
Automatic Synthesis and Optimization of
Floating Point Hardware

Ho Chun Hok

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of •

Master of Philosophy

in

Department of Computer Science k Engineering

©The Chinese University of Hong Kong

July, 2003

The Chinese University of Hong Kong holds the copyright of this thesis. Any

person(s) intending to use a part or the whole of the materials in this thesis

in a proposed publication must seek copyright release from the Dean of the

Graduate School.

2 9 胸 ra) | |

\S^BfiARY SYSTEMXW

Automatic Synthesis and Optimization
of Floating Point Hardware

submitted by

Ho Chun Hok

for the degree of Master of Philosophy

at the Chinese University of Hong Kong

Abstract

This thesis presents a methodology for designing floating point and fixed point

systems on FPGA platforms by means of a programming language. A com-

piler, fly, floating point library, float and arbitrary function module generator,

were developed for the rapid system prototyping research, fly takes a Perl-like

program as input and produces a synthesizable VHDL description of a one-hot

state machine and the associated datapath elements as output. Furthermore,

it is tightly integrated with the hardware design environment and implemen-

tation platform, and is able to hide issues associated with these tools from

user. The float library consists of a floating point class for the simulation of

quantization effects associated with high precision floating point operators, an

optimizer which can automatically determine the minimal number of exponent

and fraction bits required for a specified degree of accuracy, and a parameter-

ized floating point library which can generate floating point operators with

arbitrary precision. The function generator can generate any one-operand

function and is compatible with the fly compiler. The systems was used to

prototype an FPGA based greatest common divisor (GCD) coprocessor, dig-

ital sine-cosine generator, a dedicated circuit for solving ordinary differential

11

equation (ODE), and a simulation model for the N-Body problem. By com-

bining these design tools, the time and knowledge required for a designer to

implement a floating point algorithm in hardware can be greatly reduced.

iii ^

浮點運算硬件的自動生成及優化

何循學

香港中文大學

計算機卿與工程學課程

哲學硬士論文

2 0 0 3 年 7 月

摘要 •

本論文展示了一個以编程語言爲手段去設計現埸可编程門陣列平台上的浮點和

定點系統。爲了研究快速系統原型化，我們開發了编譯器(/^力，浮點程式康

{float)，及任意函數模塊產生器�fly接受類似Perl的编程語言作爲輸入，並產生

一個以VHDL作爲描述的one-hot狀態機和相應的數據通道。再者，它與硬件設

計環境和實施平台緊密結合，讓使用者能略過硬件設計工具的使用問題。Float
程式庫包括了一個可以模擬高精度浮點運算的量化效果的浮點數類及一個可以

自動判定在特定準確度要求下的指數和分數部份的最少位元的優化器，和一個

可以生成任意精確度浮點運算子的參數化的浮點數程式庫。函數產生器可以產

生任何一元操作符的函數及可以與 f ly编釋器兼容。此系統可用來製作基於現埸

可编程門陣列的最大公約數協處理器的原型，數字式正弦-餘弦產生器，解決一

般微分方程的專門電路和一個N體問題模擬模型°通過結合這些設計工具，在

硬件上實施浮點演算法時’可大大減少對設計者的時間和知識要求。

IV

Acknowledgment

Many people have contributed to my education through their guidance and

support in my graduate school years. I especially wish to thank my final year

project and Master degree supervisor, Dr. Philip Leong for his suggestion and

ideas on research. He also reviewed my manuscript carefully. This dissertation

cannot be done without his help and support.

I would like to acknowledge Dr. P. Zipf, Mr. R. Ludewig and Mr. A. G. Or-

tiz of Institute of Microelectronic Systems, Darmstadt University of Technolgy

for the development of the fly compiler project. They provided the embryo of

fly compiler so that I can extend from their work.

Thanks must be given to Mr. K. H. Tsoi, who assisted me in debugging

various host interface used in this thesis. He also reviewed my Chinese abstract

thoroughly

I would like to thank my colleagues. In particular, Mr. Y. H. Cheung, Mr.

C. W. Sham, Mr. Y. M. Lam, Mr. C. L. Yuen, Mr. K. Y. Tong and F. Wu

for their assistance and support.

Finally, I would like to thank my parents for their love, warmth and en-

couragement.

IV

Contents

Abstract ii

Acknowledgement v

1 Introduction 1

1.1 Motivation 1

1.2 Aims 3

1.3 Contributions 3

1.4 Thesis Organization 4

2 Background and Literature Review 5

2.1 Introduction 5

2.2 Field Programmable Gate Arrays 5

2.3 Traditional design flow and VHDL 6

2.4 Single Description for Hardware-Software Systems 7

2.5 Parameterized Floating Point Arithmetic Implementation 8

2.6 Function Approximations by Table Lookup and Addition 9

2.7 Summary 10

3 Floating Point Arithmetic 11

3.1 Introduction 11

3.2 Floating Point Number Representation 11

3.3 Rounding Error 12

M VI

3.4 Floating Point Number Arithmetic 14

3.4.1 Addition and Subtraction 14

3.4.2 Multiplication 17

3.5 Summary 17

4 FLY - Hardware Compiler 18

4.1 Introduction 18

4.2 The Fly Programming Language 18

4.3 Implementation details 19

4.3.1 Compilation Technique 19

4.3.2 Statement 21

4.3.3 Assignment 21

4.3.4 Conditional Branch 22

4.3.5 While 22

4.3.6 Parallel Statement 22

4.4 Development Environment 24

4.4.1 From Fly to Bitstream 24

4.4.2 Host Interface 24

4.5 Summary 26

5 Float - Floating Point Design Environment 27

5.1 Introduction 27

5.2 Floating Point Tools 28

5.2.1 Float Class 29

5.2.2 Optimization 31

5.3 Digital Sine-Cosine Generator 33

5.4 VHDL Floating Point operator generator 35

5.4.1 Floating Point Multiplier Module 35

5.4.2 Floating Point Adder Module 36

5.5 Application to Solving Differential Equations 38

vii ^

5.6 Summary 40

6 Function Approximation using Lookup Table 42

6.1 Table Lookup Approximations 42

6.1.1 Taylor Expansion 42

6.1.2 Symmetric Bipartite Table Method (SBTM) 43

6.1.3 Symmetric Table Addition Method (STAM) 45

6.1.4 Input Range Scaling 46

6.2 VHDL Extension 47

6.3 Floating Point Extension 49

6.4 The N-body Problem 52

6.5 Implementation 54

6.6 Summary 56

7 Results 58

7.1 Introduction 58

7.2 GCD coprocessor 58

7.3 Floating Point Module Library 59

7.4 Digital sine-cosine generator (DSCG) 60

7.5 Optimization 62

7.6 Ordinary Differential Equation (ODE) 63

7.7 N Body Problem Simulation (Nbody) . 63

7.8 Summary 64

8 Conclusion 66

8.1 Future Work 68

A Fly Formal Grammar 70

B Original Fly Source Code 71

viii ^

Bibliography 74

； „ ； 。 •

ix ^

List of Tables

4.1 Main elements of the fly language 19

7.1 Area and speed of the floating point library 60

7.2 Optimization result using different QERR values where (x,y)

are the (exponent size, fraction size) in bits 62

7.3 Results generated by the differential equation solver for different

values of h 64

7.4 The frequency and slices used reported by design tools for N-

body problem 64

7.5 All Experiments Result 65

X -

List of Figures

4.1 Circuitry used to handle multiple assignments to the same vari-

able. This is the circuit which results from a program with two

assignments $l=$a and $l=$s 22

4.2 Circuitry for if-else statements. This is the circuit which results

from the statement i f ($a > 0) . . . e l se 23

4.3 Circuitry for while statements. This is the circuit which results

from the statement while ($s ！= $1) 23

4.4 Circuitry for parallel statements 23

4.5 Circuitry for the host to FPGA interface using register 26

4.6 Circuitry for the host to FPGA interface using dual-port Block-

RAM 26

5.1 Floating point algorithm design flow 29

5.2 Parameterized Floating Point multiplier datapath 37

5.3 Parameterized Floating Point adder datapath 39

6.1 Input partition of SBTM 43

6.2 Input partition of STAM 45

6.3 Extended VHDL Preprocessor 50

6.4 Datapath of ” 部 using STAM for floating point arithmetic . • 57

7.1 Digital sine-cosine generator reference output 61

xi ^

7.2 Quantization error of the sine-cosine generator for different frac-

tion sizes 61

7.3 Quantization error for different fraction sizes 61

7.4 Area estimation of the fixed fraction and optimized circuits. . . 63

xii ^

Chapter 1

Introduction

1.1 Motivation

Traditional development method for FPGA is complex

In the standard field programmable gate array (FPGA) based prototyping

methodology, algorithms are first developed in programming languages such

as C on a personal computer or workstation using floating point arithmetic.

When the system is later implemented in hardware, a fixed point version of the

algorithm is derived from the floating point version and then translated into

a hardware design in a hardware description language such as VHDL. Finally,

the design is synthesized for a field programmable gate array (FPGA) based

prototyping environment where it can be tested.

However, it is found that using a HDL based design methodology results

in low productivity compared with software development with programming

language because of the following issues:

• Hardware designs are parallel in nature while most of the people think

in sequential patterns

• The standard technique of decomposing a hardware design into datapath

and controls adds complexity to the task

1 -

Chapter 1 Introduction 2 -

• Designers must develop a hardware interface for the FPGA board as well

as a software/hardware interface between a host system and the FPGA

• Elementary functions are not supported and designer needs to build op-

erations like reciprocal, log and sin from primitive operations before the

design can actually begin

The above issues significantly increase the design complexity, with associ-

ated increase in design time and debugging, especially in developing the inter-

face between a host system and the FPGA. Furthermore, the time spent in the

above process restricts the amount of time which can be spent on dealing with

higher level issues such as evaluating different algorithms and architectures for

the system.

Floating point arithmetic can take advantages on FPGA

Today, FPGA systems have almost solely used fixed point arithmetic. Al-

though several groups have implemented floating point adders and multipliers

using FPGA devices [SWA95, LMM+98, JLOl], very few systems employing

floating point arithmetic have been reported. It is envisaged that FPGA den-

sity has improved to a point where area concerns are becoming less significant,

and aided by Moore's Law, silicon density will continue to improve at an ex-

ponential rate. It is believed that hardware systems employing floating point

computations will become increasingly popular as the density of hardware im-

proves, particularly in applications where variables have a very large dynamic

range, or the designer wishes to avoid the complexity of translating the imple-

mentation to fixed point.

In this work, an efficient way to implement floating point arithmetic on

FPGA using flexible architectures will be presented.

Chapter 1 Introduction 16 -

1.2 Aims

The objective of this research was to provide a design environment such that

any algorithm designer, even if not an expert in hardware development, can

implement their floating point algorithm on the FPGA by using Perl-like lan-

guage to describe their algorithm. The detail research aims are:

• The designer need not be familiar with hardware description language

yet can implement the algorithm on the FPGA.

• The interface between the host and the FPGA board is encapsulated

such that it hides the details of the host interface from the designer.

• The designer need not have expertise in the implementation of floating

point arithmetic.

• The designer can focus on the algorithm and the implementation is done

by the system.

• Any differentiate function can be automatically generated and used in

the language

• Design time is greatly reduced since the simulation is done at a very high

level and the resulting hardware implementation is correct by construc-

tion. ‘

1.3 Contributions

To address the design time issue, a compiler called fly for the translation of

software descriptions into hardware is developed. The input of fly is a Perl-

like description and it generates synthesizable VHDL for adaption to different

FPGA and ASIC design tools. In addition, a VHDL Floating Point library was

designed in which includes an optimizer for determining the minimum floating

Chapter 1 Introduction 4 -

point precision for each variable to reach some user-specified tradeoff between

quantization error and circuit size. To enhance its flexibility, arbitrary func-

tions for fixed point arithmetic is supported through table lookup approach.

To the best of the author's knowledge, the integration of a hardware com-

piler, floating point library, optimizer and table lookup generator, resulting in

a dedicated development environment is novel.

Several applications, using fixed point and floating point arithmetic, have

been developed using the tools. These include the following:

• Greatest Common Divisor Processor

• Digital Sine Cosine Generator

• Ordinary Differential Equation Solver

• N-Body Problem Simulator

Compared with previous design systems, the design time required for these

application is greatly reduced while the error is eliminated by automatic hard-

ware construction.

1.4 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 describes' previous

work and implementations. Chapter 3 introduces floating point arithmetic.

In chapter 4, the fly compiler is described. Chapter 5 will discuss the opti-

mization of floating point operations and the related library will be presented.

The implementation of the table lookup approach and the algorithm will be

described in chapter 6. Results from experiments using the system will be

reported in chapter 7. Conclusions will be drawn and further work suggested

in chapter 8

Chapter 2

Background and Literature

Review

2.1 Introduction

This chapter provides some background informations about the thesis. It in-

cludes an introduction to Field Programmable Gate Array (FPGA) technology

and one of its development languages - VHDL. Then the chapter reviews previ-

ous hardware compilation techniques, construction of floating point arithmetic

and implementation of functions using the look up table approach. Hard-

ware compilation refers to translation of an algorithm specified in a source

file into a hardware design. The aim of program translation is to build a

working environment such that implementation of FPGA application is just

like software programming, avoiding traditional hardware level descriptions

completely [Pag96]. .

2.2 Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGA) are an integrated circuits where

the functionality can be modified in the field after the fabrication. Therefore,

FPGA can be customized for different application as long as the device itself

5 -

Chapter 2 Background and Literature Review 6 •�

is complex enough to store the logic.

A regular FPGA chip consists of an array of logic blocks and routing chan-

nels. I /O pads are attached at the sides of the chip. Both logic blocks and

routing channels can be reconfigured to handle arbitrarys function and con-

nections respectively. Different FPGA chips have different internal structure

of logic blocks.

In this research, the Xilinx Virtex XCVIOOOE FPGA [XilOl] will be used

unless otherwise specified. The XCVIOOOE contains 6,144 configurable logic

blocks (CLB). Each logic block contains 4 logic cells and organized in two sim-

ilar slices. The slice can be referred as the primitive component in XCVIOOOE.

Each slices consists of two 4-input look up tables (LUTs) and two flip-flops.

XCVIOOOE also provides 96 blocks of on-chip dual-read/write port synchronous

RAM with 4096 memory cells in each block. The storage element can use for

data transferring between the host machine and FPGA board and act as tem-

poral storage inside the FPGA. The routing channel is implemented using

routing matrix which can connect I /O pads, clock signal and general purpose

logic together.

2.3 Traditional design flow and VHDL

Several steps are necessary for implementing customized functions on FPGA

chips. It is first required to simulate the algorithm in software, construct the

datapath in hardware, design the control signals for the datapath, simulate

the datapath and control signals for verification and implement a protocol for

interfacing between the host and FPGA board.

Though simulating the algorithm on software is easy for a software designer,

the remaining stages require extra hardware knowledge to realize the design.

To construct the datapath, a schematic approach can be used for simple design

but it may not be practical to implement some real life applications which often

Chapter 2 Background and Literature Review 7 •�

involve thousands of logic gates. Therefore, it is necessary to use a hardware

description language such as VHDL [IEE02] when implementing complex logic

on the hardware or FPGA. Even though the programming language and hard-

ware description language share some properties like variables versus signal,

the nature of hardware description language is totally different from program-

ming language. Hardware description language, as the name suggests, is used

to describe the hardware functionality. Unlike normal programming languages,

hardware description languages may run several operations in parallel and ex-

plicit specification of the timing is required to make the design work.

In software designs, the execution sequence of the code is sequential. To

achieve the same effect in the hardware, control signals and state machines

can be described using VHDL. To complete the logic design, both datapath

and state machines must be implemented. Mostly it involves rewriting the

algorithm in VHDL.

In order to program the FPGA, a bitstream generated by the design tool

is required. The VHDL code will be synthesized into a netlist. The netlist will

contain the representation of the hardware such as the function of each basic

blocks and the connection between the blocks. The design tool will extract the

information in the netlist and map the logical blocks and connection to specific

lookup table and routing matrix respectively. It finally produces a bitstream

can customize the functionality of the FPGA by writing this information onto

the chip.

2.4 Single Description for Hardware-Software

Systems

I. Page [Pag96] demonstrated the translation of basic programming constructs,

including assignment statement, parallel composition, sequential composition,

Chapter 2 Background and Literature Review 8 .�

conditional composition and repetitive composition, into hardware. I. Page

used this architecture to implement a real-time video processing application.

It is reported that the fully operational, high-bandwidth hardware system was

constructed by an undergraduate programmer without knowledge of hardware

as a summer course project.

M. Ward et al [WA02] proposed a hardware implementation of the Ada

language that allows accurate timing analysis. It supports standard pro-

gramming statements such as assignment, branching and loop and include

non-recursive sub-program calls. Two standard parameter-function passing

techniques, namely pass-by-value and pass-by-reference can be used in this

language depends on the type of variable. The timing of the produced circuit

is analyzed accurately and the main application is the real-time systems.

M A T C H (MATlab Compiler for Heterogeneous computing systems) [BSC+99

is a compiler project developed at Northwestern University. MATCH takes

MATLAB descriptions of various embedded systems applications, and auto-

matically maps them on to a configurable computing environment consisting

of FPGAs, embedded processors and digital signal processors. Among the

supported function are matrix addition, matrix multiplication and one dimen-

sional FFT, FIR and IIR filters. The code generation of FPGA is a conversion

to VHDL so branching and assignment is straight forward. A finite state

machine was developed to control loop statement. A MPEG decoder was de-

veloped using heterogeneous set of resources as a MATCH example.

2.5 Parameterized Floating Point Arithmetic

Implementation

FPGA* technology is desirable for parameterized floating point arithmetic im-

plementation. A. Jaenicke and W.Luk [JLOl] have implemented parameterized

V

Chapter 2 Background and Literature Review 9 •�

floating point adder and multiplier on FPGAs. The design is based on Handel-

C language and the data format is variance of IEEE standard. It's reported

that the floating point adder can perform 28 MFLOPS for arbitrary sizes of

fraction and exponent. A 2D Fast Hartley Transform (FHT) processor has

been developed by using this FPU as basic building blocks and it can perform

a IK-point transform in 10 /is.

P. Belanovic et al [BL02] implemented a parameterized floating point li-

brary for use with reconfigurable hardware. It is based on the IEEE 754

floating point format standard. The library includes addition, subtraction,

multiplication and conversion between fixed point and floating point numbers.

All of these modules are specified in VHDL and implemented on the Wild-

star reconfigurable computing engine. They are fully-pipelined and cascadable

to form pipelines of floating point operations. This library was used to de-

velop a hybrid implementation of the K-means clustering algorithm applied to

multispectral images.

2.6 Function Approximations by Table Lookup

and Addition

Elementary function approximations are important in scientific computing.

Lookup table approach is the most common technique for implementing these

functions since the storage size is increased rapidly in FPGA device recently.

J, E. Stine and M.J. Schulte [SS99a] have developed a method for computing

elementary functions using parallel table lookups and multi-input adder. The

method is suitable for any difFerentiable function and the input range can be

varied according to specific needs. The latency of the design is low because of

applying parallelism.

Chapter 2 Background and Literature Review 10 •�

2.7 Summary

In this chapter, different aspects of FPGA design, including applying single

description for both hardware and software system, floating point arithmetic

and elementary functions implementation have been reviewed. This thesis

will apply these techniques to form rapid system prototyping of floating point

systems.

Chapter 3

Floating Point Arithmetic

3.1 Introduction

This chapter is an introduction to floating point number arithmetic. Floating

point algorithms are used frequently in modern applications such as speech

recognition, image processing and financial engineering because of its ability

to represent a good approximation to the real numbers.

The IEEE 754 floating point standard [ANS85] has been widely accepted

for representing floating point numbers. With this standard, the result and

the error of each floating point operation can be retained the same even if the

platform of the computation is changed.

The floating point arithmetic, including addition, subtraction and multipli-

cation is covered in this chapter. The rounding error imposed by using floating

point arithmetic will be discussed. The concepts of quantization error between

IEEE standard and the variant used in this thesis will be introduced.

3.2 Floating Point Number Representation

Every real number can be approximated by a floating point number in the

IEEE 754 standard as long as that number is within specific range. The

floating point number format is based on scientific notation with limited size

11 -

Chapter 3 Floating Point Arithmetic 12 ��

for each field. For a normalized floating point number in the IEEE 754 single

precision standard where the integer part is always equals to 1, the sign bit is

1 bit in size. The integer part is omitted as it is always equals to 1. The size

of fraction part is 23 bit and the size of exponent is 8 bit. The base is always

equal to 2 and the total size of a single precision floating point number is 32

bits. In general, an IEEE floating point number F can be expressed as follow:

F = (- 1) ^ - 1 . / (3 . 1)

b = - 1 (3.2)

Where 5 stands for the sign bit, f stands for the fraction and e stands

for the biased exponent. In order to express a negative exponent, there is a

exponent bias b associated with the exponent field. The actual exponent is the

value of the exponent field minus the bias. The value of bias depends on the

size of exponent Csize as in equation 3.2. The term significand represents 1./

in which integer field and fraction field are packed together.

For single precision floating point system, the bias is 127 since Csize is 8. If

the exponent field e is 128, the actual exponent is 128 - 127 = 1. The integer

field for most numbers is equal to 1 since they are normalized. Denormalized

numbers are indicated by the exponent being 0. In this case, F = is

represented. The above floating point format without denormalized numbers

is used throughout this thesis to represent floating point values with arbitrary

exponent and fraction sizes.

3.3 Rounding Error

There are four rounding modes in the IEEE floating point standard, namely,

round to nearest, round towards +oo, round towards —oo and round towards

Chapter 3 Floating Point Arithmetic 13 .�

zero. The algorithm described above below uses round to zero mode. Under

this mode, the result shall be the value closest and no greater in magnitude

than the infinitely precise result. Assuming that the length of precision, in-

cluding the integer field, is p bit, for each of the floating point operations,

there will be an absolute error less than where e is the exponent after

the normalization of the resulting value. For example, let p = 3, the result of

the following floating point addition

1.01 X 2 ^ 1 . 0 0 X2-3

= 1 . 0 1 1 X 2°

« 1.01 X 2°

will contribute the absolute error of = = 2—3

As the answer, after normalization, must greater than 2% the relative error

corresponding to the answer will be smaller than

Oe-P
^ = V (3.3)

= 2 - P (3.4)

When analyzing the rounding error caused by various formulas, relative

error is better than absolute error, especially if we need to compare the error

of certain equation using different value, it can be estimated the relative error

since it is independent to the given value itself. The relative error is always

bounded by e, which is referred to as machine epsilon.

V

Chapter 3 Floating Point Arithmetic 14 ��

3.4 Floating Point Number Arithmetic

In this section, the arithmetic of the floating point number is outlined. It

focuses on the hardware aspect of the floating point operation using a register

transfer language (RTL). The descriptions further assumed that it use IEEE

rounding to zero mode when handle inexact number condition.

3.4.1 Addition and Subtraction

Let Fi and F2 represent the two single precision floating point numbers, Fsum

is the sum of these two numbers and Fminus is F1-F2. As floating point format

uses a signed-magnitude representation, the equation

Frmnus 二 厂1 _ (3.5)

can be rewritten as

F 爪 , 画 = + (3 .6)

So this section will deal with the addition algorithm only. Subtraction is a

variation of addition in which the sign bit of F2 is inverted.

Let Fi be denoted as (—1 产 . (1 + O./i) . where fi and ê - are the

sign field, fraction field and the exponent field in floating point representation

respectively and b is the exponent bias.

The IEEE standard requires that the arithmetic operations, including addi-

tion and multiplication should be computed as if first produced an intermediate

result correct to infinite precision with unbounded range, and then coerced this

to fit in the destination's format. However, it is very expensive in terms of the

intermediate storage size, if the operands differ greatly in size. Assuming that

p = 3, 1.11 . 210 + 1.00 . 2—2 would be calculated as

Chapter 3 Floating Point Arithmetic 15 ��

X = 1.110000000000 .SiG

y = 0.000000000001 .

;r + y = 1.110000000001

which is then rounded to 1.11. It uses 13 bits to store the result which

is 4 times the numbers of bits. When the difference of exponent is larger, the

size of intermediate result is larger too.

Without using infinite precision for the intermediate result, lengthening the

intermediate result by 2 bits at the right is adequate for obtaining properly

rounded to zero result. These 2 bits are called guard bit and round bit. The

guard bit can guarantee the relative rounding error in the result is less then

2e. The round bit can guarantee the rounding to zero mode is always correct

GO191]. In general, the sum of Fi and F2 is evaluated as shown in algorithm 1，

where the symbol # # denotes concatenation of two registers, s“ ê and fi

denote the sign field, exponent field and fraction field of the floating point

number Fi respectively. The algorithm further assumed that it used single

precision format for Fi and F2. However, with some minor modifications, it

can be used for arbitrary precision floating point formats. For simplicity, the

algorithm does not check any special cases such as negative zero, illegal number

and so on. These cases are handled in the hardware implementation of floating

point addition.

Chapter 3 Floating Point Arithmetic 16 ��

Algorithm 1 Calculate F\ + F2 with floating point arithmetic
Require: Fi = (si, ei, fi), F2 = (52, 625/2)

Ensure： F— = (̂ ans, ̂ ans, fans) = Fi + F2

1： edif f ei- 62

2: if ediff > 0 then

3： fa — /I, fb /2, E^ — ediff

4： else

5： fa — /2,

6： /j, / i , 65 f - 2's complement of tdifj

7： end if

8: fa — (，’00r##/a), fb f - ”001，，##/6

9： fb — shift fb right with edij/ bits

10： if 5a = 1 then

11: rrria <r- 2's complement of fa

12： end if

13： if 56 = 1 then

14: rrrib 卜 2's complement of fb

15： end if

16: ftmp rnia + rrrib

17： if ftmp is negative then

18： ftmp ̂ 2's complement of ftmp, Sans ^ 1

19： else

20： 5ans — 0

21： end if

22： find the leading one of ftmp, shift ftmp left until ftmp(rnsb�= 1,

23: Cans ^ Ga - numbei of bits shift to left, msb is the location of most

significant bit

24： omit the integer part, fans = ftmp(jnsb — 1...0)

Chapter 3 Floating Point Arithmetic 30 ��

3.4.2 Multiplication

Multiplication is simpler than addition assuming that the fixed point multiplier

is provided. The product of F\ and F2, where both Fi and F2 are normalized

floating point numbers, is evaluated as in algorithm 2. For simplicity, the

algorithm does not check any special cases such as negative zero, illegal number

and so on. These cases are handled in the hardware implementation of floating

point multiplication.

Algorithm 2 Calculate F\ x F2 with floating point arithmetic
Require; Fi = (^i, ei,/i), F2 = (^2,625/2)
Ensure： Fans = {Sans.^ans, fans) = Fi X F2

1： Sans 51 ® 32
2： append 1 bit "1" to f i and f � a t left as the hidden integer field
3： iM—”l，，##/i
4 : 仍 — ” l ，’# # / 2
5: do fixed point unsigned multiplication mc f - ul x v2
6: rei 卜 ei + 62 - 6
7: shift mc to left until msb of mc is 1
8： Cs ^ number of bit shifted to left
9： Cans 卜厂el _ ^s

10： fans — mc(44…22)

3.5 Summary

This chapter described the fundamental concepts of the floating point numbers.

It introduced various number formats and operations including addition, sub-

traction and multiplication. It further discussed the effect of rounding errors

for floating point operation.

Chapter 4

FLY - Hardware Compiler

4.1 Introduction

This chapter describes the implementation details of fly compiler. Fly compiler

translates a Perl-like algorithm description into synthesizable VHDL code.

Fly supports most elementary constructs such as conditional branching and

looping. This chapter begins with the syntax of fly programming language.

For each constructs, the implementation will be described using a greatest

common divisor as an example. Summary is given at the end of the chapter.

4.2 The Fly Programming Language

The syntax of the fly programming language is modeled on Perl, with exten-

sions for parallel statements and the host/FPGA interface. Table 4.1 shows the

main elements of the fly language with simple examples. The formal grammar

definition is in Appendix A.

Using Perl-like description has its advantages. It facilitates the compatibil-

ity between software simulation and hardware implementation. Any algorithm

that can be described in fly without using parallel constructs, would be able to

simulate on Perl by executing the script without any modification. In addition,

it is easier for designers to learn the fly other than HDL based languages. It

18 -

Chapter 4 FLY - Hardware Compiler 19 ��

also minimizes the error due to the translation of software simulation version

to hardware datapath description.

"Constructs | Elements | Example “
assignment var 二 expr; %varl = %tempvar;

"parallel statement [{ . . . } { . . . } . . .] — [{ $ “ = $6;} { = $a * $c ; }]
expression val op expr; = 贴 . * ĉ；

valid ops: *,/’+’—，.*，. —，.+
while (rel) { . . . } while (%x < %y) {

$a = $ci + $6;$y = $y + l ; }
I f i a i ^ if (cond) { . . . } else { . . . } if {%i < = $j) { $a = $6;}

else {a = c;}
if (cond) { . . . } if > $j) {$i = + 1；}

cond expr rel expr � = $c
valid rels:〉,<，<=,>=，==,! =

built-in function &readJiost(..) = kreadJiost{2bb)
comment # comment #this line is comment

Table 4.1: Main elements of the fly language.

The fly program for a greatest common divisor (GCD) CO-processor, which

will be used as an example in the rest of this chapter is given in listing 4.1:

The program uses most elements of the fly language and system including

the host interface, while loops, if-else branches, integer arithmetic, parallel

statements and register assignment. This example will be used in the rest of

this chapter to illustrate the translation process. •

4.3 Implementation details

4.3.1 Compilation Technique

Programs in the fly language are automatically mapped to hardware by using

the technique described by Page [Pag96]. The compiler generates synthesizable

VHDL code instead of a netlist, simplifying code generation and making the

Chapter 4 FLY - Hardware Compiler 20 -

Listing 4.1: Greatest Common Divisor

iR
2 $s = $din [1] ; $1 = $ d i n [2] ;
3 wh i l e ($s ！ = $1) {
4 $a = $1 - $s ；

5 i f ($a > 0) {
6 $1 = $a;
7 }
g 6 1 S G ^

9 [{ $ s = $ 1 ; } { $ 1 = $s ; }]
10 }
11 } ‘
12 $dout[1] = $1；

13 } •

output portable to many different FPGA and ASIC design tools. Furthermore,

as an intermediate language, VHDL enables the logical optimization of the

synthesis tool to be included in the design flow.

In order to facilitate the support of control structures, each statement has

a start and end signal that specifies temporally when the execution of one

statement begins and ends. By connecting the start and end signals of ad-

jacent statements together, a one-hot state machine is constructed that serves

as the control flow of the fly program.

Fly is written in the Perl programming language [WCOOOJ. Perl is a lan-

guage with very good portability, string handling facilities and libraries. The

fly system's source code in Appendiex B is made simpler and concise as a re-

sult of using Perl. Development of the fly compiler was also facilitated using

a parser generator called Parse: :RecDescent [ConOl] which generates a Perl

based recursive descent parser from a description of the grammar of the target

language.

Chapter 4 FLY - Hardware Compiler 21 ��

4.3.2 Statement

A program is a sequence of statements, each statement being either an as-

signment, sequences of statements to be executed in parallel, if-else，or a while

loop. Each statement has an associated start and end signal, and a sequence of

statements is constructed by connecting the individual statement's start and

end signals together. A statement is said to be enabled if its start signal is

high during the rising edge of the (global) clock.

The start signal of the entire program is generated by the host interface.

For example, the first statement of the GCD program that is enabled is the

assignment $s = $ d i n [l] ；. The end signal of this statement is connected to

the start signal of the next statement, namely $1 = $din[2] ；. In this case,

the end signal is generated from the start signal by delaying it one clock cycle

using a D-type flip flop.

Eventually, the last statement of the program $dout [1] = $1； will be

enabled, and after it has been executed (i.e. its end signal is asserted), the

execution of the program is completed.

4.3.3 Assignment

Assignments are implemented simply by asserting the destination register's

enable signal when its associated statement is enabled. If a variable is the

target of an assignment from more than one statement, a multiplexer and

encoder is used to select the according source value.

For example, if a program has two assignments to the same variable i.e. $1

= $ a and $1 = $s, and if the associated start and end signals are $ s t a r t l ,

$endl and $start2, $end2 respectively, the circuit in Figure 4.1 is generated.

Chapter 4 FLY - Hardware Compiler 22 ��

• S - 7 ^ ,
select D Q

a - ^ > I
WE

>

startl start2

Figure 4.1: Circuitry used to handle multiple assignments to the same variable.
This is the circuit which results from a program with two assignments $l=$a
and $l=$s.

4.3.4 Conditional Branch

If-else statements have both a condition and two statements. The start sig-

nal of the if-else statement is routed to the appropriate block of statements

depending on the condition. Figure 4.2 shows the resulting circuit for the

statement i f ($a > 0) . . . e l se The end signals of both blocks are

or'd together to produce the end signal of the if-else statement.

4.3.5 While

The end signal of a while statement must be conditionally fed back to the start

signal for the statement block. The circuit corresponding to the while loop in

the GCD algorithm is shown in Figure 4.3.

4.3.6 Parallel Statement

In the GCD example, a parallel statement is used to swap the $s and $1

variables. As shown in Figure 4.4, each sequential block enclosed by parallel

brackets [] will start execution at the same time. The parallel block will end

when all sequential blocks give an end signal. A statement will only have an

active end signal for a single cycle, so flip-flops (labelled "FF" in the figure)

Chapter 4 FLY - Hardware Compiler 23 ��

start_while s I

,/ z
start a 0 V ^ ^ / f T .

\ / Comparator

Comparator /- ‘

1 V
‘ ‘ start_while_block • 1

I N n I statement |
I end 一 while—block 上

V V ^ ^
start_if start_else

end_while
Figure 4.2: Circuitry for if-else
statements. This is the circuit Figure 4.3: Circuitry for while
which results from the state- statements. This is the circuit
ment i f ($a > 0) . . . e l se which results from the state-

ment while ($s ！= $1).
• • • •

. . I statement 1 I—) _ _ N end_parallel
start_paralle!_ ' ^ _

I statement 2 |—^ I

Figure 4.4: Circuitry for parallel statements.

Chapter 4 FLY - Hardware Compiler 24 ��

are added to determine when all statements have finished. If all the flip flops

are set, it indicates the end of the parallel statement and they will be cleared

at next clock cycle.

4.4 Development Environment

4.4.1 From Fly to Bitstream

Although the interface is easily adaptable to any reconfigurable computing

card, the fly system currently only supports the Pilchard reconfigurable com-

puting platform [LLC+01]. Pilchard uses a DIMM memory bus interface in-

stead of a conventional PCI bus. The advantage of the memory bus is that it

acheives much improved latency and bandwidth over the standard PCI bus.

The translated output of a fly program is interfaced with a generic Pilchard

core written in VHDL. A shell script, automatically invoked by the fly system,

includes the libraries and invokes the programs which are required to compile

the VHDL representation of the user's program to a bitstream. The bitstream

is also automatically downloaded to the FPGA and the host interface program

automatically invoked. Thus the entire compilation and execution process are

hidden from the user.

4.4.2 Host Interface

To enhance the flexibility of host/FPGA interface, two interfaces were de-

veloped namely register and BlockRAM approach. Each approach suits for

certain application.

Registers can be used to transfer data between the FPGA and host. The

architecture of host interface is shown in Figure 4.5 In normal operation, the

host processor would initialize values in $ d i n [l] to $din[x] , and then start

execution of the FPGA based coprocessor by performing a write cycle to the

Chapter 4 FLY - Hardware Compiler 25 ��

$din[0] register. The write cycle causes the start signal of the first statement

in the FPGA to be asserted. The software then polls the least significant bit

of $din[0] which is connected to the end signal of the last statement. When

execution on the FPGA finishes, the least significant bit of $din[0] is set

and the program can read values returned by the hardware by reading the

appropriate registers.

By using the register interface, the fly core can be adopted to different

FPGA and ASIC products. The data can be fetched immediately without

address decoding cycles inside the FPGA. However, the register approach can-

not support streaming data which is common in DSP design. The number of

argument passing to the fly core is limited since register will use the resource

of FPGA cells.

Another approach to the host/FPGA interface is using the BlockRAM

XilOl] feature which is available on Xilinx Virtex devices. BlockRAM is dual

port configured and one side of port is connected to the host bus while the

other side is connected to the fly core as shown in Figure 4.6. Two built-in

functions readJiost () and wri teJ iostO are introduced to access the data

in the BlockRAM. The handshaking is similar to the register approach. The

address 0 in the BlockRAM is used for handshaking and will trigger the start

of FPGA coprocessor during a write cycle is issued on address 0. When the

FPGA finishes the execution, it will return 1 once the host performs a read

cycle on address 0.

Since the BlockRAM does not consume the logic resources in the FPGA,

it has advantages in area and performance over a large number of registers.

In addition, the interface clock and the core clock can be of different frequen-

cies. This can enhance the flexibility to reach specific design constraints. It is

possible that the core clcok can run faster then the interface clock when two

clocks are provided. It also supports data streaming such that the processor

can provide data to the FPGA and the FPGA can return the result at the

Chapter 4 FLY - Hardware Compiler 26 ��

address bus i
data bus — i a

write enable -———i T "

o令 一 p Q �
, , >lin1 � I

-—-J — _如 WE •俄

• J� * FLY core
Address j
Decoder | l ^ o o 令

n >Jin2
I~» wt >

Figure 4.5: Circuitry for the host to FPGA interface using register

data bus —^― i
writ* enable

" r ^ Port A

] I Z Z d a t a b w FLY core

^ddmw but
PortB ^

(w r l l f _
>

Figure 4.6: Circuitry for the host to FPGA interface using dual-port Block-
RAM

same time since BlockRAM is dual portted

4.5 Summary

In this chapter, the Perl programming language was used to develop, a power-

ful yet simple hardware compiler for FPGA design. Unlike previous compilers,

fly was designed to be easily modifiable to facilitate research in .hardware lan-

guages and code generation. Since fly is tightly integrated with the hardware

design tools and implementation platform, designers can operate with a higher

level of abstraction than they might be accustomed to if they used VHDL. An

example of a GCD coprocessor was given. Development time was significantly

reduced since deubgging can be done through the simulation of the program.

Chapter 5

Float - Floating Point Design

Environment

5.1 Introduction

With the increasing size of FPGA devices, implementing floating point arith-

metic on FPGAs are now possible. However, as the size of the FPGA is still

limited, a carefully designed floating point implementation is essential. In

custom hardware designs, there are always trade-offs between conflicting re-

quirements of performance, area and quantization error to be addressed. For

example, area can usually be reduced if a larger quantization error is allowed

for a hand-held application. It would be desirable to allow a program to auto-

matically determine the minimum exponent and fraction sizes required for each

signal to reach some user-specified quantization error. A floating point library

called float is presented to enable users to optimize the design. -In addition, a

library which can generate arbitrary sized floating point adders and multipliers

was developed to facilitate the FPGA-based floating point applications.

The first section will discuss the software aspect of this system. An ex-

ample using floating point tools to develop and optimize a digital sine-cosine

compiler is presented. To generate a arbitrary sized of floating point operator,

a Perl program has been developed as a VHDL generation module and will be

27 -

Chapter 5 Float - Floating Point Design Environment 28 ,�

introduced in Section 5.4.

5.2 Floating Point Tools

Float consists of the following modules:

• A Perl class called float for the representation of floating point num-

bers. Simulation of the effect of low precision floating point operations

is performed using this class.

• An optimizer which minimizes a cost function by adjusting the floating

point format of the float variables in an algorithm function.

• A VHDL generation module which produces synthesizable VHDL code.

• float is compatible with fly compiler described in the previous chapter.

Figure 5.1 illustrates the float design flow. A designer begins by writing

a Perl function, hereafter referred to as the algorithm function, to represent

the algorithm to be implemented. All variables used in the algorithm are float

objects, where float is a Perl class that is capable of representing a floating

point value under arbitrary precision. The function takes a number of float

variables as input and produces a number of float variable as the output.

By varying the precision of the float objects, the optimizer minimizes a cost

function which is a weighted sum of the quantization error of the outputs of

the algorithm function and the circuit size of the resulting implementation. In

order to determine the outputs, a set of test input vectors are required. The

algorithm function is executed with the test vectors as inputs, float operators

being used to perform computation. The class computes the result using both

IEEE double precision and the user-specified precision. These two results are

then used to compute the quantization error, with an underlying assumption

that the IEEE double precision result is without quantization error, and the

Chapter 5 Float - Floating Point Design Environment 29 ,�

Floating-Point
Algorithm

Use Float Class to \
implement the algontbrfi Suggest the required size

^ y d accuracy constraints

' ~ Float Class V

I
Cost Function • Optimizer \

Compiler
Float Tools I ^ 1 � • • •

^ Z Simulator J

. Z
Synthesizable

VHDL code

Figure 5.1: Floating point algorithm design flow.-

float precision is less than double precision. Given the precision of a floating

point operator, the cost function also includes a term which is an estimation

of the circuit size.

Once the optimizer has determined a suitable precision for each variable

in an algorithm function, the same function will pass to fly compiler which

can output synthesizable VHDL code for implementing the algorithm on the

FPGA. The precision of variables are provided by the optimizer, the fly sim-

ply instantiates components with the required precision from a floating point

operator module generator library.

5.2.1 Float Class

To describe hardware that utilizes variable precision floating point computa-

tions, a class called float, which facilitates the simulation of arbitrary precision

floating point arithmetic was developed. Perl is a modern high level program-

ming language which offers improved productivity over traditional languages

such as C. The following features of Perl were important to the design of the

float system:

• Perl supports objects which are used to abstract the details of variable

Chapter 5 Float - Floating Point Design Environment 30 ..

wordlength operators.

• Perl supports operator overloading so that if x and y are float objects,

one can write x + y instead of x.add(y).

« Perl has strong memory management and string manipulation facilities

making it easy to construct VHDL module generators.

• Perl is very portable so the float design environment can run on many

platforms including Unix, Linux and Windows.

• There are many open source software libraries available for Perl.

The float object provides several methods for interrogation of its parameters

and computation. The main ones are:

• addO , mult ip ly0：

The addO and mult ip lyO methods will add/multiply two float objects

together at their specified precision, creating a new float object. If the

two floating point numbers have a different number of exponent bits, the

output will have an exponent being the larger one of the two. Similarly,

if the two numbers have different fraction sizes, the output will have

fraction bit length equal to the larger one of the two input bit lengths.

Overloading is used so that the + and * operators will invoke the add()

and mult ip lyO methods respectively.

Apart from the arbitrary precision result, another IEEE 754 double pre-

cision floating point calculation is also computed. This value is used as a

reference value for computing quantization error. Furthermore, the max-

imum and minimum range of this reference value is stored in the object

for computation of the minimum exponent value which is required.

»»

Chapter 5 Float - Floating Point Design Environment 31 ,�

• setExponentSizeO，setFract ionSizeO:

The setExponentSizeO， s e t F r a c t i o n S i z e O methods will set the pre-

cision of a float object. For se tFrac t i onS izeO , the value of the object

will be truncated if the fraction size will be smaller than original.

• setValueO , getValueO：

These two methods are used to retrieve and write the value represented

by the float object. Two values are stored, the IEEE double precision

reference value, and the arbitrary precision value.

• getQERRO：

Both the arbitrary size floating point number and reference double preci-

sion floating point value are stored in the float oh]ect. getQERRO returns

their difference.

5.2.2 Optimization

Although any measure of accuracy could be used, average quantization error,

QERR, in decibels is used in this dissertation. QERR is computed as follows:

1 … outi — refi /J, ix
QERR 20 log ref, (5.1)

where out,- are the outputs and ref̂ are the corresponding double-precision

reference outputs.

The total circuit area is determined by summing the area, estimated for

each operator. Operator area is estimated from the precision of the float class,

assuming a Xilinx Virtex-E series FPGA [XilOl]. Although the area estimation

is based on a specific reconfigurable computing platform, optimization using

these measures should lead to reasonable area estimates on other platforms.

The area in Virtex slices [XilOl] occupied by floating point adder is esti-

mated based on the fraction size and exponent size. Nonlinear regression has

Chapter 5 Float - Floating Point Design Environment 32 ,�

been applied to model the relation between area and precision using adaptive

nonlinear least-squares algorithm purposed by J.E. Dennis et al [JGW81]. The

architecture of floating point adder, as discussed in section 5.4, has linear rela-

tionship of exponent size and fraction size. The initial relationship is modeled

as follows:

add_area = a x ebits + 6 x fbits + c (5.2)

where ebits is the number of exponent bits in the float representation and fbits

is the number of fraction bits.

To determine the parameters a, b and c, different precision of floating point

adders were implemented on FPGA and the slices used was collected as shown

in chapter 7 which acts as sample data point in the nonlinear regression al-

gorithm. The result was further fine-tuned and the best approximation was

found that a = 6, 6 = 12 and c = 0.

Similarly, the area occupied by a floating point multiplier is modeled by the

equation 5.3, fraction size is contributed large portion of slices because larger

value of fraction size means larger fixed point multiplier is used.

mul^rea = a x ebits + 6 x f b i t s �+ c (5.3)

After applying nonlinear regression algorithm and fine-tuning, the best ap-

proximation was a = 8, 6 = 0.47 and c = 230.

The cost function is computed from the QERR and circuit area is measured

using the equation 5.4:

fcost = q X y ^ add_areai + ^ mul^reaj + 6 x QERR (5.4)

V i j
where a and b are non-negative weightings and i and j sum over all the add

and multiply operators in the algorithm function respectively.

Chapter 5 Float - Floating Point Design Environment 33 ,�

The optimizer uses the Nelder-Mead [NM65] method to minimize the cost

function (without requiring the computation of derivatives) by adjusting the

precisions of float variables in the algorithm function. The designer can adjust

a and b in equation 5.4 to weigh the relative importance of area and QERR.

For example, if the designer needs a very accurate result and circuit area is

not critical, a large value of b can be used.

The optimization procedure is outlined as follows:

1. Change the precisions of float variables (using Nelder-Mead).

2. Simulate the algorithm function at the specified precision using user-

supplied input data.

3. Compare the result with the reference result and compute the cost func-

tion.

4. Repeat until the optimization terminates.

5.3 Digital Sine-Cosine Generator

Digital sine-cosine generators [Mit98] have a number of applications, such as

the computation of discrete Fourier transform and in certain digital commu-

nication systems, such as in future Hiperlan systems [ETS96] for high per-

formance wireless indoor communication. Let and denote the two

outputs of a digital sine-cosine generator, the outputs at the next sample can

be computed using the following formula: .

r "1 r n � -
5ln+l COS(60 COs(6l) + 1 5ln

= (5.5)
52^+1 cos(6>) - 1 cos(6') sin

J L «J L J
Equation 5.5 will be used as one of the example of float application in this

chapter, with cos 0 = 0.9. Its algorithm function can be described by the Perl

code listing 5.1:

Chapter 5 Float - Floating Point Design Environment 34 ,�

Listing 5.1: Digital sine cosine generator
l | $ c o s _ t h e t a = new F l o a t (8 , 2 3 , 0 . 9) ;
2 $ c o s _ t h e t a _ p l = new Float (8 , 2 3 , 1 . 9) ;
3 $ cos_ the ta_ml = new Float (8 , 2 3 , —0.1) ;
4 $sl [0] = new F l o a t (8 , 23 , 0) ;
5 $s2 [0] = new F l o a t (8 , 23 , 1) ;
6 for ($ i = 0; $i < 50; $ i + +) {
7 $sl [$ i + l] = $sl [$ i] * $ c o s _ t h e t a + $s2 [$i]
8 * $ c o s _ t h e t a _ p 1 ；

9 $s2 [$i +1] = $sl [$i 1 * $ cos_ the ta_ml + $s2 [$i]
10 * $ c o s _ t h e t a ；

l l [}

This algorithm function first declares the variables used via float object

instantiations, each object being specified to have an 8-bit exponent and a 23-

bit fraction in this example. The initial value of the variable is also defined in

the float constructor, with 5I and <s2 being initialized to 0 and 1 respectively.

The update values of si and 52 are derived using the floating point operators

provided by the float class via overloading.

This algorithm function can be passed to different components for process-

ing. Normally, a set of input vectors is specified for the algorithm function, but

since this particular function is an oscillator with no inputs, the time domain

response is computed via the loop in the algorithm function.

The simulator can be used to determine the result and the optimizer can

determine a suitable precision format for each of the five float objects in the al-

gorithm function, which minimizes the following optimization. The inner part

of the algorithm function can be given to fly compiler to produce VHDL code.

Finally, the VHDL output can be used for simulation and/or implementation

on a reconfigurable computing platform.

Chapter 5 Float - Floating Point Design Environment 35 .�

5.4 VHDL Floating Point operator generator

The module library was implemented in Perl and currently supports two op-

erators, namely multiplication and addition. Thus one can use the module

library to generate operators with arbitrary precision. Operators are pipelined

for high throughput.

5.4.1 Floating Point Multiplier Module

The Algorithm 2 in chapter 3 was implemented as a VHDL module and the

corresponding datapath of the parameterized floating point multiplier is shown

in Figure 5.2 using the mentioned algorithm. It has 4 stages with 8 clock cycles

pipelining to evaluate the product of the given numbers.

In the first stage, the steps 1 and 2 are implemented by padding one to the

fraction to produce the significand and calculating the sign bit using the XOR

of the sign bits. This stage uses 1 clock cycle.

In the second stage, steps 3 - 5 are implemented. The significands vl and

v2 will be multiplied. The most significant bits of the product, ranged from

2 X fsize - 1 to fsize — 1, where fsize is the size of fraction, is stored to the

register mc. Since both vl and v2 have leading 1 at most significant bit, the

leading 1 of mc is at its first two most significant bits. This observation can

simplify the normalization process as described below.

The intermediate exponent will be calculated by considering two cases. If

the leading 1 of mc is located at the most significant bit, mc is a normalized

number and the final exponent would be el + e2 + 1 — bias. This exponent is

stored as eel. If the leading I's of mc is located at the next most significant bit,

mc should be normalized by shifting 1 bit to left, and the exponent would be

el + e2 — bias. This exponent is stored as ecO. Since at mc is not determined,

both ecO and eel are stored to save time. Since a fixed point multiplier is

involved, the latency of this stage is 5 clock cycles.

»»

Chapter 5 Float - Floating Point Design Environment 36 “

The third stage does steps 6 - 9 . As mc is evaluated, Cans is determined by

the most significant bit of mc. The mc will shift left appropriately so that the

most significant bit of mc is 1. The result of normalization will be stored at

mcO. This stage takes 1 clock cycle.

The forth stage implements steps 10. It omits the integer part of mcO

and stores the remaining fraction as fans and the product is returned. This

stage uses 1 clock cycle. Extra logic is required to complete the floating point

multiplier. These logics include zero checking and infinity handling. They

are omitted in the Figure 5.2 for simplicity but implemented in the module

generator. •

5.4.2 Floating Point Adder Module

The datapath of a parameterized floating point adder/subtractor is shown in

Figure 5.3 is the hardware implementation of algorithm 1. Similar to floating

point-multiplier, it has 4 stages to evaluate the product of the given numbers.

Each stage uses 1 clock cycle. A subtracter is implemented by flipping the

sign bit of the second operand and is not shown in the figure.

The first stage implements steps 1 - 7. ediff, which is the difference of ei

and 62 is calculated and if ediff is negative, / i and fi will be swapped. After

swapping, Fa is the number with larger exponent and the other one is called

n. •
The second stage implements step 8 - 15. The correct significands are

evaluated from the given fractions, fraction J) will be aligned such that both

fraction share the same intermediate exponent, namely, exponent—a. The sig-

nificands are not in 2's complement format, so conversion is necessary if the

corresponding sign bit is set. The intermediate exponent, exponent.a, is prop-

agated to ea2. The intermediate significands are stored in register rrria and

rrub.

t»

Chapter 5 Float - Floating Point Design Environment 37 ,�

esize - 1 0 fsize - 1 0 e s i z e - 1 0 <size - 1 Q

sl exponent—1 fraction� s2 exponent—2 fraction_2

^ ^ esize-1:0 fsize-1:0 esize-1:0 fsize-1:0

J — r

I <1 I 1 I V1 <1 I <1 |1 I v2 <

esize+1:0 esize+1:0 fsize:0 fsize:0

I • 广 zz]
e1 +e2 - bias ~ \ / ~ /

1 \ fixean^int /
•esize+1:0 \ ... /

—l—ĵ l NQiultipliej/

+ 1
I (2 X fs ize-1) : (fsize-2)

I I esize+1:0

<1 ecO <1 I ec1 <1 mc <
I J esize-1:0 I •

. , „ ^ n I ,‘ . i ‘ . t � mc(fsize;0) I lmc{fsize+1:1)
esize-1:0 I I , mcfsize+1:fsize+1) ' ~ ~ 7

\ o ^
• . 墨 I faize.O

<1 I eans <| nncO <
I esize-1:0 _mcO(fsize-1:0) |

Sans ^ans ！ans

Figure 5.2: Parameterized Floating Point multiplier datapath

Chapter 5 Float - Floating Point Design Environment 38 ,�

The third stage does the steps 16 - 21. The significands are added. The

sum of rnia and rrrib will be stored to register ftmp. The value of ftmp should

be an unsigned number it is returned. So conversion is necessary if ftmp is

negative. The sign bit is retrieved from the adder and stored to register sal.

In addition, the intermediate exponent, which is exponentm, is propagated to

ea3.

The last stage, steps 22 - 24, is normalization and rounding. A priority en-

coder is used to determine the location of leading 1 at register ftmp. The final

exponent, namely Cans, is calculated by Cans = ea3-number of bits shift to left+

ebias. fans is obtained by shifting ftmp to left such that the most significand

bit of ftmp is 1, and the leading one is omitted. Sans is propagated from sal.

Rounding is a truncation in round to zero mode so it is done implicitly when

the result is packed in the fans register.

Like the multiplier, extra logic is required to complete the floating point

adder. These include zero checking and infinity handling. They are omitted

in Figure 5.3 for simplicity, but implemented in the module generator.

5.5 Application to Solving Differential Equa-

tions

The floating point generation module and fly compiler were used to'solve the

ordinary differential equation
学 = o v e r t G [0,3] with y(0) = 1 [MF99；. •
cLt I*

The Euler method was used so the evolution of y is computed by yk+i =

yî + hSt广2饥、and tk+i = h + h where h is the step size.

The following fly program implements the scheme, where /i is a parameter

sent by the host, as shown in listing 5.2.
In each iteration of the program, the evolution of y is written to the block

一

Chapter 5 Float - Floating Point Design Environment 39 -

esize-1 tsize -1 eslze-l

s l exponent—1 fraction_1 s 2 exponent_2 fract ion_2

飞 ^JJL J
6size + fsiz6:0 L ^ J ~ , ~ I I ~ I ~ I ~ I esize + fsize:0

J 丨 esize:0 I esize:0

1 — ^
esize:0 | esize:0 \ _ /

I 2's c o m p l e m e n t 1

esizeiesize

6size:0 I — 1

\o /
esize:0 esize + fsize:0 esize + fsize;0

2 sa e x p o n e n t J i | fraction—a""“^ | sb | exponent_b | fract ion_b <
I fsiz 二 “ I tsize-1:0

001 ~ I 1 I
的丨ze:0 卜2:0 I .size:0

S \ Shift right~
1 1 I (size:&

2 's complement 丨 00 丨
esize-1:0 ‘ |~fsize+2:0

I • fsize+2:o 2's complement

\p h I—* q
fsize+2:0 ^ 1 ^

• • I fsize+2:0

^ " " “ I fma < I ” b <
丨 fsize+2:0 • I fege+2:0

esize -1:0 X + /

\ Z fsize+2:0

f 麵__ f 0 丨 2-s c o m p l e m e n t
^ _ I • , • fsize+2:0

\o 1 / •

I fsize+1:0 ,

"saTl ea3 <| fa1
I I I tsize+1;0

esize - 1 ;0 I
priority encoding + normal izat ion

correct I
exponent esize-1:0

I ^ 1 丨 size-1:0
esize • 1:0

I _ _ _ r ^
Sans âns

Figure 5.3: Parameterized Floating Point adder datapath

y

Chapter 5 Float - Floating Point Design Environment 40 ,�

Listing 5.2: Ordinary Differentiable Equation Solver

iR ‘
2 $h = &read_host (1) ; #fetch
3 [
4 { $ t = 0 . 0 ; } { $ y = 1 . 0 ; } { $dy = 0 . 0 ; }
5 {Soneha l f 二 0 . 5 ; } { $index 二 0 ; }
6] # parallel assignment
7 while ($ t < 3.0) {
8 [{ $ t l = $h $onehalf ; } { $t2 = $t . - $y ； }]
9 [{ $ d y 二 $t l $ t 2 ; } { $t = $t . + $h ; }]
10 [
11 {$y = $y . + Sdy ; }
12 {S index = Sindex + 1 ; }
13 1 •
14 $void = & wr i te_host ($y , Sindex)；

15 #write host
16 }
17|}

RAM via a writeJiostO function call and a floating point format with 1

sign bit, 8-bit exponent and 23-bit fraction was used throughout. The floating

point format can, of course, be easily changed. Parallel statements in the main

loop achieve a 1.43 speedup over a straightforward serial description.

5.6 Summary

The float environment for the rapid prototyping of floating point digital system

was described. These tools enable the designers to concentrate on higher level

algorithmic issues thus increasing their productivity and being able to explore

more of the design space in a give time. A digital sine-cosine generator and a

differentiable equation solver were as an example of using float The module

geneartor is packaged in Perl so as to allow easy interface with the current

development tools.

Chapter 5 Float - Floating Point Design Environment 41 .�

The float environment extends the capabiltiy of fly compiler in which float-

ing point operator is now supported. With a single Perl description, the algo-

rithm function can be optimized and implemented using the provided design

environment with ease.

¥

Chapter 6

Function Approximation using

Lookup Table

This chapter discusses an efficient table lookup generation system for supple-

menting a hardware description language (HDL). In particular, an implementa-

tion of the Symmetric Table Addition Method (STAM) which acts as a module

generator for any differentiable functions is described. This module generator

was integrated with fly compiler to produce a very flexible design environment

which allows the specification of arbitrary functions in a high level manner.

The environment is used to develop a coprocessor for the computation of the

N-body problem, and the designer productivity is much higher than a typical

designer using VHDL.

6.1 Table Lookup Approximations

6.1.1 Taylor Expansion

The main idea behind the table lookup approximation algorithms is the Taylor

Expansion. If a function f{x) has continuous derivatives up to (n + 1)访 order,

42 •‘

Chapter 6 Function Approximation using Lookup Table 43 •�

then it can be expanded as

二 f / (%) (… y 伐 ‘ (6.1)

i = 0

where

Rn = (> + 1) �
J ̂

/ (- , (… r + 1 for a < e < .
(n + 1)!

To reduce the required hardware resources and/or computating time, only

the first few terms in the Taylor series are used to approximate the function

in practice. The selection of a will affect the error introduced and a carefully

selected a can be used to introduce symmetry in the lookup table as explained

later.

6.1.2 Symmetric Bipartite Table Method (SBTM)

The SBTM uses the first two terms of the Taylor series to approximate a

function f(x) as f(x) [SS97]. In the SBTM, two lookup tables are constructed

and the precision of the output is maximized.

Assume that the n-bit input, x, of the function to be approximated ranges

in [0,1). It is first partitioned into 3 segments as shown in Fig 6.1 where

X = xo -i- -h X2.

n •
-_"o~~»+«~"l 'I' "2~-

Q X q X 1 X 2

个 个 个 t t
1 2-1 2-tn,

Figure 6.1: Input partition of SBTM.

Chapter 6 Function Approximation using Lookup Table 44 •�

The ranges of Xi are:

0 <Xo < 1 -

0 < < 2 一 打 0 一打 1 —

Two lookup tables which return the value do and ai are then constructed.

The sum of these two values will be the approximated result of the function.

撫—丨—-

f(x) = + .

a +工1+^2) (6.2)

We first select mid points in the ranges of Xi and X2：

= (2-几0 — 2-恥

— 2 — 71(3 一 1 _ 2 一 打 0 一打 1 一 1

二 (2 -n� - " i _ 2 - " � - " ^ 2) / 2

— 2 一 几 0 一几1 一 1 一 — T i 2 — 1

(6.3)

Let a = XQ + xi 82 and use the first two terms of the Taylor Expansion:

f{x) = f(xo-^Xi + X2)

« f{xo + + 82) + f{xo + � + -〜）

二 /T̂) (6.4)

Not all bits from ai are required to be in the table as the carefully selected

S2 results in a large number of leading Os or Is in the ai table. Since 62 is

located in the center of X2̂ s range,

Chapter 6 Function Approximation using Lookup Table 45 •�

� |a :2 -J2|<2 -n� - " i - i (6.5)

The upper bound of ai is

< I/'(⑴丨 2 - " � - n i - i (6.6)

where

[0 , 1) 1 /⑷ ((,） > / “)⑷） .

6.1.3 Symmetric Table Addition Method (STAM)

The logic in SBTM is simple and two tables are required. The STAM algorithm

uses more tables with smaller size to significantly reduce the overall memory

required [SS99b].

As shown in Fig 6.2, the n-bit input is partitioned into m segments instead

of 3 in SBTM. The input is now x 二 Xi.

^ _ — n
< ~ n o ~ H " * " i ~ H K — "m-h—»

Q X o X i ^ m-1

M 个 个

Figure 6.2: Input partition of STAM.

The ranges of Xi are shown here:

0 <a:o < 1 - 2 - " 0

0 < 2一P卜 1 - 2 -P�

(6.7)

Chapter 6 Function Approximation using Lookup Table 46 •�

where pi = 几知 and 5{ is defined as following:

5i = (2 -巧 - 1 _ 2 - ” / 2 (6 . 8)

To apply the Taylor approximation, let the a = Xq Xi X)^ The

approximation function is now:
m m m m

2 2 2 2
m

= x i) + ^ ai-i(xo, Xi) (6.9)
2

where
m

ai.i{xo, Xi) = f'(xo + 知 + - 5i) 2 <i<m

2

The error analysis of STAM is very similar to the SBTM algorithm. The

constraints for the parameter configuration are:

2no + ni < P/ + /0 仍(|/"((2)|) (6-10)

g < 2 + log2{m - 1) (6.11)

6.1.4 Input Range Scaling

The analysis above are all based on the input range [0,1). Both SBTM and

STAM can be adapted to other input ranges. But this requires som^ transfor-

mations when generating the table contents. The transformation is done by

dividing the input range evenly for all the possible input patterns.

For an n-bit input x̂ let x be the integer value of the bit pattern assuming

the decimal point is on the right of the LSB. If the input range is [xmin, ̂ max)̂

then

^ —工 min _ ^
'•••• • I ^ ^ — —

^max — ^min 2

� X = "2 (̂ maa; — ^min) + ^min (6.12)

Chapter 6 Function Approximation using Lookup Table 47 •�

Let this be the transform function t{x). The range of Xi in (6.7) is modified

as in (6.13):

Xmin <Xo

^min ^ ^ 力(2” ——)

(6.13)

Let Mi be the maximum value of Xi. The Xi and Si are first transformed

as in (6.14) before passing to ai to generate the table contents.

— 2 7 ^ - — ^mm) + ^min “
x-v

— - ^mm) + ^min

(6.14)

The transformation must also be applied when analyzing the errors in the

approximations.

6.2 VHDL Extension

To allow for the easy implementation of the STAM algorithm in VHDL de-

signs, simple extension is introduced by making use of the comment section

inside VHDL code segments as many synthesis tools do for the synthesizing

directories. A set of preprocessing tools are developed to generate VHDL codes

using the STAM algorithm. The user includes the name and the body of the

target function as well as some configuration parameters. The preprocessing

tools will generate the corresponding VHDL codes of the function using STAM

algorithm which can be used directly anywhere in the design. The listing 6.1

demonstrates the instantiation and usage of a sin function in the VHDL source.

In the example above, the sin function will accept input ranges of [0,1) and

the input will be partitioned as described in the segments statement. Four

Chapter 6 Function Approximation using Lookup Table 48 •�

Listing 6.1: STAM instantiation
1 architecture . . .
2
LJ • • •

3 — __STAM-BEGIN一- ‘

4 — — m y - f u n c t i o n (x) — Sin (x)
5 ——range-uiin = 0
6 ——range-max = 1
7——segments =各么2 2么

8 — decimal-point = 16
9 — --STAM-END--

10 component my_funct ion is port (
11 elk : in s t d _ l o g i c ；

12 X : in s t d - l o g i c . v e c t o r (15 downto 0) ;
13 f x : out s t d _ l o g i c _ v e c t o r (20 downto 0)) ;
14 end component ；

1 5 …
16 begin
17 . . .
18 fO : my_funct ion
19 port map (c lk=>clk , x=>x, f x = > f x) ; .
20 ...

Chapter 6 Function Approximation using Lookup Table 49 •�

tables will be generated for the 16-bit input. The decimal .point statement

indicates that decimal point is located at the left side of the most significant

bit. The output will be ready the after next rising clock edge and will be valid

as long as the input x is valid. The clock signal is required since synchronous

RAMs are used to store the contents of the tables. Since the descriptions

are only inside the comment section, the VHDL code can be processed by

traditional synthesis tools without modification.

The VHDL codes are first passed to a preprocessor before going to the

synthesis stage. A flow chart of the preprocessor is shown in Fig 6.3. First,

the function extractor extracts the function body in the extended VHDL block

and passes it to YACAS (YACAS is a public domain software which perform

symbolic arithmetic operations [Pin03]). YACAS accepts the input function

to find the symbolic first and second derivatives and passes the results to

the table generation program. The table generation program uses a stack

to transform the input strings to a sequence of arithmetic operations and

generates the content of the lookup tables. These contents will be used in the

VHDL generator to generate a complete VHDL code using Xilinx BlockRAM

as the lookup tables.

With this extension, an arbitrary function can be used in VHDL code

without any knowledge of the detailed implementation. The default evaluation

time is 1 clock cycle but this can be easily modified in the generated VHDL

codes. The only limitation is that the function must be twice differentiable due

to the Taylor Expansion. As a structural design, this preprocessing method

can be easily modified to other HDL languages such as Verilog.

6.3 Floating Point Extension

In the original STAM algorithm, the input value is considered a fixed point

number within a predefined range. It is possible to modify the logic such that

Chapter 6 Function Approximation using Lookup Table 50 •�

Extended VHDL

~ ^ — f(x) = Sin �

function extraction

,, Sin(x)

YACAS scripts

S i n �

C o s �

,丨 - S i n �

STAM table generation

table[0][8] = 0087df99

VHDL Genertor

STAM table
VHDL codes

Figure 6.3: Extended VHDL Preprocessor.

it can handle specific functions for floating point arithmetic. This section will

describe this process as used for the development of a floating point coprocessor

for the N-body problem. •

The extended fly compiler can use basic floating point operations, such as

addition, subtraction and multiplication with different precision. Transcen-

dental functions such as square root and exponential are frequently required

to evaluate the force or acceleration in N-body problem. Such functions can

be implemented using the modified STAM approach. In this research, v-邮

was implemented using this approach.

The STAM is configured to use 4 lookup tables.

Chapter 6 Function Approximation using Lookup Table 51 •、

Range reduction and result correction are necessary in the floating point

implementation. Consider the IEEE 754 binary floating point number repre-

sentation:

I； = 1./ X 2' (6.15)

Then,

”一 3 / 2 = (1 . / X 2 0) (- 3 / 2) X (2 (- 3 / 2) e) (6 . 1 6)

When e is even, let e = 2N, equation 6.16 becomes:

” - 3 / 2 = (1 . / X 2 0) (- 3 / 2) X (2 - 3 力 （ 6 . 1 7)

Similarly, if e is odd, let e = 2N + 1, equation 6.16 becomes:

；̂-3/2 = (1./ X 20)(-3/2) X (2-3力 X (2-3/2) (6.18)

In both cases, the fraction part can be calculated using STAM with the

input range [1,2), and the exponent part is shift and add operations. The only

difference is that if e is odd, the final result should be obtained by multiplying

a constant 2-3/2.

IEEE 754 requires normalization of the result from STAM. Since the output

of STAM 0.354 < v -叩 < 1 for 1 < i; < 2, the location of the leading one must

lie at either of the two most significant bits. The datapath of the calculation is

shown in Fig 6.4. Since it supports parameterized size floating point numbers,

it can generally fit in different FPGA devices.

To implement the circuit on FPGA, the fly [HLT+02] compiler was used

to generate synthesizable VHDL code and the Pilchard board [LLC+01] was

used as the reconfigurable platform. Pilchard uses a DIMM memory bus in-

terface to provide high I /O performance compared to the PCI bus. Fly is used

because of its efficiency to design a floating point algorithm by using Perl-like

Chapter 6 Function Approximation using Lookup Table 52 •�

descriptions and its handy library which fully supports parameterized floating

point arithmetic. In addition, the mechanism of the fly compiler allows for easy

integration of a block such as STAM. The fly compiler was modified such that

it can handle the .power 15 () function using the built-in function mechanism.

Due to the limitation of memory available on the FPGA chips, the STAM

used 16-bit integers as input and the table size is (8, 2, 2, 2, 2). The STAM is

used to process the function f{x) = x-耶 where I <x <2. After scaling, 0 at

the input of the STAM stands for 1 according to equation 6.14. Additionally,

to enhance the efficiency of the STAM and minimize the critical path in the

STAM, the symmetric property in the lookup table is removed; As the output

of BlockRAM is 32-bit, the memory usage is 2(8+2) x 4 x 32 = 131072 bits or

32 BlockRAMs.

6.4 The N-body Problem

N-body simulation finds application in various fields of science. A wide range

of physical systems can be studied by modeling them as an N-Body problem.

They include problems in various fields of science such as astrophysics and

molecular biology. The basic idea of the N-Body problem is simple. Particles

are modeled as points in space. The potential of the system can be expressed

as a function of the properties and positions of all particles in the system. The

force exerted on a particle is the first derivative of this potential with respect

to the position of the particle. The N-body problem for different systems share

the same basic structure but differ in the physical law that governs the force

between particles. Therefore, the exact equation for calculating the potential

and force depends on the application. By integrating the force acting on a

particle, its position can be computed as a function of time.

There is no known analytic solution for the N-body problem for N >

3. Therefore, N-Body problems are solved numerically using simulation in

Chapter 6 Function Approximation using Lookup Table 53 •�

practice. The simulation is performed in discrete time steps. In each time step,

forces exerted on each particle are computed. The positions of the particles

are updated at the end of the time step by integrating all forces acted on the

particle.

In N-body simulation, most computation time is spent on force calculation.

The number of interactions between particles grows as 0(72^), where n is the

number of particles. For large n, the calculation becomes very expensive and

time consuming. In spite of algorithms that reduced the computation time of

force calculation at the expense of accuracy, the force calculation remains an

expensive step and pose a limit on the size of system that can be realistically

studied.

Since the force calculation part consumes most of the CPU time, and at the

same time has a rather simple algorithm, it is a good candidate for hardware ac-

celeration. In fact, this has been done in many systems. Such systems usually

have a heterogeneous architecture consisting of a general purpose host com-

puter and a special purpose hardware. The special purpose hardware handles

the force calculation while the host computer handles all other computations.

Most notable of those is the GRAPE (Gravitational Pipeline) computer for

the gravitational N-body problem [MT98:.

The reason for using such architecture is as follows. In a system powered

by general purposed processors, only a small fraction of the transistors in

the processor are doing useful work at any moment. The key for GRAPE or

other such systems to achieve performance orders of magnitude higher than a

general-purpose system is to utilize almost all of the transistors on the chip at

any moment. With filled pipelines of the processors for the force calculation,

almost all of the transistors are performing useful computations at any given

moment.

Chapter 6 Function Approximation using Lookup Table 54 •�

6.5 Implementation

In this work, a FPGA based co-processor for evaluating gravitational forces

in N-body simulations was built using the module generator approach. The

architecture of the co-processor is similar to the GRAPE-1 system. GRAPE-1

is the first in a series of specialized processors evaluating gravitational forces or

acceleration in a gravitational N-body simulation. Equations 6.19, 6.20, 6.21

show the force evaluation in this system.

N

a , = [� (6-19)
i=i

a., = (X广 + (6.20)

r l = (x^ - ^Tjf + to - yjY + (zi - (6.21)

The equations are the same as those implemented in the GRAPE-1 system.

Eli is the gravitational acceleration at the position of particle i, Xj- is the position

of vector particle i, rij is the distance between particles i and j and e is the

artificial potential softening used to suppress the divergence of the force at

Tij — 0.

A program written in fly language is used to implement the equation 6.19,

which is used intensively during the whole calculation as shown in listing 6.2.

The input of the program is x “ Xj and e while the output is the acceleration

(aij) for a particular value of Xj. Most of the constructs are parallel in nature

so that the vector manipulation can be processed simultaneously. For example,

Xj — Xi can be done at the same time for each scalar in Xj and x^. The fly

code can used for simulation and verification by directly executing it under

the Perl environment, which saved time and reduced the error when compared

with manually translating the algorithm description into VHDL.

The floating point module supplied by the fly compiler is readily parameterized,

so the tradeoff between the accuracy and slice resources is adjustable. Different sizes

Chapter 6 Function Approximation using Lookup Table 55

Listing 6.2: Implementation of N-Body Simulation

2 # initialization , fetch xi , yi , zi
3 while ($j < $n) {
4 # fetch xj , yj , zj from memory
5 $xj = & r e a d _ h o s t ($ i n d e x) ;
6 Sindex = $index + 1;
7 $yj = &;read_host (Sindex) ;
8 $index = $index + 1 ；

9 $zj = & r e a d _ h o s t ($ i n d e x) ;
10 $index = Sindex + 2;
11 [{ S d i f f x = $xj .— $ x i ; }
12 { $ d i f f y = $yj .— $ y i ; } .
13 { $ d i f f z = $zj $zi ；}]

14 [
15 {$x 二 $ d i f f x .* $ d i f f x ; }
16 {$y = S d i f f y $ d i f f y ; }
17 { $ z = S d i f f z S d i f f z ; }
18]

19 [
20 { $ r l = $x . + $ y ; }
21 { $ r 2 = $z . + Seps i l on ；}

22 1
23 # caculate rij
24 $ r i j 二 $rl . + $r2 ;
25
26 # call b u ilt—in function power ^{ — 1.5}
27 $tmp2 = &_powerl5 ($ r i j) ;
28

29 [{$tmpx = $tmp2 .* $ d i f f x ; } .
30 {$tmpy = $tmp2 $ d i f f y ; }
31 {$tmpz = $tmp2 S d i f f z ；}]

32 [{ $ a x = $ax . + $tmpx; } # accumulate a
33 {$ay = Say . + $tmpy; }
34 { $az = $az . + $tmpz ； }]
35 $j = $j + 1;
36 }
37 $void = & w r i t e _ h o s t (Sax , 6 0) ;
38 $void = w r i t e . h o s t (Say , 6 1) ;
39 $void = & w r i t e _ h o s t ($ a z , 6 2) ; # write back to host
40 }

V

Chapter 6 Function Approximation using Lookup Table 56

of fraction and magnitude can be implemented and the best performance rating can

be achieved.

6.6 Summary

A flexible framework for implementing elementary function using lookup table on

the FPGA has been introduced in this chapter. Using the STAM algorithm, it can be

used to generate synthesizable VHDL modules from comments in the VHDL source

code. This function generator was integrated into the fly environment to extend

flexibility and efficiency. An N-body problem simulation was implemented on the

FPGA to demonstrate the power of this framework. Without detailed knowledge

of the STAM implementation, the N-body core was generated from 45 lines of fly

source code. This example shows that this framework can be used to solve a real

world problem with minimum design effort.

¥

Chapter 6 Function Approximation using Lookup Table 57 •�

二” fel^e'size-1 0
exponent fraction

I
esize -1 :0

— i — — 4 fsize -1 :0

0 : 0
exp - bias exp - bias - 1

1 STAM
I I es丨ze-1:0

— � z
^ 1 ^ fsize -1 :0

esize • 1:0

卜 exp1 I |> —

esize -1:1 ## "0" I esize - 1:6size-1 ## esize-1:1

\ \ / / fsize • 1:0

I esize • 1:0

n [> 3 N I [>
I esize • 1:0 _

2's complement 'size • i :o
I esize -1 :0

n |> -3N I [>

I I fsize-1:0

+ bias -1 +bias - 2
I esize-1:0 I fsize -2 -0## _0" fs ize-3 :0##-00- :

I esize-1:0 I fsize - 1 :0

^ e^ ^ fri

T , T .
esize + I I
fisze -1 I f9izef$iz9-1 I ^

0 exponent fraction

esize +teize:0

I
X

fsizeltsizB -1 a
0 exponent fraction

Figure 6.4: Datapath of xT耶 using STAM for floating point arithmetic

Chapter 7

Results

7.1 Introduction

In this chapter, results of all the experiments described in previous chapters are

presented. All experiments, unless other specified, were tested on a Pilchard FPGA

board [LLC+01] and the FPGA chips used was Xilinx XCVlOOOE-6 which contains

a total of 12,288 slices and 96 BlockRams. This chapter includes the following

experiments:

1. GCD coprocessor

2. Floating point module generator

3. Digital sine-cosine generator (DSCG)

4. Ordinary difFerentiable equation solver (ODE)
\

5. N-body problem simulation

7.2 GCD coprocessor

The GCD coprocessor design was synthesized for a Xilinx XCV300E-8 and the design

tools reported a maximum frequency of 126 MHz. The design, including interfacing

circuitry, occupied 135 out of 3,072 slices. The design time for the GCD processor,

including host interface was approximately one hour.

58 "

Chapter 1 Results 59 “

Listing 7.1: GCD Testing program
l l for (my $i = 0; < Sent ； +) {
2 $a = r a n d (0 x 7 f f f) k 0 x 7 f f f ;
3 $b = r a n d (0 x 7 f f f) h O x T f f f ;
4
5 &;p i l chard_wr i te64 (0 , $a , 1) ; # write a
6 & p i l c h a r d _ w r i t e 6 4 (0 , $b , 2) ; # write b
7 & p i l c h a r d _ w r i t e 6 4 (0 , 0 , 0) ; # start coprocessor
8
9 do {

10 & p i l c h a r d _ r e a d 6 4 ($data_hi , $data_ lo , 0) ;
11 } while ($data_ l o = = 0); # poll for finish
12 &;pi l chard_read64 ($data_hi , $data_ lo , 1) ;
13 ‘
14 print (" g cd^Sa , ^ $ b ^ = ^ $ d a t a _ l o \ n ") ;
15Q

The Perl listing 7.1 tests the GCD coprocessor using randomly generated 15-bit

inputs. The GCD coprocessor was successfully tested at 100 MHz by calling the

FPGA-based GCD implementation with random numbers and checking the result

against a software version. The resulting system could compute a GCD every 1.63 //s

(including all interfacing overheads).

7.3 Floating Point Module Library

Different configurations of adders and multipliers were extracted from the module

library, simulated and synthesized for the Virtex XCVlOOOE-6 FPGA. Table 7.1 is

a summary of the resource requirements, maximum reported frequency and latency

for a fixed exponent length of 8 bits and different fraction sizes. The adder is not yet

fully optimized and the maximum frequency was 40 MHz with a 4 stage pipeline.

V

Chapter 7 Results ^^ ��

Table 7.1: Area and speed of the floating point library.

Fraction Size (bits) Circuit Size (slices) Frequency (MHz) Latency (cycles)
Multiplication

~ 7 178 I 103 8
15 375 102 8

— 23 598 “ 100 8
一 31 694 100 8

Addition
7 I 120 I 58 I 4
15 225 — 46 — 4
23 336 _ 41 4

— 31 I 455 I 40 I 4

7.4 Digital sine-cosine generator (DSCG)

The algorithm function of the sine-cosine generator was simulated by directly exe-

cuting it in Perl. Figure 7.1 shows the resulting double precision reference output.

The output will be used for evaluating the quantization error for different precision

configurations.

Figure 7.2 shows the quantization error of the Float simulation for different

fraction size, as a function of time. In the simulation, the exponent field was set to

be large enough to avoid overflow. The maximum exponent value can be determined

during the simulation of the algorithm. As expected, the error is reduced as the

number of fractional bits (and hence precision) is increased.

Figure 7.3 shows the QERR as mentioned in Section 5.2.2 of digital sine-cosine

generator with a varying number of fraction bits, assuming that the exponent field

is large enough to avoid overflow. For fraction bits varying from 12 to 40 bits, the

QERR ranged from -50 to -210 dB. Linear relationship is discovered between QERR

and fraction size.

The single precision of digital sine-cosine generator is implemented. The reported

frequency is 52.4 MHz and consumed 3,470 slices.

Chapter 7 Results ^^ ��

5 I 1 j 1 1 , , , ,
I WKntom of Digital Sin«-Conne Oanvrator +

^ - f l . -...- -...... -..汽 1..- -A -

三髮
•si i i__A__i , i
0 5 10 15 20 25 30 35 40 45 50

I

Figure 7.1: Digital sine-cosine generator reference output.

0-1 I ！ 1——~I i 1 1 ；ia 1 ‘ 1
001 1 ‘ . . p l i S i S g ^ ^ l ^ " ^ -
0.001 1/ lU y .i Y ^ -1T.

s ：“^—...

I 二 . .��-...‘........:......：仁一二:：-

j
,••“ • oi————-i™— - j..一一…-...

i j i
1..12 • ‘ “ ’ I i i 1 0 5 10 15 20 25 30 35 40 45 50

I

Figure 7.2: Quantization error of the sine-cosine generator for different fraction
sizes.

•40

-»0 - • � . �

=.-100 • X. • t \

I .'�• \\ •
�.,,�. \

-160 - \ .

-200 - � < � �
.220 . , , , Quantization ^ -::-�•�_ 12 16 20 24 28 32 36 40

Size of Fractkm

Figure 7.3: Quantization error for different fraction sizes.

Chapter 7 Results ^^ ��

Table 7.2: Optimization result using different QERR values where (x,y) are
the (exponent size, fraction size) in bits.

" " Q M R I si I S2 I cos⑷ c o s � + 1 c o ^ s⑷-1

-52 (5,10) (5,12) (5,11) (5,11) (5,12)
-73 (5,15) (5,14) (5,15) (5,15) (5,16)
-98 (5,19)言 18) (5,19) 一 (5,19) —(5,20)
-123 (5,23) (5,23) (5,24) —(5 ,24)
-148 (5,26) (5,28) (5,27) 一 (5,27)——(5,28)

-171 (5,31) (5；30̂ (5,31) (5,31) “ (5,32)
(5,35) (5,33) (5,35) “ (5,36) “ (5,36)
(5,38) (5,39) (5,38) (5,39) (5,40)

7.5 Optimization

By varying the fraction size of the Float objects using the technique described in

Section 5.2.2, the optimizer can minimize the cost function while maintaining a given

maximum quantization error. This technique was used to determine the minimum

area requirements for a given QERR. Table 7.2 shows the optimized number of

fraction bits and exponent bits for different maximum QERR. As expected, the

trend for all variables is an increase in wordlength as the QERR requirement is

increased.

Figure 7.4 compares the optimized circuit size (which allows variables to have

different numbers of fractional bits) to a scheme where all variables have the same

number of fraction bits (i.e. the fixed fraction case). The "Fraction Size" curve was

made by computing the area of the sine-cosine generator for the case that all variables

have the fraction size on the x-axis. The "Optimized Circuit Size" curve was made

by using the fraction size of the x-axis as the starting point for an optimization, with

the maximum QERR specified to be that of the fixed fraction case. Thus it can be

seen from the figure that for the same quantization error, a 2% to 5% reduction in

area is achieved by the optimization process.

In the sine-cosine generator, all variables require similar precisions. In applica-

tions where variables have widely different precisions, one would expect the scheme

Chapter 7 Results ^^ ��

鄉咖 I ‘ ‘ ‘ ‘ “ “FV . c l l o n S l z . l b H .) +
Optimiz«d Circuit Size (r t o t) X

250000 -

亡 200000 •

j考
S ,50000 •

I
“ 1 0 0 0 0 0 -

i c—
50000 •

°12 16 20 24 2e 32 36 40
Size of Fraction

Figure 7.4: Area estimation of the fixed fraction and optimized circuits.

allowing different fractional sizes to offer a much larger improvement in area effi-

ciency.

7.6 Ordinary Differential Equation (ODE)

The differential equation solver described in section 5.5 was synthesized for a Xilinx

XCV300E-8 device and the design tools reported a maximum frequency of 53.9 MHz.

The design, including interfacing circuitry, occupied 2,439 out of 3,072 slices. The

outputs shown in Table 7.6 were obtained from the hardware implementation at

50 MHz using different h values. The resulting system {h = took 28.7 fis for an

execution including all interfacing overheads.

7.7 N Body Problem Simulation (Nbody)

The VHDL code generated by fly compiler which implement n body problem simu-

lation with N = 10 together with the STAM extensions was implemented using the

design tools and the bitstream is generated. Table 7.7 shows the result of implemen-

tation using different floating point configurations. The number of BlockRAMs was

always 32 and thus not included in the table. The data used was a NEMO N-body

snapshot data set [Teu03]. For experimental purposes, N = 10 was used during the

Chapter 7 Results ̂ ^ ��

tk = = * h = ^ h = ^ y{tk) Exact
1 .0 1 .0 1 .0 1 .0 1 .0

0.125 - - - 0.9375 0.940430 0.943239
0.25 - - 0.875 0.886719 0.892215 0.897491
0.375 - - - 0.846924 0.854657 0.862087
0.50 - 0.75 0.796875 0.817429 0.827100 0.836402
0.75 - - 0.759766 0.786802 0.799566 0.811868
1.00 0.5 0.6875 0.758545 0.790158 0.805131 0.819592
1.5 - 0.765625 0.846386 0.882855 0.900240 0.917100

2.00 0.75 0.949219 1.030827 1.068222 1.086166 1.103638
2.50 - 1.211914 1.289227 1.325176 1.342538 1.359514
3.00 1.375 1.533936 1.604252 1.637429 1.653556 1.669390

Table 7.3: Results generated by the differential equation solver for different
values of h.

Table 7.4: The frequency and slices used reported by design tools for N-body
problem

Floating Point Configuration Area Frequency QERR
(exponent size, fraction size) (slices) (MHz) (dB)

一 （5, 15) 3,523 47.34 -82 _
一 （5,23) 5,267 4 4 . 0 7 - 1 0 2
— (8, 15) _ 3,837 48.92
— (8, 23) 5,475 44.79

evaluation of quantization error.

7.8 Summary

This chapter presents the area and performance results for all the designs previously

described. The tradeoff between area and precision are discussed for each experi-

ment. The results are summarized in Table 7.8. The QERR of the GCD example is

omitted as it does not involve approximations to fractional numbers. The exponent

size of all the floating point numbers was fixed to 8-bit.

To implement each design, designer needs to do 2 steps:

1. Use a Perl-like language (ffy) to describe the algorithm.

Chapter 7 Results ^^ ��

Problem Name Fraction Size Frequency Area QERR
(bits) (MHz) (Slices) (dB)

GOT 16 -
DSCG N = 50 15 78.16 2,300 -81
DSCG N = 50 23 52.38 3,470 -127

ODE h = ^ 15 75.74 1,715 -84.8
ODE h =知 23 64.50 2,495 -134

l b _

Nbody N = 10 15 48.92 3,837 -82
Nbody N = 10 I 23 44.79 5,475 -102

Table 7.5: All Experiments Result

2. Suggest the precision of the floating/fixed point numbers to be used.

The fly description for all examples was short and easily understandable and it

can be easily seen that the descriptions are much easier to write and understand

than corresponding VHDL description. The design environment can generate the

bitstream suitable for on-board testing. When compared with the traditional design

flow, a significant amount of time is saved and thus the productivity of the designer

is increased. To further customize the design, the precision of the floating point

number can be varied as specified by the designer. The optimizer can help the

designer to balance the tradeoff between accuracy and area of the hardware via the

given cost function.

Chapter 8

Conclusion

This research purposed a mixture of hardware compilation, module generators, float-

ing point arithmetic and automatic interface generation to improve the the effi-

ciency, productivity and flexibility when implementing the floating point design on

the FPGA. The framework allows designers to use a programming language to im-

plement a design, automatically generating floating point circuits and elementary

arithmetic. For the same design, this framework allows the tradeoff of precision

and area used from a single description. Several applications, such as digital sine

cosine generator, greatest common divisor coprocessor, ordinary difFerentiable equa-

tion solver and N-body problem simulator have been developed using this approach.

The key issues of this research are highlighted as below.

Integration of programming language and FPGA

Using the same programming language for describing the algorithm and imple-

menting on FPGA design can benefit designers in several ways. The algorithm can

be verified and simulated by executing the code under a software environment. The

translation and optimization process are done by the tools and the designer can

concentrate on the higher level in details. This methodology greatly reduces design

time and achieves rapid system prototyping. Design errors can be reduced compare

with the traditional design flows since the translation is done automatically instead

of manually porting the algorithm into datapath and control components.

Software programming and hardware designs being treated as distinct entities

remain an obstacle to developing a FPGA based system. The design goal of fly

66 "

Chapter 8 Conclusion 67 “

and float is the bridge between these two entities in a way that a software program

can be translated into a hardware implementation. Using these tools, the designer

can reuse the software code, optimize the hardware resources used and perform

on-board testing without additional effort. The time required to implement floating

point algorithms on FPGA can be significantly reduced. With ever increasing device

densities, this design methodology should become even more attractive in the future.

Floating point/Elementary arithmetic on FPGAs

This dissertation discussed the possibility of connecting a floating point algo-

rithm description to a hardware. When the floating point algorithm on the reconfig-

urable computing platform, using arbitrary length of operator is now possible such

that the tradeoff between circuit size and the accuracy can be varied. Thus the de-

signer can choose the best performance rating by providing a suitable cost function

and the optimizer can return the best configuration for each of the floating point

operator.

Elementary functions can be automatically generated using lookup tables. These

act like a flexible mathematical library in software. It enhances the flexibility since

the designer does not need to implement every elementary function from scratch.

The automatic function generator saves the design time and extra hardware knowl-

edge is not required to build any elementary function.

By combining all of these module generators, the implementation of floating

point design in reconfigurable computing platform is made simpler. It allows wide

range of applications, such as scientific simulation, equation solver, DSP design, to

be implemented as a FPGA based coprocessor. It also benefits the HDL design flow

because floating point arithmetic is available as a synthesizable VHDL module. Any

HDL design can easily interface with the floating point operator.

Adapt to different architectures

Fly generates VHDL code since it is generally available to different reconfigurable

computing platform. Therefore, even though the design environment is now targeted

for the Pilchard board, it can be ported to different reconfigurable computing plat-

forms such as other FPGA products or even ASICs with only slight modification.

In addition, HDL output enables further optimization on different FPGA platform

Chapter 8 Conclusion 68 “

using the corresponding design tools.

Fly is a modifiable compiler which can be able to produce code for different

HDLs, program proving tools, and programming languages. Having an easily un-

derstandable and easily modifiable compiler allows for the easy integration of the

fly language to many other tools. The integration of fly language was introduced.

For example, new host interface mechanism, floating point arithmetic and arbitrary

function generation is extended from the basic fly environment.

8.1 Future Work

There are several possibilities for improvements to the system. The compiler pro-

duces only one-hot state machines which may be inefficient in certain cases. The

state machine can be different and not limited to a certain implementation. The re-

sulting datapath is not fully utilized, and the operators are idle most of the time. It

would be desirable if the coding strategy let the datapath share hardware resources

for some operation. This coding strategy thus can save area if it is critical for certain

application. The parallelism must now be implemented by the user. It would be

better if the compiler itself can detect the dependency to reorganize the datapath

in which the parallelism can be achieved automatically. However, it is believed that

the benefits in productivity and flexibility that could be gained from this approach

outweighs the cons.

The compiler in Appendix B generates a bit parallel implementation but, for

example, if a digit serial operator library were available, it could be easily modified

to use digit serial arithmetic. Similarly, both fixed point and floating point imple-

mentations of the same algorithm could be generated from the same fly description.

In the future, we will experiment with different code generation strategies. Many

designs could be developed from the same program, and different fly based code

generators could serve to decouple the algorithmic descriptions from the back-end

implementation. In the case of using a digit serial library, users could select the

digit size, or produce a number of implementations and choose the one which best

meets their area/time requirements.

Appendix Conclusion 69

Finally, the elementary function generator is a fixed point one and floating point

functions was implemented by the designer. This process could conceivably be fur-

ther automated to produce an automatic floating point elementary function gener-

ator.

Appendix A

Fly Formal Grammar

program = statement Jist ..

statement Jist = statement |，，{，’ statement (s)，，}，’

parallel-Statement = “ [“ statement (s)，，]，，

statement = comment | assignment | ifelse | if 丨 while 丨 paralleLstatement | func-

tion _call

assignment = variable ,’=’，expression，’；，，

expression = value operator expression | value

operator = "*" |，，/” |，,+” |，，-,，| ”.+，，| ,，.-” | ”.*,，

value = INTEGER | variable

variable = "$" LETTER | "$" LETTER DIGIT

while = "while" ” (，，condition ")" statmentJist

ifelse = "if，,(，，condition ")" statmentJist "else" statmentJist

if = " i f "(" condition ")" statmentJist •

condition = expression relation expression

relation =">"丨，，<，,丨，’<=，，丨 ’ , � = ” | ”！=’，丨，，==’， .

function—call = variable ,’=,’ function—name ”(，，variable Jist ’，)’，，，;，，

function-name = "readJiost" | "write_host" | ".power 15"

variable-list = value，，’’’ variableJist | value

comment = ” # ” ANYTHING

70 "

Appendix B

Original Fly Source Code

package main; downto 1〉）；

use Parse::RecDescent; end arith_core；

architecture rtl of arith_core is;

my $grammar = q { EOF

{ my ($seq, $comb, $aux, $paux, $s, '/.sigs)= ；

(•_._，"", 0, 0, "signal"); }

foreach my $k (keys ‘/.sigs) {

prog: stmtlist /"$/ { if ($sigs{$k}) {

print « E O F print "$s $k :\t w o r d s ($ s i g s { $ k }“.

library ieee; "downto 0);\n"

use ieee.std_logic_l164.all； if ！($k eq "din")

use ieee.std_logic_arith.all； and ！($k eq "dout")；

package hc_pack is ； }

subtype word is integer； else {

type words is array(integer print "$s $k :\t word; \n"；

range <>) of word; }

end hc_pack; }

for (my $i=l; $i<$aux; $i++) {

library ieee; print "$s s$i, f$i :\t boolean;“;

use ieee.std_logic_1164.all; print “--std_logic;\n"；

use ieee.std_logic_arith.all； }；

use work.hc_pack.all； for (my $i=l； $i<=$paux; $i++) {

print "$s p$i, q$i :\t boolean;“；

print “―std_logic;\n";

entity arith.core is }；

port(

elk: in std_logic; print "$s s$item[l], f$item[l] :\t boolean;"；

rst: in std_logic; print "~std_logic ;\nbegin —architecture\n";

start: in std一logic; print “ s$item[l] <= TRUE when start='l'"；

din : in words($sigs{din} ； print "else FALSE ；~start;\n finish <= ,1，"；

downto 1)； print "when f$item[l] else '0'; ~f$item[l];\n";

finish: out std_logic; print "process(clk)\nbegin\n"；

dout: out words($sigs{dout} ； print "if rising一edge(clk) then\n";

71 "

Appendix B Original Fly Source Code 72 ’

print $seq; $aux;

print "end if ;\nend process; \n__; }

print “--combinational part\n$comb"；

print "end rtl;\n"; asgn: var ，=’ expr ';' {

} $aux = $aux + 1；

$seq .= "if s$aux then\n\t"；

stmtlist: stmt | ，{， stmt(s) '}' { $seq .= "$item[l] <= $item[3];\n";

my $fst_in = shift(®{$itera[2]}); $seq •= "end if;\n";

my $int_in = $fst_in; $seq .= "f$aux <= s$aux; \n\n__;

$aux += 1 ； $aux;

$comb .= "s$int_in <= s$aux; \n"； }

foreach $int_in (®-[$item[2]}) {

$comb .= "s$int_in <= f$fst.in;\n" ; expr: val op expr { "$item[l] $item[2] $item[3]" } I val

$fst_in = $int_in;

} op: I ，/, I ，+， I ’-，

$comb .= "f$aux <= f$fst.in;\n";

$aux; val: /\d+/ I var

}
var: A$[a-z][\w\[\]]*/ {

stmt: asgn 丨 ifelse I if 丨 while $item[l] =" s/-\$//;

I pstmtlist I <error> my $sig = $item[l]；

$sig =- s/\[(\d+)\]//;

pstmtlist: '[‘ 8tmtlist(s) ，]， { $sigs{"$sig"} = ($sigs{"$sig"} && ($sigs{"$sig"} > $ 1))

$aux += 1; ？ $sigs{"$sig"} : $1;

my $int_in; $item[l] =" t r A [\] A (\) / ;

my Splist = ()； $item[l]；

foreach $int_in (@{$item[2]}) { }

$comb .= sprintf("s'/.d <= s'/.d;\n",

$int_in, $aux)； while: ，while， ，（， cond ，）， stratlist {

$paux += 1； $aux += 1；

push (®plist, $paux)； $comb .= "s$item[5] <= ($item[3]) and “.

"(s$aux or f$item[5j);\n";

$seq •= "if f$aux then --pstmtlist\n\t"； $comb .= "f$aux <= (not ($item[3])) and “.

$seq •= "q$paux <= false;\n"; "(s$aux or f$item[5]);\n";

$seq .= "else\n\t"; $aux; “

$seq .= "q$paux <= p$paux； \n"; }

$seq .= "end if; \n";

ifelse: ' i f '(' cond ，）， stmtlist ，else， stmtlist {

$comb .= "p$paux <= f$int_in or q$paux;\n"; $aux += 1;

} $comb .= "s$item[5] <= ($item[3]〉 and s$aux;\n";

my $pend = "f$aux <= p" • $comb .= "s$item[7] <= (not ($item[3])) and s$aux;\n";

j o i n C and p" , ®plist) $comb .= "f$aux <= f$item[5] or f$item[7];\n";

.“；--pstmt end\n"； $aux；

$comb .= Spend; }

w

Appendix B Original Fly Source Code 73

i f : ' i f ，（， cond ，）’ s t m t l i s t {

$aux += 1；

$comb .= "s$itein[5] <= ($item[3]) and s$aux;\n";

$comb .= "f$aux <= (not ($item[3]) and s$aux) or f$itera[5]；\n";

$aux;

}

cond: expr rel expr { "$item[l] $item[2] $item[3]" >

r e l : '>» I ,<， I ,<=，I ，>=, I ‘ ！ = ' { __/=_• } I，==, { "=" }

v a r l i s t : v a r ，，' v a r l i s t { " $ i t e m [l] $ i t e r a [3] " } I v a r

}； .

$::RD_HINT = 0;

$::RD_AUTOACTION = q { $item[l] };

my Sparser = Parse: :RecDescent->ne*j($grainmar)

or die "Bad grammar"；

l o c a l $ / ;

my $ s c r i p t = <>；

my $tree = $parser->prog($script) or die "Bad script"；

Bibliography

[ANS85] New York ANSI/IEEE. IEEE Standard for Binary Floating-Point Arith-

metic. Technical report, The Insittution of Electrical and Electronics

Engineerings, Inc, 1985. IEEE Std 754-1985.

BL02] Pavle Belanovic and Miriam Lesser. A Library of Parameterized

Floating-point Modules and Their Use. In Field Programmable Logic

and Application. Reconfigurable Computing Is Going Mainstream, pages

657-666. Springer-Verlag Heidelberg, Sept 2002.

[BSC+99] P. Banerjee, N. Shenoy, A. Choudhary, S. Hauck, C. Bachmann,

M. Chang, M. Haldar, P. Joisha, A. Jones, A. Kanhare, A. Nayak,

S. Periyacheri, and M. Walkden. MATCH: a MATLAB compiler for

configurable computing systems. Technical report, Center for Parallel

and distributed Computing, Northwestern University, Aug 1999. Tech-

nical Report CPDCTR -9908-013.

[ConOl] D. Conway. Parse: :RecDescent Perl module. In

http://www.cpan.org/modules/hy-module/Parse/DCONWAY/Parse-

RecDescent-1.80. tar.gz, 2001.

[ETS96] ETSI. Radio Equipment and Systems (RES); High PErformance Radio

Local Area Network (HIPERLAN) Type 1; Functional specification. The

European Telecommunications Standards Institute, 1st edition, 1996.

[Gol91] David Goldberg. What every computer scientist should know about

floating-point arithmetic. ACM Computing Surveys, 23(l):5-48, 1991.

74 "

http://www.cpan.org/modules/hy-module/Parse/DCONWAY/Parse-

[HLT+02] C.H. Ho, P.H.W. Leong, K.H. Tsoi, R. Ludewig, P.Zipf, A.G. Ortiz,

and M. Glesner. Fly - a modifiable hardware compiler. In Proceedings

of the twelfth International Workshop on Field-Programmable Logic &

Applications, 2002.

[IEE02] IEEE Computer Society. 1076 IEEE Standard VHDL Language Refer-

ence Manual. Technical report, The Insittution of Electrical and Elec-

tronics Engineerings, Inc, 2002. IEEE Std 1076-2002.

[JGW81] John E. Dennis Jr, David M. Gay, and Roy E. Welsch. An adaptive

nonlinear least-squares algorithm. ACM Transactions on Mathematical

Software, 7(3):348-368, Sept 1981.

[JLOl] A. Jaenicke and W. Luk. Parameterised floating-point arithmetic on FP-

GAs. In Proceedings of the IEEE International Conference on Acoustics,

Speech and Signal Processing, pages 897-900, 2001.

[LLC+01] P.H.W. Leong, M.P. Leong, O.Y.H. Cheung, T. Tung, C.M. Kwok, M.Y.

Wong, and K.H. Lee. Pilchard - a reconfigurable computing platform

with memory slot interface. In Proceedings of the IEEE Symposium on

FCCM, 2001.

:LMM+98] W. B. Ligon, S. McMillan, G. Moon, K. Schoonover, F. Stivers, and

K. D. Underwood. A Re-evaluation of the Practicality of Floating-Point

Operations on FPGAs. In Proc. of IEEE Symposium on FPGAs for

Custom Computing Machines, pages 206-215. IEEE Computer Society

Press, 1998. .

[MF99] J. Mathews and K. Fink. Numerical Methods Using MATLAB, pages

433-441. Prentice Hall, 3rd edition, 1999.

[Mit98] San jit K. Mitra. Digital Signal Processing A Computer-Based Approach

International Editions 1998�pages 339-416. McGraw-Hill, 1998.

75

[MT98] Junichiro Makino and Makoto Taiji. Scientific Simulation with Special-

Purpose Computers - the GRAPE systems, pages 41—48. John Wiley &

Sons Ltd, 1998.

[NM65] J. Nelder and R. Mead. A simplex method for function minimization.

In Computer Journal, pages 308-313, 1965.

[Pag96] I. Page. Constructing hardware-software systems from a single descrip-

tion. Journal of VLSI Signal Processing, 12(1):87-107, 1996.

[Pin03] Ayal Pinkus. Yet another computer algebra system (YACAS), 2003.

[SS97] Michael J. Schulte and James Stine. Symmetric bipartite tables for

accurate function approximation. In Tom as Lang, Jean-Michel Muller,

and Naofumi Takagi, editors, Proceedings of the 13th IEEE Symposium

on Computer Arithmetic, pages 175-183, Los Alamitos, CA, 1997. IEEE

Computer Society Press.

[SS99a] James E. Stine and Michael J. Schulte. The symmetric table addition

method for accurate function approximation. Journal of VLSI Signal

Processing, 21:167-177, 1999.

[SS99b] James E. Stine and Michael J. Schulte. The symmetric table addition

method for accurate function approximation. Journal of VLSI Signal

Processing, 21:167-177, 1999.

[SWA95] N. Shirazi, A. Walters, and P. Athanas. Quantitative analysis of floating

point arithmetic on FPGA based custom computing machines. In Proc.

FCCM, pages 155-162, 1995.

[Teu03] Peter Teuben. NEMO - A Stellar Dynamics Toolbox, 2003.

[WA02] M. Ward and N.C. Audsley. Hardware Implementation of Programming

Languages for Real-Time. In Proceedings of the Eigth IEEE Real-Time

•d Embedded Technology and Applications Symposium, pages 276-285,

Sept 2002.

76

[WCOOO] L. Wall, T. Christiansen, and J. Orwant. Programming Perl O'Reilly,

3rd edition, 2000.

[XilOl] Xilinx Inc. Architectural Description, pages 6-57. Xilinx Inc, 2001.

77 "

Publications

Full Length Conference Papers

• C.H. Ho, M.P. Leong, RH.W. Leong, J. Becker, M.Glesner, "Rapid Proto-

typing of FPGA based Floating Point DSP Systems", in Proceedings of IEEE

International Workshop on Rapid System Prototyping, July 2002.

• C.H. Ho, RH.W. Leong, K.H. Tsoi, R. Ludewig, P. Zipf, A.G. Ortiz, M.Glesner,

"Fly - A Modifiable Hardware Compiler", in Proceedings of International Con-

ference on Field Programmable Logic and Applications, September 2002.

• C.H. Ho, K.H. Tsoi, H.C. Yeung, Y.M. Lam, K.H. Lee, RH.W. Leong, R.

Ludewig, P. Zipf, A.G. Ortiz, M. Glesner, "Arbitrary Function Approximation

in HDLs", submitted to Proceedings of IEEE International Conference on

Field-Programmable Technology, December 2003.

78 "

圓！：、：

,
-
 ,

 ,

f
v

-

 -,...〜，〜•-

.

：

.

.

<

/

r

--rr、，c

.’)，，-,

-

 .
.

«

、

'

'

,

.

.

.

.:-
 ...

 ！
v
a
r

.
 .

 .

 „

 .

 .
 ..
.
.

•

 ••

 ,

.

.

.

.

 .

 .

i

•
 •

 -

 •
 -

 •

 .

..

 .
•
.

•
:
-

.

 :..、.：.」...

,

 .
.
.

•

.

•

‘

 ...

...(.V

.

 .

 •
.

 •

 :

 •

 ,(.：.-.

 .

 •

 -

 V

•

 -

 .

 ••.、：.：「「.

 :

 .

 •

 -

\

 f

•

.
:
;
:

々
v
:
l
.
,

.

V

‘
 ...

V

,

••T

..

I
 >、.L

 i.
:

二.，

 -

V

«

^

.

.v.l.
 i
.

 :

 .

I
 -

 {
.

-

 .
.
、
；
，
.
.
•

 -
•

.

 •
、
.
.
.
，
.
：
.

 .

 .

 ••

i

-
 -
.
.

.

 ,

v.,

.

t
;
:
.
識
、
,
：
：
.

：
 •

.

.
c

•>••..

 .
.
.
.
.

...

 .,>

^

<
 -

 -
 •

•..,

 .

r

‘

r

.
 .

<

^

.

人

•

•

‘

/

.

.

>

•

•

-

.

.

•

-

.

.

.

-

.

.

.

.

 .

 •

y
a

.
 •
'

 •
•

 •

 -

V

•

^

•
 •

f

.
 •

 >

.

v

.

.

.

r

—
 :
.

-

琴

卞

 .
.
.

：

：

 .
•

霸
；
‘
 .
:
:
.
:
:
:
:
:
.
"
‘
：
：
:
.
‘
，
.
.
.
.

CUHK Libraries

