
An HMM-Based
Speech Recognition IC

Han Wei

A Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of

Master of Philosophy
in

Electronic Engineering

Supervised by

Prof. C. F. Chan

© The Chinese University of Hong Kong
June 2003

The Chinese University of Hong Kong holds the copyright of this
thesis. Any person(s) intending to use a part or whole of the materials
in the thesis in a proposed publication must seek copyright release
from the Dean of the Graduate School.

統系餘書圖
錢i ̂ f一 — “ \ ‘

封 2 9 •)||
丨 1

university""' y M l
^J^LIBRARY SYSTEM/xv/

Abstract

Automatic speech recognition has received a great deal of attention in the past

decade and a wide variety of isolated word recognition systems have been used

in many applications. Speech recognizers based on hidden Markov models

(HMMs) have less computation compared with other speech recognizers. Thus

H M M technology is most widely used in speech recognition.

The models of the speech recognition system can be trained as one mixture or

multi mixtures. More mixtures in H M M s will result more computation

requirements and more complicated design, but the recognition accuracy will be

better. In this thesis a double-mixture hidden Markov model based isolated word

recognizer IC is presented.

Using a table look-up approach, the new design is smaller and more accurate

comparing with existing designs, and added advantage of this design is that the

architecture can be extended to higher-order mixture H M M based speech

recognizer with minor modifications.

The test chip is fabricated with a 0.35|i C M O S technology. The chip can operate

at 20MHz at 3.3V, and at this frequency the recognition time is 0.5 sec for a

50-word speech library. Tested with 353 speech data from A U R O R A 2 database,

the chip's recognition accuracy is 93.8%, which is as accurate as a software

recognizer using the same algorithm.

i

摘要

語音識別自動化在最近的十幾年中受到了很大的關注0各種各樣的單字識

別系統在很多應用中都有使用。和其他的語音識別系統比較，基於隱馬爾

可夫模型（Hidden Markov Model ’ H M M)的語音識別器需要較少的計算量°

因此，隱馬爾可夫模型技術在語音識別中備受廣泛應用°

語音識別系統中的模型可以被訓練成單一混合(single mixture)或多混合

(multimixtures)模型°在隱馬爾可夫模型中，混合越多，所需要的計算

量越大，設計也越複雜，但是能得到更加精確的識別結果。本論文介紹了

一塊基於雙混合(double-mixture)隱馬爾可夫模型的單字語音識別集成芯

片。

使用了查詢表（look-up table)的方法，這個新的設計和現有的設計相比更

小更精確，並且具有額外的優點：通過微小的修改，此結構可以推廣到基

於高次混合(higher-ordermixture)隱馬爾可夫模型的語音識別器。

測試芯片使用0.35微米CMOS技術制造°此芯片可以在3.3伏電壓’ 20兆

的時鍾頻率下工作。在此條件下，從一個50個單字的字庫中識別一個單字

的時間是0.5秒。我們使用了 A U R O R A 2數據庫中的353個語音信號來測

試這塊芯片，它的準確率是93.8%，和使用相同算法的語音識別軟件一樣精

確° ..
ii

Acknowledgements

I acknowledge gratefully the valuable guidance and encouragement given by m y

supervisor, Prof. C.R Chan. He has worked with me and provided me

continuous comments, patience, supervision, and encouragement throughout the

lengthy and demanding project. I would also like to express my gratitude to Prof.

Lee Tan for his insightfiil suggestions and assistance during my research work.

In addition, a special expression of thanks goes to the research assistant，Mr.

Hon Kwok Wai, for his important assistance in m y research. Without their

willing support this work would not have been possible. Also I would like to

thank Prof. C.S. Choy and Prof. K.R Pun for their kind assistance.

Thanks also to my colleagues, Mr. Cheng Wan Chi, Mr. Chan Wing Kin, Mr.

Leung Pak Keung, Miss. Yeung Wing Ki and Mr. Yu chun Pong, and the

laboratory technician Mr. Yeung Wing Yee and those have been referred to in

this thesis.

iii

Contents

Abstract i
ii

Acknowledgements in
Contents iv
List of Figures vi
List of Tables vii
Chapter 1 Introduction 1

1.1. Speech Recognition 1
1.2. ASIC Design with HDLs 3

Chapter 2 Theory of HMM-Based Speech Recognition 6
2.1. Speaker-Dependent and Speaker-Independent 6
2.2. Frame and Feature Vector 6
2.3. Hidden Markov Model 7

2.3.1. Markov Model 8
2.3.2. Hidden Markov Model 9
2.3.3. Elements of an H M M 10
2.3.4. Types of H M M s 11
2.3.5. Continuous Observation Densities in H M M s 13
2.3.6. Three Basic Problems for H M M s 15

2.4. Probability Evaluation 16
2.4.1. The Viterbi Algorithm 17
2.4.2. Alternative Viterbi Implementation 19

Chapter 3 HMM-based Isolated Word Recognizer Design Methodology ……20
3.1. Speech Recognition Based On Single Mixture 23
3.2. Speech Recognition Based On Double Mixtures 25

Chapter 4 VLSI Implementation of the Speech Recognizer 29
4.1. The System Requirements 29
4.2. Implementation of a Speech Recognizer with a Single-Mixture

H M M 30
4.3. Implementation of a Speech Recognizer with a Double-Mixture

H M M 39
4.4. Extend Usage in High Order Mixtures H M M 46
4.5. Pipelining and the System Timing 50

Chapter 5 Simulation and IC Testing 53
5.1. S imulation Result 53
5.2. Testing 55

Chapter 6 Discussion and Conclusion 58
Reference 60
Appendix I Verilog Code of the Double-Mixture H M M Based Speech
Recognition IC (RTL Level) 62

Subtracter 62

Multiplier 63

Core—Adder 65

Register for X 66
iv

Subtracter and Comparator 67

Shifter 68

Look-Up Table 71

Register for Constants 79

Register for Scores 80

Final Score Register 84

Controller 86

Top 97

Appendix II Chip Microphotograph 103
Appendix III Pin Assignment of the Speech Recognition IC 104
Appendix IV The Testing Board of the IC 108

V

List of Figures

Figure 1-1. A Block Diagram of a Pattern Recognition Speech Recognizer.2
Figure 1-2. Design Flow of Verilog HDL-Based ASICs 4
Figure 2-1. Examples of One Frmes of Speech Signal 7
Figure 2-2. A Three-State Markov Model 8
Figure 2-3. A Three-State Hidden Markov Model 9
Figure 2-4. (a) A Two-State Markov Model (b) An Equivalent One-State

Hidden Markov Model 10
Figure 2-5. A Fully Connected H M M 12
Figure 2-6. A Left-Right H M M 12
Figure 2-7. (a) Training Speeches From Boys and Girls (b)(c)

Recognition Result 14
Figure 2-8. (a) (b) Searching in the Lattice Structure 18
Figure 3-1. H M M Based Recognition Process 21
Figure 3-2. The Lattice Structure of the Speech Recognizer 22
Figure 4-1. The Structure of a Single-Mixture H M M Based Speech

Recognizer 31
Figure 4-2. Part of the Lattice Structure 33
Figure 4-3. Searching Process in the Lattice Structure 33
Figure 4-4. A Example of the Modified Booth Multiplication 36
Figure 4-5. A Block Diagram of The Double-Mixture H M M Based Speech

Recognizer 41
Figure 4-6. The Structure of the Recognizer Without a Look-Up Table .•…46
Figure 4-7. A Block Diagram of Speech Recognizer with a High-Order

Mixture H M M 49
Figure 5-1. Design Flow of This Project 53
Figure 5-2. A Brief Diagram of the PCB 55
Figure 5-3. Block Diagram of the Real-Time Speech Recognition Testing

System 57

vi

List of Tables

Table 1. The Truth Table of the Modified Booth Encoder 36
Table 2. Simulation Results 54
Table 3. Specifications of the New Speech IC 55

vii

Chapter 1 Introduction

Chapter 1 Introduction

1.1. Speech Recognition

Automatic speech recognition by machine has been a goal of research for more

than four decades. Broadly speaking, there are three approaches to speech

recognition: the acoustic-phonetic approach, the pattern recognition approach,

and the artificial intelligence approach. The pattern recognition approach is a

commonly used method for speech recognition because of three reasons:

simplicity of use; robustness and invariance to different speech vocabularies,

users, features sets, pattern comparison algorithms, and decision rules; proven

performance. A popular pattern recognition method is the H M M (Hidden

Markov Model) approach, which uses statistical information inherent in the

speech data in recognition, e.g., mean and covariance.

In most pattern recognition systems, there are four main steps: feature extraction,

in which a sequence of measurements is made on the input signal to define the

test pattern; pattern training, in which one or more test patterns of the same class

are used to created a pattern representative of the features of that class; pattern

comparison, in which the unknown test pattern is compared with each class

reference pattern and a measure of similarity between the test pattern and each

reference pattern is computed; decision logic, in which the reference pattern

5

Chapter 1 Introduction

similarity scores are used to decide which reference pattern best matches the

unknown test pattern. A block diagram of a pattern-recognition speech

recognizer is shown in Figure 1-1 [1].

O =，过ure ̂ Pattern Training
^ Vector

Speech _ Feature / \

Extraction \

。 Pattern ^ Decision Recognize‘

U Comparison Logic Speech

Figure 1-1. A Block Diagram of a Pattern Recognition Speech Recognizer

In a pattern recognition system, the performance is sensitive to the amount of

training data available, the speaking environment and transmission

characteristics of the medium used to create the speech.

In Figure 1-1, the training part can be viewed as a separate system and normally

be implemented by some software using a PC. The rest three parts make up a

complete speech recognition system. Such a speech recognizer can be realized

by software in a PC or by hardware using a DSP board. But our goal is to

develop a new platform which has the smallest area and the lowest price so that

it can be utilized in varies applications, e.g., electrical intellectual pet or smart

house. A system on chip fulfills these requirements. It can be carried anywhere

and embedded inside any products. Moreover, the cost per system is very low

compared to DSP and PC system.

We divide the speech recognizer into two parts, the feature extraction and the

5

Chapter 1 Introduction

pattern comparison & decision logic blocks. In this thesis we design an IC

which realizes the comparison and the decision blocks first.

1.2. ASIC Design with HDLs

Generally speaking, there are two design flows in ASIC (Application-Specific

Integrated Circuit) design. One is from schematic to layout, the other is coding

in hardware description language (HDL) and then synthesis and auto-layout.

The second design flow is often employed in digital circuit design for that there

are always thousands of gates in one design so that it is impossible to draw

schematics gate by gate.

By using hardware description languages, designers can easily manage the

complexity of large designs containing several million gates, and modify and

re-use designs to keep pace with improvements in technology. The most

significant gain that results from the use of a H D L design is that a working

circuit can be synthesized automatically from a language-based description,

bypassing laborious steps that characterize manual design methods (e.g., logic

minimization with Karnaugh maps). HDL-based designs are becoming an

industry design standard [2].

Verilog and V H D L are two of the most popular hardware description languages,

both are Institute of Electrical and Electronic Engineers (IEEE) standards. This

3

Chapter 1 Introduction

project is designed with Verilog HDL. A typical design flow of Verilog

HDL-based ASICs is shown in Figure 1-2 [3].

Design Specification

i
Behavioral
Description

i
RTL Description =

一 (Verilog HDL) ^

^ n
Functional

Verification and
Testing

广 T
Logic Synthesis

Gate-Level Netiist

i
Logical Verification

and Testing

i .
Floor Planning

Automatic Place & ——
Route

. i
Physical Layout

r i M
Layout Verification

i .

Implementation

Figure 1-2. Design Flow of Verilog HDL-Based ASICs

The designs specifications are written first. They describe abstractly the

functionality, interface, and overall architecture of the digital circuit. Then a

behavioral description is created to analyze the design in terms of functionality,

performance, and other high-level issues. After the behavioral description is

converted to an RTL description, logic synthesis tools convert the RTL

5

Chapter 1 Introduction

description to a gate-level net list. The gate-level netlist is input to an Automatic

Place and Route tool, which creates a layout. After verification, the labyout

could be sent for fabrication. Most digital design activity is concentrated on

manually optimizing the RTL description of the circuit. After the RTL design is

finished, C A D tools are used to assist designers in further processes [3] [4].

5

Chapter 2 Theory of HMM-Based Speech Recognition

Chapter 2 Theory of
HMM-Based Speech
Recognition

2.1. Speaker-Dependent and
Speaker-Independent

A speech recognition system can be trained as speaker-dependent (SD) or

speaker-independent (SI). The difference is that in a SD system one model is

trained with speeches from one person while in a SI system speeches from

different speakers can be found in the training data of one model. For a given

speech recognition task, a SD system normally performs better than a SI system,

as a sufficient amount of data is available to adequately train the

speaker-dependent templates, or models. However, when the amount of speaker

specific training data is limited, this is not guaranteed because of the lack of

reliability in the calculated reference parameters [1].

2.2. Frame and Feature Vector

speech is a time varying signal. However, in a very short period of time (10ms

19

Chapter 2 Theory of HMM-Based Speech Recognition

to 20ms), speech is fairly stationary. So a speech signal can be divided into

several segmentations and each of them is called a frame.

freane n < >

frame n+1 •？ >

Figure 2-1. Examples of One Frmes of Speech Signal

In a speech-recognition system, the signal-processing front end converts a frame

to some type of parametric representation for further analysis and processing.

These include the short time energy, zero crossing rates, level crossing rates, and

other related parameters. These information are generally at a considerably

lower information rate. In the front end processing of this project, one frame is

converted to a 26-element vector, in which there are 12 MFCC's

(Mel-Frequency Cepstrum Coefficients), 12 first-order derivatives of these

coefficients, and the energies of the above two sets of coefficients respectively.

2.3. Hidden Markov Model

One well-known and widely used speech recognition algorithm is the hidden

19

Chapter 2 Theory of HMM-Based Speech Recognition

Markov model (HMM) approach [5]. It uses the statistic information inherent in

the speech signals and provides a natural and highly reliable way of recognizing

speech for a wide range of applications.

2.3.1. Markov Model

Consider a system that can be described at any time as being in one of a set of N

distinct states, at regularly spaced, discrete times, the system undergoes a

change of state according to a set of state-transition probabilities a^ with the

following properties.

〜〉0 Vz,7
N

Z 〜 = 1

This system is called an observable Markov model because at each instant of

time the system is in one of the set of states, where each state corresponds to an

observable event.

State 3

o
Figure 2-2. A Three-State Markov Model

8

Chapter 2 Theory of HMM-Based Speech Recognition

2.3.2. Hidden Markov Model

In an observable Markov model each state corresponds to a deterministically

observable event. The output of such system in any given state is not random.

But this model is too restrictive to be applied to many real problems. So the

observable Markov model is extended to include the case in which the

observation is a probabilistic function of the state. The resulting model is called

a hidden Markov model.

(P (A) 12 P(A) j

\：：二
\ P (B)厂

o
Figure 2-3. A Three-State Hidden Markov Model

Figure 2-3 shows a three-state hidden Markov model. Within each state there

are three possible observation symbols, each one corresponding to a possible

output of this system. So even the system has been decided in a particular state,

the output of the system still has three choices.

A hidden Markov model can be driven from a Markov model. Figure 2-4(a) is a

two-state Markov model and in Figure 2-4(b) an equivalent one-state hidden

19

Chapter 2 Theory of HMM-Based Speech Recognition

Markov model is illustrated. Inside the only state of this hidden Markov model,

there are two possible observations corresponding to the two states in the

Markov model in Figure 2-4(a).

State 1 k C State 2

(a)

o
/ State l \
P(A)=P,

(b)

Figure 2-4. (a) A Two-State Markov Model (b) An Equivalent One-State Hidden Markov Model

2.3.3. Elements of an H _

An H M M for discrete symbol observations is characterized by the following

elements:

1. N, the number of states in the model In the coin-tossing experiment, each

state corresponds to a distinct biased coin.

2. M, the number of distinct observation symbols per state. The observation

symbols correspond to the physical output of the system being modeled.

For the coin-tossing experiment the observation symbols were heads or

tails.

3. The state-transition probability distribution A={ , where a0) for all i, j.
10

Chapter 2 Theory of HMM-Based Speech Recognition

4. The observation symbol probability distribution B二{bi(ky}, in which bi(k)

defines the symbol distribution in state i. In the coin-tossing experiment, it

is the probability of Head or Tail in the state Coinl or Com2.

5. The initial state distribution 7r={;r/}, in which iq means the probability of

the initial state is state i,

A complete specification of an H M M requires specification of two model

parameters N and M, specification of observation symbols, and specification of

three sets of probability J, B and tt.

2.3.4. Types of HMMs

H M M S can be classified by the structure of the transition matrix A of the

Markov chain. One special case is the fully connected H M M or an ergodic

model. In this kind of model every state can be reached in a single step from

every other state (Figure 2-5), where

以 11 以 12 ^13

A — 以 21 2̂2 以 23

For some applications, especially in processing speech signals whose properties

change over time in a successive manner, a left-right H M M can model the

observed properties of the signals better than the standard ergodic model. In

such a left-right model, as time increases, the state index increases or stays the

19

Chapter 2 Theory of HMM-Based Speech Recognition

same (Figure 2-6). This model has a fundamental property that the

state-transition coefficients have the following property:

ciij =0, j< i

And the state sequence must begin in state 1 and end in state N.
[0, i^l

[l, / = 1

One additional constraint is placed on the state-transition coefficients of the

models used in this project.

a". =0, + l

That is, one state can only be reached from its previous one or itself. The

state-transition matrix is in the form of the following:

A- 0 a 22 <̂23

0 0 3̂3

Figure 2-5. A Fully Connected HMM

Figure 2-6. A Left-Right HMM

12

Chapter 2 Theory of HMM-Based Speech Recognition

2.3,5. Continuous Observation Densities in HMMs

In many real-world applications the observations are often continuous signals.

Although it is possible to convert such continuous signal representations into a

sequence of discrete symbols (that is, use an observable Markov model to model

these continuous signals), it would be advantageous to use H M M s with

continuous observation densities to model continuous signal representations

directly.

To use a continuous observation density, the model probability density function

(pdf) is in the following finite mixture form:

bj(o) = f^CjkWp,“jk,Ujk\ ^^j^N
k=\

Where o is the observation vector being modeled, cjk is the mixture coefficient

for the ŷth mixture in state j and N is any log-concave or elliptically symmetric

density (e.g., Gaussian, which is used in this project) with mean vector jUjk and

covariance matrix Ujk for the li^ mixture component in state j. The mixture

coefficient cjk satisfies the following constraint:

M

Y^Cjk 二 I \<j<N

Cj, > 0, l<j<N, \<k<M

Assume we have speeches from both boys and girls (Figure 2-7(a)) for a same

word, each vector in the figure is one speech data from a boy or girl. Using

these data we trained a single-mixture model and a double-mixture model for

this particular word separately and then use these two models to recognize an

13

Chapter 2 Theory of HMM-Based Speech Recognition

input speech, which is one of the training data from the boys. Here si and s2 are

scores to be compared in the decision logic part, and a larger score means the

input data is more probable to be the word which the model stands for.

Obviously with a two-mixture model the speech recognizer is able to give out a

better recognition accuracy than only using a single mixture model in

recognition (Figure 2-7 (b)(c)). In this project a double-mixture H M M is used to

model the speech signals.

个 个 个 个 个 个 个 个 个 y ‘ ‘、 ,、个 个 个 个 个 个 个 个 个 个 个 个

< Boy <- G-irl Speech Data

(a)

Input Speech ^

Speech Data

(b)

\

Input Speech Speech Data

(c)

Figure 2-7. (a) Training Speeches From Boys and Girls (b)(c) Recognition Result

19

Chapter 2 Theory of HMM-Based Speech Recognition

2.3.6, Three Basic Problems for HMMs

Given an H M M in the form of A=(A, B, n), there are three problems faced when

this model is used in real-world applications:

1. H o w to efficiently compute P(0|/l), the probability of the observation

sequence 0=(pi02...0j), here Ot is the input feature vector at time t in

speech recognition systems;

2. H o w to choose a corresponding state sequence q={qiq2...qr) to best explain

the observation sequence 0=(o购…or);

3. H o w to adjust the model parameters A=(A, B, n) to maximize P(0|/l).

To design an isolated-word speech recognizer, first we have to design a separate

N-state H M M for each word of a 厂 word vocabulary. V is the number of words

in the vocabulary. This task is done by using the solution to the third problem.

Then by using the solution to the second problem we can segment each of the

word training sequences into states to make refinements of the model to

improve its capability of modeling the spoken word sequences. Finally

recognition of an unknown word is performed using the solution to the first

problem to score each word model based on the given test observation sequence,

and select the word whose model score is highest.

19

Chapter 2 Theory of HMM-Based Speech Recognition

2 A Probability Evaluation

To do speech recognition, we wish to calculate the probability of the

observation sequence, O = , given the model 义，and then we can

compare the probabilities obtained from this calculation to make the recognition

decision. The most straightforward way of doing this is enumerating every

possible state sequence of length T, computing the probability of the observation

sequence O given a fixed-state sequence q =(仏《2《3..4r) and then summing

these probabilities over all possible state sequence q. That is,

no I 义) = i X A i ⑷ 〜 入 ⑷ … 人 ⑷ （2.1)

The direct calculation of the above equation involves IT • N^ calculations (N

is the number of states in the model), since there are A T possible state sequences

(at every t=l, 2，3,…，T, there are iVpossible states that can be reached) and for

each such state sequence about 2T calculations are required for each term in the

sum of equation (2.1). It is almost computationally infeasible. Even for a small

value of TV, e.g., N=2>, for a speech input composed of 100 frames (7=100), there

are around computations.

An alternative to equation (2.1) is that the probability can be approximated by

only considering the most likely state sequence, that is

P{0 I 义)=，(冗入•〜—入(〜)）（2.2)

The above equation also requires numerous computations when being directly

calculated. Fortunately there is a simple recursive procedure existing which

allows the equation to be calculated very efficiently. It is called the Viterbi
16

Chapter 2 Theory of HMM-Based Speech Recognition

Algorithm [6],

2.4.1, The Viterbi Algorithm

The Viterbi algorithm is used to find the single best state sequence. It is useful

in both model training and speech recognition. To find the single best state

sequence 仏 仏 义 f o r the given observation sequence

0 = , we need to define the highest probability along a single path

at time t

q

St(i) accounts for the first t observations and ends in state i. The complete

procedure of the Viterbi algorithm can be stated as follows:

1 • Initialization

= l<i<N

2. Recursion

3 • Termination

The recursion step is the heart of the Viterbi algorithm. The above procedures

should be clear that a lattice (or trellis) structure efficiently implements the

computation of the Viterbi algorithm.

26

Chapter 2 Theory of HMM-Based Speech Recognition

State i

C©-一r Y""^―…了……

x'V^—'——I
Cĵ —tir •tir 办
^ ^ L-| 1 Frame

1 2 3 4

(a)

State 个

e 「---「…丁----「---(̂ … 1 I I I I I I X ‘ ‘ 1 I • I I • I I Z 1 •
d 丨
v-̂ t I I I I I yi I I I I I I I I z I I I
r ！ i——{D---0—-JD (Sr—O——1 1
^ I I I I yr 1 1 1 1

b i""©"^~1—!—-1
\ I I I I I I I I
I~~I~II~II~I~I~!"• Frame
1 2 3 4 5 6 7 8 9

(b)

Figure 2-8. (a) (b) Searching in the Lattice Structure

In Figure 2-8(a), the initialization sets state a as the starting point. That is, the

first frame corresponds to state a. The recursion step determines the maximum

probability of a transition path. As illustrated in Figure 2-8(a), each state has

two possible paths, one is from its proceeding state and the other is from itself.

The algorithm calculates the probabilities of these two paths and only keeps the

path with the higher probability. In this example, point b3 has two possible

paths from point a2 and point b2 respectively. Assume the path a2—b3 has a

higher probability than the path as^bs. Then after calculating and comparing

two probabilities of these two paths the algorithm will replace the temporal

probability by the larger one. The search will be continued until it reaches the

very last state. The termination step determines the final probability of the

search as illustrated in Figure 2-8(b).

19

Chapter 2 Theory of HMM-Based Speech Recognition

2.4.2. Alternative Viterbi Implementation

The Viterbi algorithm in the preceding section needs multiplications, which is

not suitable for hardware implementation. Thus by taking logarithms of the

model parameters, the algorithm can be implemented without any multiplication.

The main procedures of the modified Viterbi algorithm then become:

1. Preprocessing

K. = \n(7r.), l<i<N

bXo,) = HUOt)\ \<i<N, \<t<T

(〜)，\<i<N, \<j<N

2. Initialization

3. Recursion

2 < f <
次(j) = ln(AU)) = (/) + &) + bj(o,),…：^

4. Termination

〜 〜

Pfina!=恐热从J)

J \<i<N

The calculation required for this alternative implementation is on the order of

JSfT additions. Because the preprocessing can be performed once and saved, its

cost is negligible for most systems.

19

Chapter 3 HMM-Based Isolated Word Recognizer Design Methodology

Chapter 3 HMM-based
Isolated Word Recognizer
Design Methodology

To build a speaker-independent isolated word recognize, assume we have a

vocabulary of V words and each word is modeled by a distinct H M M . To do

isolated word recognition, we must perform the following:

1. For each word in the vocabulary, we need to build an H M M ^ v For each

word in the vocabulary there is a training set of K utterances. With these

utterances which appropriately represent the characteristics of the word, we

can estimate the model parameters {A, B,龙）that optimize the likelihood

of the training set observation vectors for the v̂ ^ word.

2. For each unknown word to be recognized, the processing is shown in

Figure 3-1. First, by M F C C feature analysis the speech signal is extracted

into observation sequence O; then calculate the model likelihoods for all

possible models; finally by selecting the word whose model likelihood is

highest the system gives the result.

This project is focused on the probability computation and decision made block.

The probability computation step is generally performed using the Viterbi

algorithm.

28

Chapter 3 HMM-Based Isolated Word Recognizer Design Methodology

Q
H M M For

I Word 1

^ Probability

Computation

For

I Word 2

^ Probability

‘. Computation
Observation

Sequence〇

Speech I Ilndex of Recognized

_ _ ^ select Word
- I ： Maximum

： I •

O
T H M M For

t WordV

^ Probability ______

Computation

Figure 3-1. HMM Based Recognition Process

An 8-state left-right H M M is trained in advance for each word in the vocabulary.

The state-transition matrix for this model is

-以11 0 0 0 0 0 0 -

0 2̂2 «23 0 0 0 0 0
0 0 «33 3̂4 0 0 0 0

0 0 0 â â , 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 «78
_ 0 0 0 0 0 0 0 1 _

One state in this model can only be reached from its previous state or itself. The

state sequence ends at state 8 and the initial state distribution ；r={l, 0, 0, 0, 0, 0,

0, 0}. This type of H M M can properly model speech signals whose properties

28

Chapter 3 HMM-Based Isolated Word Recognizer Design Methodology

change over time in a continuous manner.

《 今 AA/7% yyvvv'A i
Frame

卜
1 2 3 4 5 96 97 98 99 100

Figure 3-2. The Lattice Structure of the Speech Recognizer

Figure 3-2 shows the lattice structure of the searching engine of this speech

recognizer. The horizontal coordinate is the frame number of the input speech

which is to be recognized. The vertical coordinate is state index of the model of

a particular word in the vocabulary. Each point in this lattice structure

corresponds to bi(ot), that is, the probability of the input feature vector Ot given

the state i. Assume at time t the feature vector Ot corresponds to state i. As time

changes from t to t+\ and the input feature vectors change from Ot to Ot+i, the

next state would be i or /+1. In the figure, the lines from one point to another

point represent these probable state transfers. After comparison the searching

engine will keep on the path which has a high probability. The probability

calculation ends only when the searching engine reaches both the last input

feature vector and the last state of the model.

For a speech input whose length is T frames, the probability of the most

probable state sequence that ends at state 8 is

31

Chapter 3 HMM-Based Isolated Word Recognizer Design Methodology

2<t<T
^t (0 = 0 > , , (i - }b.(o,), ^ < < g 丄）

糊 H n 0,

It is to be discussed in the following sections.

3.1. Speech Recognition Based On
Single Mixture

While there is only a discrete probability density used within each state of the

word model, the model is trained as a single-mixture H M M . Given a speech

observation O = (0^020^...Oj,), the probability density function of each point in

the lattice structure of this system would be

b 人 = 队,UO, l<i<N

where Ot is the input feature vector with a dimensionality of n at time t (in this

project n=26). N is a multivariate Gaussian with mean vector fM and covariance

matrix Ui in state i.

P ^ y P l (3.2)

P^yvi e
Hence equation (3.1) can be written as

28

Chapter 3 HMM-Based Isolated Word Recognizer Design Methodology

3t (0 = niax{ 1 (/)a,,, (i - ”,. }b. (o,)
1 1 , 2<t<T

r O ... / . 1 � � 1 --{o-fijur (O,-//,)
= <^,_1(卜1)〜_1),} g 2 , 2 < / < 8

7 , 、 1 4(0,-//丨)’L/丨-丨(Oi-Z/i) .

、 0, m

As stated in Chapter 2.4.2, to reduce hardware complexity and prevent

underflow, the probability is often implemented in logarithmic domain. Take

logarithms of ^t(i), the above equation will become

4(0=ln(4(0) 1

I例26网

[)+(--JLi,yu;\o,-juJ)

(3.3)

For a given state i in the H M M , \Ui\ is constant. Thus ln(a..), and

ln(,) are constant, (/) and {i -1) are scores obtained

�

from the previous step. So the core step of calculating Ŝ (i) is to compute the

third part of the above polynomial.

At time t the input feature vector is denoted as = 〜 , and xij is

one of the 26 coefficients as stated before. For the state Gaussian,

correspondingly there is a mean vector //. = IX!无,2无/3.•.无/26] and a covariance

matrix U^ 二 , both are composed of 26 elements too. Then the

third term of equation (3.2) would be

33

Chapter 3 HMM-Based Isolated Word Recognizer Design Methodology

—

1 1 X 1 1 1
'2 '2 ... 一 - [x^j-x-i 考2 …太,26一无/26.

Z ... U-2

326

爭 去 ）
y=l 以ij

As Uij is constant for a given state j, the factor (———)can be calculated in

advance and viewed as a constant too. Thus the third term of the polynomial can

be simply implemented by some multipliers and adders. So by using a

sing-mixture model, the probability of an input speech observation giving a

most probable state sequence can be implemented in hardware just by some

multipliers, adders and comparators. And there have been standard

implementations for all of these blocks in digital circuit design.

3_2. Speech Recognition Based On
Double Mixtures

As discussed in Chapter 2.3.5, the speech observations are continuous signals

and it is advantageous to use H M M s with continuous observation densities to

model the continuous characteristics directly, so some restrictions must be

placed on the form of the model probability density function (pdf) to ensure that

the parameters of the pdf can be re-estimated in a consistent way when training

the model For a double-mixture H M M isolated word recognizer, all the

searching algorithms are the same as the single-mixture recognizer's except that

a double-mixture Gaussian is used in the formula of the pdf.

25

Chapter 3 HMM-Based Isolated Word Recognizer Design Methodology

For the t̂^ frame, the corresponding pdf is

Replace N by the representation in equation (3.2), the above pdf would be

Z?,(o,) = c,iN(o,，11.,, ？7,1) +c,.2 NO,, Ua)

=C.-i I e 2 + I g

(3.4)

Similarly taking the logarithms of pdf to reduce the hardware complexity,

equation (3.4) becomes

=ln(c.i , =e 2 + C.2 I =e 2)

(3.5)

Equation (3.5) requires an add-log operation (ln(2̂ exp)). Normally the equation

will be implemented by taking the larger factor out of the logarithm operation as

follows:

+ C ^ ') = max{lnC, -^X,, InQ + in(l + • ^ 己 义 - - 义 -)

^max

Here C赚义 and Xmax are factors in max{lnCj + X p In C2 + X2}, and Cmin and

Xmin are factors in min{lnCi InC^+X^} . There are two possible

C _
solutions to implement the function ln(l + —) .

^max

c _
1. Ignore the affect of + 如厂义墮)[7]. The reason for replacing

Cfnax

+ C^e^') by max{lnC； + Z ” is that

35

Chapter 3 HMM-Based Isolated Word Recognizer Design Methodology

c c
广义隨 <1, thus ln(l +) < in 2 < 0.7 . If the word to

Cmax Cmax

be recognized is distinguishable, that is, one of the probabilities P(0| 乂）is

much larger than the others, this method works well. But if for an input

observation, there are two words in the vocabulary whose models produce

almost the same probabilities during calculation, then the ignored term

C _

ln(lH——ŝ HLgi™厂Zmax) will be a determinant in recognition. Thus this
Cfnax

implementation method will introduce large errors.

2. Use a polynomial y 二 介—-^min) + 爪 to approximate

C
ln(lH———g-̂ -'x-̂ max ̂ First, we have to find out the interval in which the

Cfnax

log-function can not be approximated to 0. Then evaluate

C
y - ln(l + 厂) at points within this interval following a step of

^max

every LSB to minimize L M S (Least Mean Squares) to find out k and m [8].

This implementation is more accurate than the previous one, but it needs

some special circuits to implement. Moreover, while a higher-mixture

model is employed in recognition, the add-log operation is more complex

so that a higher order polynomial is needed to approximate the add-log

equation. This need more calculation in choosing ki, k�，K and m.

Therefore the hardware implementation will be more complex too.

These are the two main existing implementations for add-log operation, each

has its own advantages and disadvantages. In this project we introduce a new

method to implement this add-log operation ——with a table look-up method.
27

Chapter 3 HMM-Based Isolated Word Recognizer Design Methodology

This approach has simplified the current design while introducing an acceptable

computation error.

r c
Because 0 < <1 , 1 < ln(l +)<in2 , for a

CFNAX M̂AX

double-mixture model, the value of the add-log factor is kept between 0 and 0.7,

Q _ C _
and is determined by • So can be set as the index

C C max max

of the look-up table while the content of the table is numbers between 0 and 0.7.

The size of the look-up table is determined by the system requirement, which

will be discussed in the next chapter. This table look-up approach has

substantially reduced the complexity of the design, improved speed and

accuracy. Moreover, the table look-up approach can implement higher order

multi-mixture Gaussian pdf architecture based on a single-mixture model

[9][10].

28

Chapter 4 VLSI Implementation of the Speech Recognizer

Chapter 4 VLSI
Implementation of the
Speech Recognizer

As discussed in the Chapter 3, a speaker-independent speech recognizer with a

two-mixture H M M can be implemented based on a single-mixture H M M speech

recognizer, using the table look-up method. This implementation method can be

extended to high-order-mixture H M M systems with little and very simple

modifications. Thus this chapter will start from the design of a speech

recognizer based on a single-mixture H M M , then the implementation of a

two-mixture H M M based speech recognizer, and finally discuss how to applied

the table look-up method to a high-order-mixture search engine.

4.1. The System Requirements

The speech recognizer in this project is designed for isolated words recognition.

The vocabulary is composed of up to 64 words, and we assume the number of

the feature vectors of each isolated word to be recognized is not more than 256,

which are enough for pratical applications. All the feature vectors are composed

of 26 elements and the H M M used to model the word in the vocabulary is a

38

Chapter 4 VLSI Implementation of the Speech Recognizer

left-right 8-state model.

All the feature vectors and the model parameters are pre-converted into 16-bit

fixed point binary data with an accuracy equavilant to two places after the

decimal point floating numbers. For example, a floating point number 32.163

will be converted into a 16-bit fix point number equal to 3216 (110010010000).

Because no truncation is considered during the computation in this system, after

the multiplication the factor (x,. - ———) w i l l be a 48-bit data and then

26 _ 1
the addition involves in the summation .) is a 48-bit

> 1 2 〜

operation. Thus the pre-calculated constants In , 丄 = a n d In a., are

V側卞I
26 — 1

needed to be converted into 48-bit data before adding to ^ (x̂ j) •

But as the model parameters P 力 are stored together with the constants and they

are 16-bit data, every constant has to be separated into three 16-bit data and

stored in three corresponding units in the external memory.

4.2. Implementation of a Speech
Recognizer with a Single-Mixture
HMM

The speech recognizer based on a Single-Mixture H M M mainly realizes the

30

Chapter 4 VLSI Implementation of the Speech Recognizer

following algorithm:

Pfinal=m

1 26 1 2 < t <

削 ^ ^ij 2<Z<8
1 +!；(〜一功_^)，/ = i

0, iVl
Here T is the total number of the input feature vectors and the Viterbi algorithm

is implemented in the logarithm field.

Figure 4-1 shows the structure of a speech recognizer which employs a

single-mixture H M M when training the vocabulary models.

Word-Index

FianI Score
Register

Feature Vector

• Subtracter ——• Multiplier • Core—Adder ^ _
Model Parameter

Constant Register for
Constants

Address •

“ Controller
Start

Figure 4-1. The Structure of a Single-Mixture HMM Based Speech Recognizer

This speech recognizer is composed of seven blocks, in which Controller is the

master to control other blocks to realize the logarithmic Viterbi algorithm. These

blocks are listed as below.

1. Registers. There are three registers in this recognizer.

1). Register for Constants. It is used to store the constants
^{iTuf^p.

40

Chapter 4 VLSI Implementation of the Speech Recognizer

and In a.. or lna《/+i)-lna" (The reason to store instead of

lna,(/+i) will be explained later). These two constants are 48-bit data

but stored as three 16-bit data in the external memory, thus we need to

combine these three 16-bit data into one 48-bit data when the system

fetches data. Thus this register is composed of two 48-bit storage

elements, each of which stores one of the two constants when the

system calculates the scores of one of the points in the lattice structure

and their contents will be replaced by a new set of constants when

come to calculate the next point.

2). Register for Scores. This register is used to store the scores of the

points in the lattice structure. Together with Core—Adder, these two

blocks complete most of the searching work in the Viterbi algorithm.

The scores stored in the register are results from the adder, which are

48-bit data, and they will also be used by Core—Adder as one of the

factors of the addition. Because in the searching process, every point

has two paths to be reached, one from the previous state and the other

from the same state as illustrated in Figure 4-2. The scores of these

two paths have to be compared and the larger one is the right score of

this point. Then as shown in Figure 4-3, we need eight 48-bit storage

elements to store the temporal scores of each point, which are the

computation results of the path from the same state, and one more

48-bit element, called "Register Temp", to store the other scores

resulting from the path thought the previous state. The score in the

"Register Temp" will be compared with the score in one

corresponding storage element at a proper time and then the larger one

41

Chapter 4 VLSI Implementation of the Speech Recognizer

will be stored in this storage element as the final score up to this point.

The comparison and replacement steps are shown in the Figure 4-3 as

illustrated by 1, 2, 3.... When the searching process ends, the final

score is stored in the storage element and will be pass to Final

Score Register. This register for scores is composed of nine 48-bit

storage elements with some embedded comparison logic.

r
State i+1 〇 y O

• • • • • •

State i C y — — ; 0

Frame t / Frame t+1

A
Figure 4-2. Part of the Lattice Structure

Register 8
State 8 ^ V . ^

Register 7 h f ^
State 7

Register 6 J ^ ^
State 6 / V V

Register 5
State 5

Register 4 / ^ ^ ^ V —
State 4

Register 3 =
State 3

/ J . Temp

Register 2 (^] 4. compare
State 2 3. R e g i s t e r ^ ^ V V

y / i . Temp

Register 1
State 1 1.Register 1

Frame t Frame t+1

Figure 4-3. Searching Process in the Lattice Structure

3). Final Score Register. This 48-bit register is used to store the largest

42

Chapter 4 VLSI Implementation of the Speech Recognizer

final probability of the input observation. Given one word model in

the vocabulary, once the search process finishes, the final probability

which is stored in the storage element of the register for scores will

be passed to the final score register. This register then compares the

new probability with the one that already stored (previous final score)

inside it. If the new one is bigger than the old one, then the new score

will replace the old one and the register will also set the recognized

word index to the index of the word whose model has a larger

probability during the searching process. This word index is the

system output. If the new score is smaller than the old one, then the

new score will be discarded.

2. Subtracter. This block is used to implement x̂ j -x-j. For a given input Xtj

which is the element of the input observation Ot at time t, Subtracter

finds out the corresponding x̂ , which is the 广 component of the

Gaussian's mean vector U / of the /也 state and calculates the difference

between them. Because for a given word model in the vocabulary, x-- is

constant. Then we pre-store - x̂ . instead of x.. in the external memory

to avoid the on-chip subtraction. Thus x". - x̂ becomes 乂 + (—无"),

which actually is an addition operation. Here we use a 16-bit

carry-look-ahead adder [11] to implement this addition, for both the inputs

and output are 16-bit data. This adder has very a small propagation delay.

The algorithm is illustrated as below.

P 二 A ® B 二 A| B,

43

Chapter 4 VLSI Implementation of the Speech Recognizer

Q = A & B ,

Co =0 ,

Ci = Gi_i|(Pi_i&Ci_i), i〉0

S = A ® B ® C

Here A and B are two operands of the addition, P and Q are the propagate

and generate term, C and S are carry and summation. And all operators

involved here are bit operator. The result of Subtracter is the input to the

multiplier that follows it. This Subtracter also acts as a passageway. When

the system fetches in the f^ covariance ug in the f̂ state Gaussian's

CO variance matrix Ui, Subtracter does nothing except passing it to

Multiplier.

3. Multiplier. It is used to implement (x. -x.-Yi———).Although there are

a square operation and a multiplication in this factor, we use a 48-bit

modified Booth multiplier to realize both square and multiplication to save

chip area [12]. The truth table of the modified Booth encoder is shown in

table 1. The multiplicand to be encoded is a 16-bit data in both the

multiplications. Before encoding, ‘0’ will be added to the right of the

multiplicand. By doing so, the number of partial products of the

multiplication is reduced to half of the original one and these partial

products can be easily calculated by means of bit shifting or negation of the

other multiplicand. Also, before summing these partial products up by the

full adders, a sign bit must be extended in the partial products, and a

constant must be added to the sum of the partial products, starting from the

44

Chapter 4 VLSI Implementation of the Speech Recognizer

position n. n is the bit number of the other multiplicand. The extended sign

bit is ‘1’ for a positive partial product and ‘0，for a negative one. And the

form of the constant is (1010101 ...010111), where there are (m/2)-l zeros

and m is the bit number of the multiplicand. In this project m=16. Figure

4-4 gives a simple example of the modified Booth multiplication.

m-2

/=o
, Z = Xw_i，x̂ _2”..，Xo (two's complement)

i-0

X2i+i ^ Xii-i dj
0 0 0 0
0 0 1 - 1

0 . 1 0 1
0 1 1 2
1 0 0 " -2
1 “ 0 1 - 1

1 1 0 -1

- 1 I 1 I 1 I 0

Table 1. The Truth Table of the Modified Booth Encoder

extended bit
zero added ^ ^ ^

/ / f 1000110 -2Y

A T 1000011 Y

V …A in A encoding 00 1 0 1 0 0 summation 0111101 Y
X=001010=10, m=:6 —— summation constant, start
Y=111101=-3,n=6 _ _ - 2 ^ luiuii ^ - _ 如爪 position 6

111111100010-30

Figure 4-4. A Example of the Modified Booth Multiplication

This modified Booth multiplier first calculate (x̂ j-x̂ j)̂ , in which

Xtj -x^j is the computation result of Subtracter. Then Multiplier fetches

the result of (x.-无i/f back and multiplies it with —, which is also

2�.
- 1

the output of Subtracter and produces the factor (x • -x,) (). Here

we can see the advantages of using Subtracter as a passageway when
36

Chapter 4 VLSI Implementation of the Speech Recognizer

fetching the factor ———.By using this method the Multiplier's inputs
2〜.

are the output of Subtracter and the computation result of itself instead of

the system's input. Then it is much easier for us to trace the data in

processing and control the system to fetch input data. The final output of

Multiplier (x . - x^. ” (—) is one of the Core—Adder inputs.

2〜 —

4. Core—Adder. It is one of the main blocks in the speech recognizer. W e use a

48-bit carry-look-ahead adder here for there is no truncation employed in

the system. This adder sums up the output of Multiplier,

(x. ———),and then adds the constant In . 丄 = a n d the

previous score

of (M)th frame of this state
max{(5",_i(/) + lna", + which is stored in "Register for

Scores" to the result of the above summation. After that, as illustrated in

Figure 4-3, Core—Adder will add the transition coefficient Ina". or ln<3/(/+i) to

the result of the above operation and these two addition results will be

stored in "Register for Scores" according to the judgment method stated

above. Here after adding Inau and getting the first addition result, we add

\nai(i+\)-]naii which is pre-calculated to the above addition result instead of

Inau to the original value to avoid keeping the original value in Core—adder

so that less control signal is needed.

5. Controller. It is the heart of the system. Under the control of this block, the

system is able to read feature vectors and model parameters from the
37

Chapter 4 VLSI Implementation of the Speech Recognizer

external memories. Inside it, we use several counters to count the system

clock cycles and controls the operations of other blocks. Also the frame

number of the input observations and the word number of the vocabulary

are stored in Controller.

The speech recognizer works as follows:

The feature vectors of the word to be recognized and the models of system

vocabulary are pre-processed and pre-stored in two external memories

respectively in the form of 16-bit data. Before the system starts to work, the

word number of the vocabulary is read into the system and stored in a register.

Then the system is waiting for a start signal and once it is detected, the system

reads the frame number of the observation into a register and begins calculation.

First Xji and -x^j are fetched into the system and Subtracter calculates the

difference between x^ and , and then pass the result and — to

Multiplier. Multiplier computers the factor (x^ ———)and this result

together with other (x” —) are summed up in Core—Adder. Here

26 _ I
2 < 7 < 26 ,7 is the index of the 26 components. After ^ (x̂ j -x^jYi)

M 2u”

is computed, Core—Adder will add the constant In ^ and the

26 — 1

previous scores at this state to 无iy)2() • After that, the
M 2 �

logarithmic state-transition constant 'kvâ ^ and then I n - I n ^ j j is added

47

Chapter 4 VLSI Implementation of the Speech Recognizer

one by one. The two partial probabilities are to be compared and stored in

Register for Scores. The constants In ^ , In̂ jj and -In â ,

are read into Register for Constants during some vacant clock cycles. The above

calculation and searching along one word model continues until the system

reaches the last frame of the input observation and then the final probability is

stored in Final Score Register. This process is repeated for each word model in

the vocabulary. At the end of every computation the final probability is to be

compared with the previous score in Final Score Register and the larger one will

be recorded while the corresponding word index of the model in the vocabulary

is kept by the system. Thus after all the calculations have been finished, the

system will output a complete signal and a word index which indicates the

recognition result. To prevent the system continuing meaningless computation,

Controller will stop the whole system and set an overflow signal to high

immediately when one of Subtracter, Multiplier and Core—Adder is overflow.

4.3. Implementation of a Speech
Recognizer with a Double-Mixture
HMM

A speech recognizer based on a double-mixture H M M is designed to realize the

following algorithm, which is similar to the single-mixture system except that

the pdf computation has to consider two Gaussians for both the mixtures.

48

Chapter 4 VLSI Implementation of the Speech Recognizer

’f-= 一_

^J例^maj 戶丨 琳— �‘max

2<t<T

2 < / < 8

r ^ 1 r

0, i^l

C. 2 6 — 1

Here C, andX,- stand for . ‘ = and V (x.). As discussed

M 2 〜

in Chapter 3, the pdf in the above equations can be implemented by a look-up

table.

First of all, the larger C,隱已义‘瞧 should be selected. Assume that

^ ̂ /min^^'™"〉t^kc logarithm of this inequality, we will get

hq.max + � m a x ^ hC；- +不 -

In 丨 + - 无 一 她 丨 + j>,-无—)2(-

Thus in a double-mixture H M M speech recognition system, to select the larger

Cy 丽 e足"̂狀 when computing the pdf, we only need to compute

c 26 — 1
In ‘ 4-V (r • -) for both the mixtures as what we have

知) 2 6 I", I M

done in the single-mixture system and then compare these two scores to get the

C
larger one. After that, the factor ln(l+ 乂應)is to be realized by a

max

49

Chapter 4 VLSI Implementation of the Speech Recognizer

look-up table. The look-up table's index is decided by ^！^^已乂‘-]'- , which

can be implemented in logarithmic field as follows:

C
瞧=(lnC. . .)-(lnC.)

广 \ I min I mm / V ； max imax /
/max

Obviously the two operands of the index-decision subtraction are results from

the previous calculation and only one more subtraction step is needed to obtain

the index of the look-up table.

A block diagram of this double-mixture H M M based speech recognizer is

shown in Figure 4-5.

Wc rd」ndex
Final Score ^

Registe 厂

Fea ure Vector

——Subtracter ~ • Multiplier ~ • Core一adder * 一

Mocel Parameter T ，r

I Register n for X

I
Register Look-Up shifter I颂 Subtracter

• for Table 口 I and
Constants Comparator

t k

Address

~ Controller
StM ^

Figure 4-5. A Block Diagram of The Double-Mixture HMM Based Speech Recognizer

There are four more blocks in the speech recognizer based on a double-mixture

H M M compared with the single-mixture based one. They are: Register for X,

Subtracter and Comparator, Shifter, and Look-Up Table. The functions of these

blocks are listed as below.

1. Register for X. This register is used to store

41

Chapter 4 VLSI Implementation of the Speech Recognizer

C 26 1
In , ‘ • + y(x,) of the two mixtures, which is the

M J ‘ 、

calculation result from Core—adder. Only after Core—adder finishes

addition for both of the two mixtures can we perform the comparison to

select the larger one and also obtain the index of the look-up table. So for

the fth frame given the 产 state in the word model, after Core—adder finishes

computing InCi+Xi of the first mixture, that is,

C. 26 1
In '1 + V (x̂ -), the final value should be stored

P^rVnl 片 2 〜.

in Register for X and then Core—adder continues to compute lnC2+X2 of the

second mixture. Register for X is composed of two 48-bit storage element,

each to store one value of \nC+X for a given time t and state i.

2. Subtracter and Comparator. In this block, we compare InCi+Xi and

lnC2+X2 to select the larger one and also compute the index of the look-up

table. As discussed before, the index of the look-up table is implemented in

the logarithmic field as (In +) — (In C；.腿 +), after the two

operands are calculated by Core—adder and stored in Register for X,

Subtracter and Comparator accesses Register for X to get these two

numbers and then calculates (In C.̂ + X.j)-(ln C.2 +). If the result is

larger or equal to 0, Subtracter and Comparator will tell Core—adder to add

the logarithm factor to In C.̂ + X.^, and if not, the logarithm factor will be

added to In C.2 + X.^. At the same time the absolute subtraction result will

be passed to the next two stages to be converted into the actual index of the

look-up table.
51

Chapter 4 VLSI Implementation of the Speech Recognizer

3. Shifter. This block is used to shift the output of Subtracter and Comparator

to a fixed scale. Because different model employs a different scaling factor

in pre-process when being converted into 16-bit data, the result of

(In C-i + X.J) - (ki C.2 + X.2) I is of different scale too and can not be

directly seen as the index of the look-up table which should be a fix

number. Thus we apply a fixed scale on the index of the look-up table and

use Shifter block to shift the value of | (In C.j + X.j) - (In C.2 +1/2) I to

this fixed scale before it is used to generate the actual index of the look-up

table. The number of shift bit is indicated by a shift number which is

decided when pre-processing feature vectors and model parameters.

4. Look-Up Table. The look-up table is stored in an external memory together

with the models of the system vocabulary, and the contents of the look-up

table are 48-bit data but stored as three 16-bit data. The block Look-Up

Table in the block diagram actually is an address-conversion machine,

whose input is the shifted absolute value of (In C.j +) —（In -f- X^^)

and the outputs are the actual addresses of the look-up table, which

C
correspond to the locals of three parts of ln(l+ 义,_). Then

C/max

these three 16-bit data are read into Register for Constants in where they

will be combined to a 48-bit data and ready for addition in Core—adder. The

contents of the look-up table are decided as follows. As

C C

< 1 , h 1 < ln(1 + 6 义 ' 如 - 义 匪) S 111 2 , tllUS

C i niax C i max
52

Chapter 4 VLSI Implementation of the Speech Recognizer

c
0 < ln(l + —) < 0.7 . Besides, this system uses a fix-point

C/max

binary number representation method and two bits after the digital point is

considered when converting the decimal feature vectors and model

parameters into the binary ones. Apply the same criterion to the content of

the look-up table, thus there should be altogether 70 values starting from 0

and ending in 0.69. Because no truncation is employed in this system, the

Q
addition between InC and + 匪）is a 48-bit

ITUiA lUaA \ ‘
/max

operation, the values stored in this look-up table should be scaled into

48-bit binary numbers. Accordingly we then divide the shifted value of

(In C-1 + X.j) - (In C.2 + X.2) I into 70 ranges and each of the ranges

corresponds to one 48-bit binary number in the look-up table.

Other blocks which are same as those in the speech recognizer based on a

single-mixture model are of similar functions as stated before.

The working mechanism of the double-mixture H M M based speech recognition

with a look-up table is as follows.

The feature vectors of the word to be recognized and the models of system

vocabulary together with the contents of the look-up table are pre-processed and

pre-stored in two external memories respectively in the form of 16-bit data,

similar to what we have done in speech recognition with a single-mixture H M M .

Before the system starts to work, the word number of the vocabulary and the

shift number are read into the system. The shift number is used by Shifter. After

53

Chapter 4 VLSI Implementation of the Speech Recognizer

the initialization, at the time the system detects a start signal, it reads the frame

number T of the observation and begins calculation. For the first frame given

the first mixture in the first state of the first word model,

26 _ 1 ^
^ (Xi. - Xji. Y () + In . 1 = is computed as what have been done

in the single-mixture H M M based speech recognizer. After that, the result is

stored in Register for X and the system repeats the above procedure to calculate

2 6 — 1 C
V (Xj.) + l n — 2 , given the second mixture of the

same state. After these two scores are both stored in Register for X, Subtracter

and Comparator compares InCi+Xi and lnC2+X2 and gives the difference

between them. Then Shifter shifts | (In C.j + X.^) - (In C.̂ + X.^) | with the

shift number that is stored in the system. The shifted absolute value is passed to

the next block Look-Up Table and converted into three actual addresses of the

C _
external memory. The system then fetches the factor ln(l+

^imax

and adds it with the larger (InCmax+̂ max) term which is determined by

Subtracter and Comparator. Up to now one score that corresponding to the first

frame given the first state in the double-mixture model of the first word in the

vocabulary is obtained, and the rest computations and searching procedures are

the same as in the single-mixture H M M based speech recognizer.

For comparison, the structure of a hardware recognizer without the look-up

Q
table is shown in Figure 4-6. The term ln(l+ jg ignored in

C/max

this recognizer. To calculate a pdf, first InCi+Xi and lnC2+X2 are computed
45

Chapter 4 VLSI Implementation of the Speech Recognizer

separately for both mixtures as what have been done in the above procedures.

Then we just select the larger term InCmax+Xmax as the value of a pdf and

continue calculation with it. From Figure 4-6 we will find that the complexity of

this recognizer is not reduced much compared with the double-mixture H M M

based speech recognizer with a look-up table. The recognition accuracies of

these two hardware recognizers will be compared in the next chapter.

Wd] d—Index
Final Score

Register

Fea' ure Vector

— • Subtracter ~ • Multiplier • Core—Adder 趣 _

Model Parameter “ ^̂ u

_ Register
forXmax

Register for
Go 门 stents

a

Address

鑭 Start _ Controller

Figure 4-6. The Structure of the Recognizer Without a Look-Up Table

4-4- Extend Usage in High Order
Mixtures HMM

Even in isolated word recognition, choice of a mixture number that is larger

than 1 will provide a better recognition performance. In a high order Gaussian

system, the pdf will be in the following form:

55

Chapter 4 VLSI Implementation of the Speech Recognizer

separately for both mixtures as what have been done in the above procedures.

Then we just select the larger term InCmax+Xmax as the value of a pdf and

continue calculation with it. From figure 4-7 we will find that the complexity of

this recognizer is not reduced much compared with the double-mixture H M M

based speech recognizer with a look-up table. The recognition accuracies of

these two hardware recognizers will be compared in the next chapter.

Wd] d—Index
Final Score ^

Register 一

i L

Fea ure Vector

！ Register
— • Subtracter • Multiplier • Core一Adder 一 for Scores

Model Parameter v

_ Register
for Xmax

Constant.l Roister for
— Constants

i I

Address

• Start ^ Controller

Figure 4-6. The Structure of the Recognizer Without a Look-Up Table

4.4. Extend Usage in High Order
Mixtures HMM

Even in isolated word recognition, choice of a mixture number that is larger

than 1 will provide a better recognition performance. In a high order Gaussian

system, the pdf will be in the following form:

46

Chapter 4 VLSI Implementation of the Speech Recognizer

Where M is the number of the mixtures. Express the above equation in different

form, and take logarithm to simply the calculation and avoid overflow, the

equation will be:

_ M

k=\

Select the largest factor of the addition C腿 匪 out of the summation, the

equation will be:

— M C gl*
咖 ,） = l n C 隱 瞧 + l n (l + 2 (4-1)

^ ^ 厂 /o max

众?i max

As stated in the chapter 3, the above equation can be implemented by three

methods:

1. Ignore the effect of / ——. This is the simplest implementation
k=\ Umax 已
k^rrm.

way. But as more mixtures is employed when training the models, this

method will be with lower recognition accuracy compared with the other

two implementation ways.

^ C e^' .
2. Use a polynomial to approximate ln(l+ V ——^―^~) • This is an (“ I o max k=\ ^max^

implementation method with relatively high recognition accuracy. But the

number of variables in the polynomial is equal to the number of mixture M,

and as M becomes larger, it is more and more difficult to find out the

coefficients of the polynomial y = a^x^ a^x^ + . . . + . Also it is

47

Chapter 4 VLSI Implementation of the Speech Recognizer

not convenient to realize the above polynomial in hardware design.

3. Table look-up approach. This method is simple in realization but with an

acceptable recognition accuracy. The logarithmic summation has a limited

rang of value because every factor in the summation is less than or equal to

1.

_ < 1

M n p^k

欠 m a x
k^max

M r e、

1+ y ^ < M
k=l I max 已
k^max

M c e^^

I max 它
A: max

Thus the logarithmic equation can be implemented by a look-up table

whose contents are values between 0 and InM. The index of this look-up

table can be decided by the method that has been used in the design of the

speech recognizer based on a double-mixture H M M .

M pXi^ M

ln(T - T i l—) = ln(Z 召 义 丄 (i n c 瞧 瞧 ）) (4 . 2)

k̂ msx A:?!： max

It is also an add-log operation, but the error introduced here has little effect on

equation (4.1). Then to simply the design, the look-up table's index can be

decided on the maximum factor in the summation in equation (4.2)，

{ max{(ln C, + X J - (InC^ + \\<k<M,k^ max}. A block diagram of

speech recognizer with a high-order mixture H M M based on this table look-up

method can be:

48

Chapter 4 VLSI Implementation of the Speech Recognizer

Word. Index

Final Score
Register

Feature Vector

— 一 Subtracter ~ • Multiplier ~ • Core Adder Register
[_ _ _ _ _ _ — ——• for Scores

i L iL

M(xlel Parameter T

Register for
'nĈ ax+̂ max &

丨 nCmin+Xmin
Constant R e n t e r Look-Up I

• for ~ T ‘
^ , , Table _J
Constants 一 Subtracter

i I

Address

" ^ Controller
Slaff

Figure 4-7. A Block Diagram of Speech Recognizer with a High-Order Mixture HMM

This speech recognition works almost as same as the speech recognition which

is based on a double-mixture H M M . For one point in the lattice structure, first

the recognizer computes the factor InQ + X j and In +X2 given the first

two mixtures in the H M M and stores them in the register for I n C隱

and In + . Then after the third mixture's is computed, the

contents in the register will be renewed with the maximum and the minimum

values. After all mixtures are went through and InC^ and

InC^j, are obtained, the next block Subtracter will compute their

difference and pass it to the block Look-Up Table, as in the double-mixture

H M M speech recognition system. Then the largest InC^ will be

added with a logarithmic factor from the look-up table and the calculation of the

score in this point is finished.

From the above procedure we can see that with the table look-up method, a
49

Chapter 4 VLSI Implementation of the Speech Recognizer

single-mixture H M M speech recognizer can be extended to a double-mixture

H M M recognizer easily and then a high order mixture H M M speech recognizer

can be implemented by minor modifications. The only differences between

these high order mixture H M M systems is the size of the look-up table, which is

dependent upon the number of the mixtures M.

4.5. Pipelining and the System Timing

W e have designed a double-mixture H M M based speech recognizer as a

synchronous system. In the block diagram, all the blocks except Multiplier

consume one clock cycle in working and Multiplier uses two cycles to perform

one multiplication. Also one clock cycle is needed to read in the data from the

external memories. Therefore pipelining is employed in this system to improve

system performance.

Pipelining refers to the partitioning of a process into successive, synchronized

stages such that multiple processor, each in a stage different to others, can be

executed in parallel. Pipelining techniques are aimed at improving the system

throughput. It has the effect of shortening the clock cycle, but the latency of a

single instruction or operation will be increased because extra delays are

introduced to the basic clock cycle due to the latching of intermediate results

[1].

50

Chapter 4 VLSI Implementation of the Speech Recognizer

With the pipelining technology, the number of clock cycles that the system uses

to compute one partial probability ^ is reduced from more then 10 to only 4,

which are consumed in the two successive multiplications (x,-无"”（———)•
2 �

All other work is completed within these 4 cycles, including accessing external

memories, subtraction, addition and comparison. Thus given that a typical frame

number is 128 for an isolated word and the system vocabulary is composed of

50 most frequently-used words, the number of clock cycles that is required to

recognize one word is about 10̂ , which can be illustrated from the following

equation.

number of cycles x number of mixtures x number of elements in one feature vector

X number of states in the HMM x (number of frames - 7) x number of words in the

vocabulary = 4 x 2 x 2 6 x 8 x (1 2 8 - 7) x 5 0 - 1 0 '

In the above equation the number of frames is subtracted by 7, because only one

to seven points are needed to calculate their scores at the first and the last 7

frames and therefore it can been seen that the number of frames which will be

computed through all 8 states is 7 less than the original number.

If the system is working at an operating frequency of 20MHz, the time required

is to recognizer one isolated word under the condition of the above is about 0.5

second. This system speed is acceptable for real-time applications.

We have designed a double-mixture test chip to verify our design. The test chip

was designed with Verilog HDL. The design was synthesized with Synopsys

and the layout was generated by Cadence place and route tools Silicon

Ensemble. A complete list of the Verilog description of the test chip os listed in

51

Chapter 4 VLSI Implementation of the Speech Recognizer

Appendix I "Verilog Code of the Double-Mixture H M M Based Speech

Recognition IC (RTL Level)". The test chip was fabricated by a 0.35 micron

C M O S technology.

52

Chapter 5 Simulation and IC Testing

Chapter 5 Simulation and IC
Testing

5.1. Simulation Result

In this project a speaker-independent speech recognizer for isolated word based

on a double-mixture hidden Markov model was designed. The design flow is

shown in Figure 5-1.

Design Specification

^ I.
• Behavioral ^

Description 1
“ (V e r i l o g HDL) h ^

R T L Description \ =

Functional
Verif icat ion

(Veri log Simulat ion) r ,
c s > i '二 is k

Logical Verification ——
(Verilog Simulat ion) 1

i .
^ Floor Planning

(^ e t D e l a / ^ Auiom=J>jace &
(Silicon Ensemble)

Layout Verification
(Verilog Simulat ion)

I
Fabrication

(A M S 0.35-micron
C M O S technology)

Test ing

Figure 5-1. Design Flow of This Project

53

Chapter 5 Simulation and IC Testing

W e have simulated the new design against two different references. One is a

software recognition system using the same algorithm [13], and the other is a

similar hardware recognizer without the look-up table. In the software

recognition system there is almost no approximation in pdf calculation and no

need to convert the input data into 16-bit fix-point binary number, the

recognition result can be viewed as a theoretical one。In the hardware recognizer

without the look-up table, only In C腿 + X ^ is considered in pdf calculation

C. _
and the term ln(l+ g义,min-式•) jg ignored. This is equal to using an

max

all-zero look-up table in the proposed architecture (Figure 4-5).

The test speech data are 353 speeches from A U R O R A 2 database [14][15].

These speeches were first imported into a software feature extraction program to

be converted into the feature vectors. These feature vectors are needed as inputs

for all the three recognizers. After simulation we checked if the recognizers

gave the correct recognition results. The simulation results are tabulated in

Table 2. We can see that if we just approximate by

I n C ^ , the recognition accuracy dropped by 1.4% compared with the

theoretical results. As discussed in chapter 4, we can increase the recognition

accuracy with a look-up table. The test results indicate that the recognition

accuracy has increased by 0.9% with a look-up table design.

Hardware
Software Without With LUT

LUT (proposed)

“Word
Accuracy 94.3% 92.9% 93.8%

(%) I
Table 2. Simulation Results

54

Chapter 5 Simulation and IC Testing

5.2. Testing

A double-mixture H M M based speech recognizer with a look-up table test chip

is fabricated with A M S 0.35-micron C M O S technology, and the specification is

shown in Table 3 (Appendix II).

Specification Value

C M O S Technology — Q.35um

Operating Voltage 3.3V

Total gate count 30000

Die area 12.25 sq.mm

Package PGAIQQ

Table 3. Specifications of the New Speech IC

The 100-pin package includes data and address lines for two external memories,

the system's inputs and outputs (e.g. reset, start signal, recognized word index,

done signal), power pins, and some pins to keep track on the internal data in

terms that there is any error occurs (Appendix III).

L E D

个 k k

word index result_ack overflow

data _
R A M (1) .address 名

^ Speech _ ,

Recognition IC §

data • (P G A I O O)

R A M (2) ^address 广 “

T f (V D D)

rmet fv ack word_num

I I I I I I I I 丨 (G N D)
Dip Switch

Figure 5-2. A Brief Diagram of the PCB

55

Chapter 5 Simulation and IC Testing

A PCB has been made to test the new speech IC (Appendix IV). Figure 5-2 is a

brief block diagram of the PCB. In this PCB, R A M (1) is used to store the

H M M of the system vocabulary, and R A M (2) is used to store feature vectors.

These data are obtained from a software program and are written into these two

R A M s during power up. The address and data of the rams are 16-bit data. A

6-bit dip switch is used to set the number of the words in the vocabulary, which

can be varied from 1 to 63. The fV_ack signal initializes the recognition process.

Every time the system detects a fv_ack single, it will start calculation from the

beginning. The outputs are connected to 8 LEDs, among them 6 are for the

recognition result Word一Index，one Result_Ack and one Overflow.

We started with some simple functional tests to make sure that the IC is working.

For example, we set the word number of the vocabulary to 10 and the

parameters of the different word models in RAM(l) to all 1, all 2,…，all 10,

separately. In RAM(2), we wrote 10 to all the storage units. The recognition

result was 10, which was as same as the theoretical result. This simple

functional test was performed several times and every time a right result was

obtained.

Then we came to the more complicated speech tests. This time we verified the

new chip with the same set of A U R O R A 2 test data used in the simulation. With

the same word models and feature vectors, we obtained the exactly same

recognition results as the simulation. Also we wrote all zero into the look-up

table to verify the recognition accuracy of a double-mixture speech recognizer

without the look-up table. The recognition results were identical with the

56

Chapter 5 Simulation and IC Testing

simulation. These functional tests have demonstrated that the IC can recognize

real-world speech. W e recorded that the maximum operating frequency of the

speech IC is around 62.5 M H z and the average power consumption is 56.7mW

at 20MHz.

Finally we connected our testing chip with a DSP board to perform real-time

speech recognition. The function of the DSP board is to generate the feature

vectors of the speech to be recognized. Figure 5-3 is a block diagram of this

real-time speech recognition testing system. The word models were pre-trained

by a software program and written into RAM(l) during power up. Then a

person said a word towards the microphone. The DSP board generated the

feature vectors of the input speech and wrote them into RAM(2). After that, the

DSP board gave the speech recognition IC a start signal. In a very short time,

the recognition result would be shown by the LEDs.

RAM(l)
(Word Models)

\ 丨——I I — — I I I
H. ^ DSP Board RAM(2) � ^̂ „ . . . _ _ LEDs
M i c r o p h o n e —诉 a t u r e Exaction) “ (Feamie Vectors) ^ Speech Recognition IC 一 態

^ ‘——̂ ^ ^
Figure 5-3. Block Diagram of the Real-Time Speech Recognition Testing System

57

Chapter 6 Discussion and Conclusion

Chapter 6 Discussion and
Conclusion

In this thesis a new architecture of multi-mixture H M M based speech recognizer

has been presented. Using a table look-up method, higher order mixture H M M

speech recognizer can be implemented with accuracy, matching software

recognizer.

Since the add-log operation is unavoidable in the pdf calculation and its effect is

significant to the final recognition result, finding an uncomplicated, universal

and accurate implementation of this operation is important for the design of a

speech recognizer. The table look-up method is such an implementation method

that can fulfill these requirements. From Table 2 it can be seen that in a

double-mixture H M M system, the proposed new speech recognition IC has

approximately the same recognition accuracy as the software recognizer, and its

recognition results are better than that of the other hardware recognizer without

the look-up table.

Moreover, this new technique can be applied to different high-order mixture

systems with minor modifications, as stated in chapter 4.5. In those designs the

only difference between the high-order mixture systems is the size of the

look-up table. For example, given an accuracy equivalent to two places after the

decimal point floating number, there are only 70 and 140 values in the look-up

58

Chapter 6 Discussion and Conclusion

table for a double-mixture H M M system and a four-mixture H M M system,

respectively.

However, truncation is not considered when designing this double-mixture

H M M speech recognition IC. All internal buses are 48 bits long，which requires

more operation time, more areas and more power. But as a trade-off, truncation

will introduce approximation error into the calculation of the pdf. If too many

bits are truncated, the recognition accuracy will be too low that the system is not

suitable for real-world applications. The effect should be carefully considered

when designers intend to employ truncation in the implementation of speech

recognition system.

59

Reference

Reference

[1] • Fundamentals of Speech Recognition
Lawrence Rabiner, Biing-Hwang Juang
Prentice Hall

[2]. ASIC System Design with VHDL: A Paradigm
Steven S. Leung， Michael A. Shanblatt
Kluwer Academic Publishers

Verilog HDL: A Guide to Digital Design and Synthesis
Samir Paluitkar

[4]. Advanced Digital Design with the Verilog H D L
Michael D. Ciletti
Prentice Hall

[5]. "A Tutorial on Hidden Markov Models and Selected Applications in
speech Recognition"
R. Rabiner
Proceedings of the IEEE, Volume: 77 Issue: 2, pp. 257-286 Feb. 1989

:6]. "Efficient Viterbi Scoring Architecture For HMM-Based Speech
Recognition System"
Y. S. Cho, J. Y. Kim and H. S. Lee
IEEE Electronics Letters Vol. 28, No. 25, pp. 2338-2340, Dec. 1992

7]. "An Efficient VLSI Architecture for HMM-Based Speech Recognition"
J. M. Jou, Y. H. Shiau and C. J. Huang
Electronics, Circuits and Systems, 2001. ICECS 2001.
The 8th IEEE International Conference, Vol.1, pp. 469472, 2001

[8]. “A VLSI Implementation of Pdf Computations in H M M Based Speech
Recognition"
J. Pihl, T. Svendsen and M. H. Johmsen
T E N C O N '96. Proceedings., 1996 IEEE TENCON.
Digital Signal Processing Applications, Vol.1, pp. 241-246, 1996

•9]. "A VLSI Wordprocessing Subsystem for a Real Time Large Vocabulary
Continuous Speech Recognition System"
Stolzle, S. Narayanaswamy, K. Komegay, J. Rabaey and R. W. Brodersen
Custom Integrated Circuits Conference, 1989., Proceedings of the IEEE
1989, pp. 20.7/1-20.7/5, 1989

60

Reference

：10]. “Low Power VLSI Architecture of Viterbi Scorer for HMM-Based Isolated
Word Recognition"
G. Park, K. S. Cho and J. D. Cho
Quality Electronic Design, 2002. Proceedings. International Symposium on,
pp. 235-239, 2002

11]. http://www.seas.upenn.edu/〜ee20 l/lab/CarryLookAhead/CarryLookAhead
FOl.html

[12]. http://www-zeuthen.desy.de/ape/html/APEmille/Documentation/Hardware/
Tmille/talu—ch9.pdf

[13]."The H T K B O O K (for H T K Version 2.2)"
S. J. Young, RC. Woodland and W. J. Byrne,
Entropic Ltd., Jan. 1999

14]. http: //www. elda. fr/ proj/aurora2. htm

[15]. "The A U R O R A experimental framework for the performance evaluation of
speech recognition systems under noisy conditions"
H.-G. Hirsh and D. Pearce
Proceedings of ISCAITRW ASR 2000, Paris, France, September 2000

[16]."An Hmm-Based Speech Recognition IC"
Wei Han; Kwok-Wai Hon; Cheong-Fat Chan; Tarn Lee; Chiu-Sing Choy;
Kong-Pang Pun; Ching, R C ;
Circuits and Systems, 2003. ISCAS '03. Proceedings of the 2003
International Symposium on，Volume: 2 , May 25-28, 2003
Page(s): 744 -747

61

http://www.seas.upenn.edu/%e3%80%9cee20
http://www-zeuthen.desy.de/ape/html/APEmille/Documentation/Hardware/

Appendix III

Appendix I Verilog Code of the
Double-Mixture HMM Based Speech
Recognition IC (RTL Level)

今 Subtractor

module clal6_dm(sumout, overflow, result_ack, inl, in2, out_sel, elk, reset);

/* ——carry look ahead adder ——*/

input [15:0] inl;

input [15:0] in2;

input out_sel; /* ——select the output of (l'bO)x-xmean or (I'bl)variance ——*/

input elk;

input reset;

input result_ack;

output [15:0] sumout;

output overflow;

wire [15:0] inl_reg, in2_reg;

reg [15:0] sum;

reg overf;

wire [15:0] p, g;

wire [15:0] carout;

assign sumout = sum;

assign overflow = overf;

/* ——when result_ack == 1, all the inputs are set to 0 to save power ——*/

assign inl_reg = (result一ack 二二 0) ？ inl : 16'b0;

assign in2_reg = (result_ack == 0) ? in2 :16'bO;

assign p = inl_reg I in2_reg;

assign g = inl—reg & in2—reg;

assign carout[0] = g[0];

assign carout[15:l] = g[15:l] I p[15:l] & carout[14:0];
always @(posedge elk or negedge reset)

begin

if (reset == 0)

begin

sum <= 0;

overf <= 0;

end

else

begin

if (out_sel == 0)

sum[15:0] <= ml_reg[15:0] ̂ in2_reg[15:0]、{carout[14:0]，IW);

else

sum[15:0] <= in2_reg[15:0];

if (out_sel == 0)

if (carout[15] ̂ carout[14] == 1)

overf <= 1;

end

62

Appendix I

end

endmodule

今 Multiplier

module booth—dm(outl，inl, in2);

parameter zee = 33'bz;

input [2:0] ml;

input [31:0] in2;

output [32:0] outl;

assign outl = (inl == 3'bOOO) ？ 33'bO : zee;

assign outl = (inl == 3'bOOl) ？ {in2[31], in2] : zee;

assign outl = (ml == 3'bOlO) ？ {in2[31], in2] : zee;

assign outl = (inl == 3'bOll) ？ {in2[31:0], I'bO) : zee;

assign outl = (inl == 3'blOO) ？〜{in2[31:0]，I'bO} + I'bl : zee;

assign outl = (inl == 3'blOl) ？ (~{in2[31], in2}) + I'bl : zee;

assign outl = (inl == 3'bllO) ？ (~{in2[31], in2]) + I'bl : zee;

assign outl = (inl == 3'blll) ？ 33'bO : zee;

endmodule

module fulladder_dm(cout, sumout, inl, in2, in3);

input [47:0] inl, in2, in3;

output [47:0] cout, sumout;

assign sumout = (inPin2)^in3;

assign cout = ((inlAin2)&in3)Kinl&in2);

endmodule

module cla48_dm(sumout, inl, in2, counter_cla48, elk, reset);

/* ——carry look ahead adder ——*/

input [47:0] ml;

input [47:0] in2;

input counter_cla48;

input elk;

input reset;

output [47:0] sumout;

reg [47:0] sum;

wire [47:0] p, g;

wire [47:0] carout;

assign sumout = sum;

assign p = inl I in2;

assign g = ml & in2;

assign carout[0] = g[0];

assign carout[46:l] = g[46:l] I p[46:l] & carout[45:0];

always @(posedge elk or negedge reset)

begin

if (reset 二一 0)

sum <= 0;

else

begin
if (counter_cla48 == 0)

sum[47:0] <= ml[47:0] ̂ in2[47:0] ̂ {carout[46:0], I'bO);

63

Appendix III

end

end

endmodule

module multiplier—dm(muloiit，in_sel, inl, counter—cla48，elk, reset);

/* ——booth multiplier ——*/

input [15:0] inl;

input in_sel, elk, reset;

input counter_cla48;

output [47:0] mulout;

wire [32:0] boothoutl，boothout2, boothoutS, boothout4, boothoutS, boothout6, boothoutV,

boothoutS;

wire [47:0] coutl, cout2, cout3, cout4, cout5, cout6, cout7;

wire [47:0] muloutl, mulout2, mulout3, mulout4，muloutS, mulout6, muloutV, mulout_wire;

wire [31:0] xmean_sq;

assign xmean_sq = (in_sel == I'bO) ？ {{16{inl[15]]}, inl] : mulout_wire;

assign mulout = mulout—wire;

reg [47:0] cout7_reg, mulout7_reg;

booth_dm boothl_dm(boothoutl, (inl [1:0], rbO), xmean_sq);

booth_dm booth2_dm(boothout2, inl[3:1]，xmean_sq);

booth—dm booth3_dm(boothout3, inl [5:3]，xmean_sq);

booth_dm booth4_dm(boothout4, inl [7:5], xmean_sq);

booth_dm booth5_dm(boothout5, inl [9:7], xmean_sq);

booth_dm booth6_dm(boothout6, inl [11:9]，xmean_sq);

booth_dm booth7_dm(boothout7, inl[13:11]，xmean—sq);

booth_dm booth8_dm(boothout8, inl[15:13]，xniean_sq);

fulladder_dm Mladderl_dm(coutl, muloutl, {14"b0，-boothoutl[32], boothoutl},

{12'b0,〜boothout2[32], boothout2,2'bO)，
{lO'bO, ~boothout3[32], boothout3,4'bO]);

fulladder_dm fulladder2_dm(cout2, mulout2, {8'bO, ~boothout4[32], boothout4, 6T30},

{6'bO,〜boothout5[32], boothoutS, m] ,

{4'bO, ~boothout6[32], boothout6, lO'bO]);

fulladder_dm fulladder3_dm(cout3, mulout3, {2'bO, ~boothout7[32], boothout?, 12'b0],

{~boothout8[32], boothoutS, 14'b0],

{15'b010101010101011,33'b0]);

fo.lladder_dm fulladder4_dm(cout4, mulout4, {coutl[46:0], I'bO], muloutl, {cout2[46:0],

I'bO));
fulladder_dm falladder5_dm(cout5, muloutS, mulout2, {cout3[46:0], rbO], muloutS);

fulladder_dm Mkdder6_dm(cout6，mulout6, {cout4[46:0], I'bO], mulout4, {cout5[46:0],

I'bO]);
falladder_dm flilladder7_dm(cout7, muloutV, {cout6[46:0], I'bO}，mulout6, mulout5);

cla48_dm cla48_dm(mulout_wire, {cout7_reg[46:0], I'bO}，mulout7_reg, counter_cla48, elk,

reset);

always @(posedge elk or negedge reset)

begin

if (reset ——0)

begin

cout7_reg <= 0;

mulout7_reg <= 0;

end

else

begin
/* ——adding a registers between fulladder and cla48 ……*/

64

Appendix III

mulout7_reg <= mulout?;

cout7_reg <= cout7;

end

end

endmodule

� Core_Adder

module core_cla48_dm(sumout, overflow, in—sel，inl, reg48_in, regl6_in, regxjn, elk, reset);

input [47:0] reg48_in;

input [47:0] ml;

input [47:0] regxjn;

input [47:0] regl6_in;

input [1:0] in_sel;

input elk;

input reset;

output [47:0] sumout;

output overflow;

reg [47:0] sum;

reg carry;

reg overf;

wire [47:0] p, g;

wire [47:0] carout;

wire [47:0] intmpl;

/* ——select the input between the multiplier output and the reg 16 output ——*/

assign intmpl = (in—sel == 2'bOO) ？ ml : 48l3z;

assign intmpl = (in_sel == 2'blO) ？ reg48」n : 48'bz;

assign intmpl = (in_sel == 2'bl 1) ？ regl6_in : 48'bz;

assign sumout = sum;

assign overflow = overf;

assign p = intmpl I regxjn;

assign g 二 intmpl & regx—in;

assign carout[0] = g[0];
assign carout[47:l] = g[47:l] I p[47:l] & carout[46:0];

always @(posedge elk or negedge reset)

begin

if (reset == 0)

begin

sum <= 0;

carry <= 0;

overf <= 0;

end

else

begin

carry <= carout[47];

sum[47:l] <= intmpl[47:1] ̂ regx_in[47:l] ̂ carout[46:0];

sum[0] <= intmpl[0] ̂ regx_in[0];

if (carout[47] ̂ carout[46] == 1)

begin

overf <= 1 ；

end

65

Appendix III

end

end

endmodule

今 Register for X

module regx_dm(dout, dout_xl, dout_x2,

adderjn, start, load_adder, store, load_x2, sel_x2, wr_en_regx, fv_ack,

elk, reset);

output [47:0] dout, dout_xl, dout一x2;

input [47:0] adderjn;

input start;

input load_adder, store, load_x2;

input sel_x2;

input wr_en_regx;

input fv_ack;

input elk, reset;

reg [47:0] dout;

reg [47:0] reg_xl, reg_x2;

reg flag;

assign dout—xl = reg_xl ；

assign dout_x2 = reg_x2;

always @(posedge elk or negedge reset)

begin

if (reset 二二 0)

begin

dout <= 0;

reg—xl <= 0;

reg_x2 <= 0;

flag <= 0;

end

else

begin

if (fv_ack 二一 1)

begin

dout <= 0;

reg_xl <= 0;

reg_x2 <= 0;

flag <= 0;

end

else

begin

if (start == 1)

begin

dout <•- 0;

reg_x2 <= adderjn;

flag <= 1;

end

else

if(sel_x2 == 1)

begin

66

Appendix III

reg—xl <= reg_x2;

dout <= 0;

flag <= 1;

end

else

if (store ：二 1)

begin

reg_x2 <= adderjn;

dout <= reg_xl ；

flag <= 1;

end

else

if(load_x2 ==1)

begin

reg—xl <= adder—in;

dout <= reg_x2;

flag <= 1;

end

else

if (load—adder == 1)

begin

dout <= 0;

reg_xl <= adder—in;

flag <= 1;

end

else

if (flag == 1)

begin

dout <= dout;

flag <= 0;

end

else

if (wr_en_regx =:1)

dout <= adderjn;

else

dout <= dout;

end

end

end

endmodule

今 Subtracter and Comparator

module subcomp_dm(out, sel_x2, inl, in2, en, elk, reset);

input [47:0] inl, in2;

input en;

input elk, reset;

output [47:0] out;

output sel_x2;

reg [47:0] out;

67

Appendix III

reg sel_x2;

wire [47:0] im2;

wire [47:0] p, g;

wire [47:0] c;

wire [47:0] sum, suml;

assign im2 = -in2;

assign p = inl I im2;

assign g = inl & im2;

assign c[0] = g[0];

assign c[47:l] = g[47:l] I p[47:l] & c _] ;

assign sum[47:l] = ml[47:1]八 im2[47:l]八 c[46:0];

assign sum[0] : inl[0] ̂ im2[0];

assign suml = -sum;

always @(posedge elk or negedge reset)

begin

if (reset == 0)

begin

out <= 0;

sel_x2 <= 0;

end

else

begin

if (en == 1)

begin

if(sum[47] == 0)

begin

out <= suml;

sel_x2 <= 0;

end

else

begin

out <= sum;

sel_x2 <= 1;

end

end

else

out <= out;

if (sel_x2 == 1)

sel_x2 <= 0;

end

end

endmodule

今 Shifter

module shift_dm(shift_num, datain, dataout, overflow, en, elk, reset);

input [47:0] datain;

input [5:0] shift_num;

input en;

input elk, reset;

output [47:0] dataout;

68

Appendix III

output overflow;

reg [47:0] dataout;

reg overflow;

always @(posedge elk or negedge reset)
begin

if(reset == 0)

begin

dataout <= 0;

overflow <= 0;

end

else

begin

if(en==l)

case (shift_num)

6'dO: dataout <= datairi;

6'dl: begin dataout[47:l] <= datain[46:0]; dataout[0] <= 0;

overflow <= ~((datain[47:46]==2ibll)&&(datain[45:0]!= 0)); end

6'd2: begin dataout[47:2] <= datain[45:0]; dataout[l:0] <= 0;

overflow <=〜((datam[47:45]==3'blll)&(datain[44:0]!= 0)); end

6'd3: begin dataout[47:3] <= datain[44:0]; dataout[2:0] <= 0;

overflow <= ~((datain[47:44]==4'hf)&(datain[43:0]!= 0)); end

6'd4: begin dataout[47:4] <= datain[43:0]; dataout[3:0] <= 0;

overflow <= -((datain[47:43]==5'blllll)&(datain[42:0]!= 0)); end

6'd5: begin dataout[47:5] <= datain[42:0]; dataout[4:0] <= 0;

overflow <= -((datain[47:42]==6'bl 11111)&(datain[41:0] ！= 0));end

6'd6: begin dataout[47:6] <= datain[41:0]; dataout[5:0] <= 0;

overflow <= ~((datain[47:41]==7'bl 11111 l)&(datain[40:0] ！= 0)); end

6'd7: begin dataout[47:7] <= datain[40:0]; dataout[6:0] <= 0;

overflow <= ~((datain[47:40]==8'hff)&(datain[39:0]!= 0)); end

6'd8: begin dataout[47:8] <= datain[39:0]; dataout[7:0] <: 0;

overflow <= ~((datain[47:39]==9'bl 1111111 l)&(datain[38:0] ！= 0));

end

6'd9: begin dataout[47:9] <= datain[38:0]; dataout[8:0] <= 0;

overflow <= ~((datain[47:38]==101)l 11111111 l)&(datain[37:0]！= 0));

end
6'dlO: begin dataout[47:10] <= datain[37:0]; dataout[9:0] <= 0;

overflow <= ~((datain[47:37]==l ITd 11111111111)&(datain[36:0] ！=
0)); end

6'dll: begin dataout[47:ll] <= datain[36:0]; dataout[10:0] <: 0;

overflow <= -((datain[47:36]==121ifff)&(datain[35:0] ！= 0)); end

6'dl2: begin dataout[47:12] <= datain[35:0]; dataout[ll:0] <= 0;

overflow <= ~((datain[47:35]==13'bll 111111111 ll)&(datain[34:0]!=

0)); end
6'dl3: begin dataout[47:13] <= datain[34:0]; dataout[12:0] <= 0;

overflow <=

〜((datam[47:34]==14'bllllllllllllll)&(datam[33:0]!=0));end

6'dl4: begin dataout[47:14] <= datain[33:0]; dataout[13:0] <: 0;

overflow <=

〜((datain[47:33]==15'blllllllllllllll)&(datam[32:0]!= 0)); end

6'dl5: begin dataout[47:15] <= datain[32:0]; dataout[14:0] <= 0;

overflow <= ~((datain[47:32]==16'hffff)&(datain[31:0]!= 0)); end

6'dl6: begin dataout[47:16] <= datain[31:0]; dataout[15:0] <= 0;

overflow <=

69

Appendix III

〜((datam[47:31]二 17'bl 1111111111111111)&(datain[30:0] ！= 0)); end

6'dl7: begin dataout[47:17] <: datain[30:0]; dataout[16:0] <= 0;

overflow <=

〜((datain[47:30]==18'bllllllllllllllllll)&(datain[29:0]!=0)); end

6'dl8: begin dataout[47:18] <= datain[29:0]; dataout[17:0] <= 0;

overflow <=

〜((datain[47:29]==19ibl 111111111111111111)&(datain[28:0]！= 0)); end

6'dl9: begin dataout[47:19] <= datain[28:0]; dataout[18:0] <= 0;

overflow <= ~((datain[47:28]==20’hfffff)&(datain[27:0]!= 0)); end

6.d20: begin dataout[47:20] <= datain[27:0]; dataout[19:0] <= 0;

overflow <=

〜((datain[47:27]==21'bl 1111111111111111111 l)&(datain[26:0]！= 0)); end

6'd21: begin dataout[47:21] <= datain[26:0]; dataout[20:0] <= 0;

overflow <=

~((datain[47:26]==22'bll 1111111111111111111 l)&(datain[25:0]!= 0)); end

6'd22: begin dataout[47:22] <= datain[25:0]; dataout[21:0] <= 0;

overflow <=

~((datain[47:25]==23'bll 111111111111111111111)&(datain[24:0] != 0)); end

6'd23: begin dataout[47:23] <= datain[24:0]; dataout[22:0] <= 0;

overflow <= ~((datain[47:24]==24'hffffff)&(datain[23:0]!= 0)); end

6'd24: begin dataout[47:24] <= datain[23:0]; dataout[23:0] <= 0;

overflow <=

〜((datain[47:23]==25’bl 1111111111111111111111 ll)&(datain[22:0] ！= 0)); end

6'd25: begin dataout[47:25] <= datain[22:0]; dataout[24:0] <= 0;

overflow <=

~((datain[47:22]==26'bll 11111111111111111111111 l)&(datain[21:0] ！= 0)); end

6'd26: begin dataout[47:26] <= datain[21:0]; dataout[25:0] <= 0;

overflow <=

~((datain[47:21]==27'b 1111111111111111111111111 ll)&(datain[20:0] ！= 0)); end

6'd27: begin dataout[47:27] <= datain[20:0]; dataout[26:0] <= 0;

overflow <= ~((datain[47:20]==28'hfffffff)&(datain[19:0]!= 0)); end

6'd28: begin dataout[47:28] <= datain[19:0]; dataout[27:0] <= 0;

overflow <=

~((datain[47:19]==29'bll 1111111111111111111111111 ll)&(datain[18:0]！= 0)); end

6'd29: begin dataout[47:29] <= datain[18:0]; dataoiit[:28:0] <= 0;

overflow <=

〜((datam[47:18]=30'bllllllllllllllllllllllllllllll)&(datain[17:0]!= 0)); end

6'd30: begin dataout[47:30] <= datain[17:0]; dataout[29:0] <= 0;

overflow <=

〜((datain[47:17]==3rblllllllllllinilllUlllllllllll)&(datain[16:0]!=0));end
6'd31: begin dataout[47:31] <= datain[16:0]; dataout[30:0] <= 0;

overflow <=〜((datain[47:16]二321ifffffff:0&(datain[15:0]!= 0)); end

6'd32: begin dataout[47:32] <= dataiii[15:0]; dataout[31:0] <= 0;

overflow <=

〜((datain[47:15]==33'blllllllllllllllllllllllllllllllll)&(datain[14:0]!=0));end

6'd33: begin dataout[47:33] <= datain[14:0]; dataout[32:0] <= 0;

overflow <=

~((datain[47:14]==34'bllllllllllllllllllllllllllllllllll)&(datain[13:0]!=0));end

6'd34: begin dataout[47:34] <= datain[13:0]; dataout[33:0] <= 0;

overflow <=

〜((datain[47:13]= 二 35'blllllllllllllllllllllllllllllllllll)&(datain[12:0]!=0));end

6'd35: begin dataout[47:35] <= datain[12:0]; dataout[34:0] <= 0;

overflow <= ~((datain[47:12]==36Mffffffff)&(datain[l 1:0]!= 0)); end

70

Appendix III

6'd36: begin dataout[47:36] <= datain[ll:0]; dataout[35:0] <= 0;

overflow <=

〜((datam[47:ll]==37'bllllllllllllllllinillllllllinilllll)&(datain[10:0]!= 0)); end

6’d37: begin dataout[47:37] <= datain[10:0]; dataout[36:0] <= 0;

overflow <=

〜((datani[47:10]==38’bllllllllinillllllllllllllllllllllllll)&(datain[9:0]!=0)); end

endcase

end

end

endmodule

今 Look-Up Table

module lut_dm(out, in, shift_overf, elk, reset);

input [47:0] in;

input shift_overf;

input elk;

input reset;

output [47:0] out;

reg [47:0] out;

always @(posedge elk or negedge reset)

begin

if(reset 二二 0)

out <二 0;

else

begin

if(shift_overf 二二 1)

begin

out[15:0]<=16M01c;

out[31:16]<=16M01b;

out[47:32]<=16M01a;

end

else

begin

if(in <-48'd93164986044373)

begin

out[15:0]<=16'h401c;

out[31:16]<=16'h401b;

out[47:32]<=16M01a;

end

if(in>=-48'd93164986044373 & & in <-48'd73749886739974)

begin

out[15:0]<=16'h403c;

out[31:16]<=16'h403b;

out[47:32]<=16'h403a;

end

if(in>=-48'd73749886739974 & & in <-48'd64675093199182)

begin

out[15:0]<=16'h405c;

out[31:16]<=16M05b;

out[47:32]<=16M05a;

71

Appendix I

end

if(in>=-48'd64675093199182 & & in <-48'd58667410285668)

begin

out[15:0]<=16'h407c;

oiit[31:16]<=16M)7b;

out[47:32]<=16M07a;

end

if(in>=-48'd58667410285668 & & in <-48'd54157692787162)

begin

out[15:0]<=16'h409c;

out[31:16]<=16M09b;

out[47:32]<=161i409a;

end

if(in>=-48'd54157692787162 & & in <-48'd50538762671801)

begin

out[15:0]<=16'h40bc;

out[31:16]<=16M0bb;

out[47:32]<=16M0ba;

end

if(in>=-48'd50538762671801 & & m <-48'd47511075648541)

begin

out[15:0]<=16M0dc;

out[31:16]<=16M0db;

out[47:32]<=16'h40da;

end

if(in>=-48'd47511075648541 & & in <-48'd44904631927252)

begin

out[15:0]<=16'h40fc;

out[31:16]<=16M0fb;

out[47:32]<=16M0fa;

end

if(in>=-48'd44904631927252 & & in <-48'd42613605013445)

begin

out[15:0]<=16'h411c;

out[31:16]<=16Mllb;

out[47:32]<=16Mlla;

end

if(in>=-48'd42613605013445 & & in <-48'd40567622782138)

begin

out[15:0]<=16'h413c;

out[31:16]<=16M13b;

out[47:32]<=16M13a;

end

if(in>=-48'd40567622782138 & & in <-48'd38717509258398)

begin

out[15:0]<=16'h415c;

out[31:16]<=16M15b;

out[47:32]<=161i415a;

end

if(in>=-48'd38717509258398 & & m <-48'd37027543589924)

begin

out[15:0]<=16M17c;

out[31:16]<=161i417b;

72

Appendix I

out[47:32]<=16M17a;
end

if(in>=-48'd37027543589924 & & in <-48'd35470959086759)

begin

out[15:0]<=16'h419c;

out[31:16]<=16M19b;

out[47:32]<=16M19a;

end

if(in>=-48'd35470959086759 & & in <-48'd34027179919926)

begin

out[15:0]<=16Mlbc;

out[31:16]<=16Mlbb;

out[47:32]<=16'h41ba;

end

if(in>=-48'd34027179919926 & & in <-48'd32680047850082)

begin

out[15:0]<=16Mldc;

out[31:16]<=16Mldb;

out[47:32]<=16'h41da;

end

if(in>=-48'd32680047850082 & & in <-48'd31416641653973)

begin

out[15:0]<=16'h41fc;

out[31:16]<=16Mlfb;

out[47:32]<=16'h41fa;

end

if(in>=-48'd31416641653973 & & in <-48'd30226466348532)

begin

out[15:0]<=16'h421c;

out[31:16]<=16M21b;

out[47:32]<=16M21a;

end

if(in>=-48'd30226466348532 & & in <-48'd29100881369237)

begin

out[15:0]<=16'h423c;

out[31:16]<=16'h423b;

out[47:32]<=16M23a;

end

if(in>=-48'd29100881369237 & & m <-48'd28032687876098)

begin

out[15:0]<=16M25c;

out[31:16]<=16'h425b;

out[47:32]<=16M25a;

end

if(in>=-48'd28032687876098 & & m <-48'd27015824838488)

begin

out[15:0]<=16M27c;

out[31:16]<=16M27b;

out[47:32]<=16M27a;

end

if(in>=-48'd27015824838488 & & in <-48'd26045141208395)

begin
out[15:0]<=16'h429c;

73

Appendix I

out[31:16]<=16M29b;

out[47:32]<=16M29a;

end

if(in>-48'd26045141208395 & & in <-48'd25116222408564)

begin

out[15:0]<=16'h42bc;

out[31:16]<=16M2bb;

out[47:32]<=16M2ba;

end

if(in>=-48'd25116222408564 & & in <-48'd24225256301488)

begin

out[15:0]<=16'h42dc;

out[31:16]<=16M2db;

out[47:32]<=16M2da;

end

if(in>=-48'd24225256301488 & & in <-48'd23368928326696)

begin

out[15:0]<=16'h42fc;

out[31:16]<=16'h42fb;

out[47:32]<=16M2fa;

end

if(in>=-48'd23368928326696 & & in <-48'd22544338505747)

begin

out[15:0]<=16'h431c;

out[31:16]<=16'h431b;

oiit[47:32]<=16M31a;

end

if(m>=-48'd22544338505747 & & m <-48'd21748935061068)

begin

out[15:0]<=16'h433c;

out[31:16]<=16'h433b;

out[47:32]<=16M33a;

end

if(in>-48'd21748935061068 & & in <-48'd20980460810904)

begin

out[15:0]<=16'h435c;

out[31:16]<=16M35b;

out[47:32]<=16M35a;

end

if(in>=-48'd20980460810904 & & in <-48'd20236909498671)

begin

out[15:0]<=16'h437c;

out[31:16]<=16M37b;

out[47:32]<=16M37a;

end

if(in>=-48'd20236909498671 & & in <-48'dl9516489926122)

begin

out[15:0]<=16'h439c;

out[31:16]<=16M39b;

out[47:32]<=16M39a;

end

if(in>=-48'dl9516489926122 & & in <-48'd 18817596274496)

begin
74

Appendix I

out[15:0]<=16'h43bc;

out[31;16]<=16M3bb;

out[47:32]<=16M3ba;

end

if(in>=-48'dl8817596274496 & & in <-48'dl8138783375145)

begin

out[15:0]<=16M3dc;

out[31:16]<=16M3db;

out[47:32]<=161i43da;

end

if(in>=-48'dl8138783375145 & & in <-48'dl7478745971041)

begin

out[15:0]<=16'h43fc;

out[31:16]<=16M3fb;

out[47:32]<=16M3fa;

end

if(in>=-48'dl7478745971041 & & in <-48'dl6836301220389)

begin

out[15:0]<=16'h441c;

out[31:16]<=16M41b;

out[47:32]<=16M41a;

end

if(in>=-48'dl6836301220389 & & m <-48'dl6210373852535)

begin

out[15:0]<=16'h443c;

out[31:16]<=161i443b;

out[47:32]<=161i443a;

end

if(in>=-48'dl6210373852535 & & in <-48'dl5599983507843)

begin

out[15:0]<=16'h445c;

out[31:16]<=161i445b;

out[47:32]<=161i445a;

end

if(in>=-48'dl5599983507843 & & in <-48'd 15004233886964)

begin

out[15:0]<=16M47c;

out[31:16]<=16M47b;

out[47:32]<=161i447a;

end

if(in>-48'dl5004233886964 & & in <-48'dl4422303407774)

begin

out[15:0]<=16M49c;

oiit[31:16]<=16M49b;

out[47:32]<=16M49a;

end

if(in>=-48'dl4422303407774 & & in <-48'dl3853437125386)

begin

out[15:0]<=16'h44bc;

out[31:16]<=16M4bb;

out[47:32]<=161i44ba;

end
if(in>=-48'dl3853437125386 & & in <-48'd 13296939715708)

75

Appendix III

begin

out[15:0]<=16M4dc;

out[31:16]<=16M4db;

oiit[47:32]<=16M4da;

end

if(in>=-48'dl3296939715708 & & in <-48'dl2752169358868)

begin

out[15:0]<=16'h44fc;

out[31:16]<=16M4fb;

out[47:32]<=161i44fa;

end

if(in>=-48'dl2752169358868 & & in <-48'dl2218532387458)

begin

out[15:0]<=16M51c;

out[31:16]<=161i451b;

out[47:32]<=16M51a;

end

if(in>=-48'dl2218532387458 & & in <-48'dl 1695478587646)

begin

out[15:0]<=16M53c;

out[31:16]<=16M53b;

out[47:32]<=16'h453a;

end

if(in>=-48'dl 1695478587646 & & in <-48'dl 1182497059843)

begin

out[15:0]<=16M55c;

out[31:16]<=16M55b;

out[47:32]<=16M55a;

end

if(in>=-48'dlll82497059843 & & in <-48'dl0679112560828)

begin

out[15:0]<=16'h457c;

out[31:16]<=16M57b;

out[47:32]<=161i457a;

end

if(in>=-48'dl0679112560828 & & in <-48'dl0184882261648)

begin

out[15:0]<=16'h459c;

out[31:16]<=16M59b;

out[47:32]<=16M59a;

end

if(in>=-48'dl0184882261648 & & in <-48'd9699392865859)

begin

out[15:0]<=16'h45bc;

out[31:16]<=16M5bb;

out[47:32]<=16M5ba;

end

if(in>=-48'd9699392865859 & & m <-48'd9222258041064)

begin

out[15:0]<=16'h45dc;

out[31:16]<=16'h45db;

oiit[47:32]<=16M5da;

end

76

Appendix III

if(in>=-48'd9222258041064 & & m <-48'd8753116123769)

begin

out[15:0]<=16M5fc;

out[31:16]<=16M5fb;

out[47:32]<=16M5fa;

end

if(in>=-48'd8753116123769 & & in <-48'd8291628063361)

begin

out[15:0]<=16M61c;

out[31:16]<=16'h461b;

out[47:32]<=16M61a;

end

if(in>=-48'd8291628063361 & & in <-48'd7837475575941)

begin

out[15:0]<=16M63c;

out[31:16]<=16M63b;

out[47:32]<=16M63a;

end

if(in>=-48'd7837475575941 & & in <-48'd7390359482800)

begin

out[15:0]<=16M65c;

out[31:16]<=16M65b;

out[47:32]<=16M65a;

end

if(in>=-48'd7390359482800 & & in <-48'd6949998211831)

begin

out[15:0]<=16M67c;

out[31:16]<=16M67b;

out[47:32]<=16M67a;

end

if(in>=-48'd6949998211831 & & in <48'd6516126443062)

begin

out[15:0]<=16'h469c;

oiit[31:16]<=16M69b;

out[47:32]<=16M69a;

end

if(in>=-48'd6516126443062 & & in <-48'd6088493881986)

begin

out[15:0]<=16'h46bc;

out[31:16]<=16M6bb;

out[47:32]<=16'h46ba;

end

if(m>=-48'd6088493881986 & & in <-48'd5666864146504)

begin

out[15:0]<=16'h46dc;

out[31:16]<=16'h46db;

out[47:32]<=16M6da;

end

if(in>=-48'd5666864146504 & & m <-48'd5251013755061)

begin

out[15:0]<=16'h46fc;

out[31:16]<=16M6fb;

out[47:32]<=16M6fa;

77

Appendix I

end

if(in>=-48'd5251013755061 & & in <-48'd4840731205143)

begin

out[15:0]<=16'h471c;

out[31:16]<=16M71b;

out[47:32]<=16M71a;

end

if(in>=-48'd4840731205143 & & m <-48'd4435816132630)

begin

out[15:0]<=16M73c;

out[31:16]<=16M73b;

out[47:32]<=16M73a;

end

if(in>=-48'd4435816132630 & & m <-48'd4036078543615)

begin

out[15:0]<=16'h475c;

out[31:16]<=16'h475b;

out[47:32]<=16M75a;

end

if(in>=-48'd4036078543615 & & in <-48'd3641338111346)

begin

out[15:0]<=16M77c;

out[31:16]<=16M77b;

out[47:32]<=16'h477a;

end

if(in>-48'd3641338111346 & & in <-48'd3251423531755)

begin

out[15:0]<=16M79c;

out[31:16]<=16M79b;

out[47:32]<=16'h479a;

end

if(in>=-48'd3251423531755 & & m <-48'd2866171931821)

begin

out[15:0]<=16'h47bc;

out[31:16]<=16M7bb;

out[47:32]<=16M7ba;

end

if(in>=-48'd2866171931821 & & in <-48'd2485428325659)

begin

out[15:0]<=16'h47dc;

out[31:16]<=16M7db;

out[47:32]<=16M'7da;

end

if(in>=-48'd2485428325659 & & in <-48'd2109045113770)

begin

out[15:0]<=16M7fc;

out[31:16]<=16M7fb;

out[47:32]<=16M7fa;

end

if(in>=-48'd2109045113770 & & m <48'dl736881621429)

begin

out[15:0]<=16'h481c;

out[31:16]<=16M81b;

78

Appendix I

out[47:32]<=16M81a;

end

if(in>=-48'dl736881621429 & & in <-48'dl368803672575)

begin

out[15:0]<=16'h483c;

out[31:16]<=16M83b;

out[47:32]<=16M83a;

end

if(m>=-48'dl368803672575 & & in <-48'dl004683195992)

begin

out[15:0]<=16M85c;

out[31:16]<=16M85b;

out[47:32]<=16M85a;

end

if(in>=-48'dl004683195992 & & in <-48'd644397860881)

begin

out[15:0]<=16M87c;

out[31:16]<=16M87b;

out[47:32]<=16M87a;

end

if(in>=-48'd644397860881 & & in <-48'd287830739229)

begin

out[15:0]<=16M89c;

out[31:16]<=16M89b;

out[47:32]<=16M89a;

end

if(in>=-48'd287830739229)

begin

out[15:0]<=16'h48bc;

out[31:16]<=16M8bb;

out[47:32]<=16'h48ba;

end

end

end

end

endmodule

今 Î Ggistor for Gonst3nts

module regl6_dm(data_out, datajn, addr, wr_en, fv_ack, elk, reset);
output [47:0] data_out;

input [15:0] data—in;

input [1:0] addr;

input wr_en;

input fv_ack;

input elk;

input reset;

reg [47:0] data_reg;

assign data_out = data_reg;

always @(posedge elk or negedge reset)

begin

79

Appendix III

if (reset 二一 0)

begin

data_reg <= 48'dO;

end

else

begin

if (fv_ack ==1)

data_reg <= 48'dO;

else

begin

if (wr_en == 1)

begin

case (addr)

2'blO : data_reg[47:32] <二 data.in;

2'bOl : data_reg[31:16] <= data—in;

2'bOO : data_reg[15:0] <= data_in;

endcase

end

end

end

end

endmodule

今 Register for Scores

module reg48_dm(data_outl, datajn, in—sel，out_sel,

wr_en, out_en_reg48, frame—counter, word—end—index,

word_slart_index, last_frame_counter, result_ack, //out_sel,

counter_reg48, fv_ack, elk, reset);

output [47:0] data_outl;

input result_ack;

input [47:0] data—in;

input [3:0] in_sel;

input elk, reset;

input wr—en;

input out_en_reg48;

input [7:0] frame—counter;

input word—end-index;

input word_startJndex;

input [2:0] last_frame_counter;

input [2:0] out_sel;

input [6:0] counter—reg48;

input fv_ack;

reg [47:0] data_regl, data_reg2, data_reg3, data_reg4, data_reg5, data—reg6，data_reg7,

data_reg8, data_reg_tmp;

/* ——data_reg{l-8] store the cost without changing state, dtata—reg—tmp store the cost

with changing state ……*/

reg [47:0] data_outl_reg;

assign data—outl 二 data_outl_reg;

always @(posedge elk or negedge reset)

begin

80

Appendix III

if (reset == 0)

begin

data—regl <= 0;

data—reg2 <= 0;

data—reg3 <= 0;

data—reg4 <= 0;

data—reg5 <= 0;

data_reg6 <= 0;

data_reg7 <= 0;

data_reg8 <= 0;

data_reg_tmp <= 0;

data_outl_reg <= 0;

end

else

begin

if (fv_ack == 1)

begin

data—regl <= 0;

data_reg2 <= 0;

data—reg3 <= 0;

data_reg4 <= 0;

data_reg5 <= 0;

data_reg6 <= 0;

data_reg7 <= 0;

data_reg8 <= 0;

data—regjmp <= 0;

data_outl_reg <= 0;

end

else

begin

/* assign different register to output ——*/

if (out_en_reg48 二二 1)

begin

case (out_sel)

3'bOOO : data_outl_reg <: data_regl;

3'bOOl : data一outl—reg <= data—reg2;

3'bOlO : data一outl一reg <= data_reg3;

3'bOll : data_outl_reg <= data_reg4;

3'blOO : data_outl_reg <= data_reg5;

3'blOl : data一outl_reg <: data_reg6;

3'bllO : data_outi_reg <= data_reg7;

3'bill : data_outl_reg <= data_reg8;

endcase

end
/* ——reset all the parameters when calculation finished, in order to save power

if (last_frame_counter[0] = 1 II result_ack 二— 1)

data_regl <= 0;

if (word—start-index == 1 II result—ack == 1)

begin

data_reg2 <= 0;

data_reg3 <= 0;

data_reg4 <= 0;

81

Appendix I

data_reg5 <= 0;

data_reg6 <= 0;

data_reg7 <= 0;

//data_reg8 <= 0;

data_reg_tmp <= 0;

end

if (frame—counter == 8'dl)

data_reg8 <= 0;

/* ——storing the input when wr—en == 1 ——*/

if (resulLack == 0)

begin

if (wr—en == 1)

begin

case (in_sel)

4'bO—000 : data_regl <= datajn;

4'b0_001 : data_reg2 <: data_in;

4'b0_010 : data—reg3 <= data—in;

4'b0_011 : data_reg4 <= data—in;

4’b0—100 : data_reg5 <= data—in;
4'b0_101 : data_reg6 <= datajn;

4,b0_110 : data_reg7 <= datajn;
4'b0_lll : data_reg8 <= datajn;
4'b 1—000 : data_reg_tmp <= datajn;

4'b 1—001 : data_reg_tmp <= datajn;

4,b 1—010 : data_reg—tmp <: data—in;

4’b 1—011 : data—regjmp <= data—in;

4'bl_100 : data_reg—tmp <= datajn;
4'bl_101 : data_reg_tmp <= datajn;

4'bl_110 : data_reg_tmp <: datajn;

4'bl_lll : data_reg_tmp <= data—in;

default;

endcase

end

end

/* ——swap the registers when the data_reg—tmp > data_reg{l-8]——*/

if (result_ack 二二 0)

begin

if (counter—reg48 == 7'd37)

begin

if(out_sel==3'bOOO)

begin

case (frame—counter)

8'dl : data_reg2 <= data_reg_tmp;

8'd2 : data—reg3 <= data_reg_tmp;
8'd3 : data_reg4 <= data_reg_tmp;

8'd4 : data_reg5 <= data_reg_tmp;

8'd5 : data_reg6 <= data_reg_tmp;
8’d6 : data_reg7〈二 data—reg—tmp;
8'd7 : data_reg8 <= data_reg_tmp;

endcase

end

end

if (counter_reg48 ==7’d36)

82

Appendix I

begin

if (out.sel == 3'd2 & & wr_en == I'bl)

begin

if ({data_regjmp[47], data_reg2[47]} ！= 2'blO)

begin

if ({data_reg_tmp[47], data_reg2[47]} == 2'bOl)

data_reg2 <= data—reg_tmp;

else

if (data—reg_tmp > data—reg2)

data—reg2 <= data—reg_tmp;

end

end

if (out_sel == 3’d3 & & wr_en == I'bl)

begin

if ({data_reg_tmp[47], data_reg3[47]} ！= 2'blO)

begin

if ({data_reg_tmp[47], data_reg3[47]} == 2'bOl)

data_reg3 <= data_regjmp;

else

if (data_reg_tmp > data_reg3)

data_reg3 <= data_reg_tmp;

end

end

if (out_sel == 3'd4 & & wr_en == I'bl)

begin

if ({data_reg_tmp[47], data_reg4[47]} ！二 2'blO)

begin

if ({data_regjmp[47], data_reg4[47]] == 2'bOl)

data_reg4 <: data_reg_tmp;

else

if (data—reg_tmp > data_reg4)

data_reg4 <= data_reg_tmp;

end

end

if (out.sel == 3'd5 & & wr—en == I'bl)

begin

if ({data—reg_tmp[47], data_reg5[47]} ！= 2'blO)

begin

if ({data—reg_tmp[47]，data_reg5[47]] == 2'bOl)

data_reg5 <= data—reg—tmp;

else

if (data_reg_tmp > data—reg5)

data—reg5 <= data_reg_tmp;

end

end

if (out_sel == 3'd6 & & wr_en == I'bl)

begin

if ({data_reg_tmp[47], data_reg6[47]] ！= 2'blO)

begin

if ({data_reg_tmp[47], data_reg6[47]] == 21̂ 01)

data_reg6 <= data_reg_tnip;

else

if (data_reg_tmp > data_reg6)

83

Appendix I

data_reg6 <= data_regjmp;

end

end

if (out.sel == 3’d7 & & wr—en == I'bl)

begin

if ({data—reg_tmp[47]，data_reg7[47]] ！= 2'blO)

begin

if ({data_reg_tmp[47], data_reg7[47]] == 2'bOl)

data_reg7 <= data_reg_tmp;

else

if (data—regjmp > data_reg7)

data_reg7 <= data_reg_tmp;

end

end

if (out_sel == last_frame—counter & & last_frame_counter ！=0)

begin

if (wr_en == Tbl)

begin

if ({data_reg_tmp[47], data_reg8[47]} ！= 2'blO)

begin

if ({data_reg_tmp[47], data_reg8[47]] == 2'bOl)

data_reg8 <: data_reg_tmp;

else

if (data_reg_tmp > data_reg8)

data_reg8 <= data_reg_tmp;

end

end

end

if (out_sel == 3'dO & & wr_en == I'bl & & frame—counter ！= 8'd7)

begin

if({data_reg_tmp[47], data_reg8[47]} ！= 2'blO)

begin

if ({data_reg_tmp[47], data_reg8[47]) == 2'bOl)

data_reg8 <= data_reg_tmp;

else

if (data—reg—tmp > data_reg8)

data_reg8 <= data—reg_tmp;

end

end

end

end

end

end

end

endmodule

令 Final Score Register

module final_score_reg_dm(word_index_out,

word_end_index, final_comp—index, fv_ack, data—fscore，elk, reset);

84

Appendix III

output [5:0] word—index—out;

input word—end—index, final_comp—index, elk, reset;

input fv_ack;

input [47:0] data_fscore;

reg [47:0] data—reg;

reg [5:0] word-index—oiit_reg;

reg [5:0] word_index_counter;

assign word_index_out = word—index一out_reg;

always @(posedge elk or negedge reset)

begin

if (reset == 0)

begin

data一reg <= 481i800000000000;

word_index_out_reg <= 0;

wordJndex_counter <= 0;

end

else

begin

if (fv_ack == 1)

begin

/* ——reset all the parameters when fv_ack == 1 ——*/

data_reg <= 481i800000000000;

word_index_out_reg <= 0;

word_index—counter <= 0;

end

else

begin

/* ——counting the number of words have been calculated ——*/

if (word一end-index == 1)

word_index_counter <= word_index_counter + 1 ；

/* -- replace the old word index when the new global cost is higher than the old global cost -- */

if (final_comp_index == 1 & & word_index_couiiter ！ = 0)

begin

if ({data一fscore[47]，data_reg[47]] ！= 2'blO)

begin

if({data_fscore[47], data_reg[47]] == 2'bOl)

begin

data_reg <= data_fscore;

word_index_out_reg <= word_index_counter;

end

else

if (data_fscore > data—reg)

begin

data一reg <= data_fscore;

word_index_out_reg <= word—index—counter;

end

end

end

end

end

end

endmodule

85

Appendix III

今 Controller

module control—dm(finaLcomp_index，result_ack,

regx_load_adder, regx_load_x2, regx_stait, subcomp_en, counter_reg48,

regx_store, wr_en_regx,

addr_regl6, wr_en_regl6,

lut_out, rom—out,

shift—num，shift_en,

frame_counter, address_common, address—ram，address_rom,

in_sel_mul,

out_sel_clal6,

in_sel_cla48, in_sel_reg48, out_sel_reg48, wr_en_reg48, out_en_reg48,

fv_ack, word_end_index, word_stait_index, last_frame_counter, word_index_out,

word_num, inl,

elk, reset);

output final_comp_index;

output regx 一load—adder;

output regxJoad_x2;

output regx_store;

output regx_stait;

output subcomp—en;

output [6:0] counter—reg48;

output result_ack;

output [1:0] addr_regl6;

output wr—en—reg 16;

output [7:0] frame_counter;

output [4:0] address—common;

output [7:0] address_ram;

output [10:0] address—rom;

output in_sel_mul, out—sel_clal6;

output [1:0] in_sel_cla48;

output [3:0] in_sel_reg48;

output [2:0] out_sel_reg48;

output wr_en_regx;

output wr_en_reg48;

output out_en_reg48;

output word_end_index;

output word_start_index;

output [2:0] last-frame—counter;

output [5:0] shift_num;

output shift_en;

input [5:0] word_num;

input [5:0] word—index_out;

input fv—ack;

input elk, reset;

input [15:0] inl;

input [47:0] lut_out;

input [15:0] rom_out;

reg regx_load_x2_reg;

reg regx_stait_reg;

reg regx_load_adder_reg;

86

Appendix III

reg subcomp_en_reg;

reg regx_state;

reg regx_store_reg;

reg db;

reg [1:0] luUndex;

reg [6:0] counter;

reg [1:0] counter_4;

reg counter—4_start;

reg [7:0] frame_num; /* ——frame—num = (total number of frame) - 8 ——*/

reg in_sel—mul_reg; /* ——select multiplication between (l'bO)xx and (l'bl)xxy ——*/

reg out—sd_clal6一reg; /* ——select the output of (rbO)x-xmean or (I'bl)variance ——*/

reg [3:0] in_sel_reg48_reg; /* ——select the registers in the reg48 to store input ——*/

reg [3:0] in_sel_reg48_regjmp； /* ——use to generate the in_sel_reg48_reg from

out_sel_reg48_reg ——*/

reg [2:0] out_sel_reg48_reg; /* ——select the output from the registers in the reg48 ——*/

reg wr_en_regx_reg; /* ——write enable of the reg48_reg, active high ……*/

reg wr_en_reg48_reg;

reg [1:0] in_sel_cla48_reg; /* ——select the input between the multiplier output and the

reg 16 output ——*/

reg out_en_reg48_reg; /* ----- set the output from (I'bl) the registers inside or (IW) the

input ——*/

reg [7:0] frame—counter_reg; /* ——frame number counter (counting up to total frame number

- 8) … - - *丨

reg [2:0] last_frame_counter_reg； /* ----- counting the last 8 frames ----- */

reg word_end_index_reg； /* ——indicate the end of the calculation of one word ——*/

reg word_start_index_reg； /* ——indicate the start of the calculation of one word ——*/

reg fv_ack_reg; /* ——set to high when fv_ack_reg == 1 ——*/

reg [1:0] addr_regl6_reg; /* ——set the address of the registers in the reg 16 ——*/

reg wr_en_regl6_reg; /* ——write enable of the reg 16, active high ——*/

reg [4:0] addr—32bit; /* ——first five bits of output address, counting from 0 to 25 ——*/

reg [7:0] frame_num_addr; /* ——address select the feature vectors at appropriate frame

time ——*/

reg [2:0] state_counter_reg; /* ——pointing at the state now being calculating ——*/

reg [2:0] state—counter—reg 1;

reg [5:0] word—addr; /* ——pointing at the word now being calculating ——*/

reg [5:0] word—addrl;

reg [4:0] tm_gc; /* ——Transition Matrix and Gaussian Constant ——*/

reg result_ack_reg; /* ——set to high when the search process finished ——*/

reg final_compJndex_reg；

reg read—const;

reg [5:0] shift_num;

reg shift—set;

reg shift_en;

assign final—comp_index = final_compJndex_reg；

assign result_ack = result_ack_reg;

assign addr_regl6 = addr—reg 16—reg;

assign wr_en_regl6 = wr_en_regl6_reg;

assign word_start_index = word_staitJndex_reg ；

assign last—frame—counter = last_frame_counter_reg；

assign word—end—index = word_end_index_reg；

assign frame—counter = frame_couiiter_reg;

assign in_sel_mul = in_sel_mul_reg;

assign out_sel_clal6 = out_sel_clal6_reg;

87

Appendix III

assign in_sel_reg48 = in_sel_reg48_reg;

assign out_sel_reg48 = out_sel_reg48_reg;

assign wr_en_regx = wr_en_regx_reg;

assign in_sel_cla48 = in_sel_cla48_reg;

assign out_en_reg48 = out_en_reg48_reg;

assign counter_reg48 = counter;

assign wr_en_reg48 = wr_en_reg48_reg;

assign regx_load_x2 = regx_load_x2_reg;

assign regx_load_adder = regx_load_adder_reg;

assign regx_start = regx_stait_reg;

assign subcomp一en = subcomp_en_reg;

assign regx_store = regx_store_reg;

assign address_common = (lutjndex==2'b00)? lut_out[4:0]: 5TDZ;
assign address_common = (lut_index==2'b01)? lut_out[20:16]: 5'bz;

assign address一common = (lutjndex==2'bl0)? lut_out[36:32]: 5'bz;

assign address—common = (lut_index==2'bl 1)? addr_32bit: Sl̂ z;

assign address_ram = {frame_num_addr}；

assign address一rom = ({result_ack, lut—index，read_const]==4'bl_l 1_0) ？ {4'bOOOO,

word_index_out} : ll'bz;

assign address_rom = ({result_ack，lutjndex, read—const) ==4’b0_00_0) ？ lut_out[15:5]: IIIDZ;
assign address_rom = ({result_ack, lutjndex, read_const) ==4'b0_01_0) ？ lut_out[31:21]:

ll'bz;

assign address_rom = ((result—ack, lutjndex, read_const) ==4'b0_l0_0) ？ lut_out[47:37]:

ll,bz;

assign address_rom = ({result_ack, lutjndex, read_const]==4'b0_l 1_0) ？ {db, counter[l],

word_addr, state_counter_reg} : ll'bz;

assign address_rom = ({result_ack, lutjndex, read_const} ==4'b0_l 1_1) ？ (db, counter[l],

word_addrl, state_counter_regl} : ll'bz;

/* counter[l] 二二 1 is mean, counter[l] == 0 is variance */

always @(posedge elk or negedge reset)

begin

if (reset 二二 0)

begin

counter <= 7'bOOOOOlO;
counter_4 <= 0;

counter_4—start <= 0;
in_sel_mul_reg <= 0;

out_sel_clal6_reg <= 0;
in_sel_reg48_reg <= 0;
out_sel_reg48_reg <= 0;
wr_en_regx_reg <= 0;

in_sel_cla48一reg <= 0;
out_en_reg48_reg <= 0;

frame_counter_reg <= 0;

in_sel_reg48_reg_tmp <= 0;
last_frame_counter_reg <= 0;

word_end_index_reg <= 0;

word_start_index_reg <= 0;

fv_ack_reg <= 0;

addr—regl6_reg <= 0;
wr_en_regl6_reg <= 0;
addr_32bit <= 5 'b l l l l l ;
frame_num_addr <= 0;

88

Appendix III

word—addr <= 0;

word—addrl <= 6'bllllll;
state—counter—reg <= 0;

state—counter—reg 1 <= 0;

tm_gc <= 0;

result_ack_reg <= 0;

wr_en_reg48_reg <= 0;

regx_load_x2_reg <= 0;

regx_load_adder_reg <= 0;

regx_start_reg <= 0;

subcomp_en_reg <= 0;

regx_state <= 0;

regx_store_reg <= 0;

final_comp_index_reg <= 0;

db <= 1;

luUndex <=2'bll;

frame—num <= 0;

read-Const <= 0;

shift_set <= 0;

shift—num <= 0;

shift_en <= 0;

end

else

begin

if(shift—set 二 0)

begin

counter <= 7'dl;

db <= 1;

word_addr <= 0;

state_counter_reg <= 0;

addr—32bit <=5'blllll;

if(counter == 7'dl)

begin

shift_num <= rom_out[5:0];

shift—set <= 1;

end

end

else

begin

if (word_num 二二 word_addr & & counter == 7'd36)

begin

result_ack_reg <= 1 ；

fv_ack_reg <= 0;

end

if (fv_ack_reg == 1)

begin

if (regx_state == 1 & & counter 二 7'dl 11)

shift—en <= 1 ；

else

shift_en <= 0;

if (counter == 7'dll & & regx—state == 0)

lut.index <= 2'bOO;

else

89

Appendix III

if (counter == 7'dl5 & & regx_state == 0)

lutjndex <=2'b01;

else

if (counter == 7'dl9 & & regx_state == 0)

lutjndex <= 2'blO;

else

lutjndex <=2'bll;

/* ——start address calculation ——*/

/* ——change the address to latch transition matrix and gaussian constant

if (counter == 7’d23)

begin

addr_32bit <= 5'blllOl;

tm』c <= addr_32bit;

read—const <= 1 ；

end

else

if (counter == 7621)

begin

addr_32bit <= 5'bllllO;

tm_gc <= addr_32bit;

read_const <= 1 ；

end

else

if (counter == 7'd31)

begin

addr_32bit <= 5'blllll;

tm_gc <= addr_32bit;

read-Const <= 1;

end

else

if (counter == 7'd35)

begin

addr_32bit <=5'bll010;

tm_gc <= addr_32bit;

end

else

if (counter == 7'd39)

begin

addr_32bit <= 5'bllOll;

tm_gc <= addr—32bit;

end

else

if (counter == 7’d43)

begin

addr_32bit <=5'blllOO;

tm_gc <= addr_32bit;

end

else

if (counter == 7'd36 II counter == 7'd40 II counter = 7'd44 il counter =

7'd24

II counter = 7'd28 II counter == 7'd32)

begin

90

Appendix I

addr_32bit <= tm_gc;

read—const <= 0;

end

if (counter—4== 2"b00)

begin

/* ——the first 5 address bits counting from 0 to 25 (26 feature

vectors) ----- */

if(addr_32bit==5'd25)

begin addr_32bit <= 0;

db <= ~db;

end

else

addr_32bit <= addr_32bit + 1;

/* ……pointing at the state now being calculating ——*/

if (addr_32bit == 5'd25 & & regx_state == 1)

if (state_counter_reg == frame—coiinter_reg)

begin

state_counter_reg <= 0;

state_counter_regl <= state_counter_reg;

end

else

begin

state_counter_reg <= state_counter_reg + 1;

state_counter_regl <= state_counter_reg;

end

/* ……calculating the address of the last eight frame time ……*/

if (addr_32bit == 5'd25 & & regx_state 二 1)

begin

if (last—frame—counter—reg 二二 3'dl & & state_counter_reg ==

3'bllO)

begin

state_counter_reg <= 0;

state_counter_regl <= state_counter_reg;

frame_num_addr <= frame_num_addr + 1 ；

end

else

if (last_frame_counter_reg =: 3'd2 & & state_coimter_reg ==

3'blOl)

begin

state_counter_reg <= 0;

state—counter—reg 1 <= state_counter_reg;

frame_num_addr <: frame_num_addr + 1 ；

end

else

if (last—frame—counterjeg =二 3'd3 & & state„counter_reg ==
3'blOO)

begin

state_counter_reg <= 0;

state—counter—regl <= state—counter—reg;

frame—niim_addr <= frame_num_addr + 1;

end

else

91

Appendix III

if (last_frame_counter_reg =: 3'd4 & & state_counter_reg ==

3'bOll)

begin

state_counter_reg <= 0;

state_counter_regl <= state_counter_reg;

frame_num_addr <: frame_num_addr + 1 ；

end

else

if (last—frame_counter_reg = 二 3'd5 & & state_counter_reg ==

3'bOlO)

begin

state_counter_reg <= 0;

state_counter_regl <= state_counter_reg;

frame_num_addr <= frame_num_addr + 1 ；

end

else

if (last_frame_counter_reg = 二 3'd6 & & state_coimter_reg ==

3'bOOl)

begin

state_counter_reg <= 0;

state_counter_regl <= state_counter_reg;

frame_num_addr <= frame_num_addr + 1;

end

else

if (last_frame_counter_reg 二二 3’d7 & & state_counter_reg 二=

3'bOOO)

begin

state_counter_reg <= 0;

state_counter_regl <= state_counter_reg;

frame_num_addr <: 0;

word—addr <= word一 addr + 1 ；

end

else

if (state_counter_reg == frame_counter_reg II state_counter_reg

==3'blll)

frame_num_addr <= frame—num_addr + 1 ；

end

end

if (frame—counter_reg == 8'dO & & regx_state == 0 & & counter 二二 7'd36)

word_addrl <= word_addr 1+1;

end

/* ——end address calculation ——*/

if (counter == 7'dl09 & & regx.state == I'bl)

regx_start_reg <= I'bl;

else

regx_start_reg <= I'bO;

if ((counter == 7'dl7 I! counter == 7'd21 II counter == 7'd33)

& & regx—state == I'bO)

begin

if (frame—counter—reg == 0 & & word_addr ==0)

regx_store..reg <= I'bO;

else

regx_store,. reg <= I'bl;

92

Appendix III

end

else

regx_store_reg <= I'bO;

if (counter == 7’dl06)

in_sel_cla48_reg <= 2W1;

else

if (counter == 7'dl8 & & regx一state == I'bO)

in_sel_cla48_reg <= 2'blO;

else

if (counter == 7'd22 & & regx—state :: I'bO)

in_sel_cla48_reg <=21311;

else

if (counter == 7'd34 & & regjc—state == I'bO)

in_sel_cla48_reg <= 21311;

else

in_sel_cla48_reg <= 2 辑

if ((counter == 7'dl9 II counter == 7'd23 II counter = 二 7'd35)

& & regx.state == I'bO)

begin

if(frame_counter_reg 二二 0 & & word_addr == 0)

regx_load_x2_reg <= I'bO;

else

regx_load_x2_reg <= I'bl;

end

else

regx_load_x2_reg <= I'bO;

if ((counter = 7'd23 II counter == 7’d35)

& & regx_state 二二 I'bO & & frame—counter—reg ！= 0)

wr_en_reg48_reg <= I'bl;

else

vvr_en_reg48_reg <= I'bO;

if (counter ==7'dl 12)

regx_state <= ~regx_state;

if (regx—state —二 1 & & counter 二二 7'dllO)

subcomp_en_reg <= 1 ；

else

subcomp_en_reg <= 0;

if (regx_state == 0)

begin

if (counter == 7'dl09)

regx_load_adder_reg <= 1 ；

else

regx_load_adder_reg <= 0;

end

if (counter == 7'd35 & & frame_counter_reg == 0 & & regx—state == 0)

final_comp_index_reg <= 1 ；

else

final—comp_index_reg <= 0;

if (counter_4_start = 1)

begin

if (regx_state == 1)

if (counter == 7'dl03)

out_en_reg48_reg <= I'bl;

93

Appendix III

else

out_en_reg48_reg <= I'bO;

if (counterj == 21^00 II counter == 7'dl07 II

(last_frame_counter_reg = 二 3'd7 & & counter == 7'dl 14))

wr_en_regx_reg <= 1;

else

wr_en_regx_reg <= 0;

end

/* ——output the appropriate transition matrix and gaussian constant ——*/

/* ——latching the transition matrix and gaussian constant into the reg 16 module
… ― * /

if ((counter == 7'dl2 & & regx_state == 0)11 (counter == 7'dl6 & & regx—state ==

0)11
(counter == 7'd20 & & regx_state == 0)11 counter == 7'd24

II counter == 7'd28 II counter == 7'd32 II counter == 7'd36 II counter == 7'd40

II counter == 7'd44)

wr_en_regl6_reg <= 1;

else

wr_en_regl6_reg <= 0;

/* ——setting the address of the reg 16 module ……*/

if (counter == 7'dl2 II counter == 7'd32 II counter == 7'd44)

addr_regl6—reg <= 2'bOO;

else

if (counter 二 = 7'dl6 II counter == 7'd28 II counter == 7'd40)

addr_regl6—reg <= 2'bOl;

else

if (counter == 7'd20 II counter == 7'd24 II counter 二 7'd36)

addr_regl6_reg <= 2'blO;

/* ——setting the fv_ack_reg to high when fv_ack == 1 ——*/

if (fv_ack == 1)

begin

counter <= 7'dl;

counter—4 <= 0;
counter_4_start <= 0;
in_sel_mul_reg <: 0;

out_sel_clal6_reg <= 0;
in_sel_reg48_reg <= 0;

out_sel_reg48_reg <= 0;
wr_en_regx_reg <= 0;

in_sel_cla48_reg <= 0;

out_en_reg48_reg <= 0;

frame_counter_reg <= 0;

in_sel_reg48_reg_tmp <= 0;
last_frame_counter_reg <= 0;

word_end_index_reg <= 0;

word_start_index_reg <= 0;

fv_ack_reg <= 1;

addr_regl6_reg <= 0;

wr_en_regl6_reg <= 0;
addr_32bit <=5'blllll;

frame_num_addr <= 0;

word_addr <=〇；
word_addrl <= 6 'b l l l l l l ;

94

Appendix III

state_counter_reg <= 0;

state_counter_regl <= 0;

tm_gc <= 0;

result_ack—reg <= 0;

wr_en_reg48_reg <= 0;

regx_load_x2_reg <= 0;

regx_load_adder_reg <= 0;

regx_start_reg <= 0;

subcomp_en_reg <= 0;

regx_state <= 0;

regx_store_reg <= 0;

final_comp_index_reg <= 0;

db <= 0;

lutjndex <= 2'bll;

read—const <= 0;

end

if (counter == 2)

frame_num <= inl [7:0];

/* ——generation of all the counters to be used ——*/

if (fv_ack_reg == 1 & & fv—ack ！= 1)

begin

if (word_end_index == I'bl)

frame_counter_reg <= 8'bl 1111111;

else

if (counter == V'dlM & & out_sd_reg48—reg == 0 & & regx_state == 0)

frame_counter_reg <= frame_counter_reg + 1 ；

if (counter == 7'dll4)

counter <= 7'dll;

else

counter <= counter + 1 ；

counter_4 <= counter_4 + 1 ；

if (counter 二二 7'd7)

counter_4_start <= 1;

end

word_start_index_reg <= word_end_index_reg；

/* ——reset the parameter for calculating the new word ——*/

if (counter == 7'dll2 & & frame_coiinter一reg == frame_num & &

out_seLreg48_reg == 0 & &

regx_state == I'bl)

begin

word 一end—index一reg <= 1;

last_frame_counter_reg <= 0;

end

else

word_end_index—reg <:., 0;

/* ——select the multiplication of xx or xxy ——*/

in_sel_mul_reg <= counter[l],

/* ——out一sd_clal6—reg == 1 means the output is vanance,

else out_sel_clal6_reg == 0 means the output is the

subtracted result ——

out_sel_clal6_reg <=〜counter[1];

95

Appendix I

/* ----- in_sel_cla48_reg == 1 means the addition between the Gaussian constant

and transition matrix elements output of the reg48 module, else

in_sel_cla48_reg == 0 means the addition between the output of the reg48

module and the output of the multiplier ……*/

if (regx_state --1)

if (counter == 7'dlll)

begin

/* ——select the output of the reg48 module at the last eight frame time ——

if (last_frame_counter_reg == 3'dO & & oiit_sd—reg48_reg == 31^111 & &

frame—counter—reg == frame_num)

begin

last_frame_counter_reg <= 3'dl;

out_sel_reg48_reg <= 3'bOOl;

end

else

if (last_frame—counter—reg == 3'dl & & out_sel_reg48_reg == 3"bill)

begin

last_frame_counter_reg <= 3'd2;

out_sel_reg48_reg <= 3'bOlO;

end

else

if (last_frame_counter_reg == 3'd2 & & out_sel—reg48_reg == 31^111)

begin

last_frame_counter_reg <= 3'd3;

out_sel_reg48_reg <= 3'bOll;

end

else

if (last_frame—counter—reg == 3'd3 & & out—sel_reg48_reg == 3'bill)

begin

last_frame_counter_reg <= 3'd4;

out_sel_reg48_reg <= 313100;

end

else

if (last_frame_counter_reg == 3'd4 & & out_sel_reg48_reg ==31^111)

begin

last_frame_counter_reg <= 3'd5;

out_sel_reg48_reg <= 3'blOl;

end

else

if (last_frame_counter_reg == 3'd5 & & oiit_sel—reg48_reg =二 31：)111)

begin

last—frame—coimtei_reg <= 3'd6;

out_sel_reg48_reg <= 3'bllO;

end

else

if Gast_frame_counter_reg == 3'd6 & & out—sel—reg48_reg ==313111)

begin

last_frame_counter_reg <= 3'd7;

out_sel_reg48_reg <= 3W11;

end

else

/* ----- select the output of the reg48 module at the first eight frame time

96

Appendix III

case ({frame_counter_reg, out_sel_reg48_reg])

11 'b00000000_000 : out_sel_reg48_reg <: 0;

irb00000001_001 : out_sel_reg48_reg <= 0;

U'bOOOOOOlO.OlO : out_sel_reg48_reg <= 0;

irbOOOOOOl 1-011 : out_sel_reg48_reg <= 0;

ll'bOOOOOlOOJOO : out_sel_reg48_reg〈二 0;

ll'bOOOOOlOlJOl: out_sel_reg48—reg <= 0;

ll'bOOOOOllOJlO : out_sel_reg48_reg <= 0;

default: out_sel_reg48_reg <= out_sel_reg48_reg + 1 ；

endcase

end

/* ——in—sel—reg—reg48[3] is used to control the write operation

on the odd or even entry of the reg一48 ——*/

if (regx 一 state == 0)

if (counter == 7'd35)

in_sel_reg48_reg[3] <= I'bl;

else

in_sel_reg48_reg[3] <= IIdO;
/* ——because in_sel_reg48_reg and out_sel_reg48_reg has 2 bit difference ——

if (counter == 7'd33)

in_sel_reg48_reg <= out_sel_reg48_reg;

end

end

end

endmodule

�T o p

module int_signal_dm(int_signal_out, mulout, sumout_cla48, reg48_outl,

regl6_out, regx_out, subcomp_out, shift—out, lut_out,

mod—sel，bit_sel, elk, reset);

input [47:0] mulout, sumout_cla48, reg48_outl, regl6_out;

input [47:0] regx_out, subcomp_out, shift—out, lut_out;

output [7:0] int_signal_out;

input reset, elk;

input [2:0] mod_sel;

input [2:0] bit_sel;

reg [7:0] int_signal_out_reg;

assign int_signal_out = int_signal_out_reg;

always @(posedge elk or negedge reset)

begin

if (reset —二 0)

begin

int_signal_out_reg <= 0;

end

else

begin

if (mod.sel == SIdOOO)
begin

97

Appendix III

case (bit一sel)

3'dO : int_signal_out_reg <= mulout[7:0];

3'dl : int—signal—out—reg <= mulout[15:8];

3'd2 : int_signal_out_reg <= mulout[23:16];

3'd3 : int_signal_out_reg <= mulout[31:24];

3'd4 : int_signal_out_reg <= mulout[39:32];

3'd5 : int一signal—out_reg <= mulout[47;40];

default;

endcase

end

else

if (mod.sel == 3'bOOl)

begin

case (bit_sel)

3'dO : int_signal_out_reg <= sumout_cla48[7:0];

3'dl: int_signal_out_reg <= sumout_cla48[15:8];

3'd2 : int_signal_out_reg <= sumout_cla48[23:16];

3'd3 : int_signal_out_reg <= sumout—cla48[31:24];

3'd4 : int_signal_out_reg <= sumout_cla48[39:32];

3'd5 : int_signal_out_reg <= sumout—cla48[47:40];

default;

endcase

end

else

if (mod.sel == 3'bOlO)

begin

case (bit—sel)

3'dO : int_signal_out_reg <= reg48_outl[7:0];
3'dl : int_signal_out_reg <= reg48_outl[15:8];

3'd2 : int_signal_out_reg <= reg48_outl [23:16];

3'd3 : int_signal_out_reg <=reg48_outl[31:24];

3'd4 : int_signal_out_reg <= reg48_outl [39:32];

3'd5 : int_signal_out_reg <= reg48—out 1 [47:40];

default;

endcase

end

else

if (mod_sel== 3'bOll)

begin

case (bit_sel)

3'dO : int—signal—out—reg <= reg 16—out[7:0];

3'dl : int—signal—out—reg <= regl6_out[15:8];

3'd2 : int_signal_out_reg <= regl6_out[23:16];

3'd3 : int_signal_out_reg <= regl6_out[31:24];

3'd4 : int_signal_out_reg <= regl6_out[39:32];

3'd5 : int_signal_out_reg <= reg 16_out[47:40];

default;

endcase

end

else

if(mod_sel==3'blOO)

begin

case (bit—sel)

98

Appendix III

3'dO : int_signal_out_reg <= regx_out[7:0];

3'dl : int_signal_out_reg <= regx_out[15:8];

3'd2 : int_signal_out_reg <= regx_out[23:16];

3'd3 : int_signal_out_reg <= regx_out[31:24];

3'd4 : int_signal_out_reg <= regx_out[39:32];

3'd5 : int_signal_out_reg <= regx_out[47:40];

default;

endcase

end

else

if(mod_sel== 3bl01)

begin

case (bit—sel)

3'dO : int_signal_out_reg <= subcomp_out[7:0];

3'dl : int_signal_out_reg <= subcomp_out[15:8];

3'd2 : int_signal_out_reg <= subcomp_out[23:16];

3'd3 : int_signal_out_reg <= subcomp_out[31:24];

3'd4 : int_signal_out_reg <= subcomp_out[39:32];

3'd5 : int_signal_out_reg <= subcomp_out[47:40];

default;

endcase

end

else

if (mod_sel==3'bllO)

begin

case (bit_sel)

3'dO : int_signal_out_reg <= shift_out[7:0];

3'dl : int_signal_out_reg <= shift_out[15:8];

3'd2 : int_signal_out_reg <= shift_out[23:16];

3’d3 : int_signal_out_reg <= shift_out[31:24];

3'd4 : int_signal_out_reg <= shift_out[39:32];

3'd5 : int_signal_out_reg <= shift_out[47:40];

default;

endcase

end

else

if (mod_sel== 313111)

begin

case (bit—sel)

3'dO : int_signal_out_reg <= lut_out[7:0];

3'dl : int_signal_out—reg <= lut_out[15:8];

3'd2 : int_signal_out_reg <= lut_out[23:16];

3'd3 : int_signal_out_reg <=lut_out[31:24];

3'd4 : int_signal_out_reg <= lut_out[39:32];

3'd5 : int_signal_out_reg <= lut_out[47:40];

default;

endcase

end

end

end

endmodule

99

Appendix III

module top—core—dm(int_signal一out，result_ack, address—common，address_ram, address—rom’

overf,

in 1，in2, word_num, mod_sel, bit_sel,

fv_ack, elk, reset);

output overf; /* ——overflow output ——*/

output [7:0] int—signal一out; /* ——output of the internal signal ——*/

output [7:0] address_ram; /* ——ram address for latching the feature vector */

output [10:0] address—rom; /* ——rom address for latching the mean, variance, gaussian

constant,

transition matrix, the recognized word will also be shown at the

rom address bus ——*/

output [4:0] address—common; /* ——common address for first five bits of address_ram and

address—rom ——*/

output result—ack; /* ——set to high when the search process finished ……*/

input [5:0] word_num; /* ——number of words stored in rom ——*/

input fv_ack; /* ——indicate the start of searching ——*/

input [15:0] inl, in2; /* ——inl is the data from ram, in2 is the data from rom ——*/

/* ——address 8'd31 of ram stores frame_num and will be latched in from

m l …--*/

input elk, reset;

input [2:0] mod一sel; /* ——select the internal output of the four signals between mulout,

sumout_cla48, reg48_outl, data—fscore ——*/

input [2:0] bit—sd;/* ----- select the 8 bit outputs within the internal signal —- */

wire overf_clal6; /* ——overflow flag of 16bit carry look ahead adder ——*/

wire overf_cla48; /* ——overflow flag of 48bit carry look ahead adder ——*/

wire [5:0] wordJndex_out;
wire [1:0] addr—reg 16;

wire wr_en_regl6;

wire word_start_index;

wire [47:0] reg 16—out;

wire [1:0] in—sel—cla48;

wire oiit_sel_clal6;

wire in_sel_mul;

wire wr_en_reg48;

wire wr_en_regx;

wire [3:0] in_sel_reg48;

wire [2:0] out—sel—reg48;

wire [15:0] sumout_clal6;

wire [47:0] mulout, sumout_cla48, reg48_outl;

wire out_en_reg48;

wire [7:0] frame—counter;

wire word_endJndex;

wire [2:0] last_frame_counter;

wire [6:0] counter_reg48;

wire [47:0] lut—out;

wire [47:0] subcomp_out;

wire [47:0] regx_outl;

wire [47:0] regx_out2;

wire [47:0] regx—out;

wire [47:0] lut_in;

wire [5:0] shift_num;

wire overf_shift;

wire shift_en;

100

Appendix III

reg fv_ack_d;

reg [15:0] inl_d, in2_d;

always @(posedge elk or negedge reset)

begin

if (reset == 0)

begin

fv_ack_d <= 0;

inl—d <= 0;

in2_d <= 0;

end

else

begin

fv_ack_d <= fv_ack;

inl_d <= inl;

in2_d <= in2;

end

end

assign overf = overf_clal6 丨 overf—cla48;

int_signal_dm int_signal_dm

(.int_signal_out(int_signal_out), .mulout(mulout),.sumout_cla48(sumout_cla48), •

reg48_outl (reg48_outl),

.regl6_out(regl6_out), .regx_out(regx_out), .subcomp_out(subcomp_out),

.shift_out(lut_in), .lut_out(lut_out),

.mod_sel(mod_sel), .bit_sel(bit_sel), .clk(clk), .reset(reset));

clal6_dm clal6—dm

(.sumout(sumout_clal6)，.overflow(overf_clal6),

•result—ack(result_ack)，.inl(inl_d), .in2(in2_d),

.out_sel(out_sel_clal6), .clk(clk), .reset(reset));

multiplier_dm multiplier_dm

(.mulout(mulout), .in_sel(in_sel_mul),

.inl(sumout_clal6), .counter_cla48(counter_reg48[0]), .clk(clk), .reset(reset));

core_cla48_dm core_cla48_dm
(.sumout(sumout_cla48), .overflow(overf_cla48), .in_sel(in_sel_cla48),

.inl(mulout), .reg48_in(reg48_outl), .regl6_in(regl6_out),

.regx_in(regx_out),

.clk(clk), .reset(reset));

reg48_dm reg48_dm

(.data—outl(reg48_outl), .data_in(sumout_cla48),

.in_sel(in_sel_reg48), .out_sel(out_sel_reg48),

.wr_en(wr_en_reg48), .out_en_reg48(out_en_reg48),

.frame_counter(frame_counter), .word_end_index(word_end_index),

.word_start_index(word_startJndex), .last_frame_counter(last_frame_counter),

.result_ack(result_ack),

.counter_reg48(counter_reg48), .fv_ack(fv_ack_d),

.clk(clk), .reset(reset));

controLdm control_dm

(.final_comp_index(final_comp_index), .regx_load_adder(regx_load_adder),

.regx_load_x2(regx_load_x2), .regx_start(regx_start),

.subcomp_en(subcomp_en), .counter_reg48(counter_reg48), .regx_store(regx_stor

e),

.lut_out(lut_out), .rom_out(in2_d),

.shift_num(shift_num), .shift_en(shift_en),

.result_ack(result_ack),

101

Appendix III

.addr_regl6(addr_regl6),.wr_en_reg 16(wr_en_regl6), .frame_counter(frame_cou

nter),

.address_common(address_common), .address—ram(address_ram)，.address_rom(a

ddress_rom),

.in_sel_mul(in_sel_mul),

.out_sel_clal6(out_sel_clal6), .in_sel_cla48(in_sel_cla48), .in_sel_reg48(in_sel_re

g48X

.out_sel_reg48(out_sel_reg48), .wr_en_regx(wr_en_regx), .wr_en_reg48(wr_en_re

g48),

.out_en_reg48(out_en_reg48),

.fv_ack(fv_ack_d),

.word_end_index(word_end—index), .word_stait_index(word_start_index),

.last_frame_counterGast_frame_counter),

.word_index_out(word_index_out),

.word_num(word_num), .inl(inl_d), .clk(clk), .reset(reset));

regl6_dm regl6_dm

(.data_out(regl6_out)，.data—in(in2_d)，.addr(addr_regl6), .wr_en(wr_en_regl6), ,f

v_ack(fv_ack_d),

.clk(clk), .reset(reset));

final_score_reg_dm final_score_reg_dm

(,word_index_out(word-index—out),

.word_end_index(word_end_index), .final_comp_index(final_comp_index),

.fv_ack(fv_ack_d), .data_fscore(sumout_cla48), .clk(clk),

.reset(reset));

regx_dm regx_dm

(.dout(regx_out), .dout_xl(regx_outl), .dout_x2(regx_out2), .adder—in(sumout_cla

48)，
.start(regx_start), .load_adder(regx_load_adder), .store(regx_store),

.load_x2(regx_load_x2), .sel_x2(sel_x2), .wr_en_regx(wr_en_regx), .fv_ack(fv_ac

k_d),

.clk(clk), .reset(reset));

subcomp_dm subcomp_dm

(.out(subcomp_out), .sel_x2(sel_x2), .inl(regx_outl), .in2(regx—out2)，

.en(subcomp_en), .clk(clk), .reset(reset));

lut_dm lut_dm

(.outdut—out)，.in(lut_in), .shift—overf(overf—shift)，.clk(clk), .reset(reset));

shift—dm shift_dm

(.shift_num(shift_num), .datain(subcomp_out), .dataout(lut_in), .overflow(overf_s

hift), .en(shift_en), .clk(clk),

.reset(reset));

endmodule

102

Appendix III

Appendix II Chip Microphotograph

\ \ \ \ \ \ \ V\ V \ \ I FT J ! in:ff 傑一—二
4 < % ^ < ̂ % % % m- SI/ 1 * 1 M w^ M M W y w f …‘ 釋 ^

L , “ �

— . . , _

纖 努 ： 偏 . • 寒

•iilOiliPH 丨1irtii

^ ：‘

' 广 ― ’ … ' 《

\ ！ . H ： . ' 一 " 。 … ； … — ^

PP̂ 'i'-'-'Lî jF̂ ''•••• • ••：••； '•••ft • . , , 乂•̂ , S ‘ > ‘ "•“ '““ " “ ‘ ‘“ ‘ Tfc

103

Appendix III

Appendix III Pin Assignment of the
Speech Recognition IC

13 12 11 10 S 8 7 6 5 4 3 2 1

^ . . 丽 函 丽 丽 丽 丽 碰
“ © © © © © © © © © © © © © ^

© 0 © 0 © ©©〖.
^ © 0 0 © ^ J © 0 0 ©
H ©G)© ©©©H
^e-ee——.—— © e e -
^©0© ©0©「
[0 © © 0 [
D © © © © D
� © © © 0 © © 0 © �
8 © © © © © © © © © © © C ^ B

^QQQQQQQQQQOGfe -
13 12 11 10 9 a 7 6 5 4 3 2 1

Top View of P G A 100

‘ Pin
Pin Name 、/ 丄 IN/OUT Description

Number

vdd3aUp_01 B 2 IN V D D

, 1 。 1 select an internal block to check its output: bit
PAD 丄 mod—sel_0 B 1 IN •

‘~ ~ 门。 select an internal block to check its output: bit
PAD 丄 mod_sd_l C 2 IN 1

“ 。1 T̂ T select an internal block to check its output: bit
PAD丄mod_sel_2 C I IN 2

pad—l_bit_sel_0 D 2 IN select 8 bits of an internal block's output: bit 0

PAD_I_bit_sel_l D 13 IN select 8 bits of an internal block's output: bit 1

PAD_I_bit_sel_2 E 2 IN select 8 bits of an internal block's output: bit 2

p AD_I_word_num_0 E l IN word number of the vocabulary : bit 0

gnd3aUp_01 F 3 IN ^

pAD_I_word_num_l F 2 IN word number of the vocabulary : bit 1

pAD_I_word_num_2 F 1 IN word number of the vocabulary : bit 2

pAD_I_word_num_3 G 2 IN word number of the vocabulary : bit 3

104

Appendix III

vdd3allp_02 G 3 IN V D D

PAD_I_word_num_4 G 1 IN word number of the vocabulary : bit 4

PAD_I_word_num_5 H 1 IN word number of the vocabulary : bit 5

PADJ_fv_ack H 2 IN the Start signal

gnd3aUp_02 H 3 IN G N D

PAD_I_inl_0 J1 IN feature vector input: bit 0

PADJLinl—1 J 2 IN feature vector input: bit 1

PAD_I_inl_2 K 1 IN feature vector input: bit 2

PAD_I_inl_3 K 2 IN feature vector input: bit 3

PAD_I_inl_4 L 1 IN feature vector input: bit 4

PAD_I_inl_5 M 1 IN feature vector input: bit 5

vdd3allp_03 L 2 IN V D D

PAD—I_inl_6 N 1 IN feature vector input: bit 6

PAD_Linl_7 M 2 IN feature vector input: bit 7

PAD—I_inl_8 N 2 IN feature vector input: bit 8

gnd3aUp_03 M 3 IN G m

PAD_I_inl_9 N 3 IN feature vector input: bit 9

PAD_I_inl_10 M 4 IN feature vector input: bit 10

PADJJnl _11 N 4 IN feature vector input: bit 11

PAD—I_ml—12 M 5 IN feature vector input: bit 12

PAD_I_inl_13 N 5 IN feature vector input: bit 13

vdd3aUp—04 L 6 IN V D D

PAD_Linl_14 M 6 IN feature vector input: bit 14

PAD—I—inl_15 N 6 IN feature vector input: bit 15

PAD_I_in2_0 M 7 IN model parameter input: bit 0

gnd3allp_04 L 7 IN ^

PAD_I_in2_l N 7 IN model parameter input: bit 1

PAD_IJn2_2 N 8 IN model parameter input: bit 2

PAD_I_in2_3 M 8 IN model parameter input: bit 3

vdd3aUp_05 L 8 IN ^

PAD_I_in2_4 N 9 IN model parameter input: bit 4

PAD_I_in2_5 M 9 IN model parameter input: bit 5

pad丄in2_6 N 10 IN model parameter input: bit 6

105

Appendix III

gnd3allp_05 M 1 0 IN G N D

PAD_I_in2_7 N i l IN model parameter input: bit 7

PAD_I_in2_8 N 1 2 IN model parameter input: bit 8

PAD—I_in2—9 M i l IN model parameter input: bit 9

PAD_I_in2_10 N 1 3 IN model parameter input: bit 10

vdd3aUp_06 M 1 2 IN V D D

PAD_I_in2_l 1 M 13 IN model parameter input: bit 11

PAD—I_in2」2 L 12 IN model parameter input: bit 12

PAD_I_in2_13 L 13 IN model parameter input: bit 13

PAD_I_in2_14 K 1 2 IN model parameter input: bit 14

PAD_I_in2_15 K 1 3 IN model parameter input: bit 15

gnd3aUp_06 J12 IN ^

PAD_I_reset J13 IN reset signal

PAD_0_overf H 11 O U T indicate the chip has been overflow

。 T T 1 n ^ t t t t . address of the external memory storing feature
PAD_0_address_ram_0 H 1 2 O U T vector: bit 0

“ “ t t 1。 address of the external memory storing feature
PAD—0—address一mm」 H 13 O U T vector: bit 1

a 1。 address of the external memory storing feature
PAD.0_address_ram_2 G 12 O U T vector: bit 2

vdd3aUp_07 G i l IN ^

‘“ ^ 1。 八T TTT̂ address of the external memory storing feature
PAD—〇—address-mm—3 G 13 O U T vector: bit3

, …n 一 … address of the external memory storing feature
PAD_0_address_ram_4 F 13 O U T vector: bit 4

^ ~ 1 T̂irr. address of the external memory storing feature
PAD_Q_address_ram_5 F 12 O U T vector: bit5

‘~ p 11 TT address of the external memory storing feature
PAD_Q_address_ram_6 Fll O U T vector: bit6

„ r 1。 ^Tim address of the external memory storing feature
PAD_0_address_ram_7 E 13 OUT vector: bit7

r … 。TT^ address of the external memory storing model
PAD_Q_address_rom_Q E 12 O U T parameter: bit Q

“ ^ .o MTT^ address of the external memory storing model
PAD_0_address_romJ D i3 O U T parameter : bit 1

gnd3aUp_07 D 12 IN ^

~ 7 ~ ^ 1。 m address of the external memory storing model
PAD_Q_address_rom_2 C 13 OUT parameter: bit 2

‘ ~ ~ ^ 1。 ^Tim address of the external memory storing model
PAD_0_address_rom_3 B 13 O U T parameter : bit 3

‘ m n ^T rrn address of the external memory storing model
PAD_0_address_rom_4 C 12 OUT parameter: bit 4

106

Appendix III

dati c A 丁 斤 ~ address of the external memory storing model
PAD_0_address rom 5 A 1 3 O U T , , . .

— — parameter : bit 5
nATv n ^^ (io 八 tth^ address of the external memory storing model
PAD_0_address_rom 6 B12 O U T , . ,

- — parameter: bit 6

o 〜冲 address of the external memory storing model
PAD_0_address rom 7 A 1 2 O U T ^ , ^

— — parameter: bit 7

n A T ^ r ^ j j o "nil x̂TTT̂ address of the external memory storing model
PAD_0_address rom 8 B11 O U T

— — parameter : bit 8

T̂ -̂r. ̂ ,, A … 〜TT address of the external memory storing model
PAD—0 address rom 9 A l l O U T , .

— ~ parameter: bit 9

A 。 1。 1。 MT TT address of the external memory storing model
P A D 0 address rom 10 B10 O U T ‘ ,.

“ “ parameter ： bit 10

r w T ^ ^ i i ^ , common address of the two external
P A D 〇 address common 0 A 1 0 O U T , .

- : memories: bit 0

vdd3aUp_08 B 9 IN V D D

^ ,, 1 A n r̂rr common addiess of the two external
P A D 0 address common 1 A 9 O U T . , .

- - — — memories: bit 1
^ 。 r o nirr common address of the two external

P A D 〇 address common 2 C 8 O U T , 。
—— — - memories: bit I

_ _ _ ,, 。 T̂ 。 ^ ^ ^ common address of the two external
PAD_0_address_common_3 B 8 O U T memories: bit 3

_ _ _ ,, , A。 〜 m common address of the two external
PAD_0_address_common_4 A 8 O U T memories: bit 4

PAD_0_int_signal_out_0 B 7 O U T internal block's output: bit 0

gnd3aUp_08 C 7 IN G N D

PAD_0_int_signal_out_l A 7 O U T internal block's output: bit 1

PAD_0_int_signal_out_2 A 6 O U T internal block's output: bit 2

PAD_0_int_signal_out_3 B 6 O U T internal block's output: bit 3

PAD_0_int_signal_out_4 C 6 O U T internal block's output: bit 4

PAD_0_int_signal_out_5 A 5 O U T internal block's output: bit 5

vdd3aUp_09 B 5 IN V ^

PAD_0_int_signal_out_6 A 4 O U T internal block's output: bit 6

P AD_0_int_signal_out_7 B 4 O U T internal block's output: bit 7

PAD_0_result_ack A 3 O U T done signal

PAD_I_clk_s A 2 IN elk for the double-mixture model

PADJ_clk B 3 IN elk for the single-mixture model

select the double-mixture model or the
PAD丄dm_swap | A 1 | IN | single-mixture model

107

Reference

Appendix IV The Testing Board of the IC

、 ' I I II 塵I"ii""讀ii.::iii:ii

隱晒^u

謹疆
'"̂'J''、"' <""路鄉 'V、妒 办路 … 綱‘二 v̂w喊 /

108

EbOiiDhOO

圓圓 llll_lill
saLJBjqi-n >iHnD

