
A Task Allocation Protocol For Real-time 
Financial Data Mining System 

LAM Lui-fuk 

A Thesis Submitted in Partial Fulfilment 

of the Requirements for the Degree of 

Master of Philosophy 

in 

Information Engineering 

The Chinese University of Hong Kong 

July 2003 

The Chinese University of Hong Kong holds the copyright of this thesis. Any 
person(s) intending to use a part or whole of the materials in the thesis in a 
proposed publication must seek copyright release from the Dean of the 
Graduate School 



r f 2 8 腦 m ] | | 
一 U N I V E R S I T Y y M f 



Abstract 

By employing client/server architecture for developing a Real-time Financial 

Data Mining system, we can increase the usability, flexibility，interoperability, 

and scalability of the system when compare with centralized, mainframe, or 

file-sharing computing. To further improve the performance and capacity of the 

Real-time Financial Data Mining system, we can upgrade the hardware of the 

server or enable distributed computing in the system. Enabling distributed 

computing is a promising direction since it facilitates the use of client 

computers (in low CPU usage) as a new computing power of the system. To 

implement such distributed computing system, we need a task allocation 

protocol for allocation of tasks among client computers and servers. 

In this thesis, we wi l l explore the potential of the Contract Net Protocol 

(CNP) [1] [2] as a dynamic task allocation protocol for the Real-time Financial 

Data Mining system by focusing on modifying the CNP to make it most 

suitable for the Real-time Financial Data Mining system. And we wi l l design a 

task allocation method using the modified CNP for the on-line data analysis 

service of the Real-time Financial Data Mining system. 
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摘要 

憑著使用客戶機/伺服器系統結構來開發一個實時財務資料開採系統，我 

們能增加該系統與集中計算、電腦主機計算、或文件分享計算比較時的實 

用性、靈活性、共用，和可測量性。爲進一步改進實時財務資料開採系 

統的表現和容量，我們可以把伺服器的硬體升級或使用分配計算技術。使 

用分配計算是一個有發爲的方向因爲它促進使用客戶電腦在低中央處理器 

用量時作爲系統的計算力量。實施這樣的分配計算系統，我們需要一個 

任務分派協議爲協調任務在客戶電腦和伺服器之中的分派。 

在這份論文，我們將探索合同網協議[1 ] [ 2 ]作爲一個動態任務分派協議 

爲實時財務資料開採系統所使用的潛力’我們將集中討論修改合同網協議 

使它最適當配合實時財務資料開採系統的運用。與此同時我們將爲實時 

財務資料開採系統的網上分析服務設計一個任務分派方法,它將會使用修 

改過的合同網協議作爲分派協議。 
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Chapter 1 

Introduct ion 

1.1 Introduction 

The current stock markets are more competitive and dynamic than ever. With 

the recent advances in the Internet and computer technologies, large amount of 

real-time stock market information can be obtained from the Internet. The 

Internet coupled with the tendency of globalization of world stock markets 

results in the present demand and production of more information accessible in 

a shorter amount of time. Since information is produced in greater quantity and 

more rapidly than it is consumed, the Real-time Financial Data Mining system 

that is capable of using user-designed algorithm to analyze and synthesize 

information in short time has attracted much attention from investors. 

The success of a Real-time Financial Data Mining System is closely 

related to the sophistication and speed of the system, and its ability to analyze 

and synthesize information with simple operations by users. Therefore, a super-

computing machine is required for the system. However, very few clients have 

machines that can meet the requirements of running such a sophisticated system 

at high speed. Accordingly, the number of potential users is restricted. In 

software engineering, client/server architecture is a common approach to deal 

with this problem, in that the server provides the same computing power to 
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analyze and synthesize information at a high speed through network connection 

for all of the clients with different computing competence. Therefore, without a 

super-computing machine, people can still enjoy the super-computing power. 

Client/server architecture also improves usability, flexibility, interoperability, 

and scalability as compared to centralized, mainframe, file-sharing computing. 

On the other hand, however, the PC client software in a client/server 

based financial data mining system is, during most of the time, either 

interacting with user, or waiting for some conditions to trigger the data mining 

action, and the server does most of the computing tasks. Therefore, the PC 

client software wi l l have low CPU usage (or in idle period) for a long period of 

time. Although client's PC cannot run the whole system in high performance 

throughout the whole time, the computing power provided by combining large 

number of clients PC can be even greater than that of a single server. Hence, a 

complete centralized system cannot fully utilize the resources of the system. To 

further improve the performance of the system, we can install distributed 

computing in the system. Enabling distributed computing has a great potential 

since it facilitates the use of client's computers (in low CPU usage) as a 

computing power of the system. Thus, when the number of PC clients increases 

in the system, not only the work loading of the system increases, but the 

computing power (resources) provided by clients also increases accordingly. 

Therefore, a Real-time Financial Data Mining system employing client/server 

architecture integrated with distributed computing is a promising system design. 
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1.2. Motivation and Research Objective 

To enable distributed computing for the real-time financial data mining system, 

we need a task allocation protocol to facilitate tasks allocation among client 

computers and server(s). We decide to explore the potential of the Contract Net 

Protocol (CNP) [1] [2] as an efficient and simple task allocation protocol for the 

real-time financial data mining system. The CNP is modeled on the contracting 

mechanism used by business companies to govern the exchange of goods and 

services. It is designed for multi-agent system and has been widely used in 

multi-agent system. To make CNP possible for our system, we need to do some 

modifications on the protocol, and overcome some limitations of the CNP. 

Therefore, in the following sections we wi l l focus on modifying the CNP to 

make it suitable for the real-time financial data mining system. And we wi l l 

also design a task allocation method using the modified CNP for the on-line 

data analysis service system of the real-time financial data mining system. 

1.3. Organization of the Dissertation 

The remainder of this dissertation is organized as follows. In Chapter two, we 

wi l l introduce the history of Contract Net Protocol and its common usage in 

computer science, the two-tier software architecture, and three-tier software 

architecture. Chapter three wi l l be devoted to an overview of the design goal 

and system architecture advantages of the Real-time Financial Data mining 

system. We wi l l discuss the software architecture of the server and client's 

application in the Real-time Financial Data Mining system, and the necessary 
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components for client's application to enable distributed computing through the 

use of a task allocation protocol in chapter four. The advantages of the software 

architecture wi l l also be introduced. 

Chapter five focuses on the Foundation For Intelligent Physical Agent 

(FIPA) Contract Net Interaction Protocol (IP) [3] -- its strengths and limitations. 

We wi l l discuss the modifications of the FIPA contract net IP to suit our system, 

and its strengths and limitations. Outline the implementation of the Modified 

CNP. 

Chapter six wi l l design a system model enabled by the Modified 

Contract Net Protocol (MCNP) for the on-line data analysis service of the Real-

time Financial Data Mining system. We compare the system capacity increased 

by the new system model with a single-server exponential queueing system 

through performance analysis and simulation. Thus showing a task allocation 

method combine with the task allocation protocol (MCNP) can enable the 

potential benefit of employing distributed computing. 

Finally, chapter seven has the review, contribution and the future work. 
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Chapter 2 

Background Studies 

2.1 The Contract Net Protocol 

The contract net protocol is an interaction protocol for cooperative problem 

solving among artificial intelligence agents [4]. It is modeled on the contracting 

mechanism used by businesses to govern the exchange of goods and services. 

The contract net provides a solution for finding an appropriate agent to work on 

a given task. Figure 2.1 illustrates the basic steps in this protocol. 

In relation to an individual task, each agent may take on one of two roles: 

• Manager 

• Contractor 

From a manager's view, the process is 

1) To call for proposal for a task that needs to be performed 

2) To receive and evaluate bids from contractors 

3) To award a contract to a suitable contractor 

4) To receive and synthesize results. 

From a contractor's view, the process is 

1) To receive call for proposals message 

2) To evaluate my availability to respond 
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3) To respond (decline, bid) 

4) To perform the task i f my bid is accepted 

5) To report the results. 

There is no restriction on the role of agents. Any agent can be manager 

and contractor at the same time for different contracts. This flexibility allows a 

contractor for a specific task to become a manager by soliciting the help of 

other agents in solving parts of that task. Therefore, the agents form a control 

hierarchy of manager-contractor links [4] for task sharing and result synthesis. 

A manager announces the existence of task via a (possible selective) multicast 

Agents evaluate the announcement. Some of these agents submit bids 

The manager awards a contract to the most appropriate agent 

Figure 2.1: The basic steps in the contract net, an important generic protocol interactions among 

cooperative artificial intelligence agents. [4] 
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The manager can seek other contractors to perform the task, i f the 

awarded contractor is unable to provide a satisfactory result. 

The Call for Proposals (CFP) message includes the fields for addressee, 

eligibility specification, task abstraction, and bid specification [4]. The CFP 

message may be sent to one or more potential contractors who may meet the 

criteria of the eligibility specification. The task abstraction is a brief description 

of the task, and may be used by contractors to rank tasks from several CFP 

messages. The bid specification indicates what information must be provided 

with the bid; returned bid specification gives the manager a basis for comparing 

bids among different potential contractors. 

Each potential contractor evaluates CFP messages to determine i f they 

are eligible for offering a bid. Depending on how many external tasks the 

potential contractor wants to handle, it wi l l choose the most attractive tasks 

(based on some criteria) and offer bids to the corresponding managers. 

A manager receives and evaluates bids for each CFP message. Any bid 

that satisfies the basic requirement indicated in the CNP may be accepted. The 

manager notifies the contractor of bid acceptance with an award message. 

A manager may not receive bids i f all potential contractors are busy 

with other tasks, or the potential contractors rank the proposed task below other 

tasks under consideration. Even i f some contractors are idle, they may not be 

capable of working on the task. 
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2.2 Two-tier software architectures 

Two-tier software architectures were developed in the 1980s from the file 

server software architecture design. The two-tier architecture is intended to 

improve usability by supporting a forms-based, user-friendly interface. The 

two-tier architecture improves scalability by accommodating up to 100 users 

(file server architectures only accommodate a dozen users), and improves 

flexibility by allowing data to be shared, usually within a homogeneous 

environment [5]. The two-tier architecture requires minimal operator 

intervention, and is frequently used in non-complex, non-time critical 

information processing systems. Detailed readings on two-tier architectures can 

be found in Schussel and Edelstein [5] [6]. 

Two-tier architectures consist of three components distributed in two 

layers: client (services requester) and server (services provider). The three 

components are User System Interface, Processing Management and Database 

Management. 

In two-tier architecture, the clients assume the responsibility for the 

application logic, while the server assumes the responsibility for data integrity 

checks, query capabilities, data extraction and most of the data intensive tasks, 

including sending the appropriate data to the appropriate clients. SQL is a 

standard language used on the clients to request appropriate subsets of data 

from the server. Data returned from the server to the clients is processed by the 

client software for reporting and business analysis. 
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The development time of two-tier systems is short, and many robust 

tools are available for fast prototyping. 

2.3 Three-tier software architecture 

The three-tier software architecture emerged in the 1990s to overcome the 

limitations of the two-tier architecture. The third-tier (middle tier server) is 

between the user interface (client) and the data management (server) 

components. This middle tier provides process management where business 

logic and rules are executed and can accommodate hundreds of users (as 

compared to only 100 users with the two-tier architecture) by providing 

functions such as queuing, application execution, and database staging. The 

three-tier architecture is used when an effective distributed client/server design 

is needed to provide (when compared to the two-tier) increased performance, 

flexibility, maintainability, reusability, and scalability, while hiding the 

complexity of distributed processing from the user. For detailed information on 

three-tier architectures, see Schussel and Eckerson. Schussel provides a 

graphical history of the evolution of client/server architectures [5] [8]. 

A three-tier distributed client/server architecture (as shown in Figure 2.2) 

includes a user system interface top tier where user services reside. 
Three Tiers 

Ufer System Merfw^ 〈 ^ ^ 〈 ( ) 

Process： lAnooenent 广 “ •/] 广 - ‘ ^ , •• 

^ ^ ~"" “ — — _ — ^— ^ , 

Figure 2.2: Three-tier distributed client/server architecture depiction [7] 
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Systems using this three-tier architecture are often called middleware 

systems. The definition of the term、、middleware" according to Webopedia [9] 

is the following: 

1) Software that connects two otherwise separate applications. For 

example, there are a number of middleware products that link a 

database system to a Web server. This allows users to request data 

from the database using forms displayed on a Web browser, and it 

enables the Web server to return dynamic Web pages based on the 

user's requests and profile. 

2) The term middleware is used to describe separate products that serve 

as the glue between two applications. It is, therefore, distinct from 

import and export features that may be built into one of the 

applications. Middleware is sometimes called plumbing because it 

connects two sides of an application and passes data between them. 

According to Webopedia [9], the most important advantages of the middleware 

approach are the following: 

1) The desire to use open services and protocols. 

2) The wish to re-deploy logic at wi l l and unconstrained by 

infrastructure; this necessitates using open APIs and protocols, 

which are widely supported across most infrastructure products. 

3) The necessity to support cooperating mixed-architecture 

applications. 
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4) The urge to move network and service infrastructure decisions out of 

application space, so that system managers can make infrastructure 

decisions without being hampered by applications that depend on 

proprietary protocols or features. 

Sometimes, the middle tier is divided in two or more units with different 

functions, in these cases the architecture is often referred to as multi layer. This 

is the case, for example, of some Internet applications. These applications 

typically have light clients written in HTML and application servers written in 

C++ or Java, the gap between these two layers is too big to link them together. 

Instead, there is an intermediate layer (web server) implemented in a scripting 

language. This layer receives requests from the Internet clients and generates 

html using the services provided by the business layer. This additional layer 

provides further isolation between the application layout and the application 

logic. 
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Chapter 3 

System Architecture 

3.1 Introduction 

The objectives of our system design are to provide a flexible, comprehensive 

and real-time platform for the investors to carry out stock market analysis. By 

enabling distributed computing, we facilitate the use of client computers (in low 

CPU usage) as a computing power of the system for providing a super-

computing environment for investors to perform complex data analysis. 

Investors can get more information about the market by custom query service, 

standard technical analysis and customer-define technical analysis and the 

financial news analysis. A l l these tools help them to obtain reference materials 

for their investments. Through the application, investors can acquire a more 

thorough understanding of the stock market by the simple and user-friendly 

interface. They can have better prediction of the market and thereby more risk 

control. In other words, they can have a more effective use of their time and 

money. 

3.2 System Architecture Overview 

The System Architecture is basically a three-tier structure. The front layer is the 

client while the middle layer is the Application Servers. The back-end layer 
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contains the database and data sources. Figure 3.1 shows the system 

architecture. 

3.2.1 Client Layer 

This layer is responsible for data presentation. It provides visualized access to 

all system services through user-friendly graphical interface. User running the 

client's application on personal computer wi l l provide part of the on-line data 

analysis functions, which helps us to enable distributed computing for the 

whole system 

3.2.2 Middle Layer 

This layer encapsulates the business logic of the system. The on-line data 

analysis server performs data processing, data analysis and information 

syntheses; the user management server manages system connection security, 

user login verification and registration, and user's profile management; the real-

time data streaming server streams the real-time data to all on-line clients; the 

data management server manages the access to the database that allows clients 

to use standard or user-define query to retrieve data from the database and 

provides real-time data alerting services. Since the middle layer is connected 

directly to the database and data sources, it acts as a bridge for the client to 

access to the valuable data, and also as the platform for client to perform 

complex data analysis. Thus, the system is highly manageable and scalable. 

13 



3.2.3 Back-end Layer 

The database in this layer contains all the data of stocks, such as the real-time 

and historical stock prices, options information, companies information, 

financial news and user profiles. There are data sources in this layer providing 

the real-time stock data to our middle layer, and the real-time data wi l l then be 

stored into our database for future usage. 

Client Layer Middle Layer Back-end Layer 

Real-Time Data f ^ D a t ^ 
Streaming Server ！^ Sources 

Client 0==；：^ ^ Z I Z I I Z Z I I I Z I ： ^ ^ ^ ^ ^ 
Data Management 

Server 

On-line Data 
Analysis Server 

Client 」 

User Management ——〉 

Server Database 

Figure 3.1: System Architecture 

3.3 Advantages of the System Architecture 

3.3.1 Separate the presentation components, business logic and 
data storage 

The three-tier system separates the presentation components, business logic and 

data access into three distinct entities. Our system is suitable for three-tier 
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architecture, as the presentation layer is necessary to be separated for clients to 

gain access to our system in different places using different platforms. The 

business logic and data components are divided up as a client-server application. 

Hence, the number of clients being able to access the database wi l l not be 

restricted by the database specification, though normally there are no more than 

100 users at a time. In three-tier architecture, changing the data sources and 

modifying the database in the back-end layer wi l l not affect the client layer. 

And by using protocol for the communication between the client layer and 

middle layer, upgrading the middle layer server wi l l not affect the client's 

application. 

3.3.2 Provide a central-computing platform for user using 
different computing platforms 

With the recent advances in technologies, people can gain access to the Internet 

via mobile phones and PDA in outdoor places. These electronic devices provide 

good visual presentation, but their computing power is very limited. However, 

with the on-line data analysis server in the middle layer, users using different 

devices can still get the same data analysis services from the server, for the 

clients with more restricted computing platform wi l l only need to forward the 

data analysis requests to the server and present the analysis result to the users. 

3.3.3 Improve system capacity 

By employing the three-tier architecture, the middle layer servers provide 

process management where business logic and rules are executed and can 

accommodate hundreds of users, as opposed to only 100 users with the two-tier 
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architecture, by providing functions such as queuing, application execution, and 

database staging. 

3.3.4 Enable distributed computing 

The client's application for personal computer (PC) is integrated with simple 

data analysis functions and task allocation protocol. Therefore, the PC client's 

application can choose to run data analysis by itself or use the task allocation 

protocol to allocate the data analysis tasks to other PC client's applications (in 

low CPU usage) or the on-line data analysis server, in which the data 

management server provides the necessary data for performing the analysis. 

Thus when a PC client's application gets a large amount of data analysis tasks 

from user within a short time, they can share the tasks with other PC client's 

application and the middle layer server, enabling distributed and parallel 

computing instead of using sequential computing. 
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Chapter 4 

Software Architecture 

4.1 Introduction 

We found the Reusable Environment for Task-Structured Intelligent Networked 

Agents (RETSINA) agent architecture [10] developed by the Software Agents 

Lab at Carnegie Mellon University's Robotics Institute include the planning, 

scheduling and executing modules, which is quite suitable for our system 

software development. Therefore, we use the RETSINA agent architecture to 

develop our software architecture for the Real-time Financial Data Mining 

system. 

4.2 Descriptions of Middle Layer Server Side Software 

Components 

There are four components and two data storages in the middle layer server 

application as shown in figure 4.1. In our system, different kinds of servers 

have the same software components, but with different functions libraries that 

determine the type of the server. The two data storages are Data Cache and 

Functions Library. The four software components are Planner Module, 

Scheduler Module, Execution Module and Communicator [10]. We wi l l give 

detailed descriptions of them in the following sub-sections. 
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Planner Scheduler Execution 
Module Module Module Communicator 

Data Cache Functions Library 

Figure 4.1: Server side software Architecture 

4.2.1 Data Cache 

Data Cache is the local data storage for the server application. It can store the 

task requests from client's applications, active clients list, real-time stock data, 

the search results from the database or the analysis results of the stock market. 

4.2.2 Functions Library 

Functions Library stores the specific primitive functions code for the server that 

determines the type and abilities of the server. For example, the on-line data 

analysis server gets the mathematical computation library for performing data 

analysis function; the user management server gets the security library for 

setting up secret connection between server and clients; the data management 

server gets the database manipulation library for managing the back-end 

database. And the Functions Library contains a task reduction schema [11] [12] 

presenting a way of carrying out a task by specifying a set of sub-tasks/actions 

and describing the information-flow [11] [12] relationships between them. 

4.2.3 Communicator 

The communicator is responsible for managing network communication for 

middle layer servers‘ The communicator wi l l poll for client services requests 
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and back-end database search result, send query for back-end database, and 

return task result to clients asynchronously. The task allocation protocol wi l l be 

embedded in the communicator. 

4.2.4 Planner Module 

The planner module queues the incoming service requests (task) from client's 

applications and plans the way to carry them out. The planning process is based 

on a hierarchical task network (HTN) planning formalism [14] .It takes in the 

server's current tasks and a library of task reduction schemas [11] [12]. A task 

reduction schema presents a way of carrying out a task by specifying a set of 

sub-tasks/actions and describing the information-flow relationships between 

them. That is, the reduction may specify that the result of one sub-task (e.g. 

query return) be provided as an input to another sub-task (e.g. sending a result). 

Actions may require that certain information be provided before they can be 

executed, and may also produce information upon execution. 

4.2.5 Scheduler module 

The scheduling process takes as input the server's current tasks structures, and 

the set of all primitive actions, and decides which primitive action to be 

executed next. The scheduler attempts to maximize some predefined utility 

function [13] defined on the set of task structures. For all servers, we use a very 

simple notion of utility—every action needs to be executed in order to achieve a 

task, and every task has an equal utility value. And we use first come first serve 

scheduling in our system. 
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4.2.6 Execution Module 

The execution module takes in the server's next intended action (task) and 

prepares, monitors, and completes its execution. The execution module prepares 

an action for execution by setting up parameters (including the results of 

previous actions (tasks) etc.) for the action [13]. Then it performs the action 

execution. 
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Figure 4.2: Control and data flow inside server 

4.3 Overview the Execution of Service Request inside 

Server 

Service request {SK) come from clients are received by the communicator of 

server, and are stored in the data cache. The planner module of the server inputs 

the SR and the function libraries, and then uses the task reduction schema to 
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find a way for carrying out the SR by transforming the SR into hierarchical task 

network. Then the scheduler module inputs the task structure and schedules the 

execution of tasks. The execution module takes in the scheduled task and 

performs the execution and monitoring. In the task execution, server may first 

send query messages to back-end database for query data, then perform some 

computation, and finally return SR's results to client through the communicator. 

Figure 4.2 shows the control and data flow of task execution inside server. 

4.4 Descriptions of Client layer Software Components 

There are two software architectures for client's application. Figure 4.3 shows 

the software architecture of client's application that can run in all graphical 

computing platforms, and figure 4.4 shows the client software architecture 

specific for operating in personal computer platform. 

The first architecture has two data storages, Data Cache and Functions 

Library. It also has two components, the Graphical User Interface and the 

Communicator. They provide basic functions such as user input, data 

presentation and network connection for clients. That is suitable for all 

graphical computing platforms. 

The second architecture provides on-line data analysis functions by 

integrating the planner module, scheduler module, execution module and data 

analysis function libraries to the client's application. So, the second architecture 

is suitable for personal computer platform with considerable computing power. 

With the data analysis library, the system can enable distributed data analysis: 

when a client's application gets a data analysis goal, it can share the tasks of 
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archiving the data analysis goal to other client's application and server (that has 

the data analysis ability). We can execute tasks in parallel, so the time to 

complete the goal can be reduced. To enable distributed computing, we also 

need to integrate a task allocation protocol to the communicator in the client's 

application. 

Detailed description of the Graphical User Interface is presented in next 

section, and the description of remaining components can be found in previous 

sections. 

Graphical User Interface 

Communicator 

Functions 
Library Data Cache 

Figure 4.3: Simple client software architecture for all platforms 

Graphical User Interface 

Planner Scheduler Execution 
Module Module Module Communicator 

Data Cache Functions Library 
Figure 4.4: Advanced client software architecture specific for personal computer platform 

4.4.1 Graphical User Interface 

The graphical user interface is responsible for getting user input, data 

presentation such as chart plotting, and forwarding user's service requests to 

communicator or local computing module. 
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Figure 4.5: Control and data flow inside client's application 

4.5 Overview of Task Execution in Advanced Client's 

Application 

Service request (SR) come from user through interacting with graphical user 

interface (GUI). It then passes to queue inside the planner module or passes to 

communicator (for forwarding to server) depending on the type of the SR. The 

planner module input the SR and the function library, and then uses the task 

reduction schema to find a way for carrying out the SR by transforming SR into 

hierarchical task network. The scheduler module then inputs the task structure 

and schedules the execution of tasks. The execution module takes in the 

scheduled task and performs the execution and monitoring. In the task 

execution, client may first send query messages to middle layer server for query 
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data, then perform required computation (or forward the task to server and other 

advanced client's application), finally it may return SR,s results to GUI, and the 

GUI wi l l present the result to user. Figure 4.5 shows the control and data f low 

of task execution inside client's application. 

4.6 The possible usages of task allocation protocol 

We wi l l discuss the possible usages of task allocation protocol in our system, 

and we wi l l concentrate on the interaction between advanced client's 

applications, data management server and on-line data analysis server. As the 

advanced client's application gets the function library to perform data analysis, 

and as it can plan, schedule and execute some tasks by itself, it is possible for it 

to share the task to other client's application that has the same abilities. 

Therefore, distributed computing is possible. 

The main purpose of distributed computing for our system is to make a 

path for client's application in a busy period to allocate tasks to other client's 

applications (in low CPU usage), and to facilitate the use of client computers (in 

low CPU usage) as a computing power of the system. Therefore, while 

upgrading system hardware can reduce the tasks completion time, developing 

an efficient task allocation method can help too. Thus, our distributed 

computing concept attempts to gather client's computing power for improving 

system capacity, performance and stability. And the task allocation method wi l l 

determine how much the system can improve. 
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4.6.1 Chart Drawing 

Stock Chart is the basic and widely used method to present the past and current 

stock prices. User can know about the past and current stock price quickly by 

looking at the chart. The chart presents not only stock prices but also pattern of 

the prices. The stock chart can show the technical analysis results as well. 

When user goes off-line, the on-going stock price wi l l be missing in client's 

application. When user goes on-line again, i f he wants to view stock chart, the 

client's application needs to request the data management server to retrieve the 

missing data so that to have a continuous chart. 

I f every advanced client's application caching real-time stock data for a 

fix period, the data missing within this period can also be retrieved from on-line 

client's applications. Hence, when client's application wants to retrieve the 

missing data, it can use the task allocation protocol to help it in allocating the 

data retrieval task to server or other clients according to their current loading or 

other information. Thus a simple data caching can help in share the task loading 

of the data management server. 

4.6.2 Compute user-defined technical analysis indicator 

To compute user-defined technical analysis indicator, the amount of data for 

computing is one of the most important factors in determining the time for the 

computation. With task allocation protocol, it is possible to compute user-

defined technical analysis indicator on a large data set by dividing the large data 

set into a number of smaller data sets, and then distribute one data set to one 
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client's application, enable parallel computing, in order to reduce the time for 

the indicator computation. 

4.6.3 Unbalance loading 

Different people may be interested in different area of the stock markets. For 

example, people may be interested in the company that he has invested or he 

may be interested in a specific commercial sector. So, sometime when the price 

of a specific company or sector in stock market reaches a critical point, it may 

trigger the group of clients who are interested with it to perform data mining 

actions in order to find out the future investment direction. In this situation, a 

group of clients busy with the data mining actions, while the remaining clients 

may be waiting on their interested sectors of the markets to change and doing 

nothing. Hence, clients in busy period sharing the tasks loading to other 

relatively low loading clients, can help to reduce the average task completion 

time, and utilize the system resources. 

4.6.4 Large number of small data mining V.S. small number of large data 
mining 

When we got large number of small data mining tasks at the same time, allocate 

the tasks to a number of client's application, executing them at the same time, 

may reduce the time to complete all the tasks when compare to execute those 

tasks sequentially in a single server. When we got a small number of large and 

undividable data mining tasks, allocate the tasks to a single server, we can 

benefit from using the advance computing power provide by the server. So, a 
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dynamic task allocation protocol would be needed to perform a flexible task 

allocation by client's application. 

4.7 Summary 

From the above discussion, we know that with the advanced client software 

architecture plus a dynamic task allocation protocol, there is a possible way 

where we can benefit from enabling parallel, distributed computing and tasks 

I sharing amount client's application and middle layer servers. But there is also 

an important assumption to make the benefit possible, which is client's 

applications need to be in low tasks loading on time average. I f client's 

applications often in busy status, then they can provide a relatively less time for 

helping other clients applications to perform tasks execution or data mining 

actions. A dynamic task allocation protocol is preferred instead of a static one, 

because client's applications may go on-line and off-line in an unpredictable 

way, so static task allocation is not possible. 
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Chapter 5 

The Contract Net Protocol for Task 
Allocation 

5.1 Introduction 

We have introduced the origin Contract Net Protocol (CNP) [1] [2] in section 

one of chapter 2. In this chapter we wi l l introduce the Foundation For 

Intelligent Physical Agent (FIPA) Contract Net Interaction Protocol (IP) [3] that 

is a minor modification version of the original contract net protocol. Our 

Modified Contract Net Protocol (MCNP) is developed base on the FIPA 

contract net IP. In this chapter, we wi l l have a detail look into the operating 

mechanisms of the FIPA contract net IP, and state its strengths and weakness 

for task allocation. As we know, the origin CNP and the FIPA contract net IP 

are designed for artificial intelligence agents, so we wi l l also explore the 

necessary modifications on the FIPA contract net IP to make it suitable for our 

system (a client/server architecture software system). 

5.2 The FIPA Contract Net Interaction Protocol 

5.2.1 Introduction to the FIPA Contract Net Interaction Protocol 

The FIPA Contract Net Interaction Protocol (IP) is a minor modification of the 

original contract net IP pattern in that it adds proposal rejection and 

confirmation communicative acts [3]. In the contract net IP, we view agents 
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who wishes to have some task performed by other agents as managers, and by 

allocating the task to other agents, the manager wishes to optimize a function 

that characterizes the task. This characteristic is commonly expressed as the 

price, in some domain specific way, but could also be soonest time to 

completion, fair distribution of tasks, etc [3]. Figure 5.1 show the U M L 

interaction diagram for the FIPA contract net interaction protocol. 

By sending a call for proposals (CFP) message, the manager solicits 

other agents to perform task. The call for proposals message specifies the task, 

the conditions that the manager is placing upon the execution of the task and the 

specification on the returned bid. The potential contractors should able to 

generate proposal and perform the task. After receiving CFP message, the 

potential contractor follows the bid specification to f i l l in the required 

information for biding the task, which may be the price, time when the task wi l l 

be done, etc. Alternatively, the contractor may refuse to propose. Once the 

deadline passes, the manager evaluates any received bids and selects agents to 

perform the task; one, several or no agents may be chosen. The manager wi l l 

send award messages to the potential contractors, informing them with accept-

proposal or reject-proposal. Once the contractors have sent the proposals, they 

need to commit the execution of the task i f the manager accepts the bid. The 

contractor wi l l send the task execution result to the manager immediately after 

the task completion. 
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Figure 5.1: FIPA Contract Net Interaction Protocol [14] 

5.2.2 Strengths of the FIPA Contract Net Interaction Protocol for our 
system 

1) The protocol is simple; it's only need three messages to allocate a task, they 

are the call for proposals message, biding message, and awarding message. 

2) The protocol is dynamic and decentralized, as manager make his own choice 

in allocating task according to the information provided in the biding message. 

Contractors can dynamically jo in or leave the system to provide services for 

manager before he has make any commitment to any task. In our system, clients 
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may act as contractors to provide on-line data analysis services for clients, and 

clients may go on-line and off-line dynamically according to their habits; hence 

the dynamic and decentralized properties of the protocol are required properties 

for the usage in our system. 

3) The FIPA contract net IP provide the framework for contracting while the 

decision method of contract awarding, selection of potential contractors, bid 

specification and task abstraction are left for user to design, this give a great 

flexibility for system to choose it's own way of contracting in order to achieve 

its specifications. Therefore, users could use different strategies in allocating 

tasks at different time, different environment and different situation. 

4) The roles of agents are not specified in advance. Any agent can act as a 

manager by making task announcements; any agent can act as a contractor by 

responding to call for proposal message. This flexibility allows for further task 

decomposition: a contractor for a specific task may act as a manager by 

soliciting the help of other agents in solving parts of that task. The resulting 

manager-contractor links form a control hierarchy for task sharing and result 

synthesis. 

5) The FIPA contract net IP requires the manager to know when it has received 

all replies. In the case that a contractor fails to reply with bid indicating either 

propose or refuse to propose, the manager may potentially be left waiting 

indefinitely. To guard against this, the call for proposal includes a deadline [3] 

by which replies should be received by the manager. Bids received after the 
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deadline are automatically rejected with the given reason that the proposal was 

late. 

7) While waiting for a task to be completed, a manager may take on the role of 

a contractor for another contract, rather than remaining idle. 

5.2.3 Weakness of the FIPA Contractor Net Interaction Protocol for our 
system 

1) The specification of the protocol are based on agent language and platform, 

it's difficult to use in our client/server architecture system. 

2) The start of bids evaluation in manager side is fixed to be after the biding 

deadline. This is less flexible than i f the manager can start the bids evaluation 

before the biding deadline, because some task allocation need not to receive all 

bids before manager can make the task allocation decision, and manager can 

start evaluate the received bids while waiting for biding deadline, thus the bids 

evaluation may complete earlier. 

3) The contractor biding message doesn't contain the field to indicate the valid 

time of the biding message, which force the contractor to allocate resource for 

the bid after the biding message has been sent out no matter when the manager 

make the award reply. It's not flexible for the contractor who may concern 

about the resources that has been allocated for performing the task indicated in 

the call for proposals message. The contractor may potentially allocate the 

resources forever i f the awarding message has lost in unreliable network 

transfer, and the biding message wi l l store in the protocol message queue 
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forever. It is an important stability concern for our client's applications, as they 

wi l l act as contractors in our system. 

4) The contractor is under no obligation to send confirmation message when it 

receive the awarding message, so the manger wi l l never know his awarding 

message hasn't been received by the contractor because it's lost in the 

unreliable network transfer or the contractor application has crashed. Thus the 

manager may not get the task completion result forever. For our system, the 

task completion is more important than whether the contractor can get the right 

to perform the task, so without the award confirmation message wi l l create a 

great problem to our system. 

6) This protocol was designed for distributing one task among a number of 

contractors, its may not perform well for distributing a number of task among a 

number of contractors. 

5.3 The Modified Contract Net Protocol 

1) We introduce the field for specifying starting time of bids evaluation in the 

call for proposals (CFP) message, which allow manager to set the time for start 

of bids evaluation earlier than the biding deadline. Figure 5.2 shows the only 

possible time sequence diagram of the FIPA contract net IP where the start of 

bids evaluation time is the same as the biding deadline. 

By setting the start of bids evaluation equal to the biding deadline, our 

MCNP include the same time sequence as the FIPA contractor net IP. 
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Figure 5.2: The time sequence diagram of the FIPA contract net IP 

Figure 5.3 shows a possible time sequence diagram for the MCNP，in 

which the start of bids evaluation is in-between the CFP sent time and the 

biding deadline. So the manager can start evaluating the received bid(s) before 

biding deadline, and hence before the biding deadline has come, he may has 

already completed evaluating part of the received bid(s) and continuous the 

remaining part after the biding deadline, thus the protocol delay may probably 

reduced. And the manager can also award a bid before the biding deadline has 

come i f he received and evaluated a bid that satisfied his requirement(s). 

Biding time ^ 
Bid(s) evaluation time 

• £ r ^ 

CFP sent time The start of bid(s) Biding deadline 
evaluation 

Figure 5.3: The time sequence diagram of the modified CNP 
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Figure 5.4 shows another possible time sequence diagram of the MCNP， 

where the start of bids evaluation is just after the CFP message has sent. Hence 

the manager wi l l start bids evaluation just after he has received the first bid, and 

manager may able to give the award to the first received bid without waiting for 

receiving all bid(s) until the deadline has come. It is also possible to evaluate 

the received bid(s) while waiting other incoming bid(s). 

The ability to set the starting time of bids evaluation is very flexible for 

our client's application, where it can choose different approach to start the bids 

evaluating process according to its requirement and the current system 

environment. 

Biding time ^ 

Bid(s) evaluation time ^ 

• A 

CFP sent time and the Biding deadline 
start of bid(s) evaluation 

Figure 5.4: The time sequence diagram of the modified CNP 

2) We add the field for specifying the valid time of the bid message inside the 

bid message, which prevent the bid message storing in the protocol message 

queue forever (as the CNP process haven't complete, we need to store the 

related information for referencing and processing in later state of the CNP) and 

prevent the contractor allocate resources for the biding content forever i f the 

manager awarding message has lost in the unreliable network transfer. This 
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addition is very important for our middle layer servers, as the middle layer 

servers able to do any tasks offered by client's application, so these servers are 

potential contractors for all client's applications in any time, hence these servers 

wi l l receive a large amount of CFP messages and making a lots of bids (as its 

only responsibility is to serve client's applications), so even only 0.001% of the 

award messages wi l l loss in network transfer, but the number of bids wi l l store 

in server side due to the lost of award messages wi l l increase rapidly as time go 

by. The performance of the contract net protocol wi l l degraded rapidly, the 

memory used for storing those biding information wi l l increase rapidly, and the 

whole server system may crash easily due to using up the memory in storing 

those biding information. I f the server application did constantly keep looking 

at the status of those bids and make decision to remove those biding 

information by itself after some time, the work loading of server wi l l increase a 

lots. 

3) According to T. Knabe [15], we add award confirmation message for the 

contractor who received award message with accept-proposal to reply the 

manager whether he refuse or accept the task. The award confirmation message 

has two usages: firstly, the manager who received the confirmation message can 

sure the contractor has received the award message. I f the manager didn't 

receive the confirmation message after some time, he can decide to award the 

task to other contractor or restart the contracting process, hence the manager 

won't get any problem due the lost of award message in the unreliable network 

transfer. Secondly, for client's application using the MCNP, user can restricting 
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a maximum number of task offer acceptance at the same time, once the number 

of external tasks inside the local tasks queue has reach the maximum number 

allowed by the restriction, the task award wi l l be rejected. With the above 

restriction, client's application wi l l not suffer from accepting a large number of 

tasks i l l short time due to the abnormal behavior of other client's applications. 

By adding the confirmation state, we put the task commitment [16] at a later 

time, which is in the confirmation state not in the biding state when compare 

with the FIPA contract net IP. Putting the task commitment at a later time has 

advantage for contractor who decided to restrict the number of task acceptance. 

It is because i f contractor need to commit the task acceptance in the biding 

stage, then he cannot bids more than the maximum number of task that he can 

accept at a time because all his bids may be accepted by managers and he need 

to commit all the bids even this situation happen in very low probability (as the 

number of competing contractors may be very large). So, once the contractor 

bids have reached the maximum number of task acceptance, contractor needs to 

refuse other incoming CFP, and at the final, contractor may received task award 

less than the maximum number allowed, thus the resources given by contractor 

may not be able to fully utilize in most of the time. Hence, by delaying the task 

commitment in the confirmation state, the contractor can make bid to all CFP, 

and the confirmation state wi l l restrict the number of tasks accepted. So, the 

resources given by contractor wi l l have a better utilization. We assume our 

client's applications are cooperative contractors, they wi l l not reject task award 
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i f they haven't reach their resources limitation. Figure 5.5 show the U M L 

interaction diagram for the MCNP with the award confirmation state. 
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Figure 5.5: MCNP UML interaction diagram 

4) We add the award confirmation deadline in the award message, so that the 

MCNP can inform the manager to decide awarding the task to other contractor 

or restart the contracting process i f the manager didn't get any confirmation 

message before the confirmation deadline. This addition set a time out time for 

manager to waiting the confirmation message. By setting a relative long 

confirmation deadline can reduce the number of unnecessary restart of 

contracting process due to network transfer delay. How long the confirmation 
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deadline is needed wi l l depend on the real-time network environment, and it 

wi l l leave for MCNP user to determine. 

5.4 The Implementation of the Modified Contract Net 

Protocol 

We use the object-oriented programming language C++ to implement the 

MCNP on the Linux and UNIX platform, and using the User Datagram 

Protocol (UDP) for message communication. Using UDP for message 

communication gives us no limitation on the number of connections exists at 

the same time. We observe that MCNP actually is a finite state machine, so we 

develop the MCNP class to manipulate the states transition of the protocol 

process, and we develop the CNPUser class to act as an interface class for 

MCNP class to callback and inform the MCNP user for handling different 

protocol messages and status. For user who want to use the MCNP, he need to 

create a class base on CNPUser class, and implement the callback functions 

base on the CNPUser class interface for handling different protocol messages 

and status in his own way (for example, he wi l l need to implement the function 

to make his way on handling the call for proposals message i f he want to be a 

contractor). Figure 5.6 show how the user can connect MCNP class through the 

CNPUser class interfacing. 

MCNP I 

c las^CNPUser User 
V class program 

Figure 5.6: The connection diagram for user program, CNPUser class and MCNP class. 
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Figure 5.7: The control flow and interactions o f the M C N P class and CNPUser class. 

Figure 5.7 show the control flow and interactions of the MCNP class 

and CNPUser class. First, the CNPUser class passes the call for proposals (CFP) 

message to the MCNP class local message queue (LMQ), which informs the 

MCNP class to process the LMQ. In processing the message in the LMQ, the 

MCNP class creates a session for the CFP message, then it go to process the 

sessions in the current MCNP class, i f the session need the CNPUser class to 

handle some received message or change of status, the MCNP wil l callback the 

CNPUser class functions, and pass the necessary information for the CNPUser 

class to process. After CNPUser class has handled the callback, it returns 

instructions to the MCNP class for further processing on the session. Then it 

goes to process one message from the external message queue (EMQ) that 

stores the message received from network. By processing the EMQ, received 

messages may be attach to it related sessions, or it wi l l initiate the MCNP class 
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to process it related session. After process one message in the EMQ, the MCNP 

class wi l l go back to process the LMQ, thus the whole control flow go back to 

the beginning and restarted. It is important to note that in each processing cycle, 

the MCNP class wi l l only process one message from LMQ and one message 

from EMQ in order prevent blocking the process on a single message queue for 

very long time i f there are a large number of messages pump into the queue in a 

short time. 
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Figure 5.8: State transition diagram of MCNP in manager side actions. 

From figure 5.8 we could know the state transition of the MCNP class 

and the CNPUser class for manager making task allocation. Manager uses the 

CNPUser class interface to control the contract net process operated by the 

MCNP class. Now, let us look into the state transition for manager making a 

task allocation. 

1) The manger first activate the CNPUser object to Manager Actions state 

and make the call for proposal (CFP) action, then the CFP message wi l l 

pass to the MCNP object and store in the MCNP object local message 
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queue (LMQ), then the MCNP object wi l l informed to have message in 

the LMQ. So, it wi l l read in the message from the LMQ, after classified 

the message as CFP message, the MCNP object wi l l create a new 

manager session and the new manager session wi l l go to the CFP state, 

it，will store a copy of the CFP message for future referencing and then 

sent it to the potential contractors as indicated in the CFP message. Then 

the manager session wi l l go to the (2) Waiting Bids state to wait and 

store the incoming bids message. 

2) 111 Waiting Bids state, the MCNP object wi l l idle this session, and go to 

handle incoming message (from local program or external network) or 

handle other MCNP sessions. The MCNP object wi l l activate this 

manager session once the time for start of bids evaluation has come, and 

the following two case happen: 

Case 1: i f no bid received and the biding deadline has passed, the 

manager session wi l l inform manager about the situation through the 

CNPUser object, and CNPUser object wi l l go to Manager Actions state 

to execute manager decision to restart the task allocation process or 

cancel the task allocation. 

Case 2: i f no bid received but the biding deadline hasn't pass, the 

manager session wi l l stay in the Waiting Bids state and it wi l l idle by 

the MCNP object. 
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a. Once a bid received before deadline, the MCNP object wi l l pass 

the bid to the CNPUser object, and the CNPUser object wi l l go 

to Manager Action state. 

i) Firstly, i f the manager needs time to evaluate the bid, it 

wi l l return No Award Yet to the manager session, thus 

release the manager session to (2) Waiting Bids state 

ii) Secondly, i f the manager complete the bid evaluation, but 

wi l l not accept the bid, it wi l l return No Award Yet to the 

manager session, thus release the manager session to (2) 

Waiting Bids state. I f the manager accepts the bid, it wi l l 

pass an award message to the manager session, and the 

process wi l l go to (3) Award Bid state. 

b. When biding deadline has passed, the MCNP object wi l l go back 

to the manager session and inform the manager, then the 

CNPUser object wi l l go to Manager Action state. 

i) I f the bid evaluation process has completed with no award, 

the manager wi l l need decide restart the task allocation 

process (1) or cancel the task allocation. 

ii) I f the bid evaluation process has completed with award, the 

manager wi l l pass the award message to the manager 

session, and the manager session wi l l go to the (3) Award 

Bid state. 
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i i i) I f the bid evaluation process hasn't completed, the manager 

wi l l return No Award Yet to the manager session, and the 

manager session wi l l go to the (3) Award Bid state to wait 

for award. 

3) In Award Bid state, i f the manager session didn't get the award message, 

it wi l l stay in Award Bid state, wait for the manager to give the award or 

terminate the session. At this time the MCNP object wi l l idle this 

session to handle other process, once the manager pass the award to the 

LMQ, the MCNP object wi l l be informed to activate the manager 

session, it wi l l sent the message to the awarded contractor, and then the 

manager session wi l l go to (4) Waiting Confirm state. 

4) In Waiting Confirm state, the manager session wi l l wait for the 

contractor confirmation message and hence it wi l l idle by the MCNP 

object again. I f the confirmation message didn't receive before 

confirmation deadline, the MCNP object wi l l activate the manager 

session to inform the manager, then the CNPUser object wi l l go to 

Manager Action state to execute the manager decision on whether give 

the award to other contractor (manager session go back to (3) Award 

Bid state), restart or terminate the contracting process. I f the 

confirmation message is received before confirmation deadline, the 

MCNP object wi l l activate the manager session to inform the manager, 

and the whole task allocating process in manager side has completed. 
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Figure 5.9: State transition diagram of MCNP in contractor side actions 

From figure 5.9 we could know the state transition of the MCNP class 

and the CNPUser class for contractor waiting task allocation. Contractor uses 

the CNPUser class interface to control the contract net process operated by the 

MCNP class. Now, let us look into the state transition for contractor waiting 

task allocation. 

1) The MCNP object after receiving CFP for network, it wi l l create a 

contractor session and the contractor session wi l l go to Waiting CFP 

state, then it pass the CFP to contractor through CNPUser object, and 

the CNPUser object wi l l go to the Contractor Action state. I f contractor 

doesn't want to bid, the CNPUser object wi l l return No Bid to the 

MCNP object, and the MCNP object wi l l delete the contractor session. 

I f contractor bid, the CNPUser object wi l l pass the proposal to the 

MCNP object, the contractor session wi l l go to Biding state. 

2) In Biding state, the MCNP object wi l l sends the bid message to the 

manager and then the contractor session wi l l go to Waiting Award state. 
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3) In Waiting Award state, the MCNP object wi l l idle the contractor 

session and go to handle other messages or sessions. I f no award 

received before the bid valid time has passed, the MCNP object wi l l 

activate the contractor session and inform the situation to the contractor, 

and then the contract session wi l l delete. I f the MCNP object receive 

award message before the bid valid time has passed, it wi l l activate the 

contractor and pass the award message to the contractor, then the 

CNPUser object wi l l go to Contractor Action state to execute contractor 

decision on whether confirmation the award ( i f the award indicate the 

bid is accepted) or terminate the contractor session ( i f the award 

indicate the bid is rejected). I f contractor confirm the award, the 

CNPUser object wi l l return the confirmation message, otherwise it w i l l 

return the instruction of terminating the contractor session to the MCNP 

object. 

4) I f the MCNP object gets the termination instruction, the contractor 

session wi l l be deleted. I f it gets the confirmation message, the 

contractor session wi l l go to Confirm state, and it wi l l send the 

confirmation message to the manager. After the confirmation message 

has sent out, the contractor session wi l l be deleted and the whole task 

allocation process in the contractor side has completed. 

5.5 Summary 

In the implementation, the MCNP class is run on a different thread from the 

CNPUser class and the user program. I f user program wi l l not block on the 
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MCNP callback, the bid evaluation process can keep ongoing while the MCNP 

keep receiving incoming messages and instructions in the same time. Also, with 

the above design and implementation of the MCNP control flow, it's able to 

handle multiple contracting sessions and send out multiple CFP without waiting 

the contracting process to complete before starting a new one. By using UDP 

for network communication, the number of contracting process wil l not 

restricted by the number of connections can be make at the same time, the 

communication channel is centralized for a much more easy control. And the 

award confirmation message ensures the contractor received the award. 
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Chapter 6 

A Client as Server Model using MCNP for 
Task Allocation 

6.1 Introduction 

We wi l l design a Client AS Server (CASS) system model enabled by the 

Modified Contract Net Protocol (MCNP) for the on-line data analysis service of 

the Real-time Financial Data Mining system. We compare the system capacity 

increased by the new system model with a single-server exponential queueing 

system (M/M/1) through performance analysis and simulation. Thus showing a 

task allocation method combine with the task allocation protocol (MCNP) can 

enable the potential benefit of employing distributed computing. 

6.2 The CASS System Model 

In our CASS system model, we assume: 

• The system only contain clients using personal computer with 

advance client's application, therefore every client's application can 

handle the task i f it got the corresponding library to perform it. 

• A l l complex tasks have reduced into primitive tasks before starting 

the task allocation process i f not specify externally, that mean tasks 

go into allocation process could map directly into each functions 

library. 
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I l l the CASS system model, there is an on-line data analysis server in the 

middle layer to provide services for all clients. We group the commonly used 

functions of the on-line data analysis server into 5 libraries, which are 

price/volume analysis library，fundamental and risk analysis library \ pattern 

matching library, technical indicators analysis library and financial news 

analysis library. Then we give one library to one client's application, and five 

client's applications with distinct library can group together to act like an on-

line data analysis server to provide those commonly used functions to each 

other inside the group as show in figure 6.1. 

Libraries 

I ； Server 

H f 

z"—、、、、 
Z 一 � � � / 撤 碰 � � � C l i e n t 

/ • • \ / 鄉 嘟 、 \ 
Five distinct 、 丨 、 丨 
libraries 、口 \ 、 @ / 

、、、口 乂 、、\ 零 乂 、—- 、、、 — 

Figure 6.1 ： Five client's applications with distinct library can group together to act like 
a server 

Hence, in our CASS system model, there is an on-line data analysis 

server in the middle layer serving all clients and at the same time every five 

client's applications group together in client layer, acting like the server to 

serve each other inside the group. Figure 6.2 shows the CASS system model, 

‘Fundamental analysis includes the analysis of economic environment, the stock market trend, 

business sectors, company financial information, etc. 
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where client's application can send its service request to the on-line data 

analysis server or other clients in the same group to get the requested services. 

Client Layer Middle Layer Back-end Layer 

Service ； •； 

request 

Client ;> j i 广 \ 
_ ^ On-line Data C 乂 

Service A n O - l V S i S ^ Database and 
request � ^ ^ data source 

4 service S c r V C r 
^ 1 request 

Client ;> i 

Figure 6.2: The CASS system model 

Because clients can get services from client's applications and server, 

we decided to develop a task allocation method combine with MCNP for 

balancing the task loading among client's applications and server, such that 

average services response time (queueing time plus servicing time) of server 

and client's applications are the same. Which means all tasks wi l l treat fairly in 

the system. The task allocation method wi l l use the MCNP to gather tasks 

loading information in the CASS system in real-time environment. 

Here, we describe the general idea of the task allocation process. For a 

new primitive task generated by a client's application (manager), the manager 

wi l l first classify which functions library is needed to perform the task, i f the 

manager has that functions library, it wi l l use the MCNP to send a call for 

proposals (CFP) message to the on-line data analysis server, and the on-line 

data analysis server wi l l return it services rate and the current CFP arrival rate 

(that is the maximum possible task arrival rate) received by the server, then the 

50 



manager wi l l base on the these information with its current task loading and 

services rate to decide the probability of allocating the task to the server or 

perform the task by itself, then generate the task allocation result according to 

that probability and award the task. I f the manager doesn't have the functions 

library to perform the task, it's wi l l send a CFP to a client's application that it 

known has the ability to perform the task and a CFP to the on-line data analysis 

server. And by gathering the CFP arrival rate and services rate of that client's 

application and the server, the manager calculate the probability of allocating 

the task to the server or to that client's application, then generate the task 

allocation result according to that probability, and award the task by using the 

MCNP. 

6.3 The analytical model of the CASS system 
Task 

〇 

p i -p 

〇 〇 

Server Client 

Figure 6.3: Task, allocation among client's application and server 

Figure 6.3 shows the generic view of task allocation among client's application 

and server in the CASS system model. A task generated in the CASS system 

wi l l allocate between a client's application and the server. The task wi l l allocate 
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to the server with probability P and allocate to a client's application with 

probability 1-P, where this probability is determine by the services rate and the 

CFP arrival rate of the server and the client's application in order to archive 

load balancing between client's application and server. The server in figure 6.3 

is the on-line data analysis server, while the client in figure 6.3 could be the 

client's application that generate the above task or other client's applications in 

the network that has the ability to perform the task execution. 

In order to find out the probability P for archiving load balancing with 

the criteria of getting the same average services response time for client's 

applications and server in the CASS system, we need to get the tasks arrival 

rate that are allocating between server and a client's application. In our CASS 

system, we assume: 

1. Client's applications are identical and independent in generating 

tasks arrival, 

2. The inter-arrival time of tasks generate by each client's 

application are exponential distributed with rate equal X, 

3. Tasks generate by each client's application are equally 

distributed on the five functions libraries, i.e. 1/5 of tasks arrival 

wi l l use the price/volume analysis library, 1/5 of tasks arrival 

wi l l use the pattern match library, and so on. 

Thus, for each client's application, 1/5 of the tasks arrival can allocate 

among itself and the server (as show in figure 6.4) and the remaining 4/5 of the 
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tasks arrival can allocated among other client's applications (inside its group) 

and the server (as show in figure 6.5). 

Client A 

1 

/ \ 
Server D J ^ ^ Client A 

Figure 6.4: Each client's application generates tasks arrival rate of X., with 1/5 tasks arrival can 
allocate between itself and the server. 

Client A 

m 
4/5 z 

^ ^ ^ Client B 

4 / 5 B ^ y X ^ 、 ^ ^ Client C 

_ 纖 麟 C - D 

Server 

Figure 6.5: The remaining 4/5 tasks arrival will allocate between the server and other client's 
applications 

Accordingly, inside a group of five client's applications (each with 

distinct functions library), the total task arrival wi l l use the price/volume 

analysis library with rate X, the total task arrival wi l l use the pattern matching 
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library with rate X, and so on. Therefore, each client's application wi l l see a task 

arrival rate of X that is allocating between itself and server as show in figure 6.6. 

Client A Client B Client C Client D Client E 

職 琴 _ 驊 膽 
\、、\ ； \ 1/5 / \ 1/5 /I / ； 

z 、、、、 \ / lo 〜/ 1/5 ；. 
、、 \ * / ; 、、、 、 \ / 

、， � \ 、 '' z \、 、、 •、 / z 、 、、 》 / 
�� � _ / z 

� � � “ “ ' ' ’ 

/I 
，r 

Server y J Client A 

Figure 6.6: Task arrival rate allocate between a client and a server. 

For the CASS system contains Â  (A^ is a multiple of 5) client's 

applications, we assume each of the client's application generates tasks with 

exponential distributed inter-arrival time and with rate equal to A, hence there 

are N task streams each generating tasks with rate X. The tasks generated in the 

N task streams wi l l allocate among the server and the N client's applications, 

each client's application wi l l seen one task stream and the server wi l l seen all 

the N task streams as show in figure 6.7. 

We further assume: 

• A l l client's applications and server has queue with infinite 

queue length to queue the incoming tasks for processing, 
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• Each client's application with services rate equal to 

server with services rate jUs. 

From this analytical model, we want to find out the probability P which 

wi l l balance the task loading between server and client's application according 

to the criteria: such that the average services response time of server and all 

client's applications are the same, so that all tasks wi l l serve fairly no matter 

they are allocate to server or client's applications. 

N/c 

〇 〇 〇 

Seiner Client i ..... Cl ientN 

Figure 6.7: The analytical model of the CASS system. 

6.4 Performance Analysis of the CASS System 

In order to satisfy the load balancing criteria, we equate the average services 

response time of the server (Js) with the client's application (T。) to find out the 

server's task allocating probability P. 

The average services response time of server is: 

丄 

T = ^ ( f , n 
、.一 1 Pcm + kN入 、叫 

1 
/fv 
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Where /̂、. is server's services rate, T、is the server average services 

response time, N is the numbers of clients, X is the arrival rate generated by 

each client's application, kis the percentage of tasks produced by each client's 

application that only allocate to server and a = l-k . We add factor k into the 

equation as even five client's applications group together, they are not exactly 

ensemble all functions as server has, and sometime i f the number of clients in 

the system are not the multiple of five, some of the client's group wi l l have 

fewer than five clients, and so some of the tasks may only process in the server. 

Also, due to every client inside the system can go on-line and off-line randomly, 

we assume every group of client's applications wi l l have some of the time that 

do not have five client's applications inside the group, therefore k is measured 

in time average by the server according to the information given in the 

contracting process. As we assume all clients are the same which mean the 

factor k is applicable to all clients in the system. I f clients in the system go on-

line and off-line frequently, the k wi l l become quite large, so we may make a 

group contains 10 client's application together, with 2 client's application for 

each functions library, and the percentage of tasks produced by each client's 

application that must executed by server can reduce. But certainly we need to 

collect information after the CASS system has been build up to determine the 

suitable group size for the system. For simplicity, we wi l l use group size of 5 in 

following discussion. 

The average service response time of client's application is: 
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丄 

1 

Where T̂  is client's average service response time and jli^. is client's 

services rate. Other symbols are the same as the pervious definition. 

We set Ts = Tc to find out the probability P, 

1 1 
=> = (6.3) 

=> / / , — jLic - kNX + aX = PaNX + PaX 

^ p = + ( 6 . 4 ) 

We note that equation (6.4) only valid for a> 0, that mean it's only 

valid for there exists some of the tasks that can allocate to the client's 

applications. I f all tasks must process in server, then the system become M/M/1 

system, and equation (6.4) wi l l be useless. 

F o r O < P < 1, 

/ / , -Mc cc-kN . J / z 、 一 a - k N , 
=> — + > 0 and — ~ + <1 

{N + \)aX {N + \)a {N+ \)a?i {N 

=> //、. - - kNk > 0 and "、. -jii^+aX - kNA <(N + l)aA 

=> / / � . - +aA> kNX and //、. - < NX 

//�.-/". .. - + aX ,, r � 
=> — — < N < — ~ — (6.5) 

A kA 

Let's look at equation (6.5), assume X is fixed and |j-s-|ac > 0. When N 

increase from zero to P =1, therefore all tasks wi l l allocate to the 
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server as the average services response time of server (Z；) is smaller than the 

average servicing time of client's application (l/|ac). While N increase from 

(|.is-)ac)/?i to 入)/kX, 0 < P < 1, and tasks wil l allocate between server 

and client's applications according to P as Ts is larger than the average 

servicing time of client's application. For N larger than P=0, 

no task wi l l allocate to server because by receiving the kNX arrival of tasks (that 

must process by server) has already make the average services response time of 

server (l/(|.is-kN^)) larger than the average services response time of the client's 

applications (l/(|ac-oc人)).In the following discussion, we assume equation (6.5) 

is satisfied and so 0 < < 1. 

a-kN 
Let's look at in equation (6.4). For simplicity, we first assume 

{N + \)a 

a = l and ^=0, then it become \/{N+\). This term means we first divide the task 

allocation probability by (A^+1) as there are N client's applications and one 

server, then how much more or less the probability of task wi l l allocate to 

server depend on the term ~ ^ ^ ^ in equation (6.4), where ~ ^ ^ ^ 
{N + \)aX 4 + 

determine how much the servicing rate provided by the server is superior to the 

client's applications in the CASS system. For a decrease from 1 and k increase 

a-kN 
from 0， wi l l decrease, which means tasks allocated to server wi l l 

(N + \)a 

have smaller probability. Because when a decrease from 1 and k increase from 

0, tasks can be only executed by server increased, and hence server has already 
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receive some tasks, therefore the tasks that can allocate between server and 

client's applications should allocated to server with a smaller probability. 

il — n 
Let's look at — from equation (6.4), we find probability P 

(N + l)aA 

depend on how much the server can execute tasks faster than client's 

application i f the server can execute tasks much faster than client's 

application is large), then the probability P increase. This is reasonable as 

this means server can execute more tasks than client's application within the 

same amount of time. 

However, probability P decreases as the total task arrival rate can be 

performed by client's applications [(A^+l)aX,] increase. The total tasks arrival 

rate can be performed by client's applications increase with the increase of the 

number of client's applications in the system {N+\), the tasks arrival rate 

generate by each client's application (X) and the percentage of tasks can 

perform by clients application (a). With the number of client's applications 

increased in the system (increase of 7V+1), the computing power provided by the 

client's applications increase, therefore probability P decrease and hence more 

tasks allocate to client's applications is reasonable. With the increase of tasks 

arrival rate can be performed by each client's application (increase of aX), 7； 

wil l increase and at some point it wi l l reach 7；, and so decrease the probability 

P can balance 7； with T�otherwise the Ts wi l l become larger than Tc, and thus 

tasks allocate to server wi l l perform poor than those allocate to client's 

applications in the sense of having longer services response time. 
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Now we want to find out the services response time of the CASS system 

for 0 < P < 1. 

Substitute equation (6.4) into equation (6.1), 

T= ！ 

I (Â  + 1) J 

T�= 
( / / , - jlQN + oNX - kN^X + kN'-X + kNX 

“、 (Â  + 1) 

^ T= 1 
".、 nV\ 

：^ T � = ~ ^ ^ (6.6) 
JU�HjLle-X)N 

From equation (6.6), we see that when the number of client's 

applications in the system and the task arrival rate generated by each client's 

application increase, the average services response time of the system wi l l 

increase (7), and i f the services rate of the server or client's application increase, 

then T decrease. Also, we observe that i f and X are fixed and (//c-A) > 0, T^ 

wil l approach and bounded by a limit as N approach infinity for b=Q. 

For 一 A > 0 and k= 0, when N —�,the average services response 

time of the system is: 

Tn 书 ( 6 . 7 ) 
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I f > 0, when n increase, P — Q, equation (6.3) must satisfy the 

following conditions: 

/ / � . - kNA, > 0 and 1 < ——！ 
//,. - kNA - aA 

^ ; V < 4 a n d A A《凡从 . +仅义 (6.8) 

kA kX �乂 

Condition (6.8) imply i f k >0, for , the system 

kX 

services response time wi l l bound by (6.7) with fixed //c and A, i f N larger than 

(|as-|̂ c+ocA.)/kA,, equation (6.3) wi l l not satisfy, and hence the probability 

equation in (6.4) wi l l be useless. And the services response time of server wi l l 

larger than client's applications as mention in pervious discussion. 

We define N,„ax as the maximum number of clients that can be serve by 

the CASS system, where N ^ = min{ ^ , “ 、 } for -义 > • . I f 
kX kZ 

» aX-iic, then N,„ax = — . When compare N„,ax with the maximum number of 
kX 

clients that can be served by M/M/1 system ( — ) , we observe that the system 

capacity of CASS system is Mk times larger than that of M/M/1 system. 

Therefore i f the percentage of tasks must be executed by server is small, then 

the capacity of CASS system is much larger than that of M/M/1 system because 

most of the tasks can be executed by client's applications in CASS system, 

hence when the amount of tasks increase with the number of clients in the 

system, it's wi l l allocate more tasks to client's applications, keeping the server 
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from over loading. For 一；I < 0, the average services response time of the 

system wil l approach infinity as N increase. 

I f - A < 0 and k > Q, when n increase, P — Q, equation (6.6) and 

(6.3) must satisfy the following conditions: 

/ / � - (//,, -A)N>0 and ^ < -
// , - kNA - aA 

=> and (6 9) 
^-jLi, kZ 

Equation (6.9) is quit similar with (6.8), which show the maximum 

number of clients can be support by the CASS system for jLi^.- A <0. 

N,nax = min{ ,凡 -从 . +仅A } , for I f » aX-i^, 
A - kX 

— ~ + 仅义 is approximately equal — , hence N,„ax = min{ ~ , — }. So, 
kX A-jLi^ kX 

the system capacity of CASS is min { - ~ , Mk) times of the M/M/1 system. 
义一 

Therefore, the CASS system wi l l have a larger system capacity than M/M/1 

system, as some of the tasks can be performed by client's applications. 

6.5 Performance Simulation 

We have developed a testbed system with simulation server and client using the 

MCNP for task allocation in UNIX operating system. We assume: 

• The tasks inter-arrival time generated by each client is exponential 

distributed, 

62 



• The services rate of simulation server and client are exponential 

distributed. 

In the first simulation, we wi l l compare the performance of CASS system with 

M/M/1 system for /./^ - A, >0 as the number of clients in the system increase. 

And then we wi l l compare the performance of CASS system with M/M/1 

system for - A <0 as the number of clients in the system increase. 

We have used up to 11 machines connected by a 100 MBS Ethernet 

network to perform the simulation, one machine for server and ten machines for 

clients. In the simulation, when a client logon in the system, it wi l l search the 

active clients list inside the server to find a client group to join. We use group 

size of 5, and we assume no client wi l l logoff during simulation. For simplicity, 

we assume tasks that must execute in server are only generated when there are 

not enough clients in the system to form client group with size of 5. Other tasks 

wi l l allocate between a client and server by the MCNP, the server's bid wi l l 

contain it's services rate, the percentage of tasks that only allocated to itself and 

the average CFP arrival rate seen by itself; the bids send by contractor client 

wi l l contain it's services rate and the average tasks arrival rate seen by itself. 

The manager client uses these information and equation (6.4) to find out the 

probability for task allocation, and then generate the task allocation result 

according to that probability. And we assume tasks are equally distributed on 

the 5 different functions libraries. 

In the first simulation - /I > 0, the simulation client's services rate is 

3.5 tasks per second; the tasks arrival generated by each simulation client is 1.0 
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task per second. The simulation server's services rate is 10.0 tasks per second. 

Table 6-1 show the percentage of total tasks that must executed by server with 

different number of clients in the CASS system. This factor k is not applicable 
I 

to all clients, as clients wi l l not go off-line in our simulation, hence the forming 

of groups are fixed, and only those clients in the group with size smaller than 

five wi l l generate that must executed by server. Thus induce the estimated 

probability P in different clients wi l l be different, which cause small variation 

i l l the average services response time of clients. But when N increases, k wi l l 

decrease, and the variation of average service response time of client wi l l also 

decrease. 
~N n p n n p p p p p no 
A- (%) ^ M 40 ^ 0 133 m fs O 0 

"n rn |~12 ["13 pM rn n6 n? ns n? r̂ o 
k (%) Tl 10 ^ 51 0 5 7 ^ 42 0 

Table 6-1: Percentage of tasks {k) that must executed by server with different number of clients in the 
CASS system 
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Figure 6.8: The analytical and simulation result of the average services response time (in micro-
second) with different number of clients in the CASS system for 
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In figure 6.8 the line with circle show the simulation result of the system 

average services response time (in micro-second) vs. the number of clients in 

the system for 从. -A > 0. It is according to our analysis result (the line with 

cross). 

Since bids evaluation can only start after receiving all bids, so we start 

bids evaluation after biding deadline. We give 20 msec for contractors to bid. 

The average protocol delay of MCNP is about 23 msec in the simulation. And 

about 0.8% of the contracting process needs to restart due to cannot receive all 

bids before biding deadline has come. For N< 7, P=\ in most of the time. For N 

> 7, the average services response time of each client is about ±20 msec 

different from the average services response time of the server. This is due to 

the factor k in the simulation are not applicable to all clients as some fixed 

clients cannot form a group of five clients, hence only these clients wi l l 

generate tasks that must process by server and their average service response 

time wi l l be smaller. 

Comparing figure 6.8 with figure 6.9，it show our CASS system can 

support at least one time more clients than M/M/1 system with the same 

server's services rate in the simulation. As we doesn't have and actually value 

on the factor k in true life, we could not get the exact number that the CASS 

system can support in this setting. For less than 20 clients, the average services 

response time of our CASS system is bounded below 400 msec, but it has 

reaches 500 msec for 8 clients in the M/M/1 system. 
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Figure 6.9: The average services response time (in micro-second) with different number of clients 
in the M/M/1 system. 

I l l the second simulation - Jl < 0 ’ the simulation client's services 

rate is 0.5 tasks per second; the task arrival generated by each simulation client 

is 1.0 task per second. The simulation server's services rate is 10.0 tasks per 

second. 

I l l figure 6.10 the line with circle show the simulation result of the 

average services response time (in micro-second) vs. number of clients in the 

system for 从.—A < 0 . It is according to our analysis result (the line with cross). 
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Figure 6.11: The average services response time with different number of clients in 
the M/M/1 system. 

Comparing figure 6.10 with figure 6.11, it show our CASS system can 

support more clients than M/M/1 system with the same server's services rate in 

the simulation. But the system services response time is not bounded in this 
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case. And for this setting the CASS system can support up to 19 clients, while 

the M/M/1 system can only support 9 clients. 

6.6 An Extension of the Load-Balancing Algorithm for 
Non-Uniform Client's Service Time Distribution 

To extend the load-balancing algorithm for non-uniform client's service time 

distribution, we can simply equate the average service response time of the 

server with a client's application { ! , ) to find out the server's task allocating 

probability Pr specific for that client's application, as long as other assumptions 

defined in pervious section are valid. And, due to all clients' application wi l l 

equate their average service response time with the one of the central server, 

thus the central server is the center point to link up the average service response 

of all clients' application. Therefore, all clients' application and the server wi l l 

have the same average service response time as expected. 

Now, the average services response time of server is: 

丄 

T - ^ (6.10) 

".V 

We observed that equation (6.10) is different from equation (6.1), because each 

client's application has it's own task allocating probability Pi. For i = 1,2,..., N. 

The average service response time of client's application r is: 

丄 

(6.11) 
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Where jUr is the servicing rate of client r. 

We set Ts = 7； to find out the probability P,‘， 

1 1 A' 
=> = Where G = Y P. 

=> - Mr ~ G,.cU — kNX + = IP^aX 

吟巧—la (6.12) 

As the central server and each client's application can measure the incoming 

task arrival rate in real-time, therefore we could find out G” in real-time easily. 

Hence, we could use equation (6.12) to find out the task allocation probability 

of each client's application for the system with non-uniform client's service 

time distribution. 

6.7 Summary 

‘ We have design a Client AS Server (CASS) system model enabled by the 

Modified Contract Net Protocol (MCNP) for the on-line data analysis service of 

the Real-time Financial Data Mining system in this chapter. The task allocation 

process is simple, as a task wi l l only allocate between two contractors. The 

CASS system capacity is or Mk times of the M/M/1 system for server's 

services rate: //‘？» od-jUc, where |j,c is the services rate of client's application, X 

is the tasks arrival rate generated by each client, and k is the percentage of tasks 

that must execute in server. Thus showing a task allocation method combine 

with the task allocation protocol (MCNP) can enable the potential benefit of 
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employing distributed computing. The CASS system certainly showing the 

power of dynamic task allocation: when there are few clients in the system, 

most tasks wi l l allocated to server to get a fast execution, but when the number 

of clients in the system increased, allocate some tasks to clients for execution 

wi l l better than allocating all tasks to the server. And we have design a extend 

algorithm for non-uniform client's service time distribution. I f tasks are not 

equally distributed on the five function libraries or the task arrival rate 

generated by each client's application is different, we wi l l need to make an 

extended load-balancing algorithm for these changes using the same way as we 

did in section 6.6 to meet the load-balancing criteria. But we would expect that 

we could not find the system capacity using the extended load-balancing 

algorithm. Also, from the CASS system we cannot show the power of parallel 

processing for increasing the speed of executing a number of tasks, as our 

implementation of Real-time Financial Data Mining system haven't complete, 

thus we don't have real tasks structure to design a model for parallel processing. 
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Chapter 7 

Conclusion and Future Work 

7.1 Conclusion 

The success of a Real-time Financial Data Mining system wi l l depend on the 

sophistication and speed of the system, and its ability to analyze and synthesize 

information with simple operations by users. Therefore, a super-computing 

machine is required for the system, but very few clients have machines that can 

meet the requirements of running such a sophisticated system at high speed. By 

employing client/server architecture, providing a supercomputing machine in 

the server-side, clients with different computing competence can enjoy the 

sophisticated system. But due to computing process is highly centralized in the 

server-side, clients computing power wi l l be wasted. Therefore, we modify the 

contract net protocol and design a task allocation method to enable distributed 

computing for tapping the computing power of idle client's PCs in the system. 

In this thesis we have outline the system and software architecture for 

the Real-time Financial Data Mining system. With the design of the system and 

software architecture plus a dynamic task allocation protocol, it is possible to 

get benefit from tapping the computing power of idle client's PCs in system and 

turning them into a "poor man's supercomputer," reducing the time it takes to 

do calculations and simulations for financial forecasting. But there is also an 
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important assumption to make the benefit possible, which is client's 

applications need to be in low tasks loading on time average. I f client's 

applications often in busy status, then they can provide a relatively less time for 

helping other clients applications to perform tasks execution or data mining 

actions. A dynamic task allocation protocol is preferred instead of a static one, 

because client's applications may go on-line and off-line in an unpredictable 

way, and thus static task allocation is not possible in our system. 

Then we have explored the potential of the Contract Net Protocol (CNP) 

as a dynamic task allocation protocol. We observe that CNP is a simple, 

dynamic and decentralize task allocation protocol. The CNP provide a flexible 

framework for task allocation. We base on the FIPA contract net Interaction 

Protocol (IP) to develop our Modified Contract Net Protocol (MCNP). We 

introduce the starting time of bid(s) evaluation in the call for proposal (CFP) 

message, which allow manager to set the time for start of bid(s) evaluation 

earlier than the bidding deadline. And we add the valid time of the bid message 

inside the bid message, which prevent the bid message storing in the protocol 

message queue forever. Finally, according to T. Knabe [15], we add the award 

confirmation message ensures the contractor received the award and delay the 

time of contract commitment. Through our design and implementation of the 

MCNP, it's able to handle multiple contracting sessions and send out multiple 

CFPs without waiting a contracting process to complete before starting another 

one. 
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Further more, we have design a MCNP enabled Client As Server (CASS) 

system model. It is shifting the task computing between clients and server 

according to the real-time task loading information. The CASS system tapping 

the computing power of client's PCs in system and turning them to work with 

the middle layer server, increasing the system capacity when compare with 

using single-server queueing (M/M/1) system. We have show the CASS system 

/I 
capacity is or Mk times of the M/M/1 system for server's services rate-

jLis » ctX-jUc, where }.ic is the services rate of client's application, X is the tasks 

arrival rate generated by each client, and k is the percentage of tasks that must 

execute in server. And the simulation result of the CASS system certainly 

showing the power of dynamic task allocation: when there are few clients in the 

system, most tasks wi l l allocated to server to get a fast execution, but when the 

number of clients in the system increased, allocate some tasks to clients for 

execution wi l l better than allocating all tasks to the server. Thus showing a task 

allocation method combine with the task allocation protocol (MCNP) can 

enable the potential benefit of employing distributed computing. 

7.2 Future Work 

We have introduced a statistical task allocation method enabled by MCNP in 

chapter 6. But certainly we need a new task allocation method using the MCNP 

to make parallel computing possible in the Real-time Financial Data Mining 

system, in order to show the power of tapping the computing power of idle 
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client's PCs in the system and turning them into a "poor man's supercomputer," 

reducing the time it takes to do calculations and simulations for financial 

forecasting. And the continuous of the implementation of the Real-time 

Financial Data Mining system wi l l benefit in giving a concrete system and task 

structure for the development of the task allocation method for parallel 

computing. 
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