type categorization 

is 0.9767 corresponding to the topic type "Accidents". In general, the cate-

gorization performance is very good. 

Topic Type F-measure 

Elections 0.9036 

Scandals/Hearings 0.9493 

V ••• Legal/Criminal Cases ^̂ .9752 

Natural Disasters 0.9589 

Accidents 0.9767 

Acts of Violence or War 0.9248 

Science and Discovery News 0.9456 

Financial News 0.8851 

New Laws 0.7272 

Sports News 0.9598 

Political and Diplomatic Meetings 0.9294 

Celebrity/Human Interest News 0.8654 

Table 7.1: F-measure performance of topic type categorization after the tun-
ing process for English news. 

Table 7.2 depicts the topic type categorization performance for Mandarin 
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news. Some topic types have very good categorization performance such 

as "Elections", "Financial News", and "Sports News". Some topic types, 

such as "Legal/Criminal Cases" and "Celebrity/Human Interest News" are 

not as good due to insufficient positive examples in the training corpus. In 

fact, three topic types, namely, "Science and Discovery News", "New Laws" 

and "Political and Diplomatic Meetings" have no positive examples in the 

training data. Hence they are not used in the training process. 

Topic Type F-measure 

Elections 0.9670 

Scandals/Hearings 0.8235 

Legal/Criminal Cases 0.4444 

Natural Disasters 0.8750 

Accidents 0.8235 

Acts of Violence or War 0.9157 

Financial News 0.9538 

Sports News 0.9848 

Celebrity/Human Interest News 0.6667 

Table 7.2: F-measure performance of topic type categorization after the tun-
ing process for Mandarin news. 

7.3 Link Detection Evaluation Methodology 

W e follow the link detection evaluation method described in TDT2002 project 

23]. The performance is evaluated in terms of their ability to determine 

whether specified pairs of stories discuss the same topic. The evaluation 

method for link detection is measured by the detection cost which is similar 

with the one for event and topic discovery. The detection cost is given in 

Equation 5.1. Then it will be normalized by Equation 5.2. Topic-weighted 

scheme is employed to estimate the detection error probabilities. 
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7.4 Experimental Results on Link Detection 

W e have conducted a tuning process to determine the language normalization 

parameter using a small amount of data. We conducted link detection for 

the testing corpus using the tuned parameters. We also compared our link 

detection system with and without topic type categorization. 

7.4.1 Language Normalization Factor Tuning 

There are three kinds of story pairs. The first kind is that both of the stories 

are in Chinese. The second kind is that both of the stories are in English. 

The third kind is that one of the story is in Chinese and the other is in 

English. Recall that there are three language normalization factors, namely, 

Nc, Ne and Nm- To determine the appropriate values of these factors, we 

conducted a tuning process using a small amount of data. 

W e used the first ten days of news from October 1st to October 10th 

1998 for tuning. The data set contains 857 p?irs of Chinese stories, 925 pairs 

of English stories, and 879 pairs of multilingual stories. We predefine two 

sets of component weights for each topic type categorization according to 

the nature of the topic type. The first set of component weight emphasizes 

more on the story content term while the second set puts more weights on 

the named entities. The first set of component weight is shown in Table 7.3. 

The second set of component weight is shown in Table 7.4. 

W e first set the language normalization factors, namely, Nc, Ne, and Nm 

all equal to one. Then we conducted the link detection runs on the story pairs 

by varying the link detection threshold 9i. Table 7.5 and Figure 7.1 show 

the performance on the set of Chinese story pairs. When the link detection 

threshold 6i is equal to 0.195, both of the two component sets achieve the 
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component weight set one 

people location organization content 

Topic Type named named named term 

entity entity entity 

Elections 0.1 0.2 0.1 0.6 

Scandals/Hearings 0.15 0.1 0.15 0.6 

Legal/Criminal Cases 0.2 0.1 0 0.7 

Natural Disasters 0 0.2 0 0.8 

Accidents 0 0.2 0 ~ 

Acts Violence or War — 0.05 0.15 0.05 ~~Q.75 

Science and Discovery News 0.05 0 0.05 0.9 

F^ancial News G 0.1 0.1 ~~0.8 

New Laws 0 0.1 0 ~~0.9 

Sports News 0.05 0.1 0.15 0.7 

Political and Diplomatic Meetings 0.15 0.1 Q 0.75 

Celebrity/Human Interest News~ 0.2 0.1 0 0.8 

Table 7.3: First set of component weights for topic types 
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component weight set two 

people location organization content 

Topic Type named named named term 

entity entity entity 

Elections 0.15 0.2 0.15 ~ ~ ^ 

Scandals/Hearings 0.15 0.15 0.15 ~~0.55 

Legal/Criminal Cases 0.15 0.15 0.05 0.65 

Natural Disasters 0.05 0.3 0 0.65 

Accidents 0.05 0.3 0 0.65 

Acts of Violence of War 0.1 0.2 0.1 ~ ^ 

Science and Discovery News 0.15 0.1 0.05 0.7 

—一 Financial News . . 0.05 0.15 0.15 ~ ~ 

New Laws 0.05 0.15 0.1 ^ 

Sports News 0.15 0.15 0.15 ~ ” 

Political and Diplomatic Meetings 0.2 0.15 ^ 0.5 

Celebrity/Human Interest News 0.25 0.1 0 0.65 

Table 7.4: The second set of component weights for topic types 
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best performance. 

link detection component weight component weight 

threshold set one set two 

0.175 0.2434 0.3840 
0.180 0.2400 0.2434 

0.185 ~ 0.2333 0.2333 

0.190 — 0.2330 ~ ~ 0.2333 

0-195 0.2097 0.2226 

0.200 0.2232 0.2232 

Table 7.5: Language normalization factor tuning on Chinese story pairs. 
The performance is measured by Cnorm- The lower the cost, the better is the 
performance. 

Table 7.6 and Figure 7.2 shows the performance on the set of English 

story pairs. When the link detection threshold 0i is equal to 0.065, both of 

the two component sets achieve the best performance. 

link detection component weight component weight 

threshold set one set two 

0.045 ai548 — 0.1548 

0.050 一 0.1493 — 0.1493 

0.055 0.1495 0^495 

0.060 0.1468 0.1468 

0.065 0.1418 0.1440 

0.070 0.1529 0.1529 

Table 7.6: Language normalization factor tuning on English story pairs. The 
performance is measured by Cnorm- The lower the cost, the better is the 
performance. 

Table 7.7 and Figure 7.3 shows the performance on a set of multilingual 

story pairs. When the link detection threshold 9i is equal to 0.06, both of 

the two component sets achieve the best performance. 
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I ; i I I I I 
J component weight set one 1  
1 component weight set two ——x—— 

0.24 - ^ ^ K ^ -

^ "\� 
0.23 - \ � � � -I V - r 0.22 - \ / 

0.21 - ¥ 

0 . 2 ‘ ‘ ‘ ‘ ‘ ‘ 
0.175 0.18 0.185 0.19 0.195 0.2 

link detection threshold 

Figure 7.1: Language normalization factor tuning on Chinese story pairs. 
The performance is measured by Cnorm. The lower the cost, the better is the 
performance. 

link detection component weight component weight 

threshold set one set two 

0.040 0.4541 0.4541 

0.045 0.4395 0.4395 

• 0.050 0.4346 — 0.4346 

0.055 0.4254 0.4254 

0.060 0.3431 0.3343 

0.065 0.3523 0.3453 

Table 7.7: Language normalization factor tuning on multilingual story pairs. 
The performance is measured by Cnorm. The lower the cost, the better is the 
performance. 
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‘ ‘ ‘ component weight set one ——i——“ 

component weight set two -—x— 

0.155 - \ -

\ / 
0.15 - X / -

I ^ ^ / 

0.145 - -

0.14 - -
I I I I I 1 

0.045 0.05 0.055 0.06 0.065 0.07 
link detection threshold 

Figure 7.2: Language normalization factor tuning on English story pairs. 
The performance is measured by Cnorm. The lower the cost, the better is the 
performance. 
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I I 1 r 1 1  
component weight set one ——i—— 
component weight set two —x—-

0.45 - -

1 0-4 - \ -

\ 
0.35 - � � \ -

p •• 

I 1 1 I I I I  
0.04 0.045 0.05 0.055 0.06 0.065 

link detection threshold 

Figure 7.3: Language normalization factor tuning on multilingual story pairs. 
The performance is measured by Cnorm- The lower the cost, the better is the 
performance. 
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From the above analysis, it illustrates that each type of story pairs achieves 

the best performance at the same link detection threshold regardless of the 

component weight set. But three types of story pairs achieve the best per-

formance when different link detection thresholds are used. If we need to 

process news that contains three types of story pairs, we have to balance 

these difference between the languages so that the three types of story pairs 

can get their best performance at the same 6i. Suppose we want to achieve 

high performance when 6i = 0.03, then: 

Nc* 0.195 =0.03 

Ne * 0.065 = 0.03 

Nm * 0.060 = 0.03 

Therefore, N。should be set to 0.1538, Ne should be set to 0.4615, and Nm 

should be set to 0.5. These values are used in the subsequent link detection 

experiments. 

7.4.2 Link Detection Performance 

After the paramters have been tuned, we have conducted the multilingual 

story link detection for the whole TDT3 corpus. We ran our link detection 

system and compared with the link detection performance without automatic 

topic type categorization. W e used the first set of component weight because 

its overall performance is better than the second set. The parameter values 

we used were determined in the tuning process as described in Section 7.4.1. 

The link detection threshold was varied from 0.01 to 0.05. The component 

weight of the link detection system without the topic type categorization 

is predefined as shown in Equation 6.7. The performance of the two link 

detection systems is shown in Table 7.8 and Figure 7.4. The result shows 

that the link detection system with topic type categorization performs better 
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under different link detection thresholds. The best performance is obtained 

with link detection threshold 6i set to 0.03 which is adjusted by the language 

normalization scheme. 

link without with 
detection topic type topic type 

threshold 9i categorization categorization 

0.01 0.5196 0.5213 

0.02 — 0.5062 0.4997 

0.03 0.4782 0.4635 

^ 0.5059 0.4954 

0.05 0.5768 0.5413 

Table 7.8: Performance of the link detection system with and without the 
automatic topic type categorization method. The performance is measured 
by Cnorm- Note that the lower the value, the better is the performance. 

7.4.3 Link Detection Performance Breakdown 

W。have conducted further experiments on each type of story pair。. T^e 

parameter settings are similar to the above experiment on the link detection 

on the whole TDT3 corpus. 

Table 7.9 shows the performance on the set of Chinese story pairs. Ta-

ble 7.10 shows the performance on the set of English story pairs. The per-

formance of multilingual story pairs are depicted in Table 7.11. All of them 

achieve best performance when 9i is set to 0.03. The set of Chinese pairs 

gives a better performance compared to the other two sets. Multilingual 

story pairs have the worst performance. The reason is that the difference of 

translated English stories and the English stories coming from native sources. 

Since we apply a bilingual lexicon to do the gloss translation, the glossary 

for translated English is quite limited. This brings difficulty to match a 
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I I I I 1  
without topic type categorization ——i—— 

with the topic type categorization method — x — 

0 . 6 - -

；X 
/ / 

/ 

0.55 - / -

i / Z 

0.45 - -

I 1 1 I I  

0.01 0.02 0.03 0.04 0.05 
link detection threshold 

Figure 7.4: Performance of the link detection system with and without the 
automatic topic type categorization method for. The performance is mea-
sured by Cnorm. Note that the lower the value, the better is the perfor-
mance. 
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translated English term to a native English term. 

link detection threshold 9i Performance 

0.02 0.3790 

0.03 — 0.3742 

0.04 0.3681 

0.05 — 0.3682 

Table 7.9: Performance of the link detection system on set of Chinese story 
pairs. The performance is measured by Cnorm- Note that the lower the value, 
the better is the performance. 

link detection threshold 6i Performance 

0.02 — 0.5104 

0.03 0.4590 

0.04 0.4754 

0.05 0.4793 

Table 7.10: Performance of the link detection system on set of English story 
pairs.The performance is measured by Cnorm- Note that the lower the value, 
the better is the performance. 

• End of chapter. 
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link detection threshold 9i Performance 

0.02 — 0.5328 

0.03 0.5151 

0.04 — 0.5494 

0.05 ^ 0.6323 

Table 7.11: Performance of the link detection system on set of multilingual 
story pairs.The performance k measured by Cnorm- Note '.hat the lower the 
value, the better is the performance. 



Chapter 8 

Conclusions and Future Work 

In this chapter, we make a summary on our research and conclude our con-

tributions. Moreover we suggest some possible future research directions 

8,1 Conclusions 

In this thesis, we have developed methods on handling the event and topic 

discovery problem as well as the story link detection problem. The goal of 

die event and topic discovery task is to discovrr 'iew events and topics from 

real-time incoming news stories from diverse sources. An event includes a 

set of stories. A topic is composed of a set of related events. We develop a 

two-level hierarchical unsupervised learning approach for the discovery task. 

At the lower level, events are discovered from the the incoming news stories. 

At the higher level, topics are detected from the generated event information. 

A vector space representation scheme composed of different kinds of named 

entities and important content terms are designed for stories, events and 

topics. The similarity between a news story and and an event is computed 

by the cosine-similarity measure. Since topics and events may include a 

large amount of information, a query expansion technique, called relevance 

95 
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model, is employed to determine the relationship of an event and a topic. 

Language normalization scheme is used in the event discovery step to balance 

the difference between the clustering properties of different languages. Since 

the stories related to the same event are usually happened within a short 

period of time, a time adjustment scheme is applied to control the relationship 

between a story and an event with respect to the time. 

The experimental results reveal that the best event discovery performance 

is 0.0986, obtained with a set of parameters tuned by a small amount of 

data. Moreover, the event discovery system with time adjustment scheme has 

better performance than the one does not use the time adjustment scheme. 

The story link detection system aims at determining whether two stories 

are related to the same topic or not. An innovative characteristic of our link 

detection approach is that it makes use of an automatic topic type catego-

rization method to classify a story to some general topic types. Different 

emphasis can be placed on different parts of story representation during link 

detection process based on the categoriziition result. A language normaliza-

tion scheme is also designed. The experiment results of story link detection 

reveal that the our link detection system performs better than the one that 

does not use topic type information. 

8.2 Future Work 

There are several possible directions to extend our research: 

• Currently the event and topic discovery system employs unsupervised 

learning algorithm to discover system unknown events and topics from 

a set of stories. It will have additional advantage if the system can not 



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 97 

also deal with user defined events and topics, and track the incoming 

stories into those events and topics. 

• The stories related to the same topic type categories may share some 

characteristics. In the story link detection, we use the topic type classi-

fication information to determine the component weight for each story 

representation. In addition to the representation component weights, 

there are many other useful information we can obtain from the topic 

type categorization. One possible direction is that we can learn more 

representative terms. 

• Gloss term translation is conducted so that we can directly conduct 

unsupervised learning for Chinese and English stories. We make use of a 

parallel corpus to adjust the weight of each English translation. Instead 

of gloss term translation, we will investigate context-based translation. 

Term disambiguation will be conducted with the help of concurrence 

sicitistic information CG;:ect,'-d from the story context. 丨、 

• In the event and topic discovery approach, we assume that each story 

belongs to only one event and each event belongs to only one topic. 

We will extend the discovery approach so that each story can belong 

to multiple events and each event can belong to multiple topics. 

• End of chapter. 



Appendix A 

List of Topic Title Annotated 
for TDT3 corpus by LDC 

1. Cambodian Government Coalition 

2. Hurricane Mitch 

3. Pinochet Trial 

4. Houston Chukwu Octuplets 

').Osama bin Laden Indictment 
� - . . .i . -

6. N B A Labor Dispute 

7. Congolese Rebels vs. Pres. Kabila 

8. November APEC Summit 

9. Anti-Doping Proposals 

10. Car Bomb in Jerusalem 

11. Anwar Ibrahim Case 

12. Leonid Meteor Shower 

13. Dalai Lama Visits US 

14. Nigerian Gas Fire 

15. October Holbrooke-Milosevic Meeting 
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16. Swiss Air 111 Crash 

17. North Korean Food Shortages 

18. Blair Visits China in October 

19. Hong Kong Mob Boss Cheung Tze-Keung 

20. 13th Asian Games 

21. Thai Airbus crash 

22. Chinese Labor Activists 

23. Kevorkian Trial 

24. Gingrich Resigns 

25. Brazilian Elections 

26. AOL-Netscape Merger 

27. Russian Currency Crisis 

28. Turkey-Syria Tension 

29. Australian Yacht Race 

30. Taipei Mayor?] K"jctions ’,J ’ 

31. Space Shuttle Launch 

32. China Closes ITIC Bank 

33. The Euro Introduced 

34. Indonesia-East Timor Violence 

35. China-Taiwan Meetings 

36. Nobel Prizes Awarded 

37. Israeli Foreign Minister Sharon Appointed 

38. Salt Lake City Olympic Bid 

39. Sharif and Clinton Meet About Pakistan 

40. Gaza International Airport Opened 
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41. Jiang's Historic Visit to Japan 

42. Pan A m Bombing Trial 

43. Lankan Gov't, vs Tamil Rebels 

44. Kurd Separatist Abdullah Ocalan Arrested 

45. Mobil-Exxon Merger 

46. House Speaker-Elect Livingston Resigns 

47. Space Station Module Zaria Launched 

48. IMF Bailout of Brazil 

49. North Korean Nuclear Facility 

50. Mid-term Elections 

51. Bosnian War Crimes Tribunal 

52. Typhoon Zeb 

53. Clinton's Gaza Trip 

54. China Human Rights Treaty 

55. D'Alemt/'b Mew Italian Government .， 

56. Chechnya Rebel Violence 

57. India Train Derailment 

58. Energy Sec'y. Richardson Visits Taiwan 

59. Russian Politico Starovoitova Assasinated 

60. Hyundai Corp. Aids North Korean Economy 

61. S. Africa Truth k Reconciliation Committee Report 

62. Pope Visits Balkans 

63. Capitol Shooter Indictment 

64. Columbian Air Force Drug Scandal 

65. Zapatistas k Mexican Gov't talks 
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66. Immigrant Smuggling Ring 

67. Dominique Moceanu vs. Parents 

68. Matthew Shepard Murder 

69. New Turkish Gov't: Bulent Ecevit 

70. European Cold Wave 

71. Typhoon Babs 

72. Princess Di Crash Investigation 

73. Abortion Doctor Slepian Killed 

74. Chinese Missile Scientist Arrested 

75. Japan Apology to Korea 

76. ATP Shanghai Open 

77. Chretien Visits China 

78. Zorig Killed (Mongolian Politics) 

79. AIDS Vaccine Testing 

80. Ukrain；? Mining Disasters :.•： •： 

81. Fossilized Dinosaur Embryos Found 

82. Swedish Dance Hall Fire 

83. Kyoto Energy Protocol 

84. South Africa Weapons Purchase 

85. Kenyan Teachers on Strike 

86. Yankees vs. Padres in World Series 

87. Iranian National Elections 

88. Hurricane George in Carribbean 

89. Azerbaijani Presidential Elections 

90. Jesse 'the Body' Ventura 
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91. US Federal Budget 

92. Yeltsin's Illness 

93. Microsoft Anti-Trust Case 

94. New Orleans Sues Handgun Manufacturers 

95. G-7 World Finance Meeting 

96. Joe DiMaggio Illness 

97. Japanese and Russian Leaders Meet 

98. American Embassy Bombing Trial 

99. China Denies Bugs 

100. slamic Extremists Sentenced 

101. Philippine Airlines Closes 

102. New Paris Subway Line 

103. Lebanon Elects New President 

104. Merceded/Chrysler Merger 

IG- ' Mnese Army Ordered to shut down Industry .厂, 

106. Buddhist Seeks Asylum 

107. Environmentalist Hill in a Tree 

108. South Korean Pres. Visits China 

109. Australian P M 'apologizes' to Aboriginies 

110. China will Not Allow Opposition Parties 

111. Beijing Applies to Host 2008 Olympics 

112. Florida Law to Reduce Divorce Rates 

113. South Korean Vets Escape N K 

114. ASEAN Meeting 

115. US and Pakistan Settle Dispute 
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116. South Korean Police Forced into Temple 

117. Chinese Dissident Wei Visits Taiwan 

118. Tonga Switches Diplomatic Relations to China 

119. Hundreds Protest Financial Scandal in China 

120. Japan Political Coalition 

• End of chapter. 



Appendix B 

List of Manually Annotated 
Events for TDT3 Corpus 

1. 一名国际反兴奋剂专家戴•科文在11月10号警告说,假如在悉尼奥运会之 

前不采用血液检查的话，反兴奋剂的战争将面临失败的危险。 

2. French lawmakers adopted a bill that gave France one of the world's 
toughest anti-doping laws on November 19, 1998. 

3. The fight against doping in sports got a million-dollar boost from the 
White House on November 25th, 1998. 

4. All Olympic sports, except for soccer, tennis and cycling, agreed to a 
package of measures aimed at unifying the fight against banned drugs 
on November 27th, 1998. 

5. Analyzing the possible reason for the air accident, there was an increas-
ing chance a commercial airline flight could be interrupted by something 
as simple as an odor. 

6. An in-house publication of the airline said the temperatures rose to 300 
degrees ( 570 degrees F ) without leaving traces of fire in the front part 
of Swissair Flight 111 before it crashed on November 5th 1998. 

7. The airline's chief executive said that Swissair "did everything cor-
rectly" in installing a state-of-the-art enter tainment system switched 
off last month in the wake of the crash of Flight 111, November 22nd, 
1998. 
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8. "The Washington Post" reported that an agency subcommittee re-
ceived a memo from a home insulation expert in 1988 calling the FAA's 
insulation flammability test "meaningless". The subcommittee report-
edly ignored that warning. 

9. The Federal Aviation Administration abruptly ordered airlines that fly 
MD-lls to inspect two cockpit switches because one model in wide use 
can give off smoke at certain settings on November 12th, 1998. 

10. After the crash of Swissair Flight, 111 , the airline gave the grieving 
families of the victims all the help customarily offered in such disasters. 

11. Investigators looking into the crash of Swissair flight 111 said that they 
had discovered one of the three engines was not working when the plane 
crashed on November 20th, 1998. 

12. More than two months have passed since Swissair flight 111 crashed 
off novia Scotia, killing all 229 people aboard. For the families and for 
investigators, finding the cause has been painfully slow. 

13. American families who lost loved ones when Swissair flight 111 crashed 
off Nova Scotia returned to the crash scene on November 27, 1998 to 
remember those who died. 

14. A North Korean man arrived in Seoul and sought asylum after escaping 
his hunger-stricken homeland on November 4th, 199?： 

15. North Korea is entering its fourth winter of chronic food shortages with 
its people malnourished and at risk of dying from normally curable 
illnesses, November, 1998. 

16.北韩领袖金正日呼吁大规模发展经济，提高陷入饥荒的并韩人的生活水 

平。 

17. Despite catastrophic hunger at home，North Korea plans to send 317 
athletes and officials to next month，s Asian Games in Thailand，South 
Korean officials said on November 19th, 1998. 

18. North Korea may be cheating on an agreement to freeze it ’s huge nu-
clear weapon program at a time when the people are starving，Novem-
ber ,1998. 

19. When a South Korean cruise ship sailed into the North Korean port of 
Changjon in late November 1998, passengers could hear the shouts of 
drilling soldiers carry clearly on the cold winter air. 
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20.由于遭受严重的自然灾害，朝鲜今年粮食欠收，呼吁国际社会继续提供援 

助。 

21.选民们不仅要投票在候选人中进行选择，而且还要对一些颇为引起争论的 

问题做出抉择，密歇根州选民在投票中要决定的提案，是应不应该将医生 

协助病人自杀予以合法化。 

22. “60 minutes" broadcasted a film clip of Dr. Jack Kevorkian as assisting 
a terminally ill patient to commit suicide, November 22nd, 1998. 

23. Kevorkian attempted to challenge the statute prohibiting assisted sui-
cide in the state of Michigan. 

24. The tape broadcasted on "60 minutes," prompted strong reaction. 

25. George Annas, the chairman of the health and law department of 
Boston University school of public health, and Derek Humphrey, au-
thor of six books on the subject of euthanasia, discussed the assisted 
suicide assisting on November 23rd, 1998. 

26. In the pile-on were Roman Catholic prelates, medical ethicists, editorial 
writers，television reviewers and teachers of journalism，all express-
ing indignation , shock , outrage that the pre-eminent news magazine 
should have run a video of Dr. Jack Kevorkian giving lethal injections 
to Thomas Youk , who suffered from Lou Gehrig，s disease. 

27. Kevorkian would be charged with first-degre.̂： r.-uj cler as a result of his 
latest death on November 25th, 1998. 

28. A Boston couple knew the joy of a life reclaimed because of new equip-
ment on some airplanes November 25th, 1998. 

29. Jack Kevorkian was free on $ 750,000 bail after he was charged with 
first degree premeditated murder in the televised death of a patient 
with Lou Gehrig ’s disease November 25th, 1998. 

30. Some Washington-based foreign journalists were asked in "The World", 
how they were covering America ’s top stories November 27th, 1998. 

31. Almost half of Michigan residents apparently believe Jack Kevorkian 
should be criminally charged in the death of a man who had Lou Gehrig 
,s disease . 

32. An opposition candidate in December 's legislative election apologized 
for flinging live piglets at aides to Taiwan Governor James Soong on 
November 1st, 1998. 
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33. “三合一”选战进入密锡紫鼓的阶段。各党派的候选人，近日为了争取选 

民的支持，各种竞选花招纷纷出炉，1998。 

34.台湾年底立法委员选举参选人林瑞图指陈水扁秘密到澳门的事件，在1998年11月4曰 

进一步扩大。民进党支持者还到联合报抗议撕报纸，要求该报作出道歉。 

35. 1998年11月7曰，台湾的选战已经进入最后阶段，为了吸引年青人的支持， 

各党派莫不挖空心思举办活动。 

36.民进党的“竞选花车”-由一辆双层巴士改装成的“金达尼号”，1998年11月6曰 

在烟火及欢呼声中,举行“开航”仪式， 

37. 1998年11月10曰，马英九和陈水扁进行了一场一对一的辩论，就两岸关系发 

表了看法。 

38. 1998年11月台此市长竞选活动进入白热化之际，台湾监察院因一致通过一 

项议案，纠正台北市政府，结果卷入一场竞选风波之中。 

39.台湾监察院纠正台北市政府事件1998年11月13日进一步扩大。民进党籍 

和独派候选人到监察院抗议，并与声援监委翟宗泉的新党候选人和支持者 

发生冲突。 

40.台北市年底三合一选举第二届市长、第四届立委与第八届市议员候选人 

于1998年11月14曰进行号次抽签，以及决定公办政见会发言顺序，现场造 

势活动热闹滚滚，有如一场嘉年华会。 

41. 199?•年n月、7曰，台北市长选情紧绷，两大竞争对手，民进党的陈水扁和国 S::」.:• 

民党的马英九仍处平分秋色局面，拋离对手，双方都打出新牌。 

42. 1998年11月19曰，目前距离月曰举行的台湾立法委员选举只有两周左右， 

根据受访政治观察者的预测，虽然民进党积极鼓吹三党不过半，但国民党 

还是有可能取得过半的席位。 

43.台湾年底三项选举的竞选活动在1998年11月20日正式开始，警调单位昨曰 

凌晨即展开选前的扫黑、肃枪和扫毒大行动，以确保竞选活动期间的社会 

治安。 

44. 1998年11月23曰，台北市长选情激烈，两名热门人选陈水扁、马英九龙虎 

相争。 

45. Taiwan's Foreign Ministry blamed "administrative negligence" for an 
incident in which Nobel Peace Prize winner Josi Ramos-Horta was left 
stranded at the airport for hours after being refused entry on November 
26th, 1998. 
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46.台湾举行的台此及高雄市长和市议员选举，还有立法委员选举巳经全面展 

开竞选活动，一向与台湾各级选举脱离不了关系的买票活动，随着选举日 

的曰益接近，也纷纷出笼。 

47. 1998年11月28日，香港民主党党魁李柱铭率领人代表团到台湾，观察 

在12月举行的立委和市长选举。 

48. N A S A and the Russian Space Agency agreed to set aside a last-minute 
Russian request to launch an international space station into an orbit 
closer to Mir，officials announced on November 13th, 1998. 

49. The first piece of the long-delayed international space station was sched-
uled to be launched from Russia on November 19th night, 1998. 

50. The first piece of the international space station was orbiting Earth on 
November 20th, 1998, sprouting antennae and unfolding solar power 
panels as it awaited other segments, which will eventually grow into 
the largest orbital laboratory in history. 

51. Russian space officials gave the first module of the international space 
station a routine tweak on November 21st, 1998 to push it into higher 
orbit，and convened a meeting on Earth to map out its future. 

52.日升空的国际空间站第一般一 “曙光”号功能货物能在经过多次飞行轨 

道的调整后于曰成功进入工作轨道，目前觥上所有系统工作正常。 

53. The Space Shuttle Endeavour was scheduled to blast off. The six-
member crew was carrying with it the second part of the international 
space station. 

54.俄罗斯的太空进入了一个新时代，俄罗斯太空当局不久前发射了一个叫做 

曰出的空间站曰出空间站是计划发射的第一个永久性的进入地球轨道的国 

际空间站，空间站的太空般是在哈萨克斯坦的克拜努尔发射场，由俄罗斯 

的一枚直子火箭发射升空的。 

55. The Space Shuttle Endeavour was due to lift off early morning of 
November 30th,1998 from Cape Canaveral , Florida with five U.S. as-
tronauts and one Russian Cosmonaut. 

56. U.S. shuttles and Russian rockets will carry out 45 missions to assemble 
the station , an outpost for research and platform for space exploration 

57. In November 1998, Hong Kong bankers were concerned about a brewing 
nightmare in China，the possibility of more defaults on foreign loans 
by financial institutions on the mainland. 
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58. 1998年11月广东省内主要直辖企业及国投公司和重组方案巳正式敲定。 

59. 1998年11月，被迫关闭的中国第二大信贷机构广东国际信托投资公司由于 

没有能够按期支付证券利息，成为中国第一家不履行国际借债条约的金融 

机构。广信的倒闭也直接影响了中国国际信托公司的信眷。 

60.中国人民银行行长戴相龙表示，在全国多家信托投资公司中，只有“极少 

数”的公司会被关闭，央行也会考虑为部分有付款困难的公司提供担保。 

61.由于产权不清及未能确定可以收回多少应收帐，帐面资产值亿港元的广信 

实业暂时仅能确认亿港元的资产可以变现。 

62. 1998年11月15号，有消息表明，中国将在短期内推出一套新法规，现有的二 

百四十家国际信托投资公司中最多可达百分之七十的公司将被关闭。 

63.在广信集团倒闭事件之后，中国总理朱(金容)基要求各省管好自己的驻港 

窗口公司，要求绝对不能出问题。 

64. China's central bank chief warned that risks to the country's financial 
system "can no longer be ignored" and pledged tougher regulation of 
the shaky banking sector in November 30th, 1998. 

‘八-

• • . f 

• End of chapter. 
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