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Abstract 

This thesis presents a methodology for designing floating point and fixed point 

systems on FPGA platforms by means of a programming language. A com-

piler, fly, floating point library, float and arbitrary function module generator, 

were developed for the rapid system prototyping research, fly takes a Perl-like 

program as input and produces a synthesizable VHDL description of a one-hot 

state machine and the associated datapath elements as output. Furthermore, 

it is tightly integrated with the hardware design environment and implemen-

tation platform, and is able to hide issues associated with these tools from 

user. The float library consists of a floating point class for the simulation of 

quantization effects associated with high precision floating point operators, an 

optimizer which can automatically determine the minimal number of exponent 

and fraction bits required for a specified degree of accuracy, and a parameter-

ized floating point library which can generate floating point operators with 

arbitrary precision. The function generator can generate any one-operand 

function and is compatible with the fly compiler. The systems was used to 

prototype an FPGA based greatest common divisor (GCD) coprocessor, dig-

ital sine-cosine generator, a dedicated circuit for solving ordinary differential 
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equation (ODE), and a simulation model for the N-Body problem. By com-

bining these design tools, the time and knowledge required for a designer to 

implement a floating point algorithm in hardware can be greatly reduced. 
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摘要 • 

本論文展示了一個以编程語言爲手段去設計現埸可编程門陣列平台上的浮點和 

定點系統。爲了研究快速系統原型化，我們開發了编譯器(/^力，浮點程式康 

{float)，及任意函數模塊產生器�fly接受類似Perl的编程語言作爲輸入，並產生 

一個以VHDL作爲描述的one-hot狀態機和相應的數據通道。再者，它與硬件設 

計環境和實施平台緊密結合，讓使用者能略過硬件設計工具的使用問題。Float 
程式庫包括了一個可以模擬高精度浮點運算的量化效果的浮點數類及一個可以 

自動判定在特定準確度要求下的指數和分數部份的最少位元的優化器，和一個 

可以生成任意精確度浮點運算子的參數化的浮點數程式庫。函數產生器可以產 

生任何一元操作符的函數及可以與 f ly编釋器兼容。此系統可用來製作基於現埸 

可编程門陣列的最大公約數協處理器的原型，數字式正弦-餘弦產生器，解決一 

般微分方程的專門電路和一個N體問題模擬模型°通過結合這些設計工具，在 

硬件上實施浮點演算法時’可大大減少對設計者的時間和知識要求。 
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Chapter 1 

Introduction 

1.1 Motivation 

Traditional development method for FPGA is complex 

In the standard field programmable gate array (FPGA) based prototyping 

methodology, algorithms are first developed in programming languages such 

as C on a personal computer or workstation using floating point arithmetic. 

When the system is later implemented in hardware, a fixed point version of the 

algorithm is derived from the floating point version and then translated into 

a hardware design in a hardware description language such as VHDL. Finally, 

the design is synthesized for a field programmable gate array (FPGA) based 

prototyping environment where it can be tested. 

However, it is found that using a HDL based design methodology results 

in low productivity compared with software development with programming 

language because of the following issues: 

• Hardware designs are parallel in nature while most of the people think 

in sequential patterns 

• The standard technique of decomposing a hardware design into datapath 

and controls adds complexity to the task 
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• Designers must develop a hardware interface for the FPGA board as well 

as a software/hardware interface between a host system and the FPGA 

• Elementary functions are not supported and designer needs to build op-

erations like reciprocal, log and sin from primitive operations before the 

design can actually begin 

The above issues significantly increase the design complexity, with associ-

ated increase in design time and debugging, especially in developing the inter-

face between a host system and the FPGA. Furthermore, the time spent in the 

above process restricts the amount of time which can be spent on dealing with 

higher level issues such as evaluating different algorithms and architectures for 

the system. 

Floating point arithmetic can take advantages on FPGA 

Today, FPGA systems have almost solely used fixed point arithmetic. Al-

though several groups have implemented floating point adders and multipliers 

using FPGA devices [SWA95, LMM+98, JLOl], very few systems employing 

floating point arithmetic have been reported. It is envisaged that FPGA den-

sity has improved to a point where area concerns are becoming less significant, 

and aided by Moore's Law, silicon density will continue to improve at an ex-

ponential rate. It is believed that hardware systems employing floating point 

computations will become increasingly popular as the density of hardware im-

proves, particularly in applications where variables have a very large dynamic 

range, or the designer wishes to avoid the complexity of translating the imple-

mentation to fixed point. 

In this work, an efficient way to implement floating point arithmetic on 

FPGA using flexible architectures will be presented. 
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1.2 Aims 

The objective of this research was to provide a design environment such that 

any algorithm designer, even if not an expert in hardware development, can 

implement their floating point algorithm on the FPGA by using Perl-like lan-

guage to describe their algorithm. The detail research aims are: 

• The designer need not be familiar with hardware description language 

yet can implement the algorithm on the FPGA. 

• The interface between the host and the FPGA board is encapsulated 

such that it hides the details of the host interface from the designer. 

• The designer need not have expertise in the implementation of floating 

point arithmetic. 

• The designer can focus on the algorithm and the implementation is done 

by the system. 

• Any differentiate function can be automatically generated and used in 

the language 

• Design time is greatly reduced since the simulation is done at a very high 

level and the resulting hardware implementation is correct by construc-

tion. ‘ 

1.3 Contributions 

To address the design time issue, a compiler called fly for the translation of 

software descriptions into hardware is developed. The input of fly is a Perl-

like description and it generates synthesizable VHDL for adaption to different 

FPGA and ASIC design tools. In addition, a VHDL Floating Point library was 

designed in which includes an optimizer for determining the minimum floating 
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point precision for each variable to reach some user-specified tradeoff between 

quantization error and circuit size. To enhance its flexibility, arbitrary func-

tions for fixed point arithmetic is supported through table lookup approach. 

To the best of the author's knowledge, the integration of a hardware com-

piler, floating point library, optimizer and table lookup generator, resulting in 

a dedicated development environment is novel. 

Several applications, using fixed point and floating point arithmetic, have 

been developed using the tools. These include the following: 

• Greatest Common Divisor Processor 

• Digital Sine Cosine Generator 

• Ordinary Differential Equation Solver 

• N-Body Problem Simulator 

Compared with previous design systems, the design time required for these 

application is greatly reduced while the error is eliminated by automatic hard-

ware construction. 

1.4 Thesis Organization 

The rest of the thesis is organized as follows. Chapter 2 describes' previous 

work and implementations. Chapter 3 introduces floating point arithmetic. 

In chapter 4, the fly compiler is described. Chapter 5 will discuss the opti-

mization of floating point operations and the related library will be presented. 

The implementation of the table lookup approach and the algorithm will be 

described in chapter 6. Results from experiments using the system will be 

reported in chapter 7. Conclusions will be drawn and further work suggested 

in chapter 8 



Chapter 2 

Background and Literature 

Review 

2.1 Introduction 

This chapter provides some background informations about the thesis. It in-

cludes an introduction to Field Programmable Gate Array (FPGA) technology 

and one of its development languages - VHDL. Then the chapter reviews previ-

ous hardware compilation techniques, construction of floating point arithmetic 

and implementation of functions using the look up table approach. Hard-

ware compilation refers to translation of an algorithm specified in a source 

file into a hardware design. The aim of program translation is to build a 

working environment such that implementation of FPGA application is just 

like software programming, avoiding traditional hardware level descriptions 

completely [Pag96]. . 

2.2 Field Programmable Gate Arrays 

Field Programmable Gate Arrays (FPGA) are an integrated circuits where 

the functionality can be modified in the field after the fabrication. Therefore, 

FPGA can be customized for different application as long as the device itself 
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is complex enough to store the logic. 

A regular FPGA chip consists of an array of logic blocks and routing chan-

nels. I /O pads are attached at the sides of the chip. Both logic blocks and 

routing channels can be reconfigured to handle arbitrarys function and con-

nections respectively. Different FPGA chips have different internal structure 

of logic blocks. 

In this research, the Xilinx Virtex XCVIOOOE FPGA [XilOl] will be used 

unless otherwise specified. The XCVIOOOE contains 6,144 configurable logic 

blocks (CLB). Each logic block contains 4 logic cells and organized in two sim-

ilar slices. The slice can be referred as the primitive component in XCVIOOOE. 

Each slices consists of two 4-input look up tables (LUTs) and two flip-flops. 

XCVIOOOE also provides 96 blocks of on-chip dual-read/write port synchronous 

RAM with 4096 memory cells in each block. The storage element can use for 

data transferring between the host machine and FPGA board and act as tem-

poral storage inside the FPGA. The routing channel is implemented using 

routing matrix which can connect I /O pads, clock signal and general purpose 

logic together. 

2.3 Traditional design flow and VHDL 

Several steps are necessary for implementing customized functions on FPGA 

chips. It is first required to simulate the algorithm in software, construct the 

datapath in hardware, design the control signals for the datapath, simulate 

the datapath and control signals for verification and implement a protocol for 

interfacing between the host and FPGA board. 

Though simulating the algorithm on software is easy for a software designer, 

the remaining stages require extra hardware knowledge to realize the design. 

To construct the datapath, a schematic approach can be used for simple design 

but it may not be practical to implement some real life applications which often 
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involve thousands of logic gates. Therefore, it is necessary to use a hardware 

description language such as VHDL [IEE02] when implementing complex logic 

on the hardware or FPGA. Even though the programming language and hard-

ware description language share some properties like variables versus signal, 

the nature of hardware description language is totally different from program-

ming language. Hardware description language, as the name suggests, is used 

to describe the hardware functionality. Unlike normal programming languages, 

hardware description languages may run several operations in parallel and ex-

plicit specification of the timing is required to make the design work. 

In software designs, the execution sequence of the code is sequential. To 

achieve the same effect in the hardware, control signals and state machines 

can be described using VHDL. To complete the logic design, both datapath 

and state machines must be implemented. Mostly it involves rewriting the 

algorithm in VHDL. 

In order to program the FPGA, a bitstream generated by the design tool 

is required. The VHDL code will be synthesized into a netlist. The netlist will 

contain the representation of the hardware such as the function of each basic 

blocks and the connection between the blocks. The design tool will extract the 

information in the netlist and map the logical blocks and connection to specific 

lookup table and routing matrix respectively. It finally produces a bitstream 

can customize the functionality of the FPGA by writing this information onto 

the chip. 

2.4 Single Description for Hardware-Software 

Systems 

I. Page [Pag96] demonstrated the translation of basic programming constructs, 

including assignment statement, parallel composition, sequential composition, 
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conditional composition and repetitive composition, into hardware. I. Page 

used this architecture to implement a real-time video processing application. 

It is reported that the fully operational, high-bandwidth hardware system was 

constructed by an undergraduate programmer without knowledge of hardware 

as a summer course project. 

M. Ward et al [WA02] proposed a hardware implementation of the Ada 

language that allows accurate timing analysis. It supports standard pro-

gramming statements such as assignment, branching and loop and include 

non-recursive sub-program calls. Two standard parameter-function passing 

techniques, namely pass-by-value and pass-by-reference can be used in this 

language depends on the type of variable. The timing of the produced circuit 

is analyzed accurately and the main application is the real-time systems. 

M A T C H (MATlab Compiler for Heterogeneous computing systems) [BSC+99 

is a compiler project developed at Northwestern University. MATCH takes 

MATLAB descriptions of various embedded systems applications, and auto-

matically maps them on to a configurable computing environment consisting 

of FPGAs, embedded processors and digital signal processors. Among the 

supported function are matrix addition, matrix multiplication and one dimen-

sional FFT, FIR and IIR filters. The code generation of FPGA is a conversion 

to VHDL so branching and assignment is straight forward. A finite state 

machine was developed to control loop statement. A MPEG decoder was de-

veloped using heterogeneous set of resources as a MATCH example. 

2.5 Parameterized Floating Point Arithmetic 

Implementation 

FPGA* technology is desirable for parameterized floating point arithmetic im-

plementation. A. Jaenicke and W.Luk [JLOl] have implemented parameterized 

V 
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floating point adder and multiplier on FPGAs. The design is based on Handel-

C language and the data format is variance of IEEE standard. It's reported 

that the floating point adder can perform 28 MFLOPS for arbitrary sizes of 

fraction and exponent. A 2D Fast Hartley Transform (FHT) processor has 

been developed by using this FPU as basic building blocks and it can perform 

a IK-point transform in 10 /is. 

P. Belanovic et al [BL02] implemented a parameterized floating point li-

brary for use with reconfigurable hardware. It is based on the IEEE 754 

floating point format standard. The library includes addition, subtraction, 

multiplication and conversion between fixed point and floating point numbers. 

All of these modules are specified in VHDL and implemented on the Wild-

star reconfigurable computing engine. They are fully-pipelined and cascadable 

to form pipelines of floating point operations. This library was used to de-

velop a hybrid implementation of the K-means clustering algorithm applied to 

multispectral images. 

2.6 Function Approximations by Table Lookup 

and Addition 

Elementary function approximations are important in scientific computing. 

Lookup table approach is the most common technique for implementing these 

functions since the storage size is increased rapidly in FPGA device recently. 

J, E. Stine and M.J. Schulte [SS99a] have developed a method for computing 

elementary functions using parallel table lookups and multi-input adder. The 

method is suitable for any difFerentiable function and the input range can be 

varied according to specific needs. The latency of the design is low because of 

applying parallelism. 
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2.7 Summary 

In this chapter, different aspects of FPGA design, including applying single 

description for both hardware and software system, floating point arithmetic 

and elementary functions implementation have been reviewed. This thesis 

will apply these techniques to form rapid system prototyping of floating point 

systems. 



Chapter 3 

Floating Point Arithmetic 

3.1 Introduction 

This chapter is an introduction to floating point number arithmetic. Floating 

point algorithms are used frequently in modern applications such as speech 

recognition, image processing and financial engineering because of its ability 

to represent a good approximation to the real numbers. 

The IEEE 754 floating point standard [ANS85] has been widely accepted 

for representing floating point numbers. With this standard, the result and 

the error of each floating point operation can be retained the same even if the 

platform of the computation is changed. 

The floating point arithmetic, including addition, subtraction and multipli-

cation is covered in this chapter. The rounding error imposed by using floating 

point arithmetic will be discussed. The concepts of quantization error between 

IEEE standard and the variant used in this thesis will be introduced. 

3.2 Floating Point Number Representation 

Every real number can be approximated by a floating point number in the 

IEEE 754 standard as long as that number is within specific range. The 

floating point number format is based on scientific notation with limited size 

11 -
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for each field. For a normalized floating point number in the IEEE 754 single 

precision standard where the integer part is always equals to 1, the sign bit is 

1 bit in size. The integer part is omitted as it is always equals to 1. The size 

of fraction part is 23 bit and the size of exponent is 8 bit. The base is always 

equal to 2 and the total size of a single precision floating point number is 32 

bits. In general, an IEEE floating point number F can be expressed as follow: 

F = ( - 1 ) ^ - 1 . / ( 3 . 1 ) 

b = - 1 (3.2) 

Where 5 stands for the sign bit, f stands for the fraction and e stands 

for the biased exponent. In order to express a negative exponent, there is a 

exponent bias b associated with the exponent field. The actual exponent is the 

value of the exponent field minus the bias. The value of bias depends on the 

size of exponent Csize as in equation 3.2. The term significand represents 1./ 

in which integer field and fraction field are packed together. 

For single precision floating point system, the bias is 127 since Csize is 8. If 

the exponent field e is 128, the actual exponent is 128 - 127 = 1. The integer 

field for most numbers is equal to 1 since they are normalized. Denormalized 

numbers are indicated by the exponent being 0. In this case, F = is 

represented. The above floating point format without denormalized numbers 

is used throughout this thesis to represent floating point values with arbitrary 

exponent and fraction sizes. 

3.3 Rounding Error 

There are four rounding modes in the IEEE floating point standard, namely, 

round to nearest, round towards +oo, round towards —oo and round towards 
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zero. The algorithm described above below uses round to zero mode. Under 

this mode, the result shall be the value closest and no greater in magnitude 

than the infinitely precise result. Assuming that the length of precision, in-

cluding the integer field, is p bit, for each of the floating point operations, 

there will be an absolute error less than where e is the exponent after 

the normalization of the resulting value. For example, let p = 3, the result of 

the following floating point addition 

1.01 X 2 ^ 1 . 0 0 X2-3 

= 1 . 0 1 1 X 2° 

« 1.01 X 2° 

will contribute the absolute error of = = 2—3 

As the answer, after normalization, must greater than 2% the relative error 

corresponding to the answer will be smaller than 

Oe-P 
^ = V (3.3) 

= 2 - P (3.4) 

When analyzing the rounding error caused by various formulas, relative 

error is better than absolute error, especially if we need to compare the error 

of certain equation using different value, it can be estimated the relative error 

since it is independent to the given value itself. The relative error is always 

bounded by e, which is referred to as machine epsilon. 

V 
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3.4 Floating Point Number Arithmetic 

In this section, the arithmetic of the floating point number is outlined. It 

focuses on the hardware aspect of the floating point operation using a register 

transfer language (RTL). The descriptions further assumed that it use IEEE 

rounding to zero mode when handle inexact number condition. 

3.4.1 Addition and Subtraction 

Let Fi and F2 represent the two single precision floating point numbers, Fsum 

is the sum of these two numbers and Fminus is F1-F2. As floating point format 

uses a signed-magnitude representation, the equation 

Frmnus 二 厂1 _ (3.5) 

can be rewritten as 

F 爪 , 画 = + (3 .6) 

So this section will deal with the addition algorithm only. Subtraction is a 

variation of addition in which the sign bit of F2 is inverted. 

Let Fi be denoted as (—1 产 . ( 1 + O./i) . where fi and ê - are the 

sign field, fraction field and the exponent field in floating point representation 

respectively and b is the exponent bias. 

The IEEE standard requires that the arithmetic operations, including addi-

tion and multiplication should be computed as if first produced an intermediate 

result correct to infinite precision with unbounded range, and then coerced this 

to fit in the destination's format. However, it is very expensive in terms of the 

intermediate storage size, if the operands differ greatly in size. Assuming that 

p = 3, 1.11 . 210 + 1.00 . 2—2 would be calculated as 
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X = 1.110000000000 .SiG 

y = 0.000000000001 . 

;r + y = 1.110000000001 

which is then rounded to 1.11. It uses 13 bits to store the result which 

is 4 times the numbers of bits. When the difference of exponent is larger, the 

size of intermediate result is larger too. 

Without using infinite precision for the intermediate result, lengthening the 

intermediate result by 2 bits at the right is adequate for obtaining properly 

rounded to zero result. These 2 bits are called guard bit and round bit. The 

guard bit can guarantee the relative rounding error in the result is less then 

2e. The round bit can guarantee the rounding to zero mode is always correct 

GO191]. In general, the sum of Fi and F2 is evaluated as shown in algorithm 1， 

where the symbol # # denotes concatenation of two registers, s“ ê  and fi 

denote the sign field, exponent field and fraction field of the floating point 

number Fi respectively. The algorithm further assumed that it used single 

precision format for Fi and F2. However, with some minor modifications, it 

can be used for arbitrary precision floating point formats. For simplicity, the 

algorithm does not check any special cases such as negative zero, illegal number 

and so on. These cases are handled in the hardware implementation of floating 

point addition. 
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Algorithm 1 Calculate F\ + F2 with floating point arithmetic  
Require: Fi = (si, ei, fi), F2 = (52, 625/2) 

Ensure： F— = (̂ ans, ̂ ans, fans) = Fi + F2 

1： edif f ei- 62 

2: if ediff > 0 then 

3： fa — /I, fb /2, E^ — ediff 

4： else 

5： fa — /2, 

6： /j, / i , 65 f - 2's complement of tdifj 

7： end if 

8: fa — (，’00r##/a), fb f - ”001，，##/6 

9： fb — shift fb right with edij/ bits 

10： if 5a = 1 then 

11: rrria <r- 2's complement of fa 

12： end if 

13： if 56 = 1 then 

14: rrrib 卜 2's complement of fb 

15： end if 

16: ftmp rnia + rrrib 

17： if ftmp is negative then 

18： ftmp ̂  2's complement of ftmp, Sans ^ 1 

19： else 

20： 5ans — 0 

21： end if 

22： find the leading one of ftmp, shift ftmp left until ftmp(rnsb�= 1, 

23: Cans ^ Ga - numbei of bits shift to left, msb is the location of most 

significant bit 

24： omit the integer part, fans = ftmp(jnsb — 1...0) 
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3.4.2 Multiplication 

Multiplication is simpler than addition assuming that the fixed point multiplier 

is provided. The product of F\ and F2, where both Fi and F2 are normalized 

floating point numbers, is evaluated as in algorithm 2. For simplicity, the 

algorithm does not check any special cases such as negative zero, illegal number 

and so on. These cases are handled in the hardware implementation of floating 

point multiplication. 

Algorithm 2 Calculate F\ x F2 with floating point arithmetic  
Require; Fi = (^i, ei,/i), F2 = (^2,625/2) 
Ensure： Fans = {Sans.^ans, fans) = Fi X F2 

1： Sans 51 ® 32 
2： append 1 bit "1" to f i and f � a t left as the hidden integer field 
3： iM—”l，，##/i 
4 : 仍 — ” l ，’# # / 2 
5: do fixed point unsigned multiplication mc f - ul x v2 
6: rei 卜 ei + 62 - 6 
7: shift mc to left until msb of mc is 1 
8： Cs ^ number of bit shifted to left 
9： Cans 卜厂el _ ^s 

10： fans — mc(44…22) 

3.5 Summary 

This chapter described the fundamental concepts of the floating point numbers. 

It introduced various number formats and operations including addition, sub-

traction and multiplication. It further discussed the effect of rounding errors 

for floating point operation. 



Chapter 4 

FLY - Hardware Compiler 

4.1 Introduction 

This chapter describes the implementation details of fly compiler. Fly compiler 

translates a Perl-like algorithm description into synthesizable VHDL code. 

Fly supports most elementary constructs such as conditional branching and 

looping. This chapter begins with the syntax of fly programming language. 

For each constructs, the implementation will be described using a greatest 

common divisor as an example. Summary is given at the end of the chapter. 

4.2 The Fly Programming Language 

The syntax of the fly programming language is modeled on Perl, with exten-

sions for parallel statements and the host/FPGA interface. Table 4.1 shows the 

main elements of the fly language with simple examples. The formal grammar 

definition is in Appendix A. 

Using Perl-like description has its advantages. It facilitates the compatibil-

ity between software simulation and hardware implementation. Any algorithm 

that can be described in fly without using parallel constructs, would be able to 

simulate on Perl by executing the script without any modification. In addition, 

it is easier for designers to learn the fly other than HDL based languages. It 

18 -
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also minimizes the error due to the translation of software simulation version 

to hardware datapath description. 

"Constructs | Elements | Example “ 
assignment var 二 expr; %varl = %tempvar;  

"parallel statement [ { . . . } { . . . } . . . ] — [ { $ “ = $6;} { = $a * $c ; } ] 
expression val op expr; = 贴 . * ĉ； 

valid ops: *,/’+’—，.*，. —，.+ 
while (rel) { . . . } while (%x < %y) { 

$a = $ci + $6;$y = $y + l ; } 
I f i a i ^ if (cond) { . . . } else { . . . } if {%i < = $j) { $a = $6;} 

else {a = c;} 
if (cond) { . . . } if > $j) {$i = + 1；} 

cond expr rel expr � = $c 
valid rels:〉,<，<=,>=，==,! = 

built-in function &readJiost(..) = kreadJiost{2bb)  
comment # comment #this line is comment 

Table 4.1: Main elements of the fly language. 

The fly program for a greatest common divisor (GCD) CO-processor, which 

will be used as an example in the rest of this chapter is given in listing 4.1: 

The program uses most elements of the fly language and system including 

the host interface, while loops, if-else branches, integer arithmetic, parallel 

statements and register assignment. This example will be used in the rest of 

this chapter to illustrate the translation process. • 

4.3 Implementation details 

4.3.1 Compilation Technique 

Programs in the fly language are automatically mapped to hardware by using 

the technique described by Page [Pag96]. The compiler generates synthesizable 

VHDL code instead of a netlist, simplifying code generation and making the 
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Listing 4.1: Greatest Common Divisor  

iR 
2 $s = $din [ 1 ] ; $1 = $ d i n [ 2 ] ; 
3 wh i l e ($s ！ = $1) { 
4 $a = $1 - $s ； 

5 i f ($a > 0) { 
6 $1 = $a; 
7 } 
g 6 1 S G ^ 

9 [ { $ s = $ 1 ; } { $ 1 = $s ; } ] 
10 } 
11 } ‘ 
12 $dout[1] = $1； 

13 } • 

output portable to many different FPGA and ASIC design tools. Furthermore, 

as an intermediate language, VHDL enables the logical optimization of the 

synthesis tool to be included in the design flow. 

In order to facilitate the support of control structures, each statement has 

a start and end signal that specifies temporally when the execution of one 

statement begins and ends. By connecting the start and end signals of ad-

jacent statements together, a one-hot state machine is constructed that serves 

as the control flow of the fly program. 

Fly is written in the Perl programming language [WCOOOJ. Perl is a lan-

guage with very good portability, string handling facilities and libraries. The 

fly system's source code in Appendiex B is made simpler and concise as a re-

sult of using Perl. Development of the fly compiler was also facilitated using 

a parser generator called Parse: :RecDescent [ConOl] which generates a Perl 

based recursive descent parser from a description of the grammar of the target 

language. 
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4.3.2 Statement 

A program is a sequence of statements, each statement being either an as-

signment, sequences of statements to be executed in parallel, if-else，or a while 

loop. Each statement has an associated start and end signal, and a sequence of 

statements is constructed by connecting the individual statement's start and 

end signals together. A statement is said to be enabled if its start signal is 

high during the rising edge of the (global) clock. 

The start signal of the entire program is generated by the host interface. 

For example, the first statement of the GCD program that is enabled is the 

assignment $s = $ d i n [ l ] ；. The end signal of this statement is connected to 

the start signal of the next statement, namely $1 = $din[2] ；. In this case, 

the end signal is generated from the start signal by delaying it one clock cycle 

using a D-type flip flop. 

Eventually, the last statement of the program $dout [1] = $1； will be 

enabled, and after it has been executed (i.e. its end signal is asserted), the 

execution of the program is completed. 

4.3.3 Assignment 

Assignments are implemented simply by asserting the destination register's 

enable signal when its associated statement is enabled. If a variable is the 

target of an assignment from more than one statement, a multiplexer and 

encoder is used to select the according source value. 

For example, if a program has two assignments to the same variable i.e. $1 

= $ a and $1 = $s, and if the associated start and end signals are $ s t a r t l , 

$endl and $start2, $end2 respectively, the circuit in Figure 4.1 is generated. 
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• S - 7 ^ , 
select D Q 

a - ^ > I 
WE 
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startl start2  

Figure 4.1: Circuitry used to handle multiple assignments to the same variable. 
This is the circuit which results from a program with two assignments $l=$a 
and $l=$s. 

4.3.4 Conditional Branch 

If-else statements have both a condition and two statements. The start sig-

nal of the if-else statement is routed to the appropriate block of statements 

depending on the condition. Figure 4.2 shows the resulting circuit for the 

statement i f ($a > 0) . . . e l se . . . . The end signals of both blocks are 

or'd together to produce the end signal of the if-else statement. 

4.3.5 While 

The end signal of a while statement must be conditionally fed back to the start 

signal for the statement block. The circuit corresponding to the while loop in 

the GCD algorithm is shown in Figure 4.3. 

4.3.6 Parallel Statement 

In the GCD example, a parallel statement is used to swap the $s and $1 

variables. As shown in Figure 4.4, each sequential block enclosed by parallel 

brackets [ ] will start execution at the same time. The parallel block will end 

when all sequential blocks give an end signal. A statement will only have an 

active end signal for a single cycle, so flip-flops (labelled "FF" in the figure) 
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start_if start_else 

end_while 
Figure 4.2: Circuitry for if-else 
statements. This is the circuit Figure 4.3: Circuitry for while 
which results from the state- statements. This is the circuit 
ment i f ($a > 0) . . . e l se which results from the state-

ment while ($s ！= $1). 
• • • • 

. . I statement 1 I— ) _ _ N end_parallel 
start_paralle!_ ' ^ _ 

I statement 2 |—^ I 

Figure 4.4: Circuitry for parallel statements. 
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are added to determine when all statements have finished. If all the flip flops 

are set, it indicates the end of the parallel statement and they will be cleared 

at next clock cycle. 

4.4 Development Environment 

4.4.1 From Fly to Bitstream 

Although the interface is easily adaptable to any reconfigurable computing 

card, the fly system currently only supports the Pilchard reconfigurable com-

puting platform [LLC+01]. Pilchard uses a DIMM memory bus interface in-

stead of a conventional PCI bus. The advantage of the memory bus is that it 

acheives much improved latency and bandwidth over the standard PCI bus. 

The translated output of a fly program is interfaced with a generic Pilchard 

core written in VHDL. A shell script, automatically invoked by the fly system, 

includes the libraries and invokes the programs which are required to compile 

the VHDL representation of the user's program to a bitstream. The bitstream 

is also automatically downloaded to the FPGA and the host interface program 

automatically invoked. Thus the entire compilation and execution process are 

hidden from the user. 

4.4.2 Host Interface 

To enhance the flexibility of host/FPGA interface, two interfaces were de-

veloped namely register and BlockRAM approach. Each approach suits for 

certain application. 

Registers can be used to transfer data between the FPGA and host. The 

architecture of host interface is shown in Figure 4.5 In normal operation, the 

host processor would initialize values in $ d i n [ l ] to $din[x ] , and then start 

execution of the FPGA based coprocessor by performing a write cycle to the 
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$din[0] register. The write cycle causes the start signal of the first statement 

in the FPGA to be asserted. The software then polls the least significant bit 

of $din[0] which is connected to the end signal of the last statement. When 

execution on the FPGA finishes, the least significant bit of $din[0] is set 

and the program can read values returned by the hardware by reading the 

appropriate registers. 

By using the register interface, the fly core can be adopted to different 

FPGA and ASIC products. The data can be fetched immediately without 

address decoding cycles inside the FPGA. However, the register approach can-

not support streaming data which is common in DSP design. The number of 

argument passing to the fly core is limited since register will use the resource 

of FPGA cells. 

Another approach to the host/FPGA interface is using the BlockRAM 

XilOl] feature which is available on Xilinx Virtex devices. BlockRAM is dual 

port configured and one side of port is connected to the host bus while the 

other side is connected to the fly core as shown in Figure 4.6. Two built-in 

functions readJiost ( ) and wri teJ iostO are introduced to access the data 

in the BlockRAM. The handshaking is similar to the register approach. The 

address 0 in the BlockRAM is used for handshaking and will trigger the start 

of FPGA coprocessor during a write cycle is issued on address 0. When the 

FPGA finishes the execution, it will return 1 once the host performs a read 

cycle on address 0. 

Since the BlockRAM does not consume the logic resources in the FPGA, 

it has advantages in area and performance over a large number of registers. 

In addition, the interface clock and the core clock can be of different frequen-

cies. This can enhance the flexibility to reach specific design constraints. It is 

possible that the core clcok can run faster then the interface clock when two 

clocks are provided. It also supports data streaming such that the processor 

can provide data to the FPGA and the FPGA can return the result at the 
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Figure 4.5: Circuitry for the host to FPGA interface using register 
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Figure 4.6: Circuitry for the host to FPGA interface using dual-port Block-
RAM 

same time since BlockRAM is dual portted 

4.5 Summary 

In this chapter, the Perl programming language was used to develop, a power-

ful yet simple hardware compiler for FPGA design. Unlike previous compilers, 

fly was designed to be easily modifiable to facilitate research in .hardware lan-

guages and code generation. Since fly is tightly integrated with the hardware 

design tools and implementation platform, designers can operate with a higher 

level of abstraction than they might be accustomed to if they used VHDL. An 

example of a GCD coprocessor was given. Development time was significantly 

reduced since deubgging can be done through the simulation of the program. 



Chapter 5 

Float - Floating Point Design 

Environment 

5.1 Introduction 

With the increasing size of FPGA devices, implementing floating point arith-

metic on FPGAs are now possible. However, as the size of the FPGA is still 

limited, a carefully designed floating point implementation is essential. In 

custom hardware designs, there are always trade-offs between conflicting re-

quirements of performance, area and quantization error to be addressed. For 

example, area can usually be reduced if a larger quantization error is allowed 

for a hand-held application. It would be desirable to allow a program to auto-

matically determine the minimum exponent and fraction sizes required for each 

signal to reach some user-specified quantization error. A floating point library 

called float is presented to enable users to optimize the design. -In addition, a 

library which can generate arbitrary sized floating point adders and multipliers 

was developed to facilitate the FPGA-based floating point applications. 

The first section will discuss the software aspect of this system. An ex-

ample using floating point tools to develop and optimize a digital sine-cosine 

compiler is presented. To generate a arbitrary sized of floating point operator, 

a Perl program has been developed as a VHDL generation module and will be 

27 -



Chapter 5 Float - Floating Point Design Environment 28 ,� 

introduced in Section 5.4. 

5.2 Floating Point Tools 

Float consists of the following modules: 

• A Perl class called float for the representation of floating point num-

bers. Simulation of the effect of low precision floating point operations 

is performed using this class. 

• An optimizer which minimizes a cost function by adjusting the floating 

point format of the float variables in an algorithm function. 

• A VHDL generation module which produces synthesizable VHDL code. 

• float is compatible with fly compiler described in the previous chapter. 

Figure 5.1 illustrates the float design flow. A designer begins by writing 

a Perl function, hereafter referred to as the algorithm function, to represent 

the algorithm to be implemented. All variables used in the algorithm are float 

objects, where float is a Perl class that is capable of representing a floating 

point value under arbitrary precision. The function takes a number of float 

variables as input and produces a number of float variable as the output. 

By varying the precision of the float objects, the optimizer minimizes a cost 

function which is a weighted sum of the quantization error of the outputs of 

the algorithm function and the circuit size of the resulting implementation. In 

order to determine the outputs, a set of test input vectors are required. The 

algorithm function is executed with the test vectors as inputs, float operators 

being used to perform computation. The class computes the result using both 

IEEE double precision and the user-specified precision. These two results are 

then used to compute the quantization error, with an underlying assumption 

that the IEEE double precision result is without quantization error, and the 
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Figure 5.1: Floating point algorithm design flow.-

float precision is less than double precision. Given the precision of a floating 

point operator, the cost function also includes a term which is an estimation 

of the circuit size. 

Once the optimizer has determined a suitable precision for each variable 

in an algorithm function, the same function will pass to fly compiler which 

can output synthesizable VHDL code for implementing the algorithm on the 

FPGA. The precision of variables are provided by the optimizer, the fly sim-

ply instantiates components with the required precision from a floating point 

operator module generator library. 

5.2.1 Float Class 

To describe hardware that utilizes variable precision floating point computa-

tions, a class called float, which facilitates the simulation of arbitrary precision 

floating point arithmetic was developed. Perl is a modern high level program-

ming language which offers improved productivity over traditional languages 

such as C. The following features of Perl were important to the design of the 

float system: 

• Perl supports objects which are used to abstract the details of variable 
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wordlength operators. 

• Perl supports operator overloading so that if x and y are float objects, 

one can write x + y instead of x.add(y). 

« Perl has strong memory management and string manipulation facilities 

making it easy to construct VHDL module generators. 

• Perl is very portable so the float design environment can run on many 

platforms including Unix, Linux and Windows. 

• There are many open source software libraries available for Perl. 

The float object provides several methods for interrogation of its parameters 

and computation. The main ones are: 

• addO , mult ip ly0： 

The addO and mult ip lyO methods will add/multiply two float objects 

together at their specified precision, creating a new float object. If the 

two floating point numbers have a different number of exponent bits, the 

output will have an exponent being the larger one of the two. Similarly, 

if the two numbers have different fraction sizes, the output will have 

fraction bit length equal to the larger one of the two input bit lengths. 

Overloading is used so that the + and * operators will invoke the add() 

and mult ip lyO methods respectively. 

Apart from the arbitrary precision result, another IEEE 754 double pre-

cision floating point calculation is also computed. This value is used as a 

reference value for computing quantization error. Furthermore, the max-

imum and minimum range of this reference value is stored in the object 

for computation of the minimum exponent value which is required. 

»» 
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• setExponentSizeO，setFract ionSizeO: 

The setExponentSizeO， s e t F r a c t i o n S i z e O methods will set the pre-

cision of a float object. For se tFrac t i onS izeO , the value of the object 

will be truncated if the fraction size will be smaller than original. 

• setValueO , getValueO： 

These two methods are used to retrieve and write the value represented 

by the float object. Two values are stored, the IEEE double precision 

reference value, and the arbitrary precision value. 

• getQERRO： 

Both the arbitrary size floating point number and reference double preci-

sion floating point value are stored in the float oh]ect. getQERRO returns 

their difference. 

5.2.2 Optimization 

Although any measure of accuracy could be used, average quantization error, 

QERR, in decibels is used in this dissertation. QERR is computed as follows: 

1 … outi — refi /J, ix 
QERR 20 log ref, (5.1) 

where out,- are the outputs and ref̂  are the corresponding double-precision 

reference outputs. 

The total circuit area is determined by summing the area, estimated for 

each operator. Operator area is estimated from the precision of the float class, 

assuming a Xilinx Virtex-E series FPGA [XilOl]. Although the area estimation 

is based on a specific reconfigurable computing platform, optimization using 

these measures should lead to reasonable area estimates on other platforms. 

The area in Virtex slices [XilOl] occupied by floating point adder is esti-

mated based on the fraction size and exponent size. Nonlinear regression has 
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been applied to model the relation between area and precision using adaptive 

nonlinear least-squares algorithm purposed by J.E. Dennis et al [JGW81]. The 

architecture of floating point adder, as discussed in section 5.4, has linear rela-

tionship of exponent size and fraction size. The initial relationship is modeled 

as follows: 

add_area = a x ebits + 6 x fbits + c (5.2) 

where ebits is the number of exponent bits in the float representation and fbits 

is the number of fraction bits. 

To determine the parameters a, b and c, different precision of floating point 

adders were implemented on FPGA and the slices used was collected as shown 

in chapter 7 which acts as sample data point in the nonlinear regression al-

gorithm. The result was further fine-tuned and the best approximation was 

found that a = 6, 6 = 12 and c = 0. 

Similarly, the area occupied by a floating point multiplier is modeled by the 

equation 5.3, fraction size is contributed large portion of slices because larger 

value of fraction size means larger fixed point multiplier is used. 

mul^rea = a x ebits + 6 x f b i t s �+ c (5.3) 

After applying nonlinear regression algorithm and fine-tuning, the best ap-

proximation was a = 8, 6 = 0.47 and c = 230. 

The cost function is computed from the QERR and circuit area is measured 

using the equation 5.4: 

fcost = q X y ^ add_areai + ^ mul^reaj + 6 x QERR (5.4) 

V i j 
where a and b are non-negative weightings and i and j sum over all the add 

and multiply operators in the algorithm function respectively. 
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The optimizer uses the Nelder-Mead [NM65] method to minimize the cost 

function (without requiring the computation of derivatives) by adjusting the 

precisions of float variables in the algorithm function. The designer can adjust 

a and b in equation 5.4 to weigh the relative importance of area and QERR. 

For example, if the designer needs a very accurate result and circuit area is 

not critical, a large value of b can be used. 

The optimization procedure is outlined as follows: 

1. Change the precisions of float variables (using Nelder-Mead). 

2. Simulate the algorithm function at the specified precision using user-

supplied input data. 

3. Compare the result with the reference result and compute the cost func-

tion. 

4. Repeat until the optimization terminates. 

5.3 Digital Sine-Cosine Generator 

Digital sine-cosine generators [Mit98] have a number of applications, such as 

the computation of discrete Fourier transform and in certain digital commu-

nication systems, such as in future Hiperlan systems [ETS96] for high per-

formance wireless indoor communication. Let and denote the two 

outputs of a digital sine-cosine generator, the outputs at the next sample can 

be computed using the following formula: . 

r "1 r n � -
5ln+l COS(60 COs(6l) + 1 5ln 

= (5.5) 
52^+1 cos(6>) - 1 cos(6') sin 

J L «J L J 
Equation 5.5 will be used as one of the example of float application in this 

chapter, with cos 0 = 0.9. Its algorithm function can be described by the Perl 

code listing 5.1: 
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Listing 5.1: Digital sine cosine generator  
l | $ c o s _ t h e t a = new F l o a t ( 8 , 2 3 , 0 . 9 ) ; 
2 $ c o s _ t h e t a _ p l = new Float (8 , 2 3 , 1 . 9 ) ; 
3 $ cos_ the ta_ml = new Float (8 , 2 3 , —0.1 ) ; 
4 $sl [0] = new F l o a t ( 8 , 23 , 0 ) ; 
5 $s2 [0] = new F l o a t ( 8 , 23 , 1 ) ; 
6 for ( $ i = 0; $i < 50; $ i + + ) { 
7 $sl [ $ i + l ] = $sl [ $ i ] * $ c o s _ t h e t a + $s2 [ $i ] 
8 * $ c o s _ t h e t a _ p 1 ； 

9 $s2 [ $i +1] = $sl [ $i 1 * $ cos_ the ta_ml + $s2 [ $i ] 
10 * $ c o s _ t h e t a ； 

l l [ }  

This algorithm function first declares the variables used via float object 

instantiations, each object being specified to have an 8-bit exponent and a 23-

bit fraction in this example. The initial value of the variable is also defined in 

the float constructor, with 5I and <s2 being initialized to 0 and 1 respectively. 

The update values of si and 52 are derived using the floating point operators 

provided by the float class via overloading. 

This algorithm function can be passed to different components for process-

ing. Normally, a set of input vectors is specified for the algorithm function, but 

since this particular function is an oscillator with no inputs, the time domain 

response is computed via the loop in the algorithm function. 

The simulator can be used to determine the result and the optimizer can 

determine a suitable precision format for each of the five float objects in the al-

gorithm function, which minimizes the following optimization. The inner part 

of the algorithm function can be given to fly compiler to produce VHDL code. 

Finally, the VHDL output can be used for simulation and/or implementation 

on a reconfigurable computing platform. 
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5.4 VHDL Floating Point operator generator 

The module library was implemented in Perl and currently supports two op-

erators, namely multiplication and addition. Thus one can use the module 

library to generate operators with arbitrary precision. Operators are pipelined 

for high throughput. 

5.4.1 Floating Point Multiplier Module 

The Algorithm 2 in chapter 3 was implemented as a VHDL module and the 

corresponding datapath of the parameterized floating point multiplier is shown 

in Figure 5.2 using the mentioned algorithm. It has 4 stages with 8 clock cycles 

pipelining to evaluate the product of the given numbers. 

In the first stage, the steps 1 and 2 are implemented by padding one to the 

fraction to produce the significand and calculating the sign bit using the XOR 

of the sign bits. This stage uses 1 clock cycle. 

In the second stage, steps 3 - 5 are implemented. The significands vl and 

v2 will be multiplied. The most significant bits of the product, ranged from 

2 X fsize - 1 to fsize — 1, where fsize is the size of fraction, is stored to the 

register mc. Since both vl and v2 have leading 1 at most significant bit, the 

leading 1 of mc is at its first two most significant bits. This observation can 

simplify the normalization process as described below. 

The intermediate exponent will be calculated by considering two cases. If 

the leading 1 of mc is located at the most significant bit, mc is a normalized 

number and the final exponent would be el + e2 + 1 — bias. This exponent is 

stored as eel. If the leading I's of mc is located at the next most significant bit, 

mc should be normalized by shifting 1 bit to left, and the exponent would be 

el + e2 — bias. This exponent is stored as ecO. Since at mc is not determined, 

both ecO and eel are stored to save time. Since a fixed point multiplier is 

involved, the latency of this stage is 5 clock cycles. 

»» 
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The third stage does steps 6 - 9 . As mc is evaluated, Cans is determined by 

the most significant bit of mc. The mc will shift left appropriately so that the 

most significant bit of mc is 1. The result of normalization will be stored at 

mcO. This stage takes 1 clock cycle. 

The forth stage implements steps 10. It omits the integer part of mcO 

and stores the remaining fraction as fans and the product is returned. This 

stage uses 1 clock cycle. Extra logic is required to complete the floating point 

multiplier. These logics include zero checking and infinity handling. They 

are omitted in the Figure 5.2 for simplicity but implemented in the module 

generator. • 

5.4.2 Floating Point Adder Module 

The datapath of a parameterized floating point adder/subtractor is shown in 

Figure 5.3 is the hardware implementation of algorithm 1. Similar to floating 

point-multiplier, it has 4 stages to evaluate the product of the given numbers. 

Each stage uses 1 clock cycle. A subtracter is implemented by flipping the 

sign bit of the second operand and is not shown in the figure. 

The first stage implements steps 1 - 7. ediff, which is the difference of ei 

and 62 is calculated and if ediff is negative, / i and fi will be swapped. After 

swapping, Fa is the number with larger exponent and the other one is called 

n. • 
The second stage implements step 8 - 15. The correct significands are 

evaluated from the given fractions, fraction J) will be aligned such that both 

fraction share the same intermediate exponent, namely, exponent—a. The sig-

nificands are not in 2's complement format, so conversion is necessary if the 

corresponding sign bit is set. The intermediate exponent, exponent.a, is prop-

agated to ea2. The intermediate significands are stored in register rrria and 

rrub. 

t» 
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Figure 5.2: Parameterized Floating Point multiplier datapath 
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The third stage does the steps 16 - 21. The significands are added. The 

sum of rnia and rrrib will be stored to register ftmp. The value of ftmp should 

be an unsigned number it is returned. So conversion is necessary if ftmp is 

negative. The sign bit is retrieved from the adder and stored to register sal. 

In addition, the intermediate exponent, which is exponentm, is propagated to 

ea3. 

The last stage, steps 22 - 24, is normalization and rounding. A priority en-

coder is used to determine the location of leading 1 at register ftmp. The final 

exponent, namely Cans, is calculated by Cans = ea3-number of bits shift to left+ 

ebias. fans is obtained by shifting ftmp to left such that the most significand 

bit of ftmp is 1, and the leading one is omitted. Sans is propagated from sal. 

Rounding is a truncation in round to zero mode so it is done implicitly when 

the result is packed in the fans register. 

Like the multiplier, extra logic is required to complete the floating point 

adder. These include zero checking and infinity handling. They are omitted 

in Figure 5.3 for simplicity, but implemented in the module generator. 

5.5 Application to Solving Differential Equa-

tions 

The floating point generation module and fly compiler were used to'solve the 

ordinary differential equation 
学 = o v e r t G [0,3] with y(0) = 1 [MF99；. • 
cLt I* 

The Euler method was used so the evolution of y is computed by yk+i = 

yî  + hSt广2饥、and tk+i = h + h where h is the step size. 

The following fly program implements the scheme, where /i is a parameter 

sent by the host, as shown in listing 5.2. 
In each iteration of the program, the evolution of y is written to the block 

一 
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Listing 5.2: Ordinary Differentiable Equation Solver  

iR ‘ 
2 $h = &read_host ( 1 ) ; #fetch 
3 [ 
4 { $ t = 0 . 0 ; } { $ y = 1 . 0 ; } { $dy = 0 . 0 ; } 
5 {Soneha l f 二 0 . 5 ; } { $index 二 0 ; } 
6 ] # parallel assignment 
7 while ( $ t < 3.0) { 
8 [ { $ t l = $h $onehalf ; } { $t2 = $t . - $y ； } ] 
9 [ { $ d y 二 $t l $ t 2 ; } { $t = $t . + $h ; } ] 
10 [ 
11 {$y = $y . + Sdy ; } 
12 {S index = Sindex + 1 ; } 
13 1 • 
14 $void = & wr i te_host ($y , Sindex )； 

15 #write host 
16 } 
17|}  

RAM via a writeJiostO function call and a floating point format with 1 

sign bit, 8-bit exponent and 23-bit fraction was used throughout. The floating 

point format can, of course, be easily changed. Parallel statements in the main 

loop achieve a 1.43 speedup over a straightforward serial description. 

5.6 Summary 

The float environment for the rapid prototyping of floating point digital system 

was described. These tools enable the designers to concentrate on higher level 

algorithmic issues thus increasing their productivity and being able to explore 

more of the design space in a give time. A digital sine-cosine generator and a 

differentiable equation solver were as an example of using float The module 

geneartor is packaged in Perl so as to allow easy interface with the current 

development tools. 
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The float environment extends the capabiltiy of fly compiler in which float-

ing point operator is now supported. With a single Perl description, the algo-

rithm function can be optimized and implemented using the provided design 

environment with ease. 

¥ 



Chapter 6 

Function Approximation using 

Lookup Table 

This chapter discusses an efficient table lookup generation system for supple-

menting a hardware description language (HDL). In particular, an implementa-

tion of the Symmetric Table Addition Method (STAM) which acts as a module 

generator for any differentiable functions is described. This module generator 

was integrated with fly compiler to produce a very flexible design environment 

which allows the specification of arbitrary functions in a high level manner. 

The environment is used to develop a coprocessor for the computation of the 

N-body problem, and the designer productivity is much higher than a typical 

designer using VHDL. 

6.1 Table Lookup Approximations 

6.1.1 Taylor Expansion 

The main idea behind the table lookup approximation algorithms is the Taylor 

Expansion. If a function f{x) has continuous derivatives up to (n + 1)访 order, 

42 •‘ 
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then it can be expanded as 

二 f / ( % ) (… y 伐 ‘ (6.1) 

i = 0 

where 

Rn = ( > + 1 ) � 
J ̂  

/ ( - , ( … r + 1 for a < e < . 
(n + 1)! 

To reduce the required hardware resources and/or computating time, only 

the first few terms in the Taylor series are used to approximate the function 

in practice. The selection of a will affect the error introduced and a carefully 

selected a can be used to introduce symmetry in the lookup table as explained 

later. 

6.1.2 Symmetric Bipartite Table Method (SBTM) 

The SBTM uses the first two terms of the Taylor series to approximate a 

function f(x) as f(x) [SS97]. In the SBTM, two lookup tables are constructed 

and the precision of the output is maximized. 

Assume that the n-bit input, x, of the function to be approximated ranges 

in [0,1). It is first partitioned into 3 segments as shown in Fig 6.1 where 

X = xo -i- -h X2. 

n • 
-_"o~~»+«~"l 'I' "2~-

Q X q X 1 X 2 

个 个 个 t t 
1 2-1 2-tn, 

Figure 6.1: Input partition of SBTM. 
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The ranges of Xi are: 

0 <Xo < 1 -

0 < < 2 一 打 0 一打 1 — 

Two lookup tables which return the value do and ai are then constructed. 

The sum of these two values will be the approximated result of the function. 

撫—丨—-

f(x) = + . 

a +工1+^2) (6.2) 

We first select mid points in the ranges of Xi and X2： 

= (2-几0 — 2-恥 

— 2 — 71(3 一 1 _ 2 一 打 0 一打 1 一 1 

二 (2 -n� - " i _ 2 - " � - " ^ 2 ) / 2 

— 2 一 几 0 一几1 一 1 一 — T i 2 — 1 

(6.3) 

Let a = XQ + xi 82 and use the first two terms of the Taylor Expansion: 

f{x) = f(xo-^Xi + X2) 

« f{xo + + 82) + f{xo + � + -〜） 

二 /T̂ ) (6.4) 

Not all bits from ai are required to be in the table as the carefully selected 

S2 results in a large number of leading Os or Is in the ai table. Since 62 is 

located in the center of X2̂ s range, 
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� |a :2 -J2|<2 -n� - " i - i (6.5) 

The upper bound of ai is 

< I/'(⑴丨 2 - " � - n i - i (6.6) 

where 

[ 0 , 1 ) 1 /⑷ ( ( ,） > / “ )⑷） . 

6.1.3 Symmetric Table Addition Method (STAM) 

The logic in SBTM is simple and two tables are required. The STAM algorithm 

uses more tables with smaller size to significantly reduce the overall memory 

required [SS99b]. 

As shown in Fig 6.2, the n-bit input is partitioned into m segments instead 

of 3 in SBTM. The input is now x 二 Xi. 

^ _ — n  
< ~ n o ~ H " * " i ~ H K — "m-h—» 

Q X o X i ^ m-1 

M 个 个 

Figure 6.2: Input partition of STAM. 

The ranges of Xi are shown here: 

0 <a:o < 1 - 2 - " 0 

0 < 2一P卜 1 - 2 -P� 

(6.7) 
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where pi = 几知 and 5{ is defined as following: 

5i = ( 2 -巧 - 1 _ 2 - ” / 2 ( 6 . 8 ) 

To apply the Taylor approximation, let the a = Xq Xi X)^ The 

approximation function is now: 
m m m m 

2 2 2 2 
m 

= x i ) + ^ ai-i(xo, Xi) (6.9) 
2 

where 
m 

ai.i{xo, Xi) = f'(xo + 知 + - 5i) 2 <i<m 

2 

The error analysis of STAM is very similar to the SBTM algorithm. The 

constraints for the parameter configuration are: 

2no + ni < P/ + /0 仍(|/"((2)|) (6-10) 

g < 2 + log2{m - 1) (6.11) 

6.1.4 Input Range Scaling 

The analysis above are all based on the input range [0,1). Both SBTM and 

STAM can be adapted to other input ranges. But this requires som^ transfor-

mations when generating the table contents. The transformation is done by 

dividing the input range evenly for all the possible input patterns. 

For an n-bit input x̂  let x be the integer value of the bit pattern assuming 

the decimal point is on the right of the LSB. If the input range is [xmin, ̂ max)̂  

then 

^ —工 min _ ^ 
'•••• • I ^ ^ — — 

^max — ^min 2 

� X = "2 (̂ maa; — ^min) + ^min (6.12) 
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Let this be the transform function t{x). The range of Xi in (6.7) is modified 

as in (6.13): 

Xmin <Xo 

^min ^ ^ 力(2” ——) 

(6.13) 

Let Mi be the maximum value of Xi. The Xi and Si are first transformed 

as in (6.14) before passing to ai to generate the table contents. 

— 2 7 ^ - — ^mm) + ^min “ 
x-v 

— - ^mm) + ^min 

(6.14) 

The transformation must also be applied when analyzing the errors in the 

approximations. 

6.2 VHDL Extension 

To allow for the easy implementation of the STAM algorithm in VHDL de-

signs, simple extension is introduced by making use of the comment section 

inside VHDL code segments as many synthesis tools do for the synthesizing 

directories. A set of preprocessing tools are developed to generate VHDL codes 

using the STAM algorithm. The user includes the name and the body of the 

target function as well as some configuration parameters. The preprocessing 

tools will generate the corresponding VHDL codes of the function using STAM 

algorithm which can be used directly anywhere in the design. The listing 6.1 

demonstrates the instantiation and usage of a sin function in the VHDL source. 

In the example above, the sin function will accept input ranges of [0,1) and 

the input will be partitioned as described in the segments statement. Four 
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Listing 6.1: STAM instantiation  
1 architecture . . . 
2 
LJ • • • 

3 — __STAM-BEGIN一- ‘ 

4 — — m y - f u n c t i o n (x) — Sin (x) 
5 ——range-uiin = 0 
6 ——range-max = 1 
7——segments =各么2 2么 

8 — decimal-point = 16 
9 — --STAM-END--

10 component my_funct ion is port ( 
11 elk : in s t d _ l o g i c ； 

12 X : in s t d - l o g i c . v e c t o r (15 downto 0) ; 
13 f x : out s t d _ l o g i c _ v e c t o r (20 downto 0 ) ) ; 
14 end component ； 

1 5 … 
16 begin 
17 . . . 
18 fO : my_funct ion 
19 port map ( c lk=>clk , x=>x, f x = > f x ) ; . 
20 ... 
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tables will be generated for the 16-bit input. The decimal .point statement 

indicates that decimal point is located at the left side of the most significant 

bit. The output will be ready the after next rising clock edge and will be valid 

as long as the input x is valid. The clock signal is required since synchronous 

RAMs are used to store the contents of the tables. Since the descriptions 

are only inside the comment section, the VHDL code can be processed by 

traditional synthesis tools without modification. 

The VHDL codes are first passed to a preprocessor before going to the 

synthesis stage. A flow chart of the preprocessor is shown in Fig 6.3. First, 

the function extractor extracts the function body in the extended VHDL block 

and passes it to YACAS (YACAS is a public domain software which perform 

symbolic arithmetic operations [Pin03]). YACAS accepts the input function 

to find the symbolic first and second derivatives and passes the results to 

the table generation program. The table generation program uses a stack 

to transform the input strings to a sequence of arithmetic operations and 

generates the content of the lookup tables. These contents will be used in the 

VHDL generator to generate a complete VHDL code using Xilinx BlockRAM 

as the lookup tables. 

With this extension, an arbitrary function can be used in VHDL code 

without any knowledge of the detailed implementation. The default evaluation 

time is 1 clock cycle but this can be easily modified in the generated VHDL 

codes. The only limitation is that the function must be twice differentiable due 

to the Taylor Expansion. As a structural design, this preprocessing method 

can be easily modified to other HDL languages such as Verilog. 

6.3 Floating Point Extension 

In the original STAM algorithm, the input value is considered a fixed point 

number within a predefined range. It is possible to modify the logic such that 
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Extended VHDL 

~ ^ — f(x) = Sin � 

function extraction 

,, Sin(x) 

YACAS scripts 

S i n � 

C o s � 

,丨 - S i n � 

STAM table generation 

table[0][8] = 0087df99 

VHDL Genertor 

STAM table 
VHDL codes 

Figure 6.3: Extended VHDL Preprocessor. 

it can handle specific functions for floating point arithmetic. This section will 

describe this process as used for the development of a floating point coprocessor 

for the N-body problem. • 

The extended fly compiler can use basic floating point operations, such as 

addition, subtraction and multiplication with different precision. Transcen-

dental functions such as square root and exponential are frequently required 

to evaluate the force or acceleration in N-body problem. Such functions can 

be implemented using the modified STAM approach. In this research, v-邮 

was implemented using this approach. 

The STAM is configured to use 4 lookup tables. 
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Range reduction and result correction are necessary in the floating point 

implementation. Consider the IEEE 754 binary floating point number repre-

sentation: 

I； = 1./ X 2' (6.15) 

Then, 

”一 3 / 2 = ( 1 . / X 2 0 ) ( - 3 / 2 ) X ( 2 ( - 3 / 2 ) e ) ( 6 . 1 6 ) 

When e is even, let e = 2N, equation 6.16 becomes: 

” - 3 / 2 = ( 1 . / X 2 0 ) ( - 3 / 2 ) X ( 2 - 3 力 （ 6 . 1 7 ) 

Similarly, if e is odd, let e = 2N + 1, equation 6.16 becomes: 

；̂-3/2 = (1./ X 20)(-3/2) X (2-3力 X (2-3/2) (6.18) 

In both cases, the fraction part can be calculated using STAM with the 

input range [1,2), and the exponent part is shift and add operations. The only 

difference is that if e is odd, the final result should be obtained by multiplying 

a constant 2-3/2. 

IEEE 754 requires normalization of the result from STAM. Since the output 

of STAM 0.354 < v -叩 < 1 for 1 < i; < 2, the location of the leading one must 

lie at either of the two most significant bits. The datapath of the calculation is 

shown in Fig 6.4. Since it supports parameterized size floating point numbers, 

it can generally fit in different FPGA devices. 

To implement the circuit on FPGA, the fly [HLT+02] compiler was used 

to generate synthesizable VHDL code and the Pilchard board [LLC+01] was 

used as the reconfigurable platform. Pilchard uses a DIMM memory bus in-

terface to provide high I /O performance compared to the PCI bus. Fly is used 

because of its efficiency to design a floating point algorithm by using Perl-like 
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descriptions and its handy library which fully supports parameterized floating 

point arithmetic. In addition, the mechanism of the fly compiler allows for easy 

integration of a block such as STAM. The fly compiler was modified such that 

it can handle the .power 15 ( ) function using the built-in function mechanism. 

Due to the limitation of memory available on the FPGA chips, the STAM 

used 16-bit integers as input and the table size is (8, 2, 2, 2, 2). The STAM is 

used to process the function f{x) = x-耶 where I <x <2. After scaling, 0 at 

the input of the STAM stands for 1 according to equation 6.14. Additionally, 

to enhance the efficiency of the STAM and minimize the critical path in the 

STAM, the symmetric property in the lookup table is removed; As the output 

of BlockRAM is 32-bit, the memory usage is 2(8+2) x 4 x 32 = 131072 bits or 

32 BlockRAMs. 

6.4 The N-body Problem 

N-body simulation finds application in various fields of science. A wide range 

of physical systems can be studied by modeling them as an N-Body problem. 

They include problems in various fields of science such as astrophysics and 

molecular biology. The basic idea of the N-Body problem is simple. Particles 

are modeled as points in space. The potential of the system can be expressed 

as a function of the properties and positions of all particles in the system. The 

force exerted on a particle is the first derivative of this potential with respect 

to the position of the particle. The N-body problem for different systems share 

the same basic structure but differ in the physical law that governs the force 

between particles. Therefore, the exact equation for calculating the potential 

and force depends on the application. By integrating the force acting on a 

particle, its position can be computed as a function of time. 

There is no known analytic solution for the N-body problem for N > 

3. Therefore, N-Body problems are solved numerically using simulation in 
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practice. The simulation is performed in discrete time steps. In each time step, 

forces exerted on each particle are computed. The positions of the particles 

are updated at the end of the time step by integrating all forces acted on the 

particle. 

In N-body simulation, most computation time is spent on force calculation. 

The number of interactions between particles grows as 0(72^), where n is the 

number of particles. For large n, the calculation becomes very expensive and 

time consuming. In spite of algorithms that reduced the computation time of 

force calculation at the expense of accuracy, the force calculation remains an 

expensive step and pose a limit on the size of system that can be realistically 

studied. 

Since the force calculation part consumes most of the CPU time, and at the 

same time has a rather simple algorithm, it is a good candidate for hardware ac-

celeration. In fact, this has been done in many systems. Such systems usually 

have a heterogeneous architecture consisting of a general purpose host com-

puter and a special purpose hardware. The special purpose hardware handles 

the force calculation while the host computer handles all other computations. 

Most notable of those is the GRAPE (Gravitational Pipeline) computer for 

the gravitational N-body problem [MT98:. 

The reason for using such architecture is as follows. In a system powered 

by general purposed processors, only a small fraction of the transistors in 

the processor are doing useful work at any moment. The key for GRAPE or 

other such systems to achieve performance orders of magnitude higher than a 

general-purpose system is to utilize almost all of the transistors on the chip at 

any moment. With filled pipelines of the processors for the force calculation, 

almost all of the transistors are performing useful computations at any given 

moment. 
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6.5 Implementation 

In this work, a FPGA based co-processor for evaluating gravitational forces 

in N-body simulations was built using the module generator approach. The 

architecture of the co-processor is similar to the GRAPE-1 system. GRAPE-1 

is the first in a series of specialized processors evaluating gravitational forces or 

acceleration in a gravitational N-body simulation. Equations 6.19, 6.20, 6.21 

show the force evaluation in this system. 

N 

a , = [ � (6-19) 
i=i 

a., = ( X广 + (6.20) 

r l = (x^ - ^Tjf + to - yjY + (zi - (6.21) 

The equations are the same as those implemented in the GRAPE-1 system. 

Eli is the gravitational acceleration at the position of particle i, Xj- is the position 

of vector particle i, rij is the distance between particles i and j and e is the 

artificial potential softening used to suppress the divergence of the force at 

Tij — 0. 

A program written in fly language is used to implement the equation 6.19, 

which is used intensively during the whole calculation as shown in listing 6.2. 

The input of the program is x “ Xj and e while the output is the acceleration 

(aij) for a particular value of Xj. Most of the constructs are parallel in nature 

so that the vector manipulation can be processed simultaneously. For example, 

Xj — Xi can be done at the same time for each scalar in Xj and x^. The fly 

code can used for simulation and verification by directly executing it under 

the Perl environment, which saved time and reduced the error when compared 

with manually translating the algorithm description into VHDL. 

The floating point module supplied by the fly compiler is readily parameterized, 

so the tradeoff between the accuracy and slice resources is adjustable. Different sizes 
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Listing 6.2: Implementation of N-Body Simulation  

2 # initialization , fetch xi , yi , zi 
3 while ( $j < $n) { 
4 # fetch xj , yj , zj from memory 
5 $xj = & r e a d _ h o s t ( $ i n d e x ) ; 
6 Sindex = $index + 1; 
7 $yj = &;read_host (Sindex ) ; 
8 $index = $index + 1 ； 

9 $zj = & r e a d _ h o s t ( $ i n d e x ) ; 
10 $index = Sindex + 2; 
11 [{ S d i f f x = $xj .— $ x i ; } 
12 { $ d i f f y = $yj .— $ y i ; } . 
13 { $ d i f f z = $zj $zi ；}] 

14 [ 
15 {$x 二 $ d i f f x .* $ d i f f x ; } 
16 {$y = S d i f f y $ d i f f y ; } 
17 { $ z = S d i f f z S d i f f z ; } 
18 ] 

19 [ 
20 { $ r l = $x . + $ y ; } 
21 { $ r 2 = $z . + Seps i l on ；} 

22 1 
23 # caculate rij 
24 $ r i j 二 $rl . + $r2 ; 
25 
26 # call b u ilt—in function power ^{ — 1.5} 
27 $tmp2 = &_powerl5 ( $ r i j ) ; 
28 

29 [ {$tmpx = $tmp2 .* $ d i f f x ; } . 
30 {$tmpy = $tmp2 $ d i f f y ; } 
31 {$tmpz = $tmp2 S d i f f z ；}] 

32 [ { $ a x = $ax . + $tmpx; } # accumulate a 
33 {$ay = Say . + $tmpy; } 
34 { $az = $az . + $tmpz ； } ] 
35 $j = $j + 1; 
36 } 
37 $void = & w r i t e _ h o s t (Sax , 6 0 ) ; 
38 $void = w r i t e . h o s t ( Say , 6 1 ) ; 
39 $void = & w r i t e _ h o s t ( $ a z , 6 2 ) ; # write back to host 
40 } 

V 
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of fraction and magnitude can be implemented and the best performance rating can 

be achieved. 

6.6 Summary 

A flexible framework for implementing elementary function using lookup table on 

the FPGA has been introduced in this chapter. Using the STAM algorithm, it can be 

used to generate synthesizable VHDL modules from comments in the VHDL source 

code. This function generator was integrated into the fly environment to extend 

flexibility and efficiency. An N-body problem simulation was implemented on the 

FPGA to demonstrate the power of this framework. Without detailed knowledge 

of the STAM implementation, the N-body core was generated from 45 lines of fly 

source code. This example shows that this framework can be used to solve a real 

world problem with minimum design effort. 

¥ 
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Figure 6.4: Datapath of xT耶 using STAM for floating point arithmetic 



Chapter 7 

Results 

7.1 Introduction 

In this chapter, results of all the experiments described in previous chapters are 

presented. All experiments, unless other specified, were tested on a Pilchard FPGA 

board [LLC+01] and the FPGA chips used was Xilinx XCVlOOOE-6 which contains 

a total of 12,288 slices and 96 BlockRams. This chapter includes the following 

experiments: 

1. GCD coprocessor 

2. Floating point module generator 

3. Digital sine-cosine generator (DSCG) 

4. Ordinary difFerentiable equation solver (ODE) 
\ 

5. N-body problem simulation 

7.2 GCD coprocessor 

The GCD coprocessor design was synthesized for a Xilinx XCV300E-8 and the design 

tools reported a maximum frequency of 126 MHz. The design, including interfacing 

circuitry, occupied 135 out of 3,072 slices. The design time for the GCD processor, 

including host interface was approximately one hour. 

58 " 
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Listing 7.1: GCD Testing program 
l l for (my $i = 0; < Sent ； + ) { 
2 $a = r a n d ( 0 x 7 f f f ) k 0 x 7 f f f ; 
3 $b = r a n d ( 0 x 7 f f f ) h O x T f f f ; 
4 
5 &;p i l chard_wr i te64 (0 , $a , 1 ) ; # write a 
6 & p i l c h a r d _ w r i t e 6 4 (0 , $b , 2 ) ; # write b 
7 & p i l c h a r d _ w r i t e 6 4 (0 , 0 , 0 ) ; # start coprocessor 
8 
9 do { 

10 & p i l c h a r d _ r e a d 6 4 ( $data_hi , $data_ lo , 0 ) ; 
11 } while ( $data_ l o = = 0); # poll for finish 
12 &;pi l chard_read64 ( $data_hi , $data_ lo , 1 ) ; 
13 ‘ 
14 print ( " g cd^Sa , ^ $ b ^ = ^ $ d a t a _ l o \ n " ) ; 
15Q  

The Perl listing 7.1 tests the GCD coprocessor using randomly generated 15-bit 

inputs. The GCD coprocessor was successfully tested at 100 MHz by calling the 

FPGA-based GCD implementation with random numbers and checking the result 

against a software version. The resulting system could compute a GCD every 1.63 //s 

(including all interfacing overheads). 

7.3 Floating Point Module Library 

Different configurations of adders and multipliers were extracted from the module 

library, simulated and synthesized for the Virtex XCVlOOOE-6 FPGA. Table 7.1 is 

a summary of the resource requirements, maximum reported frequency and latency 

for a fixed exponent length of 8 bits and different fraction sizes. The adder is not yet 

fully optimized and the maximum frequency was 40 MHz with a 4 stage pipeline. 

V 
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Table 7.1: Area and speed of the floating point library. 

Fraction Size (bits) Circuit Size (slices) Frequency (MHz) Latency (cycles) 
Multiplication 

~ 7 178 I 103 8 
15 375 102 8 

— 23 598 “ 100 8 
一 31 694 100 8 

Addition 
7 I 120 I 58 I 4 
15 225 — 46 — 4 
23 336 _ 41 4 

— 31 I 455 I 40 I 4 

7.4 Digital sine-cosine generator (DSCG) 

The algorithm function of the sine-cosine generator was simulated by directly exe-

cuting it in Perl. Figure 7.1 shows the resulting double precision reference output. 

The output will be used for evaluating the quantization error for different precision 

configurations. 

Figure 7.2 shows the quantization error of the Float simulation for different 

fraction size, as a function of time. In the simulation, the exponent field was set to 

be large enough to avoid overflow. The maximum exponent value can be determined 

during the simulation of the algorithm. As expected, the error is reduced as the 

number of fractional bits (and hence precision) is increased. 

Figure 7.3 shows the QERR as mentioned in Section 5.2.2 of digital sine-cosine 

generator with a varying number of fraction bits, assuming that the exponent field 

is large enough to avoid overflow. For fraction bits varying from 12 to 40 bits, the 

QERR ranged from -50 to -210 dB. Linear relationship is discovered between QERR 

and fraction size. 

The single precision of digital sine-cosine generator is implemented. The reported 

frequency is 52.4 MHz and consumed 3,470 slices. 
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Figure 7.1: Digital sine-cosine generator reference output. 
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Figure 7.2: Quantization error of the sine-cosine generator for different fraction 
sizes. 
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Figure 7.3: Quantization error for different fraction sizes. 
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Table 7.2: Optimization result using different QERR values where (x,y) are 
the (exponent size, fraction size) in bits. 

" " Q M R I si I S2 I cos⑷ c o s � + 1 c o ^ s⑷-1 

-52 (5,10) (5,12) (5,11) (5,11) (5,12) 
-73 (5,15) (5,14) (5,15) (5,15) (5,16) 
-98 (5,19)言 18) (5,19) 一 (5,19) —(5,20) 
-123 (5,23) (5,23) (5,24) —(5 ,24) 
-148 (5,26) (5,28) (5,27) 一 (5,27)——(5,28) 

-171 (5,31) (5；30̂  (5,31) (5,31) “ (5,32) 
(5,35) (5,33) (5,35) “ (5,36) “ (5,36) 
(5,38) (5,39) (5,38) (5,39) (5,40) 

7.5 Optimization 

By varying the fraction size of the Float objects using the technique described in 

Section 5.2.2, the optimizer can minimize the cost function while maintaining a given 

maximum quantization error. This technique was used to determine the minimum 

area requirements for a given QERR. Table 7.2 shows the optimized number of 

fraction bits and exponent bits for different maximum QERR. As expected, the 

trend for all variables is an increase in wordlength as the QERR requirement is 

increased. 

Figure 7.4 compares the optimized circuit size (which allows variables to have 

different numbers of fractional bits) to a scheme where all variables have the same 

number of fraction bits (i.e. the fixed fraction case). The "Fraction Size" curve was 

made by computing the area of the sine-cosine generator for the case that all variables 

have the fraction size on the x-axis. The "Optimized Circuit Size" curve was made 

by using the fraction size of the x-axis as the starting point for an optimization, with 

the maximum QERR specified to be that of the fixed fraction case. Thus it can be 

seen from the figure that for the same quantization error, a 2% to 5% reduction in 

area is achieved by the optimization process. 

In the sine-cosine generator, all variables require similar precisions. In applica-

tions where variables have widely different precisions, one would expect the scheme 
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Figure 7.4: Area estimation of the fixed fraction and optimized circuits. 

allowing different fractional sizes to offer a much larger improvement in area effi-

ciency. 

7.6 Ordinary Differential Equation (ODE) 

The differential equation solver described in section 5.5 was synthesized for a Xilinx 

XCV300E-8 device and the design tools reported a maximum frequency of 53.9 MHz. 

The design, including interfacing circuitry, occupied 2,439 out of 3,072 slices. The 

outputs shown in Table 7.6 were obtained from the hardware implementation at 

50 MHz using different h values. The resulting system {h = took 28.7 fis for an 

execution including all interfacing overheads. 

7.7 N Body Problem Simulation (Nbody) 

The VHDL code generated by fly compiler which implement n body problem simu-

lation with N = 10 together with the STAM extensions was implemented using the 

design tools and the bitstream is generated. Table 7.7 shows the result of implemen-

tation using different floating point configurations. The number of BlockRAMs was 

always 32 and thus not included in the table. The data used was a NEMO N-body 

snapshot data set [Teu03]. For experimental purposes, N = 10 was used during the 
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tk = = * h = ^ h = ^ y{tk) Exact 
1 .0 1 .0 1 .0 1 .0 1 .0 

0.125 - - - 0.9375 0.940430 0.943239 
0.25 - - 0.875 0.886719 0.892215 0.897491 
0.375 - - - 0.846924 0.854657 0.862087 
0.50 - 0.75 0.796875 0.817429 0.827100 0.836402 
0.75 - - 0.759766 0.786802 0.799566 0.811868 
1.00 0.5 0.6875 0.758545 0.790158 0.805131 0.819592 
1.5 - 0.765625 0.846386 0.882855 0.900240 0.917100 

2.00 0.75 0.949219 1.030827 1.068222 1.086166 1.103638 
2.50 - 1.211914 1.289227 1.325176 1.342538 1.359514 
3.00 1.375 1.533936 1.604252 1.637429 1.653556 1.669390 

Table 7.3: Results generated by the differential equation solver for different 
values of h. 

Table 7.4: The frequency and slices used reported by design tools for N-body 
problem  

Floating Point Configuration Area Frequency QERR 
(exponent size, fraction size) (slices) (MHz) (dB) 

一 （5, 15) 3,523 47.34 -82 _ 
一 （5,23) 5,267 4 4 . 0 7 - 1 0 2 
— (8, 15) _ 3,837 48.92 
— (8, 23) 5,475 44.79 

evaluation of quantization error. 

7.8 Summary 

This chapter presents the area and performance results for all the designs previously 

described. The tradeoff between area and precision are discussed for each experi-

ment. The results are summarized in Table 7.8. The QERR of the GCD example is 

omitted as it does not involve approximations to fractional numbers. The exponent 

size of all the floating point numbers was fixed to 8-bit. 

To implement each design, designer needs to do 2 steps: 

1. Use a Perl-like language (ffy) to describe the algorithm. 
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Problem Name Fraction Size Frequency Area QERR 
(bits) (MHz) (Slices) (dB) 

GOT 16 -
DSCG N = 50 15 78.16 2,300 -81 
DSCG N = 50 23 52.38 3,470 -127 

ODE h = ^ 15 75.74 1,715 -84.8 
ODE h =知 23 64.50 2,495 -134 

l b _ 

Nbody N = 10 15 48.92 3,837 -82 
Nbody N = 10 I 23 44.79 5,475 -102 

Table 7.5: All Experiments Result 

2. Suggest the precision of the floating/fixed point numbers to be used. 

The fly description for all examples was short and easily understandable and it 

can be easily seen that the descriptions are much easier to write and understand 

than corresponding VHDL description. The design environment can generate the 

bitstream suitable for on-board testing. When compared with the traditional design 

flow, a significant amount of time is saved and thus the productivity of the designer 

is increased. To further customize the design, the precision of the floating point 

number can be varied as specified by the designer. The optimizer can help the 

designer to balance the tradeoff between accuracy and area of the hardware via the 

given cost function. 
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Conclusion 

This research purposed a mixture of hardware compilation, module generators, float-

ing point arithmetic and automatic interface generation to improve the the effi-

ciency, productivity and flexibility when implementing the floating point design on 

the FPGA. The framework allows designers to use a programming language to im-

plement a design, automatically generating floating point circuits and elementary 

arithmetic. For the same design, this framework allows the tradeoff of precision 

and area used from a single description. Several applications, such as digital sine 

cosine generator, greatest common divisor coprocessor, ordinary difFerentiable equa-

tion solver and N-body problem simulator have been developed using this approach. 

The key issues of this research are highlighted as below. 

Integration of programming language and FPGA 

Using the same programming language for describing the algorithm and imple-

menting on FPGA design can benefit designers in several ways. The algorithm can 

be verified and simulated by executing the code under a software environment. The 

translation and optimization process are done by the tools and the designer can 

concentrate on the higher level in details. This methodology greatly reduces design 

time and achieves rapid system prototyping. Design errors can be reduced compare 

with the traditional design flows since the translation is done automatically instead 

of manually porting the algorithm into datapath and control components. 

Software programming and hardware designs being treated as distinct entities 

remain an obstacle to developing a FPGA based system. The design goal of fly 
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and float is the bridge between these two entities in a way that a software program 

can be translated into a hardware implementation. Using these tools, the designer 

can reuse the software code, optimize the hardware resources used and perform 

on-board testing without additional effort. The time required to implement floating 

point algorithms on FPGA can be significantly reduced. With ever increasing device 

densities, this design methodology should become even more attractive in the future. 

Floating point/Elementary arithmetic on FPGAs 

This dissertation discussed the possibility of connecting a floating point algo-

rithm description to a hardware. When the floating point algorithm on the reconfig-

urable computing platform, using arbitrary length of operator is now possible such 

that the tradeoff between circuit size and the accuracy can be varied. Thus the de-

signer can choose the best performance rating by providing a suitable cost function 

and the optimizer can return the best configuration for each of the floating point 

operator. 

Elementary functions can be automatically generated using lookup tables. These 

act like a flexible mathematical library in software. It enhances the flexibility since 

the designer does not need to implement every elementary function from scratch. 

The automatic function generator saves the design time and extra hardware knowl-

edge is not required to build any elementary function. 

By combining all of these module generators, the implementation of floating 

point design in reconfigurable computing platform is made simpler. It allows wide 

range of applications, such as scientific simulation, equation solver, DSP design, to 

be implemented as a FPGA based coprocessor. It also benefits the HDL design flow 

because floating point arithmetic is available as a synthesizable VHDL module. Any 

HDL design can easily interface with the floating point operator. 

Adapt to different architectures 

Fly generates VHDL code since it is generally available to different reconfigurable 

computing platform. Therefore, even though the design environment is now targeted 

for the Pilchard board, it can be ported to different reconfigurable computing plat-

forms such as other FPGA products or even ASICs with only slight modification. 

In addition, HDL output enables further optimization on different FPGA platform 
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using the corresponding design tools. 

Fly is a modifiable compiler which can be able to produce code for different 

HDLs, program proving tools, and programming languages. Having an easily un-

derstandable and easily modifiable compiler allows for the easy integration of the 

fly language to many other tools. The integration of fly language was introduced. 

For example, new host interface mechanism, floating point arithmetic and arbitrary 

function generation is extended from the basic fly environment. 

8.1 Future Work 

There are several possibilities for improvements to the system. The compiler pro-

duces only one-hot state machines which may be inefficient in certain cases. The 

state machine can be different and not limited to a certain implementation. The re-

sulting datapath is not fully utilized, and the operators are idle most of the time. It 

would be desirable if the coding strategy let the datapath share hardware resources 

for some operation. This coding strategy thus can save area if it is critical for certain 

application. The parallelism must now be implemented by the user. It would be 

better if the compiler itself can detect the dependency to reorganize the datapath 

in which the parallelism can be achieved automatically. However, it is believed that 

the benefits in productivity and flexibility that could be gained from this approach 

outweighs the cons. 

The compiler in Appendix B generates a bit parallel implementation but, for 

example, if a digit serial operator library were available, it could be easily modified 

to use digit serial arithmetic. Similarly, both fixed point and floating point imple-

mentations of the same algorithm could be generated from the same fly description. 

In the future, we will experiment with different code generation strategies. Many 

designs could be developed from the same program, and different fly based code 

generators could serve to decouple the algorithmic descriptions from the back-end 

implementation. In the case of using a digit serial library, users could select the 

digit size, or produce a number of implementations and choose the one which best 

meets their area/time requirements. 
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Finally, the elementary function generator is a fixed point one and floating point 

functions was implemented by the designer. This process could conceivably be fur-

ther automated to produce an automatic floating point elementary function gener-

ator. 
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Fly Formal Grammar 

program = statement Jist .. 

statement Jist = statement |，，{，’ statement (s)，，}，’ 

parallel-Statement = “ [“ statement (s)，，]，， 

statement = comment | assignment | ifelse | if 丨 while 丨 paralleLstatement | func-

tion _call 

assignment = variable ,’=’，expression，’；，， 

expression = value operator expression | value 

operator = "*" |，，/” |，,+” |，，-,，| ”.+，，| ,，.-” | ”.*,， 

value = INTEGER | variable 

variable = "$" LETTER | "$" LETTER DIGIT 

while = "while" ” (，，condition ")" statmentJist 

ifelse = "if，,(，，condition ")" statmentJist "else" statmentJist 

if = " i f "(" condition ")" statmentJist • 

condition = expression relation expression 

relation =">"丨，，<，,丨，’<=，，丨 ’ , � = ” | ”！=’，丨，，==’， . 

function—call = variable ,’=,’ function—name ”(，，variable Jist ’，)’，，，;，， 

function-name = "readJiost" | "write_host" | ".power 15" 

variable-list = value，，’’’ variableJist | value 

comment = ” # ” ANYTHING 
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Original Fly Source Code 

package main; downto 1〉）； 

use Parse::RecDescent; end arith_core； 

architecture rtl of arith_core is; 

my $grammar = q { EOF 

{ my ($seq, $comb, $aux, $paux, $s, '/.sigs)= ； 

(•_._，"", 0, 0, "signal"); } 

foreach my $k (keys ‘/.sigs) { 

prog: stmtlist /"$/ { if ($sigs{$k}) { 

print « E O F print "$s $k :\t w o r d s ( $ s i g s { $ k }“. 

library ieee; "downto 0);\n" 

use ieee.std_logic_l164.all； if ！($k eq "din") 

use ieee.std_logic_arith.all； and ！($k eq "dout")； 

package hc_pack is ； } 

subtype word is integer； else { 

type words is array(integer print "$s $k :\t word; \n"； 

range <>) of word; } 

end hc_pack; } 

for (my $i=l; $i<$aux; $i++) { 

library ieee; print "$s s$i, f$i :\t boolean;“; 

use ieee.std_logic_1164.all; print “--std_logic;\n"； 

use ieee.std_logic_arith.all； }； 

use work.hc_pack.all； for (my $i=l； $i<=$paux; $i++) { 

print "$s p$i, q$i :\t boolean;“； 

print “―std_logic;\n"; 

entity arith.core is }； 

port( 

elk: in std_logic; print "$s s$item[l], f$item[l] :\t boolean;"； 

rst: in std_logic; print "~std_logic ;\nbegin —architecture\n"; 

start: in std一logic; print “ s$item[l] <= TRUE when start='l'"； 

din : in words( $sigs{din} ； print "else FALSE ；~start;\n finish <= ,1，"； 

downto 1)； print "when f$item[l] else '0'; ~f$item[l];\n"; 

finish: out std_logic; print "process(clk)\nbegin\n"； 

dout: out words( $sigs{dout} ； print "if rising一edge(clk) then\n"; 
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print $seq; $aux; 

print "end if ;\nend process; \n__; } 

print “--combinational part\n$comb"； 

print "end rtl;\n"; asgn: var ，=’ expr ';' { 

} $aux = $aux + 1； 

$seq .= "if s$aux then\n\t"； 

stmtlist: stmt | ，{， stmt(s) '}' { $seq .= "$item[l] <= $item[3];\n"; 

my $fst_in = shift(®{$itera[2]}); $seq •= "end if;\n"; 

my $int_in = $fst_in; $seq .= "f$aux <= s$aux; \n\n__; 

$aux += 1 ； $aux; 

$comb .= "s$int_in <= s$aux; \n"； } 

foreach $int_in (®-[$item[2]}) { 

$comb .= "s$int_in <= f$fst.in;\n" ; expr: val op expr { "$item[l] $item[2] $item[3]" } I val 

$fst_in = $int_in; 

} op: I ，/, I ，+， I ’-， 

$comb .= "f$aux <= f$fst.in;\n"; 

$aux; val: /\d+/ I var 

} 
var: A$[a-z][\w\[\]]*/ { 

stmt: asgn 丨 ifelse I if 丨 while $item[l] =" s/-\$//; 

I pstmtlist I <error> my $sig = $item[l]； 

$sig =- s/\[(\d+)\]//; 

pstmtlist: '[‘ 8tmtlist(s) ，]， { $sigs{"$sig"} = ($sigs{"$sig"} && ($sigs{"$sig"} > $ 1 ) ) 

$aux += 1; ？ $sigs{"$sig"} : $1; 

my $int_in; $item[l] =" t r A [ \ ] A ( \ ) / ; 

my Splist = ()； $item[l]； 

foreach $int_in (@{$item[2]}) { } 

$comb .= sprintf("s'/.d <= s'/.d;\n", 

$int_in, $aux)； while: ，while， ，（， cond ，）， stratlist { 

$paux += 1； $aux += 1； 

push (®plist, $paux)； $comb .= "s$item[5] <= ($item[3]) and “. 

"(s$aux or f$item[5j);\n"; 

$seq •= "if f$aux then --pstmtlist\n\t"； $comb .= "f$aux <= (not ($item[3])) and “. 

$seq •= "q$paux <= false;\n"; "(s$aux or f$item[5]);\n"; 

$seq .= "else\n\t"; $aux; “ 

$seq .= "q$paux <= p$paux； \n"; } 

$seq .= "end if; \n"; 

ifelse: ' i f '(' cond ，）， stmtlist ，else， stmtlist { 

$comb .= "p$paux <= f$int_in or q$paux;\n"; $aux += 1; 

} $comb .= "s$item[5] <= ($item[3]〉 and s$aux;\n"; 

my $pend = "f$aux <= p" • $comb .= "s$item[7] <= (not ($item[3])) and s$aux;\n"; 

j o i n C and p" , ®plist) $comb .= "f$aux <= f$item[5] or f$item[7];\n"; 

.“；--pstmt end\n"； $aux； 

$comb .= Spend; } 

w 



Appendix B Original Fly Source Code 73 

i f : ' i f ，（， cond ，）’ s t m t l i s t { 

$aux += 1； 

$comb .= "s$itein[5] <= ($item[3]) and s$aux;\n"; 

$comb .= "f$aux <= (not ($item[3]) and s$aux) or f$itera[5]；\n"; 

$aux; 

} 

cond: expr rel expr { "$item[l] $item[2] $item[3]" > 

r e l : '>» I ,<， I ,<=，I ，>=, I ‘ ！ = ' { __/=_• } I，==, { "=" } 

v a r l i s t : v a r ，，' v a r l i s t { " $ i t e m [ l ] $ i t e r a [ 3 ] " } I v a r 

}； . 

$::RD_HINT = 0; 

$::RD_AUTOACTION = q { $item[l] }; 

my Sparser = Parse: :RecDescent->ne*j($grainmar) 

or die "Bad grammar"； 

l o c a l $ / ; 

my $ s c r i p t = <>； 

my $tree = $parser->prog($script) or die "Bad script"； 
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