
A Progressive Stochastic Search Method for
Solving Constraint Satisfaction Problems

广 {

Bryan Chi-ho Lam

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Philosophy

in

Computer Science and Engineering

© T h e Chinese University of Hong Kong

August, 2003

The Chinese University of Hong Kong holds the copyright of this thesis.

Any person(s) intending to use a part or the whole of the materials in this

thesis in a proposed publication must seek copyright release from the Dean of

the Graduate School.

fp(3 0 • l)
1 4 - —

UNIVERSITY y^/J

^t^^LIBRARY SYSTEM/^//

%

Abstract

Constraint Satisfaction Problem (CSP) provides a powerful tool for model-

ing and solving many real-life problems and they are NP-complete in general.

While traditional systematic search cannot find solutions within a reasonable

time when solving large-scale and hard CSPs, stochastic search methods have

attracted much attention of the research community. A typical stochastic

search starts at a random point in a search space and moves from one point

to its neighbor iteratively, provided that the new point gives a better cost

value. Traditionally, a stochastic solver escapes from local optima or leaves

plateaus by random restart or heuristic learning. In this thesis, we propose

Progressive Stochastic Search (PSS) and its variants for solving binary CSPs.

One characteristic of PSS is that we maintain a list of variables, which dic-

tates the sequence of variables to repair. When a variable is designated to

be repaired, it always has to choose a new value unless its original value does

not cause any violations. Intuitively, the search can be thought to be mainly

driven by a "force" so that the search is able to "rush through" the local min-

ima and plateaus. The search paths are also slightly "marked" as the search

proceeds. Random restarts are no longer necessary, and expensive heuristic

learning is replaced by simple path marking. Timing results show that this

approach outperforms CSVC implementations in iV-Queens, Latin squares,

random permutation generation problems and random CSPs, while it fails to

win CSVC implementations in quasigroup completion problems and increas-

ing permutation problems. This prompts an interesting new research direction

i

9*

in the design of stochastic search schemes.

J •.

i •

%

： . . • •

I.

ii

參

摘要

約束滿足問題（CSP)為許多實際生活中的問題提供了一個強大的建模

和求解工具。這些實際生活上的問題一般都是NP完全的。當傳統的系統搜

素未能在合理的時間内對較大型和較困難的約束滿足問題求解時，隨機搜

索吸引了研究人員的注意。一般的隨機搜索起始於一個隨機點’然後重覆

地移向一個相鄰並具有較佳代價值的點。傳統上，隨機搜索過程在逃離局

部最優位置或離開平原時’會使用隨機從新啟動或者啟發式學習法。在本

論文中，我們提出一個對二元約束滿足問題求解的「進取性隨機搜索」方

法(PSS)以及它的一些變種。進取性隨機搜索的其中一個主要特點為使用

一個變量表指定變量的修復次序。當一個變量被指定修復的時候，除非它

原本所取的值符合所有約束，否則變量會取一個新的值。從直覺意義上來

說，可以想像這種搜索主要被一種「力」驅使，「衝過」局部最小位置或

平原。當搜索進行時’搜索路徑亦被輕微留下記號。我們再不需要使用隨

機從新啟動，而昂貴的啟發式學習法亦被簡單的路徑記錄取代。實驗結果

顯示’這種新的搜索在解決N個皇后問題、拉丁方格、隨機排列i成問題

和隨機約束滿足問題時的表現，能明顯地勝過CSDC。可是，它在解決准

群完成問題和漸增的排列生成問題時的表現卻不及a S D L �這個結果在隨

機搜索方案的設計上提示了一個有趣的新研究方向。

iii

Acknowledgments

I would like to thank all those people who made this thesis possible and a

memorable experience for me.

Firstly, I would like to express my sincere gratitude to m y supervisor, Pro-

fessor Ho-fung Leung. Without his guidance, advices and encouragements, this

thesis could not be presented. I wish to thank for his generosity and valuable

discussions for the research.

I also deeply appreciate Professor Jimmy Ho Man Lee for giving me the

lectures of Constraint Satisfaction. He also gave me valuable suggestions and

comments for improving this work. I would like to thank him for providing

the source code of CSVC and all benchmarks used in the experiments of this

thesis.

I am grateful to the other members of constraint research group for the

wonderful discussions and a pleasant working atmosphere.

Finally, I would like to take this opportunity to express m y deepest appre-

ciation to m y family and Miss Tammy Pui Shan Chan for the constant care

and support.

iv

Contents

1 Introduction 1

2 Background 4

2.1 Constraint Satisfaction Problems 4

2.2 Systematic Search 5

2.3 Stochastic Search 6

2.3.1 Overview 6

2.3.2 G E N E T 8

2.3.3 CSVC 10

2.3.4 Adaptive Search 12

2.4 Hybrid Approach 13

3 Progressive Stochastic Search 14

3.1 Progressive Stochastic Search 14

3.1.1 Network Architecture ： . . . 15

3.1.2 Convergence Procedure 16

3.1.3 An Illustrative Example 21

3.2 Incremental Progressive Stochastic Search 23

3.2.1 Network Architecture 24

3.2.2 Convergence Procedure 24

3.2.3 An Illustrative Example 25

3.3 Heuristic Cluster Selection Strategy 28

XV

4 Experiments 31

4.1 iV-Queens Problems 32

4.2 Permutation Generation Problems 53

4.2.1 Increasing Permutation Problems 54

4.2.2 Random Permutation Generation Problems 75

4.3 Latin Squares and Quasigroup Completion Problems 96

4.3.1 Latin Square Problems 96

4.3.2 Quasigroup Completion Problems 118

4.4 Random CSPs 120

4.4.1 Tight Random CSPs 139

4.4.2 Phase Transition Random CSPs 156

5 Concluding Remarks 159

5.1 Contributions 159

5.2 Future Work 161

vi

List of Figures

2.1 An example of G E N E T network 9

3.1 The network architecture of PSS 16

3.2 The algorithm of PSS • 22

3.3 PSS: 4-Queens example 23

3.4 The algorithm of IPSS 26

3.5 IPSS: 4-Queens example 27

3.6 max-PSS: 4-Queens example 29

4.1 The mean time results on iV-queens 33

4.2 Numbers of violations and total inputs in each step of PSS and

max-PSS on 100-Queens problem (average run-time case) 35

4.3 Numbers of violations and total inputs in each step of IPSS and

max-IPSS on 100-Queens problem (average run-time case) . . . 36

4.4 Numbers of violations and objective values in each step of £ 5 P £ (G E N E T)

and CSVC{IMP) on 100-Queens problem (average run-time case) 37

4.5 Numbers of violations and total inputs in each step of PSS and

max-PSS on 100-Queens problem (short run-time case) 38

4.6 Numbers of violations and total inputs in each step of IPSS and

max-IPSS on 100-Queens problem (short run-time case) 39

4.7 Numbers of violations and objective values in each step of £5P/:(GENET)

and £iSr>£(IMP) on 100-Queens problem (short run-time case) 40

vii

4.8 Numbers of violations and total inputs in each step of PSS and

max-PSS on 100-Queens problem (long run-time case) 41

4.9 Numbers of violations and total inputs in each step of IPSS and

max-IPSS on 100-Queens problem (long run-time case) 42

4.10 Numbers of violations and objective values in each step of £<SP£(GENET)

and CSVC{IMF) on 100-Queens problem (long run-time case) . 43

4.11 Numbers of violations and total inputs in each step of PSS and

max-PSS on 200-Queens problem (average run-time case) 44

4.12 Numbers of violations and total inputs in each step of IPSS and

max-IPSS on 200-Queens problem (average run-time case) . . . 45

4.13 Numbers of violations and objective values in each step of CSI)C{GENET)

and £«SP>C(IMP) on 200-Queens problem (average run-time case) 46

4.14 Numbers of violations and total inputs in each step of PSS and

max-PSS on 200-Queens problem (short run-time case) 47

4.15 Numbers of violations and total inputs in each step of IPSS and

max-IPSS on 200-Queens problem (short run-time case) 48

4.16 Numbers of violations and objective values in each step of CST>C{GENET)

and CS'DC(IMF) on 200-Queens problem (short run-time case) 49

4.17 Numbers of violations and total inputs in each step of PSS and

max-PSS on 200-Queens problem (long run-time case) 50

4.18 Numbers of violations and total inputs in each step of IPSS and

max-IPSS on 200-Queens problem (long run-time case) 51

4.19 Numbers of violations and objective values in each step of CSVC{GENET)

and CSVC(IMP) on 200-Queens problem (long run-time case) . 52

4.20 The mean time results on increasing permutation problems . . . 55

4.21 Numbers of violations and total inputs in each step of PSS and

max-PSS on increasing permutation problem with n = 10 (av-

erage run-time case) 56

viii

4.22 Numbers of violations and total inputs in each step of IPSS

and max-IPSS on increasing permutation problem with n = 10

(average run-time case) 57

4.23 Numbers of violations and objective values in each step of £«SP£(GENET)

and £OT£(IMP) on increasing permutation problem with n =

10 (average run-time case) 58

4.24 Numbers of violations and total inputs in each step of PSS and

max-PSS on increasing permutation problem with n = 10 (short

run-time case) 59

4.25 Numbers of violations and total inputs in each step of IPSS

and max-IPSS on increasing permutation problem with n = 10

(short run-time case) 60

4.26 Numbers of violations and objective values in each step of CSVC{GENET)

and CSVC(IMF) on increasing permutation problem with n =

10 (short run-time case) 61

4.27 Numbers of violations and total inputs in each step of PSS and

max-PSS on increasing permutation problem with n = 10 (long

run-time case) 62

4.28 Numbers of violations and total inputs in each step of IPSS and

max-IPSS on increasing permutation problem with n = 10 (long

run-time case) 63

4.29 Numbers of violations and objective values in each step of CSVC(GE1^ET)

and CSVC(IMF) on increasing permutation problem with n =

10 (long run-time case) - 64

4.30 Numbers of violations and total inputs in each step of PSS and

max-PSS on increasing permutation problem with n = 20 (av-

erage run-time case) 55

ix

4.31 Numbers of violations and total inputs in each step of IPSS

and max-IPSS on increasing permutation problem with n = 20

(average run-time case) 66

4.32 Numbers of violations and objective values in each step £ 5 P £ (G E N E T)

and CSVC{IMF) on increasing permutation problem with n =

20 (average run-time case) 67

4.33 Numbers of violations and total inputs in each step of PSS and

max-PSS on increasing permutation problem with n = 20 (short

run-time case) 68

4.34 Numbers of violations and total inputs in each step of IPSS

and max-IPSS on increasing permutation problem with n = 20

(short run-time case) 69

4.35 Numbers of violations and objective values in each step of £5I>£(GENET)

and CSVC(IMF) on increasing permutation problem with n =

20 (short run-time case) 70

4.36 Numbers of violations and total inputs in each step of PSS and

max-PSS on increasing permutation problem with n = 20 (long

run-time case) 71

4.37 Numbers of violations and total inputs in each step of IPSS and

max-IPSS on increasing permutation problem with n = 20 (long

run-time case) 72

4.38 Numbers of violations and objective values in each step of G E N E T)

and CSVC(IMP) on increasing permutation problem with n =

20 (long run-time case) • 73

4.39 The mean time results on random permutation generation prob-

lems 77

4.40 Numbers of violations and total inputs in each step of PSS and

max-PSS on permutation generation problem with n = 50 (av-

erage run-time case) 78

XV

4.41 Numbers of violations and total inputs in each step of IPSS

and max-IPSS on permutation generation problem with n = 50

(average run-time case) 79

4.42 Numbers of violations and objective values in each step of (GENET)

and CSVC{IMF) on permutation generation problem with n =

50 (average run-time case) 80

4.43 Numbers of violations and total inputs in each step of PSS

and max-PSS on permutation generation problem with n = 50

(short run-time case) 81

4.44 Numbers of violations and total inputs in each step of IPSS

and max-IPSS on permutation generation problem with n = 50

(short run-time case) 82

4.45 Numbers of violations and objective values in each step £<SP£(GENET)

and CST>C{IMF) on permutation generation problem with n =

50 (short run-time case) 83

4.46 Numbers of violations and total inputs in each step of PSS and

max-PSS on permutation generation problem with n = 50 (long

run-time case) 84

4.47 Numbers of violations and total inputs in each step of IPSS

and max-IPSS on permutation generation problem with n = 50

(long run-time case) 85

4.48 Numbers of violations and objective values in each step of (GENET)

and >C5r>£(IMP) on permutation generation problem with n =

50 (long run-time case) 86

4.49 Numbers of violations and total inputs in each step of PSS and

max-PSS on permutation generation problem with n = 100 (av-

erage run-time case) 87

xi

• I

4.50 Numbers of violations and total inputs in each step of IPSS and

max-IPSS on permutation generation problem with n = 100

(average run-time case) 88

4.51 Numbers of violations and objective values/total inputs in each

step CSVC(GENET) and CSVC{IMF) on permutation gener-

ation problem with n = 100 (average run-time case) 89

4.52 Numbers of violations and total inputs in each step of PSS and

max-PSS on permutation generation problem with n = 100

(short run-time case) 90

4.53 Numbers of violations and total inputs in each step of IPSS and

max-IPSS on permutation generation problem with n = 100

(short run-time case) 91

4.54 Numbers of violations and objective values in each step CSVC{GENET)

and CSVC{IMF) on permutation generation problem with n =

100 (short run-time case) 92

4.55 Numbers of violations and total inputs in each step of PSS and

max-PSS on permutation generation problem with n = 100

(long run-time case) 93

4.56 Numbers of violations and total inputs in each step of IPSS and

max-IPSS on permutation generation problem with n = 100

(long run-time case) 94

4.57 Numbers of violations and objective values in each step of CSVC{GENET)

and £5P£(IMP) on permutation generation problem with n =

100 (long run-time case) •• 95

4.58 The mean time results on Latin square problems 98

4.59 Numbers of violations and total inputs in each step of PSS and

max-PSS on Latin square problem with N = 10 (average run-

time case) 100

xii

4.60 Numbers of violations and total inputs in each step of IPSS

and max-IPSS on Latin square problem with N = 10 (average

run-time case) 101

4.61 Numbers of violations and objective values in each step of £5X)£(GENET)

and £SVjC(IMP) on Latin square problem with N = 10 (aver-
參

age run-time case) 102

4.62 Numbers of violations and total inputs in each step of PSS and

max-PSS on Latin square problem with N = 10 (short run-time

case) 103

4.63 Numbers of violations and total inputs in each step of IPSS

and max-IPSS on Latin square problem with TV = 10 (short

run-time case) 104

4.64 Numbers of violations and objective values in each step jCSVjC(GENET)

and jCSVjC(IMP) on Latin square problem with N = 10 (short

run-time case) 105

4.65 Numbers of violations and total inputs in each step of PSS and

max-PSS on Latin square problem with N = 10 (long run-time

case) 106

4.66 Numbers of violations and total inputs in each step of IPSS and

max-IPSS on Latin square problem with = 10 (long run-time

case) 107

4.67 Numbers of violations and objective values in each step of £<SD£(GENET)

and £SVjC(IMP) on Latin square problem with iV = 10 (long

run-time case) 108

4.68 Numbers of violations and total inputs in each step of PSS and

max-PSS on Latin square problem with N = 35 (average run-

time case) 109

xiii

4.69 Numbers of violations and total inputs in each step of IPSS

and max-IPSS on Latin square problem with N = 35 (average

run-time case) 110

4.70 Numbers of violations and objective values in each step of £ 5 D £ (G E N E T)

and CSVCilM?) on Latin square problem with N = 3b (aver-

age run-time case) Ill

4.71 Numbers of violations and total inputs in each step of PSS and

max-PSS on Latin square problem with N = 35 (short run-time

case) 112

4.72 Numbers of violations and total inputs in each step of IPSS

and max-IPSS on Latin square problem with iV = 35 (short

run-time case) 113

4.73 Numbers of violations and objective values in each step of CSVC{GENET)

and £«SP£(IMP) on Latin square problem with N = 35 (short

run-time case) 114

4.74 Numbers of violations and total inputs in each step of PSS and

max-PSS on Latin square problem with N = 35 (long run-time

case) 115

4.75 Numbers of violations and total inputs in each step of IPSS and

max-IPSS on Latin square problem with AT = 35 (long run-time

case) 116

4.76 Numbers of violations and objective values in each step of CSVC{GENET)

and CSVC{IMF) on Latin square problem with A^ = 35 (long

run-time case) 117

4.77 The mean time results on quasigroup completion problems . . .119

4.78 Numbers of violations and total inputs in each step of PSS and

max-PSS on Q C P of order 15 (average run-time case) 121

4.79 Numbers of violations and total inputs in each step of IPSS and

max-IPSS on Q C P of order 15 (average run-time case) 122

xiv

4.80 Numbers of violations and objective values in each step of £<SX>£(GENET)

and CSVC(IMF) on Q C P of order 15 (average run-time case) . 123

4.81 Numbers of violations and total inputs in each step of PSS and

max-PSS on Q C P of order 15 (short run-time case) 124

4.82 Numbers of violations and total inputs in each step of IPSS and

max-IPSS on Q C P of order 15 (short run-time case) 125

4.83 Numbers of violations and objective values in each step of £ 5 P £ (G E N E T)

and CSVC{IMP) on Q C P of order 15 (short run-time case) . . . 126

4.84 Numbers of violations and total inputs in each step of PSS and

max-PSS on Q C P of order 15 (long run-time case) 127

4.85 Numbers of violations and total inputs in each step of IPSS and

max-IPSS on Q C P of order 15 (long run-time case) 128

4.86 Numbers of violations and objective values in each step of (GENET)

and CSVC(IMF) on Q C P of order 15 (long run-time case) . . . 129

4.87 Numbers of violations and total inputs in each step of PSS and

max-PSS on Q C P of order 16 (average run-time case) 130

4.88 Numbers of violations and total inputs in each step of IPSS and

max-IPSS on Q C P of order 16 (average run-time case) 131

4.89 Numbers of violations and objective values in each step of £<SX>£(GENET)

and CSVC{IMF) on Q C P of order 16 (average run-time case) . 132

4.90 Numbers of violations and total inputs in each step of PSS and

max-PSS on Q C P of order 16 (short run-time case) 133

4.91 Numbers of violations and total inputs in each step of IPSS and

max-IPSS on Q C P of order 16 (short run-time case) 134

4.92 Numbers of violations and objective values in each step of £vSD£(GENET)

and CSVC{IMF) on Q C P of order 16 (short run-time case) . . . 135

4.93 Numbers of violations and total inputs in each step of PSS and

max-PSS on Q C P of order 16 (long run-time case) 136

XV

4.94 Numbers of violations and total inputs in each step of IPSS and

max-IPSS on Q C P of order 16 (long run-time case) 137

4.95 Numbers of violations and objective values in each step of (GENET)

and CSVCilMP) on Q C P of order 16 (long run-time case) . . . 138

4.96 Numbers of violations and total inputs in each step of IPSS and

max-IPSS on random CSP with n = 120 (average run-time case) 141

4.97 Numbers of violations and objective values in each step of £<SD£(GENET)

and CSVC(IMP) on random CSP with n = 120 (average run-

time case) 142

4.98 Numbers of violations and total inputs in each step of IPSS and

max-IPSS on random CSP with n = 120 (short run-time case) . 143

4.99 Numbers of violations and objective values in each step of £ 5 P £ (G E N E T)

and CSVC{IMF) on random CSP with n == 120 (short run-time

case) 144

4.100Numbers of violations and total inputs in each step of IPSS and

max-IPSS on random CSP with n = 120 (long run-time case) . . 145

4.101Numbers of violations and objective values in each step of CSVC(GENET)

and CSVC{IMF) on random CSP with n = 120 (long run-time

case) 146

4.102Numbers of violations and total inputs in each step of IPSS and

max-IPSS on random CSP with n = 170 (average run-time case) 147

4.103Numbers of violations and objective values in each step of >C<SX>£(GENET)

and CSVC{IMF) on random CSP with n = 170 (average run-

time case) 148

4.104Numbers of violations and total inputs in each step of IPSS and

max-IPSS on random CSP with n = 170 (short run-time case) . 149

4.105Numbers of violations and objective values in each step of £<SP£(GENET)

and CSVC{IMF) on random CSP with n = 170 (short run-time

case) 150

xvi

*f

4.106Numbers of violations and total inputs in each step of IPSS and

max-IPSS on random CSP with n = 170 (long run-time case) . . 151
4.107Numbers of violations and objective values in each step of £«SD£(GENET)

and CSVC{IMF) on random CSP with n = 170 (long run-time

case) 152

4.108Numbers of violations and total inputs in each step of PSS and

max-PSS on random CSP with n = 120 153

4.109Numbers of violations and total inputs in each step of PSS and

max-PSS on random CSP with n = 170 154

4.110The mean time results on random CSPs 155

xvii

0>

List of Tables

4.1 PSS and its variants on A/'-Queens problems 32

4.2 CSVC(GENET) and ̂ ^ ^ (I M P) on iV-queens problems . . . 33

4.3 PSS and its variants on increasing permutation problems • • . . 54

4.4 >C5P£(GENET) and CSVC{IMF) on increasing permutation

problems 54

4.5 PSS and its variants on random permutation generation problems 76

4.6 CSVC{GENET) and CSVC{IMP) on random permutation gen-

eration problems 76

4.7 PSS and its variants on Latin square problems 97

4.8 CSVC(GE^ET) and CSVC(IMF) on Latin square problems . . 97

4.9 PSS and its variants on quasigroup completion problems118

4.10 CSVC{GENET) and on quasigroup completion

problems 119

4.11 PSS and its variants on random CSPs 139

4.12 CSVC{GEmT) and CSVC{IMF) on random CSPs ..••••.. 140

4.13 PSS and its variants on phase transition random CSPs 156

4.14 CSVC{GENET) and CSVC{IMP) on phase transition random

CSPs 157

4.15 PSS and its variants slightly easier phase transition random CSPs 158

4.16 CSVC{GENET) and £SD£(IMP) on slightly easier phase tran-

sition random CSPs 158

xviii

Chapter 1

Introduction

Constraint Satisfaction Problem (CSP) [15] provides a powerful tool for mod-

eling and solving many real-life problems. A CSP is conventionally defined as

a problem of finding a consistent assignment of discrete values to a finite set

of variables such that the assignment satisfies a finite set of given constraints

over these variables.

CSPs are NP-complete in general. Many solvers for CSPs have been de-

veloped over the past three decades. The traditional approach is systematic

search methods [13, 19] which are complete algorithms. However, they cannot

find solutions within a reasonable time when solving large-scale and hard CSPs.

An alternative approach, stochastic search methods [4, 5, 6’ 9，10, 30, 31] are

incomplete, but their fast solving speed often compensates this drawback.

A typical stochastic search method is a hill-climbing algorithm, which in-

cludes a cost function that gives a value to every point in a search space, and a

neighborhoods function that defines the neighbors of a particular point in the

search space. The search moves from a point in the search space to a neighbor-

ing point if the latter has a better cost value than the current point. This can

be interpreted as that the move is driven solely by "potential energy", though

which better neighboring point to go to is usually determined randomly. The

goal of the algorithm is to reach a point in the search space that has the op-

timal value according to the cost function, which corresponds to a solution to

1

Chapter 1 Introduction 2 ,

the original CSP. For solving CSPs, a typical cost function used is counting

the number of conflicts [17]. The problem with hill-climbing algorithms is that

they can be trapped in local optima, and lose direction in plateaus.

Traditionally, a stochastic solver escapes from local optima or leaves plateaus

by random restart or heuristic learning. The former approach relies on the fact

that there is a non-zero probability that a solution will be found after the search

restarts at a randomly chosen point in the search space, if solutions really ex-

ist. The latter approach attempts to change the landscape of the search space

as depicted by the cost function, until the local optimum or plateau the search

is being trapped in ceases to exist.

In this thesis, we propose the Progressive Stochastic Search (PSS) and its

variants for solving binary CSPs. One characteristic of PSS is that we maintain

a list of variables, which dictates the sequence of variables to repair. When a

variable is designated to be repaired, it always has to choose a new value even

if its original value should give the best cost value. Intuitively, the search can

be thought to be mainly driven by a "force" so that the search is able to "rush

through" the local minima and plateaus. The search paths are also slightly

"marked" as the search proceeds so as to help gathering information of the

search space. Random restarts are no longer necessary, and expensive heuristic

learning is replaced by simple path marking. Timing results show that this

approach outperforms /:SV£(GENET) and £SV/:(IMP) in N-Queens, Latin

squares, random permutation generation problems and random CSPs, while

it fails to win £ 5 P £ (G E N E T) and £SV/:(IMP) in quasigroup completion

problems and increasing permutation generation problems. This prompts an

interesting new research direction in the design of stochastic search schemes.

This thesis is organized as follows. In Chapter 2，we briefly introduce

Constraint Satisfaction Problem and review some solving techniques published

in the literatures. These solving techniques can traditionally be classified into

two categories: systematic search and stochastic search. As our work can be

Chapter 1 Introduction 3 ,

classified into the category of stochastic search, some related work are also

given. These include G E N E T , CSVC and Adaptive Search. In recent years,

a hybrid approach of systematic and stochastic search has raised interest in

CSP community. A brief introduction on this hybrid approach is also given

in Chapter 2. The Progressive Stochastic Search scheme and its variants are
參

described in Chapter 3. Experiments on benchmarking problems and some

analysis of results are presented in Chapter 4. Chapter 5 summarizes our

contributions and sheds light on future work.

Chapter 2
參

Background

In this chapter, we provide background information related to our research.

W e give a brief introduction on Constraint Satisfaction Problem (CSP). In

addition, a summary of CSP solving techniques is also presented. These solving

techniques can traditionally be classified into two categories: systematic search

and stochastic search. As our work can be classified into the category of

stochastic search, some related work is also given in the section of stochastic

search. In recent years, a hybrid approach of systematic and stochastic search

has raised interest in CSP community. A brief introduction on this hybrid

approach is also given at the end of this chapter.

2.1 Constraint Satisfaction Problems

A CSP < > is a tuple consisting of a set V of variables, a set V of

domains and a set C of constraints. Each variable îi G V is associated with a

domain d[vi) G V which contains the set of possible values for vi. A constraint

c G C ranging over a number of variables specifies the combination(s) of values

these variables can take. A binary CSP is a CSP with unary and binary

constraints only.̂ A solution of a CSP is an assignment of values to all

variables such that all constraints are satisfied.

iNote that any n-ary constraints CSP (n > 2) can be transformed to an equivalent binary
CSP [23].

4

Chapter 2 Background 5 „.

Numerous algorithms have been developed for solving CSPs. These algo-

rithms can be typically classified into two categories: systematic search and

stochastic search.

2.2 Systematic Search

The traditional search method used in solving CSPs is chronological back-

tracking tree search. Variables are assigned values from their domains one

after another. After a variable is assigned a value, the currently partial as-

signment is checked for consistency. If it violates any of the constraints, the

currently considered variable is assigned an alternative value. If no value is

available for this variable, the most recently variable that has been assigned a

value is revised. The above process is repeated until either a solution is found

or all partial assignments have been checked for consistency. In the latter case,

the chronological backtracking algorithm concludes that no solution exists for

the CSP.

Various constraint propagation techniques can be combined with backtrack-

ing tree search to enhance the solving efficiency [13, 19]. These techniques

include node consistency [15], arc consistency [15], path consistency [15] and

bounds consistency [16]. The purpose of these techniques is to remove incon-

sistent values from the domains of variables. As a result, the search space

in the search tree is reduced. These algorithms virtually explore the whole

search tree systematically by depth-first search. Therefore, they are complete

algorithms that guarantee to find a solution if it exists, and to report unsatis-

fiability otherwise. Various variable- and value-ordering heuristics [2, 11] have

been investigated to improve the search speed. These heuristics aim at reduc-

ing the number of backtracks required in a search. However, systematic search

generally becomes less efficient when solving large-scale and hard CSPs due to

the NP-complete nature of CSP.

Chapter 2 Background 26 „.

2.3 Stochastic Search

2.3.1 Overview

Another category of approaches to search, stochastic search has drawn 匪ch

attention of the Artificial Intelligence (AI) community. This category of in- •

complete algorithms often solve some standard benchmarking problems, such

as iV-Queens and graph-coloring, in orders of magnitude better than the tradi-
tional tree search approach. Typical stochastic search algorithms first generate

a complete initial variable assignment (probably random and inconsistent) and

then repair the assignment by heuristic local search until a solution is found.

The heuristic local search repairs the variable assignment with reference to a

cost function. A possible cost function used is one that counts the number

of constraint violations by the variable assignment. A variable is selected and

repaired by being assigned a new value that optimizes the cost function. A

drawback of this category of solving methods is that the execution can eas-

ily be trapped in local optima, i.e., non-solution states in which no further

improvement can be made. Two main approaches have been developed for

escaping local optima. One approach is random restart [17]. Although it is

simple and intuitive, information generated in a search process is completely

lost. Another approach associates weights with the constraints and defines

the cost function as a weighted sum of constraints violations [4, 6, 18’ 28, 30).

When a local optimum is reached, the weights are updated. This helps not

only escape from the local optima but also guides the search to solution states.

In the last decade, various stochastic search variants have been proposed,

which use different cost functions, variable-orderings and escape strategies to

boost the performance. In the context of satisfiability problem (SAT), G S A T

27] is a greedy local search method. Several extensions, which integrated with

a random walk [25, 26], clause weight learning [7, 25], averaging in previous

assignments [25] and tabu-like move restrictions [8], improve the original G S A T

Chapter 2 Background 27 „.

in some kinds of SAT problems. The Lagrange multiplier method is a well-

known technique for solving constrained optimization problems. W a h et al.

extend the classical Lagrange multiplier method to handle discrete problems

28’ 34]. Their extention, called D L M (Discrete Lagrangian-based global-search

method), uses the Lagrangian function as a cost function and a complicated

weight update scheme to escape from local minimum.

GENET [6, 30] is a local search approach for solving binary CSPs. It uses

iterative repair method to find a solution to the CSP. A heuristic learning rule

is applied to escape from local minima and to help preventing the network from

being trapped in the same local minima again. Several variants of G E N E T are

developed for solving different kinds of CPS's. Fuzzy G E N E T [33] is proposed

to solve binary fuzzy CSPs. E-GENET [14] extends G E N E T to handle non-

binary constraints. CSVC [4] basically explains the behaviour of G E N E T as

a discrete Lagrangian search algorithm and improves on G E N E T by choosing

different parameters. Guided Local Search (GLS) [31] extends G E N E T to

handle combinatorial optimization problems. Adaptive Search [5] introduces

an error function to determine which variable is repaired at next. For each

constraint, it is not associated with a weight but an error function to represent

the "degree of satisfaction". Each variable is associated with an error. The

error is the sum of the error function values of all constraints in which the

variable is involved. The variable with the maximum error will be selected to

repair in the next iteration.

In the following sections, we give details of other research work that are

related to our work. These include G E N E T , CSVC and Adaptive Search. W e

first give a summary of G E N E T because our proposed method, Progressive

Stochastic Search (PSS) is a heuristic search method for solving binary CSPs

and the modeling of CSP in PSS is similar to that in G E N E T . CSVC is a dis- .

Crete Lagrange multiplier method for solving integer constrained minimization

Chapter 2 Background 8 „.

problems. One of the variants of CSVC, CSVC{GENET), is a Lagrangian re-

construction of G E N E T . CSVC(GENET) is the most efficient implementation

of G E N E T that we know of. W e use the performance of CSVC{GENET) in

experiments to compare the performance of PSS and its variants. A descrip-

tion of CSVC is given next. Adaptive Search is a heuristic search method for

solving CSPs. The key idea of this method is using variable-based information

to decide which variable should be repaired at next. This idea is closely related

to the list of variables-to-be-repaired used in PSS.

2.3.2 GENET

G E N E T [6，30] is a local search approach for solving CSPs with binary con-

straints. G E N E T uses iterative repair method to find a suitable assignment of

variables. Once it is trapped in a local minimum, a heuristic learning rule is

applied to escape from the local minimum and to avoid the network settled in

the same local minimum again.

G E N E T first models a given binary CSP < > as a neural network.

Each node in the network represents an assignment of a value to a variable.

The state Si of node i is either 1 for on or 0 for off. If a node is on, it means the

corresponding value is being assigned to the variable. A duster is the set of

all nodes that represents the assignments of the same variable. A connection

between two nodes of different clusters represents an incompatible .tuple of a

binary constraint. Each connection contains a weight, which is initialized to

-1. The weight of the connection between node i and j is denoted as Wij.

The input to a node is the weighted sum of all its connected nodes' states.

At any time, only one node in each cluster is on. Therefore, every state of

the network represents an assignment of values to the variables from their

respective domains. A solution to the binary CSPs is at any network state, in

which no two on nodes are connected to each others. For instance, the G E N E T

Chapter 2 Background 9 „.

network of a CSP with V 二 幻’ d{X) = d(Y) = d{Z) = {1,2,3} and

C = {X + y > 3, y + Z > 3} is showed in Figure 2.1.

w w w 3
X Y z

Figure 2.1: An example of G E N E T network

G E N E T starts with randomly turning on one node in each .duster. In each

convergence cycle, every node in each cluster calculates its input. The node

with maximum input in each cluster is turned on and the others are turned

off. Note that the node with maximum input in each cluster represents the

assignment with the fewest number of constraint violations. If there are more
than one node have maximum input, a tie breaking system is run: if one of

them was on in the previous cycle, it will remain on. If all the nodes were off

in the previous cycle, a random choice is made. This is to avoid chaotic or

cyclic wandering of the network states.

When the network reaches to a stable state, i.e., no more changes to the

on nodes in the network, G E N E T checks if that state represents a solution.

A solution state is all on nodes have zero input. Otherwise, the network is
trapped in a local minimum.

When G E N E T settles in a local minimum, it represents that there are some

on label nodes that still receive negative input, i.e., some constraints are still

violated. The cause of this situation is the variable assignments are based on

the local information received at each cluster of nodes. To escape from the lo-

cal minima, a heuristic learning rule is used to update the weight of connections

w[j = Wij - Si X Sj

Chapter 2 Background 10 •

Note that only the connections between two on nodes are being updated and

the value of weight is decreased by one each time. Therefore, after sufficient

learning cycles, the on node i and the on node j will not be the winner in its

cluster. Since the weights of the connections leading to local minima has been

updated, the heuristic learning rule avoids the network settling in the same

local minima again.

2.3.3 CSVC

CSVC [4] is a discrete Lagrange multiplier method [28] for solving integer

constrained minimization problems. CSVC has five parameters and so it has

several variants. CSVC(GE^ET), one of the variants, is a Lagrangian recon-

struction of G E N E T . Choi et al [4] establish a relationship between G E N E T

and discrete Lagrange multiplier methods. CSVC{GENET) is shown to have

the same performance as the original G E N E T implementation. The best vari-

ant of CSVC reported in [4] outperforms the reconstructed G E N E T by an

order of magnitude. To solve a binary CSP, CSVC first converts the given

binary CSP into an integer constrained minimization problem. Then a dis-

crete Lagrange multiplier method is applied to solve the converted integer

constrained minimization problem.

CSVC first uses a G E N E T network to model a binary CSP <V,V,C >.

Then the G E N E T network is converted into an integer constrained minimiza-

tion problem. Suppose all values in domain d(vi) G V for all Vi^V are integers.

Each cluster i of the network corresponds to an integer variable in an integer

constrained minimization problem. Each node in cluster i corresponds to one

domain value of Zi. Each connection of the network is transformed into an

incompatibility function
<

1 ii Zi= j A Zk = I
二 4 n ‘1̂ . (2-1)

0 otherwise
v

Chapter 2 Background 11 „.

where z = (..., Zi,...) is a vector of integer variables and (i, j) {/c, I) is a connec-

tion between the node j in cluster i and the node I in cluster k of the network.

With the incompatibility function, the integer constrained minimization prob-

lem can be defined as follows,

min /⑵ (2.2)

subject to Zi G d⑷ , Mvi G V， （2.3)

= 0' V((Z,J),{/C,0)EJ, (2.4)

where z = ,Zi,...) is a vector of integer variables and I is the set of all

incompatible label pairs (/c,/)). The objective function /(勾 typically

used is the total number of constraint violations in an assignment [32] or just

a constant, i.e., /(i) 二 0.

With the resultant integer constrained minimization problem (2.2)-(2.4),

CSV£ solves the given binary CSP using a discrete Lagrange multiplier method.

The Lagrangian function L{z, A) is defined as

L{z, A) = /⑶ + E A〈i，力〈fc“〉卯，力〈fc乃⑵， （2.5)
(〈i，j〉’_ei

where f =(…，么i，...) is a vector of integer variables and A =(…，X{i,j){k,i),. •.)

is a vector of Lagrange multipliers. The goal is to obtain a global minimum of

the resultant integer constrained minimization problem (2.2)-(2.4) by finding

a saddle point [34] of the Lagrangian function L{z, A). The saddle point can

be found by searching descent direction in the discrete variable space of z and

ascent direction in the Lagrange multiplier space of A.

7 + 1 二 (2.6)

Xs+i 二 + ⑷， (2.7)

where f® denotes the value of x in the sth iteration, A ^ is the discrete gradient,

GD is a gradient descent function and = (..., 9{i,j){k,i){^,...) is a vector

of incompatibility functions.

Chapter 2 Background 12 „.

CSVC has five parameters, namely (/) the objective function, (I^) initial-

ization of the integer vector (/又）initialization of the Lagrange multipliers

A, {GD) the gradient descent function, and (f/̂) condition for updating the

Lagrange multipliers A. G E N E T can be reconstructed as an instance of CSVC

with a set of appropriate parameters. The details about the parameters for

reconstructed G E N E T can be found in [4:.

2.3.4 Adaptive Search

Adaptive Search [5] is a heuristic search method for solving CSPs. The key

idea of this method is using variable-based information to decide which variable

should be repaired at next. Then min-conflict heuristics [17] is applied to select

a suitable value for the repaired variable. Adaptive Search is an iterative repair

method. It terminates if either a solution is found or a pre-set limit of iterations

is reached. If the search is trapped in local minima, the variable caused the

trap is marked tabu [9, 10] and cannot be selected for a number of coming

iterations.

The variable-based information used in Adaptive Search is obtained from

the constraints during the search. For each constraint, it associates with an er-

ror function. An error function value returned by the error function represents

the "degree of satisfaction" of the corresponding constraint. For instances, the

error function associated to constraints X -^Y = 5 and F - Z = 2 can be

defined as X + y — 5 and Y — Z - 2 respectively. Each variable is associ-

ated with an error. The error is the sum of the error function values of all

constraints in which the variable involved. The variable with the maximum

error will be selected to repair in the next iteration. For example, suppose the

variable assignments are X 二 5 ， 二 4 and Z = I, the error associated to

variable X, Y and Z are 4, 5 and 1 respectively. The total error of the variable

assignments is then computed as the sum of the absolutes values of the errors,

Chapter 2 Background 13 „.

which is equal to 10. Therefore, variable Y will be repaired by assigning a

value that minimizes the total error.

2.4 Hybrid Approach

A hybrid approach of systematic and stochastic search has raised interest in

CSP community in recent years.

Yokoo proposes Weak-commitment Search [35] which employs min-conflict

heuristics [17] on backtracking algorithm. All variables are given tentative ini-

tial values. The process proceeds by repeatedly constructing consistent partial

solutions and extend them to include new variables one by one, until a consis-

tent complete solution is found. If a partial solution cannot be extended, the

whole partial solution is abandoned and a new partial solution is constructed

from scratch, which uses the current value assignment as new tentative ini-

tial values. Richards et al. [22] propose learn-SAT algorithm that modified

Weak-commitment Search with learning-by-merging [21] for SAT problem. Pe-

sant et al. [20] use systematic branch-and-bound search to explore the set of

local search neighborhoods in combinatorial optimization problems. Schaerf

24] proposes a technique that constructs a partial consistent solution incre-

mentally. Local search is performed on the partial solution each time when

the construction reaches a dead-end. Jussien et al. [12] propose Path-repair

algorithm that performs local search as a basis, and uses filtering methods to

prune the search space and help in selecting neighborhoods.

參：

Chapter 3

Progressive Stochastic Search

This chapter gives an introduction to Progressive Stochastic Search (PSS). PSS

is a new heuristic search method for solving binary CSPs. One characteristic

of PSS is that we maintain a list of variables, which dictates the sequence of

variables to repair. When a variable is designated to be repaired, it always has
to choose a new value even if its original value should give the best cost value.

Intuitively, the search can be thought to be mainly driven by a "force" so

that the search is able to "rush through" the local minima and plateaus. The

search paths are also slightly "marked" as the search proceeds. Incremental

PSS (IPSS) is a variant of PSS. This variant shows an improvement over PSS

on some benchmarks. Details of IPSS are also given in this chapter. Finally,

we shall talk about a heuristic cluster selection strategy that integrates with

PSS and IPSS to boost the performance on some benchmarks.

3.1 Progressive Stochastic Search

Our proposed method, Progressive Stochastic Search (PSS), is a novel heuristic

search method for solving binary CSPs. In order to present our idea in a

systematic way, we adopt the presentation of G E N E T [6, 30] to illustrate the

idea of PSS.

14

^m Chapter 3 Progressive Stochastic Search 15 .

3.1.1 Network Architecture

In PSS, a binary CSP < V,V,C > is represented by a network similar to

G E N E T . A variable Vi is represented by a cluster i of label nodes. Each label

node rui corresponds to a value m in the domain of Vi. W e assume that each

domain contains more than one domain values. If a domain of a variable

contains only one value, this variable can be explicitly assigned the only value

and the CSP can be simplified by removing that variable and redefining the

constraints. The state of a label node is either on or off. At any moment, there

is exactly one label node that is in the on state in any cluster. Intuitively, a

label node is in the on state means the corresponding value is being assigned

to the variable.

A binary constraint c e C on variables Vi and Vj is represented by weighted

connections between pairs of label nodes in clusters i and j respectively. There

is a connection between two label nodes rUi and Uj ifvi = m八 Vj = n is prohib-

ited according to c. Each connection is associated with a weight initialized to

one. The weight of the connection between a label node rrii and a label node

Uj is denoted as Wrmnj- The output Orm of a label node rUi is 1 if the node is

on or 0 if off. The input Inn to a label node rrii is the weighted sum of all its

connected label nodes' outputs:

Im. = E � � . (3.1)
rij is connecting to rrii

As at most one label node in each cluster is on at any time, a state of

the network represents an assignment of values to the variables from their

respective domains. A solution to the binary CSP corresponds to any network

state in which no two on label nodes are connected to each other. For instance,

the network architecture of a binary CSP with V = {X,Y,Z}, d{X) = d(Y)=

d(Z) = {1,2,3} and C 二 {；̂ y = Z} is showed in Figure 3.1.

^m Chapter 3 Progressive Stochastic Search 16 .

f t ^ i ；
3

X Y z

Figure 3.1： The network architecture of PSS

3.1.2 Convergence Procedure

The goal of executing the convergence procedure is to choose one label node

in each cluster to turn on so that no two connected label nodes-are turned on

at the same time.

The network is initialized as follows. Initially, all label nodes in all clusters

are in the off state. All weights of connections are initialized to one. Let U

denote the set of all clusters with all label nodes in off state. Therefore U

initially contains all clusters. Clusters are then removed from the set U one

after another. When a cluster x is removed from the set U, each label node in

X calculates its input, and the label node with the minimum input is turned

on. Ties are broken randomly. The greedy initialization [17] completes when

the set U is empty.

W e maintain a list T to be used in the convergence procedure. Immediately

after the initialization, we append all clusters into the list T one by one, in

an arbitrary order. In each convergence step, the head cluster h of the list ^

is removed from the list. Let ph denote the on label node in h. If ph has a

zero input, then it remains on and nothing needs to be done. Otherwise, ph is

turned off, and the label node kh with minimum input among all label nodes

other than ph is turned on. Any cluster with its on label node connecting to

h is then appended to the list JT if it is not already in the list.

In order to guide the search towards solutions, we adopt the following

^m Chapter 3 Progressive Stochastic Search 17 .

heuristic learning rule to update the connection weights.

Wnetx; — ŷ old + • (3.2)
” Phnj Phfij I "j Y ‘

where ph is the previous on label node in the cluster h and rij is a label node

in the cluster j connecting to Ph' This heuristic learning rule states that the

weight of the connection Wp̂ n,- that exists between ph and Uj is incremented

by one if rij is on, otherwise it remains unchanged.

After that, another cluster is removed from the list JT, and the above process

is repeated. The convergence procedure terminates when the list T becomes

empty. -

As the input of a label node represents the number of weighted conflicts

between this label node and the other on label nodes, the label node turned on

by the above convergence procedure in each cluster represents a value assigned

to the corresponding variable with the least number of weighted constraint

violations. Clusters are appended to the list JT if and only if its on label node

connecting to kh in a convergence step. Therefore, an empty list T at the

end of a convergence step implies all on label nodes receive a zero input. A

solution is found if all inputs of the on label nodes are zero. The overall PSS

algorithm is shown in Figure 3.2.

Definition 3.1 A convergence step is one execution of the codes from line 11

to line 28 in Figure 3.2. ‘

Lemma 3.1 Denote / (pt) = is connected top^ where A' 0 is

a set of clusters, Pi is the on label node in cluster i. Let U be the set of all

clusters in the network, and Ujr be the set of clusters in the list T .

At the end of a convergence step (Figure 3.2 line 28),

kmPi-iir�二〜⑶

^m Chapter 3 Progressive Stochastic Search 18 .

Proof. W e use Mathematical Induction to prove the lemma. Let U、;、be the

set of clusters in the list T at the nth convergence step. Before starting the

convergence procedure of PSS, the list JF is initialized by appending all clusters

in an arbitrary order (Figure 3.2 line 11). At the first convergence step, the

list J^ is not empty, and one cluster h must be removed from the list T (Figure

3.2 lines 13-15). Therefore, U -K》、={/i}. There are three cases afterward:

1. Iph = Q (The condition of line 16 in Figure 3.2 is false).

Therefore, I{pf,,{h}) is also zero as no other clusters in {/i} with their on

label nodes connected to ph- The lemma holds in this case.

2. Ip̂ — 0 (The condition of line 16 in Figure 3.2 is true) and = 0

(Figure 3.2 lines 17-18).

Therefore, I{kh,{h}) is also zero as no other clusters in {h} with their on

label nodes connected to kh. The lemma holds in this case.

3. Iph — 0 (The condition of line 16 in Figure 3.2 is true) and — 0

(Figure 3.2 lines 17-18).

Therefore, /(fc"，{h}) is zero as no other clusters in {h} with their on label

nodes connected to kh. The lemma holds in this case.

As a result, the lemma holds for the first convergence step.

Assume that the lemma holds for the rth convergence step. At the (r + l)st

convergence step, the list ！F is not empty, and one cluster h must be removed

from the list T (Figure 3.2 lines 13-15). Therefore, U - wjT+i) = U - U^ U

{h} — where is a set of clusters with their on label nodes connected to

kh. There are three cases afterward:

1. Ip̂ = 0 (The condition of line 16 in Figure 3.2 is false).

It means that — 0 and 尺 = 0 . Therefore, (口紅̂ —̂ /”+”) is also zero

as iJA -l4+”）QU.

^m Chapter 3 Progressive Stochastic Search 19 .

Since

hp”u-u�;�=啊U-IAP

and

hpH.u-u'^r'') = 0.

Therefore,

、pi"-"ri)) = •，Vie" 一

The lemma holds in this case.

2. Iph ^ 0 (The condition of line 16 in Figure 3.2 is true) and = 0

(Figure 3.2 lines 17-18). '

It means that I{khju) = • and = 0. Therefore, "̂(矢卜 ̂ -̂̂ ^义+”）is also zero

as ipi - C U. Note that kh is the current on node in cluster h.

Since

I 一(;、=…⑶-姆、

and

W-4”+1)) = 0.

Therefore,

The lemma holds in this case.

3. Ip̂ — 0 (The condition of line 16 in Figure 3.2 is true) and Ik̂ • 0

(Figure 3.2 lines 17-18).

As all clusters with their on label nodes connecting to kh are no longer in

the set {U —破+”）(Figure 3.2 lines 19-20), becomes zero

at line 28 of Figure 3.2.

Since

W 峻)) = 0’

^m Chapter 3 Progressive Stochastic Search 20 .

and

Therefore,

Since

and

^{kUK-uPyn) = 0.

Therefore,

了峻+1))二0’ • 化 " - " • T) •

The lemma holds in this case.

As a result, the lemma holds for (r + l)st convergence step.

By the principle of Mathematical Induction, the lemma holds for all conver-

gence steps. 口

Theorem 3.1 PSS is in a solution state if the list T is empty at the end of a

convergence step. If PSS is in a solution state, then either the list T is empty,

or it will become empty in a finite number of convergence steps.

Proof. W e first prove the statement: "PSS is in a solution state if the list T

is empty at the end of a convergence step."

Since the list T is empty at the end of a convergence step, the set Uj： is

an empty set in L e m m a 1. By Lemma 1, all inputs of the on label nodes in

U must be zero at the end of a convergence step. When all inputs of the on

label nodes in all clusters are zero, no two on label nodes are connected to

each other. This network state represents a solution state.

W e then prove the statement: "If PSS is in a solution state, then either

the list T is empty, or it will become empty in a finite number of convergence

steps."

^m Chapter 3 Progressive Stochastic Search 21 .

Since PSS is in a solution state, all inputs of the on label nodes in the

network are zero. There are two cases for the state of the list ！F. Suppose the

list T is empty, then the statement is trivially true. Suppose the list T is not

empty, a cluster h must be removed from the list T in each convergence step

(Figure 3.2 lines 13-15). As all inputs of the on label nodes are zero, nothing

needs to be done in h and no cluster is appended to the list T (Figure 3.2,

the condition of line 16 is false). The list ̂ will eventually become empty as

one cluster is removed from it in each convergence step (Figure 3.2 lines 13-15)

and the number of clusters in the list T is finite. 口

3.1.3 An Illustrative Example

W e show an example on the well-known A^-Queens problem to illustrate the

execution of PSS. A/'-Queens problem is a puzzle game, which consists of plac-

ing N queens on & N x N chessboard so that no two queens attack each other.

This puzzle game can be modeled as CSP with N variables. Each variable

with domain {1,2,..., iV}. The 3 x N(N — l)/2 constraints state that no

pair of queens can ever be on the same row, up-diagonal or down-diagonal. In

this example, we use the 4-Queens problem as a demonstration (Figure 3.3).

For clarity of presentation, we have omitted the connections between the label

nodes in the figure. Figure 3.3(a) shows the initial network state. One label

node in each cluster is turned on. The list contains all clusters with an arbi-

trary order initially. In the first convergence step, cluster X I is removed from

the list. Each label node calculates its input. As the current on label node Ixi

receives a zero input, it remains on in this convergence step (Figure 3.3(b)).

Cluster X2 is removed in the next convergence step. Since the current on label

node 3x2 does not receive a zero input, it must be turned off. The label node

1x2 has the minimum input, and it is turned on in cluster X2. As the on label

node in cluster X I is connected to 1x2, H is appended to the list (Figure

^m Chapter 3 Progressive Stochastic Search 22 .

1 /* Initialize the network */

2 for each Wrmnj do
3 Wm,nj — 1
4 end for
5 Let Z/̂ be a set and all clusters are in U initially

6 while U is not empty do
7 select and remove a cluster x from U
8 turn on a label node in x with minimum input,
9 breaking tie by random selection
10 end while
11 append all clusters to a list T in an arbitrary order

12 /* Convergence Step */

13 while list T is not empty do
14 remove and get the head cluster h,
15 denote ph as its on label node
16 if input of Ph — 0 ‘

17 turn on a label node khPh) with minimum input,
18 breaking tie by random selection
19 append clusters with their on label nodes connecting to kh
20 to the list JF
21 for all clusters j h) do
22 denote rij as its on node
23 if rij is connecting to Ph
24 W p 内—Wp.n, + On.
25 end if .
26 end for
27 end if
28 end while

Figure 3.2: The algorithm of PSS.

^m Chapter 3 Progressive Stochastic Search 23 .

liX: |xi|x2|x3|x4] list: |.V2|a-3|x4|] llsl:丨 JO 丨 A小 11~|
Xl XI X3 X4 X\ XI Xi X* XI XI Xi X4

I M A A A M A A A M M A A
2 o b o • 〇〇〇• 〇〇〇參
3 o • O O 〇•〇〇 〇〇 0 0

W W
⑷ （b) (c) « —

,,,,:丨+丨 I "，丨：丨丨 i i 丨 � —

x\ XI x^ x^ x\ XI x^ XA x\ XI xz
I M M A A M M A A A M A A
2〇 0〇 ® 〇 0 0 ® O O O •
30〇〇〇 〇〇〇〇 •〇〇〇
^ W u w u W u W u W W

(d) (e) (f)

Figure 3.3: PSS: 4-Queens example.

3.3(c)). Since the previous on label node 3x2 is connected to the on label

node 4x3, the weight 1^3^24x3 is updated. In the next two convergence steps,

both on label nodes of X3 and X 4 receive a zero input, and no changes occur

in the network (Figure 3.3(d) and (e)). In the fifth convergence step, cluster

XI is removed from the list again. The label node 3xi receives the minimum

input (zero input) and is selected to turn on. As there are no clusters with on

label nodes connecting to 3xi, no clusters are appended to the list. Since the

previous on label node Ixi is connected to the on label node 1x2, the weight

is updated. As the list becomes empty at the end of this convergence

step, a solution is found (Figure 3.3(f)).

3.2 Incremental Progressive Stochastic Search

As mentioned in the previous section, PSS works on a complete assignment and

performs a heuristic search to find a solution. In this section, we introduce

a variant of PSS which is called incremental PSS (IPSS). IPSS selects one

cluster at a time. One label node in the selected cluster is turned on. The aim

of the search in IPSS is to find a consistent partial assignment. This partial

^m Chapter 3 Progressive Stochastic Search 24 .

solution is then extended until a complete solution is obtained. The details of

the network architecture and convergence procedure of IPSS are discussed in

the following sections.

3.2.1 Network Architecture

The network architecture of IPSS is the same as that of PSS. However, the

definition of the state of the network is refined. In PSS, a state of the network

represents a complete assignment of values to the variables from their respec-

tive domains. A cluster without any on label node corresponds to a variable

that has not been assigned a value. In IPSS, however, a state of the network

represents a partial assignment of values to the variables from their respective

domains. Therefore, any network state in which no two on label nodes connect

to each other represents a partial solution to the CSP.

3.2.2 Convergence Procedure

The convergence procedure of IPSS is based on that of PSS. The network is

initialized by setting all label nodes in every cluster to the off state. This

network state denotes an empty assignment at the beginning.

After the network initialization, IPSS divides the set of clusters in the

network into two subsets. One is a subset Via of clusters, in which each cluster

has one on label node. Another one is a subset Uu of clusters, in which' all label

nodes in these cluster are in off state. Initially, all clusters are in the set Uu,

and the set Ua is empty. Clusters are selected from Uu and moved to Ua one by

one. After a cluster i is moved to the set Ua, each of the label nodes in cluster

i calculates its input, and the label node rrii in cluster i with the minimum

input is turned on. Ties are broken randomly. W e also maintain a list ！F to

be used in the convergence procedure. The list T is initialized to be empty.

Any cluster in the set Ua with its on label node connecting to rrii is appended

^m Chapter 3 Progressive Stochastic Search 25 .

to the list T if it is not already in the list. Then we apply the convergence

step in PSS to the set Ua until the list T becomes empty. After the list T

becomes empty, another cluster is selected from the set Uu and moved to Ua.

The convergence procedure in IPSS terminates when the set Uu and the list T

are both empty. The overall IPSS algorithm is shown in Figure 3.4.

3.2.3 An Illustrative Example

W e use 4-Queens problem to illustrate the execution of IPSS (Figure 3.5).

For clarity of presentation, we have omitted the connections between the label

nodes in the figure. Initially, all label nodes in the network are in off state.

The set Uu contains all clusters. The set Ua and the list are both empty (Figure

3.5(a)). In Figure 3.5(b), cluster XI is selected from Uu and moved to 14a. As

all label nodes in XI receive a zero input, random selection is made to break

the tie. W e assume the label node l^i is turned on. Since no on label nodes

connect to Ixi, no clusters are appended to the list. Figure 3.5(c) shows the

next network state. Cluster X2 is selected from Uu and moved to Ua- Each

of the label nodes calculates its input. The label nodes 3x2 and 4x2 both

receive the minimum (zero) input, random choice is made. W e assume the

label node 3x2 is turned on. As a consistent partial assignment is obtained,

another cluster is selected from Uu- Suppose cluster X3 is selected from Uu,

the label nodes 1x3，2x3 and 4x3 receive the minimum input. W e assume the

label node 4x3 is turned on. At this time, the on label node 3x2 is connecting

to the on label node 4x3, and so cluster X2 is appended to the list (Figure

3.5(d)). A non-empty list at the end of each convergence step indicates that

the network state represents an inconsistent partial assignment. Therefore,

cluster X4： will be selected from Uu if the list becomes empty at the end of the

convergence step. Since the list is not empty, the head cluster X2 is removed

from the list. The current on label node 3x2 receives a non-zero input, and it

^m Chapter 3 Progressive Stochastic Search 26 .

1 /* Initialize the network */
2 all label nodes in the clusters are in off state
3 Uu = the set of all clusters

4 24 = 0
5 for each do

6 Wrmrij — 1
7 end for
8 initialize a list T to be an empty list
9 while Uu is not empty do
10 select a cluster i gUu
11 turn on a label node rrii with minimum input, •
12 breaking tie by random selection
13 append clusters in Ua with the on label node connecting to rui
14 to the list J"
15 move the cluster i from Uu to Ua
16 /* Perform PSS to the clusters in Ua */
17 while list J^ is not empty do
18 remove and get the head cluster h from the list
19 denote ph as its on label node
20 if input oi ph ̂ 0
21 turn on a label node kh Ph) with minimum input,
22 breaking tie by random selection
23 append clusters with their on label nodes connecting to kh
24 to the list 下
25 for all clusters j e do
26 denote uj as its on label node
27 if rij is connecting to ph
28 Wp.nj — + On, •
29 end if
30 end for
31 end if
32 end while
33 end while

Figure 3.4: The algorithm of IPSS.

^m Chapter 3 Progressive Stochastic Search 27 .

"..：丨 I I I I I— I I I I "，1:1 I I I I H 叫 I I I

XI X2 X3 X4 X\ XI X3 X4 XI X2 AC3 X4 X\ XI X^ XA
I I A A A A I R A A Al MNiM Al
2 o o o o 丨 o o o o [o|o]|o O 0|0|0| o
3 0 0 0 0 |o b o o lol«|lo o ol»lol o

tplpJ圖 bMA»i\Qy
V. V. U, V. V. V. V.

(a) (b) (c) (d)
丨丨+丨 I I I "，':l I I I I "-'I I I I I
XI XI X3 X4 A-l XI X3 X4 XI XI X3 X4 •

1 0W*®bl/©\ ^^•fPWC' 〇 offnode
2 o|o|o|o oloio o o|o|o|»
3 olololo •loloio •lololo
4 pAqfelWI A〇A.JWIIplpl.ic

t/- lU V. Vu Vm
(e) (f) (g)
Figure 3.5: IPSS: 4-Queens example. ‘

must be turned off in this convergence step. As all other label nodes receive

the minimum input, random selection is made. W e select 1x2 to be turned on.

Unfortunately, the on label node Ixi is connecting to 1x25 and so cluster XI

is appended to the list (Figure 3.5(e)). Since the previous on label node 3x2

is connected to the on label node 4x3，the weight 1̂ 3̂ 24x3 is updated. As the

list is still non-empty, the head cluster XI is removed from the list. The label

node turned on this time is 3xi because it is the only label node that receives

a zero input in cluster XI (Figure 3.5(f)). Since the previous on label node

1x1 is connected to the on label node 1x2, the weight is updated.

After the above two convergence steps, the list becomes empty. Therefore, the

cluster XA is selected from Uu and moved to Via. The label node 2x4 receives

a zero input and is selected to turn on. Since no on label nodes connect to

2x4, no clusters are appended to the list (Figure 3.5(g)). As both Uu and the

list are empty, a solution of 4-Queens problem is found.

^m Chapter 3 Progressive Stochastic Search 28 .

3.3 Heuristic Cluster Selection Strategy

W e have mentioned numerous stochastic search algorithms in Chapter 2. Dif-

ferent algorithms may use different neighborhood function to select which vari-

able should be repaired next. G S A T [27] uses a greedy strategy. A variable will

be selected next if the change of its value gives the most improvement over

other variables. D L M [28] uses a descent strategy which picks any variable

that has improvement.

PSS and IPSS both use a list T to store which cluster should be repaired

at the next convergence step. The ordering is in a first-in-first-out manner.

A heuristic that has been proved to improve efficiency in many cases is to

integrate the idea of greedy variable ordering into PSS and IPSS. In each

convergence step, a cluster with its on label node that has the maximum input

among all on label nodes in other clusters is removed from the list T. Tie is

broken by random selection. W e denote max-PSS and max-IPSS as variants

of PSS and IPSS that use this greedy variable ordering respectively. A related

heuristic called max-input ordering (MIO) for G E N E T or E G E N E T has been

proposed in [29]. M I O dynamically arranges the clusters to be repaired in

G E N E T or E G E N E T according to descending order of inputs for the current

assignment. This approach shares the same idea with max-PSS to improve the

efficiency.

W e use 4-Queens problem to illustrate how the heuristic works, on PSS

(Figure 3.6). For clarity of presentation, we have omitted the connections

between the label nodes in the figure. Figure 3.6(a) shows the initial network

state. One label node in each cluster is turned on. The list contains all

clusters with an arbitrary order initially. In each convergence step, a cluster

with its on label node that has the maximum input among all on label nodes

in other clusters is removed from the list. The input of on label node in cluster

XI, X2, X3 and X 4 are 0, 1, 1 and 0 respectively. As both cluster X2 and X 3

^m Chapter 3 Progressive Stochastic Search 29 .

list: XI X2 X3 X4 list: X I X3 X4 list: X3 X4

X\ X2 A3 X4 X\ X2 X^ X4 X 丨 Xl X3 X4
1 ̂ a a a M / ® \ A A A M A A

2 o b o • o o o • p o o ®
3 O • O O o O O O •〇〇〇
^ W W w W w w w V W u W u

(a) (b) (c)
攀 on node

1 1 1 1 I 1 1 1 1 O off node

list: XA list: X\ XI X3 XA X\ XI Xi XA
1 a / « \ a A A M A A
2〇〇 O • 〇 O O •
3 • O p O 參〇〇〇
^ W u W u W W W

(d) (e)

Figure 3.6: max-PSS: 4-Queens example.

have their on label node with maximum input, one of them will be removed

from the list. In the first convergence step, we assume that cluster X2 is

removed from the list. Each label node in cluster X2 calculates its input.

Since the current on label node 3x2 does not receive a zero input, it must

be turned off. The label node 1x2 has the minimum input, and it is turned

on in cluster X2. As the on label node in cluster X I is connected to 1x2，

XI should appended to the list. However, cluster XI is already in the list,

nothing needs to be done (Figure 3.6(b)). Since the previous on label node

3x2 is connected to the on label node 4x3, the weight VK3幻4们 is updated. At

the beginning of the second convergence step, the input of on label node in

cluster XI, X3 and X 4 are 1’ 0 and 0 respectively. Therefore, cluster XI is

removed from the list. The label node 2xi receives the minimum input (zero

input) and is selected to turn on (Figure 3.6(c)). As there are no clusters

with on label nodes connecting to 2xi, no clusters are appended to the list.

Since the previous on label node Ixi is connected to the on label node 1x2,

the weight Wi^^i^^ is updated. In the next two convergence steps, both on

label nodes of X3 and X 4 receive a zero input, and no changes occur in the

network (Figure 3.6(d) and (e)). As the list becomes empty at the end of this

r

^m Chapter 3 Progressive Stochastic Search 30 .

m
convergence step, a solution is found (Figure 3.6(e)).

B ；

I
HI:，
^̂•̂”：： 《 广. ‘ ： s r . - .

_ • I
I

_ : : .

i

• r .

騰 : ; . .

H P : : :

_

Chapter 4

Experiments

In order to evaluate the efficiency of PSS and its variants, namely, IPSS, max-

PSS and max-IPSS, experiments on four sets of problems are conducted. These

include a set of N-Queens problems, a set of permutation generation problems

(including increasing permutation generation and random permutation gener-

ation), a set of quasigroup completion problems (including the special cases of

Latin squares) and a set of randomly generated binary CSPs (including tight

CSPs and phase transition CSPs). W e compare the performance of PSS and

its variants with that of G E N E T) [4], the most efficient implementation

of G E N E T that we know of, and CSVC{IMF) [4], the most efficient variant

of CSVC,

The implementation of PSS and its variants are based on the implementa-

tion of CSVC, which encompasses all of £<SP/:(GENET), CSVJC{IMF) and

the lazy variants in one implementation. Therefore, the comparison between

PSS and CSVC is fair.

All the benchmarks are performed on a Pentium4 1.4 GHz machine with

512 M b of memory running Linux RedHat 8.0. For each problem, 100 runs

of results are recorded. The term "steps" in the tables means the number of

times that the clusters are considered to select a label node to turn on. All

the timings are measured in seconds. The timing figures without brackets are

the averages of hundred runs while the figures with brackets are the medians.

31

Chapter 4 Experiments 52

All the timing results are the search time only. All problem instances used in

the experiments are the same as those used in [4 •

4.1 iV-Queens Problems

TV-Queens problem is a puzzle game, which consists of placing N queens on

SI N X N chessboard so that no two queens attack each other. This puzzle

game can be modeled as a CSP with N variables. Each variable has a domain

{1,2,..., A^}. The 3 X 7V(7V — l)/2 constraints state that no pair of queens can

ever be on the same row, up-diagonal or down-diagonal. This set of experi-

ments consists of 5 instances: 100-queens, 125-queens, 150-queens, 175-queens

and 200-queens. Table 4.1 shows the experimental results of PSS and its vari-

ants. The results of CSVC(GENET) and CSVC{IMF) are presented in Table

4.2. The mean timing results are plotted in the Figure 4.1 for comparison.

Problem PSS IPSS
N Steps C P U time Steps C P U time
100 119.8(117.0) 0.0082(0.0100) 125.4(122.0) 0.0088(0.0100)
125 145.0(142.5) 0.0122(0.0100) 149.5(147.0) 0.0129(0.0100)
150 166.7(165.0) 0.0181(0.0200) 173.2(172.0) 0.0173(0.0200)
175 199.8(197.0) 0.0252(0.0200) 198.7(195.5) 0.0241(0.0200)
200 221.0(218.0) 0.0311(0.0300) 223.2(220.0) 0.0312(0.0300)

max-PSS max-IPSS
m 126.4(122.0) 0.0084(0.0100) 122.1(118.5) 0.0071(0.0100)
125 149.0(146.0) 0.0135(0.0100) 148.2(144.0) 0.0124(0.0100)
150 176.0(172.0) 0.0189(0.0200) 173.1(171.0) 0.0175(0.0200)
175 198.7(196.5) 0.0245(0.0200) 200.0(197.0) 0.0242(0.0200)
200 226.5(223.5) 0.0332(0.0300) 222.7(220.0) 0.0310(0.0300)

Table 4.1: PSS and its variants on iV-Queens problems

As shown in Tables 4.1 and 4.2, PSS and all its variants are more efficient

than CSVC(GE]^ET) in all cases and CSVC(IMF) in most cases (except 100-

queens). In general, the performance of PSS and its variants are almost the

same, which is about 55% of the time taken by CSVC{GENET). From the data

in Table 4.2, it can be concluded that £<S:D£(GENET) and CSVC(IMF) do

Chapter 4 Experiments 33

N CSVCjGENET)
Iteration Repairs Learns CPU time

100 42.9(30.5) 93.6(89.5) 19.6(13.5) 0.0132(0.0100)
125 39.5(30.0) 109.4(105.0) 18.0(13.0) 0.0218(0.0200)
150 37.3(30.5) 125.1(124.0) 16.7(13.5) 0.0316(0.0300)
175 43.1(35.0) 144.5(141.0) 19.6(16.0) 0.0436(0.0400)
200 44.8(36.0) 159.5(156.5) 20.3(16.0) 0.0559(0.0600)

~~N CSVCilMP)
100 23.2(17.5)54.0(49.0)23.2(17.5) 0.0078(0.0100)
125 33.3(24.5) 72.9(63.5) 33.3(24.5) 0.0153(0.0150)
150 27.6(19.0) 72.3(63.5) 27.6(19.0) 0.0206(0.0200)
175 33.5(23.0) 85.8(75.5) 33.5(23.0) 0.0290(0.0300)

200 34.1(24.0) 91.6(83.5) 34.1(24.0) 0.0377(0.0400)

Table 4.2: £5P£(GENET) and CSVC{IMF) on A^-queens problems

O-Ofi I _ I ‘ ‘
各PSS
-e - max-PSS “
-A- IPSS
-O- max-IPSS

0.05- A LSDL(GENET) "
0 LSDL(IMP)

A
一 0.04- _ O X)
CD <n

|。.。3.

0-1 1 1 1
100 125 150 175 200

Number of queens

Figure 4.1: The mean time results on A^-queens

Chapter 4 Experiments 54

learning a number of times to escape from local minima. Recall that learning

is a process that updates the weights of the connections, the corresponding

constraints of which are violated. W e note that learning is expensive in the

CSVC implementations. For each learning in CSVC implementations, the

weights of several connections are updated. However, PSS and all its variants

also update the weights of the connections at the end of each convergence step.

If we compare the number of weights updated of CSVC implementations with

that of PSS and its variants, we conclude that these numbers are almost the

same in all problem instances. Therefore, learning is not the factor that affects

the performance in this set of experiments.

To explain why PSS and its variants have a better performance than

CSVCiGENET) and CSVC{IMF), we analyzed search processes in the ex-

periments. From Table 4.1 and 4.2, CSVC{GEmT) and £5P/:(IMP) use

fewer repairs than PSS and all its variants. However, CSVC{GENET) and

CSVCilMP) take more steps to find a solution. The number of steps taken in

CSVC{GENET) and CSVC{IMP) is equal to the number of variables times

the number of iterations. For example, the mean number of steps taken in

CSVC{GE^ET) to solve 200-queens is 8,960 (200 x 44.8). Among these steps,

the clusters are actually repaired in only 159.5 steps and nothing really needs

to be done in all other steps. Worse, these repairs have little effect on the

subsequent search process. Figures 4.2 - 4.10 show the numbers of violations

against total inputs or objective values of PSS, max-PSS, IPSS, max-IPSS,

CSVC(GENET) and CSVC(IMF) on 100-queens problem. Figures 4.11 -

4.19 show the numbers of violations against total inputs or objective values of

PSS, max-PSS, IPSS, max-IPSS, £<SP£(GENET) and CSVC{IMF) on 200-

queens problem. W e can see that PSS and max-PSS quickly rush through

large plateaus and the ordering to repair variables (the list JT) provides excel-

lent direction towards solutions. For IPSS and max-IPSS, the partial solutions

found can be extended easily. This is the reason why PSS and its variants have

Chapter 4 Experiments 55

better timing results than that of £ O T £ (G E N E T) and CSVC{IMF).

10H ‘ ‘ ‘ ‘ '"j ‘ ‘ ‘

9- . 9-

8-
7. - 7.

V)
I - •
I g-
I - • 1 “

Z 3. 1 . 3. L

2- I •
1- "““

" o SO 100 150 200 250 300 ‘‘ 0 50 ,00 150 200 250 300

N u m b e r Of s t e p s N u m b e r o f s t e p s

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step

10-] ‘ ‘ ‘ ‘ 10"! ‘ ‘ ‘ ‘
9. 9- -
8- 8
7- - 7.

(0
I - n • 3 “―1
I .1,
名 5- • 5 ‘
W 0

\ •卜： \ ：
3- ^ '-1

2. S -
1- I \ ‘
(, . _ , , ^ , 1 0-1 1 1 — > 1 1

50 100 150 200 250 300 0 50 100 150 200 250 300
N u m b e r o f s t e p s N u m b e r o f s t e p s

(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.2: Numbers of violations and total inputs in each step of PSS and

max-PSS on 100-Queens problem (average run-time case)

Chapter 4 Experiments 36

10-|- ‘ ‘ ‘ ‘ ">1 ‘ ‘ ‘ ‘“ ‘
9-

8-

7-

§ „

1 1 ,
2 1 |4- • �
3

Z 3— . 3 .

2- 2-
： im _ _,__,__[；1__,丨IB . _ _ , ^ ^ , _：

0 50 100 150 200 250 300 0 50 100 150 200 250 300
N u m b e r o f s t e p s N u m b e r o f s t e p s

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

lOH ‘ ‘ ‘ ‘ ‘ h 10 i ‘ ‘ ‘ ‘ ‘
9- - 9_

8- - 8 .

7 . - 7 .

§ . r • I
E 4-

Z
3- 3"

2- - 2 .

：]__, III , _ _ , _ _ , _ _ I ; 1 ^ , m , _ _ , _ _ _ , ^ ：
0 50 100 150 200 250 300 0 50 100 150 200 250 300

N u m b e r o f s t e p s N u m b e r o f s t e p s

(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.3: Numbers of violations and total inputs in each step of IPSS and
max-IPSS on 100-Queens problem (average run-time case) •

Chapter 4 Experiments 37

140-1 ‘ ‘ ‘ ‘ ‘ - ‘ ‘ ‘ ‘ ‘ ‘

120'

100-

I i
I 80. 5 > I
i 60- - I «�•
3
Z

40-

20- 扣.

^̂UiAijuj ^ ^
0 ^ ^ 4 « K) ^ ^ ^ ^ ° 0 2000 4000 6000 8000 10000 12000 14000 16000

N u m b e r Of s t e p s N u m b e r of s t e p s

(a) £SVjC(GENET): Violation vs. Step (b) >C5P£(GENET): Objective value vs. Step

140-1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

120•

100- ”

I/) .1
1 eo- . 1

•i .e •5 s
I 60. • °
E
3
Z

40-

20. 20.

人 . . _ _ , _ _ , _ _ , _ _ , _ _ , _ _ i o k ^ _ _ , _ _ , _ _ _ , _ _ , _ _ , _ ,
0 2000 4000 6000 8000 10000 12000 UOOO 16000 0 2000 4000 6000 8000 10000 12000 14000 1S000

N u m b e r of s t e p s N u m b e r of s t e p s

(c) £5P£(IMP) : Violation vs. Step (d) CSVjC(IMP): Objective value.vs. Step

Figure 4.4: Numbers of violations and objective values in each step of

£<SP£(GENET) and JCSV£(IMP) on 100-Queens problem (average run-time

case)

Chapter 4 Experiments 38

10H ‘ ‘ ‘ ‘ ‘ h 1�"! ‘ ‘ ‘ ‘ ‘
9- - 9 .

8 - - 8 .

7- . 7 . •

(A
§ ,

r. I
^ • s ‘‘
I 4 . " 4 .

3 z ,

3 . ‘ 3 .

2- - 2 . •

1 1 1 I
o j 1 , , , r 1 1" 0-1 1 T- 1 —T ‘ ‘ 1-

0 so 100 150 200 250 300 0 50 100 ISO 200 250 300
N u m b e r o f s t e p s N u m b e r o f s t e p s

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step

lOH ‘ ‘ ‘ ‘ ‘ h ‘ ‘ ‘ ‘ ‘

9- - 9-

B- - 8.

7. • 7-

1 .1 ,
0 B
1 “ .
3
Z

3 . • 1 3 ' I

： 、 ： ： 、
0-1 , j , 1 1 1" 0-1 1 —r- 1 ‘

0 50 100 150 200 250 300 0 50 100 150 200 250 300
N u m b e r o f s t 叩 s N u m b e r o f s t e p s

(c) max-PSS: Violation vs. Step (d) IPSS: Total input vs. Step
Figure 4.5: Numbers of violations and total inputs in each step of PSS and

max-PSS on 100-Queens problem (short run-time case)

Chapter 4 Experiments 39

10-1 ‘ ‘ ‘ - ‘ ‘ - t '"1 ‘ ‘ ‘ ‘ " ‘

9 .

8-

7.

•I e- • 3
i . 1 ,
” 1
I 4 . • … .

Z 3 . - 3-

2- - ‘

： . i __,__,__I ;1__, U , _ _ , ^ ^ , _ _ ：
0 » ^ ^ Z s T ^ 300 0 50 100 150 200 250 300

Number of steps Number of steps

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

10-1 ‘ ‘ ‘ ‘ ‘ \ ‘ ‘ ‘ ‘ ‘
9-

8- ®
7- - 7 .

M

I e- • 广
I t ,
” ‘ 1
I 4. �
3 z ,

3 - 3 .

2- 2-

0 , U , , ,— J—,—B—,—.—.—
so 100 150 200 250 300 0 50 100 150 200 250 300

Number Of steps Number of steps

(c) max-IPSS: Violation vs. Step (d) PSS: Total input vs. Step

Figure 4.6: Numbers of violations and total inputs in each step of IPSS and

max-IPSS on 100-Queens problem (short run-time case) •

Chapter 4 Experiments 40

140 H ‘ ‘ ‘~——‘ ‘ ‘ 1<�"| ‘ ‘ ‘ ‘ ‘ ‘

120- "0-

100- •

(/)
I I
1 80- • 5
> § •5 I
I eo. • J -
z

40- <0-

20- 20-
o . L ^ . _ _ _ _ , . . . — — [o k ^ — — . — — . — — . — — . — — . — — . — —

0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 UOOO 16000
Number of s teps Number of s teps

(a) CSVC{GENET): Violation vs. Step (b) CSVC{GENET): Objective value vs. Step

140 H ‘ ‘ ‘ ‘ ‘ ‘ ‘ [• 140 "1 ‘ ‘ “ ‘ ‘ “ “ ‘ ‘

120- - 120-

100-

I . I eo- • g.
B I 60- ^ 60-

E
3 z

40-

20. 20-

o i . . , , . — — _ , 1 o h • . . — ^ •

0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000
Number Of steps Number of s teps

(c) £5P£(IMP): Violation vs. Step (d) CSVC{IMF): Objective value vs. Step

Figure 4.7: Numbers of violations and objective values in each step of

£ 5 D £ (G E N E T) and CSVC{IMF) on 100-Queens problem (short run-time

case)

Chapter 4 Experiments 41

10-1 ‘ ‘ ‘ ‘ ‘ h 10-j ‘ ‘ ‘ —^ ‘

9- • 9-

8- 8- -
7- 7 ,

W

V- 1：
1:
、.！ , . n ,

2- ’ 1 2- I 1
1- ‘~I 1- ‘~
0-1 1 1 1I . 1" 0-1 . ‘ “̂‘ ‘ ‘

0 SO 100 150 200 250 300 0 50 100 150 200 250 300
Number of steps Number of steps

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step

10- 1 ‘ ‘ ‘ ‘ ‘ —1- tOH ‘ ‘ ‘ ‘ ‘
9-

8 - 8-

7- • 7-

(0 •1 6. 3 6
i t ,
•S 15
I 4 二。.
3 z

3- 3-

j , , , 丨 丨 _ ,] , , , , I ^ , -
0 so 100 150 200 250 300 0 50 100 150 200 250 300

Number of steps Number of steps

(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.8: Numbers of violations and total inputs in each step of PSS and
max-PSS on 100-Queens problem (long run-time case)

42 Chapter 4 Experiments

. . I I I 1- 10-1 ‘ ‘
10-̂ ‘

9-
9-

8-
8-

7 .
7-

</)

• i -圣 5 . o %
!4. -卜 4.
3
z 3-

3-

: » n I » f n ， _ _ _ , _ _ _

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

,0H ‘ ‘ '"1 ‘ ‘ ‘
9-

8 -

7 .
(0

1： ：！：
� <5 -
� - 3 .

2 -

1 1 1 1 1 l l 1

(C) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs.. Step

Figure 4.9: Numbers of violations and total inputs in each step of IPSS and

max-IPSS on 100-Queens problem (long run-time case) -

Chapter 4 Experiments 63

_ . , I 4. 1 h 140 i ‘ ‘“ ‘ ‘

140 H 120-
120-

100-
100-

(0

I
I 80- • 2
I I
I 6。_ . t -
^ 40-40 •

2 0 -
20-

° - 。 4 腳 ： 二 ： • _ 丄 。 。 磨 � 腳 賺 腳

(a) CSVCiGENET): Violation vs. Step (b) £52)£(GENET): Objective value vs. Step

250-j ‘ ‘ ‘ ‘ “ ‘ ‘

H H
•5 a
1 , 0 0 .

z
50- . «)•

T ~ : “ ― ^ ： ^ “ ^ i 。。 膽 棚 NZberofsTps 脚 讓 麟
Number of steps Number ot sieps

(c) £5P£(IMP) : Violation vs. Step (d) £5D£(IMP): Objective value vs. Step

Figure 4.10: Numbers of violations and objective values in each step of
£ 5 P £ (G E N E T) and £<SP£(IMP) on 100-Queens problem (long run-time

case)

Chapter 4 Experiments 44

io-| ‘ ‘ ‘ ‘ —̂ [• 1。"! ‘ ‘ ‘ ‘—-~‘
9- - 9 .

a- - 8- ‘

7. 7'
(A

I a. … .
•2 = 0 9-
S . 5 . .

5 1 “ 5

1： ： ”] ：
2- ^ 2- ^

1. h • 1 - I
0-1 , 1 , 1 1 1 OH I 1 1 ‘ * ‘ ^

0 50 100 150 200 250 300 0 50 100 150 200 250 300
Number of steps Number of steps

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step

10 H ‘ ‘ ‘ ‘ ‘ h 10 i ‘ ‘ ‘ ‘
9- - 9 - •

8 1 8
7- I 1 厂 ^

V)

\ • t 1 •5 .5 , -

1： U ：，： U
‘： L ： ： L
1- H - S
0-1 , . 1 • j~I i- 0-1 1 1 ‘ *~‘

0 50 100 150 200 250 300 0 50 100 150 200 250 300
Number of steps Number of steps

(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.11: Numbers of violations and total inputs in each step of PSS and

max-PSS on 200-Queens problem (average run-time case) ‘

Chapter 4 Experiments 45

lOH ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

9 - • 9 -

8- - 8 .

7- - 7 .

h- •

1 5- 1 5

Z 3 . • 3-

2 . - 2 -

i n m _ _ ； 1 _ _ ^ _ _ ^ _ _ , m I ：
0 50 100 150 200 250 300 0 50 100 150 200 250 300

Number of steps Number of steps

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

10-] ‘ ‘ ‘ ‘ ‘ h 10 H ‘ ‘ ‘ —‘ ‘
9- - 9-

8- - 8

7- - 7-
W

V- 1：
I 4. 丄 .
3

Z 3- • 3 .

2- 2

；] _ _ , _ _ , _ _ , m , ; 1 _ _ ^ _ _ , _ _ I F 1 , ：
0 50 too 150 200 250 300 0 50 100 150 200 250 300

Number of steps Number of steps

(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.12: Numbers of violations and total inputs in each step of IPSS and
max-IPSS on 200-Queens problem (average run-time case) •

Chapter 4 Experiments 46

250-1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

200- 200• .

(0

11»。- • i 1知-
I I
？ I
I 100- g 100-
3
Z

50- . 5 0 . -

0- \ • I I I I 1 0- \ _ • _ f _ • • I ‘ ‘
0 2000 4000 6000 _ 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000

N u m b e r of s t e p s N u m b e r o f s t e p s

(a) CSVC{GENET): Violation vs. Step (b) CSVC{GENET): Objective value vs. Step

140-1 ‘ ‘ ‘ ‘ ‘ — — - ‘ ‘ h ‘ ‘ ‘ ‘ ^ ‘ ‘

120- 120-

100- • 100-
I
I ao- - 1 .

I 60- ° 60-
3

Z
40- 40-

20-| 20-

V 、"“⑴̂̂…、
0 I 7= 1~ • ——I 1 1 1 ^ 0-J T̂ ^ 1 “ ‘ ‘

0 2000 4000 8000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 U000 16000
N u m b e r of s t e p s N u m b e r of s t e p s

(c) CSVC{IMF): Violation vs. Step (d) CSVC{IMF): Objective value vs. Step

Figure 4.13: Numbers of violations and objective values in each step of

CSVC{GENET) and CSVC{IMF) on 200-Queens problem (average run-time
case)

Chapter 4 Experiments 47

10-j ‘ ‘ ‘ ‘ ‘ h 10-1 ‘ ‘ ‘ ‘
9- - 9- -

8 - - 8. •

7' 7' •
(0

i 16

I . I _ _ " 4 . I ^ .

z
3- * 1 3 . > j

2 . \ … \

1- S t- s
0-1 1 1 1 r—' 1 1" 0-1 1 ‘ ‘ ^ ‘

0 50 100 ISO 200 250 300 0 50 � 0 0 150 200 250 300
Number of steps Number of steps

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step

lOH ‘ ‘ ‘ ‘ ‘ h to-j ‘ ‘ ‘ ‘ ‘
9- - 9-

8- 8-

7- 7-
V)

•2 &
•

Z
3 1 • 3 1 •

2. 1 _ ^ 1

0-1 1 1 . r-J 1 1" 0-1 1 ‘ 1 r-J
0 50 100 ISO 200 250 300 0 50 100 150 200 250 300

Number of steps Number of steps

(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.14: Numbers of violations and total inputs in each step of PSS and
max-PSS on 200-Queens problem (short run-time case)

Chapter 4 Experiments 48

10H ‘ ‘ ‘ ‘ ‘ h 10-1 ‘ ‘ ‘ ‘ ‘

9- 9-

8- 8-

7- - 7-
<0

i - 3
.2 a
I - =5

丄 .
3 z

3- 3-

2 - 2 -

;l__,__,^, m I_I ;l__I , , _ __:
0 so 100 150 200 250 300 0 50 100 150 200 250 300

Number of steps Number of steps

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

lOH ‘ ‘ 1 ‘ ‘ h 10-| ‘ 1 ‘ ‘ ‘

9- 9-

8' 8

7- 7-

I
I 6. - 6.

“ - 5 .

I 4. 丄 .
3 z

3- 3 -

2- 2-J , _ i l _ , _ _ [J _ _ , _ _ , _ _ , _ u _ , :
0 50 100 tso 200 250 300 0 50 100 tSO 200 2S0 300

Number of steps Number of steps

(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.15: Numbers of violations and total inputs in each step of IPSS and
max-IPSS on 200-Queens problem (short run-time case)

Chapter 4 Experiments 49

25"-] ‘ ‘ ‘ ‘ ‘ ‘ 250-1 ‘ . , , ,

200. .

(A

I • I ,50-

I I
1 §"ioo-
2

50-

。|k . , , , , J ^ v •
0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000

Number Of steps Number of steps

(a) CSVC{GENET): Violation vs. Step (b) £5D£(GENET): Objective value vs. Step

" " I ^ — — ‘ ‘ ‘ ‘ ‘ ‘ h 140 H

120-

则 . 100-

(/)
I
I •
•5 r
I I -
z

40-

20. 20-

oK , , . -V .
0 2000 4000 6000 8000 10000 , 2000 14000 ,6000 0 2000 4000 ^ ^ ^ ^ ~ ；

Number Of steps Number of steps
(c) £5P£(IMP) : Violation vs. Step (d) £OT£(IMP): Objective value V6. Step

Figure 4.16: Numbers of violations and objective values in each step of

CSVC{GENET) and £<Sr>/:(IMP) on 200-Queens problem (short run-time
case)

Chapter 4 Experiments 50

10 ‘ ‘ ‘ ‘ ‘ -i- 10-| ‘ ‘ ‘ ‘ ―‘
9-

8- 8- -

7- 7-
W

î -
•> S ,

I 4 . " 4 .

Z
3 1 3 1 •

： L ^ ： ； ^ ：
0- 1 1 1 1 . r-J V 0-1 1 1 ‘ ‘ ^

0 50 100 150 200 250 300 0 50 100 150 200 250 300
Number of steps Number of steps

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step

lOH ‘ ‘ ‘ ‘ ‘ 10-1 ‘ ‘ ‘ ‘

9- 0-

a- 8-

7- - 7-
Vi

I .36
•i §•

5- Z 5

I -澤
Z

3- 1 1 • 3- > 1 .

2- 1~ 2- >~I -

1- ^ 1 1- *

0-1 1 r 1 1 1 ^ \- 0-1 1 ‘ ‘ ‘ ‘ *
0 50 100 150 200 250 300 0 50 100 150 200 250 300

Number of steps Number of steps
(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.17: Numbers of violations and total inputs in each step of PSS and

max-PSS on 200-Queens problem (long run-time case)

Chapter 4 Experiments 51

10H ‘ ‘ ‘ ‘ ‘ f- 10 4 ‘ ‘ “ 1 1
9- • 9-

8 - 8-

7- - 7-

(fi
16. - 6.
•i I

- r 5 .

I - ° ..
z

3- 3- -

2- 2-

1 I p i ‘ ifim

o-\ 1 1 1 i "I ~~I , 1- 0-J 1 1 , 1 l| 1''~I 1
0 50 100 150 200 250 300 0 50 100 150 200 250 300

Number of steps Number of steps
(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

10H ‘ ‘ ‘ ‘ ‘ [- 10-1 ‘ 1 ‘ ‘ 1

9- 9-

8 - 8 -

r
！ - i
I •
3
z

3- 3- -

2- 2

；] _ _ , _ _ , _ _ , i n I ; 1 _ _ , _ _ , , i r n ：
0 50 100 150 200 250 300 0 SO 100 150 200 2S0 300

Number of steps Number of steps

(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.18: Numbers of violations and total inputs in each step of IPSS and
max-IPSS on 200-Queens problem (long run-time case)

Chapter 4 Experiments 52

250-j ‘ ‘ 1 ‘ ‘ ‘ h 250-1 ‘ ‘ ‘ ‘ ‘

200 - 200-

(0

1 » 笼 160- = 1S0-

1 5

！ I
"I 100- g" 100-

Z
60 - 50- ‘

, , , , 1 n r
0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000

N u m b e r o f s t e p s N u m b e r o f s t e p s

(a) CSVCiGENET): Violation vs. Step (b) CSVC{GENET): Objective value vs. Step

250-j ‘ ‘ ‘ ‘ ‘ ‘ h 250-1 ‘ ‘ 1 ‘ ‘ ‘

200- 200-

(A

I
I 150. ^ 150-

I I
I I
g 100- . � 100-
3
Z

50 - 50-

1 i.
0 1 一 I . • • ^ 1- 0 I , , ； ； ’ ， • ‘ ,

0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000
N u m b e r of s t e p s N u m b e r o f s t e p s

(c) CSVCilMP): Violation vs. Step (d) £OT£(IMP): Objective value vs. Step

Figure 4.19: Numbers of violations and objective values in each step of
CSVC{GENET) and CSVC{IMP) on 200-Queens problem (long run-time

case)

Chapter 4 Experiments 53

4.2 Permutation Generation Problems

The permutation generation problem is a combinatorial theory problem that

construct a permutation p of integers 1 to n fulfilling conditions of monotonies

and advances. The vector of monotonies m of size n — 1 is defined as

j 1 if Pi+i > Pi , , . .
rrii = < (4.1)

I 0 otherwise

for all 1 < i < n — 1. The vector of advances a of size n — 1 is defined as
f

1 if pj Pi + 1 A Pi n for all 1 < j < z — 1
fli = < (4.2)

0 if pj Pi + 1 for all z + 1 < j < n
\

for all 1 < z < n — 1.

This problem can be modeled as a CSP with n variables. Each variable

has a domain {1,2,...�n}. The constraints

工 i — Xj

for all i — j and I < i,j < n restrict all variables take different values. The

constraints

Xi+i > Xi, if rrii = 1,

ooi+i < Xi, if rrii = 0,

for all 1 < 2 < n — 1 state the condition of monotonies m. The condition of

advances a is stated by the constraints
— :ri + 1 A iCi n, VI < j < z - 1, if â = 1, •

Xj — âi + 1, Vz + 1 < j < n, if â = 0’

for all 1 < z < n - 1.

Two types of permutation generation problems are used in this set of ex-

periments. The first type problem is a set of increasing permutation problems.

The permutation required is a sequential permutation of integers from 1 to

n. The second type problem is a set of permutation problems in which the

monotonies and advances are randomly generated.

Chapter 4 Experiments 54

4.2.1 Increasing Permutation Problems

Table 4.3 shows the experimental results of PSS and its variants on the set

of increasing permutation problems, while Table 4.4 shows the experimental

results of CSVC(GENET) and CSVC{IMF) on the same set of problems.

The mean timing results for increasing permutation problems are showed in

the Figure 4.20 for comparison.

"prob lem PSS IPSS
n Steps xlO^ C P U time Steps xlO^ C P U time
10 0.645(0.645) 0.0000(0.0000) 1.103(1.103) 0.0000(0.0000)
20 14.71(14.16) 0.0422(0.0400) 13.67(14.14) 0.0405(0.0400)
30 98.37(97.51) 0.4417(0.4400) 110.9(105.6) 0.4816(0.4600)
40 399.3(398.4) 2.5867(2.5800) 393.9(387.1) 2.5104(2.4650)
50 1123(1058) 9.7123(9.1350) 1164(1120) 9.9537(9.5700)

max-PSS max-IPSS
10 0.467(0.231)0.0000(0.0000)0.572(0.572)0.0000(0.0000)
20 17.23(14.32) 0.0517(0.0500) 24.11(25.08) 0.0701(0.0750)
30 140.4(147.5) 0.6664(0.6950) 183.6(193.7) 0.8450(0.8900)
40 590.0(599.2) 4.0994(4.1550) 812.6(821.6) 5.5212(5.5900)
50 1625(1648) 15.017(15.205) 2352(2382) 21.524(21.785)

Table 4.3: PSS and its variants on increasing permutation problems

Problem CSVC{GENET)
n Iteration xlO^Repairs xlO^Learns xlO^ C P U time
10 0.361(0.365) 0.259(0.262) 0.180(0.182) 0.0000(0.0000)
20 11.98(11.96) 8.746(8.675) 5.997(5.980) 0.0348(0.0300)
30 51.42(52.68) 42.15(43.08) 25.70(26.32) 0.2332(0.2400)
40 160.0(153.6) 136.7(134.0) 80.03(76.81) 1.0025(0.9900)
50 390.6(385.3) 343.6(341.2) 195.5(192.8) 3.1528(3.1050)

Problem CSVC{mP)
n Iteration xlO^Repairs xlO^Learns xlO^ C P U time
10 0.804(0.924) 0.926(1.040) 0.804(0.924) 0.0000(0.0000)
20 6.671(5.447) 8.641(7.308) 6.671(5.447) 0.0244(0.0200)
30 24.86(24.25) 35.26(35.62) 24.86(24.25) 0.1512(0.1600)
40 77.19(80.63) 114.8(128.1) 77.19(80.63) 0.6738(0.7600)
50 196.8(199.0) 300.0(326.6) 196.8(199.0) 2.2416(2.4450)

Table 4.4: CSVC{GENET) and CSVC{IMP) on increasing permutation prob-
lems

Chapter 4 Experiments 55

25 I. ^ ‘ ‘ f-
去 P S S
-e- max-PSS
-A- IPSS
-O- max-IPSS p
A LSDL(GENET) !

20- I.O. LSDL(IMP) / -
/

/

！ / /

^
ol . :

10 20 30 40 50
n

Figure 4.20: The mean time results on increasing permutation problems

The increasing permutation problem is a special case of permutation gener-

ation problem: it has only one solution. In Table 4.4, CSVC(GE]^ET) needs

around 390,600 iterations and 195,500 learning to solve the increasing per-

mutation problem with n — 50. It means that for every two iterations, one

learning is required to escape from local minimum. Besides, the increasing

permutation problem has another property that makes it hard for local search

solvers. There exist a large number of assignments in which the number of vi-

olations equals to only 1 even though the assignment is "very wrong". W e use

an example to illustrate this. Assume that n = 5 and the variable assignment

is xi =2^X2 = 3, X3 = 4,a;4 = 5, x^ = 1. All variables take the wrong values.

However, only one constraint {X4 < X5) is violated.

The timing results indicate that the performance of PSS and its variants

are much worse than £ O T £ (G E N E T) and CSVC{IMP) in this problem. W e

record the numbers of violations against total inputs or objective values of

Chapter 4 Experiments 56

12-1 ‘ ‘ ‘ ‘ ‘ h 12H ‘ ‘ ‘ ‘ ‘ ‘

10- 10-

« 8- . 8 -

I I
I ^

0-1 1 1——I . 1 . 0-1 1 ‘ 1 i ‘ ‘ ‘ 1-
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 tOOO 1200 MOO

Number of steps Number of steps

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step

12-1 ‘ ‘ ‘ ‘ ‘ 1" 12-| ‘ ‘ ‘ ‘ ‘ ‘

10- 10-

r . /
i I
^ 6- - 二 6.

I $

”m4 - 'mi
0-1 1 1 1 1 1 0-1 1 1—' 1 1 1 1

0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Number of steps Number of steps

(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.21: Numbers of violations and total inputs in each step of PSS and
max-PSS on increasing permutation problem with n = 10 (average run-time
case)

Chapter 4 Experiments 57

12-1 ‘ ‘ ‘ ‘ ‘ 1" 12 H ‘ ‘ ‘ ‘ ‘ ‘

10- 10-

W 8- 0-

L. 入 y 11

a 0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Number of steps Number of steps

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

12-1 ‘ ‘ ‘ ‘ ‘ 1" 12H ‘ ‘ ‘ ‘ ‘ ‘

10- 10-

I I
- 5

I, \

�.—_ L_ ,_ , _ ,J—^_ ,__ , _ , __ , _ ,
0 200 400 600 aoo 1000 1200 1400 0 200 400 600 600 1000 1200 1400

Number of steps Number of steps

(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step
Figure 4.22: Numbers of violations and total inputs in each step of IPSS and
max-IPSS on increasing permutation problem with n = 10 (average run-time
case)

Chapter 4 Experiments 58

12H ‘ ‘ ‘ ‘ ‘ 1 12-1 ‘ ‘ ‘ ‘ ‘

10- 10.

g e- a-

I I.

i • I
0 1 L, , , 1 1- 0-1 1 1 1 ‘ ‘‘

0 2000 4000 6000 6000 10000 12000 0 2000 4000 6000 8000 10000 12000

N u m b e r o f s t e p s N u m b e r o f s t 叩 s

(a) CSVC{GENET): Violation vs. Step (b) CSVC{GENET): Objective value vs. Step

12-1 ‘ ‘ ‘ ‘ ^ h ‘ ‘ ‘ ―‘ ‘

10- ，。•

丨 L W
nn 丨 _ Mil II I
0-1 , , . ,——J 1 0-1 1 • ‘ ‘ “ ‘

0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000
N u m b e r o f s t e p s N u m b e r o f s t e p s

(c) CSVC{IMF): Violation vs. Step (d) CSVC{IMP): Objective value vs. Step
Figure 4.23: Numbers of violations and objective values in each step of

(GENET) and CSVC{IMF) on increasing permutation problem with
n = 10 (average run-time case)

Chapter 4 Experiments 59

12-1 ‘ ‘ ‘ ‘ ‘ ‘ 12-1 ‘ ‘ ‘ ‘ ‘

10. 10.

8.

P K
^ 6- - lE 6-

I
•0 ^
E

i A- - 4-

''in .

0-1 J—1 1" 0-1 ^—i————‘ ‘ ‘ ‘ 1-
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 MOO

Number of steps Number of steps

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step

12-| ‘ ‘ ‘ ‘ ‘ ‘ h 12H ‘ ‘ ‘ ‘ ‘ -‘

10- 10-

« 8- a-
•I .
1 I,

I ^

o J _ _ _ , _ , ^ ^ , , ^ ^ i J — , , _ _ , ,
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400

Number of steps Number of steps

(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.24: Numbers of violations and total inputs in each step of PSS and

max-PSS on increasing permutation problem with n = 10 (short run-time

case)

Chapter 4 Experiments 60

12-1 ‘ ‘ ‘ 丨 丨 ‘ h ‘ ‘ ‘ ‘ ‘— ‘

10. �0.

W 8- - 8 .
0
活 3
I le-

0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 MOO
Number of steps Number of steps

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

12 H ‘ ‘ ‘ ‘ ‘ ‘ h 12-1 ‘ ‘ ‘ ‘ ‘ ‘

10. 10-

» 8- 8-

I .
1 I,
0 • S
1 ^

丨 ：
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400

Number of steps Number of steps

(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.25: Numbers of violations and total inputs in each step of IPSS and

max-IPSS on increasing permutation problem with n = 10 (short run-time

case)

Chapter 4 Experiments 61

12-| ‘ ‘ ‘ ‘ ‘ h 12H ‘ ‘ ‘ ‘ ‘

10- 10-

I ‘ ‘
I I

1： ： n

0-1 1~I . 1 1 1 [0-1 1I 1 . 1 1
0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000

N u m b e r o f s t e p s N u m b e r o f s t e p s

(a) CSVC{GENETy. Violation vs. Step (b) GENET): Objective value vs. Step

12-1 ‘ ‘ 1 ‘ ‘ h 12-1 ‘ ‘ ‘ ‘ ‘

1 0 - 1 0 .

L m
0-] 1 1 1 1 1 1 i- 0-1 1 1 1 1 1 1

0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000
N u m b e r o f s t e p s N u m b e r o f s t e p s

(c) £<SP/:(IMP): Violation vs. Step (d) £SP£(IMP): Objective value vs. Step

Figure 4.26: Numbers of violations and objective values in each step of
CSVC{GENET) and CSVC{IMF) on increasing permutation problem with
n = 10 (short run-time case)

Chapter 4 Experiments 62

12-1 ‘ ‘ ‘ ‘ ‘ —t 12-1 ‘ ‘ ‘ ‘ ‘ ‘

10- 10-

« 8- 8-

I I
^ - i
I ^
E

0-1 . . 1~. 1 1 1- 0-1 . . ‘ 1 “ ‘ 1-
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400

Number of steps Number of steps

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step

12-1 ‘ ‘ ‘ ‘ ‘ V 12-1 ‘ ‘ ‘ ‘ ‘ ‘

10- 10-

L. . “ . 1 1

0-1 1 1 1 . 1 ~ 1 1 1- 0-1 . 1 1 1 ^ ~ I 1

0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Number of steps Number of steps

(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.27: Numbers of violations and total inputs in each step of PSS and
max-PSS on increasing permutation problem with n = 10 (long run-time case)

Chapter 4 Experiments 63

12-1 ‘ ‘ ‘ ‘ ‘ h 12-| ‘ ‘ ‘ ‘ ‘ ‘

10- 10-

丨：„ …

oJJ 1 . 1 . 1 . o|J [1
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400

Number of steps Number of steps

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

12-| ‘ ‘ ‘ ‘ ‘ H 12-1 ‘ ‘ ‘ ‘ ‘ ‘

10- 10-

r
1

rppiLifu^ . 〜I
o 4 J J , 1 1—1 1 1 o-M-J L, , 1 1—J 1 1

0 200 400 600 BOO 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Number of steps Number of steps

(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.28: Numbers of violations and total inputs in each step of IPSS and
max-IPSS on increasing permutation problem with n = 10 (long run-time case)

Chapter 4 Experiments 64

12-1 ‘ ‘ ‘ ‘ ‘ 1- 12-| ‘ ‘‘ ‘ ‘ ‘

10- 10-

W a- 8-
0

1 3
•i I

6. ‘ 二 6-

I I

0-1 1 1—f—I 1 1 ^ 0-1 . 1—I—I . 1
0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000

N u m b e r o f s t e p s N u m b e r o f s t e p s

(a) £<SP£(GENET): Violation vs. Step (b) £«S2:'£(GENET): Objective value vs. Step

12-| ‘ ‘ ‘ ‘ ‘ h 12H ‘ ‘ ‘ ‘ ‘

10- 10- I

0-1 1 1 1 1 1 1~[0-1 , 1 1 1 1 1
0 2000 4000 6000 6000 10000 12000 0 2000 4000 6000 8000 10000 12000

N u m b e r o f s t e p s N u m b e r o f s t e p s

(c) CSVC{lMPy. Violation vs. Step (d) £5P£(IMP) : Objective value Vs. Step

Figure 4.29: Numbers of violations and objective values in each step of
CSVC(GENET) and CSVC{1MF) on increasing permutation problem with
n = 10 (long run-time case)

Chapter 4 Experiments 65

40 ‘ ‘ ‘ ‘ ‘ ‘ ‘ r AO A ‘ ‘ ‘ ‘ ‘ ‘ ‘

35- 35-

30- 30-

(/)

I 25- 25-
<0
i I
>520- •
E ^
I 15- 15-

“,0. . ,0. [jlll̂lj

0-1 1 1 . 1 1 1 1~L 0-1 1 1 • 1 1 . 1 1~L
0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2 5 3 3.5

Number of steps x 10* Number of steps x 10‘

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step

40 H ‘ ‘ ‘ ‘ ‘ ‘ ‘——[- 40 H ‘ ‘ ‘ ‘ ‘ ‘ ‘

35- 35-

30- 30- •

S 25- 25-

I I r ‘ r]
： ；： M

0-1 1 1 It 1 , , 1 ~ 0-1 1 1 1 r , 1 1
0 O.S 1 1.5 2 2.6 3 3.5 0 0.5 1 1.5 2 2.5 3 3.5

Number of steps xio' Number of steps , io'

(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.30: Numbers of violations and total inputs in each step of PSS and
max-PSS on increasing permutation problem with n = 20 (average run-time
case)

Chapter 4 Experiments 66

40-1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ r 40-j ‘ ‘ ‘ ‘ ‘ ‘ ‘

35- 35-

30- 30-

g
5 25- 25-
(0 «
i I ^ 20- • 20

I - - � . nlii

.0 • ,。. 1 jm
0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2.5 3 3.5

Number of steps xio‘ Number of steps xio*

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

40-1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ r 40 j ‘ ‘ ‘ ‘ ‘ ‘ ‘

35- 35-

30- . 30- -

： : i l l l i i | l l ：
0 0.S 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2 5 3 3.5

Number of steps «io' Number of steps , ,o'

(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.31: Numbers of violations and total inputs in each step of IPSS and
max-IPSS on increasing permutation problem with n = 20 (average run-time
case)

Chapter 4 Experiments 67

40 j ‘ ‘ ‘ ‘ ‘ ‘ ‘ r -10 j ‘ ‘ ‘ ‘ ‘ 1 ^ ― •

35- 35-

30 - 30-

.2 25- 25-

I I

I ^
§ 15- 15-

1� 1�11 j 111!」丨1 iiiitiii4ii h

iojuuiiu F f r r M ^ I , ‘ ‘ 1
, 1 1 1 1 1 1~L 0-1 1 . 1 1 1 1 1~L

0 0.5 1 1,5 2 2.5 3 3.5 0 0.5 1 1 5 2 2 5 3 3.5
Number of steps xio' Number of steps xio»

(a) >C«SP£(GENET): Violation vs. Step (b) £5P£(GENET): Objective value vs. Step

40-1 ‘ ‘ ‘ 1 ‘ ‘ ‘——r 40-1 ‘ ‘ ‘ ‘ ‘ ‘ ‘

35- 35-

30- 30-

1 25- 25-
(0 «
i I
•S 20- • r w -

I I
I 15- 15-

10 liikiiiiiiikii
imnrkyUiu： r'™ ' ' ,

0-j 1 1 1 1 1 1 1 1 L 0-1 1 , i , , , , , L
0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2 5 3 3 5

Number of steps xio' Number of steps kio，

(c) £SVC(IMP): Violation vs. Step (d) JCSVJC(IMP): Objective value vs. Step

Figure 4.32: Numbers of violations and objective values in each step
£<SP£(GENET) and JCSV£(1MP) on increasing permutation problem with
n = 20 (average run-time case)

Chapter 4 Experiments 68

40-1 ‘ ‘ ‘ ‘ ‘ ‘ ‘——r 40-1 ‘ ‘ ‘ ‘ ‘ ‘ ‘

35- 35-

30 - 30-

I 25- 25-
(0 •；

1 I
^ 20- • 二 20.

I I
I 15- 15-

、。. ’,。.jMI
TT • lira II nil _ mm ~ II

0-1 1 1 ‘ 1 1 1 1 1 L 0-1 1 1 1 , , , , , i-
0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2.5 3 3.5

Number of steps x io' Number of steps *

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step

40-| ‘ ‘ ‘ ‘ ‘ ‘ ‘ r 40-1 1 ‘ ‘ ‘ ‘ ‘ ‘ r

35- 35-

30 - 30-

(/)

1 25- 25-
<0 ^
i I
^ 20- • 二 20.

I I 1 � 1

0-1 1 1 1 1 1 1 , , 0-1 1 1 1 1 1 1 , ,
0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2 5 3 3.5

Number of steps xio' Number of steps xio'

(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.33: Numbers of violations and total inputs in each step of PSS and
max-PSS on increasing permutation problem with n = 20 (short run-time
case)

Chapter 4 Experiments 69

40"| ‘ ‘ ‘ ‘ ‘ ‘ ‘ r 40 H ‘ 1 1 _ _ _ . i ,

35- 35-

30- • 30-

(/)

I 25- 25-
(0 _ •3 3 •5 8-•S 20. • Z 20-
I I
1 '5- ,5-

Ûmm̂ ûipri .
0 0.5 1 i.5 2 2 5 3 3.5 0 0 5 1 , 5 2 3 3.5

Number Of steps xio' Number of steps ,10*

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step
" " I ‘ ‘ ― ‘ ‘ ‘ ‘ ‘ ~ r 4 0 + i ‘ i . . ,

. 35- .

扣- 30- .

I .

i： J||
^wimM I ywiwi :

0 �+5 ‘ ^ 2 5 3 3 5 0 0.5 1 1.5 2 2.5 3 3.5

Number Of steps ,10' Number of steps

(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step
Figure 4.34: Numbers of violations and total inputs in each step of IPSS and
max-IPSS on increasing permutation problem with n = 20 (short run-time
case)

Chapter 4 Experiments 70

10 H ‘ ‘ ‘ ‘ ‘ ‘ 1~r 40-1 ‘————‘ 1 . . L _ _ _ _ _ , _ _

35- 35-

30. 30 . -

u>

I 25- 25-n> _
•5 =
> g-
•5 20- • 1=20-
I ^
i 15. , 5 . z 10- ,0-

0 0.5 1 J , 5 2 2.5 3 3.5 0 0.5 1 1 5 2 2.5 3 3.5
Number Of steps Number of steps

(a) £5D£(GENET): Violation vs. Step (b) £<Sr>£(GENET): Objective value vs. Step

‘ ‘ ‘ ‘ ‘ ‘ ‘ ~ 40-1 ‘ 1 1 . , , ,

35- 35-

30. 30. .
at

I 25- 25 . •S -
I I
•5 • Z 20-
I I
1 ' 5 - 15-
Z

0 0.5 1 2 2,5 3 3.5 " o 0.5 1 1.5 2 2.5 3 3.5
Number Of steps xio' Number of steps

(c) £OT£(IMP): Violation vs. Step (d) £5P£(IMP) : Objective value vs. Step

Figure 4.35: Numbers of violations and objective values in each step of
CSVC(GEmT) and CSVC{IMF) on increasing permutation problem with
n = 20 (short run-time case)

Chapter 4 Experiments 71

40H ‘ ‘ ‘ — — ‘ ‘ ^ ‘ ‘ ‘ ‘ ‘ ‘

36- • 沾

30- 30.

1 f u m I
° n ！ 2 ^ 3 3.6 0 0.5 1 1 5 2 2.5 3 3.S

0 ” Number Of steps x ,o' Number of steps ‘

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step

4 0 - j — — ~ ‘ ‘ ‘ ‘ ‘ ‘ ^ ‘ ‘ ‘ ‘ ~ “ “ “ ‘ ‘ , ‘

j i l i
0 Zs I il ； 7s 5 0 0.5 , 15 J 2.S 3 3.5

Number Of steps xio' Number of steps «io

(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.36: Numbers of violations and total inputs in each step of PSS and
max-PSS on increasing permutation problem with n = 20 (long run-time case)

Chapter 4 Experiments 92

4 0 - j - — — ‘ ‘ ‘ ‘ ‘ ^ ‘ ‘ ‘ ‘ ‘

35- •

30. •

i 25.

活 =
15 g-

I 20. “ 1 '。_ I 1|

lis- -〜- ,
10- 1。. iiyimiiiiiiiiiiii 僕

-。。，‘NLberofWs ^ 二,。‘ “ ‘ ： 二 叩̂ “ ^ 〜

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

40-1 ‘ ‘ ‘ ‘ ‘————‘ ^ ‘ ‘ ‘ ‘ ‘ ‘ ‘

35. 35-

o T ； T s 2 3 ？ T " ^ ° 0 0 5 1 1 5 2 2.S 3 3.5

Number Of steps Number of steps

(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.37: Numbers of violations and total inputs in each step of IPSS and

max-IPSS on increasing permutation problem with n = 20 (long run-time case)

73 Chapter 4 Experiments

_ , . I - I » r 40-j — ‘ ‘ ‘
40-j

35-
35-

30-
30-

S - 25-

0 c
•5 • 二 20-

•5 20-

1 15. . -

� � < ^'umber Of Steps '' ‘ ” ,。， � ‘ Number of steps “ ‘ , � •

(a) CSVCiGENET): Violation vs. Step (b) £5P£(GENET): Objective value vs. Step

• Q
。f - ： “ “ 3 ^ 。 。 . s 1 ： 二 eps “ ' � �

(c) £5P£(IMP) : Violation vs. Step (d) £5r»£(IMP): Objective value vs. Step
Figure 4.38: Numbers of violations and objective values in each step of
£ 5 D £ (G E N E T) and jCSV^IMP) on increasing permutation problem with
n 二 20 (long run-time case)

Chapter 4 Experiments 74

PSS, max-PSS, IPSS, max-IPSS, CSVC{GENET) and CSVC{IMF) on in- 一

creasing permutation problem with n = 1 0 in Figures 4 . 2 1 - 4 . 2 9 . The n u m -

bers of violations against total inputs or objective values of PSS, max-PSS,

IPSS, max-IPSS, CSVC{GENET) and CSVC{IMF) on increasing permuta-

tion problem with n = 20 are shown in Figures 4.30 - 4.38. We first recall

that there exists only one solution in an increasing permutation problem. Fig-

ures 4 . 2 3 (a) , 4 . 2 6 (a) and 4 . 2 9 (a) show the number of violations in each step of

CSVC{GENET) on increasing permutation problem with n = 1 0 in average

r un- t i m e case, short run-time case and long run-time case respectively. Fig-

ures 4 . 3 2 (a) , 4 . 3 5 (a) and 4 . 3 8 (a) show the number of violations in each step

of CSVC(GENET) on increasing permutation problem with n = 2 0 in av-

erage r un- t i m e case, short r u n - t i m e case and long run-time case respectively.
Prom the figures, there exists a large number of valley-like plateaus in the

search space. (GENET) carefully performs learning and modifies the

landscape of the search space w h e n it traverses these valleys. This prudent ap-

proach helps it reach a solution quickly. Although CSVC(GE^ET) uses more

steps to solve the increasing permutation p rob lem, it repairs fewer clusters to

find a solution. On the contrary, PSS uses a lot more steps to traverse the

plateaus, and it pays less attention to the landscape when it rushes through

the plateaus (Figures 4.21(a), 4.24(a), 4.27(a), 4.30(a), 4.33(a) and 4.36(a)).

CSVC{IMF) performs more learning than CSVC{GENET). This approach

quickly modifies the landscape of the search space and increases the contrast

between the landscape of the solutions and that of the non-solutions. There-

fore, the timing results of CSVC{IMF) outperforms /:SVC(GENET), PSS

and its variants. “

Figures 4 . 2 2 (a) , 4 . 2 5 (a) and 4 . 2 8 (a) show the number of violations in each

step of IPSS on increasing permutation problem with n = 10 in average run-

time case, short r u n- t i m e case and long run-time case respectively. Figures

4 . 3 1 (a) , 4 . 3 4 (a) and 4 . 3 7 (a) show the number of violations in each step of

Chapter 4 Experiments 75

IPSS on increasing permutation problem with n = 20 in average run-time

case, short run-time case and long run-time case respectively. For IPSS, the

situation is worse as the first several hundreds steps are basically wasted: the

partial solutions found are not usually a subset of the final solution. Assume

that n = 5 and the current partial solution is Xi 二 2，;r2 = 3,工3 = 4. This

partial solution can be extended by assigning 5 to variable 工4. However, all

existing variables take the wrong values with respect to the complete solution.

The timing results of IPSS are hence worse than that of PSS because IPSS

spends time on doing those futile steps. The cluster selection heuristics actually

makes the situation worse, as the search is directed to rough areas.

4.2.2 Random Permutation Generation Problems

The timing results of PSS and its variants on random permutation genera-

tion problems are showed in Table 4.5. Table 4.6 shows the timing results of

CSVC{GENET) and CSVC{IMF) on the same set of problems. Figure 4.39

shows the mean time results of all implementations on random permutation

generation problems. Problems in this set are easy for CSVC implementations

and PSS implementations. All problem instances are solved almost immedi-

ately. PSS and its variants are slightly more efficient than CSVC(GENET)

and CSVC(IMF) for this set of problems. The difference is more significant

when the problem size grows larger and the number of solutions increases.

Figures 4.40 - 4.48 show the numbers of violations against total inputs

or objective values of PSS, max-PSS, IPSS, max-IPSS, /:5P/:(GENET) and

CST>C{IMF) on random permutation generation problem with n = 50. Fig-

ures 4.49 - 4.57 show the numbers of violations against total inputs or objective

values of PSS, max-PSS, IPSS, max-IPSS, CSVC(GE^ET) and CSVC{IMF)

on random permutation generation problem with n = 100. In the figures about

>COT£(GENET), we can see that CSVC{GENET) carefully performs learning

Chapter 4 Experiments 76

" P ^ e m PSS IPSS
n S t ^ C P U time Steps C P U time
50 87.8(83.0) 0.0029(0.0000) 85.3(83.0) 0.0025(0.0000)
60 127.5(111.0) 0.0053(0.0100) 136.5(119.0) 0.0054(0.0100)
70 151.7(141.0) 0.0079(0.0100) 156.2(143.5) 0.0071(0.0100)
80 134.4(126.5) 0.0082(0.0100) 132.7(126.0) 0.0054(0.0100)
90 152.6(146.5) 0.0097(0.0100) 173.6(162.0) 0.0102(0.0100)
100 144.4(142.0) 0.0098(0.0100) 153.0(150.0) 0.0094(0.0100)

max-PSS max-IPSS
^ 103.5(105.0) 0.0030(0.0000)102.3(95.5)0.0027(0.0000)
60 137.3(122.0) 0.0054(0.0100) 129.6(110.0) 0.0041(0.0000)
70 160.2(146.5) 0.0088(0.0100) 155.8(147.0) 0.0064(0.0100)
80 140.8(137.5) 0.0073(0.0100) 129.4(127.5) 0.0055(0.0100)
90 160.1(155.5) 0.0099(0.0100) 164.9(157.0) 0.0090(0.0100)
100 155.4(153.0) 0.0101(0.0100) 155.4(151.0) 0.0098(0.0100)

Table 4.5: PSS and its variants on random permutation generation problems

"Problem CSVCjGElSlET)
n Iteration Repairs Learns C P U t i m e
50 35.6(23.0) 62.1(55.0) 16.1(10.0) 0.0040(0.0000)
60 76.1(67.5) 96.7(88.5) 36.2(32.0) 0.0060(0.0100)
70 122.8(63.5) 142.1(114.0) 58.6(29.0) 0.0088(0.0100)
80 132.7(59.0) 146.7(107.0) 64.0(27.0) 0.0114(0.0100)
90 107.3(57.5) 141.7(117.5) 51.4(27.0) 0.0132(0.0100)
100 64.4(40.0) 123.1(109.5) 29.7(18.0) 0.0134(0.0100)

—Problem CSVCjlMP) —
n Iteration Repairs Learns C P U t i m e
50 21.5(16.0) 50.1(48.0) 21.5(16.0) 0.0030(0.0000).
60 35.9(26.0) 77.3(69.0) 35.9(26.0) 0.0040(0.0000)
70 62.2(52.5) 155.1(147.0) 62.2(52.5) 0.0092(0.0100)
80 68.4(46.5) 133.9(106.5) 68.4(46.5) 0.0092(0.0100)
90 49.1(31.5) 130.5(114.0) 49.1(31.5) 0.0109(0.0100)
100 32.8(23.5) 114.7(108.0) 32.8(23.5) 0.0142(0.0100)

Table 4.6: CSVC{GENET) and CST>C{IMP) on random permutation gener-
ation problems

Chapter 4 Experiments 77

‘ ‘ ‘ ‘ h
去 P S S
-e- max-PSS
-A- IPSS

14- -O- max-IPSS .(i
A LSDL(GENET)
O LSDL(IMP) A

1 2 - -

A
-o o o
C 10- 71>

2-1 1 1 — 1 1 r
50 60 70 80 90 100

n

Figure 4.39: The mean time results on random permutation generation prob-

lems

and modifies the landscape of the search space when it traverses the plateaus.

This time the prudent approach reduces the search speed as there exist many

solutions in the search space. The progressive approach used in PSS quickly

traverses the plateaus and reaches the solution. This set of experiments illus-

trates the advantage of progressive approach in some benchmarking problems.

The partial solutions found by IPSS can be extended easily. This further con-

firms that there are many solutions in this set of problem instances.

Chapter 4 Experiments 78

30 H ‘

25- 热 .

g 20- 扣.

I I
！ 15. •
JS — ~,

：

^ wm^ 、 .

0 ^ ito "o 50 1 100 150
Number Of steps Number of steps

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step

30-1 ‘ ‘ -t ‘

25- 25.

g 20- 扣.

I I
1,5- • i15.
E 卜o
E

i 10- 10-

I w I
0 m m iso o so 100 iso

Number of steps Number of steps

(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.40: Numbers of violations and total inputs in each step of PSS and

max-PSS on permutation generation problem with n 二 50 (average run-time

case)

79
Chapter 4 Experiments

. - I - 3 0 i ‘ ‘
30 j

25-
25-

20.
W 20-

i I
•i .
节 15. 3
E —
1 . 1 0 .
Z 10-

5-
5-

J AT. AA nnr-^ _ _ , i oJ 们 从 ^ ^ 1
0 “ N u m b e r o f s t e p s 咖 畑 N u m b e r of s t e p s

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

• I 1- 30+- ‘ ‘ ‘
30 "1 —

25-
25 .

20.
W 20.

I ^

� , 5 . B

& 卜
1 . 1 0 .

Z ID-

S '
5-

o-n n f r - i — — , 1 ok ^ 1

0 _ e r o f s (e p s 咖 邮 N u . ^ r o , s t e p s

(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.41: Numbers of violations and total inputs in each step of IPSS and

max-IPSS on permutation generation problem with n 二 50 (average run-time

case)

Chapter 4 Experiments 80

90-1 ‘ ‘ ‘ ‘ ‘ ‘ ‘- "i ‘ ‘ ‘ ‘ ‘ ‘

80- . 60.

70- .
« 60- SO-
I 50- !•«>.
•s 1

^ 40- • °
Z 30- -30-

20- 20. “

10- 10-

Q. ̂ , , , , , , , i ,..丨…丨丨 n , _ , , , ,
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000

Number of steps Number of steps

(a) £5I?£(GENET): Violation vs. Step (b) £<SP£(GENET): Objective value vs. Step

90-1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 1- SO-] ‘ ‘ ‘ ‘ ‘ ‘ ‘

80- SO-

TO- - 70-

« 60- . 6 0 .

•I .
I 50- ISO-
'S
I 40- • O 40-

i 30. SO-

SO- 20-

1 Vmrwuu ja j j .

° 0 500 1000 1SOO 2000 2500 3000 3500 4000 0 SOO 1000 1500 2000 2500 3000 3500 4000
Number of steps Number of steps

(c) CSVC{IMP): Violation vs. Step (d) £5P£(IMP) : Objective value vs. Step

Figure 4.42: Numbers of violations and objective values in each step of

CSVC{GENET) and CSVC{IMF) on permutation generation problem with
n = 50 (average run-time case)

Chapter 4 Experiments 81

30 H ‘ 30-j

25- - 25.

« 20- • 20- ‘
0
1 =
I I
•5 15- • 1 15.
E ^
E
Z 10 V 10 \

0 1 ^ 1 1- 0 I • * ‘ ^
0 50 100 150 0 50 too 150

N u m b e r o f s t e p s N u m b e r o f s t e p s

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step

30 A ‘ ‘ [- 30 H ‘ ‘

25- 25-

w 20. . 2 0 .

1 3
•i &

-i''-
E

z 10- to-

0 1 1 1 1- oH 1 ‘ 1
0 50 100 150 0 50 100 150

N u m b e r o f s t e p s N u m b e r o f s t e p s

(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.43: Numbers of violations and total inputs in each step of PSS and

max-PSS on permutation generation problem with n = 50 (short run-time

case)

Chapter 4 Experiments 82

30H 30-j ‘

25-

« 20- - 20.

I 1
I- • i-
E ^
I

i 10- - 10.

5- 5-

Ja AAA a Ar-\n . I oU A AH A, Ann .
0 50 too 150 0 50 100 150

Number of steps Number of steps
(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

30 H ‘ ‘ h 30-1 ‘

25- 25-

g 20 . 20-

I I
I
E

Z 10. 10.

5- 5-

oJ ^^ A/y/V^ , oJ 门 ,
0 50 100 1 50 0 50 100 150

Number of steps Number of steps
(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.44: Numbers of violations and total inputs in each step of IPSS and
max-IPSS on permutation generation problem with n = 50 (short run-time

case)

Chapter 4 Experiments 83

90-1 ‘ ‘ ‘ ‘ ‘ ‘ 90-1 ‘ ‘ ‘ ‘ ‘ ‘ ‘

80- • 8 0 -

70. 70.

« 60' 60-

I 3
I 50- •

'5 5
呈 40- • ^

E

Z 30 - 30- •

20. 20-

to- ' 0 - .
.

0 ‘ I 1— 1 1 1 1 1- 0-i I • I —~！ 1 ‘ ‘ ‘ ‘
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000

N u m b e r o f s t e p s N u m b e r o f s t e p s

(a) CSVC{GENET): Violation vs. Step (b) £5P£(GENET): Objective value vs. Step

90-1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ h 9 0 i ‘ ‘ ‘ ‘ ‘ ‘

80- 80-

70- 70-

« 60- - 60.

•I .
1 50- | 5 0 -

0 «
I 40 - 0 40-

E

Z 30- 30-

20 - 20-

10-1 10-\|
. i . . . , ,—X-——

0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
N u m b e r o f s t e p s N u m b e r o f s t e p s

(c) CSVC{IMF): Violation vs. Step (d) £5P£(IMP) : Objective value vs. Step

Figure 4.45: Numbers of violations and objective values in each step

CSVC{GENET) and CSVC{IMF) on permutation generation problem with
n = 50 (short run-time case)

Chapter 4 Experiments 84

30 H ‘ ‘ — h 30H ‘ ‘

25- 25-

g 20 - 20- .

I 3
O Q.

•5 c Hr 15- ^ 15-

！入 ^ \
Z 10- I - 10- \

0-1 1 1 、I" 0-J 1 ^
0 so 100 150 0 50 100 150

Number of steps Number of steps

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step

30-1 ‘ ‘ H 30-1 ‘ ‘ ―

25- 25

« 20- 20
0

S 3
•i &
1 ^

Z 10- \ 10- \
Vri Iatv

0-1 . ^ 1- 0-1 . ^
0 50 100 150 0 50 too 150

Number of steps Number of steps

(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.46: Numbers of violations and total inputs in each step of PSS and
max-PSS on permutation generation problem with n = 50 (long run-time case)

Chapter 4 Experiments 85

30-1 ‘ 30-j ‘

25- 25.

n 20- 20.

I I

I ^
E z 10- 10.

5 . 5-

。A A _ _ A A n m ~ o-J^A~A~\AA八 n m ~
0 50 100 150 0 50 100 150

Number of steps Number of steps

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

30 ‘ ‘ — h 30-1 ‘ ‘

25- 25 .

« 20 - 20.

•I 3
I ！
•s 15- • 2

5 ^

E

Z 10. . 1 0 -

5- 5-

0 n r̂ AAiV ATV^-^ 0 n aj\/rnr̂ "̂ ,
0 50 100 150 0 50 100 150

Number of steps Number of steps
(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.47: Numbers of violations and total inputs in each step of IPSS and

max-IPSS on permutation generation problem with n = 50 (long run-time

case)

Chapter 4 Experiments 86

90-j ‘ ‘ ‘ ‘ ‘ ‘ ‘ h 90-1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ •

80 - 80-

70- 70-

« 60- - 60- -
•I ^
I 50-

|40- -

Z 30- 30.

20 - 20. .

' ' '

• ' ' ' » '> I I n i^p^ i^^ i « i « 1 I • » I ^

0-1 1 1 I t 1 • I 1 f- OH 1 1 1 I • • ‘
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000

N u m b e r o f s t e p s N u m b e r o f s t e p s

(a) £<SD£(GENET): Violation vs. Step (b) £5D£(GENET): Objective value vs. Step

eoH ‘ ‘ ‘ ‘ ‘ ‘ [• 90-1 ‘ ‘ ‘ ‘ ‘ ‘ ‘

80 - 80-

70- 70 ,

g 60 . 60-

•I .
I 50- | 5 0 -

^ "I

蜜 40- O 4 0 -

I
Z 30 - 30-

- • �

QI ̂ ~r^ • ‘ • ~~r* ~~‘7"* • ^ 0-1 . . . ‘ ‘ ‘…^
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000

N u m b e r o f s t e p s N u m b e r o f s t e p s

(c) CSVC{IMF): Violation vs. Step (d) CSVCilMF): Objective value vs. Step

Figure 4.48: Numbers of violations and objective values in each step of

£ 5 P £ (G E N E T) and CSVC(IMP) on permutation generation problem with
n = 50 (long run-time case)

Chapter 4 Experiments 87

30 -j ‘ ‘ ‘ ‘ h 30 H ‘ ‘ ‘ 1

25- 25- -

g 20 . 20. •
0
vs
(0

1 I

I I 1
Z 10. � 1 0 - �

L J _ n L J _ n

： V : ‘ ^ .
0 50 100 150 200 250 0 50 100 150 200 250

Number of steps Number of steps

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step
M H ‘ ‘ ‘ h 30-1 ‘ ‘ ‘ .

25- 25-

« 20 . 20.

•S
JS t f

•i I

I V 澤 s
z 10- L , to- U

‘ V _ ‘ V .
0-1 , , r J , 1- o-j . . � ,

0 50 1 00 150 200 250 0 SO 100 ISC 200 250
Number of steps Number of steps

(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step
Figure 4.49: Numbers of violations and total inputs in each step of PSS and
max-PSS on permutation generation problem with n = 100 (average run-time
case) .

Chapter 4 Experiments 88

30_| ‘ 1 _ ‘ H 30-1 ‘ ‘ ‘ ‘

25- 25-

« 20 - 20-

I I
r'. •

I ^
z 10- to-

5- 5-

oJ_« t, ft • nfl iVjiA ninrr~\ , „]~~* '. «i HA/n̂i rwnnr—\
0 50 100 150 200 250 0 SO 100 150 200 250

Number of steps Number of steps

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

30 H ‘ ‘ ‘ ‘ h 30-j ‘ 1 ‘ 1

25- 25-

g 20 - 20-

1 I

� -r-
2 10- - 10-

5- - 5-

oJ l i A — m 譯 H , i oJ & A m 譯 H , > ,
0 50 100 150 200 250 0 50 100 150 200 250

Number of steps Number of steps
(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.50: Numbers of violations and total inputs in each step of IPSS and
max-IPSS on permutation generation problem with n = 100 (average run-time
case) -

Chapter 4 Experiments 89

140 H ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 1" 140 H ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

120. 120-

100- 100-

C
•2
I 80- • I eo-

i I
I 60- ° 60-
z

40- 40-

20- 20-

0-1 I i ‘ I 'I 1 1 1 1 1 1 1- 0-1 1 I I 1 1 1 1 1 1 I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

N u m b e r of s t e p s N u m b e r of s t e p s

(a) / :5D£(GENET): Violation vs. Step (b) £«SP£(GENET): Objective value vs. Step

140 H ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 1" 140 H ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

120- 120-

100- 100-

I 80- • 1 80.

•> C
名 B
^ 60- - jE 60-
E
3 Z 1

40- 40- I

\ (•
0 - 1 — — I '1 1 1 1 1 1 , 1 1 k 0-1 1 1 1 1 1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
N u m b e r o f s t e p s N u m b e r o f s t e p s

(c) CSVC{lMFy. Violation vs. Step (d) CSVC{IMF): Objective value vs. Step

Figure 4.51: Numbers of violations and objective values/total inputs in each
step CSVCiGENET) and CSVC{IMF) on permutation generation problem
with n = 100 (average run-time case)

Chapter 4 Experiments 90

30-1 ‘ ‘ ‘ ‘ h 3 0 i ‘ ‘ ‘ ‘

25- 25-

« 20. 20.

0

1 I. r"̂ —~ - — ~
E
Z 10- ^ 1 10- * 1 •

� . � . � . . 0 . .——i . . 1- 0-1 . ^ ‘ ‘ i-
0 50 100 150 200 250 0 50 100 150 200 250

Number of steps Number of steps

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step

30-1 ‘ ‘ ‘ ‘ h 30-1 ‘ ‘ ‘ ‘

25- 25-

« 20- 20
S
I 1 .

” ： \ ： ： \ ：

0-1 1 1 ^ 1 1 1" 0-1 1 . ^ . .
0 50 100 150 200 250 0 50 100 150 200 250

Number of steps Number of steps

(c) max-PSS: Violation vs. Step (d) IPSS: Total input vs. Step

Figure 4.52: Numbers of violations and total inputs in each step of PSS and

max-PSS on permutation generation problem with n = 100 (short run-time
case) .

Chapter 4 Experiments 91

30H ‘ ‘ ‘ ‘ 1 3 0 i ‘

25- 25

« 20- . 20.
0

1 t

E

z 10- 10-
5- - S-

J * ft . * ninnnAwnn l oJ » A . i ninAHMm_, .
0 50 100 150 200 250 0 50 100 150 200 250

Number of steps Number of steps

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

30H ‘ ‘ ‘ ‘ [“ 30-1 ‘ ‘ ‘ ‘

25- 25-

W 20 - 20. •

I
1 ^

E
2 10- U)-

5- - 5-

oi t(mr\ . . i oi On— tptmn——,
0 so too 150 200 250 0 50 100 150 200 250

Number of steps Number of steps

(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.53: Numbers of violations and total inputs in each step of IPSS and

max-IPSS on permutation generation problem with n = 100 (short run-time
case)

Chapter 4 Experiments 92

140 H ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ [- 140 H ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

1 2 0 - 120-

100- 100-

(0
I
I • I ‘
I I
名 60- . 60-

3
Z

40- 40-

20 - 20- •

L U . . .

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 0 1000 2000 3000 4000 5000 6000 7000 6000 9000 10000 11000
N u m b e r of s t e p s N u m b e r o f s t e p s

(a) £5P£(GENET): Violation vs. Step (b) £5P£(GENET): Objective value vs. Step

140 -j ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 1 1- 140 -j ‘ ‘ 1 1 1 ‘ ‘ ‘ ‘ ‘

120- 120-

100- 100- •

I I • I
1 1 5 60- ^ 80-,

40' 40

20-V 20- \

\ A
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

N u m b e r of s t e p s N u m b e r of s t e p s

(c) CSVCilMF): Violation vs. Step (d) jC,SVC{lMFy. Objective value vs. Step

Figure 4.54: Numbers of violations and objective values in each step
£5P>C(GENET) and CSVjC(IMF) on permutation generation problem with
n = 100 (short run-time case)

Chapter 4 Experiments 93

30-1 ‘ ‘ ‘ ‘

25- 25

« 20- 20- -
0

1 t
•5 C

I . °
z 10. ‘ '0- ‘

0 , ^ 1 1- OH 1 ‘ ‘ ^
0 50 100 150 200 250 0 50 100 150 200 250

Number of steps Number of steps

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step

30_| • ‘ ‘ ‘ h 30-1 ‘ ‘ ‘ ‘

25- 25- -

« 20 - 20-

I B
0 a •5 C
•5 15.
1
Z 10. y 10. y

0 1 1 1 1 ‘ 1- oH 1 1 1 I ^
0 50 100 150 200 250 0 M 100 150 200 250

Number of steps Number of steps

(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.55: Numbers of violations and total inputs in each step of PSS and

max-PSS on permutation generation problem with n = 100 (long run-time
case)

Chapter 4 Experiments 114

30H ‘ ‘ ‘

25.

« 20- 扣.

0

1 芸
•S 15. 3

0 E
I .0-

5- - 5 .

1 “ rvy lumfY—> 、 o J » _ ** nf\,/W» H .
0 ~ W 00 ^ ^ ^ 。 M , , , '«>

N u m b e r o f s t e p s N u m b e r o f s t e p s

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

30H ‘ ‘ ‘ ‘ ‘ ‘ ‘

26-

« 20- 扣 .

1 I

I °

Z 10- '。-

5- - 5 .

n nnn fr^~Anrnm~^ [。| ft fU f) n nn fH~ArtOmZT^
0 M 100 ^ ^ 250 � 50 roc 150 200 250

N u m b e r Of s t e p s N u m b e r o f s t e p s

(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.56: Numbers of violations and total inputs in each step of IPSS and

max-IPSS on permutation generation problem with n = 100 (long run-time
case)

Chapter 4 Experiments 95

140 H——‘--~‘——‘——‘——‘——‘——‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ “~‘

1 2 0 - " 0 .

100- loo.
I

^ 1

I 60- • °
E

Z
40- 劝.

^ . J ^ . y , , , I . • . , 1 … -
0 3 0 0 0 4000 5000 6000 7000 8000 9000 10000 11000 0 1000 2000 3000 4000 50M ^ 7000 8000 9000 10000 11000

N u m b e r Of s t e p s N u m b e r of s t e p s .

(a) CSVCiGENET): Violation vs. Step (b) CSVC{GENET): Objective value vs. Step

1 4 0 - j — — ‘ — — ‘ — — ‘ — — ‘ — — ‘ — — ‘ — — ‘ — — ‘ — — ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

120.

100-

I
名 S
I 60- °

Z妨. 的i
20- \

. . . … . . � .….

°o �� 棚‘.w^o ^ 7000 � • � � ” �

N u m b e r of s t e p s N u m b e r of s t e p s

(c) £5D£(IMP) : Violation vs. Step (d) £ 5 P £ (I M P) : Objective value vs. Step

Figure 4.57: Numbers of violations and objective values in each step of

jCSVjC(GE]S!ET) and £<SP£(IMP) on permutation generation problem with

n 二 100 (long run-time case)

Chapter 4 Experiments 96

4.3 Latin Squares and Quasigroup Completion

Problems

A Latin square of order N is N x N table of N symbols in which every

symbol occurs exactly once in each row and column of the table. An incomplete

Latin square of order A M s a partially filled Latin square of order N. The

quasigroup completion problem (QCP) [3] is a highly structured problem. The

Q C P is the problem that determines if the partial Latin square can be filled

to be a complete Latin square.

A Latin square of order N can be modeled as a CSP with PP variables.

Each variable represents one cell in the N x N table and has a domain

{1,2,..., A^}. The constraints state that no value occurs twice in a row or

a column. A Q C P can be modeled as a CSP that is similar to the modeling

of Latin square except that the filled variables have their domains fixed to the

pre-assigned value. Two sets of problems are used in this set of experiments.

The first set of experiments consists of six instances of Latin square problems

with orders ranging from iV 二 10 to iV = 35 in steps of 5. The second set of

experiments consists of six instances of quasigroup completion problems with

orders ranging from = 15 to •/V 二 20.

4.3.1 Latin Square Problems

Table 4.7 shows the results of PSS and its variants on the set of Latin square

problems. W e give the results of CSVC(GENET) and CSVJC(IMP) of the

same problems in Table 4.8 for comparison. The mean timing results of all

implementations are shown in Figure 4.58. Prom the timing figures, CSVC

(GENET) has a better performance than PSS. £5P£(IMP) has a better tim-

ing results than PSS, max-PSS and CSVC (GENET). IPSS and max-IPSS

outperform the original PSS and also CSVC implementations.

Chapter 4 Experiments 97

Problem PSS IPSS
N S t ^ C P U time Steps C P U time~~
10 149.7(120.0) 0.0000(0.0000) 112.6(119.0) 0.0000(0.0000)
15 430.3(396.0) 0.0046(0.0000) 270.9(274.0) 0.0017(0.0000)
20 1008(965.0) 0.0134(0.0100) 510.5(503.0) 0.0040(0.0000)
25 1716(1546) 0.0377(0.0400) 796.6(790.0) 0.0136(0.0100)
30 2667(2524) 0.0728(0.0700) 1160(1151) 0.0227(0.0200)
35 3706(3246) 0.1227(0.1100) 1586(1579) 0.0368(0.0400)

max-PSS max-IPSS
10 121.6(138.0) 0.0000(0.0000) 123.7(124.0) 0.0000(0.0000)
15 349.6(312.0) 0.0029(0.0000) 273.8(281.0) 0.0030(0.0000)
20 649.8(641.0) 0.0092(0.0100) 502.1(501.0) 0.0060(0.0100)
25 1090(1070) 0.0245(0.0200) 796.6(785.0) 0.0154(0.0200)
30 1601(1578) 0.0445(0.0400) 1140(1134) 0.0255(0.0300)
35 2250(2189) 0.0740(0.0700) 1589(1587) 0.0451(0.0400)

Table 4.7: PSS and its variants on Latin square problems

"Problem CSVC(GENET)
N Iteration Repairs Learns C P U t i m e
10 46.3(49.0) 134.6(133.0) 19.2(20.0) 0.0001(0.0000)
15 65.6(36.0) 227.5(244.0) 27.6(14.0) 0.0042(0.0000)
20 100.9(94.0) 535.8(520.0) 43.1(40.0) 0.0121(0.0100)
25 196.2(163.5) 955.0(928.5) 88.4(71.0) 0.0324(0.0300)
30 241.8(190.0) 1393(1332) 109.4(84.0) 0.0587(0.0600)
35 275.8(221.0) 1896(1838) 124.6(97.0) 0.0957(0.0900)

Problem CSVCjlMP)
N Iteration Repairs Learns C P U time
10 32.3(7.00) 86.69(23.00) 32.3(7.00) 0.0000(0.0000)
15 27.0(25.0) 138.5(131.0) 27.0(25.0) 0.0031(0.0000)
20 55.5(33.0) 302.8(263.0) 55.5(33.0) 0.0077(0.0100)
25 71.7(55.0) 508.5(510.0) 71.7(55.0) 0.0202(0.0200)
30 72.6(68.5) 754.3(787.5) 72.6(68.5) 0.0355(0.0400)
35 116.0(96.0) 1201(1170) 116.0(96.0) 0.0654(0.0600)

Table 4.8: £<SX>£(GENET) and CSVC{IMF) on Latin square problems

Chapter 4 Experiments 98

0.14 I I ‘ ‘ — ‘
-A- PSS
-e - max-PSS
-A- IPSS �

0 -n . -O- max-IPSS / -
A LSDL(GENET) /
O LSDL(IMP) /

C 0.08- / _

I •

乂 一 -！，
0.02- X ^ ^ ^ --一一- - ‘ -

0 . I ,

10 15 20 25 30 35
N

Figure 4.58: The mean time results on Latin square problems

Chapter 4 Experiments 99

The timing results show that IPSS has a better performance than PSS. Fig-

ures 4.59 - 4.67 show the numbers of violations against total inputs or objective

values of PSS, max-PSS, IPSS, max-IPSS, CSVC{GEMT) and CSVC{MF)

on Latin square of order 10. Figures 4.68 - 4.76 show the numbers of violations

against total inputs or objective values of PSS, max-PSS, IPSS, max-IPSS,

£<SP£(GENET) and CSVC(IMF) on Latin square of order 35. In Figures

4.60(a), 4.63(a), 4.66(a), 4.69(a), 4.72(a) and 4.75(a), the partial solutions

found by IPSS can be easily extended: only several steps are required to incor-

porate a new variable. W e note that the points with zero number of violations

represent the partial solutions. Moreover, IPSS always keeps the number of

violations to extremely small values (typically 1), in contrast to that in the

original PSS, which can be a dozen or two (Figures 4.59(a), 4.62(a), 4.65(a),

4.68(a), 4.71(a) and 4.74(a)). This experiment demonstrates the advantage of

using incremental search to solve this kind of problem. On the other hand,

max-PSS much improves on PSS in solving Latin square problems. Analysis

of traces of execution shows that the cluster selection heuristics used helps

decreasing the number of violations in a fast rate (Figures 4.59(c), 4.62(c),

4.65(c), 4.68(c), 4.71(c) and 4.74(c)). W e note that max-IPSS has almost the

same performance as IPSS. Prom Table 4.7, max-IPSS requires a little bit more

time than IPSS to solve the problems. The reason is that max-IPSS needs time

to select the suitable cluster in the list T for repairing.

From the tables, we can see that the number of repairs in £<SP£(GENET)

is nearly the same as that of IPSS, max-IPSS and max-PSS. However, the

number of steps taken in CST>C{GENET) is much more. This is the reason

that all variants of PSS outperform (GENET). Although £5P£(IMP)

uses fewer repairs than IPSS, max-IPSS and max-PSS, it takes more steps to

find the solution. That makes all variants of PSS outperform £<SD£(IMP).

Chapter 4 Experiments 100

12-| ‘ ‘ ‘ ‘ ‘ ‘ [• 2̂1 ‘ ‘ ‘ ‘ ‘ ‘

10- I 1 10- * 1

W 8- U 8- h

I 、 i 1
•5 8- • s ‘‘

E

i 4- S

o \ , , ！ , . . — — • 1" 0 - 1 . 1 1 ‘ ‘ ‘ ‘
0 so 100 150 200 2S0 300 350 400 0 50 100 ISO 200 250 300 350 400

Number of steps Number of steps

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step

12 H ‘ ‘ ‘ ‘ ‘ ‘————[“ t2-| ‘ ‘ ‘ —‘ ‘ ‘

10- 10- ‘

§ ‘ • ‘ 1
I I I
•5 8- • 3

E

i A- U S -

2- L| 2- U
0-1 1 1~——. . . i 1 O-J . •~̂ ‘ ‘ ‘ ‘ ‘

0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Number of steps Number of steps

(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.59: Numbers of violations and total inputs in each step of PSS and
max-PSS on Latin square problem with TV = 10 (average run-time case)

Chapter 4 Experiments 101

10-1 ‘ ‘ ‘ ‘ ‘ ‘ 1- 10"! ‘ ‘ ‘ ‘ ‘ ‘
9- - 9-

8- - 8 .

7- • 7 .

<0
I 6. • 3 6.
0 a
？ .S ^

Z

3 - • 3-

2. 2-

] . j \ U n ：] fi m
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

Number of steps Number of steps

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

10 H ‘ ‘ ‘ ‘ ‘ ‘ [- 10-1 ‘ ‘ ‘ ‘ ‘
9- • 9-

8- B-

7.

• I：

1 4- .卜 4.
Z

3- 3-

2- 2-

] n n\ f f] :l , n, fn m :
0 20 40 60 eo 100 120 140 0 20 40 60 80 100 120 140

Number of steps Number of steps

(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.60: Numbers of violations and total inputs in each step of IPSS and
max-IPSS on Latin square problem with N = 10 (average run-time case)

Chapter 4 Experiments 102

100 H ‘ ‘ ‘ ‘ ‘ ‘ 1" 100-1 ‘ ‘ ‘ ‘ ‘
90- 90-

80- - 8 0 . - ,

70- . 70-

I 6。- • I 6。-
•5 50- I
I 40- . 卜 40-

Z

30 - 30- .

20- 20-

oi .—— • 、~. . . . 1- 0-1 . i ‘ r . ‘ ^
0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000

N u m b e r of s t e p s N u m b e r o f s t e p s

(a) £<SD£(GENET): Violation vs. Step (b) CSVC{GENET): Objective value vs. Step

100 H ‘ ‘ ‘ ‘ ―̂~—‘ —100-1 ‘ ‘ ‘ ‘ ‘ ‘
90- SO-

SO- SO-

TO- - 70 •

卜 • i：
•5 s
I 40- - 卜 40-

3
z

30- 30- •

20- 20-

10- 1。- ^
^ UWf̂ WffUŴ

C 0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000
N u m b e r of s t e p s N u m b e r of s t e p s

(c) Violation vs. Step (d) CSVCilMF): Objective value vs. Step

Figure 4.61: Numbers of violations and objective values in each step of

£ 5 D £ (G E N E T) and CSVC{IMF) on Latin square problem with N = 10
(average run-time case)

Chapter 4 Experiments 103

12H ‘ ‘ ‘ ‘ ‘ ‘ ‘ —t 12-j ‘ ‘ ‘ ‘ ‘ ‘ ‘

10- 10-

« 8- U a- H

I 1 I I
r 1 T 1
E
Z 4- “ 1 4 . “

2. S 2- S •

0-1 1 1 1 1 P . i 1- 0-1 1 i ^ ‘ ‘ ‘ ‘
0 SO 100 150 200 250 300 350 400 0 50 100 1 50 200 250 300 350 400

Number of steps Number of steps

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step

12-| ‘ ‘ ———‘ ‘ ‘ ‘ 1- 12 H ‘ ‘ ‘ ‘ ‘ ‘ ‘

10- 10-

g 8 - - 8 .

I 3 I g-
I , °

I 1
Z 4- \ 4- \

I . . I -

0-1 1 1-1 1 . i 1 1" 0-1 i r-l 1 1 1 ‘
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400

Number of steps Number of steps
(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs.. Step

Figure 4.62: Numbers of violations and total inputs in each step of PSS and
max-PSS on Latin square problem with iV = 10 (short run-time case)

Chapter 4 Experiments 104

10-1 ‘ ‘ ‘————‘ ‘ ‘ 10-1 ‘ ‘ ‘ ‘ ‘
9- - 9 . -

8- 8-

7- - 7 .
W
C

I - 3
I .1 ,
•o • 3
I 4 . 3

Z • 3.

2 . - 2 .

：] , wn :1 I wn ：
0 20 40 60 60 100 120 140 0 20 40 60 80 100 120 140

Number of steps Number of steps

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

10- i ‘ ‘ ‘ ‘ ‘ ‘ h lo-j ‘ ‘ ‘ ‘ — ‘ ‘

9-

8- 8-

7- - 7-

卜 • I：
I 4.
3
Z

3- 3-

2+ 2-

] f u “ j , I f U “ ：
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

Number of st叩s Number of steps

(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.63: Numbers of violations and total inputs in each step of IPSS and

max-IPSS on Latin square problem with N = 10 (short run-time case)

Chapter 4 Experiments 105

100-1 ‘ ‘ ‘ ‘ ‘ [- 100-| ‘ ‘ ‘ ‘ ‘ ‘
90- 90-

80- 80-

70- 70- -

1
•15 60- • 60-

I I
！ 50- • r 50-
！ 40- 40-
3
Z

30 • 30-

2 0 - - 2 0 -

：丨、 ：] % , 丨 , , 丨 ：
0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 6000 10000 12000 14000

N u m b e r of s t e p s N u m b e r o f s t e p s

(a) £5P£(GENET): Violation vs. Step (b) CSVC{GENET): Objective value vs. Step

lOOH ‘ ‘ ‘ ^ —‘ h lOOH ‘ ‘ ‘ ‘ ‘ ‘

90 - 90- •

80- 80- -

70. 70-

I
I 60- - 60- -
1 &
^ 50- • 二 50 •

2 i9
突 £
I 40- - 卜 40-
3
Z

30- 30-
20- 20- -
10- 10-y
：̂ h

0+^ , , , , 1 « 1- 0-1~‘ 1 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 UOOO

N u m b e r o f s t e p s N u m b e r o f s t e p s

(c) £«S:D£(IMP): Violation vs. Step (d) CSVC{IMF): Objective value vs. Step

Figure 4.64: Numbers of violations and objective values in each step
CSVC(GENET) and £<SP/:(IMP) on Latin square problem with N = 10
(short run-time case)

Chapter 4 Experiments 106

1 2 H ‘ ‘ ‘ ‘ ‘ ‘ ‘ h 12 -1 ‘ ‘ ‘ ‘ ‘ ‘ ‘

10- 10- -

« 8- . 8 .

S 6. . L .
I I ,n L n ^ I 1 ,n L n

2- I_I U IIU U L - 2- II LI ilU U L

0-1 1 1 . 1 1 1 1- 0-1 . 1 1 1 1 1 rJ
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400

Number of steps Number of steps

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step

12-1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 1- 12-1 ‘ ‘ ‘ ‘ ‘ ‘ ‘

10- 10-

« 8- \ 6- S -
1
I h I h
0 s - i s
1 \ v

Z 4- L-j • 4 、

I . . I .
0-i 1 1 U 1 1 1 1 h 0-1 1 1 U 1 1 1 1

0 50 100 150 200 250 300 350 400 0 SO 100 ISO 200 250 300 350 400
Number of steps Number of steps

(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.65: Numbers of violations and total inputs in each step of PSS and

max-PSS on Latin square problem with iV = 10 (long run-time case)

Chapter 4 Experiments 107

10j 1 1 ‘ 1 ‘ ‘ 10-1 ‘ 1 ‘ ‘ ‘ ‘

9- 8-

8- 8-

7- 7 -

I • 3 i &
« 0
！ 4- • ““ 4-

Z
3- 3-

2- 2

：] , I , a . n n a , j , , , n n n a , ：
0 20 40 60 80 100 120 140 0 20 40 GO 80 100 120 140

Number of steps Number of steps

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

10-| ‘ ‘ ‘ ‘ ‘ h lOH ‘ ‘ ‘ ‘ ‘ ‘
9- 9-

8 - 8-

7- 7- -

卜 r
！ - 1 ‘
D
Z

3- 3-

2 - 2

：] h k n m n n I j i\ “ ^ n n n
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

Number of steps Number of steps

(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.66: Numbers of violations and total inputs in each step of IPSS and
max-IPSS on Latin square problem with iV = 10 (long run-time case)

Chapter 4 Experiments 108

100-1 ‘ ‘ ‘ ‘ ‘ ‘ h lOOH ‘ ‘ 1 ‘ ‘
90- 90-

80- 80-

70- 70-
<0
C

I 60- . 60-

i I
I . 0 - . 40-

3
Z

30 - 30- •

20- 20-

0-1 1 1 1 1 1 I 丨 1- O-i 1 1 1 二 « 1 r—'
0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 ftOOO 10000 12000 14000

N u m b e r of s t e p s N u m b e r of s t e p s

(a) £5D£(GENET): Violation vs. Step (b) £5P£(GENET): Objective value vs. Step

100 H ‘ ‘ ‘ ‘ ‘ ‘ 1- 100-1 ‘ ‘ ‘ ‘ ‘ ‘
90- 90-

80- SO-

TO- 70-

(/)
1
ra 60. - 60-

I I
50- • I so- -

I
40- 40-z
30 - 30-

20- 20-

S rufx/" I

0-1 1 1 1 1 H 1 1" 0-1 1 1 , , rJ 1
0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000

N u m b e r o f s t e p s N u m b e r of s t e p s

(c) CSVC{IMP): Violation vs. Step (d) CSVCilMF): Objective value vs. Step

Figure 4.67: Numbers of violations and objective values in each step of
CSVC{GENET) and CSVCilMP) on Latin square problem with TV = 10
(long run-time case)

Chapter 4 Experiments 109

70-1 ‘ ‘ ‘ ‘ ‘ h 70 H ‘ ‘ ‘ ‘ ‘

60 - 60-

：卜 \ •『. \

I 30- S • I 30- S

10- k 10- \ .
J v\A\ J V v y

0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000

N u m b e r o f s t e p s N u m b e r o f s t e p s

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step

70 -| ‘ ‘ ‘ ‘ ‘ f- 70 -I ‘ ‘ ‘ ‘ 1

60- I 60- 1

\ _ r . \

i： \ ： \
">- \ \ -
0-1 1 ,~J , , , L 0-1 , , _] , , ,

0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 S000 6000
N u m b e r o f s t e p s N u m b e r o f s t e p s

(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.68: Numbers of violations and total inputs in each step of PSS and
max-PSS on Latin square problem with N = 3b (average run-time case)

Chapter 4 Experiments 110

10-| ‘ ‘ ‘ ‘ ^ ‘ ‘ ‘ ‘ 1- 10-1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
9- 9-

8 - 8 -

7- 7-

V)

le. …

i I

I .. . °
3
Z

3- 3-
2 - 2 -

：| 11 III! iiiiiiiiiiiirn, . ；] 11 III! m i m i i i n n , , :
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 GOO 800 1000 1200 1400 1600 1800 2000

Number of steps Number of steps

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

to-j ‘ ‘ ~ — — ‘ ‘ ‘ ‘ ‘ ‘ ‘ h 10-I ‘ ‘ ‘ 1 ‘ i > i i

9- 9

8- 8 -

r ‘
i： ： I：
I . K-
z

3- 3- .

2- 2-

：]II 丨丨丨丨11丨__| , 1 II I丨丨IIIIHIPPFI
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of steps Number of steps

(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input va. Step

Figure 4.69: Numbers of violations and total inputs in each step of IPSS and
max-IPSS on Latin square problem with N = 35 (average run-time case)

Chapter 4 Experiments 111

1400 H ‘ ‘ ‘ ‘ ‘ ‘ ‘ h 1400-) ‘ ‘ ‘ ‘ ‘ ‘ ‘

1200- 1200'

1000- 1000- -

C I
800- 3 800-

I 1
600- 600-

E 3
Z

400 - 400-

200- 200- I -

^ ^ ；

0-1 1 I - I I I 1 1 1 h 0-1 ‘ • I 1 ,
0 0.5 1 1.5 2 2.S 3 3.5 4 4.5 0 05 1 1.5 2 2.5 3 35 4 45

Number of steps x 10， Number of steps „ io»

(a) ^^^^(GENET): Violation vs. Step (b) £5P£(GENET): Objective value vs. Step

1400 H ‘ ‘ ‘ ‘ ‘ ‘ ‘ h 1400 H ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

1200- 1200-

1000- 1000-

C S "1 800. 3 800-
> C

° 1 i 600- ^ 600-
E
3
Z

400 • 400-

200 - - 200 -

_,__,__,_,__,__,_,__ � K ,_,__,__,__,,__,___
0 0.5 1 1,5 2 2.5 3 3 5 4 4.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4S

Number of steps , 10" Number of steps , 10，

(c) £OT£(IMP): Violation vs. Step (d) CSVC{IMF): Objective value vs. Step

Figure 4.70: Numbers of violations and objective values in each step of
/:5P£(GENET) and CSVC(IMF) on Latin square problem with N = 35
(average run-time case)

Chapter 4 Experiments 112

70 H ‘ 1 ‘ ‘ ‘ h 70-1 ‘ ‘ ‘ ‘ 1

60 - 60-

50- • 50- .

I L —‘ ,

\ . r \
I 30- \ • I 30- \ •

\ \ •
0-1 1 1 1 1 1 1 1" 0-1 1 , J , ,

0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
N u m b e r o f s t e p s N u m b e r o f s t e p s

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step

7 0+ - ‘ ‘ ‘ ‘ 1 h 70 H ‘ 1 1 • “

60- 60-

f \ - ^ \
考 40- • 3 40-

> I .1 I
I 30- \ 130- \

� . 1 . ^ 1
10- \ 10- \

0-1 1 1 . , , L 0-1 1 1 , , ,
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000

N u m b e r o f s t e p s N u m b e r o f s t e p s

(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs.. Step

Figure 4.71: Numbers of violations and total inputs in each step of PSS and

max-PSS on Latin square problem with TV = 35 (short run-time case)

Chapter 4 Experiments 113

10-1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 1" 10-1 ‘———‘ ‘ ‘ 1 ‘ 1 1 1~-
9- 9-

8 - 8-

7- 7-

1 6- • - 6-
1 I
r “
3 Z

3- - 3-

2 - 2 -

：]III II III 丨丨丨丨1丨丨__ , I I ：] III IIJ 川關m_ , I ：
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of steps Number of steps

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

ion ‘ ‘ _ ‘ ‘ ‘ ‘ ‘ ‘ h 10-| ‘ ‘ ‘ ‘ 1 ‘ ‘ 1 i
9- 9-

8- 8 -

•

I - — 6 -

•I 5 昏
r . r
z

3- 3-

2- 2 -

：]丨即丨丨丨丨丨丨丨丨丨丨眼，,I 1 I iiiiiiiiiiiiiiiiini
0 200 400 600 600 1000 1200 MOO 1600 1800 2000 0 200 400 600 800 1000 1200 MOO 1600 1800 2000

Number of steps Number of steps

(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs, Step

Figure 4.72: Numbers of violations and total inputs in each step of IPSS and
max-IPSS on Latin square problem with A^ = 35 (short run-time case)

Chapter 4 Experiments 114

1400 A ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 1- 1400 -j ‘ ‘ 1 1 1 1 I I

1200- 1200-

1000- - 1000-

(0
C

I
I 靜 1 臉

1 I
I eoo- • ^ 600-

Z3
Z

400- 400-

200- 200-1

. ,
0 0.6 1 1.5 2 2,5 3 3.6 4 4,5 0 0,5 1 1.S 2 2.5 3 3S 4 4S

Number Of St叩S . ,o' Number of steps

(a) £<S2)£(GENET): Violation vs. Step (b) £5D£(GENET): Objective value vs. Step

1400"! ‘ ‘ ^ ‘ ‘ ‘ 1 ‘ h 1400-1————I ‘ 1 1 1 1 I .

1200. 1200'

剛 • 1000'

(/>
I
•5 800- - 3 800-
> B-
0 —
1 «。。• • 1° 600-
Z

400-

咖 . 200-1

o k - , — — . ~ , , , _ _ _ , _ 。 k , _ _ _ _ _ , _ _ , ,
0 0.5 1 1.5 2 2.6 3 3.5 4 4.5 0 0.5 1 I S 2 26 3 3.5 4 45

Number of steps xio' Number of s t叩s , , 0 '

(c) CSVC{IMP): Violation vs. Step (d) £<SP£(IMP): Objective value vs. Step
Figure 4.73: Numbers of violations and objective values in each step of
CSVC{GENET) and CSVC(IMF) on Latin square problem with TV 二 35
(short run-time case) .

»»

Chapter 4 Experiments 115

70-1 ‘ ‘ ‘ ‘ ‘ h 70-1 ‘ ‘ ‘ . . 1.

.:、 ：：、
| 3 0 - \ . i s O . \

'。. V M V A W ^ ’。. V m k A ^ V ^
o J , — , ^ _ , _ _ , _ _ U oJ__, , J _ , , _ _ L

0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000

N u m b e r o f s t e p s N u m b e r o f s t e p s

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step

70-1 ‘ ‘ ‘ ‘ ‘ 70-1 ‘ i . .

M- 60-

；卜 \ _ \

1: \ \

J w^ r w^
。 1000 MOO 3000 4000 5000 _ 0 1000 2000 3000 4000 SOOO 6000

N u m b e r o f s t e p s N u m b e r o f s t e p s

(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.74: Numbers of violations and total inputs in each step of PSS and

max-PSS on Latin square problem with N = 35 (long run-time case)

Chapter 4 Experiments 116

10H ‘ ‘ ‘ 1 ‘ ‘ ‘•——‘ ‘ j- 10-1 ‘ ‘ ‘ ‘ ‘―—^~‘ 1 ‘
9- 9-

8 - 8 -

7- 7-
(/)

I • ~ 6-

1 I
2 15-
臺 4 - 人
3
Z

3- 3-
2 - 2 -

：]II Jiuiiiiiiiiiiirniiri,] ii , i i u i i i _ _ _ i ：
0 200 400 600 600 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 UOO 1600 1800 2000

Number of steps Number of steps

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

io-| ‘ ‘ ‘ 1 1 ‘ ‘ ‘ 1 h ion ‘ ‘ 1 1 ‘ 1 ‘ ‘ ‘

9- 9-

8 - 8 -

7- 7-

i
！ 6- • _ 6-
I 签

. 3
Z

3- 3-

2- 2-

：]I丨丨11_1,丨丨丨1|1肌_, I ：] I,丨1丨1丨11丨11丨丨1丨|丨11肌_,：
0 200 400 600 800 1000 1200 1400 1600 1600 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of steps Number of steps

(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.75: Numbers of violations and total inputs in each step of IPSS and
max-IPSS on Latin square problem with N = 35 (long run-time case)

Chapter 4 Experiments 117

1400 H ‘ ‘ ‘ 1 ‘ ‘ ‘ ‘ 1- 1400-1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

1200 • 1200-

1000- 1000-

S
‘！ 800- "3 800-

！ I
2 600- 600-
E
3
Z

400 - 400- -

200 - 200-

0-1 . I I I I I I 1- 0-1 I ’ 丨 \ I • I .

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4 5
Number of steps xi。， Number of steps

(a) £5P£(GENET): Violation vs. Step (b) CSVC{GENET): Objective value vs. Step

1400 H ‘ ‘ ‘ 1 1 ‘ 1 ‘ j- 1400 H ‘ ‘ ‘ 1 ‘ 1 ‘ 1

1200- 1200-

1000- 1000-

s
5 800. 3 800-
I & ？ 1 I 600- 600-
z

400 - 400-

200- 200-

_ , _ , _ _ , _ , _ _ , _ _ , _ _ , _ _ _ , _ — — , _ , ^ , _ _ ,
0 0.5 1 1.5 2 2 6 3 3.5 4 4.5 0 0.5 1 I S 2 2.5 3 3S 4 4 5

Number of steps x 10， N u m b e r of steps x 10®

(c) £OT£(IMP): Violation vs. Step (d) £5P£(IMP) : Objective value vs. Step

Figure 4.76: Numbers of violations and objective values in each step of

CSVCiGENET) and CSVC{IMF) on Latin square problem with N =
(long run-time case)

Chapter 4 Experiments 118

4.3.2 Quasigroup Completion Problems

The instances of Q C P used in this set of experiments are randomly generated

instances used in [4], which are believed to be in phase transition state, i.e.,

roughly around 42% of the cells have pre-assigned values [3 .

Table 4.9 shows the results of PSS and its variants on the set of QCPs. W e

give the results of CSVC{GENET) and CSVC{IMF) of the same problems in

Table 4.10 for comparison. From the tables, the timing results indicate that

the performance of PSS and its variants are not as good as £<SX>£(GENET)

and i2tSP£(IMP) in QCPs. The mean timing results of solving QCPs are

shown in Figure 4.77.

Problem P ^ IPSS
N Steps xlO^ C P U time Steps xlO^ C P U time
15 41.07(40.19) 0.1949(0.1900) 66.42(68.35) 0.2871(0.2900)
16 68.65(67.60) 0.3795(0.3750) 91.07(92.92) 0.4716(0.4800)
17 113.6(111.9) 0.7173(0.7100) 178.4(184.9) 1.0432(1.0800)
18 166.5(166.9) 1.1692(1.1750) 136.5(132.4) 0.8842(0.8600)
19 302.1(301.2) 2.3302(2.3400) 507.6(486.6) 3.6415(3.5350)
20 426.1(431.3) 3.7098(3.7550) 497.8(513.6) 4.0663(4.1900)

— max-PSS max-IPSS
15 10.44(0.954) 0.0657(0.0600) 24.68(25.54) 0.1040(0.1100)
16 18.68(16.79) 0.1225(0.1200) 27.68(26.48) 0.1366(0.1300)
17 26.10(26.01) 0.1857(0.1850) 68.55(65.46) 0.3436(0.3300)
18 26.47(35.50) 0.2787(0.2800) 46.98(45.88) 0.2788(0.2800)
19 59.64(58.68) 0.4669(0.4650) 125.1(120.4) 0.7454(0.7300)
20 60.71(59.60) 0.5447(0.5400) 98.54(99.57) 0.6913(0.7000)

Table 4.9: PSS and its variants on quasigroup completion problems

Figures 4.78 - 4.86 show the numbers of violations against total inputs

or objective values of PSS, max-PSS, IPSS, max-IPSS, CSVCiGENET) and

CSVC{IMF) on Q C P of order 15. Figures 4.87 - 4.95 show the numbers of

violations against total inputs or objective values of PSS, max-PSS, IPSS,

max-IPSS, CSVC{GENET) and CSVC{IMF) on Q C P of order 16. From

the figures about £OT£(GENET), we conclude that there exist many local

minima in the search space. CSVC{GENET) does learning a lot of times to

Chapter 4 Experiments 119

Problem £5PZ(GENET)
N Iteration xlO^Repairs xlO^Learns xlO^ C P U time
15 1.893(1.926) 5.351(5.598) 0.743(0.751) 0.0366(0.0400)
16 1.549(1.255) 4.714(4.162) 0.595(0.465) 0.0366(0.0300)
17 3.224(3.058) 9.435(9.177) 1.256(1.175) 0.0759(0.0800)
18 3.464(3.534) 10.62(10.59) 1.332(1.364) 0.0955(0.0900)
19 5.438(5.674) 17.26(18.09) 2.075(2.157) 0.1675(0.1700)
20 5.323(4.799) 18.26(17.56) 1.998(1.772) 0.1979(0.1900)

"Problem CSVC(IMP)
N Iteration xlO^Repairs xlO^Learns xlO^ C P U time
15 0.342(0.416) 2.124(2.390) 0.342(0.416) 0.0131(0.0100)
16 0.642(0.763) 3.287(3.711) 0.642(0.763) 0.0199(0.0200)
17 1.369(1.002) 7.162(6.072) 1.369(1.002) 0.0430(0.0400)
18 1.256(1.011) 6.896(6.780) 1.256(1.011) 0.0459(0.0450)
19 1.165(0.658) 7.302(4.656) 1.165(0.658) 0.0555(0.0300)
20 1.333(1.443) 8.516(9.166) 1.333(1.443) 0.0736(0.0800)

Table 4.10: CSVC{GENET) and CSVC(IMF) on quasigroup completion
problems

4.5 ‘ 1 1 1
去 P S S
- e - max-PSS

4 . - A - IPSS 一 ^ ̂
- O - max-IPSS z 一
A LSDL(GENET) z 一
O LSDL(IMP) /

3.5- / / -

¥ 3 - / / _
« / /
a 2.5- / /

I / /
^ 2- / / -

Q_ / /

� 1 . 5 - / -

1 - -

^ -总

「- —-e^^ X A A
Q \ 卜：：：：：；：：：：；：；：：！令：：：：：：！：•:。。=='〒:：：：：：：•:: f p O ()

15 16 17 18 19 20 N

Figure 4.77: The mean time results on quasigroup completion problems

Chapter 4 Experiments 120

escape from local minima. From Table 4.9 and 4.10，we see that the number of

repairs done and steps taken in CSVC{GEmT) and CSVC{IMF) are fewer

than the number of steps taken in PSS and its variants. It means that the

search path of CSVC(GENET) and CSVC{IMF) are shorter than those of

PSS and its variants. During the search, CSVC{GENET) and CSVC{IMF)

select a direction that globally improves the current state, while PSS and IPSS

select a direction that is dictated by the list T . The ordering in T is defined

by the search dynamically. Therefore, PSS, IPSS and CSVC implementations

have totally different search paths in solving QCPs. The experimental results

show that the search strategy of PSS and IPSS are not as effective as that of

CSVC{GENET) and CSVC{IMF) in this set of experiments.

In general, PSS takes fewer steps than IPSS in solving QCPs. From Figures

4.79(a), 4.82(a), 4.85(a), 4.88(a), 4.91(a) and 4.94(a), we conclude that the

partial solutions are not easy to extend. IPSS takes more steps to find the

next partial solution. Therefore, PSS has a better performance of IPSS in

this set of experiments. It should be noted that max-PSS and max-IPSS are

shown to have a great improvement on PSS and IPSS respectively. The timing

results confirm that the heuristic guides the search to select a relatively better

direction in the search space.

4.4 Random CSPs

A random binary CSP is generated with four parameters (n,m,pi,p2), where

n is the number of variables, m is the domain size of the variables, pi is the

constraint density, and p2 is the constraint tightness. Constraint density is

the probability that a constraint exists between a pair of variables. Constraint

tightness is the probability that a pair of values is incompatible with each other

for a given pair of variables that is being constrained.

Chapter 4 Experiments 121

400-1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ h 400 H ‘ ‘ ‘ ‘ ‘ ‘ ‘

350- 350-

300- 300-

(0

J 250 - 250-

卜 h 11

. ‘ . , , ： ijm.
0-1 , 1 1 ^ 1 1 1 1 h 0-1 . r 1 U 1 1 ,

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

Number of steps x 10' Number of steps k 10‘

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step
400 H ‘ ‘ 1 ‘ ‘ ‘ ‘ h 400 丨 _ ‘ ‘ ‘ ‘ ‘ ‘

350- 350-

300 - 300-

I 250- 250-

I I
I ^
I 150- 150-
Z

100- - loo-

se- 50-

。p*w
0 1 2 3 4 6 6 7 8 0 1 2 3 4 5 6 7 8

Number of steps xio' Number of steps

(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.78: Numbers of violations and total inputs in each step of PSS and
max-PSS on Q C P of order 15 (average run-time case)

ft*

Chapter 4 Experiments 122

400-j ‘ ‘ ‘ ‘ ‘ ‘ — — ‘ 咖 " I ‘ ‘ ‘ ‘ ‘ ‘

360- . 350.

300- - 300-

•卜 丫 . I 111
書2。。- y U|,

• - lifcliiuld 曙1
- 一 . 阶 MJtarfifW j

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

Number of steps «io* Number of steps <io'

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

400-j ‘ ‘ ‘ ‘ ‘ ‘ ‘ 400-] ‘ ‘ ‘ ‘- ‘ ‘ ‘

350- 350-

300. 300-

v>
1 260- 250-

I I
•5 • - i ^ -

I 150- - 150.

Z

100- 1W.

_ , , , , , _ , — , — , — , — ,
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

Number of steps «io‘ Number of steps kio'

(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.79: Numbers of violations and total inputs in each step of IPSS and

max-IPSS on Q C P of order 15 (average run-time case)

Chapter 4 Experiments 123

400-1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ h 400-1 ‘ ‘ ‘ ‘ ‘ ‘ ‘

350- - 350-

300• - 300-

I 250- 250-

I I
名 200- • = 2 0 0 -

I 150. - 150.

Z

100- 100-

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

N u m b e r of steps x 10' N u m b e r of steps x 10'

(a) GENET): Violation vs. Step (b) CSVC{GENET): Objective value vs. Step

400 H ‘ ‘ ‘ ‘ ‘ ‘ ‘ h 400-i ‘ ‘ ‘ ‘ ‘ ‘ ‘

350• 350-

300 - 300-

J 250. 250-

1 I
•5200. -=200-

§ 150- 150-

2

100- ‘ 100-

_ _ , _ _ , _ _ , _ _ _ , 0 . ^ _ , , ^ , , , .
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

N u m b e r of steps x 10， N u m b e r of steps x 10，

(c) CSVC{IMP): Violation vs. Step (d) CSVC{IUF): Objective value vs. Step

Figure 4.80: Numbers of violations and objective values in each step of
CSVC(GENET) and CSVCilMP) on Q C P of order 15 (average run-time case)

Chapter 4 Experiments 124

400-1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 1" 400"] ‘ ‘ ‘ ‘― ‘ ‘ ‘

350- 350-

300- 300-

S 250- 250-

I 3 I &
名 200- - 妄 200-

I 150- 150- I,

100- 100- j| ijiyijii

I 1 . .
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

N u m b e r of steps x io‘ N u m b e r of steps * 10'

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step

400-| ‘ ‘ ‘ ‘ ‘ ‘ ‘ H 400-j ‘ ‘ ‘ ‘ ‘ ‘ ‘

350 - 350-

300- 300-

W

0 250- 250-

JS 3
1 I
名 200- - = 2 0 0 -

I ？
I 150- 150-
Z

100- 100-

oK^ ,______,__ ,__ ,_I ：！̂ ,__,__,_,__,__,
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

N u m b e r of steps x 10' N u m b e r of steps , 10*

(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.81: Numbers of violations and total inputs in each step of PSS and
max-PSS on Q C P of order 15 (short run-time case)

Chapter 4 Experiments 125

400-1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ h 400-1 ‘ ‘ ‘ ‘ ‘ ‘ ‘

350- 350

300- 300-

I 250- 250-

I &

I 150- 150. L t t J i

,__,__,__,__ o k w j W ！It ！, I , _ , _ _ , _ _ ,
0 1 2 3 4 5 6 7 8 0 t 2 3 4 5 6 7 8

Number of steps * Number of steps x lo*

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

400-j ‘ ‘ ‘ ‘ ‘ ‘ — — — ^ h 400 "I ‘ ^ ‘ ‘ ‘ ‘ ‘

350 • 350-

300- 300-

S 250- 250-

• i I
•gJOO. • =200-
I ？

I 150- 150-

z

100- - 100-

50 - 50-

。 ！ _ , , , , , , [ojifwy__, , , , , ,
0 1 2 3 4 5 6 7 6 0 1 2 3 4 5 6 7 8

Number of steps , i o ' Number of steps , io'

(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.82: Numbers of violations and total inputs in each step of IPSS and

max-IPSS on Q C P of order 15 (short run-time case)

Chapter 4 Experiments 126

‘ ‘ ‘ ‘ —̂—‘ ‘ 咖"I ‘ ‘ ‘ ‘ ~‘

350- -

300- 咖 .

I
I I
200- - i 1

I 150- 棚 -

Z

100-

n ！ 2 3 r 5 6 7 8 0 1 2 3 4 5 6 7 8

Number Of steps Number of steps xio'

(a) CSVCiGENET): Violation vs. Step (b) £5P£(GENET): Objective value vs. Step

400-j ‘ ‘ ‘ ‘ ‘ ‘ ‘ 柳"1 ‘ ‘ ‘ ‘ ‘

350- 挪 .

300- • 300.

I 250. 250

1 I

至 -
I 150- ’ 50.

Z

too- 阶

- •
, , . . , , , 0-5~, , , , . L
！ 2 3 J 5 6 7 8 0 t 2 3 * 5 6 7 f

Number Of steps «,。， Number of steps

(c) CSVC{IMP): Violation vs. Step (d) CSVC{IMP): Objective value vs. Step

Figure 4.83: Numbers of violations and objective values in each step of

£<SP£(GENET) and CSVC(IMF) on Q C P of order 15 (short run-time case)

Chapter 4 Experiments 147

400 H ‘ ‘ ‘ ‘ ‘ 咖 " I ‘ ‘ ‘ ‘ ‘ ‘ ‘ ~

350- • 畑 ’

咖 - _ 咖 ’

丨： N l i i u i l i
,、 丨 y i w f L J

！ 2 3 J 5 6 7 8 0 1 2 3 4 5 6 7 8

Number Of steps x,o' Number of steps

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step

400-1 ‘ ‘ ‘ ‘ ~——‘ ‘ ‘ ‘ - ‘ ‘ ‘ ‘ ‘ ‘

360- 彻 .

300. . 3 0 0 .

I 250- 250.
ra 3

I . t 咖 .

£ ° I 150.

Z

100-

叨 ̂ Vvhmum 。 ^ M > . ,___,__,__,_,
0 ； 2 3 I 5 6 7 8 0 1 2 3 4 5 6 7 8

Number Of steps kio' Number of steps «’o‘

(c) max-PSS: Violation vs. Step (d) IPSS: Total input vs. Step

Figure 4.84: Numbers of violations and total inputs in each step of PSS and

max-PSS on Q C P of order 15 (long run-time case)

Chapter 4 Experiments 128

400-1 ‘ ‘ ‘ ‘ 咖 " I ‘ ‘ ‘ ‘ ‘

LJUi
0 1 2 3 I S 6 7 e 0 1 2 J , . 5 ® ‘ f

Number Of steps xio' Number of steps xio

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

400-1 ‘ ‘ ‘ ‘ ‘ ‘ 咖•] ‘ ‘ ‘ ‘

350- 咖 .

300- 300-

.5 =
芸 200. •

E 150- 'SO-

Z

100. 100.

n __,——,——,——,
1 2 3 4 5 6 7 8 0 1 2 ‘ , ^ “ , . » ® ‘ f

Number of steps , 1 0 ' Number of steps «io'

(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.85: Numbers of violations and total inputs in each step of IPSS and

max-IPSS on Q C P of order 15 (long run-time case)

Chapter 4 Experiments 129

400-| ^ — — ‘ ‘ ‘ ‘ ‘ ‘ 咖"I ‘ ‘ ‘ ‘ “ ‘

350- 挪 .

300. 咖 .

I 250- 250-
3 3

h _
I 150.
Z

100- .

阶 — — w K ^ A i ^ ^ M M V M ^
0 ； 2 I 4 5 — 6 7 e 0 1 2 3 4 5 6 7 8

Number Of steps . 1 0 ' Number of steps . 'O

(a) £5P£(GENET): Violation vs. Step (b) £5r>£(GENET): Objective value vs. Step

400-1 ‘ ‘ ‘ ‘ ‘ ‘—— ~‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

350- 挪—

300. 咖 .

I 250- • 250-

I I
•5 200- . "5 咖

I ^
I 160- '50-

Z
100- 咖 .

.
0 ； ^ ^ 3 ； 5 6 7 8 0 1 2 ^ 4 5 6 7 8

Number of steps xto' Number of steps xio'

(c) £5r>£(IMP): Violation vs. Step (d) CSVC{IMF): Objective value vs. Step

Figure 4.86: Numbers of violations and objective values in each step of
£ 5 D £ (G E N E T) and CSVC(IMF) on Q C P of order 15 (long run-time case)

Chapter 4 Experiments 130

600̂ 咖"I ‘ ‘

500- 鄉 .

« 400- 咖 .

I I
I 3。。- • 1 -

1咖. . - I jj||

• • if^mmiNimtum^^ 0 — - ,~-1 ,
r ^ To ； 0 5 10 15

Number of steps xio' Number of steps . w

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step

咖 _ — 咖 I ‘

500- 咖 .

”400- 修

I 3

I &
l-O- - i30C.
t- o

E • “

E

i 200. . 2 0 0 .

100- -

„ or*"***̂ ,
0 5 ^ 15 0 5 10 15

Number Of steps , 10 ' Number of steps «io'

(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step
Figure 4.87: Numbers of violations and total inputs in each step of PSS and

max-PSS on Q C P of order 16 (average run-time case)

Chapter 4 Experiments 131

600 H eooi ‘ ‘

600- 咖 .

« 400. 400.

i： � : i l l

“ . j i i i i l i ^
0 > - : rs 0 5 10 15

Number Of steps , 10 ' Number of steps x<o'

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

600-j 600-j~—

600- • 500-

g 400- 咖. I 3
•i g-
•g 300- . 鄉.
te O

S • “

I
Z 200- • 咖 ’ too-

Q.iŵ wfi , o.jsmiUti^ , 1 i
0 5 10 15 0 5 ,0 15

Number of steps <10' Number of steps xio'

(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.88: Numbers of violations and total inputs in each step of IPSS and

max-IPSS on Q C P of order 16 (average run-time case)

Chapter 4 Experiments 132

600-1— SO"-] ‘

500- 咖 .

M 400- 咖.

I I
• 30。. •
I 卜
Z 200- 200.

100- 'OO-
„ p ————,

0 6 To IS 0 5 '0 IS
Number Of steps xio' Number of steps xio'

(a) /:SV£(GENET): Violation vs. Step (b) jCSVjC(GENET): Objective value vs. Step

600-1 600-j ‘ ‘

SOO- 咖.

» 400- ••的.

0 1 I
I 300- • i ^ O O -

I °
Z 200-

100- '00

. I M , , i
0 S 10 16 0 5 10 '5

Number Of steps , i o ' Number of steps xio'

(c) JCSVCIIMP): Violation vs. Step (d) £«Sr>£(IMP): Objective value vs. Step

Figure 4.89: Numbers of violations and objective values in each step of
£<SX>£(GENET) and £SV£(1MP) on Q C P of order 16 (average run-time case)

Chapter 4 Experiments 133

600-1 ‘ ‘ I" “

500- 500-

« 400- 發

I I
节 300- • ；2
1_ 0

L . • i l l •

一 〜 , I I , —
0 0 5 10 15 0 5 10 IS

Number of steps x Number of steps x io

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step

600-| ‘ 1- 600H ‘

500- 500-

w 400- - 400-
0

1 I
I 300. - •300.

I ^

Z 200- 200

,00. 100-

o U , , oi^ , i
0 5 10 15 0 5 10 '5

Number of steps Number of steps «io'

(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step
Figure 4.90: Numbers of violations and total inputs in each step of PSS and

max-PSS on Q C P of order 16 (short run-time case)

Chapter 4 Experiments 154

600 - | -

500- 咖 .

« 400- 400-

•I =
> •"“ vin-

r . ！ J
I 200. III

阶 _ 咖：jiiilW -
„ 編 l i l l M i * m > * H , 1 0 l i f J P f l • 丨 ^ i m ! ^ _ I ——. 1
0 5 10 15 0 5 10 «

Number Of steps xio' Number of steps x'o

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step
咖 ^ ‘

500- - 500'

g 400- - 400-

I I
I 300. -
I °
E

Z 200- . 2 0 0 .

100-

n.MUMWtt , , 0-P**̂ < ‘
" ； 10 15 0 5 10 '5

Number Of steps xio' Number of steps kio'

(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.91: Numbers of violations and total inputs in each step of IPSS and

max-IPSS on Q C P of order 16 (short run-time case)

1 Chapter 4 Experiments 丄“̂̂

600H 咖] ‘ ‘ “

500. •

« 400- • 修

$ -

考 I
| 300. • i 狐
I ^

i 200. . 阶

.00- • 咖 .

——. ；；

5 « is 0 5 '0 ‘
0 N u m b e r Of steps x io ' N u m b e r of steps «'<>'

(a) £5D£(GENET): Violation vs. Step (b) CSVjC(GENET): Objective value vs. Step

600H ‘ 咖"I ‘ ‘

600- • 咖 ’

g 400- • 咖 .

S -
I I
•̂ 300. - 5 败
I °

1 200. . 棚 .

,00- '"o-

‘ “ Q ^ j 0 、 5 10 15

“ ‘ N u m b e r of steps «to' N u m b e r of steps

(c) £5D£(IMP): Violation vs. Step (d) CSV£(IMP): Objective value vs. Step

Figure 4.92: Numbers of violations and objective values in each step of
/:SVJC(GENET) and £<SP£(IMP) on QCP of order 16 (short run-time case)

Chapter 4 Experiments 156

flOOH 咖 j ‘ ‘ “

600. •

i： I： I

i i j j l l i l
5 To is 0 5 10 «

N u m b e r of steps xio' N u m b e r of steps

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step

6 0 0 + — — — — ‘

500- 咖 .

« 400- 咖 .

I 3
1 &
^ 300- « ^

I ^
Z 200- 咖.

100- 阶

„ I oh**^ , . 0 5 W Ts 0 5 ,。
N u m b e r Of steps xio' N u m b e r of steps xio'

(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.93: Numbers of violations and total inputs in each step of PSS and

max-PSS on Q C P of order 16 (long run-time case)

Chapter 4 Experiments 157

6 0 0 ^ 咖 ^ ‘

！ i J l
, L i J i i

� l 5 J T " ^ Is 0 5 «
Number Of steps . . o ' Number of steps " O

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

600-1 咖 " I ‘

500- •

g 400- 咖.
0
ws 一

1 I
I 300- - î OO.

I °

Z 200- . 2 0 0 .

100.

„ , o-AXAHM^^S^, . i
5 7o 15 0 s 10 15

Number Of steps xio' Number of steps

(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step
Figure 4.94: Numbers of violations and total inputs in each step of IPSS and

max-IPSS on Q C P of order 16 (long run-time case)

Chapter 4 Experiments 138

600-1 ' h ‘"

500- • 500-

w 400- • 400-
i 3
.2 §•
芸 300- . ； ！ 赃 -

t- o

I 卜
Z 200- 咖.

100- '00•
„

0 5 10 15 0 5 10 15
Number Of steps xio' Number of steps "to'

(a) CSVC{GENET): Violation vs. Step (b) £S7:>£(GENET): Objective value vs. Step

600-1 ‘ ‘ h — ‘

500. 500.

« 400

I I
•g 300- ‘ i

E °

E

Z 200- - 200-

100-

。 . 一 一 , , ,

5 10 15 0 5 10 IS
Number of steps xio' Number of steps xio'

(c) CSVC{IMP): Violation vs. Step (d) CSVC{IUF): Objective value vs. Step

Figure 4.95: Numbers of violations and objective values in each step of

CSVC{GENET) and CSVC{IMF) on Q C P of order 16 (long run-time case)
r

Chapter 4 Experiments 139

4.4.1 Tight Random CSPs

A set of random binary CSPs with n ranging from 120 to 170’ m = 10, pi = 0.6

and P2 = 0.75 are used in this set of experiments. The execution limits of PSS

and its variants in solving the problem instances are set to 5 million steps. The

execution limits of CSVC{GENET) and CSVC{IMF) in solving the problem

instances are set to 5 million iterations. W e use a superscript (x/100) besides

the timing figures to indicate that only x out of the hundred runs are successful.

Problem PSS IPSS “
n S t ^ C P U time Steps C P U time
120 3.0(3.0) 0.0100(0.0100)(04/ioo) 182.9(159.0) 0.0159(0.0200)
130 0.0(0.0) 0.0100(0.0100^(14/100) 155.5(143.5) 0.0150(0.0100)
140 4.0(4.0) 0.0200(0.020oj(06/ioo) 225.2(181.0) 0.0241(0.0200)
150 0.0(0.0) 0.0150(0.0150)(io/ioo) 340.2(294.5) 0.0398(0.0300)
160 1.4(0.0) 0.0200(0.0200i(ii/i。。）592.7(484.0) 0.0786(0.0600)
170 8.0(8.0) 0.020ob.020oi(oi/ioo) 217.8(192.0) 0.0281(0.0300)

m a x - P S S max - IPSS
^ m 8 0 . 0 (7 6 . 5) 0 . 0 1 1 2 (0 . 0 1 0 0) W i o o) 185.8(168.0) 0 . 0 1 4 3 (0 . 0 1 0 0)

130 70.1(89.0) 0.0144(0.0100)(43/IOO) 160.9(154.0) 0.0131(0.0100)
140 97.2(93.0) 0 . 0 1 5 5 (0 . 0 1 0 0 一 2/100) 213.8(182.5) 0 . 0 2 0 1 (0 . 0 2 0 0)

150 73.0(89.0) 0 .0176 (0 .0200) (2 I / IOO) 211.4(186.0) 0 . 0 2 1 3 (0 . 0 2 0 0)
160 85.3(88.0) 0 . 0 2 0 5 (0 . 0 2 0 0) ^ 1 0 0) 340.9(351.5) 0.0370(0.0400)
170 110.4(103.5) 0 . 0 2 2 5 (0 . 0 2 0 0) (2。 / _ 205.2(192.5) 0.0250(0.0200)

Table 4.11: PSS and its variants on random CSPs

Table 4.11 shows results of PSS and its variants on random CSPs. The

results of £5P/:(GENET) and CSVC{IMF) on the same set of problems are

given for comparison in Table 4.12. From the tables, we observe that PSS and

max-PSS cannot always find solutions within the pre-set limit, and IPSS and
c.

max-IPSS have a better performance than others.

The random CSPs with the above parameters are likely to have many

flawed values [1]. W e record the numbers of violations against total inputs

or objective values of IPSS, max-IPSS, £57:>£(GENET) and CSVC(IMP) on

random CSP with n = 120 in Figures 4.96 - 4.101. The numbers of violations

140 Chapter 4 Experiments

Problem CSVCjGENET) . — .�

n Iteration Repairs Learns C P U t i m e
120 126.6(147.0) 3084(3500) 15.8(18.0) 0.4620(0.5200)
130 136.8(153.0) 3513(3980) 16.4(18.5) 0 . 5 7 1 8 (0 . 6 5 0 0)

140 135.8(154.0) 3672(4231) 15.9(18.0) 0 . 6 5 1 0 (0 . 7 5 0 0)

150 164.7(170.0) 4653(4801) 18.7(19.0) 0 . 8 8 4 6 (0 . 9 1 0 0)

160 160.4(167.0) 4773(4974) 17.8(19.0) 0.9787(1.0200)
170 162.7(175.0) 4998(5426) 17.5(19.0) 1.0965(1.1900)

-pToblem CSVCjlMP) .
n Iteration Repairs Learns C P U time
120 27.2(30.0) 2814(3093) 27.2(30.0) 0 . 4 2 4 3 (0 . 4 7 0 0)

130 26.4(30.0) 2988(3419) 26.4(30.0) 0 . 4 9 6 2 (0 . 5 6 5 0)

140 24.7(30.0) 2999(3719) 24.7(30.0) 0.5443(0.6700)
150 27.6(32.0) 3641(4227) 27.6(32.0) 0.7122(0.8300)

160 27.5(32.0) 3876(4518) 27.5(32.0) 0.8160(0.9400)
170 29.1(32.0) 4374(4795) 29.1(32.0) 0.9821(1.0700)

Table 4.12: CSVC{GENET) and CSVC{mF) on random CSPs

against total inputs or objective values of IPSS, max-IPSS, £<SD/:(GENET)

and CSVC{IMF) on random CSP with n = 170 are shown in Figures 4.102 -

4.107.

Figures 4.97, 4.99 and 4.101 show the number of violations in each step

of CSVC{GEmT) and CSVC{IMF) on random CSP with n = 120 in av-

erage run-time case, short run-time case and long-run time case respectively.

Figures 4.103, 4.105 and 4.107 show the number of violations in each step of

CSVC{GE^ET) and CSVC{mF) on random CSP with n = 170 in average

run-time case, short run-time case and long-run time case respectively. W e

observe that the number of violations typically maintains in a level (around

several thousands), until it quickly drops to zero when a solution is found,

after £<SP£(GENET) and CSVC{IM?) does learning several times.

Figures 4.108(a) shows the number of violations in each step of PSS on

random CSP with n 二 120. Figures 4.109(a) shows the number of viola-

tions in each step of PSS on random CSP with n = 170. W e see that the

number of violations also typically keeps in a level. When the random CSP

instance has many flawed values, PSS is not always able to find a solution like

Chapter 4 Experiments 161

‘ ‘

,2- • 12.

,0- •

1 8-

I 1

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

,4-1 ‘ ‘ ‘ ‘ “

,2- 12.

10- '。.

• r -
0 I
S a- • ° -
E

3

： t a 跳

(C) max-IPSS: Violation vs. Step � max-IPSS: Total input vs. Step

Figure 4.96: Numbers of violations and total inputs in each step of IPSS and

max-IPSS on random CSP with n = 120 (average run-time case)
c

M

Chapter 4 Experiments 142

14000-j ‘ ‘ ^ ‘ 14000 "I ‘ ‘ ~ " “ ‘

12000- -12000-

10000- 1 卿 -

(0
C

S ^

I 8000- 1 讓 -

.案 C

^ i
呈 6000- ^ 6000-

£

Z

4000- 卿 -

2000- 2000-

q\ , , 1 1 1- 0-1 1 1 ‘ “ ‘
0 0.5 1 1.5 2 2.5 0 0.5 ‘I, i » 1 名 ^ “

N u m b e r of s t e p s «10* N u m b e r of s t e p s x 10

(a) CSVC{GENET): Violation vs. Step (b) £5I>>C(GENET): Objective value vs. Step
14000 "I ‘ ‘ \ 蘭 " I ‘ ‘ ‘ ‘

12000- 12000-

10000• • 1 0 0 0 0 -

I _ liii
^ 6000' • 6000-̂ P̂
1
Z

4000- 卿 -

2000 - 2000-

0-1 1 , 1 1 V 0-1 • 1 1 ‘ ‘ ^
0 OS 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5

N u m b e r of s t e p s « 1 0 ' N u m b e r of s t e p s n 10'

(c) CSVC{IUF): Violation vs. Step (d) CSVC{IMP): Objective value vs. Step

Figure 4.97: Numbers of violations and objective values in each step of

£ 5 P £ (G E N E T) and CSVC{IMF) on random CSP with n = 120 (average
run-time case)

Chapter 4 Experiments 143

14-1 ‘ ‘ ‘ ' " - I ‘ ‘

12- '2

10' - 10.
V)

5
• r -

° 1,
6 6- • H 6
I I " M . . I

0 50 100 150 200 250 0 50 100 150 200 250

Number of s t叩s Number of steps

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

14-| ‘ ‘ ‘ h ‘ ‘ ‘ ‘

12-

10- - 10- •
V)
c

I • I
.5 S
"S s

5 6- • ̂
E I j r f i :

0 50 100 150 200 250 0 50 100 150 200 250

Number of steps N u m b a r of steps

(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.98: Numbers of violations and total inputs in each step of IPSS and
max-IPSS on random CSP with n = 120 (short run-time case)

Chapter 4 Experiments 144

14000-1 ‘ ‘ ‘ ‘ ‘ ‘

12000- . 1 2 0 0 0 -

10000- 咖 -

S ^ I 6000' . 1 8000.
0 «
盖 6000- 義•

E

1
4000- «000-

2000- 膽 -

J L , o J — , — , i L — , —
0 OS 1 1.5 2 2,5 0 0.5 1 1 5 2 2.5

Number of steps «10' Number of steps x 10'

(a) CSVC{GE^ET): Violation vs. Step (b) CSVC{GENET): Objective value vs. Step

14000-1 ‘ ‘ ‘ h 14000 "I ‘ ‘ ‘ ‘ ‘

12000- - 12000-

10000- 誦 .

I 8000- • I
i 1 m
I 6000' • ̂ WOO-P̂
E
3 z

4000- 侧 •

2000 - 2000-

0-1 1 1 , 1 1" 0-1 1 1 r ‘ “ 1"
0 0.5 1 1.5 2 2.5 0 05 1 1 5 2 2.5

Number of steps k 10' Number of steps 1 10'

(c) £<SP£(IMP): Violation vs. Step (d) CSVC{IMF): Objective value vs. Step

Figure 4.99: Numbers of violations and objective values in each step of

CSVC{GENET) and CSVC{IMF) on random CSP with n = 120 (short run-
time case)

Chapter 4 Experiments 145

14-1 ‘ ‘ ‘ ‘ — — — ^ ‘ ‘

12- 12-

10- 10.
W C

1 6- • 1 > .£
！ ！ 6
6. • I- 6-

I
0 0 50 100 150 200 250 0 50 100 150 200 250

Number of steps Number of steps

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

14-j ‘ ‘ ‘ ‘ h 14-1 ‘ ‘ ‘

12- 12-

10- •

v>

18. . ”

I 6- • ̂ e

oln , ^ ― _ U — , 1 o l o — , 二 — U —
0 so 100 ISO 200 250 0 50 100 150 200 J50

Number of steps Number of steps

(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.100: Numbers of violations and total inputs in each step of IPSS and

max-IPSS on random CSP with n = 120 (long run-time case)

Chapter 4 Experiments 146

14000-1 ‘ ‘ ‘ — ‘ 1- ‘ ‘

12O00- 12000-

10000- - 10000-

I

I 8000- • 1 8000-

I 6000- . 6000.

E
3
Z

4000- <000-

Wr — F — f w - ' - ^ ~ ^ J J J ^ ~ L J J J ^

2000- • 2000-

0-1 1 r 1 1 —̂—I" 0-1 1 “ ‘ ‘
0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2,5

Number of steps 孤 Number of steps x io‘

(a) £5D£(GENET) : Violation vs. Step (b) £<SP£(GENET): Objective value vs. Step

14000 j ‘ ‘ ‘ 1" uooo-i • ~ ~ ‘ ‘ ‘ ‘

12000- 12000-

10000- 10000-

I - J
I • I • l y j n
^ 6000- ^ 6000- ̂ ^^^
E
i

4000-

2000- 2000-

0-1 U T . i 1" 0-1 U P ‘ ‘
0 0.5 1 1,S 2 2,5 0 0,5 1 1 5 2 2.5

Number of steps »10' Number of steps «10'

(c) £5P£ (IMP) : Violation vs. Step (d) £5D£(IMP) : Objective value vs. Step

Figure 4.101: Numbers of violations and objective values in each step of

CSVC{GE^ET) and CSVC{IMF) on random CSP with n = 120 (long run-
time case)

Chapter 4 Experiments 147

14-1 ‘ ‘ ‘ ‘ ' M ‘ ‘ ‘ ‘

12- '2.

10- - '。. _
(/)
,1
I'- F"
0 S
5 6- - ^̂ 6.
E
D
Z
4- - 4-

I I . ：
0 50 100 150 200 250 0 50 100 150 200 250

Number of steps Number of steps

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

14-1 ‘ ‘ ‘ ‘ [- 14 i ‘ ‘ ‘ ‘

12- 12-

10- • to-
f/i

I" • r -
S 6 - 6 -

E
z

4- 4-

A 丨:|A :
0 50 100 150 200 250 0 50 100 150 200 250

Number of steps Number of steps

(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step
Figure 4.102: Numbers of violations and total inputs in each step of IPSS and

max-IPSS on random CSP with n = 170 (average run-time case)

Chapter 4 Experiments 148

3 . S 4 - 1 — ^ — — . — — . — — . — — • — — • — — ‘ — — ——‘——‘——•——‘——•——•——

3. 3-

2.5 • 2.S.

</)

I 2- • 1 2-
> s
0 2
1 1.5- . ^ 15-

E
z

1- - 1-

0.5- - 0.5-

0- 1 1 1 1 I 1—I 1 1 1- 0-i 1 1 1 • I • ,
0 0.5 1 1.5 2 2.5 3 3.5 A 0 0.5 1 1 5 2 2.5 3 3.5 4

Number of steps x Number of steps x

(a) /:<SP£(GENET): Violation vs. Step (b) £5r>£(GENET): Objective value vs. Step

——.——‘——•——-——‘——‘——h ——•——‘——‘——•——•——‘

3- 3-

2.5- 2.5-

V)

I
JS 2- • D 2'

I t -jj
11.5- • I

1- - 1-

0 . 5 - ^ I 0.5-

0-J • . 1 . . . 1" 0-1 J 1 1 < ‘ ‘ ‘
0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1-5 2 2.5 3 3 5 4

Number of steps x to* Number of steps x

(c) £SV/:(IMP): Violation vs. Step (d) £5r>£(IMP): Objective value vs. Step

Figure 4.103: Numbers of violations and objective values in each step of

£5I>£(GENET) and £5P£(IMP) on random CSP with n = 170 (average
run-time case) .

Chapter 4 Experiments 169

14-1 ‘ ^ ‘ ‘ — t - ‘ ‘ ‘ ‘“

12-

1 0 . -

5

节 B
5 6- - ° -
E
Z

4-

0 M ： ^ ° 0 50 100 '50 200 250

Number Of steps Number of steps

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

14-j ‘ ‘ ‘ ‘ '"-I ‘ ‘

12- “

10-

(/>

I •
•5

1 ,
S 6- - — E 二
Z

4- . 4 .

2- - 2.

lu . , ok* , , , , —
0 Z TO 1M XO 250 0 50 100 150 200 250

Number Of steps Number of steps

(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.104: Numbers of violations and total inputs in each step of IPSS and

max-IPSS on random CSP with n = 170 (short run-time case)

Chapter 4 Experiments 150

3- • 3-

2.5-

V)

I 2. • I -•i
•5 S
I 1.5- • ^ I S .

E
3
Z

1- -
.5.-LJXLJJJXU—U-K-̂ -J-Jl

0.6 •

n , —p, , 1 1 1 1 0 1 1 1 1 ‘ ‘ ^
0 5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 I S 2 2.5 3 3 5 *

Number of steps xio« Number of steps «io

(a) £5P£(GENET): Violation vs. Step (b) £5P£(GENET): Objective value vs. Step

3. - 3-

2.5- 2.5-

tn §

I • I

I 1.5- • I

Z

1-

0.S- ' 0 5-

� . _ ! _ _ , _ _ , _ , _ _ , _ _ , _ _ , _ _ o i — L _ , _ _ , , , , . — —
0 5 1 t.S 2 2.5 3 3,5 4 0 0 5 1 t.5 2 2.5 3 3.5 4

Number of steps xio' Number of steps «io

(c) CSVC{lMPy. Violation vs. Step (d) CSVC{IMF): Objective value vs. Step

Figure 4.105: Numbers of violations and objective values in each step of

CSVC{GENET) and CSVC{IMF) on random CSP with n = 170 (short run-
time case) .

Chapter 4 Experiments 151

14-1 ‘ ‘ ‘ ‘ ' " " I ‘ ‘ ‘

12-

10- '0-
V)

- r .
•5 S

I 6. - “

I
50 too ISO 200 250 0 50 100 150 200 250

Number of steps Number of steps

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

14+- ‘ ‘ ‘ ‘ ' " I ‘ ‘ ‘

12- '2-

10- 1。-
V) C

1 8- - 1 •S

' U i K I
" o 50 100 150 200 2S0 0 50 100 150 200 250

Number of steps Number of steps

(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step
Figure 4.106: Numbers of violations and total inputs in each step of IPSS and

max-IPSS on random CSP with n = 170 (long run-time case)

Chapter 4 Experiments 152

——‘——‘——‘——•——‘——‘—— - f ^ — — ‘ — — ‘ — — • — — ‘ — — ‘ — — ‘ — —

3- - 3-

2.5-

</)
c o
« 2- - 3 2-
0 * o. •i ^ 1
1 ,.5- • ^
E
3
Z

1-
L)i k I ^^^

0.5- 0 5-

Q • , , 1 1 1 J 0-1 1 1 1— 1 1 ‘ ^
0 0 5 1 1.5 2 2.5 3 3.5 4 0 0 5 1 1.5 2 2.S 3 3.5 4

Number of steps x Number of steps x io

(a) CSVC{GENET): Violation vs. Step (b) /:<SP£(GENET): Objective value vs. Step

——‘——•——•——•——•——•——f ——‘——‘——‘——‘——“——‘——

3- • 3-

2.5- - 2 5-

v>

I
I . I

11,6- • I

0.5-• " I 。.5-

0 .1 .___,_,__,__,_,__i o j _ _ J — , , , . r - _ , — —
0 0.5 1 1.5 2 2.5 3 3.5 4 0 0 5 1 t.5 2 2-5 3 3.S 4

Number Of steps «io' Number of steps , 1 0

(c) / :SV£(IMP): Violation vs. Step (d) £SV£(IMP): Objective value vs. Step

Figure 4.107: Numbers of violations and objective values in each step of

£SV/:(GENET) and £5P£(IMP) on random CSP with n = 170 (long run-
time case) .

Chapter 4 Experiments 153

14000-1 ‘ ‘ ‘ ‘ 湖 " I ‘ ‘ ‘ ‘

12000- «000- j/^ •

10000- —• 』 y/^

！咖- s 誦 - ⑷ l l /
I 6000- - .2 .000- / " H

0 - 1 — — — , — ~ — , 1 1 ^ OH 1 —I— ‘ ^
0 OS 1 1.5 2 2.5 0 0.5 ’ I S 2 2.S

Number of steps x 10̂ Number of steps x 10'

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step

1800 H ‘ ‘ ‘ ‘ h 誦"I ‘ ‘ ‘ ‘

1600- .

1400-\ • 赚 \

g 1200- \ 1200- \

卜 \ • I — \

[00. \ I - \

Z 600- \ 600- \

400- \ . 餘 \

200- \ . 200- \
^ > , 1 、

0 , ~ I、 1 1 1- 0-1 1 H — 1 ^
0 50 100 150 200 250 0 50 100 1 50 200 250

Number of steps Number of steps

(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.108: Numbers of violations and total inputs in each step of PSS and

max-PSS on random CSP with n = 120

Chapter 4 Experiments 154

——.——.——‘——‘——‘——‘—— ——‘——•——•——•——‘——‘——

• “ Z

i s . - I s . j r l ^

1 p p * . ° ' - p 面 -
0-1 , — , . 1 1 , 1 1" 0-1 1 1 ‘ ‘ ‘ ‘ —‘

0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3 5 4

Number of steps x lo* Number of steps x

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step

6000-1 ‘ ‘ ‘ ‘ f- fiOOOi ‘ ‘ ‘ ‘

6000- 隱 -

« 4000- \ - 棚 . \

i \ I \
^ 3000- \ . +1 赚 \

I \ ‘ \

1 2000- \ 腳 - \

\ \
1000- \ 測- \

\ \
0-1 , 1 ' • =P 1" 0-1 1 ‘ ^

0 60 100 150 200 250 0 50 100 150 200 250
Number of steps Number of steps

(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step
Figure 4.109: Numbers of violations and total inputs in each step of PSS and

max-PSS on random CSP with n = 170

Chapter 4 Experiments 155

£ 5 P £ (G E N E T) does. Although max-PSS is also not always able to find a so- 、、

lution, it is shown to have the best performance when we study the successful

trials (refer to Table 4.11). Figures 4.108(c) and 4.109(c) show the number of

violations against total inputs in each step of max-PSS on random CSP with

n 二 120 and n = 170 respectively. W e see that the cluster selection heuristic

guides the search to select an excellent direction in the search space. Inter-

estingly, IPSS has not suffered from the problem that PSS faced. W e observe

that the partial solutions found can be extended to a complete solution with-

out much difficulty (Figures 4.96(a), 4.98(a), 4.100(a), 4.102(a), 4.104(a) and

4.106(a)). Though with the help of heuristics, max-IPSS has about the same

efficiency as IPSS.

1.4 ~ ~ ‘ ― ‘ ‘ ‘
-A- IPSS
-O- max-IPSS
A LSDL(GENET)

1 2- I . O. LSDL(IMP) -

1 - A ..()
. • • ‘ . •

A
0)
« O
� ,o

3 ..A. . � . . _

Q ,、...•:::......•。...
o-... -

0.4-

0.2- -

, 舎二二 ： …
O^F T — 1 1 I r
120 130 140 150 160 170 n

Figure 4.110: The mean time results on random CSPs

Figure 4.110 shows the mean timing results of IPSS, max-IPSS, CSVC

(GENET) and £<SP£(IMP). As PSS and max-PSS can only solve the problem

Chapter 4 Experiments 156

instances in some trials, we omit their timing results in the figure. It can be “

seen that CSVC{GENET) and CSVC{IMF) perform significantly worse than

IPSS and max-IPSS.

4.4.2 Phase Transition Random CSPs

A set of random binary CSPs close to the phase transition are used in this

set of experiments. All problem instances used in this experiment are the

same as that in [4]. The execution limits of PSS and IPSS in solving the

problem instances are set to 5 million steps, while the execution limits of

max-PSS and max-IPSS are set to 10 million steps. The execution limits of

CSVC{GENET) and CSVC{IMF) in solving the problem instances are set to

5 million iterations. W e use a superscript (x/100) besides the timing figures

to indicate that only x out of the hundred runs are successful.

"problem PSS IPSS
n Steps xlO^ C P U time Steps xlO^ C P U time
120 >5000 >66.4813(0/100) >5000 〉64.6240(o/ioo)
130 >5000 >68.7239(0/100) >5000 〉66.3857(o/ioo)
140 >5000 >68.3965(0/100) >5000 〉66.0671(o/ioo)
150 >5000 >70.1852(o/_) >5000 〉66.7879(o/ioo)
160 >5000 >71.1339(0/100) >5000 >67.1439(o/ioo)
170 >5000 >71.5648(0/100) >5000 〉67.7324(o/ioo)

max-PSS max-IPSS

m >10000 >69.6243(0/100) >10000 >71^9720^^"

130 >10000 >72.8381(0/100) >10000 〉76.4229(o/ioo)
140 >10000 >75.9473(0/100) >10000 >79.0859(o/ioo)
150 >10000 >79.1777(0/100) >10000 〉83.0627(o/ioo)
160 >10000 >81.8229(0/100) >10000 〉85.5608(o/ioo)
170 >10000 >84.2616(0/100) >10000 〉88.5191(o/ioo)

Table 4.13: PSS and its variants on phase transition random CSPs

Table 4.13 shows results of PSS and its variants on random CSPs close to

the phase transition. The results of £ 5 D £ (G E N E T) and CSVC(IMF) on the

same set of problems are given for comparison in Table 4.14. From Table 4.13,

none of the trails can solve the problem instances. For CSVC implementations,

Chapter 4 Experiments 157

Problem CSVC(GENET)
n Iteration xlO^Repairs xlO^Learns xlO^ C P U time
120 688.6(304.0) 597.6(366.5) 375.8(144.0) 6.1133(3.8700)(i5/ioo)
130 >5000 >3678 >2876 〉40.6479(oo/ioo)
140 884.9(511.0) 811.5(583.1) 474.6(249.5) 8 . 7 2 7 5 (6 . 4 3 0 0)⑶ /励）

150 >5000 >4000 >2803 〉45.4193(oo/ioo)
160 >5000 >4127 >2774 〉46.3004(oo/ioo)
170 828.2(292.9) 831.2(450.1) 433.5(127.1) 9.5086(5.4100)(。7/ioo)

"Problem CSVCjlMP)
n Iteration xlO^Repairs xlO^~Learns xlO^ C P U time
120 991.9(760.5) 1249(1047) 991.9(760.5) 9.8117(8.4650)(i2/ioo)
130 2057(2057) 2564(2564) 2057(2057) 21.290(21.29oi(oi/ioo)
140 731.0(410.9) 1070(743.1) 731.0(410.9) 8 . 8 6 6 8 ^ 6 . 4 5 0 0 ^ (1 9 /励）

150 1886(1886) 2667(2667) 1886(1886) 2 3 . 1 5 0 ^ 2 3 . 1 5 0 > 1 /腦）

160 383.7(197.1) 726.2(496.1) 383.7(197.1) 6.6350(4.7450) Wioo)
170 2454(2473) 3615(3643) 2454(2473) 30.863(32.410) ("̂ /loo)

Table 4.14: CSVC{GEmT) and CSVC{IMF) on phase transition random
CSPs

not more than 20% of the trails can solve the problem successfully. As these

problem instances are hard to all solvers, it is difficult to make comparison.

In order to compare the performance of PSS implementations to that of

CSVC implementations on random CSPs close to the phase transition, we

use slightly less difficult problem instances stated in [4] to conduct another

experiment.

Table 4.15 shows results of PSS and its variants on slightly easier phase

transition random CSPs . The results of CSVC(GENET) and CSVC(IMF) on

the same set of problems are given for comparison in Table 4.16. As mentioned

in [4], this set of problem instances are difficult for stochastic solvers. For

CSVC implementations, not all trails can find the solution successfully. From

the tables, the performance of PSS and its variants are not as good as CSVC

implementations in this set of experiments.

Chapter 4 Experiments 158

Problem P ^
n Steps xl03 C P U time Steps xlO^ C P U t i m e ^
120 >5000 〉68.3004(o/ioo) >5000 〉61.9739(o/ioo)
130 >5000 〉70.8367(o/ioo) >5000 〉63.8469(o/ioo)
140 > 5 0 0 0 > 6 9 . 8 5 1 2 (0 / 1 0 0) > 5 0 0 0 � 6 3 . 7 7 7 4 (o / i o o)

150 >5000 >69.1622(0/100) >5000 〉65.1413(o/ioo)
160 >5000 〉69.3043 ⑴/腦） >5000 〉66.1019(o/ioo)

1 7 0 > 5 0 0 0 > 6 9 . 3 6 9 6 � / •) > 5 0 0 0 � 6 6 . 2 9 1 0 (o / i o o)

max-PSS max-IPSS
>10000 >69.5245(0/100) >10000 〉72.0099(o/ioo)

130 >10000 >72.4805(0/100) >10000 >76.0063(o/ioo)
140 >10000 >75.9728(0/100) >10000 〉78.6275(o/ioo)
150 1695.4(1695.4) 1.4190(1.4190)(i/ioo) >10000 >82.0091(o/ioo)
160 >10000 >81.5350(0/100) >10000 >85.2180(o/ioo)
170 >10000 >83.5906(0/100) >10000 -〉87.1946(o/ioo)

Table 4.15: PSS and its variants slightly easier phase transition random CSPs

Problem £5P£(GENET)
n Iteration xlO^Repairs xlO^Learns xlO^ C P U time

120 753.7(439.9) 650.8(461.1) 410.4(220.7) 6 .4147 (4 .6600) W i o o)
130 1195(322.2) 995.3(403.4) 663.8(150.5) 10.496(4.4400) (ô /ioo)
140 812.7(413.2) 740.1(474.3) 434.9(200.5) 7 . 3 8 4 6 (4 . 9 1 0 0)脚 /舰）

150 898.2(370.3) 848.2(467.0) 475.6(173.7) 8.8260(5.1600)(55/ioo)
160 986.9(364.0) 953.5(492.4) 520.5(166.4) 10.240(5.5950) Wioo)
170 689.9(274.9) 716.5(402.5) 354.9(122.2) 7 .6204(4 .5900) ^^Vioo)

Problem £<SPZ:(IMP)
n Iteration xlO^Repairs xlO^Learns xlO^ C P U time
120 903.5(360.6) 1117(598.1) 903.5(360.6) 8 .4019(4.9000) (̂ Vioo)
130 3572(3572) 4248(4248) 3572(3572) 33.480(33.480) (oVioo)
140 625.3(222.5) 892.2(464.7) 625.3(222.5) 6 .8369 (3 .8900) (^^/loo)
150 667.0(191.0) 1005(439.1) 667.0(191.0) 7 . 9 6 7 1 (3 . 9 8 5 0) (4 2 /湖）

160 1717(1381) 2467(2124) 1717(1381) 1 9 . 4 2 0 (1 7 . 0 4 0) (2 2/ioo)

170 614.5(153.2) 994.5(406.8) 614.5(153.2) 7.9194(3.7000) Wioo)

Table 4.16: CSVC{GENET) and CSVC{IMF) on slightly easier phase transi-
tion random CSPs

Chapter 5

Concluding Remarks

W e end the thesis in this chapter by concluding our contributions and giving

possible directions for future work.

5.1 Contributions

In this thesis we present a novel stochastic search scheme, Progressive Stochas-

tic Search (PSS), for solving binary CSPs. A typical stochastic search method

uses a cost function to evaluate the goodness of every point in a search space,

and a neighborhoods function to define the neighbors of a particular point in

the search space. The search starts from a random point in the search space

and moves from one point to its better neighboring point until the stopping

criteria are matched. This can be interpreted as that the move is driven solely

by "potential energy", though the movement towards which better neighboring

point is usually determined randomly. As the search only moves from one point

to its neighboring point that gives an improvement in the cost, the search may

stay at the current point and no other movements can be made. The search

is trapped in local optima or plateaus. Random restart and heuristic learning

are the methods used to escape from local optima or leave plateaus tradition-

ally. Intuitively, this search approach can be thought to be prudent. The main

novelty of PSS is that the search is able to "rush through" the local optima

159

Chapter 5 Concluding Remarks 160

and plateaus with the cooperation of a new heuristic repair method and a

simple search path marking method. W e maintain a list of variables, which

dictates the sequence of variables to repair. When a variable is being repaired,

it is always assigned a new value even if its original value should give the best

cost value. The search paths are slightly "marked" as the search proceeds by

updating the weights of the connections at the end of each convergence step.

Unlike the prudent approach used in the typical stochastic search method, the

search approach of PSS is more progressive. This progressive approach shows

an encouraging performance in some benchmarking problems.

W e also present an incremental variant of PSS, namely IPSS. IPSS works

on a partial assignment and performs PSS on that partial assignment to find

a partial solution. This partial solution is then extended by adding a variable

that is not involved in the partial solution until a complete solution is obtained.

IPSS is found to be more efficient than PSS in some benchmarking problems

that the partial solutions can be extended easily. As mentioned before, PSS

and IPSS use a list of variable to dictate the sequence of variables to repair.

The ordering is in a first-in-first-out manner. W e integrate the idea of greedy

variable ordering into PSS and IPSS to form other variants, namely, max-PSS

and max-IPSS respectively. Experimental results show that the greedy variable

ordering provides an excellent direction for the search towards the solutions in

some benchmarking problems.

W e perform experiments using four types of benchmarking problems, namely

the iV-Queens problems, the permutation generation problems, the quasigroup

completion problems and Latin squares, and random constraint satisfaction

problems. The results show that the PSS class of schemes can outperform

/:OT£(GENET) and £cSP£(IMP) in TV-queens problems, Latin squares, ran-

dom permutation generation problems, and random CSPs. However, their per-

formance in increasing permutation generation problems and quasigroup com-

pletion problems are worse than that of £ 5 P £ (G E N E T) and CSVC{IMP).

Chapter 5 Concluding Remarks 161

W e present analysis of the search process of all these solvers in an attempt to

provide an explanation to this phenomenon.

5.2 Future Work

W e believe this thesis presents an interesting new approach to the design of

stochastic search schemes for solving constraint satisfaction problems. As fu-

ture work, we shall investigate other heuristics that can possibly improve the

performance. For examples, the method that calculates the input of a label

node, the learning rule that updates the connection weights, and the strat-

egy that selects a cluster for repair at the next convergence step. With the

encouraging performance of max-PSS and max-IPSS in some benchmarking

problems, we believe that other suitable heuristics for the above three parts

can boost up the performance of PSS.

The benchmarking problems used in the experiments of this research are

almost the same as that used in CSVC [4] except for the hard graph-coloring

problems. W e have conducted an experiment for the hard graph-coloring prob-

lems. The experimental results show that the PSS class of schemes cannot find

solutions within the pre-set limit. Since we are still investigating what makes

this kind of problems hard to the PSS class of schemes, we extract this part

from experiments and put it as future work. It is also interesting to investi-

gate if other heuristics can help the PSS class of schemes to solve the hard

graph-coloring problems. ‘

The possibility of its integration with G E N E T class solvers is also another

issue to be researched into. The search approach of the PSS class of schemes

is progressive, while that of G E N E T class solvers is prudent. The experimen-

tal results show that different approaches have their advantage in different

benchmarking problems. It is worthwhile to research under what situations

the search should decide to use progressive approach or prudent approach, so

Chapter 5 Concluding Remarks 162

that advantages from both side can be exploited.

•t

Bibliography

1] D. Achlioptas, L.M. Kirousis, E. Kranakis, D. Krizanc, M.S.O. Molloy,

and Y.C. Stamatiou. Random constraint satisfaction: A more accurate

picture. In Proc. 3rd International Conference on Principles and Practics

of Constraint Programming, pages 107-120, 1997.

2] J. Bitner and E.M. Reingold. Backtrack programming techniques. Com-

munications of the ACM, 18:651-655, 1985.

3] C.Gomes and B. Selman. Problem structure in the presence of perturba-

tions. In Proc. AAAI-97, pages 221-226, 1997.

4] M.F. Choi, J.H.M. Lee, and P.J. Stuckey. A lagrangian reconstruction of

G E N E T . Artificial Intelligence, 123:1-39, 2000.

5] P. Codognet and D. Diaz. Yet another local search method for constraint

solving. In SAGA, pages 73-90, 2001.

6] A. Davenport, E.RK. Tsang, C.J. Wang, and K. Zhu. G E N E T : A con-

nectionist architecture for solving constraint satisfaction problems by it-

erative improvement. In Proc. AAAI-94, pages 325-330，1994.

7] J. Prank, P. Cheeseman, and J. Allen. Weighting for godat: Learning

heuristics for gsat. In Proc. AAAI-96, pages 338-343，1996.

8] LP. Gent and T. Walsh. Towards an understanding of hill-climbing pro-

cedures. In Proc. AAAI-93, pages 28-33, 1993.

163

[9] F. Glover. Tabu search part I. Operations Research Society of America

(ORSA) Journal on Computing, 1(3): 109-206, 1989.

10] F. Glover. Tabu search part II. Operations Research Society of America

(ORSA) Journal on Computing, 2(l):4-32, 1989.

11] R.M. Haralick and G.L. Elliot. Increasing tree search efficiency for con-

straint satisfaction problems. Artificial Intelligence, 14:263—313，1980.

12] N. Jussien and O. Lhomme. The path-repair algorithm. In CP99 Post-

conference workshop on Large scale combinatorial optimisation and con-

straints, volume 4, 2000.

13] V. Kumar. Algorithms for constraint satisfaction problems: A survey. Al

Magazine, 13(l):32-44, 1992.

14] J.H.M Lee, H.F. Leung, and H.W. Won. Extending G E N E T for non-

binary constraint satisfaction problems. In 7th International Conference

on Tools with Articial Intelligence, pages 338-342, 1995.

15] A.K. Mackworth. Consistency in networks of relations. Artificial Intelli-

gence, 8(1):99—118, 1977.

16] K. Marriott and P.J. Stuckey. Programming with constraints. The MIT

Press, 1998.

[17] S. Minton, M.D. Johnston, A.B. Philips, and P. Laird. Minimizing con-

flicts: A heuristic repair method for constraint satisfaction and scheduling

problems. Artificial Intelligence, 58(1-3):161—205, 1992.

[18] P. Morris. The breakout method for escaping from local minima. In Proc.

AAAI-93, pages 40—45，1993.

19] B.A. Nadel. Constraint satisfaction algorithms. Computational Intelli-
gence, 5:188-224, 1989.

164

20] G. Pesant and M . Gendreau. A view of local search in constraint pro-

gramming. In Principles and Practice of Constraint Programming, pages

353-366, 1996.

21] E.T. Richards, Y. Jiang, and B. Richards. Ng-backmarking - an algorithm

for constraint satisfaction. AIP Techniques for Resource Scheduling and

Planning, BT Technology Journal, 13(1), 1995.

[22] E.T. Richards and B. Richards. Non-systematic search and learning: An

empirical study. In Proc. Conference on Principles and Practice of Con-

straint Programming, pages 370-384, 1998.

23] F. Rossi, C.J. Petrie, and V. Dhar. On the equivalence of constraint

satisfaction problems. In Proc. ECAI-90, pages 550—556, 1990.

'24] A. Schaerf. Combining local search and look-ahead for scheduling and

constraint satisfaction problems. In Proc. IJCAI-97, pages 1254-1259,

1997.

25] B. Selman and H. Kautz. Domain-independent extensions to gsat: Solving

large structured satisfiability problems. In Proc. IJCAI-93, pages 290-295,

1993.

26] B. Selman, H.A. Kautz, and B. Cohen. Noise strategies for improving

local search. In Proc. AAAI-91 pages 337-343, 1994.

27] B. Selman, H. Levesque, and D.G. Mitchell. Ta new method for solving

hard satisfiability problems. In Proc. AAAI-92, pages 440-446, 1992.

28] Y. Shang and B.W. Wah. A discrete lagrangian-based global-search

method for solving satisfiability problems. Journal on Global Optimiza-

tion, 12:61-100, 1998.

165

.29] P.J. Stuckey and V.W.L. Tarn. Improving G E N E T and E G E N E T by new 、’

variable ordering strategies. In Proc. of the International Conference on

Computational Intelligence and Multimedia Applications, pages 107-112,

1998.

30] E. Tsang and C.J. Wang. A generic neural network approach for con-

straint satisfaction problems. In Neural Network Applications, pages 12-

22. SpringerVerlag, 1992.

31] C. Voudouris and E. Tsang. Guided local search and its application to the

traveling salesman problem. Europenan Journal of Operational Research,

113:469-499, 1999.

32] B.W. W a h and Y.J. Chang. Trace-based methods for solving nonlinear

global optimization and satisfiability problems. Journal on Global Opti-

mization, 10:107-141, 1997.

33] J.H.Y. Wong and H.F. Leung. Extending G E N E T to solve fuzzy con-

straint satisfaction problems. In Proc. AAAI-98, pages 380-385, 1998.

34] Z. W u . The discrete lagrangian theory and its application to solve nonlin-

ear discrete constrained optimization problems. MSc Thesis, Department

of Computer Science, University of Illinois, Urbana-Champaign, IL, 1998.

.35] M . Yokoo. Weak-commitment search for solving constraint satisfaction

problems. In Proc. AAAI-91 pages 313—318，1994. .

166

.

.
f
麵

。
、
：
：
、
：
)
：
：
.
.
-
感

J

•

•

.

1

.

.

.

,

.

.

.

•

.

 .、..

•

.

、

J

,..,..、

、

.

.

.

.

.

.

,

.

 .

 -
-
.

 ...

J

..•-...

.

7

 •
飞
‘
二

，

•

.

•

.

:
;
v
)
：
；
逢
 i
i

墓

•

:

-

.

 …
？

.

.

.

.

‘

”
 ..;"..、‘•,......

...v.

X

.

 二
、
.

I

.

.

.

.

.

.

v

.

u

r

s

:

肆
.
，

.

.

.

.

.

.

J.:.

 :
、
>
v
i

.二.

 .•v;-̂
!

.

.

-

.

.

/

.

.
.
:

.

.
厂

/

j

.

錢

—

•
 •

.

I

•

‘

•

\

\

广

，

hbaiiOhOD

ssLJBJqn >IHn3

