
A Task Allocation Protocol For Real-time
Financial Data Mining System

LAM Lui-fuk

A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of

Master of Philosophy

in

Information Engineering

The Chinese University of Hong Kong

July 2003

The Chinese University of Hong Kong holds the copyright of this thesis. Any
person(s) intending to use a part or whole of the materials in the thesis in a
proposed publication must seek copyright release from the Dean of the
Graduate School

r f 2 8 腦 m] | |
一 U N I V E R S I T Y y M f

Abstract

By employing client/server architecture for developing a Real-time Financial

Data Mining system, we can increase the usability, flexibility，interoperability,

and scalability of the system when compare with centralized, mainframe, or

file-sharing computing. To further improve the performance and capacity of the

Real-time Financial Data Mining system, we can upgrade the hardware of the

server or enable distributed computing in the system. Enabling distributed

computing is a promising direction since it facilitates the use of client

computers (in low CPU usage) as a new computing power of the system. To

implement such distributed computing system, we need a task allocation

protocol for allocation of tasks among client computers and servers.

In this thesis, we wi l l explore the potential of the Contract Net Protocol

(CNP) [1] [2] as a dynamic task allocation protocol for the Real-time Financial

Data Mining system by focusing on modifying the CNP to make it most

suitable for the Real-time Financial Data Mining system. And we wi l l design a

task allocation method using the modified CNP for the on-line data analysis

service of the Real-time Financial Data Mining system.

i

摘要

憑著使用客戶機/伺服器系統結構來開發一個實時財務資料開採系統，我

們能增加該系統與集中計算、電腦主機計算、或文件分享計算比較時的實

用性、靈活性、共用，和可測量性。爲進一步改進實時財務資料開採系

統的表現和容量，我們可以把伺服器的硬體升級或使用分配計算技術。使

用分配計算是一個有發爲的方向因爲它促進使用客戶電腦在低中央處理器

用量時作爲系統的計算力量。實施這樣的分配計算系統，我們需要一個

任務分派協議爲協調任務在客戶電腦和伺服器之中的分派。

在這份論文，我們將探索合同網協議[1] [2]作爲一個動態任務分派協議

爲實時財務資料開採系統所使用的潛力’我們將集中討論修改合同網協議

使它最適當配合實時財務資料開採系統的運用。與此同時我們將爲實時

財務資料開採系統的網上分析服務設計一個任務分派方法,它將會使用修

改過的合同網協議作爲分派協議。

ii

Acknowledgement

I would like to express my sincere gratitude to my supervisor, Professor Tony

T. Lee for his continuous support, feasible research guidance and directions on

this research. This thesis is completed with his professional advice on technical

contents and thesis writing. I would also like to express my thanks to Professor

Jack Y.B. Lee for his invaluable advice in designing the system architecture.

I would also like to thank all the members in broadband lab in department of

Information Engineering: Mr. Wong Tse Chung and Mr. L i Chi Ming for their

comments and continuous discussion on my research work. Mr. Y. Deng, Mr.

S.W. Mui, Mr. W.H. Man, Mr. M.T. Choy and Mr. L. Zhang for their various

kinds of help during these two years.

Finally, I am grateful to my family and my friends for their morally supporting

throughout all these years.

iii

Table of Contents

ABSTRACT I

臓 II

ACKNOWLEDGEMENT Ill

TABLE OF CONTENTS IV

LIST OF FIGURES VIII

LIST OF ABBREVIATIONS X

CHAPTER 1 1

INTRODUCTION 1

1.1 Introduction 1

1 • 2. Motivation and Research Objective 3

1.3. Organization of the Dissertation 3

CHAPTER 2 5

BACKGROUND STUDIES 5

2.1 The Contract Net Protocol 5

2.2 Two-tier software architectures 8

2.3 Three-tier software architecture 9

CHAPTER 3 12

SYSTEM ARCHITECTURE 12

iv

3.1 Introduction 12

3.2 System Architecture Overview 12

3.2.1 Client Layer 13

3.2.2 Middle Layer 13

3.2.3 Back-end Layer 14

3.3 Advantages of the System Architecture 14

3.3.1 Separate the presentation components, business logic and data

storage 14

3.3.2 Provide a central-computing platform for user using different

computing platforms 15

3.3.3 Improve system capacity 15

3.3.4 Enable distributed computing 16

CHAPTER 4 17

SOFTWARE ARCHITECTURE 17

4.1 Introduction 17

4.2 Descriptions of Middle Layer Server Side Software Components 17

4.2.1 Data Cache 18

4.2.2 Functions Library 18

4.2.3 Communicator 18

4.2.4 Planner Module 19

4.2.5 Scheduler module 19

4.2.6 Execution Module 20

4.3 Overview the Execution of Service Request inside Server 20

V

4.4 Descriptions of Client layer Software Components 21

4.4.1 Graphical User Interface 22

4.5 Overview of Task Execution in Advanced Client 's Application 23

4.6 The possible usages of task allocation protocol 24

4.6.1 Chart Drawing 25

4.6.2 Compute user-defined technical analysis indicator 25

4.6.3 Unbalance loading 26

4.6.4 Large number of small data mining V.S. small number of large

data mining 26

4.7 Summary. 27

CHAPTER 5 28

THE CONTRACT NET PROTOCOL FOR TASK ALLOCATION 28

5.1 Introduction 28

5.2 The FIPA Contract Net Interaction Protocol 28

5.2.1 Introduction to the FIPA Contract Net Interaction Protocol 28

5.2.2 Strengths of the FIPA Contract Net Interaction Protocol for our

system 30

5.2.3 Weakness of the FIPA Contractor Net Interaction Protocol for our

system 32

5.3 The Modified Contract Net Protocol 33

5.4 The Implementation of the Modified Contract Net Protocol 39

5.5 Summary 46

vi

CHAPTER 6 48

A CLIENT AS SERVER MODEL USING MCNP FOR TASK

ALLOCATION 48

6.1 Introduction 48

6.2 The CASS System Model 48

6.3 The analytical model of the CASS system 51

6.4 Performance Analysis of the CASS System 55

6.5 Performance Simulation 62

6.6 An Extension of the Load-Balancing Algorithm for Non-Uniform

Client 's Service Time Distribution 68

6.7 Summary 69

CHAPTER 7 71

CONCLUSION AND FUTURE WORK 71

7.1 Conclusion 71

7.2 Future Work 73

BIBLIOGRAPHY 75

vii

List of Figures

Figure 2.1: The basic steps in the contract net. 6

Figure 2.2: Three-tier distributed client/server architecture depiction 10

Figure 3.1: System Architecture 14

Figure 4.1: Server side software Architecture 18

Figure 4.2: Control and data f low inside server 20

Figure 4.3: Simple client software architecture for all platforms 22

Figure 4.4: Advanced client software architecture specific for personal

computer platform 22

Figure 4.5: Control and data f low inside client's application 23

Figure 5.1: FIPA Contract Net Interaction Protocol 30

Figure 5.2: The time sequence diagram of the FIPA contract net IP 34

Figure 5.3: The time sequence diagram of the modified CNP 34

Figure 5.4: The time sequence diagram of the modified CNP 35

Figure 5.5: MCNP U M L interaction diagram 38

Figure 5.6: The connection diagram for user program, CNPUser class and

MCNP class 39

Figure 5.7: The control f low and interactions of the MCNP class and

CNPUser class 40

Figure 5.8: State transition diagram of MCNP in manager side actions . 41

Figure 5.9: State transition diagram of MCNP in contractor side actions 45

viii

Figure 6.1: Five client's applications with distinct library can group together

to act like a server 49

Figure 6.2: The CASS system model 50

Figure 6.3: Task allocation among client's application and server 51

Figure 6.4: Each client's application generates tasks arrival rate of X 53

Figure 6.5: The remaining 4/5 tasks arrival wi l l allocate between the server

and other client's applications 54

Figure 6.6: Task arrival rate allocate between a client and a server 54

Figure 6.7: The analytical model of the CASS system 55

Figure 6.8: The analytical and simulation result of the average services

response time (in micro-second) with different number of

clients in the CASS system for 入>0 64

Figure 6.9: The average services response time (in micro-second) with

different number of clients in the M/M/1 system 66

Figure 6.10: The analytical and simulation result of the average services

response time with different number of clients in the CASS

system for îc-AxO 67

Figure 6.11: The average services response time with different number of

clients in the M/M/1 system 67

ix

List of Abbreviations

CPU : Central Processing Unit

CNP : Contract Net Protocol

PC : Personal Computer

MCNP : Modified Contract Net Protocol

FIPA : The Foundation For Intelligent Physical Agent

CFP : Call For Proposals

HTML : Hyper Text Mark Up Language

PDA : Personal Digital Assistant

RETSINA : The Reusable Environment for Task-Structured

Intelligent Networked Agents Architecture

HTN : Hierarchical Task Network

SR : Services Request

GUI : Graphical User Interface

UDP : User Datagram Protocol

U M L ： Unified Modeling Language

LMQ : Local Message Queue

EMQ : External Message Queue

CASS : Client AS Server

M/M/1 : Single Server Exponential Queuing System

MBS : Mega Bits per Second

X

Chapter 1

Introduct ion

1.1 Introduction

The current stock markets are more competitive and dynamic than ever. With

the recent advances in the Internet and computer technologies, large amount of

real-time stock market information can be obtained from the Internet. The

Internet coupled with the tendency of globalization of world stock markets

results in the present demand and production of more information accessible in

a shorter amount of time. Since information is produced in greater quantity and

more rapidly than it is consumed, the Real-time Financial Data Mining system

that is capable of using user-designed algorithm to analyze and synthesize

information in short time has attracted much attention from investors.

The success of a Real-time Financial Data Mining System is closely

related to the sophistication and speed of the system, and its ability to analyze

and synthesize information with simple operations by users. Therefore, a super-

computing machine is required for the system. However, very few clients have

machines that can meet the requirements of running such a sophisticated system

at high speed. Accordingly, the number of potential users is restricted. In

software engineering, client/server architecture is a common approach to deal

with this problem, in that the server provides the same computing power to

1

analyze and synthesize information at a high speed through network connection

for all of the clients with different computing competence. Therefore, without a

super-computing machine, people can still enjoy the super-computing power.

Client/server architecture also improves usability, flexibility, interoperability,

and scalability as compared to centralized, mainframe, file-sharing computing.

On the other hand, however, the PC client software in a client/server

based financial data mining system is, during most of the time, either

interacting with user, or waiting for some conditions to trigger the data mining

action, and the server does most of the computing tasks. Therefore, the PC

client software wi l l have low CPU usage (or in idle period) for a long period of

time. Although client's PC cannot run the whole system in high performance

throughout the whole time, the computing power provided by combining large

number of clients PC can be even greater than that of a single server. Hence, a

complete centralized system cannot fully utilize the resources of the system. To

further improve the performance of the system, we can install distributed

computing in the system. Enabling distributed computing has a great potential

since it facilitates the use of client's computers (in low CPU usage) as a

computing power of the system. Thus, when the number of PC clients increases

in the system, not only the work loading of the system increases, but the

computing power (resources) provided by clients also increases accordingly.

Therefore, a Real-time Financial Data Mining system employing client/server

architecture integrated with distributed computing is a promising system design.

2

1.2. Motivation and Research Objective

To enable distributed computing for the real-time financial data mining system,

we need a task allocation protocol to facilitate tasks allocation among client

computers and server(s). We decide to explore the potential of the Contract Net

Protocol (CNP) [1] [2] as an efficient and simple task allocation protocol for the

real-time financial data mining system. The CNP is modeled on the contracting

mechanism used by business companies to govern the exchange of goods and

services. It is designed for multi-agent system and has been widely used in

multi-agent system. To make CNP possible for our system, we need to do some

modifications on the protocol, and overcome some limitations of the CNP.

Therefore, in the following sections we wi l l focus on modifying the CNP to

make it suitable for the real-time financial data mining system. And we wi l l

also design a task allocation method using the modified CNP for the on-line

data analysis service system of the real-time financial data mining system.

1.3. Organization of the Dissertation

The remainder of this dissertation is organized as follows. In Chapter two, we

wi l l introduce the history of Contract Net Protocol and its common usage in

computer science, the two-tier software architecture, and three-tier software

architecture. Chapter three wi l l be devoted to an overview of the design goal

and system architecture advantages of the Real-time Financial Data mining

system. We wi l l discuss the software architecture of the server and client's

application in the Real-time Financial Data Mining system, and the necessary

3

components for client's application to enable distributed computing through the

use of a task allocation protocol in chapter four. The advantages of the software

architecture wi l l also be introduced.

Chapter five focuses on the Foundation For Intelligent Physical Agent

(FIPA) Contract Net Interaction Protocol (IP) [3] -- its strengths and limitations.

We wi l l discuss the modifications of the FIPA contract net IP to suit our system,

and its strengths and limitations. Outline the implementation of the Modified

CNP.

Chapter six wi l l design a system model enabled by the Modified

Contract Net Protocol (MCNP) for the on-line data analysis service of the Real-

time Financial Data Mining system. We compare the system capacity increased

by the new system model with a single-server exponential queueing system

through performance analysis and simulation. Thus showing a task allocation

method combine with the task allocation protocol (MCNP) can enable the

potential benefit of employing distributed computing.

Finally, chapter seven has the review, contribution and the future work.

4

Chapter 2

Background Studies

2.1 The Contract Net Protocol

The contract net protocol is an interaction protocol for cooperative problem

solving among artificial intelligence agents [4]. It is modeled on the contracting

mechanism used by businesses to govern the exchange of goods and services.

The contract net provides a solution for finding an appropriate agent to work on

a given task. Figure 2.1 illustrates the basic steps in this protocol.

In relation to an individual task, each agent may take on one of two roles:

• Manager

• Contractor

From a manager's view, the process is

1) To call for proposal for a task that needs to be performed

2) To receive and evaluate bids from contractors

3) To award a contract to a suitable contractor

4) To receive and synthesize results.

From a contractor's view, the process is

1) To receive call for proposals message

2) To evaluate my availability to respond

5

3) To respond (decline, bid)

4) To perform the task i f my bid is accepted

5) To report the results.

There is no restriction on the role of agents. Any agent can be manager

and contractor at the same time for different contracts. This flexibility allows a

contractor for a specific task to become a manager by soliciting the help of

other agents in solving parts of that task. Therefore, the agents form a control

hierarchy of manager-contractor links [4] for task sharing and result synthesis.

A manager announces the existence of task via a (possible selective) multicast

Agents evaluate the announcement. Some of these agents submit bids

The manager awards a contract to the most appropriate agent

Figure 2.1: The basic steps in the contract net, an important generic protocol interactions among

cooperative artificial intelligence agents. [4]

6

The manager can seek other contractors to perform the task, i f the

awarded contractor is unable to provide a satisfactory result.

The Call for Proposals (CFP) message includes the fields for addressee,

eligibility specification, task abstraction, and bid specification [4]. The CFP

message may be sent to one or more potential contractors who may meet the

criteria of the eligibility specification. The task abstraction is a brief description

of the task, and may be used by contractors to rank tasks from several CFP

messages. The bid specification indicates what information must be provided

with the bid; returned bid specification gives the manager a basis for comparing

bids among different potential contractors.

Each potential contractor evaluates CFP messages to determine i f they

are eligible for offering a bid. Depending on how many external tasks the

potential contractor wants to handle, it wi l l choose the most attractive tasks

(based on some criteria) and offer bids to the corresponding managers.

A manager receives and evaluates bids for each CFP message. Any bid

that satisfies the basic requirement indicated in the CNP may be accepted. The

manager notifies the contractor of bid acceptance with an award message.

A manager may not receive bids i f all potential contractors are busy

with other tasks, or the potential contractors rank the proposed task below other

tasks under consideration. Even i f some contractors are idle, they may not be

capable of working on the task.

7

2.2 Two-tier software architectures

Two-tier software architectures were developed in the 1980s from the file

server software architecture design. The two-tier architecture is intended to

improve usability by supporting a forms-based, user-friendly interface. The

two-tier architecture improves scalability by accommodating up to 100 users

(file server architectures only accommodate a dozen users), and improves

flexibility by allowing data to be shared, usually within a homogeneous

environment [5]. The two-tier architecture requires minimal operator

intervention, and is frequently used in non-complex, non-time critical

information processing systems. Detailed readings on two-tier architectures can

be found in Schussel and Edelstein [5] [6].

Two-tier architectures consist of three components distributed in two

layers: client (services requester) and server (services provider). The three

components are User System Interface, Processing Management and Database

Management.

In two-tier architecture, the clients assume the responsibility for the

application logic, while the server assumes the responsibility for data integrity

checks, query capabilities, data extraction and most of the data intensive tasks,

including sending the appropriate data to the appropriate clients. SQL is a

standard language used on the clients to request appropriate subsets of data

from the server. Data returned from the server to the clients is processed by the

client software for reporting and business analysis.

8

The development time of two-tier systems is short, and many robust

tools are available for fast prototyping.

2.3 Three-tier software architecture

The three-tier software architecture emerged in the 1990s to overcome the

limitations of the two-tier architecture. The third-tier (middle tier server) is

between the user interface (client) and the data management (server)

components. This middle tier provides process management where business

logic and rules are executed and can accommodate hundreds of users (as

compared to only 100 users with the two-tier architecture) by providing

functions such as queuing, application execution, and database staging. The

three-tier architecture is used when an effective distributed client/server design

is needed to provide (when compared to the two-tier) increased performance,

flexibility, maintainability, reusability, and scalability, while hiding the

complexity of distributed processing from the user. For detailed information on

three-tier architectures, see Schussel and Eckerson. Schussel provides a

graphical history of the evolution of client/server architectures [5] [8].

A three-tier distributed client/server architecture (as shown in Figure 2.2)

includes a user system interface top tier where user services reside.
Three Tiers

Ufer System Merfw^ 〈 ^ ^ 〈 ()

Process： lAnooenent 广 “ •/] 广 - ‘ ^ , ••

^ ^ ~"" “ — — _ — ^— ^ ,

Figure 2.2: Three-tier distributed client/server architecture depiction [7]

9

Systems using this three-tier architecture are often called middleware

systems. The definition of the term、、middleware" according to Webopedia [9]

is the following:

1) Software that connects two otherwise separate applications. For

example, there are a number of middleware products that link a

database system to a Web server. This allows users to request data

from the database using forms displayed on a Web browser, and it

enables the Web server to return dynamic Web pages based on the

user's requests and profile.

2) The term middleware is used to describe separate products that serve

as the glue between two applications. It is, therefore, distinct from

import and export features that may be built into one of the

applications. Middleware is sometimes called plumbing because it

connects two sides of an application and passes data between them.

According to Webopedia [9], the most important advantages of the middleware

approach are the following:

1) The desire to use open services and protocols.

2) The wish to re-deploy logic at wi l l and unconstrained by

infrastructure; this necessitates using open APIs and protocols,

which are widely supported across most infrastructure products.

3) The necessity to support cooperating mixed-architecture

applications.

10

4) The urge to move network and service infrastructure decisions out of

application space, so that system managers can make infrastructure

decisions without being hampered by applications that depend on

proprietary protocols or features.

Sometimes, the middle tier is divided in two or more units with different

functions, in these cases the architecture is often referred to as multi layer. This

is the case, for example, of some Internet applications. These applications

typically have light clients written in HTML and application servers written in

C++ or Java, the gap between these two layers is too big to link them together.

Instead, there is an intermediate layer (web server) implemented in a scripting

language. This layer receives requests from the Internet clients and generates

html using the services provided by the business layer. This additional layer

provides further isolation between the application layout and the application

logic.

11

Chapter 3

System Architecture

3.1 Introduction

The objectives of our system design are to provide a flexible, comprehensive

and real-time platform for the investors to carry out stock market analysis. By

enabling distributed computing, we facilitate the use of client computers (in low

CPU usage) as a computing power of the system for providing a super-

computing environment for investors to perform complex data analysis.

Investors can get more information about the market by custom query service,

standard technical analysis and customer-define technical analysis and the

financial news analysis. A l l these tools help them to obtain reference materials

for their investments. Through the application, investors can acquire a more

thorough understanding of the stock market by the simple and user-friendly

interface. They can have better prediction of the market and thereby more risk

control. In other words, they can have a more effective use of their time and

money.

3.2 System Architecture Overview

The System Architecture is basically a three-tier structure. The front layer is the

client while the middle layer is the Application Servers. The back-end layer

12

contains the database and data sources. Figure 3.1 shows the system

architecture.

3.2.1 Client Layer

This layer is responsible for data presentation. It provides visualized access to

all system services through user-friendly graphical interface. User running the

client's application on personal computer wi l l provide part of the on-line data

analysis functions, which helps us to enable distributed computing for the

whole system

3.2.2 Middle Layer

This layer encapsulates the business logic of the system. The on-line data

analysis server performs data processing, data analysis and information

syntheses; the user management server manages system connection security,

user login verification and registration, and user's profile management; the real-

time data streaming server streams the real-time data to all on-line clients; the

data management server manages the access to the database that allows clients

to use standard or user-define query to retrieve data from the database and

provides real-time data alerting services. Since the middle layer is connected

directly to the database and data sources, it acts as a bridge for the client to

access to the valuable data, and also as the platform for client to perform

complex data analysis. Thus, the system is highly manageable and scalable.

13

3.2.3 Back-end Layer

The database in this layer contains all the data of stocks, such as the real-time

and historical stock prices, options information, companies information,

financial news and user profiles. There are data sources in this layer providing

the real-time stock data to our middle layer, and the real-time data wi l l then be

stored into our database for future usage.

Client Layer Middle Layer Back-end Layer

Real-Time Data f ^ D a t ^
Streaming Server ！^ Sources

Client 0==；：^ ^ Z I Z I I Z Z I I I Z I ： ^ ^ ^ ^ ^
Data Management

Server

On-line Data
Analysis Server

Client 」

User Management ——〉

Server Database

Figure 3.1: System Architecture

3.3 Advantages of the System Architecture

3.3.1 Separate the presentation components, business logic and
data storage

The three-tier system separates the presentation components, business logic and

data access into three distinct entities. Our system is suitable for three-tier

14

architecture, as the presentation layer is necessary to be separated for clients to

gain access to our system in different places using different platforms. The

business logic and data components are divided up as a client-server application.

Hence, the number of clients being able to access the database wi l l not be

restricted by the database specification, though normally there are no more than

100 users at a time. In three-tier architecture, changing the data sources and

modifying the database in the back-end layer wi l l not affect the client layer.

And by using protocol for the communication between the client layer and

middle layer, upgrading the middle layer server wi l l not affect the client's

application.

3.3.2 Provide a central-computing platform for user using
different computing platforms

With the recent advances in technologies, people can gain access to the Internet

via mobile phones and PDA in outdoor places. These electronic devices provide

good visual presentation, but their computing power is very limited. However,

with the on-line data analysis server in the middle layer, users using different

devices can still get the same data analysis services from the server, for the

clients with more restricted computing platform wi l l only need to forward the

data analysis requests to the server and present the analysis result to the users.

3.3.3 Improve system capacity

By employing the three-tier architecture, the middle layer servers provide

process management where business logic and rules are executed and can

accommodate hundreds of users, as opposed to only 100 users with the two-tier

15

architecture, by providing functions such as queuing, application execution, and

database staging.

3.3.4 Enable distributed computing

The client's application for personal computer (PC) is integrated with simple

data analysis functions and task allocation protocol. Therefore, the PC client's

application can choose to run data analysis by itself or use the task allocation

protocol to allocate the data analysis tasks to other PC client's applications (in

low CPU usage) or the on-line data analysis server, in which the data

management server provides the necessary data for performing the analysis.

Thus when a PC client's application gets a large amount of data analysis tasks

from user within a short time, they can share the tasks with other PC client's

application and the middle layer server, enabling distributed and parallel

computing instead of using sequential computing.

16

Chapter 4

Software Architecture

4.1 Introduction

We found the Reusable Environment for Task-Structured Intelligent Networked

Agents (RETSINA) agent architecture [10] developed by the Software Agents

Lab at Carnegie Mellon University's Robotics Institute include the planning,

scheduling and executing modules, which is quite suitable for our system

software development. Therefore, we use the RETSINA agent architecture to

develop our software architecture for the Real-time Financial Data Mining

system.

4.2 Descriptions of Middle Layer Server Side Software

Components

There are four components and two data storages in the middle layer server

application as shown in figure 4.1. In our system, different kinds of servers

have the same software components, but with different functions libraries that

determine the type of the server. The two data storages are Data Cache and

Functions Library. The four software components are Planner Module,

Scheduler Module, Execution Module and Communicator [10]. We wi l l give

detailed descriptions of them in the following sub-sections.

17

Planner Scheduler Execution
Module Module Module Communicator

Data Cache Functions Library

Figure 4.1: Server side software Architecture

4.2.1 Data Cache

Data Cache is the local data storage for the server application. It can store the

task requests from client's applications, active clients list, real-time stock data,

the search results from the database or the analysis results of the stock market.

4.2.2 Functions Library

Functions Library stores the specific primitive functions code for the server that

determines the type and abilities of the server. For example, the on-line data

analysis server gets the mathematical computation library for performing data

analysis function; the user management server gets the security library for

setting up secret connection between server and clients; the data management

server gets the database manipulation library for managing the back-end

database. And the Functions Library contains a task reduction schema [11] [12]

presenting a way of carrying out a task by specifying a set of sub-tasks/actions

and describing the information-flow [11] [12] relationships between them.

4.2.3 Communicator

The communicator is responsible for managing network communication for

middle layer servers‘ The communicator wi l l poll for client services requests

18

and back-end database search result, send query for back-end database, and

return task result to clients asynchronously. The task allocation protocol wi l l be

embedded in the communicator.

4.2.4 Planner Module

The planner module queues the incoming service requests (task) from client's

applications and plans the way to carry them out. The planning process is based

on a hierarchical task network (HTN) planning formalism [14] .It takes in the

server's current tasks and a library of task reduction schemas [11] [12]. A task

reduction schema presents a way of carrying out a task by specifying a set of

sub-tasks/actions and describing the information-flow relationships between

them. That is, the reduction may specify that the result of one sub-task (e.g.

query return) be provided as an input to another sub-task (e.g. sending a result).

Actions may require that certain information be provided before they can be

executed, and may also produce information upon execution.

4.2.5 Scheduler module

The scheduling process takes as input the server's current tasks structures, and

the set of all primitive actions, and decides which primitive action to be

executed next. The scheduler attempts to maximize some predefined utility

function [13] defined on the set of task structures. For all servers, we use a very

simple notion of utility—every action needs to be executed in order to achieve a

task, and every task has an equal utility value. And we use first come first serve

scheduling in our system.

19

4.2.6 Execution Module

The execution module takes in the server's next intended action (task) and

prepares, monitors, and completes its execution. The execution module prepares

an action for execution by setting up parameters (including the results of

previous actions (tasks) etc.) for the action [13]. Then it performs the action

execution.

〜 O n i l — I — ~ ； _ _ _
,1__ Scheduler Execution

Q C 门 ~ M o d u l e J 1 Module
Functions Library j f

Planner^ / U 、、、、「g；;.龟

t Module ,口 ..-
Task I ‘

[̂ Ŝeiid rewilt | (、 ^
1 Task Structure Schedule ^Yction

Services Da ta』

Request Cache
{Find-all then 一 — - Send

S u m — } r 卜 q u 广 ults

^ Communicatoi' —
•Control Flow Receive
•Data Flow I requests/results

Figure 4.2: Control and data flow inside server

4.3 Overview the Execution of Service Request inside

Server

Service request {SK) come from clients are received by the communicator of

server, and are stored in the data cache. The planner module of the server inputs

the SR and the function libraries, and then uses the task reduction schema to

20

find a way for carrying out the SR by transforming the SR into hierarchical task

network. Then the scheduler module inputs the task structure and schedules the

execution of tasks. The execution module takes in the scheduled task and

performs the execution and monitoring. In the task execution, server may first

send query messages to back-end database for query data, then perform some

computation, and finally return SR's results to client through the communicator.

Figure 4.2 shows the control and data flow of task execution inside server.

4.4 Descriptions of Client layer Software Components

There are two software architectures for client's application. Figure 4.3 shows

the software architecture of client's application that can run in all graphical

computing platforms, and figure 4.4 shows the client software architecture

specific for operating in personal computer platform.

The first architecture has two data storages, Data Cache and Functions

Library. It also has two components, the Graphical User Interface and the

Communicator. They provide basic functions such as user input, data

presentation and network connection for clients. That is suitable for all

graphical computing platforms.

The second architecture provides on-line data analysis functions by

integrating the planner module, scheduler module, execution module and data

analysis function libraries to the client's application. So, the second architecture

is suitable for personal computer platform with considerable computing power.

With the data analysis library, the system can enable distributed data analysis:

when a client's application gets a data analysis goal, it can share the tasks of

21

archiving the data analysis goal to other client's application and server (that has

the data analysis ability). We can execute tasks in parallel, so the time to

complete the goal can be reduced. To enable distributed computing, we also

need to integrate a task allocation protocol to the communicator in the client's

application.

Detailed description of the Graphical User Interface is presented in next

section, and the description of remaining components can be found in previous

sections.

Graphical User Interface

Communicator

Functions
Library Data Cache

Figure 4.3: Simple client software architecture for all platforms

Graphical User Interface

Planner Scheduler Execution
Module Module Module Communicator

Data Cache Functions Library
Figure 4.4: Advanced client software architecture specific for personal computer platform

4.4.1 Graphical User Interface

The graphical user interface is responsible for getting user input, data

presentation such as chart plotting, and forwarding user's service requests to

communicator or local computing module.

22

13^ / J _ ^ Scheduler ^ Execution
1 Module , h Module

Functions Library" j J ^

- — ' X ' s i s k !...'• J. 、、
Plannei4 | l — — ^. .u "

........UodiMS^ 口 - , a I"'
\ ^S. T««k , •
\ \ I 、q Ret result f
\ “ ‘ ‘ Cur ren t

Task Structure Schedule Action |

Task Data
^Contrd • 、 ， — ⑶ 记 p f — — — 1

^ D a t a F low Sun! J. •...._ . requests/results
‘ '^'1, •

f I Cominunicator^
^ Receive

User Iiiteiiace [legnesLVî siJis

Figure 4.5: Control and data flow inside client's application

4.5 Overview of Task Execution in Advanced Client's

Application

Service request (SR) come from user through interacting with graphical user

interface (GUI). It then passes to queue inside the planner module or passes to

communicator (for forwarding to server) depending on the type of the SR. The

planner module input the SR and the function library, and then uses the task

reduction schema to find a way for carrying out the SR by transforming SR into

hierarchical task network. The scheduler module then inputs the task structure

and schedules the execution of tasks. The execution module takes in the

scheduled task and performs the execution and monitoring. In the task

execution, client may first send query messages to middle layer server for query

23

data, then perform required computation (or forward the task to server and other

advanced client's application), finally it may return SR,s results to GUI, and the

GUI wi l l present the result to user. Figure 4.5 shows the control and data f low

of task execution inside client's application.

4.6 The possible usages of task allocation protocol

We wi l l discuss the possible usages of task allocation protocol in our system,

and we wi l l concentrate on the interaction between advanced client's

applications, data management server and on-line data analysis server. As the

advanced client's application gets the function library to perform data analysis,

and as it can plan, schedule and execute some tasks by itself, it is possible for it

to share the task to other client's application that has the same abilities.

Therefore, distributed computing is possible.

The main purpose of distributed computing for our system is to make a

path for client's application in a busy period to allocate tasks to other client's

applications (in low CPU usage), and to facilitate the use of client computers (in

low CPU usage) as a computing power of the system. Therefore, while

upgrading system hardware can reduce the tasks completion time, developing

an efficient task allocation method can help too. Thus, our distributed

computing concept attempts to gather client's computing power for improving

system capacity, performance and stability. And the task allocation method wi l l

determine how much the system can improve.

24

4.6.1 Chart Drawing

Stock Chart is the basic and widely used method to present the past and current

stock prices. User can know about the past and current stock price quickly by

looking at the chart. The chart presents not only stock prices but also pattern of

the prices. The stock chart can show the technical analysis results as well.

When user goes off-line, the on-going stock price wi l l be missing in client's

application. When user goes on-line again, i f he wants to view stock chart, the

client's application needs to request the data management server to retrieve the

missing data so that to have a continuous chart.

I f every advanced client's application caching real-time stock data for a

fix period, the data missing within this period can also be retrieved from on-line

client's applications. Hence, when client's application wants to retrieve the

missing data, it can use the task allocation protocol to help it in allocating the

data retrieval task to server or other clients according to their current loading or

other information. Thus a simple data caching can help in share the task loading

of the data management server.

4.6.2 Compute user-defined technical analysis indicator

To compute user-defined technical analysis indicator, the amount of data for

computing is one of the most important factors in determining the time for the

computation. With task allocation protocol, it is possible to compute user-

defined technical analysis indicator on a large data set by dividing the large data

set into a number of smaller data sets, and then distribute one data set to one

25

client's application, enable parallel computing, in order to reduce the time for

the indicator computation.

4.6.3 Unbalance loading

Different people may be interested in different area of the stock markets. For

example, people may be interested in the company that he has invested or he

may be interested in a specific commercial sector. So, sometime when the price

of a specific company or sector in stock market reaches a critical point, it may

trigger the group of clients who are interested with it to perform data mining

actions in order to find out the future investment direction. In this situation, a

group of clients busy with the data mining actions, while the remaining clients

may be waiting on their interested sectors of the markets to change and doing

nothing. Hence, clients in busy period sharing the tasks loading to other

relatively low loading clients, can help to reduce the average task completion

time, and utilize the system resources.

4.6.4 Large number of small data mining V.S. small number of large data
mining

When we got large number of small data mining tasks at the same time, allocate

the tasks to a number of client's application, executing them at the same time,

may reduce the time to complete all the tasks when compare to execute those

tasks sequentially in a single server. When we got a small number of large and

undividable data mining tasks, allocate the tasks to a single server, we can

benefit from using the advance computing power provide by the server. So, a

26

dynamic task allocation protocol would be needed to perform a flexible task

allocation by client's application.

4.7 Summary

From the above discussion, we know that with the advanced client software

architecture plus a dynamic task allocation protocol, there is a possible way

where we can benefit from enabling parallel, distributed computing and tasks

I sharing amount client's application and middle layer servers. But there is also

an important assumption to make the benefit possible, which is client's

applications need to be in low tasks loading on time average. I f client's

applications often in busy status, then they can provide a relatively less time for

helping other clients applications to perform tasks execution or data mining

actions. A dynamic task allocation protocol is preferred instead of a static one,

because client's applications may go on-line and off-line in an unpredictable

way, so static task allocation is not possible.

27

Chapter 5

The Contract Net Protocol for Task
Allocation

5.1 Introduction

We have introduced the origin Contract Net Protocol (CNP) [1] [2] in section

one of chapter 2. In this chapter we wi l l introduce the Foundation For

Intelligent Physical Agent (FIPA) Contract Net Interaction Protocol (IP) [3] that

is a minor modification version of the original contract net protocol. Our

Modified Contract Net Protocol (MCNP) is developed base on the FIPA

contract net IP. In this chapter, we wi l l have a detail look into the operating

mechanisms of the FIPA contract net IP, and state its strengths and weakness

for task allocation. As we know, the origin CNP and the FIPA contract net IP

are designed for artificial intelligence agents, so we wi l l also explore the

necessary modifications on the FIPA contract net IP to make it suitable for our

system (a client/server architecture software system).

5.2 The FIPA Contract Net Interaction Protocol

5.2.1 Introduction to the FIPA Contract Net Interaction Protocol

The FIPA Contract Net Interaction Protocol (IP) is a minor modification of the

original contract net IP pattern in that it adds proposal rejection and

confirmation communicative acts [3]. In the contract net IP, we view agents

28

who wishes to have some task performed by other agents as managers, and by

allocating the task to other agents, the manager wishes to optimize a function

that characterizes the task. This characteristic is commonly expressed as the

price, in some domain specific way, but could also be soonest time to

completion, fair distribution of tasks, etc [3]. Figure 5.1 show the U M L

interaction diagram for the FIPA contract net interaction protocol.

By sending a call for proposals (CFP) message, the manager solicits

other agents to perform task. The call for proposals message specifies the task,

the conditions that the manager is placing upon the execution of the task and the

specification on the returned bid. The potential contractors should able to

generate proposal and perform the task. After receiving CFP message, the

potential contractor follows the bid specification to f i l l in the required

information for biding the task, which may be the price, time when the task wi l l

be done, etc. Alternatively, the contractor may refuse to propose. Once the

deadline passes, the manager evaluates any received bids and selects agents to

perform the task; one, several or no agents may be chosen. The manager wi l l

send award messages to the potential contractors, informing them with accept-

proposal or reject-proposal. Once the contractors have sent the proposals, they

need to commit the execution of the task i f the manager accepts the bid. The

contractor wi l l send the task execution result to the manager immediately after

the task completion.

29

Initiator Participant
“ 1 * 1 ,

I I

U ^

！ refuse

|_J J tlcnd-
p r ^ no("Uiulcfstood A line

戏 p ropose J

icjcct-proposal ;

I I accciM-proposal i
I I

pJL^ failure

i p i infonn-tlojic ^ ^ ^

inform-ref [
I I I I I I I I
I I

I I
Figure 5.1: FIPA Contract Net Interaction Protocol [14]

5.2.2 Strengths of the FIPA Contract Net Interaction Protocol for our
system

1) The protocol is simple; it's only need three messages to allocate a task, they

are the call for proposals message, biding message, and awarding message.

2) The protocol is dynamic and decentralized, as manager make his own choice

in allocating task according to the information provided in the biding message.

Contractors can dynamically jo in or leave the system to provide services for

manager before he has make any commitment to any task. In our system, clients

30

may act as contractors to provide on-line data analysis services for clients, and

clients may go on-line and off-line dynamically according to their habits; hence

the dynamic and decentralized properties of the protocol are required properties

for the usage in our system.

3) The FIPA contract net IP provide the framework for contracting while the

decision method of contract awarding, selection of potential contractors, bid

specification and task abstraction are left for user to design, this give a great

flexibility for system to choose it's own way of contracting in order to achieve

its specifications. Therefore, users could use different strategies in allocating

tasks at different time, different environment and different situation.

4) The roles of agents are not specified in advance. Any agent can act as a

manager by making task announcements; any agent can act as a contractor by

responding to call for proposal message. This flexibility allows for further task

decomposition: a contractor for a specific task may act as a manager by

soliciting the help of other agents in solving parts of that task. The resulting

manager-contractor links form a control hierarchy for task sharing and result

synthesis.

5) The FIPA contract net IP requires the manager to know when it has received

all replies. In the case that a contractor fails to reply with bid indicating either

propose or refuse to propose, the manager may potentially be left waiting

indefinitely. To guard against this, the call for proposal includes a deadline [3]

by which replies should be received by the manager. Bids received after the

31

deadline are automatically rejected with the given reason that the proposal was

late.

7) While waiting for a task to be completed, a manager may take on the role of

a contractor for another contract, rather than remaining idle.

5.2.3 Weakness of the FIPA Contractor Net Interaction Protocol for our
system

1) The specification of the protocol are based on agent language and platform,

it's difficult to use in our client/server architecture system.

2) The start of bids evaluation in manager side is fixed to be after the biding

deadline. This is less flexible than i f the manager can start the bids evaluation

before the biding deadline, because some task allocation need not to receive all

bids before manager can make the task allocation decision, and manager can

start evaluate the received bids while waiting for biding deadline, thus the bids

evaluation may complete earlier.

3) The contractor biding message doesn't contain the field to indicate the valid

time of the biding message, which force the contractor to allocate resource for

the bid after the biding message has been sent out no matter when the manager

make the award reply. It's not flexible for the contractor who may concern

about the resources that has been allocated for performing the task indicated in

the call for proposals message. The contractor may potentially allocate the

resources forever i f the awarding message has lost in unreliable network

transfer, and the biding message wi l l store in the protocol message queue

32

forever. It is an important stability concern for our client's applications, as they

wi l l act as contractors in our system.

4) The contractor is under no obligation to send confirmation message when it

receive the awarding message, so the manger wi l l never know his awarding

message hasn't been received by the contractor because it's lost in the

unreliable network transfer or the contractor application has crashed. Thus the

manager may not get the task completion result forever. For our system, the

task completion is more important than whether the contractor can get the right

to perform the task, so without the award confirmation message wi l l create a

great problem to our system.

6) This protocol was designed for distributing one task among a number of

contractors, its may not perform well for distributing a number of task among a

number of contractors.

5.3 The Modified Contract Net Protocol

1) We introduce the field for specifying starting time of bids evaluation in the

call for proposals (CFP) message, which allow manager to set the time for start

of bids evaluation earlier than the biding deadline. Figure 5.2 shows the only

possible time sequence diagram of the FIPA contract net IP where the start of

bids evaluation time is the same as the biding deadline.

By setting the start of bids evaluation equal to the biding deadline, our

MCNP include the same time sequence as the FIPA contractor net IP.

33

Biding time _
Bid(s) evaluation time

A • ^

CFP sent time Biding deadline and the
start of bid(s) evaluation

Figure 5.2: The time sequence diagram of the FIPA contract net IP

Figure 5.3 shows a possible time sequence diagram for the MCNP，in

which the start of bids evaluation is in-between the CFP sent time and the

biding deadline. So the manager can start evaluating the received bid(s) before

biding deadline, and hence before the biding deadline has come, he may has

already completed evaluating part of the received bid(s) and continuous the

remaining part after the biding deadline, thus the protocol delay may probably

reduced. And the manager can also award a bid before the biding deadline has

come i f he received and evaluated a bid that satisfied his requirement(s).

Biding time ^
Bid(s) evaluation time

• £ r ^

CFP sent time The start of bid(s) Biding deadline
evaluation

Figure 5.3: The time sequence diagram of the modified CNP

34

Figure 5.4 shows another possible time sequence diagram of the MCNP，

where the start of bids evaluation is just after the CFP message has sent. Hence

the manager wi l l start bids evaluation just after he has received the first bid, and

manager may able to give the award to the first received bid without waiting for

receiving all bid(s) until the deadline has come. It is also possible to evaluate

the received bid(s) while waiting other incoming bid(s).

The ability to set the starting time of bids evaluation is very flexible for

our client's application, where it can choose different approach to start the bids

evaluating process according to its requirement and the current system

environment.

Biding time ^

Bid(s) evaluation time ^

• A

CFP sent time and the Biding deadline
start of bid(s) evaluation

Figure 5.4: The time sequence diagram of the modified CNP

2) We add the field for specifying the valid time of the bid message inside the

bid message, which prevent the bid message storing in the protocol message

queue forever (as the CNP process haven't complete, we need to store the

related information for referencing and processing in later state of the CNP) and

prevent the contractor allocate resources for the biding content forever i f the

manager awarding message has lost in the unreliable network transfer. This

35

addition is very important for our middle layer servers, as the middle layer

servers able to do any tasks offered by client's application, so these servers are

potential contractors for all client's applications in any time, hence these servers

wi l l receive a large amount of CFP messages and making a lots of bids (as its

only responsibility is to serve client's applications), so even only 0.001% of the

award messages wi l l loss in network transfer, but the number of bids wi l l store

in server side due to the lost of award messages wi l l increase rapidly as time go

by. The performance of the contract net protocol wi l l degraded rapidly, the

memory used for storing those biding information wi l l increase rapidly, and the

whole server system may crash easily due to using up the memory in storing

those biding information. I f the server application did constantly keep looking

at the status of those bids and make decision to remove those biding

information by itself after some time, the work loading of server wi l l increase a

lots.

3) According to T. Knabe [15], we add award confirmation message for the

contractor who received award message with accept-proposal to reply the

manager whether he refuse or accept the task. The award confirmation message

has two usages: firstly, the manager who received the confirmation message can

sure the contractor has received the award message. I f the manager didn't

receive the confirmation message after some time, he can decide to award the

task to other contractor or restart the contracting process, hence the manager

won't get any problem due the lost of award message in the unreliable network

transfer. Secondly, for client's application using the MCNP, user can restricting

36

a maximum number of task offer acceptance at the same time, once the number

of external tasks inside the local tasks queue has reach the maximum number

allowed by the restriction, the task award wi l l be rejected. With the above

restriction, client's application wi l l not suffer from accepting a large number of

tasks i l l short time due to the abnormal behavior of other client's applications.

By adding the confirmation state, we put the task commitment [16] at a later

time, which is in the confirmation state not in the biding state when compare

with the FIPA contract net IP. Putting the task commitment at a later time has

advantage for contractor who decided to restrict the number of task acceptance.

It is because i f contractor need to commit the task acceptance in the biding

stage, then he cannot bids more than the maximum number of task that he can

accept at a time because all his bids may be accepted by managers and he need

to commit all the bids even this situation happen in very low probability (as the

number of competing contractors may be very large). So, once the contractor

bids have reached the maximum number of task acceptance, contractor needs to

refuse other incoming CFP, and at the final, contractor may received task award

less than the maximum number allowed, thus the resources given by contractor

may not be able to fully utilize in most of the time. Hence, by delaying the task

commitment in the confirmation state, the contractor can make bid to all CFP,

and the confirmation state wi l l restrict the number of tasks accepted. So, the

resources given by contractor wi l l have a better utilization. We assume our

client's applications are cooperative contractors, they wi l l not reject task award

37

i f they haven't reach their resources limitation. Figure 5.5 show the U M L

interaction diagram for the MCNP with the award confirmation state.

Manager Contractor

CFP
‘―r—' • [

Refuse

_ _ l ^^^^^ Before deadline

Bid I
t - J - ^

Reject bid

Y V
Accept bid

Refuse award

入

_ Taking award j

Inform result
hH

Figure 5.5: MCNP UML interaction diagram

4) We add the award confirmation deadline in the award message, so that the

MCNP can inform the manager to decide awarding the task to other contractor

or restart the contracting process i f the manager didn't get any confirmation

message before the confirmation deadline. This addition set a time out time for

manager to waiting the confirmation message. By setting a relative long

confirmation deadline can reduce the number of unnecessary restart of

contracting process due to network transfer delay. How long the confirmation

38

deadline is needed wi l l depend on the real-time network environment, and it

wi l l leave for MCNP user to determine.

5.4 The Implementation of the Modified Contract Net

Protocol

We use the object-oriented programming language C++ to implement the

MCNP on the Linux and UNIX platform, and using the User Datagram

Protocol (UDP) for message communication. Using UDP for message

communication gives us no limitation on the number of connections exists at

the same time. We observe that MCNP actually is a finite state machine, so we

develop the MCNP class to manipulate the states transition of the protocol

process, and we develop the CNPUser class to act as an interface class for

MCNP class to callback and inform the MCNP user for handling different

protocol messages and status. For user who want to use the MCNP, he need to

create a class base on CNPUser class, and implement the callback functions

base on the CNPUser class interface for handling different protocol messages

and status in his own way (for example, he wi l l need to implement the function

to make his way on handling the call for proposals message i f he want to be a

contractor). Figure 5.6 show how the user can connect MCNP class through the

CNPUser class interfacing.

MCNP I

c las^CNPUser User
V class program

Figure 5.6: The connection diagram for user program, CNPUser class and MCNP class.

39

MCNP Class

I K lmq L
I [—^ 丨 ̂ FP

\ .、| CNPUser I
i Function i、、、、、、、 ClaSS

^ ~ ^ i callback I r ^ - — — I
j / \ t-..”••....~..”..---"...-I.......棒Handle j
j ^ Process � message
1 \ sessions M i [— — a n d status

y \ Callback j
r—"'^ \ return i I I i

j t

(^ X i MCNP control flow
Process � ^

emq] i
/ I MCNP and CNPUser

! " interaction
^ •令

Figure 5.7: The control flow and interactions o f the M C N P class and CNPUser class.

Figure 5.7 show the control flow and interactions of the MCNP class

and CNPUser class. First, the CNPUser class passes the call for proposals (CFP)

message to the MCNP class local message queue (LMQ), which informs the

MCNP class to process the LMQ. In processing the message in the LMQ, the

MCNP class creates a session for the CFP message, then it go to process the

sessions in the current MCNP class, i f the session need the CNPUser class to

handle some received message or change of status, the MCNP wil l callback the

CNPUser class functions, and pass the necessary information for the CNPUser

class to process. After CNPUser class has handled the callback, it returns

instructions to the MCNP class for further processing on the session. Then it

goes to process one message from the external message queue (EMQ) that

stores the message received from network. By processing the EMQ, received

messages may be attach to it related sessions, or it wi l l initiate the MCNP class

40

to process it related session. After process one message in the EMQ, the MCNP

class wi l l go back to process the LMQ, thus the whole control flow go back to

the beginning and restarted. It is important to note that in each processing cycle,

the MCNP class wi l l only process one message from LMQ and one message

from EMQ in order prevent blocking the process on a single message queue for

very long time i f there are a large number of messages pump into the queue in a

short time.

I CNPUser Class |

I / T ^ I
j / Manager \

I Actions) \ i
丨.z 、、J

77 \ \
' / \ A w a r d � ：….…

Call for No award / (. ��� -.-<):;�.
proposal yet / / <.>r- biUiu- \ 、-、

Z / / .、'”》{!"«‘ 'Visvt-! \
i H � 、； I

•l^^Bids^^^ i

MCNP Class

Figure 5.8: State transition diagram of MCNP in manager side actions.

From figure 5.8 we could know the state transition of the MCNP class

and the CNPUser class for manager making task allocation. Manager uses the

CNPUser class interface to control the contract net process operated by the

MCNP class. Now, let us look into the state transition for manager making a

task allocation.

1) The manger first activate the CNPUser object to Manager Actions state

and make the call for proposal (CFP) action, then the CFP message wi l l

pass to the MCNP object and store in the MCNP object local message

41

queue (LMQ), then the MCNP object wi l l informed to have message in

the LMQ. So, it wi l l read in the message from the LMQ, after classified

the message as CFP message, the MCNP object wi l l create a new

manager session and the new manager session wi l l go to the CFP state,

it，will store a copy of the CFP message for future referencing and then

sent it to the potential contractors as indicated in the CFP message. Then

the manager session wi l l go to the (2) Waiting Bids state to wait and

store the incoming bids message.

2) 111 Waiting Bids state, the MCNP object wi l l idle this session, and go to

handle incoming message (from local program or external network) or

handle other MCNP sessions. The MCNP object wi l l activate this

manager session once the time for start of bids evaluation has come, and

the following two case happen:

Case 1: i f no bid received and the biding deadline has passed, the

manager session wi l l inform manager about the situation through the

CNPUser object, and CNPUser object wi l l go to Manager Actions state

to execute manager decision to restart the task allocation process or

cancel the task allocation.

Case 2: i f no bid received but the biding deadline hasn't pass, the

manager session wi l l stay in the Waiting Bids state and it wi l l idle by

the MCNP object.

42

a. Once a bid received before deadline, the MCNP object wi l l pass

the bid to the CNPUser object, and the CNPUser object wi l l go

to Manager Action state.

i) Firstly, i f the manager needs time to evaluate the bid, it

wi l l return No Award Yet to the manager session, thus

release the manager session to (2) Waiting Bids state

ii) Secondly, i f the manager complete the bid evaluation, but

wi l l not accept the bid, it wi l l return No Award Yet to the

manager session, thus release the manager session to (2)

Waiting Bids state. I f the manager accepts the bid, it wi l l

pass an award message to the manager session, and the

process wi l l go to (3) Award Bid state.

b. When biding deadline has passed, the MCNP object wi l l go back

to the manager session and inform the manager, then the

CNPUser object wi l l go to Manager Action state.

i) I f the bid evaluation process has completed with no award,

the manager wi l l need decide restart the task allocation

process (1) or cancel the task allocation.

ii) I f the bid evaluation process has completed with award, the

manager wi l l pass the award message to the manager

session, and the manager session wi l l go to the (3) Award

Bid state.

43

i i i) I f the bid evaluation process hasn't completed, the manager

wi l l return No Award Yet to the manager session, and the

manager session wi l l go to the (3) Award Bid state to wait

for award.

3) In Award Bid state, i f the manager session didn't get the award message,

it wi l l stay in Award Bid state, wait for the manager to give the award or

terminate the session. At this time the MCNP object wi l l idle this

session to handle other process, once the manager pass the award to the

LMQ, the MCNP object wi l l be informed to activate the manager

session, it wi l l sent the message to the awarded contractor, and then the

manager session wi l l go to (4) Waiting Confirm state.

4) In Waiting Confirm state, the manager session wi l l wait for the

contractor confirmation message and hence it wi l l idle by the MCNP

object again. I f the confirmation message didn't receive before

confirmation deadline, the MCNP object wi l l activate the manager

session to inform the manager, then the CNPUser object wi l l go to

Manager Action state to execute the manager decision on whether give

the award to other contractor (manager session go back to (3) Award

Bid state), restart or terminate the contracting process. I f the

confirmation message is received before confirmation deadline, the

MCNP object wi l l activate the manager session to inform the manager,

and the whole task allocating process in manager side has completed.

44

I CNPUser Class |
i i I I
I / Contractor \

Action /
i , 八 J

Rcceivc CFP j丄 ….… i、.、 iirmvu
'二 / \ "x̂ utsfi) raiuio!)

• I \ Rcccivc 、\、、
• V> Bui / Rof»rii \ award 、、\

, - / i>id \ 、、-
I ‘ - - I

/ w a i t i n g \ (B i d i n g ^ / ^ t h ^ / c m i f i i ^ 1
I ^ ^ ^ ^ ^ " " “ “

MCNP C l a s s - ^ i

Figure 5.9: State transition diagram of MCNP in contractor side actions

From figure 5.9 we could know the state transition of the MCNP class

and the CNPUser class for contractor waiting task allocation. Contractor uses

the CNPUser class interface to control the contract net process operated by the

MCNP class. Now, let us look into the state transition for contractor waiting

task allocation.

1) The MCNP object after receiving CFP for network, it wi l l create a

contractor session and the contractor session wi l l go to Waiting CFP

state, then it pass the CFP to contractor through CNPUser object, and

the CNPUser object wi l l go to the Contractor Action state. I f contractor

doesn't want to bid, the CNPUser object wi l l return No Bid to the

MCNP object, and the MCNP object wi l l delete the contractor session.

I f contractor bid, the CNPUser object wi l l pass the proposal to the

MCNP object, the contractor session wi l l go to Biding state.

2) In Biding state, the MCNP object wi l l sends the bid message to the

manager and then the contractor session wi l l go to Waiting Award state.

45

3) In Waiting Award state, the MCNP object wi l l idle the contractor

session and go to handle other messages or sessions. I f no award

received before the bid valid time has passed, the MCNP object wi l l

activate the contractor session and inform the situation to the contractor,

and then the contract session wi l l delete. I f the MCNP object receive

award message before the bid valid time has passed, it wi l l activate the

contractor and pass the award message to the contractor, then the

CNPUser object wi l l go to Contractor Action state to execute contractor

decision on whether confirmation the award (i f the award indicate the

bid is accepted) or terminate the contractor session (i f the award

indicate the bid is rejected). I f contractor confirm the award, the

CNPUser object wi l l return the confirmation message, otherwise it w i l l

return the instruction of terminating the contractor session to the MCNP

object.

4) I f the MCNP object gets the termination instruction, the contractor

session wi l l be deleted. I f it gets the confirmation message, the

contractor session wi l l go to Confirm state, and it wi l l send the

confirmation message to the manager. After the confirmation message

has sent out, the contractor session wi l l be deleted and the whole task

allocation process in the contractor side has completed.

5.5 Summary

In the implementation, the MCNP class is run on a different thread from the

CNPUser class and the user program. I f user program wi l l not block on the

46

MCNP callback, the bid evaluation process can keep ongoing while the MCNP

keep receiving incoming messages and instructions in the same time. Also, with

the above design and implementation of the MCNP control flow, it's able to

handle multiple contracting sessions and send out multiple CFP without waiting

the contracting process to complete before starting a new one. By using UDP

for network communication, the number of contracting process wil l not

restricted by the number of connections can be make at the same time, the

communication channel is centralized for a much more easy control. And the

award confirmation message ensures the contractor received the award.

47

Chapter 6

A Client as Server Model using MCNP for
Task Allocation

6.1 Introduction

We wi l l design a Client AS Server (CASS) system model enabled by the

Modified Contract Net Protocol (MCNP) for the on-line data analysis service of

the Real-time Financial Data Mining system. We compare the system capacity

increased by the new system model with a single-server exponential queueing

system (M/M/1) through performance analysis and simulation. Thus showing a

task allocation method combine with the task allocation protocol (MCNP) can

enable the potential benefit of employing distributed computing.

6.2 The CASS System Model

In our CASS system model, we assume:

• The system only contain clients using personal computer with

advance client's application, therefore every client's application can

handle the task i f it got the corresponding library to perform it.

• A l l complex tasks have reduced into primitive tasks before starting

the task allocation process i f not specify externally, that mean tasks

go into allocation process could map directly into each functions

library.

48

I l l the CASS system model, there is an on-line data analysis server in the

middle layer to provide services for all clients. We group the commonly used

functions of the on-line data analysis server into 5 libraries, which are

price/volume analysis library，fundamental and risk analysis library \ pattern

matching library, technical indicators analysis library and financial news

analysis library. Then we give one library to one client's application, and five

client's applications with distinct library can group together to act like an on-

line data analysis server to provide those commonly used functions to each

other inside the group as show in figure 6.1.

Libraries

I ； Server

H f

z"—、、、、
Z 一 � � � / 撤 碰 � � � C l i e n t

/ • • \ / 鄉 嘟 、 \
Five distinct 、 丨 、 丨
libraries 、口 \ 、 @ /

、、、口 乂 、、\ 零 乂 、—- 、、、 —

Figure 6.1 ： Five client's applications with distinct library can group together to act like
a server

Hence, in our CASS system model, there is an on-line data analysis

server in the middle layer serving all clients and at the same time every five

client's applications group together in client layer, acting like the server to

serve each other inside the group. Figure 6.2 shows the CASS system model,

‘Fundamental analysis includes the analysis of economic environment, the stock market trend,

business sectors, company financial information, etc.

49

where client's application can send its service request to the on-line data

analysis server or other clients in the same group to get the requested services.

Client Layer Middle Layer Back-end Layer

Service ； •；

request

Client ;> j i 广 \
_ ^ On-line Data C 乂

Service A n O - l V S i S ^ Database and
request � ^ ^ data source

4 service S c r V C r
^ 1 request

Client ;> i

Figure 6.2: The CASS system model

Because clients can get services from client's applications and server,

we decided to develop a task allocation method combine with MCNP for

balancing the task loading among client's applications and server, such that

average services response time (queueing time plus servicing time) of server

and client's applications are the same. Which means all tasks wi l l treat fairly in

the system. The task allocation method wi l l use the MCNP to gather tasks

loading information in the CASS system in real-time environment.

Here, we describe the general idea of the task allocation process. For a

new primitive task generated by a client's application (manager), the manager

wi l l first classify which functions library is needed to perform the task, i f the

manager has that functions library, it wi l l use the MCNP to send a call for

proposals (CFP) message to the on-line data analysis server, and the on-line

data analysis server wi l l return it services rate and the current CFP arrival rate

(that is the maximum possible task arrival rate) received by the server, then the

50

manager wi l l base on the these information with its current task loading and

services rate to decide the probability of allocating the task to the server or

perform the task by itself, then generate the task allocation result according to

that probability and award the task. I f the manager doesn't have the functions

library to perform the task, it's wi l l send a CFP to a client's application that it

known has the ability to perform the task and a CFP to the on-line data analysis

server. And by gathering the CFP arrival rate and services rate of that client's

application and the server, the manager calculate the probability of allocating

the task to the server or to that client's application, then generate the task

allocation result according to that probability, and award the task by using the

MCNP.

6.3 The analytical model of the CASS system
Task

〇

p i -p

〇 〇

Server Client

Figure 6.3: Task, allocation among client's application and server

Figure 6.3 shows the generic view of task allocation among client's application

and server in the CASS system model. A task generated in the CASS system

wi l l allocate between a client's application and the server. The task wi l l allocate

51

to the server with probability P and allocate to a client's application with

probability 1-P, where this probability is determine by the services rate and the

CFP arrival rate of the server and the client's application in order to archive

load balancing between client's application and server. The server in figure 6.3

is the on-line data analysis server, while the client in figure 6.3 could be the

client's application that generate the above task or other client's applications in

the network that has the ability to perform the task execution.

In order to find out the probability P for archiving load balancing with

the criteria of getting the same average services response time for client's

applications and server in the CASS system, we need to get the tasks arrival

rate that are allocating between server and a client's application. In our CASS

system, we assume:

1. Client's applications are identical and independent in generating

tasks arrival,

2. The inter-arrival time of tasks generate by each client's

application are exponential distributed with rate equal X,

3. Tasks generate by each client's application are equally

distributed on the five functions libraries, i.e. 1/5 of tasks arrival

wi l l use the price/volume analysis library, 1/5 of tasks arrival

wi l l use the pattern match library, and so on.

Thus, for each client's application, 1/5 of the tasks arrival can allocate

among itself and the server (as show in figure 6.4) and the remaining 4/5 of the

52

tasks arrival can allocated among other client's applications (inside its group)

and the server (as show in figure 6.5).

Client A

1

/ \
Server D J ^ ^ Client A

Figure 6.4: Each client's application generates tasks arrival rate of X., with 1/5 tasks arrival can
allocate between itself and the server.

Client A

m
4/5 z

^ ^ ^ Client B

4 / 5 B ^ y X ^ 、 ^ ^ Client C

_ 纖 麟 C - D

Server

Figure 6.5: The remaining 4/5 tasks arrival will allocate between the server and other client's
applications

Accordingly, inside a group of five client's applications (each with

distinct functions library), the total task arrival wi l l use the price/volume

analysis library with rate X, the total task arrival wi l l use the pattern matching

53

library with rate X, and so on. Therefore, each client's application wi l l see a task

arrival rate of X that is allocating between itself and server as show in figure 6.6.

Client A Client B Client C Client D Client E

職 琴 _ 驊 膽
\、、\ ； \ 1/5 / \ 1/5 /I / ；

z 、、、、 \ / lo 〜/ 1/5 ；.
、、 \ * / ; 、、、 、 \ /

、， � \ 、 '' z \、 、、 •、 / z 、 、、 》 /
�� � _ / z

� � � “ “ ' ' ’

/I
，r

Server y J Client A

Figure 6.6: Task arrival rate allocate between a client and a server.

For the CASS system contains Â (A^ is a multiple of 5) client's

applications, we assume each of the client's application generates tasks with

exponential distributed inter-arrival time and with rate equal to A, hence there

are N task streams each generating tasks with rate X. The tasks generated in the

N task streams wi l l allocate among the server and the N client's applications,

each client's application wi l l seen one task stream and the server wi l l seen all

the N task streams as show in figure 6.7.

We further assume:

• A l l client's applications and server has queue with infinite

queue length to queue the incoming tasks for processing,

54

• Each client's application with services rate equal to

server with services rate jUs.

From this analytical model, we want to find out the probability P which

wi l l balance the task loading between server and client's application according

to the criteria: such that the average services response time of server and all

client's applications are the same, so that all tasks wi l l serve fairly no matter

they are allocate to server or client's applications.

N/c

〇 〇 〇

Seiner Client i Cl ientN

Figure 6.7: The analytical model of the CASS system.

6.4 Performance Analysis of the CASS System

In order to satisfy the load balancing criteria, we equate the average services

response time of the server (Js) with the client's application (T。) to find out the

server's task allocating probability P.

The average services response time of server is:

丄

T = ^ (f , n
、.一 1 Pcm + kN入 、叫

1
/fv

55

Where /̂、. is server's services rate, T、is the server average services

response time, N is the numbers of clients, X is the arrival rate generated by

each client's application, kis the percentage of tasks produced by each client's

application that only allocate to server and a = l-k . We add factor k into the

equation as even five client's applications group together, they are not exactly

ensemble all functions as server has, and sometime i f the number of clients in

the system are not the multiple of five, some of the client's group wi l l have

fewer than five clients, and so some of the tasks may only process in the server.

Also, due to every client inside the system can go on-line and off-line randomly,

we assume every group of client's applications wi l l have some of the time that

do not have five client's applications inside the group, therefore k is measured

in time average by the server according to the information given in the

contracting process. As we assume all clients are the same which mean the

factor k is applicable to all clients in the system. I f clients in the system go on-

line and off-line frequently, the k wi l l become quite large, so we may make a

group contains 10 client's application together, with 2 client's application for

each functions library, and the percentage of tasks produced by each client's

application that must executed by server can reduce. But certainly we need to

collect information after the CASS system has been build up to determine the

suitable group size for the system. For simplicity, we wi l l use group size of 5 in

following discussion.

The average service response time of client's application is:

56

丄

1

Where T̂ is client's average service response time and jli^. is client's

services rate. Other symbols are the same as the pervious definition.

We set Ts = Tc to find out the probability P,

1 1
=> = (6.3)

=> / / , — jLic - kNX + aX = PaNX + PaX

^ p = + (6 . 4)

We note that equation (6.4) only valid for a> 0, that mean it's only

valid for there exists some of the tasks that can allocate to the client's

applications. I f all tasks must process in server, then the system become M/M/1

system, and equation (6.4) wi l l be useless.

F o r O < P < 1,

/ / , -Mc cc-kN . J / z 、 一 a - k N ,
=> — + > 0 and — ~ + <1

{N + \)aX {N + \)a {N+ \)a?i {N

=> //、. - - kNk > 0 and "、. -jii^+aX - kNA <(N + l)aA

=> / / � . - +aA> kNX and //、. - < NX

//�.-/". .. - + aX ,, r �
=> — — < N < — ~ — (6.5)

A kA

Let's look at equation (6.5), assume X is fixed and |j-s-|ac > 0. When N

increase from zero to P =1, therefore all tasks wi l l allocate to the

57

server as the average services response time of server (Z；) is smaller than the

average servicing time of client's application (l/|ac). While N increase from

(|.is-)ac)/?i to 入)/kX, 0 < P < 1, and tasks wil l allocate between server

and client's applications according to P as Ts is larger than the average

servicing time of client's application. For N larger than P=0,

no task wi l l allocate to server because by receiving the kNX arrival of tasks (that

must process by server) has already make the average services response time of

server (l/(|.is-kN^)) larger than the average services response time of the client's

applications (l/(|ac-oc人)).In the following discussion, we assume equation (6.5)

is satisfied and so 0 < < 1.

a-kN
Let's look at in equation (6.4). For simplicity, we first assume

{N + \)a

a = l and ^=0, then it become \/{N+\). This term means we first divide the task

allocation probability by (A^+1) as there are N client's applications and one

server, then how much more or less the probability of task wi l l allocate to

server depend on the term ~ ^ ^ ^ in equation (6.4), where ~ ^ ^ ^
{N + \)aX 4 +

determine how much the servicing rate provided by the server is superior to the

client's applications in the CASS system. For a decrease from 1 and k increase

a-kN
from 0， wi l l decrease, which means tasks allocated to server wi l l

(N + \)a

have smaller probability. Because when a decrease from 1 and k increase from

0, tasks can be only executed by server increased, and hence server has already

58

receive some tasks, therefore the tasks that can allocate between server and

client's applications should allocated to server with a smaller probability.

il — n
Let's look at — from equation (6.4), we find probability P

(N + l)aA

depend on how much the server can execute tasks faster than client's

application i f the server can execute tasks much faster than client's

application is large), then the probability P increase. This is reasonable as

this means server can execute more tasks than client's application within the

same amount of time.

However, probability P decreases as the total task arrival rate can be

performed by client's applications [(A^+l)aX,] increase. The total tasks arrival

rate can be performed by client's applications increase with the increase of the

number of client's applications in the system {N+\), the tasks arrival rate

generate by each client's application (X) and the percentage of tasks can

perform by clients application (a). With the number of client's applications

increased in the system (increase of 7V+1), the computing power provided by the

client's applications increase, therefore probability P decrease and hence more

tasks allocate to client's applications is reasonable. With the increase of tasks

arrival rate can be performed by each client's application (increase of aX), 7；

wil l increase and at some point it wi l l reach 7；, and so decrease the probability

P can balance 7； with T�otherwise the Ts wi l l become larger than Tc, and thus

tasks allocate to server wi l l perform poor than those allocate to client's

applications in the sense of having longer services response time.

59

Now we want to find out the services response time of the CASS system

for 0 < P < 1.

Substitute equation (6.4) into equation (6.1),

T= ！

I (Â + 1) J

T�=
(/ / , - jlQN + oNX - kN^X + kN'-X + kNX

“、 (Â + 1)

^ T= 1
".、 nV\

：^ T � = ~ ^ ^ (6.6)
JU�HjLle-X)N

From equation (6.6), we see that when the number of client's

applications in the system and the task arrival rate generated by each client's

application increase, the average services response time of the system wi l l

increase (7), and i f the services rate of the server or client's application increase,

then T decrease. Also, we observe that i f and X are fixed and (//c-A) > 0, T^

wil l approach and bounded by a limit as N approach infinity for b=Q.

For 一 A > 0 and k= 0, when N —�,the average services response

time of the system is:

Tn 书 (6 . 7)

60

I f > 0, when n increase, P — Q, equation (6.3) must satisfy the

following conditions:

/ / � . - kNA, > 0 and 1 < ——！
//,. - kNA - aA

^ ; V < 4 a n d A A《凡从 . +仅义 (6.8)

kA kX �乂

Condition (6.8) imply i f k >0, for , the system

kX

services response time wi l l bound by (6.7) with fixed //c and A, i f N larger than

(|as-|̂ c+ocA.)/kA,, equation (6.3) wi l l not satisfy, and hence the probability

equation in (6.4) wi l l be useless. And the services response time of server wi l l

larger than client's applications as mention in pervious discussion.

We define N,„ax as the maximum number of clients that can be serve by

the CASS system, where N ^ = min{ ^ , “ 、 } for -义 > • . I f
kX kZ

» aX-iic, then N,„ax = — . When compare N„,ax with the maximum number of
kX

clients that can be served by M/M/1 system (—) , we observe that the system

capacity of CASS system is Mk times larger than that of M/M/1 system.

Therefore i f the percentage of tasks must be executed by server is small, then

the capacity of CASS system is much larger than that of M/M/1 system because

most of the tasks can be executed by client's applications in CASS system,

hence when the amount of tasks increase with the number of clients in the

system, it's wi l l allocate more tasks to client's applications, keeping the server

61

from over loading. For 一；I < 0, the average services response time of the

system wil l approach infinity as N increase.

I f - A < 0 and k > Q, when n increase, P — Q, equation (6.6) and

(6.3) must satisfy the following conditions:

/ / � - (//,, -A)N>0 and ^ < -
// , - kNA - aA

=> and (6 9)
^-jLi, kZ

Equation (6.9) is quit similar with (6.8), which show the maximum

number of clients can be support by the CASS system for jLi^.- A <0.

N,nax = min{ ,凡 -从 . +仅A } , for I f » aX-i^,
A - kX

— ~ + 仅义 is approximately equal — , hence N,„ax = min{ ~ , — }. So,
kX A-jLi^ kX

the system capacity of CASS is min { - ~ , Mk) times of the M/M/1 system.
义一

Therefore, the CASS system wi l l have a larger system capacity than M/M/1

system, as some of the tasks can be performed by client's applications.

6.5 Performance Simulation

We have developed a testbed system with simulation server and client using the

MCNP for task allocation in UNIX operating system. We assume:

• The tasks inter-arrival time generated by each client is exponential

distributed,

62

• The services rate of simulation server and client are exponential

distributed.

In the first simulation, we wi l l compare the performance of CASS system with

M/M/1 system for /./^ - A, >0 as the number of clients in the system increase.

And then we wi l l compare the performance of CASS system with M/M/1

system for - A <0 as the number of clients in the system increase.

We have used up to 11 machines connected by a 100 MBS Ethernet

network to perform the simulation, one machine for server and ten machines for

clients. In the simulation, when a client logon in the system, it wi l l search the

active clients list inside the server to find a client group to join. We use group

size of 5, and we assume no client wi l l logoff during simulation. For simplicity,

we assume tasks that must execute in server are only generated when there are

not enough clients in the system to form client group with size of 5. Other tasks

wi l l allocate between a client and server by the MCNP, the server's bid wi l l

contain it's services rate, the percentage of tasks that only allocated to itself and

the average CFP arrival rate seen by itself; the bids send by contractor client

wi l l contain it's services rate and the average tasks arrival rate seen by itself.

The manager client uses these information and equation (6.4) to find out the

probability for task allocation, and then generate the task allocation result

according to that probability. And we assume tasks are equally distributed on

the 5 different functions libraries.

In the first simulation - /I > 0, the simulation client's services rate is

3.5 tasks per second; the tasks arrival generated by each simulation client is 1.0

63

task per second. The simulation server's services rate is 10.0 tasks per second.

Table 6-1 show the percentage of total tasks that must executed by server with

different number of clients in the CASS system. This factor k is not applicable
I

to all clients, as clients wi l l not go off-line in our simulation, hence the forming

of groups are fixed, and only those clients in the group with size smaller than

five wi l l generate that must executed by server. Thus induce the estimated

probability P in different clients wi l l be different, which cause small variation

i l l the average services response time of clients. But when N increases, k wi l l

decrease, and the variation of average service response time of client wi l l also

decrease.
~N n p n n p p p p p no
A- (%) ^ M 40 ^ 0 133 m fs O 0

"n rn |~12 ["13 pM rn n6 n? ns n? r̂ o
k (%) Tl 10 ^ 51 0 5 7 ^ 42 0

Table 6-1: Percentage of tasks {k) that must executed by server with different number of clients in the
CASS system

481 1 1 I 1 1 I 1 .I…“I'""I I I I I -—I
； ： ： i i I i SScS R»«uft
i i i 1 i i i i ‘
(J J j ： t ； 5 ！

4 、…T'.、………、…广 .”、 …了,…………广,…一…卞... 卞…,一…,.,”.………、

1 i I 1 i i I I 1
i 1 i I i i i i i

r — 1 — i — 1 — ； ； ： ! ^ ^ ^ ； ： ; ^ ! ^ .

r 1 — - 1 — .
I , i i 1 i i i
I '¥ \ \ \ \ \
I \ \ 丨 丨 丨 丨 i
I \ II \ \ \ \ \ \

. : — Y ' s — 1 — ！ — ！ — I — 一 ！ — 1 —
j jM ； i i 1 I

” - . . ‘ • . . . ' . I X i � ‘ . ' — . 1 . • ‘ . . , ' “ . . — . ‘ . • 1 — t > . . . ‘ • — i — . ' . . ‘ — r . ' • 1 “
\ i i i i i 1 i 1 i i i 1 I I f 0 2 4 e 8 10 12 14 16 18 20 Number of Clientt in Dw Sy*<«m

Figure 6.8: The analytical and simulation result of the average services response time (in micro-
second) with different number of clients in the CASS system for

64

In figure 6.8 the line with circle show the simulation result of the system

average services response time (in micro-second) vs. the number of clients in

the system for 从. -A > 0. It is according to our analysis result (the line with

cross).

Since bids evaluation can only start after receiving all bids, so we start

bids evaluation after biding deadline. We give 20 msec for contractors to bid.

The average protocol delay of MCNP is about 23 msec in the simulation. And

about 0.8% of the contracting process needs to restart due to cannot receive all

bids before biding deadline has come. For N< 7, P=\ in most of the time. For N

> 7, the average services response time of each client is about ±20 msec

different from the average services response time of the server. This is due to

the factor k in the simulation are not applicable to all clients as some fixed

clients cannot form a group of five clients, hence only these clients wi l l

generate tasks that must process by server and their average service response

time wi l l be smaller.

Comparing figure 6.8 with figure 6.9，it show our CASS system can

support at least one time more clients than M/M/1 system with the same

server's services rate in the simulation. As we doesn't have and actually value

on the factor k in true life, we could not get the exact number that the CASS

system can support in this setting. For less than 20 clients, the average services

response time of our CASS system is bounded below 400 msec, but it has

reaches 500 msec for 8 clients in the M/M/1 system.

65

101 1 1 1 1 1 1 1 1
I I \ I \ I \ j

3 f 善… i— .—…>,i >“4—……L
I r j ； I ； 1 I

] I I • ： \ ： /
I I ： ； ： « ' I » ‘ J I ？ t /

t 7 f i …丨 • — I - 。 ‘ j i.—...‘‘..—I—..•一......i—/.—
I i I I I i i i /
: : : I ‘ J /
s ； ： ： ： ： I I g : i i i /
£ i ； j i i ：/
8 5 i 1 1 丨 丨 ！ y
c ！ i 丨 丨 丨 •； /I
if) i : : f : I / ：

\ \ \ ： \ \ / ： ^ ： ； i i : ？ / < i I ？ ： y : : : J : / I
！ ： I I ： v f ：

j ; i ； t ^ ^ ； \
I J 1 j 1 ;

2 ^ .M I.
j . ‘ I \ \ \

_ I • I ： ： » ' •

广 1 1 1 i I I I
1 2 3 4 5 6 7 B S

Number of Clients in the System

Figure 6.9: The average services response time (in micro-second) with different number of clients
in the M/M/1 system.

I l l the second simulation - Jl < 0 ’ the simulation client's services

rate is 0.5 tasks per second; the task arrival generated by each simulation client

is 1.0 task per second. The simulation server's services rate is 10.0 tasks per

second.

I l l figure 6.10 the line with circle show the simulation result of the

average services response time (in micro-second) vs. number of clients in the

system for 从.—A < 0 . It is according to our analysis result (the line with cross).

66

7 I I —

ftesurt I
I 今 SimtifttiQn ReauH

r A
/

八 ^ ft ft M
o l — — 砂 " " ‘ ‘
0 5 10 15

Number of CSeflt* in Kw System
Figure 6.10: The analytical and simulation result of the average services response

time with different number of clients in the CASS system for la。-人<0.

xio"
1 0 1 1 1 1 1 1 1 1

9 ... /...

8 - / ••

/ —
^ /
a> / v> /
I / -
I /
0> /
0 S / -

5 <u /
M /

1 /
e 4 /
！ /

3 - Z -

一 一 一 - . 一 一
•••丨 , I I 1 I 1

1 2 3 4 5 6 7 0 9
Number of Clients in System

Figure 6.11: The average services response time with different number of clients in
the M/M/1 system.

Comparing figure 6.10 with figure 6.11, it show our CASS system can

support more clients than M/M/1 system with the same server's services rate in

the simulation. But the system services response time is not bounded in this

67

case. And for this setting the CASS system can support up to 19 clients, while

the M/M/1 system can only support 9 clients.

6.6 An Extension of the Load-Balancing Algorithm for
Non-Uniform Client's Service Time Distribution

To extend the load-balancing algorithm for non-uniform client's service time

distribution, we can simply equate the average service response time of the

server with a client's application { ! ,) to find out the server's task allocating

probability Pr specific for that client's application, as long as other assumptions

defined in pervious section are valid. And, due to all clients' application wi l l

equate their average service response time with the one of the central server,

thus the central server is the center point to link up the average service response

of all clients' application. Therefore, all clients' application and the server wi l l

have the same average service response time as expected.

Now, the average services response time of server is:

丄

T - ^ (6.10)

".V

We observed that equation (6.10) is different from equation (6.1), because each

client's application has it's own task allocating probability Pi. For i = 1,2,..., N.

The average service response time of client's application r is:

丄

(6.11)

68

Where jUr is the servicing rate of client r.

We set Ts = 7； to find out the probability P,‘，

1 1 A'
=> = Where G = Y P.

=> - Mr ~ G,.cU — kNX + = IP^aX

吟巧—la (6.12)

As the central server and each client's application can measure the incoming

task arrival rate in real-time, therefore we could find out G” in real-time easily.

Hence, we could use equation (6.12) to find out the task allocation probability

of each client's application for the system with non-uniform client's service

time distribution.

6.7 Summary

‘ We have design a Client AS Server (CASS) system model enabled by the

Modified Contract Net Protocol (MCNP) for the on-line data analysis service of

the Real-time Financial Data Mining system in this chapter. The task allocation

process is simple, as a task wi l l only allocate between two contractors. The

CASS system capacity is or Mk times of the M/M/1 system for server's

services rate: //‘？» od-jUc, where |j,c is the services rate of client's application, X

is the tasks arrival rate generated by each client, and k is the percentage of tasks

that must execute in server. Thus showing a task allocation method combine

with the task allocation protocol (MCNP) can enable the potential benefit of

• 69

employing distributed computing. The CASS system certainly showing the

power of dynamic task allocation: when there are few clients in the system,

most tasks wi l l allocated to server to get a fast execution, but when the number

of clients in the system increased, allocate some tasks to clients for execution

wi l l better than allocating all tasks to the server. And we have design a extend

algorithm for non-uniform client's service time distribution. I f tasks are not

equally distributed on the five function libraries or the task arrival rate

generated by each client's application is different, we wi l l need to make an

extended load-balancing algorithm for these changes using the same way as we

did in section 6.6 to meet the load-balancing criteria. But we would expect that

we could not find the system capacity using the extended load-balancing

algorithm. Also, from the CASS system we cannot show the power of parallel

processing for increasing the speed of executing a number of tasks, as our

implementation of Real-time Financial Data Mining system haven't complete,

thus we don't have real tasks structure to design a model for parallel processing.

70

Chapter 7

Conclusion and Future Work

7.1 Conclusion

The success of a Real-time Financial Data Mining system wi l l depend on the

sophistication and speed of the system, and its ability to analyze and synthesize

information with simple operations by users. Therefore, a super-computing

machine is required for the system, but very few clients have machines that can

meet the requirements of running such a sophisticated system at high speed. By

employing client/server architecture, providing a supercomputing machine in

the server-side, clients with different computing competence can enjoy the

sophisticated system. But due to computing process is highly centralized in the

server-side, clients computing power wi l l be wasted. Therefore, we modify the

contract net protocol and design a task allocation method to enable distributed

computing for tapping the computing power of idle client's PCs in the system.

In this thesis we have outline the system and software architecture for

the Real-time Financial Data Mining system. With the design of the system and

software architecture plus a dynamic task allocation protocol, it is possible to

get benefit from tapping the computing power of idle client's PCs in system and

turning them into a "poor man's supercomputer," reducing the time it takes to

do calculations and simulations for financial forecasting. But there is also an

71

important assumption to make the benefit possible, which is client's

applications need to be in low tasks loading on time average. I f client's

applications often in busy status, then they can provide a relatively less time for

helping other clients applications to perform tasks execution or data mining

actions. A dynamic task allocation protocol is preferred instead of a static one,

because client's applications may go on-line and off-line in an unpredictable

way, and thus static task allocation is not possible in our system.

Then we have explored the potential of the Contract Net Protocol (CNP)

as a dynamic task allocation protocol. We observe that CNP is a simple,

dynamic and decentralize task allocation protocol. The CNP provide a flexible

framework for task allocation. We base on the FIPA contract net Interaction

Protocol (IP) to develop our Modified Contract Net Protocol (MCNP). We

introduce the starting time of bid(s) evaluation in the call for proposal (CFP)

message, which allow manager to set the time for start of bid(s) evaluation

earlier than the bidding deadline. And we add the valid time of the bid message

inside the bid message, which prevent the bid message storing in the protocol

message queue forever. Finally, according to T. Knabe [15], we add the award

confirmation message ensures the contractor received the award and delay the

time of contract commitment. Through our design and implementation of the

MCNP, it's able to handle multiple contracting sessions and send out multiple

CFPs without waiting a contracting process to complete before starting another

one.

72

Further more, we have design a MCNP enabled Client As Server (CASS)

system model. It is shifting the task computing between clients and server

according to the real-time task loading information. The CASS system tapping

the computing power of client's PCs in system and turning them to work with

the middle layer server, increasing the system capacity when compare with

using single-server queueing (M/M/1) system. We have show the CASS system

/I
capacity is or Mk times of the M/M/1 system for server's services rate-

jLis » ctX-jUc, where }.ic is the services rate of client's application, X is the tasks

arrival rate generated by each client, and k is the percentage of tasks that must

execute in server. And the simulation result of the CASS system certainly

showing the power of dynamic task allocation: when there are few clients in the

system, most tasks wi l l allocated to server to get a fast execution, but when the

number of clients in the system increased, allocate some tasks to clients for

execution wi l l better than allocating all tasks to the server. Thus showing a task

allocation method combine with the task allocation protocol (MCNP) can

enable the potential benefit of employing distributed computing.

7.2 Future Work

We have introduced a statistical task allocation method enabled by MCNP in

chapter 6. But certainly we need a new task allocation method using the MCNP

to make parallel computing possible in the Real-time Financial Data Mining

system, in order to show the power of tapping the computing power of idle

73

client's PCs in the system and turning them into a "poor man's supercomputer,"

reducing the time it takes to do calculations and simulations for financial

forecasting. And the continuous of the implementation of the Real-time

Financial Data Mining system wi l l benefit in giving a concrete system and task

structure for the development of the task allocation method for parallel

computing.

74

Bibliography

[1] Smith, R.G., "The Contract Net Protocol: High-Level Communication and

Control i l l a Distributed Problem Solver". IEEE Trans, on Computers C-

29(12):1104-1113, 1980.

[2] Smith, R.G.，and Davis, R” "Frameworks for Cooperation in Distributed

Problem Solving." IEEE Trans, on Systems, Man, and Cybernetics 1 l(l):61-70,

1981.

[3] FIPA Contract Net Interaction Protocol Specification. Available WWW

<URL: http://www.fipa.org/specs/fipa00029/ > (1995).

[4] Gerhard Weiss. "Multiagent Systems, A Modern Approach to Distributed

Artificial Intelligence". The MIT Press, 100-103 & 233-239, 1999.

[5] Schussel, George. '"Client/Server Past, Present, and Future:, 1995.

[6] Edelstein, Herb. "Unraveling Client/Server Architecture." DBMS 7, 5, May,

1994.

[7] Louis [online]. Available WWW <URL: http://www.softis.is> (1995).

[8] Eckerson, Wayne W. "Three Tier Client/Server Architecture: Achieving

Scalability, Performance, and Efficiency in Client Server Applications." Open

Information Systems 10, 1, January, 1995.

[9] Webopedia, "PC Webopedia Definitions and Links". Available WWW

<URL: http://webopedia.internet.com> 1999

75

http://www.fipa.org/specs/fipa00029/
http://www.softis.is
http://webopedia.internet.com

[10] Sycara, K., Decker, K., Paiinu, A., Williamson, M. and Zeng, D.，

"Distributed intelligent agents." IEEE Expert, Intelligent Systems and their

Application, ll(6):36-45, 1996.

[11] Paolucci, M., Onn Shehory and Sycara, K., "Interleaving Planning and

Execution in a Multiagent Team Planning Environment." In Electronic

Transactions of Artificial Intelligence, 2001.

[12] Paolucci, M., Shehory, O.，Sycara, K., Kalp, D. and Paiinu, A. "A Planning

Component for RETSINA Agents." Lecture Notes in Artificial Intelligence,

Intelligent Agents VI. M. Wooldridge and Y. Lesperance (Eds.), forthcoming.

[13] K. Decker, A.S. Pannu, K. Sycara, and M. Williamson, "Designing

Behaviors for Information Agents". Proceedings of the First International

Conference on Autonomous Agents, February, 1997.

[14] Sycara, K., Williamson, M., and Decker, K. "Unified Information and

Control Flow in Hierarchical Task Networks." Working Notes of the AAAI-96

Workshop, "Theories of Action, Planning, and Control. “ Aug., 1996.

[15] T. Kiiabe, M. Schillo, and K. Fischer. "Improvements to the FIPA contract

net protocol for performance increase and cascading applications." In

International Workshop for Multi-Agent Interoperability at the German

Conference on AI (KI-2002), 2002.

[16] Sandholm, T. W. and Lesser, V. R.’ "Advantages of a Leveled

Commitment Contracting Protocol". Proceedings of AAAI-96, Portland, OR,

126-133, 1996.

76

[17] Hluchy L., Dobrucky M., Astalos' J.: "Hybrid Approach to Task Allocation

in Distributed Systems." Computers and Artificial Intelligence, Vol.17, No.5,

1998, pp. 469-480.

[18] A. Takefusa, H. Casanova, S. Matsuoka, and F. Berman. "A Study of

Deadline Scheduling for Client-Server Systems on the Computational Grid."

Proceedings of 10th IEEE International Symposium on High Performance

Distributed Computing (HPDC-10), pp. 406-415, 2001.08.

77

•

DbSTiDhOO

saLJBjqLH xhOD

