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Abstract 

Constraint Satisfaction Problem (CSP) provides a powerful tool for model-

ing and solving many real-life problems and they are NP-complete in general. 

While traditional systematic search cannot find solutions within a reasonable 

time when solving large-scale and hard CSPs, stochastic search methods have 

attracted much attention of the research community. A typical stochastic 

search starts at a random point in a search space and moves from one point 

to its neighbor iteratively, provided that the new point gives a better cost 

value. Traditionally, a stochastic solver escapes from local optima or leaves 

plateaus by random restart or heuristic learning. In this thesis, we propose 

Progressive Stochastic Search (PSS) and its variants for solving binary CSPs. 

One characteristic of PSS is that we maintain a list of variables, which dic-

tates the sequence of variables to repair. When a variable is designated to 

be repaired, it always has to choose a new value unless its original value does 

not cause any violations. Intuitively, the search can be thought to be mainly 

driven by a "force" so that the search is able to "rush through" the local min-

ima and plateaus. The search paths are also slightly "marked" as the search 

proceeds. Random restarts are no longer necessary, and expensive heuristic 

learning is replaced by simple path marking. Timing results show that this 

approach outperforms CSVC implementations in iV-Queens, Latin squares, 

random permutation generation problems and random CSPs, while it fails to 

win CSVC implementations in quasigroup completion problems and increas-

ing permutation problems. This prompts an interesting new research direction 

i 



9* 

in the design of stochastic search schemes. 
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摘要 

約束滿足問題（CSP)為許多實際生活中的問題提供了一個強大的建模 

和求解工具。這些實際生活上的問題一般都是NP完全的。當傳統的系統搜 

素未能在合理的時間内對較大型和較困難的約束滿足問題求解時，隨機搜 

索吸引了研究人員的注意。一般的隨機搜索起始於一個隨機點’然後重覆 

地移向一個相鄰並具有較佳代價值的點。傳統上，隨機搜索過程在逃離局 

部最優位置或離開平原時’會使用隨機從新啟動或者啟發式學習法。在本 

論文中，我們提出一個對二元約束滿足問題求解的「進取性隨機搜索」方 

法(PSS)以及它的一些變種。進取性隨機搜索的其中一個主要特點為使用 

一個變量表指定變量的修復次序。當一個變量被指定修復的時候，除非它 

原本所取的值符合所有約束，否則變量會取一個新的值。從直覺意義上來 

說，可以想像這種搜索主要被一種「力」驅使，「衝過」局部最小位置或 

平原。當搜索進行時’搜索路徑亦被輕微留下記號。我們再不需要使用隨 

機從新啟動，而昂貴的啟發式學習法亦被簡單的路徑記錄取代。實驗結果 

顯示’這種新的搜索在解決N個皇后問題、拉丁方格、隨機排列i成問題 

和隨機約束滿足問題時的表現，能明顯地勝過CSDC。可是，它在解決准 

群完成問題和漸增的排列生成問題時的表現卻不及a S D L �這個結果在隨 

機搜索方案的設計上提示了一個有趣的新研究方向。 
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Chapter 1 

Introduction 

Constraint Satisfaction Problem (CSP) [15] provides a powerful tool for mod-

eling and solving many real-life problems. A CSP is conventionally defined as 

a problem of finding a consistent assignment of discrete values to a finite set 

of variables such that the assignment satisfies a finite set of given constraints 

over these variables. 

CSPs are NP-complete in general. Many solvers for CSPs have been de-

veloped over the past three decades. The traditional approach is systematic 

search methods [13, 19] which are complete algorithms. However, they cannot 

find solutions within a reasonable time when solving large-scale and hard CSPs. 

An alternative approach, stochastic search methods [4, 5, 6’ 9，10, 30, 31] are 

incomplete, but their fast solving speed often compensates this drawback. 

A typical stochastic search method is a hill-climbing algorithm, which in-

cludes a cost function that gives a value to every point in a search space, and a 

neighborhoods function that defines the neighbors of a particular point in the 

search space. The search moves from a point in the search space to a neighbor-

ing point if the latter has a better cost value than the current point. This can 

be interpreted as that the move is driven solely by "potential energy", though 

which better neighboring point to go to is usually determined randomly. The 

goal of the algorithm is to reach a point in the search space that has the op-

timal value according to the cost function, which corresponds to a solution to 

1 



Chapter 1 Introduction 2 , 

the original CSP. For solving CSPs, a typical cost function used is counting 

the number of conflicts [17]. The problem with hill-climbing algorithms is that 

they can be trapped in local optima, and lose direction in plateaus. 

Traditionally, a stochastic solver escapes from local optima or leaves plateaus 

by random restart or heuristic learning. The former approach relies on the fact 

that there is a non-zero probability that a solution will be found after the search 

restarts at a randomly chosen point in the search space, if solutions really ex-

ist. The latter approach attempts to change the landscape of the search space 

as depicted by the cost function, until the local optimum or plateau the search 

is being trapped in ceases to exist. 

In this thesis, we propose the Progressive Stochastic Search (PSS) and its 

variants for solving binary CSPs. One characteristic of PSS is that we maintain 

a list of variables, which dictates the sequence of variables to repair. When a 

variable is designated to be repaired, it always has to choose a new value even 

if its original value should give the best cost value. Intuitively, the search can 

be thought to be mainly driven by a "force" so that the search is able to "rush 

through" the local minima and plateaus. The search paths are also slightly 

"marked" as the search proceeds so as to help gathering information of the 

search space. Random restarts are no longer necessary, and expensive heuristic 

learning is replaced by simple path marking. Timing results show that this 

approach outperforms /:SV£(GENET) and £SV/:(IMP) in N-Queens, Latin 

squares, random permutation generation problems and random CSPs, while 

it fails to win £ 5 P £ ( G E N E T ) and £SV/:(IMP) in quasigroup completion 

problems and increasing permutation generation problems. This prompts an 

interesting new research direction in the design of stochastic search schemes. 

This thesis is organized as follows. In Chapter 2，we briefly introduce 

Constraint Satisfaction Problem and review some solving techniques published 

in the literatures. These solving techniques can traditionally be classified into 

two categories: systematic search and stochastic search. As our work can be 
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classified into the category of stochastic search, some related work are also 

given. These include G E N E T , CSVC and Adaptive Search. In recent years, 

a hybrid approach of systematic and stochastic search has raised interest in 

CSP community. A brief introduction on this hybrid approach is also given 

in Chapter 2. The Progressive Stochastic Search scheme and its variants are 
參 

described in Chapter 3. Experiments on benchmarking problems and some 

analysis of results are presented in Chapter 4. Chapter 5 summarizes our 

contributions and sheds light on future work. 



Chapter 2 
參 

Background 

In this chapter, we provide background information related to our research. 

W e give a brief introduction on Constraint Satisfaction Problem (CSP). In 

addition, a summary of CSP solving techniques is also presented. These solving 

techniques can traditionally be classified into two categories: systematic search 

and stochastic search. As our work can be classified into the category of 

stochastic search, some related work is also given in the section of stochastic 

search. In recent years, a hybrid approach of systematic and stochastic search 

has raised interest in CSP community. A brief introduction on this hybrid 

approach is also given at the end of this chapter. 

2.1 Constraint Satisfaction Problems 

A CSP < > is a tuple consisting of a set V of variables, a set V of 

domains and a set C of constraints. Each variable îi G V is associated with a 

domain d[vi) G V which contains the set of possible values for vi. A constraint 

c G C ranging over a number of variables specifies the combination(s) of values 

these variables can take. A binary CSP is a CSP with unary and binary 

constraints only.̂  A solution of a CSP is an assignment of values to all 

variables such that all constraints are satisfied. 

iNote that any n-ary constraints CSP (n > 2) can be transformed to an equivalent binary 
CSP [23]. 

4 
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Numerous algorithms have been developed for solving CSPs. These algo-

rithms can be typically classified into two categories: systematic search and 

stochastic search. 

2.2 Systematic Search 

The traditional search method used in solving CSPs is chronological back-

tracking tree search. Variables are assigned values from their domains one 

after another. After a variable is assigned a value, the currently partial as-

signment is checked for consistency. If it violates any of the constraints, the 

currently considered variable is assigned an alternative value. If no value is 

available for this variable, the most recently variable that has been assigned a 

value is revised. The above process is repeated until either a solution is found 

or all partial assignments have been checked for consistency. In the latter case, 

the chronological backtracking algorithm concludes that no solution exists for 

the CSP. 

Various constraint propagation techniques can be combined with backtrack-

ing tree search to enhance the solving efficiency [13, 19]. These techniques 

include node consistency [15], arc consistency [15], path consistency [15] and 

bounds consistency [16]. The purpose of these techniques is to remove incon-

sistent values from the domains of variables. As a result, the search space 

in the search tree is reduced. These algorithms virtually explore the whole 

search tree systematically by depth-first search. Therefore, they are complete 

algorithms that guarantee to find a solution if it exists, and to report unsatis-

fiability otherwise. Various variable- and value-ordering heuristics [2, 11] have 

been investigated to improve the search speed. These heuristics aim at reduc-

ing the number of backtracks required in a search. However, systematic search 

generally becomes less efficient when solving large-scale and hard CSPs due to 

the NP-complete nature of CSP. 
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2.3 Stochastic Search 

2.3.1 Overview 

Another category of approaches to search, stochastic search has drawn 匪ch 

attention of the Artificial Intelligence (AI) community. This category of in- • 

complete algorithms often solve some standard benchmarking problems, such 

as iV-Queens and graph-coloring, in orders of magnitude better than the tradi-
tional tree search approach. Typical stochastic search algorithms first generate 

a complete initial variable assignment (probably random and inconsistent) and 

then repair the assignment by heuristic local search until a solution is found. 

The heuristic local search repairs the variable assignment with reference to a 

cost function. A possible cost function used is one that counts the number 

of constraint violations by the variable assignment. A variable is selected and 

repaired by being assigned a new value that optimizes the cost function. A 

drawback of this category of solving methods is that the execution can eas-

ily be trapped in local optima, i.e., non-solution states in which no further 

improvement can be made. Two main approaches have been developed for 

escaping local optima. One approach is random restart [17]. Although it is 

simple and intuitive, information generated in a search process is completely 

lost. Another approach associates weights with the constraints and defines 

the cost function as a weighted sum of constraints violations [4, 6, 18’ 28, 30). 

When a local optimum is reached, the weights are updated. This helps not 

only escape from the local optima but also guides the search to solution states. 

In the last decade, various stochastic search variants have been proposed, 

which use different cost functions, variable-orderings and escape strategies to 

boost the performance. In the context of satisfiability problem (SAT), G S A T 

27] is a greedy local search method. Several extensions, which integrated with 

a random walk [25, 26], clause weight learning [7, 25], averaging in previous 

assignments [25] and tabu-like move restrictions [8], improve the original G S A T 
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in some kinds of SAT problems. The Lagrange multiplier method is a well-

known technique for solving constrained optimization problems. W a h et al. 

extend the classical Lagrange multiplier method to handle discrete problems 

28’ 34]. Their extention, called D L M (Discrete Lagrangian-based global-search 

method), uses the Lagrangian function as a cost function and a complicated 

weight update scheme to escape from local minimum. 

GENET [6, 30] is a local search approach for solving binary CSPs. It uses 

iterative repair method to find a solution to the CSP. A heuristic learning rule 

is applied to escape from local minima and to help preventing the network from 

being trapped in the same local minima again. Several variants of G E N E T are 

developed for solving different kinds of CPS's. Fuzzy G E N E T [33] is proposed 

to solve binary fuzzy CSPs. E-GENET [14] extends G E N E T to handle non-

binary constraints. CSVC [4] basically explains the behaviour of G E N E T as 

a discrete Lagrangian search algorithm and improves on G E N E T by choosing 

different parameters. Guided Local Search (GLS) [31] extends G E N E T to 

handle combinatorial optimization problems. Adaptive Search [5] introduces 

an error function to determine which variable is repaired at next. For each 

constraint, it is not associated with a weight but an error function to represent 

the "degree of satisfaction". Each variable is associated with an error. The 

error is the sum of the error function values of all constraints in which the 

variable is involved. The variable with the maximum error will be selected to 

repair in the next iteration. 

In the following sections, we give details of other research work that are 

related to our work. These include G E N E T , CSVC and Adaptive Search. W e 

first give a summary of G E N E T because our proposed method, Progressive 

Stochastic Search (PSS) is a heuristic search method for solving binary CSPs 

and the modeling of CSP in PSS is similar to that in G E N E T . CSVC is a dis- . 

Crete Lagrange multiplier method for solving integer constrained minimization 
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problems. One of the variants of CSVC, CSVC{GENET), is a Lagrangian re-

construction of G E N E T . CSVC(GENET) is the most efficient implementation 

of G E N E T that we know of. W e use the performance of CSVC{GENET) in 

experiments to compare the performance of PSS and its variants. A descrip-

tion of CSVC is given next. Adaptive Search is a heuristic search method for 

solving CSPs. The key idea of this method is using variable-based information 

to decide which variable should be repaired at next. This idea is closely related 

to the list of variables-to-be-repaired used in PSS. 

2.3.2 GENET 

G E N E T [6，30] is a local search approach for solving CSPs with binary con-

straints. G E N E T uses iterative repair method to find a suitable assignment of 

variables. Once it is trapped in a local minimum, a heuristic learning rule is 

applied to escape from the local minimum and to avoid the network settled in 

the same local minimum again. 

G E N E T first models a given binary CSP < > as a neural network. 

Each node in the network represents an assignment of a value to a variable. 

The state Si of node i is either 1 for on or 0 for off. If a node is on, it means the 

corresponding value is being assigned to the variable. A duster is the set of 

all nodes that represents the assignments of the same variable. A connection 

between two nodes of different clusters represents an incompatible .tuple of a 

binary constraint. Each connection contains a weight, which is initialized to 

-1. The weight of the connection between node i and j is denoted as Wij. 

The input to a node is the weighted sum of all its connected nodes' states. 

At any time, only one node in each cluster is on. Therefore, every state of 

the network represents an assignment of values to the variables from their 

respective domains. A solution to the binary CSPs is at any network state, in 

which no two on nodes are connected to each others. For instance, the G E N E T 
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network of a CSP with V 二 幻’ d{X) = d(Y) = d{Z) = {1,2,3} and 

C = {X + y > 3, y + Z > 3} is showed in Figure 2.1. 

w w w 3 
X Y z 

Figure 2.1: An example of G E N E T network 

G E N E T starts with randomly turning on one node in each .duster. In each 

convergence cycle, every node in each cluster calculates its input. The node 

with maximum input in each cluster is turned on and the others are turned 

off. Note that the node with maximum input in each cluster represents the 

assignment with the fewest number of constraint violations. If there are more 
than one node have maximum input, a tie breaking system is run: if one of 

them was on in the previous cycle, it will remain on. If all the nodes were off 

in the previous cycle, a random choice is made. This is to avoid chaotic or 

cyclic wandering of the network states. 

When the network reaches to a stable state, i.e., no more changes to the 

on nodes in the network, G E N E T checks if that state represents a solution. 

A solution state is all on nodes have zero input. Otherwise, the network is 
trapped in a local minimum. 

When G E N E T settles in a local minimum, it represents that there are some 

on label nodes that still receive negative input, i.e., some constraints are still 

violated. The cause of this situation is the variable assignments are based on 

the local information received at each cluster of nodes. To escape from the lo-

cal minima, a heuristic learning rule is used to update the weight of connections 

w[j = Wij - Si X Sj 
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Note that only the connections between two on nodes are being updated and 

the value of weight is decreased by one each time. Therefore, after sufficient 

learning cycles, the on node i and the on node j will not be the winner in its 

cluster. Since the weights of the connections leading to local minima has been 

updated, the heuristic learning rule avoids the network settling in the same 

local minima again. 

2.3.3 CSVC 

CSVC [4] is a discrete Lagrange multiplier method [28] for solving integer 

constrained minimization problems. CSVC has five parameters and so it has 

several variants. CSVC(GE^ET), one of the variants, is a Lagrangian recon-

struction of G E N E T . Choi et al [4] establish a relationship between G E N E T 

and discrete Lagrange multiplier methods. CSVC{GENET) is shown to have 

the same performance as the original G E N E T implementation. The best vari-

ant of CSVC reported in [4] outperforms the reconstructed G E N E T by an 

order of magnitude. To solve a binary CSP, CSVC first converts the given 

binary CSP into an integer constrained minimization problem. Then a dis-

crete Lagrange multiplier method is applied to solve the converted integer 

constrained minimization problem. 

CSVC first uses a G E N E T network to model a binary CSP <V,V,C >. 

Then the G E N E T network is converted into an integer constrained minimiza-

tion problem. Suppose all values in domain d(vi) G V for all Vi^V are integers. 

Each cluster i of the network corresponds to an integer variable in an integer 

constrained minimization problem. Each node in cluster i corresponds to one 

domain value of Zi. Each connection of the network is transformed into an 

incompatibility function 
< 

1 ii Zi= j A Zk = I 
二 4 n ‘1̂ . (2-1) 

0 otherwise 
v 
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where z = (..., Zi,...) is a vector of integer variables and (i, j) {/c, I) is a connec-

tion between the node j in cluster i and the node I in cluster k of the network. 

With the incompatibility function, the integer constrained minimization prob-

lem can be defined as follows, 

min /⑵ (2.2) 

subject to Zi G d⑷ , Mvi G V， （2.3) 

= 0' V((Z,J),{/C,0)EJ, (2.4) 

where z = ,Zi,...) is a vector of integer variables and I is the set of all 

incompatible label pairs (/c,/)). The objective function /(勾 typically 

used is the total number of constraint violations in an assignment [32] or just 

a constant, i.e., /(i) 二 0. 

With the resultant integer constrained minimization problem (2.2)-(2.4), 

CSV£ solves the given binary CSP using a discrete Lagrange multiplier method. 

The Lagrangian function L{z, A) is defined as 

L{z, A) = /⑶ + E A〈i，力〈fc“〉卯，力〈fc乃⑵， （2.5) 
(〈i，j〉’_ei 

where f =(…，么i，...) is a vector of integer variables and A =(…，X{i,j){k,i),. •.) 

is a vector of Lagrange multipliers. The goal is to obtain a global minimum of 

the resultant integer constrained minimization problem (2.2)-(2.4) by finding 

a saddle point [34] of the Lagrangian function L{z, A). The saddle point can 

be found by searching descent direction in the discrete variable space of z and 

ascent direction in the Lagrange multiplier space of A. 

7 + 1 二 (2.6) 

Xs+i 二 + ⑷， (2.7) 

where f® denotes the value of x in the sth iteration, A ^ is the discrete gradient, 

GD is a gradient descent function and = (..., 9{i,j){k,i){^,...) is a vector 

of incompatibility functions. 
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CSVC has five parameters, namely (/) the objective function, (I^) initial-

ization of the integer vector (/又）initialization of the Lagrange multipliers 

A, {GD) the gradient descent function, and (f/̂ ) condition for updating the 

Lagrange multipliers A. G E N E T can be reconstructed as an instance of CSVC 

with a set of appropriate parameters. The details about the parameters for 

reconstructed G E N E T can be found in [4:. 

2.3.4 Adaptive Search 

Adaptive Search [5] is a heuristic search method for solving CSPs. The key 

idea of this method is using variable-based information to decide which variable 

should be repaired at next. Then min-conflict heuristics [17] is applied to select 

a suitable value for the repaired variable. Adaptive Search is an iterative repair 

method. It terminates if either a solution is found or a pre-set limit of iterations 

is reached. If the search is trapped in local minima, the variable caused the 

trap is marked tabu [9, 10] and cannot be selected for a number of coming 

iterations. 

The variable-based information used in Adaptive Search is obtained from 

the constraints during the search. For each constraint, it associates with an er-

ror function. An error function value returned by the error function represents 

the "degree of satisfaction" of the corresponding constraint. For instances, the 

error function associated to constraints X -^Y = 5 and F - Z = 2 can be 

defined as X + y — 5 and Y — Z - 2 respectively. Each variable is associ-

ated with an error. The error is the sum of the error function values of all 

constraints in which the variable involved. The variable with the maximum 

error will be selected to repair in the next iteration. For example, suppose the 

variable assignments are X 二 5 ， 二 4 and Z = I, the error associated to 

variable X, Y and Z are 4, 5 and 1 respectively. The total error of the variable 

assignments is then computed as the sum of the absolutes values of the errors, 
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which is equal to 10. Therefore, variable Y will be repaired by assigning a 

value that minimizes the total error. 

2.4 Hybrid Approach 

A hybrid approach of systematic and stochastic search has raised interest in 

CSP community in recent years. 

Yokoo proposes Weak-commitment Search [35] which employs min-conflict 

heuristics [17] on backtracking algorithm. All variables are given tentative ini-

tial values. The process proceeds by repeatedly constructing consistent partial 

solutions and extend them to include new variables one by one, until a consis-

tent complete solution is found. If a partial solution cannot be extended, the 

whole partial solution is abandoned and a new partial solution is constructed 

from scratch, which uses the current value assignment as new tentative ini-

tial values. Richards et al. [22] propose learn-SAT algorithm that modified 

Weak-commitment Search with learning-by-merging [21] for SAT problem. Pe-

sant et al. [20] use systematic branch-and-bound search to explore the set of 

local search neighborhoods in combinatorial optimization problems. Schaerf 

24] proposes a technique that constructs a partial consistent solution incre-

mentally. Local search is performed on the partial solution each time when 

the construction reaches a dead-end. Jussien et al. [12] propose Path-repair 

algorithm that performs local search as a basis, and uses filtering methods to 

prune the search space and help in selecting neighborhoods. 



參： 

Chapter 3 

Progressive Stochastic Search 

This chapter gives an introduction to Progressive Stochastic Search (PSS). PSS 

is a new heuristic search method for solving binary CSPs. One characteristic 

of PSS is that we maintain a list of variables, which dictates the sequence of 

variables to repair. When a variable is designated to be repaired, it always has 
to choose a new value even if its original value should give the best cost value. 

Intuitively, the search can be thought to be mainly driven by a "force" so 

that the search is able to "rush through" the local minima and plateaus. The 

search paths are also slightly "marked" as the search proceeds. Incremental 

PSS (IPSS) is a variant of PSS. This variant shows an improvement over PSS 

on some benchmarks. Details of IPSS are also given in this chapter. Finally, 

we shall talk about a heuristic cluster selection strategy that integrates with 

PSS and IPSS to boost the performance on some benchmarks. 

3.1 Progressive Stochastic Search 

Our proposed method, Progressive Stochastic Search (PSS), is a novel heuristic 

search method for solving binary CSPs. In order to present our idea in a 

systematic way, we adopt the presentation of G E N E T [6, 30] to illustrate the 

idea of PSS. 

14 
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3.1.1 Network Architecture 

In PSS, a binary CSP < V,V,C > is represented by a network similar to 

G E N E T . A variable Vi is represented by a cluster i of label nodes. Each label 

node rui corresponds to a value m in the domain of Vi. W e assume that each 

domain contains more than one domain values. If a domain of a variable 

contains only one value, this variable can be explicitly assigned the only value 

and the CSP can be simplified by removing that variable and redefining the 

constraints. The state of a label node is either on or off. At any moment, there 

is exactly one label node that is in the on state in any cluster. Intuitively, a 

label node is in the on state means the corresponding value is being assigned 

to the variable. 

A binary constraint c e C on variables Vi and Vj is represented by weighted 

connections between pairs of label nodes in clusters i and j respectively. There 

is a connection between two label nodes rUi and Uj ifvi = m八 Vj = n is prohib-

ited according to c. Each connection is associated with a weight initialized to 

one. The weight of the connection between a label node rrii and a label node 

Uj is denoted as Wrmnj- The output Orm of a label node rUi is 1 if the node is 

on or 0 if off. The input Inn to a label node rrii is the weighted sum of all its 

connected label nodes' outputs: 

Im. = E � � . (3.1) 
rij is connecting to rrii 

As at most one label node in each cluster is on at any time, a state of 

the network represents an assignment of values to the variables from their 

respective domains. A solution to the binary CSP corresponds to any network 

state in which no two on label nodes are connected to each other. For instance, 

the network architecture of a binary CSP with V = {X,Y,Z}, d{X) = d(Y)= 

d(Z) = {1,2,3} and C 二 {；̂  y = Z} is showed in Figure 3.1. 
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f t ^ i ； 
3 

X Y z 

Figure 3.1： The network architecture of PSS 

3.1.2 Convergence Procedure 

The goal of executing the convergence procedure is to choose one label node 

in each cluster to turn on so that no two connected label nodes-are turned on 

at the same time. 

The network is initialized as follows. Initially, all label nodes in all clusters 

are in the off state. All weights of connections are initialized to one. Let U 

denote the set of all clusters with all label nodes in off state. Therefore U 

initially contains all clusters. Clusters are then removed from the set U one 

after another. When a cluster x is removed from the set U, each label node in 

X calculates its input, and the label node with the minimum input is turned 

on. Ties are broken randomly. The greedy initialization [17] completes when 

the set U is empty. 

W e maintain a list T to be used in the convergence procedure. Immediately 

after the initialization, we append all clusters into the list T one by one, in 

an arbitrary order. In each convergence step, the head cluster h of the list ^ 

is removed from the list. Let ph denote the on label node in h. If ph has a 

zero input, then it remains on and nothing needs to be done. Otherwise, ph is 

turned off, and the label node kh with minimum input among all label nodes 

other than ph is turned on. Any cluster with its on label node connecting to 

h is then appended to the list JT if it is not already in the list. 

In order to guide the search towards solutions, we adopt the following 
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heuristic learning rule to update the connection weights. 

Wnetx; — ŷ old + • (3.2) 
” Phnj Phfij I "j Y ‘ 

where ph is the previous on label node in the cluster h and rij is a label node 

in the cluster j connecting to Ph' This heuristic learning rule states that the 

weight of the connection Wp̂ n,- that exists between ph and Uj is incremented 

by one if rij is on, otherwise it remains unchanged. 

After that, another cluster is removed from the list JT, and the above process 

is repeated. The convergence procedure terminates when the list T becomes 

empty. -

As the input of a label node represents the number of weighted conflicts 

between this label node and the other on label nodes, the label node turned on 

by the above convergence procedure in each cluster represents a value assigned 

to the corresponding variable with the least number of weighted constraint 

violations. Clusters are appended to the list JT if and only if its on label node 

connecting to kh in a convergence step. Therefore, an empty list T at the 

end of a convergence step implies all on label nodes receive a zero input. A 

solution is found if all inputs of the on label nodes are zero. The overall PSS 

algorithm is shown in Figure 3.2. 

Definition 3.1 A convergence step is one execution of the codes from line 11 

to line 28 in Figure 3.2. ‘ 

Lemma 3.1 Denote / (pt) = is connected top^ where A' 0 is 

a set of clusters, Pi is the on label node in cluster i. Let U be the set of all 

clusters in the network, and Ujr be the set of clusters in the list T . 

At the end of a convergence step (Figure 3.2 line 28), 

kmPi-iir�二〜⑶ 
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Proof. W e use Mathematical Induction to prove the lemma. Let U、;、be the 

set of clusters in the list T at the nth convergence step. Before starting the 

convergence procedure of PSS, the list JF is initialized by appending all clusters 

in an arbitrary order (Figure 3.2 line 11). At the first convergence step, the 

list J^ is not empty, and one cluster h must be removed from the list T (Figure 

3.2 lines 13-15). Therefore, U -K》、={/i}. There are three cases afterward: 

1. Iph = Q (The condition of line 16 in Figure 3.2 is false). 

Therefore, I{pf,,{h}) is also zero as no other clusters in {/i} with their on 

label nodes connected to ph- The lemma holds in this case. 

2. Ip̂  — 0 (The condition of line 16 in Figure 3.2 is true) and = 0 

(Figure 3.2 lines 17-18). 

Therefore, I{kh,{h}) is also zero as no other clusters in {h} with their on 

label nodes connected to kh. The lemma holds in this case. 

3. Iph — 0 (The condition of line 16 in Figure 3.2 is true) and — 0 

(Figure 3.2 lines 17-18). 

Therefore, /(fc"，{h}) is zero as no other clusters in {h} with their on label 

nodes connected to kh. The lemma holds in this case. 

As a result, the lemma holds for the first convergence step. 

Assume that the lemma holds for the rth convergence step. At the (r + l)st 

convergence step, the list ！F is not empty, and one cluster h must be removed 

from the list T (Figure 3.2 lines 13-15). Therefore, U - wjT+i) = U - U^ U 

{h} — where is a set of clusters with their on label nodes connected to 

kh. There are three cases afterward: 

1. Ip̂  = 0 (The condition of line 16 in Figure 3.2 is false). 

It means that — 0 and 尺 = 0 . Therefore, (口紅̂ —̂ /”+”) is also zero 

as iJA -l4+”）QU. 
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Since 

hp”u-u�;�=啊U-IAP 

and 

hpH.u-u'^r'') = 0. 

Therefore, 

、pi"-"ri)) = •，Vie" 一 

The lemma holds in this case. 

2. Iph ^ 0 (The condition of line 16 in Figure 3.2 is true) and = 0 

(Figure 3.2 lines 17-18). ' 

It means that I{khju) = • and = 0. Therefore, "̂(矢卜 ̂ -̂̂ ^义+”）is also zero 

as ipi - C U. Note that kh is the current on node in cluster h. 

Since 

I 一(;、=…⑶-姆、 

and 

W-4”+1)) = 0. 

Therefore, 

The lemma holds in this case. 

3. Ip̂  — 0 (The condition of line 16 in Figure 3.2 is true) and Ik̂  • 0 

(Figure 3.2 lines 17-18). 

As all clusters with their on label nodes connecting to kh are no longer in 

the set {U —破+”）(Figure 3.2 lines 19-20), becomes zero 

at line 28 of Figure 3.2. 

Since 

W 峻)) = 0’ 
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and 

Therefore, 

Since 

and 

^{kUK-uPyn) = 0. 

Therefore, 

了峻+1))二0’ • 化 " - " • T ) • 

The lemma holds in this case. 

As a result, the lemma holds for (r + l)st convergence step. 

By the principle of Mathematical Induction, the lemma holds for all conver-

gence steps. 口 

Theorem 3.1 PSS is in a solution state if the list T is empty at the end of a 

convergence step. If PSS is in a solution state, then either the list T is empty, 

or it will become empty in a finite number of convergence steps. 

Proof. W e first prove the statement: "PSS is in a solution state if the list T 

is empty at the end of a convergence step." 

Since the list T is empty at the end of a convergence step, the set Uj： is 

an empty set in L e m m a 1. By Lemma 1, all inputs of the on label nodes in 

U must be zero at the end of a convergence step. When all inputs of the on 

label nodes in all clusters are zero, no two on label nodes are connected to 

each other. This network state represents a solution state. 

W e then prove the statement: "If PSS is in a solution state, then either 

the list T is empty, or it will become empty in a finite number of convergence 

steps." 
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Since PSS is in a solution state, all inputs of the on label nodes in the 

network are zero. There are two cases for the state of the list ！F. Suppose the 

list T is empty, then the statement is trivially true. Suppose the list T is not 

empty, a cluster h must be removed from the list T in each convergence step 

(Figure 3.2 lines 13-15). As all inputs of the on label nodes are zero, nothing 

needs to be done in h and no cluster is appended to the list T (Figure 3.2, 

the condition of line 16 is false). The list ̂  will eventually become empty as 

one cluster is removed from it in each convergence step (Figure 3.2 lines 13-15) 

and the number of clusters in the list T is finite. 口 

3.1.3 An Illustrative Example 

W e show an example on the well-known A^-Queens problem to illustrate the 

execution of PSS. A/'-Queens problem is a puzzle game, which consists of plac-

ing N queens on & N x N chessboard so that no two queens attack each other. 

This puzzle game can be modeled as CSP with N variables. Each variable 

with domain {1,2,..., iV}. The 3 x N(N — l)/2 constraints state that no 

pair of queens can ever be on the same row, up-diagonal or down-diagonal. In 

this example, we use the 4-Queens problem as a demonstration (Figure 3.3). 

For clarity of presentation, we have omitted the connections between the label 

nodes in the figure. Figure 3.3(a) shows the initial network state. One label 

node in each cluster is turned on. The list contains all clusters with an arbi-

trary order initially. In the first convergence step, cluster X I is removed from 

the list. Each label node calculates its input. As the current on label node Ixi 

receives a zero input, it remains on in this convergence step (Figure 3.3(b)). 

Cluster X2 is removed in the next convergence step. Since the current on label 

node 3x2 does not receive a zero input, it must be turned off. The label node 

1x2 has the minimum input, and it is turned on in cluster X2. As the on label 

node in cluster X I is connected to 1x2, H is appended to the list (Figure 
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1 /* Initialize the network */ 

2 for each Wrmnj do 
3 Wm,nj — 1 
4 end for 
5 Let Z/̂  be a set and all clusters are in U initially 

6 while U is not empty do 
7 select and remove a cluster x from U 
8 turn on a label node in x with minimum input, 
9 breaking tie by random selection 
10 end while 
11 append all clusters to a list T in an arbitrary order 

12 /* Convergence Step */ 

13 while list T is not empty do 
14 remove and get the head cluster h, 
15 denote ph as its on label node 
16 if input of Ph — 0 ‘ 

17 turn on a label node khPh) with minimum input, 
18 breaking tie by random selection 
19 append clusters with their on label nodes connecting to kh 
20 to the list JF 
21 for all clusters j h) do 
22 denote rij as its on node 
23 if rij is connecting to Ph 
24 W p 内—Wp.n, + On. 
25 end if . 
26 end for 
27 end if 
28 end while 

Figure 3.2: The algorithm of PSS. 
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Figure 3.3: PSS: 4-Queens example. 

3.3(c)). Since the previous on label node 3x2 is connected to the on label 

node 4x3, the weight 1^3^24x3 is updated. In the next two convergence steps, 

both on label nodes of X3 and X 4 receive a zero input, and no changes occur 

in the network (Figure 3.3(d) and (e)). In the fifth convergence step, cluster 

XI is removed from the list again. The label node 3xi receives the minimum 

input (zero input) and is selected to turn on. As there are no clusters with on 

label nodes connecting to 3xi, no clusters are appended to the list. Since the 

previous on label node Ixi is connected to the on label node 1x2, the weight 

is updated. As the list becomes empty at the end of this convergence 

step, a solution is found (Figure 3.3(f)). 

3.2 Incremental Progressive Stochastic Search 

As mentioned in the previous section, PSS works on a complete assignment and 

performs a heuristic search to find a solution. In this section, we introduce 

a variant of PSS which is called incremental PSS (IPSS). IPSS selects one 

cluster at a time. One label node in the selected cluster is turned on. The aim 

of the search in IPSS is to find a consistent partial assignment. This partial 
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solution is then extended until a complete solution is obtained. The details of 

the network architecture and convergence procedure of IPSS are discussed in 

the following sections. 

3.2.1 Network Architecture 

The network architecture of IPSS is the same as that of PSS. However, the 

definition of the state of the network is refined. In PSS, a state of the network 

represents a complete assignment of values to the variables from their respec-

tive domains. A cluster without any on label node corresponds to a variable 

that has not been assigned a value. In IPSS, however, a state of the network 

represents a partial assignment of values to the variables from their respective 

domains. Therefore, any network state in which no two on label nodes connect 

to each other represents a partial solution to the CSP. 

3.2.2 Convergence Procedure 

The convergence procedure of IPSS is based on that of PSS. The network is 

initialized by setting all label nodes in every cluster to the off state. This 

network state denotes an empty assignment at the beginning. 

After the network initialization, IPSS divides the set of clusters in the 

network into two subsets. One is a subset Via of clusters, in which each cluster 

has one on label node. Another one is a subset Uu of clusters, in which' all label 

nodes in these cluster are in off state. Initially, all clusters are in the set Uu, 

and the set Ua is empty. Clusters are selected from Uu and moved to Ua one by 

one. After a cluster i is moved to the set Ua, each of the label nodes in cluster 

i calculates its input, and the label node rrii in cluster i with the minimum 

input is turned on. Ties are broken randomly. W e also maintain a list ！F to 

be used in the convergence procedure. The list T is initialized to be empty. 

Any cluster in the set Ua with its on label node connecting to rrii is appended 
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to the list T if it is not already in the list. Then we apply the convergence 

step in PSS to the set Ua until the list T becomes empty. After the list T 

becomes empty, another cluster is selected from the set Uu and moved to Ua. 

The convergence procedure in IPSS terminates when the set Uu and the list T 

are both empty. The overall IPSS algorithm is shown in Figure 3.4. 

3.2.3 An Illustrative Example 

W e use 4-Queens problem to illustrate the execution of IPSS (Figure 3.5). 

For clarity of presentation, we have omitted the connections between the label 

nodes in the figure. Initially, all label nodes in the network are in off state. 

The set Uu contains all clusters. The set Ua and the list are both empty (Figure 

3.5(a)). In Figure 3.5(b), cluster XI is selected from Uu and moved to 14a. As 

all label nodes in XI receive a zero input, random selection is made to break 

the tie. W e assume the label node l^i is turned on. Since no on label nodes 

connect to Ixi, no clusters are appended to the list. Figure 3.5(c) shows the 

next network state. Cluster X2 is selected from Uu and moved to Ua- Each 

of the label nodes calculates its input. The label nodes 3x2 and 4x2 both 

receive the minimum (zero) input, random choice is made. W e assume the 

label node 3x2 is turned on. As a consistent partial assignment is obtained, 

another cluster is selected from Uu- Suppose cluster X3 is selected from Uu, 

the label nodes 1x3，2x3 and 4x3 receive the minimum input. W e assume the 

label node 4x3 is turned on. At this time, the on label node 3x2 is connecting 

to the on label node 4x3, and so cluster X2 is appended to the list (Figure 

3.5(d)). A non-empty list at the end of each convergence step indicates that 

the network state represents an inconsistent partial assignment. Therefore, 

cluster X4： will be selected from Uu if the list becomes empty at the end of the 

convergence step. Since the list is not empty, the head cluster X2 is removed 

from the list. The current on label node 3x2 receives a non-zero input, and it 
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1 /* Initialize the network */ 
2 all label nodes in the clusters are in off state 
3 Uu = the set of all clusters 

4 24 = 0 
5 for each do 

6 Wrmrij — 1 
7 end for 
8 initialize a list T to be an empty list 
9 while Uu is not empty do 
10 select a cluster i gUu 
11 turn on a label node rrii with minimum input, • 
12 breaking tie by random selection 
13 append clusters in Ua with the on label node connecting to rui 
14 to the list J" 
15 move the cluster i from Uu to Ua 
16 /* Perform PSS to the clusters in Ua */ 
17 while list J^ is not empty do 
18 remove and get the head cluster h from the list 
19 denote ph as its on label node 
20 if input oi ph ̂  0 
21 turn on a label node kh Ph) with minimum input, 
22 breaking tie by random selection 
23 append clusters with their on label nodes connecting to kh 
24 to the list 下 
25 for all clusters j e do 
26 denote uj as its on label node 
27 if rij is connecting to ph 
28 Wp.nj — + On, • 
29 end if 
30 end for 
31 end if 
32 end while 
33 end while 

Figure 3.4: The algorithm of IPSS. 
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Figure 3.5: IPSS: 4-Queens example. ‘ 

must be turned off in this convergence step. As all other label nodes receive 

the minimum input, random selection is made. W e select 1x2 to be turned on. 

Unfortunately, the on label node Ixi is connecting to 1x25 and so cluster XI 

is appended to the list (Figure 3.5(e)). Since the previous on label node 3x2 

is connected to the on label node 4x3，the weight 1̂ 3̂ 24x3 is updated. As the 

list is still non-empty, the head cluster XI is removed from the list. The label 

node turned on this time is 3xi because it is the only label node that receives 

a zero input in cluster XI (Figure 3.5(f)). Since the previous on label node 

1x1 is connected to the on label node 1x2, the weight is updated. 

After the above two convergence steps, the list becomes empty. Therefore, the 

cluster XA is selected from Uu and moved to Via. The label node 2x4 receives 

a zero input and is selected to turn on. Since no on label nodes connect to 

2x4, no clusters are appended to the list (Figure 3.5(g)). As both Uu and the 

list are empty, a solution of 4-Queens problem is found. 
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3.3 Heuristic Cluster Selection Strategy 

W e have mentioned numerous stochastic search algorithms in Chapter 2. Dif-

ferent algorithms may use different neighborhood function to select which vari-

able should be repaired next. G S A T [27] uses a greedy strategy. A variable will 

be selected next if the change of its value gives the most improvement over 

other variables. D L M [28] uses a descent strategy which picks any variable 

that has improvement. 

PSS and IPSS both use a list T to store which cluster should be repaired 

at the next convergence step. The ordering is in a first-in-first-out manner. 

A heuristic that has been proved to improve efficiency in many cases is to 

integrate the idea of greedy variable ordering into PSS and IPSS. In each 

convergence step, a cluster with its on label node that has the maximum input 

among all on label nodes in other clusters is removed from the list T. Tie is 

broken by random selection. W e denote max-PSS and max-IPSS as variants 

of PSS and IPSS that use this greedy variable ordering respectively. A related 

heuristic called max-input ordering (MIO) for G E N E T or E G E N E T has been 

proposed in [29]. M I O dynamically arranges the clusters to be repaired in 

G E N E T or E G E N E T according to descending order of inputs for the current 

assignment. This approach shares the same idea with max-PSS to improve the 

efficiency. 

W e use 4-Queens problem to illustrate how the heuristic works, on PSS 

(Figure 3.6). For clarity of presentation, we have omitted the connections 

between the label nodes in the figure. Figure 3.6(a) shows the initial network 

state. One label node in each cluster is turned on. The list contains all 

clusters with an arbitrary order initially. In each convergence step, a cluster 

with its on label node that has the maximum input among all on label nodes 

in other clusters is removed from the list. The input of on label node in cluster 

XI, X2, X3 and X 4 are 0, 1, 1 and 0 respectively. As both cluster X2 and X 3 
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Figure 3.6: max-PSS: 4-Queens example. 

have their on label node with maximum input, one of them will be removed 

from the list. In the first convergence step, we assume that cluster X2 is 

removed from the list. Each label node in cluster X2 calculates its input. 

Since the current on label node 3x2 does not receive a zero input, it must 

be turned off. The label node 1x2 has the minimum input, and it is turned 

on in cluster X2. As the on label node in cluster X I is connected to 1x2， 

XI should appended to the list. However, cluster XI is already in the list, 

nothing needs to be done (Figure 3.6(b)). Since the previous on label node 

3x2 is connected to the on label node 4x3, the weight VK3幻4们 is updated. At 

the beginning of the second convergence step, the input of on label node in 

cluster XI, X3 and X 4 are 1’ 0 and 0 respectively. Therefore, cluster XI is 

removed from the list. The label node 2xi receives the minimum input (zero 

input) and is selected to turn on (Figure 3.6(c)). As there are no clusters 

with on label nodes connecting to 2xi, no clusters are appended to the list. 

Since the previous on label node Ixi is connected to the on label node 1x2, 

the weight Wi^^i^^ is updated. In the next two convergence steps, both on 

label nodes of X3 and X 4 receive a zero input, and no changes occur in the 

network (Figure 3.6(d) and (e)). As the list becomes empty at the end of this 
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m 
convergence step, a solution is found (Figure 3.6(e)). 
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Chapter 4 

Experiments 

In order to evaluate the efficiency of PSS and its variants, namely, IPSS, max-

PSS and max-IPSS, experiments on four sets of problems are conducted. These 

include a set of N-Queens problems, a set of permutation generation problems 

(including increasing permutation generation and random permutation gener-

ation), a set of quasigroup completion problems (including the special cases of 

Latin squares) and a set of randomly generated binary CSPs (including tight 

CSPs and phase transition CSPs). W e compare the performance of PSS and 

its variants with that of G E N E T ) [4], the most efficient implementation 

of G E N E T that we know of, and CSVC{IMF) [4], the most efficient variant 

of CSVC, 

The implementation of PSS and its variants are based on the implementa-

tion of CSVC, which encompasses all of £<SP/:(GENET), CSVJC{IMF) and 

the lazy variants in one implementation. Therefore, the comparison between 

PSS and CSVC is fair. 

All the benchmarks are performed on a Pentium4 1.4 GHz machine with 

512 M b of memory running Linux RedHat 8.0. For each problem, 100 runs 

of results are recorded. The term "steps" in the tables means the number of 

times that the clusters are considered to select a label node to turn on. All 

the timings are measured in seconds. The timing figures without brackets are 

the averages of hundred runs while the figures with brackets are the medians. 

31 
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All the timing results are the search time only. All problem instances used in 

the experiments are the same as those used in [4 • 

4.1 iV-Queens Problems 

TV-Queens problem is a puzzle game, which consists of placing N queens on 

SI N X N chessboard so that no two queens attack each other. This puzzle 

game can be modeled as a CSP with N variables. Each variable has a domain 

{1,2,..., A^}. The 3 X 7V(7V — l)/2 constraints state that no pair of queens can 

ever be on the same row, up-diagonal or down-diagonal. This set of experi-

ments consists of 5 instances: 100-queens, 125-queens, 150-queens, 175-queens 

and 200-queens. Table 4.1 shows the experimental results of PSS and its vari-

ants. The results of CSVC(GENET) and CSVC{IMF) are presented in Table 

4.2. The mean timing results are plotted in the Figure 4.1 for comparison. 

Problem PSS IPSS 
N Steps C P U time Steps C P U time 
100 119.8(117.0) 0.0082(0.0100) 125.4(122.0) 0.0088(0.0100) 
125 145.0(142.5) 0.0122(0.0100) 149.5(147.0) 0.0129(0.0100) 
150 166.7(165.0) 0.0181(0.0200) 173.2(172.0) 0.0173(0.0200) 
175 199.8(197.0) 0.0252(0.0200) 198.7(195.5) 0.0241(0.0200) 
200 221.0(218.0) 0.0311(0.0300) 223.2(220.0) 0.0312(0.0300) 

max-PSS max-IPSS 
m 126.4(122.0) 0.0084(0.0100) 122.1(118.5) 0.0071(0.0100) 
125 149.0(146.0) 0.0135(0.0100) 148.2(144.0) 0.0124(0.0100) 
150 176.0(172.0) 0.0189(0.0200) 173.1(171.0) 0.0175(0.0200) 
175 198.7(196.5) 0.0245(0.0200) 200.0(197.0) 0.0242(0.0200) 
200 226.5(223.5) 0.0332(0.0300) 222.7(220.0) 0.0310(0.0300) 

Table 4.1: PSS and its variants on iV-Queens problems 

As shown in Tables 4.1 and 4.2, PSS and all its variants are more efficient 

than CSVC(GE]^ET) in all cases and CSVC(IMF) in most cases (except 100-

queens). In general, the performance of PSS and its variants are almost the 

same, which is about 55% of the time taken by CSVC{GENET). From the data 

in Table 4.2, it can be concluded that £<S:D£(GENET) and CSVC(IMF) do 
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N CSVCjGENET) 
Iteration Repairs Learns CPU time 

100 42.9(30.5) 93.6(89.5) 19.6(13.5) 0.0132(0.0100) 
125 39.5(30.0) 109.4(105.0) 18.0(13.0) 0.0218(0.0200) 
150 37.3(30.5) 125.1(124.0) 16.7(13.5) 0.0316(0.0300) 
175 43.1(35.0) 144.5(141.0) 19.6(16.0) 0.0436(0.0400) 
200 44.8(36.0) 159.5(156.5) 20.3(16.0) 0.0559(0.0600) 

~~N CSVCilMP) 
100 23.2(17.5)54.0(49.0)23.2(17.5) 0.0078(0.0100) 
125 33.3(24.5) 72.9(63.5) 33.3(24.5) 0.0153(0.0150) 
150 27.6(19.0) 72.3(63.5) 27.6(19.0) 0.0206(0.0200) 
175 33.5(23.0) 85.8(75.5) 33.5(23.0) 0.0290(0.0300) 

200 34.1(24.0) 91.6(83.5) 34.1(24.0) 0.0377(0.0400) 

Table 4.2: £5P£(GENET) and CSVC{IMF) on A^-queens problems 
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Figure 4.1: The mean time results on A^-queens 
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learning a number of times to escape from local minima. Recall that learning 

is a process that updates the weights of the connections, the corresponding 

constraints of which are violated. W e note that learning is expensive in the 

CSVC implementations. For each learning in CSVC implementations, the 

weights of several connections are updated. However, PSS and all its variants 

also update the weights of the connections at the end of each convergence step. 

If we compare the number of weights updated of CSVC implementations with 

that of PSS and its variants, we conclude that these numbers are almost the 

same in all problem instances. Therefore, learning is not the factor that affects 

the performance in this set of experiments. 

To explain why PSS and its variants have a better performance than 

CSVCiGENET) and CSVC{IMF), we analyzed search processes in the ex-

periments. From Table 4.1 and 4.2, CSVC{GEmT) and £5P/:(IMP) use 

fewer repairs than PSS and all its variants. However, CSVC{GENET) and 

CSVCilMP) take more steps to find a solution. The number of steps taken in 

CSVC{GENET) and CSVC{IMP) is equal to the number of variables times 

the number of iterations. For example, the mean number of steps taken in 

CSVC{GE^ET) to solve 200-queens is 8,960 (200 x 44.8). Among these steps, 

the clusters are actually repaired in only 159.5 steps and nothing really needs 

to be done in all other steps. Worse, these repairs have little effect on the 

subsequent search process. Figures 4.2 - 4.10 show the numbers of violations 

against total inputs or objective values of PSS, max-PSS, IPSS, max-IPSS, 

CSVC(GENET) and CSVC(IMF) on 100-queens problem. Figures 4.11 -

4.19 show the numbers of violations against total inputs or objective values of 

PSS, max-PSS, IPSS, max-IPSS, £<SP£(GENET) and CSVC{IMF) on 200-

queens problem. W e can see that PSS and max-PSS quickly rush through 

large plateaus and the ordering to repair variables (the list JT) provides excel-

lent direction towards solutions. For IPSS and max-IPSS, the partial solutions 

found can be extended easily. This is the reason why PSS and its variants have 
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better timing results than that of £ O T £ ( G E N E T ) and CSVC{IMF). 
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Figure 4.14: Numbers of violations and total inputs in each step of PSS and 
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î -
•> S , 

I 4 . " 4 . 

Z 
3 1 3 1 • 

： L ^ ： ； ^ ： 
0- 1 1 1 1 . r-J V 0-1 1 1 ‘ ‘ ^ 

0 50 100 150 200 250 300 0 50 100 150 200 250 300 
Number of steps Number of steps 

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step 

lOH ‘ ‘ ‘ ‘ ‘ 10-1 ‘ ‘ ‘ ‘ 

9- 0-

a- 8-

7- - 7-
Vi 

I .36 
•i §• 

5- Z 5 

I -澤 
Z 

3- 1 1 • 3- > 1 . 

2- 1~ 2- >~I -

1- ^ 1 1- * 

0-1 1 r 1 1 1 ^ \- 0-1 1 ‘ ‘ ‘ ‘ * 
0 50 100 150 200 250 300 0 50 100 150 200 250 300 

Number of steps Number of steps 
(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step 

Figure 4.17: Numbers of violations and total inputs in each step of PSS and 

max-PSS on 200-Queens problem (long run-time case) 
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Figure 4.18: Numbers of violations and total inputs in each step of IPSS and 
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case) 



Chapter 4 Experiments 53 

4.2 Permutation Generation Problems 

The permutation generation problem is a combinatorial theory problem that 

construct a permutation p of integers 1 to n fulfilling conditions of monotonies 

and advances. The vector of monotonies m of size n — 1 is defined as 

j 1 if Pi+i > Pi , , . . 
rrii = < (4.1) 

I 0 otherwise 

for all 1 < i < n — 1. The vector of advances a of size n — 1 is defined as 
f 

1 if pj Pi + 1 A Pi n for all 1 < j < z — 1 
fli = < (4.2) 

0 if pj Pi + 1 for all z + 1 < j < n 
\ 

for all 1 < z < n — 1. 

This problem can be modeled as a CSP with n variables. Each variable 

has a domain {1,2,...�n}. The constraints 

工 i — Xj 

for all i — j and I < i,j < n restrict all variables take different values. The 

constraints 

Xi+i > Xi, if rrii = 1, 

ooi+i < Xi, if rrii = 0, 

for all 1 < 2 < n — 1 state the condition of monotonies m. The condition of 

advances a is stated by the constraints 
— :ri + 1 A iCi n, VI < j < z - 1, if â  = 1, • 

Xj — âi + 1, Vz + 1 < j < n, if â  = 0’ 

for all 1 < z < n - 1. 

Two types of permutation generation problems are used in this set of ex-

periments. The first type problem is a set of increasing permutation problems. 

The permutation required is a sequential permutation of integers from 1 to 

n. The second type problem is a set of permutation problems in which the 

monotonies and advances are randomly generated. 
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4.2.1 Increasing Permutation Problems 

Table 4.3 shows the experimental results of PSS and its variants on the set 

of increasing permutation problems, while Table 4.4 shows the experimental 

results of CSVC(GENET) and CSVC{IMF) on the same set of problems. 

The mean timing results for increasing permutation problems are showed in 

the Figure 4.20 for comparison. 

"prob lem PSS IPSS 
n Steps xlO^ C P U time Steps xlO^ C P U time 
10 0.645(0.645) 0.0000(0.0000) 1.103(1.103) 0.0000(0.0000) 
20 14.71(14.16) 0.0422(0.0400) 13.67(14.14) 0.0405(0.0400) 
30 98.37(97.51) 0.4417(0.4400) 110.9(105.6) 0.4816(0.4600) 
40 399.3(398.4) 2.5867(2.5800) 393.9(387.1) 2.5104(2.4650) 
50 1123(1058) 9.7123(9.1350) 1164(1120) 9.9537(9.5700) 

max-PSS max-IPSS 
10 0.467(0.231)0.0000(0.0000)0.572(0.572)0.0000(0.0000) 
20 17.23(14.32) 0.0517(0.0500) 24.11(25.08) 0.0701(0.0750) 
30 140.4(147.5) 0.6664(0.6950) 183.6(193.7) 0.8450(0.8900) 
40 590.0(599.2) 4.0994(4.1550) 812.6(821.6) 5.5212(5.5900) 
50 1625(1648) 15.017(15.205) 2352(2382) 21.524(21.785) 

Table 4.3: PSS and its variants on increasing permutation problems 

Problem CSVC{GENET) 
n Iteration xlO^Repairs xlO^Learns xlO^ C P U time 
10 0.361(0.365) 0.259(0.262) 0.180(0.182) 0.0000(0.0000) 
20 11.98(11.96) 8.746(8.675) 5.997(5.980) 0.0348(0.0300) 
30 51.42(52.68) 42.15(43.08) 25.70(26.32) 0.2332(0.2400) 
40 160.0(153.6) 136.7(134.0) 80.03(76.81) 1.0025(0.9900) 
50 390.6(385.3) 343.6(341.2) 195.5(192.8) 3.1528(3.1050) 

Problem CSVC{mP) 
n Iteration xlO^Repairs xlO^Learns xlO^ C P U time 
10 0.804(0.924) 0.926(1.040) 0.804(0.924) 0.0000(0.0000) 
20 6.671(5.447) 8.641(7.308) 6.671(5.447) 0.0244(0.0200) 
30 24.86(24.25) 35.26(35.62) 24.86(24.25) 0.1512(0.1600) 
40 77.19(80.63) 114.8(128.1) 77.19(80.63) 0.6738(0.7600) 
50 196.8(199.0) 300.0(326.6) 196.8(199.0) 2.2416(2.4450) 

Table 4.4: CSVC{GENET) and CSVC{IMP) on increasing permutation prob-
lems 
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Figure 4.20: The mean time results on increasing permutation problems 

The increasing permutation problem is a special case of permutation gener-

ation problem: it has only one solution. In Table 4.4, CSVC(GE]^ET) needs 

around 390,600 iterations and 195,500 learning to solve the increasing per-

mutation problem with n — 50. It means that for every two iterations, one 

learning is required to escape from local minimum. Besides, the increasing 

permutation problem has another property that makes it hard for local search 

solvers. There exist a large number of assignments in which the number of vi-

olations equals to only 1 even though the assignment is "very wrong". W e use 

an example to illustrate this. Assume that n = 5 and the variable assignment 

is xi =2^X2 = 3, X3 = 4,a;4 = 5, x^ = 1. All variables take the wrong values. 

However, only one constraint {X4 < X5) is violated. 

The timing results indicate that the performance of PSS and its variants 

are much worse than £ O T £ ( G E N E T ) and CSVC{IMP) in this problem. W e 

record the numbers of violations against total inputs or objective values of 
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Figure 4.21: Numbers of violations and total inputs in each step of PSS and 
max-PSS on increasing permutation problem with n = 10 (average run-time 
case) 
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Figure 4.23: Numbers of violations and objective values in each step of 

(GENET) and CSVC{IMF) on increasing permutation problem with 
n = 10 (average run-time case) 
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Figure 4.24: Numbers of violations and total inputs in each step of PSS and 

max-PSS on increasing permutation problem with n = 10 (short run-time 

case) 
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Figure 4.25: Numbers of violations and total inputs in each step of IPSS and 

max-IPSS on increasing permutation problem with n = 10 (short run-time 

case) 
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Figure 4.26: Numbers of violations and objective values in each step of 
CSVC{GENET) and CSVC{IMF) on increasing permutation problem with 
n = 10 (short run-time case) 
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Figure 4.27: Numbers of violations and total inputs in each step of PSS and 
max-PSS on increasing permutation problem with n = 10 (long run-time case) 
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Figure 4.28: Numbers of violations and total inputs in each step of IPSS and 
max-IPSS on increasing permutation problem with n = 10 (long run-time case) 
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Figure 4.29: Numbers of violations and objective values in each step of 
CSVC(GENET) and CSVC{1MF) on increasing permutation problem with 
n = 10 (long run-time case) 
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Figure 4.30: Numbers of violations and total inputs in each step of PSS and 
max-PSS on increasing permutation problem with n = 20 (average run-time 
case) 
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Figure 4.31: Numbers of violations and total inputs in each step of IPSS and 
max-IPSS on increasing permutation problem with n = 20 (average run-time 
case) 



Chapter 4 Experiments 67 

40 j ‘ ‘ ‘ ‘ ‘ ‘ ‘ r -10 j ‘ ‘ ‘ ‘ ‘ 1 ^ ― • 

35- 35-

30 - 30-

.2 25- 25-

I I 

I ^ 
§ 15- 15-

1� 1�11 j 111!」丨1 iiiitiii4ii h 

iojuuiiu F f r r M ^ I , ‘ ‘ 1 
, 1 1 1 1 1 1~L 0-1 1 . 1 1 1 1 1~L 

0 0.5 1 1,5 2 2.5 3 3.5 0 0.5 1 1 5 2 2 5 3 3.5 
Number of steps xio' Number of steps xio» 

(a) >C«SP£(GENET): Violation vs. Step (b) £5P£(GENET): Objective value vs. Step 

40-1 ‘ ‘ ‘ 1 ‘ ‘ ‘——r 40-1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 

35- 35-

30- 30-

1 25- 25-
(0 « 
i I 
•S 20- • r w -

I I 
I 15- 15-

10 liikiiiiiiikii 
imnrkyUiu： r'™ ' ' , 

0-j 1 1 1 1 1 1 1 1 L 0-1 1 , i , , , , , L 
0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2 5 3 3 5 

Number of steps xio' Number of steps kio， 

(c) £SVC(IMP): Violation vs. Step (d) JCSVJC(IMP): Objective value vs. Step 

Figure 4.32: Numbers of violations and objective values in each step 
£<SP£(GENET) and JCSV£(1MP) on increasing permutation problem with 
n = 20 (average run-time case) 
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Figure 4.33: Numbers of violations and total inputs in each step of PSS and 
max-PSS on increasing permutation problem with n = 20 (short run-time 
case) 
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Figure 4.34: Numbers of violations and total inputs in each step of IPSS and 
max-IPSS on increasing permutation problem with n = 20 (short run-time 
case) 
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Figure 4.35: Numbers of violations and objective values in each step of 
CSVC(GEmT) and CSVC{IMF) on increasing permutation problem with 
n = 20 (short run-time case) 
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Figure 4.36: Numbers of violations and total inputs in each step of PSS and 
max-PSS on increasing permutation problem with n = 20 (long run-time case) 
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Figure 4.37: Numbers of violations and total inputs in each step of IPSS and 

max-IPSS on increasing permutation problem with n = 20 (long run-time case) 
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PSS, max-PSS, IPSS, max-IPSS, CSVC{GENET) and CSVC{IMF) on in- 一 

creasing permutation problem with n = 1 0 in Figures 4 . 2 1 - 4 . 2 9 . The n u m -

bers of violations against total inputs or objective values of PSS, max-PSS, 

IPSS, max-IPSS, CSVC{GENET) and CSVC{IMF) on increasing permuta-

tion problem with n = 20 are shown in Figures 4.30 - 4.38. We first recall 

that there exists only one solution in an increasing permutation problem. Fig-

ures 4 . 2 3 ( a ) , 4 . 2 6 ( a ) and 4 . 2 9 ( a ) show the number of violations in each step of 

CSVC{GENET) on increasing permutation problem with n = 1 0 in average 

r un- t i m e case, short run-time case and long run-time case respectively. Fig-

ures 4 . 3 2 ( a ) , 4 . 3 5 ( a ) and 4 . 3 8 ( a ) show the number of violations in each step 

of CSVC(GENET) on increasing permutation problem with n = 2 0 in av-

erage r un- t i m e case, short r u n - t i m e case and long run-time case respectively. 
Prom the figures, there exists a large number of valley-like plateaus in the 

search space. (GENET) carefully performs learning and modifies the 

landscape of the search space w h e n it traverses these valleys. This prudent ap-

proach helps it reach a solution quickly. Although CSVC(GE^ET) uses more 

steps to solve the increasing permutation p rob lem, it repairs fewer clusters to 

find a solution. On the contrary, PSS uses a lot more steps to traverse the 

plateaus, and it pays less attention to the landscape when it rushes through 

the plateaus (Figures 4.21(a), 4.24(a), 4.27(a), 4.30(a), 4.33(a) and 4.36(a)). 

CSVC{IMF) performs more learning than CSVC{GENET). This approach 

quickly modifies the landscape of the search space and increases the contrast 

between the landscape of the solutions and that of the non-solutions. There-

fore, the timing results of CSVC{IMF) outperforms /:SVC(GENET), PSS 

and its variants. “ 

Figures 4 . 2 2 ( a ) , 4 . 2 5 ( a ) and 4 . 2 8 ( a ) show the number of violations in each 

step of IPSS on increasing permutation problem with n = 10 in average run-

time case, short r u n- t i m e case and long run-time case respectively. Figures 

4 . 3 1 ( a ) , 4 . 3 4 ( a ) and 4 . 3 7 ( a ) show the number of violations in each step of 
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IPSS on increasing permutation problem with n = 20 in average run-time 

case, short run-time case and long run-time case respectively. For IPSS, the 

situation is worse as the first several hundreds steps are basically wasted: the 

partial solutions found are not usually a subset of the final solution. Assume 

that n = 5 and the current partial solution is Xi 二 2，;r2 = 3,工3 = 4. This 

partial solution can be extended by assigning 5 to variable 工4. However, all 

existing variables take the wrong values with respect to the complete solution. 

The timing results of IPSS are hence worse than that of PSS because IPSS 

spends time on doing those futile steps. The cluster selection heuristics actually 

makes the situation worse, as the search is directed to rough areas. 

4.2.2 Random Permutation Generation Problems 

The timing results of PSS and its variants on random permutation genera-

tion problems are showed in Table 4.5. Table 4.6 shows the timing results of 

CSVC{GENET) and CSVC{IMF) on the same set of problems. Figure 4.39 

shows the mean time results of all implementations on random permutation 

generation problems. Problems in this set are easy for CSVC implementations 

and PSS implementations. All problem instances are solved almost immedi-

ately. PSS and its variants are slightly more efficient than CSVC(GENET) 

and CSVC(IMF) for this set of problems. The difference is more significant 

when the problem size grows larger and the number of solutions increases. 

Figures 4.40 - 4.48 show the numbers of violations against total inputs 

or objective values of PSS, max-PSS, IPSS, max-IPSS, /:5P/:(GENET) and 

CST>C{IMF) on random permutation generation problem with n = 50. Fig-

ures 4.49 - 4.57 show the numbers of violations against total inputs or objective 

values of PSS, max-PSS, IPSS, max-IPSS, CSVC(GE^ET) and CSVC{IMF) 

on random permutation generation problem with n = 100. In the figures about 

>COT£(GENET), we can see that CSVC{GENET) carefully performs learning 
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" P ^ e m PSS IPSS 
n S t ^ C P U time Steps C P U time 
50 87.8(83.0) 0.0029(0.0000) 85.3(83.0) 0.0025(0.0000) 
60 127.5(111.0) 0.0053(0.0100) 136.5(119.0) 0.0054(0.0100) 
70 151.7(141.0) 0.0079(0.0100) 156.2(143.5) 0.0071(0.0100) 
80 134.4(126.5) 0.0082(0.0100) 132.7(126.0) 0.0054(0.0100) 
90 152.6(146.5) 0.0097(0.0100) 173.6(162.0) 0.0102(0.0100) 
100 144.4(142.0) 0.0098(0.0100) 153.0(150.0) 0.0094(0.0100) 

max-PSS max-IPSS 
^ 103.5(105.0) 0.0030(0.0000)102.3(95.5)0.0027(0.0000) 
60 137.3(122.0) 0.0054(0.0100) 129.6(110.0) 0.0041(0.0000) 
70 160.2(146.5) 0.0088(0.0100) 155.8(147.0) 0.0064(0.0100) 
80 140.8(137.5) 0.0073(0.0100) 129.4(127.5) 0.0055(0.0100) 
90 160.1(155.5) 0.0099(0.0100) 164.9(157.0) 0.0090(0.0100) 
100 155.4(153.0) 0.0101(0.0100) 155.4(151.0) 0.0098(0.0100) 

Table 4.5: PSS and its variants on random permutation generation problems 

"Problem CSVCjGElSlET) 
n Iteration Repairs Learns C P U t i m e 
50 35.6(23.0) 62.1(55.0) 16.1(10.0) 0.0040(0.0000) 
60 76.1(67.5) 96.7(88.5) 36.2(32.0) 0.0060(0.0100) 
70 122.8(63.5) 142.1(114.0) 58.6(29.0) 0.0088(0.0100) 
80 132.7(59.0) 146.7(107.0) 64.0(27.0) 0.0114(0.0100) 
90 107.3(57.5) 141.7(117.5) 51.4(27.0) 0.0132(0.0100) 
100 64.4(40.0) 123.1(109.5) 29.7(18.0) 0.0134(0.0100) 

—Problem CSVCjlMP) — 
n Iteration Repairs Learns C P U t i m e 
50 21.5(16.0) 50.1(48.0) 21.5(16.0) 0.0030(0.0000). 
60 35.9(26.0) 77.3(69.0) 35.9(26.0) 0.0040(0.0000) 
70 62.2(52.5) 155.1(147.0) 62.2(52.5) 0.0092(0.0100) 
80 68.4(46.5) 133.9(106.5) 68.4(46.5) 0.0092(0.0100) 
90 49.1(31.5) 130.5(114.0) 49.1(31.5) 0.0109(0.0100) 
100 32.8(23.5) 114.7(108.0) 32.8(23.5) 0.0142(0.0100) 

Table 4.6: CSVC{GENET) and CST>C{IMP) on random permutation gener-
ation problems 
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Figure 4.39: The mean time results on random permutation generation prob-

lems 

and modifies the landscape of the search space when it traverses the plateaus. 

This time the prudent approach reduces the search speed as there exist many 

solutions in the search space. The progressive approach used in PSS quickly 

traverses the plateaus and reaches the solution. This set of experiments illus-

trates the advantage of progressive approach in some benchmarking problems. 

The partial solutions found by IPSS can be extended easily. This further con-

firms that there are many solutions in this set of problem instances. 
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Figure 4.40: Numbers of violations and total inputs in each step of PSS and 

max-PSS on permutation generation problem with n 二 50 (average run-time 

case) 
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Figure 4.41: Numbers of violations and total inputs in each step of IPSS and 

max-IPSS on permutation generation problem with n 二 50 (average run-time 

case) 
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Figure 4.42: Numbers of violations and objective values in each step of 

CSVC{GENET) and CSVC{IMF) on permutation generation problem with 
n = 50 (average run-time case) 
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Figure 4.43: Numbers of violations and total inputs in each step of PSS and 

max-PSS on permutation generation problem with n = 50 (short run-time 

case) 
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Figure 4.44: Numbers of violations and total inputs in each step of IPSS and 
max-IPSS on permutation generation problem with n = 50 (short run-time 

case) 
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Figure 4.45: Numbers of violations and objective values in each step 

CSVC{GENET) and CSVC{IMF) on permutation generation problem with 
n = 50 (short run-time case) 
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Figure 4.46: Numbers of violations and total inputs in each step of PSS and 
max-PSS on permutation generation problem with n = 50 (long run-time case) 
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Figure 4.47: Numbers of violations and total inputs in each step of IPSS and 

max-IPSS on permutation generation problem with n = 50 (long run-time 

case) 
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Figure 4.48: Numbers of violations and objective values in each step of 

£ 5 P £ ( G E N E T ) and CSVC(IMP) on permutation generation problem with 
n = 50 (long run-time case) 
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Figure 4.49: Numbers of violations and total inputs in each step of PSS and 
max-PSS on permutation generation problem with n = 100 (average run-time 
case) . 
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Figure 4.50: Numbers of violations and total inputs in each step of IPSS and 
max-IPSS on permutation generation problem with n = 100 (average run-time 
case) -
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Figure 4.51: Numbers of violations and objective values/total inputs in each 
step CSVCiGENET) and CSVC{IMF) on permutation generation problem 
with n = 100 (average run-time case) 
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Figure 4.52: Numbers of violations and total inputs in each step of PSS and 

max-PSS on permutation generation problem with n = 100 (short run-time 
case) . 



Chapter 4 Experiments 91 

30H ‘ ‘ ‘ ‘ 1 3 0 i ‘ 

25- 25 

« 20- . 20. 
0 

1 t 

E 

z 10- 10-
5- - S-

J * ft . * ninnnAwnn l oJ » A . i ninAHMm_, . 
0 50 100 150 200 250 0 50 100 150 200 250 

Number of steps Number of steps 

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step 

30H ‘ ‘ ‘ ‘ [“ 30-1 ‘ ‘ ‘ ‘ 

25- 25-

W 20 - 20. • 

I 
1 ^ 

E 
2 10- U)-

5- - 5-

oi t(mr\ . . i oi On— tptmn——, 
0 so too 150 200 250 0 50 100 150 200 250 

Number of steps Number of steps 

(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step 

Figure 4.53: Numbers of violations and total inputs in each step of IPSS and 

max-IPSS on permutation generation problem with n = 100 (short run-time 
case) 
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Figure 4.54: Numbers of violations and objective values in each step 
£5P>C(GENET) and CSVjC(IMF) on permutation generation problem with 
n = 100 (short run-time case) 
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Figure 4.55: Numbers of violations and total inputs in each step of PSS and 

max-PSS on permutation generation problem with n = 100 (long run-time 
case) 
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Figure 4.56: Numbers of violations and total inputs in each step of IPSS and 

max-IPSS on permutation generation problem with n = 100 (long run-time 
case) 
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Figure 4.57: Numbers of violations and objective values in each step of 

jCSVjC(GE]S!ET) and £<SP£(IMP) on permutation generation problem with 

n 二 100 (long run-time case) 



Chapter 4 Experiments 96 

4.3 Latin Squares and Quasigroup Completion 

Problems 

A Latin square of order N is N x N table of N symbols in which every 

symbol occurs exactly once in each row and column of the table. An incomplete 

Latin square of order A M s a partially filled Latin square of order N. The 

quasigroup completion problem (QCP) [3] is a highly structured problem. The 

Q C P is the problem that determines if the partial Latin square can be filled 

to be a complete Latin square. 

A Latin square of order N can be modeled as a CSP with PP variables. 

Each variable represents one cell in the N x N table and has a domain 

{1,2,..., A^}. The constraints state that no value occurs twice in a row or 

a column. A Q C P can be modeled as a CSP that is similar to the modeling 

of Latin square except that the filled variables have their domains fixed to the 

pre-assigned value. Two sets of problems are used in this set of experiments. 

The first set of experiments consists of six instances of Latin square problems 

with orders ranging from iV 二 10 to iV = 35 in steps of 5. The second set of 

experiments consists of six instances of quasigroup completion problems with 

orders ranging from = 15 to •/V 二 20. 

4.3.1 Latin Square Problems 

Table 4.7 shows the results of PSS and its variants on the set of Latin square 

problems. W e give the results of CSVC(GENET) and CSVJC(IMP) of the 

same problems in Table 4.8 for comparison. The mean timing results of all 

implementations are shown in Figure 4.58. Prom the timing figures, CSVC 

(GENET) has a better performance than PSS. £5P£(IMP) has a better tim-

ing results than PSS, max-PSS and CSVC (GENET). IPSS and max-IPSS 

outperform the original PSS and also CSVC implementations. 
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Problem PSS IPSS 
N S t ^ C P U time Steps C P U time~~ 
10 149.7(120.0) 0.0000(0.0000) 112.6(119.0) 0.0000(0.0000) 
15 430.3(396.0) 0.0046(0.0000) 270.9(274.0) 0.0017(0.0000) 
20 1008(965.0) 0.0134(0.0100) 510.5(503.0) 0.0040(0.0000) 
25 1716(1546) 0.0377(0.0400) 796.6(790.0) 0.0136(0.0100) 
30 2667(2524) 0.0728(0.0700) 1160(1151) 0.0227(0.0200) 
35 3706(3246) 0.1227(0.1100) 1586(1579) 0.0368(0.0400) 

max-PSS max-IPSS 
10 121.6(138.0) 0.0000(0.0000) 123.7(124.0) 0.0000(0.0000) 
15 349.6(312.0) 0.0029(0.0000) 273.8(281.0) 0.0030(0.0000) 
20 649.8(641.0) 0.0092(0.0100) 502.1(501.0) 0.0060(0.0100) 
25 1090(1070) 0.0245(0.0200) 796.6(785.0) 0.0154(0.0200) 
30 1601(1578) 0.0445(0.0400) 1140(1134) 0.0255(0.0300) 
35 2250(2189) 0.0740(0.0700) 1589(1587) 0.0451(0.0400) 

Table 4.7: PSS and its variants on Latin square problems 

"Problem CSVC(GENET) 
N Iteration Repairs Learns C P U t i m e 
10 46.3(49.0) 134.6(133.0) 19.2(20.0) 0.0001(0.0000) 
15 65.6(36.0) 227.5(244.0) 27.6(14.0) 0.0042(0.0000) 
20 100.9(94.0) 535.8(520.0) 43.1(40.0) 0.0121(0.0100) 
25 196.2(163.5) 955.0(928.5) 88.4(71.0) 0.0324(0.0300) 
30 241.8(190.0) 1393(1332) 109.4(84.0) 0.0587(0.0600) 
35 275.8(221.0) 1896(1838) 124.6(97.0) 0.0957(0.0900) 

Problem CSVCjlMP) 
N Iteration Repairs Learns C P U time 
10 32.3(7.00) 86.69(23.00) 32.3(7.00) 0.0000(0.0000) 
15 27.0(25.0) 138.5(131.0) 27.0(25.0) 0.0031(0.0000) 
20 55.5(33.0) 302.8(263.0) 55.5(33.0) 0.0077(0.0100) 
25 71.7(55.0) 508.5(510.0) 71.7(55.0) 0.0202(0.0200) 
30 72.6(68.5) 754.3(787.5) 72.6(68.5) 0.0355(0.0400) 
35 116.0(96.0) 1201(1170) 116.0(96.0) 0.0654(0.0600) 

Table 4.8: £<SX>£(GENET) and CSVC{IMF) on Latin square problems 
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The timing results show that IPSS has a better performance than PSS. Fig-

ures 4.59 - 4.67 show the numbers of violations against total inputs or objective 

values of PSS, max-PSS, IPSS, max-IPSS, CSVC{GEMT) and CSVC{MF) 

on Latin square of order 10. Figures 4.68 - 4.76 show the numbers of violations 

against total inputs or objective values of PSS, max-PSS, IPSS, max-IPSS, 

£<SP£(GENET) and CSVC(IMF) on Latin square of order 35. In Figures 

4.60(a), 4.63(a), 4.66(a), 4.69(a), 4.72(a) and 4.75(a), the partial solutions 

found by IPSS can be easily extended: only several steps are required to incor-

porate a new variable. W e note that the points with zero number of violations 

represent the partial solutions. Moreover, IPSS always keeps the number of 

violations to extremely small values (typically 1), in contrast to that in the 

original PSS, which can be a dozen or two (Figures 4.59(a), 4.62(a), 4.65(a), 

4.68(a), 4.71(a) and 4.74(a)). This experiment demonstrates the advantage of 

using incremental search to solve this kind of problem. On the other hand, 

max-PSS much improves on PSS in solving Latin square problems. Analysis 

of traces of execution shows that the cluster selection heuristics used helps 

decreasing the number of violations in a fast rate (Figures 4.59(c), 4.62(c), 

4.65(c), 4.68(c), 4.71(c) and 4.74(c)). W e note that max-IPSS has almost the 

same performance as IPSS. Prom Table 4.7, max-IPSS requires a little bit more 

time than IPSS to solve the problems. The reason is that max-IPSS needs time 

to select the suitable cluster in the list T for repairing. 

From the tables, we can see that the number of repairs in £<SP£(GENET) 

is nearly the same as that of IPSS, max-IPSS and max-PSS. However, the 

number of steps taken in CST>C{GENET) is much more. This is the reason 

that all variants of PSS outperform (GENET). Although £5P£(IMP) 

uses fewer repairs than IPSS, max-IPSS and max-PSS, it takes more steps to 

find the solution. That makes all variants of PSS outperform £<SD£(IMP). 
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Figure 4.71: Numbers of violations and total inputs in each step of PSS and 

max-PSS on Latin square problem with TV = 35 (short run-time case) 
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Figure 4.72: Numbers of violations and total inputs in each step of IPSS and 
max-IPSS on Latin square problem with A^ = 35 (short run-time case) 
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Figure 4.74: Numbers of violations and total inputs in each step of PSS and 

max-PSS on Latin square problem with N = 35 (long run-time case) 
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Figure 4.75: Numbers of violations and total inputs in each step of IPSS and 
max-IPSS on Latin square problem with N = 35 (long run-time case) 
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4.3.2 Quasigroup Completion Problems 

The instances of Q C P used in this set of experiments are randomly generated 

instances used in [4], which are believed to be in phase transition state, i.e., 

roughly around 42% of the cells have pre-assigned values [3 . 

Table 4.9 shows the results of PSS and its variants on the set of QCPs. W e 

give the results of CSVC{GENET) and CSVC{IMF) of the same problems in 

Table 4.10 for comparison. From the tables, the timing results indicate that 

the performance of PSS and its variants are not as good as £<SX>£(GENET) 

and i2tSP£(IMP) in QCPs. The mean timing results of solving QCPs are 

shown in Figure 4.77. 

Problem P ^ IPSS 
N Steps xlO^ C P U time Steps xlO^ C P U time 
15 41.07(40.19) 0.1949(0.1900) 66.42(68.35) 0.2871(0.2900) 
16 68.65(67.60) 0.3795(0.3750) 91.07(92.92) 0.4716(0.4800) 
17 113.6(111.9) 0.7173(0.7100) 178.4(184.9) 1.0432(1.0800) 
18 166.5(166.9) 1.1692(1.1750) 136.5(132.4) 0.8842(0.8600) 
19 302.1(301.2) 2.3302(2.3400) 507.6(486.6) 3.6415(3.5350) 
20 426.1(431.3) 3.7098(3.7550) 497.8(513.6) 4.0663(4.1900) 

— max-PSS max-IPSS 
15 10.44(0.954) 0.0657(0.0600) 24.68(25.54) 0.1040(0.1100) 
16 18.68(16.79) 0.1225(0.1200) 27.68(26.48) 0.1366(0.1300) 
17 26.10(26.01) 0.1857(0.1850) 68.55(65.46) 0.3436(0.3300) 
18 26.47(35.50) 0.2787(0.2800) 46.98(45.88) 0.2788(0.2800) 
19 59.64(58.68) 0.4669(0.4650) 125.1(120.4) 0.7454(0.7300) 
20 60.71(59.60) 0.5447(0.5400) 98.54(99.57) 0.6913(0.7000) 

Table 4.9: PSS and its variants on quasigroup completion problems 

Figures 4.78 - 4.86 show the numbers of violations against total inputs 

or objective values of PSS, max-PSS, IPSS, max-IPSS, CSVCiGENET) and 

CSVC{IMF) on Q C P of order 15. Figures 4.87 - 4.95 show the numbers of 

violations against total inputs or objective values of PSS, max-PSS, IPSS, 

max-IPSS, CSVC{GENET) and CSVC{IMF) on Q C P of order 16. From 

the figures about £OT£(GENET), we conclude that there exist many local 

minima in the search space. CSVC{GENET) does learning a lot of times to 
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Problem £5PZ(GENET) 
N Iteration xlO^Repairs xlO^Learns xlO^ C P U time 
15 1.893(1.926) 5.351(5.598) 0.743(0.751) 0.0366(0.0400) 
16 1.549(1.255) 4.714(4.162) 0.595(0.465) 0.0366(0.0300) 
17 3.224(3.058) 9.435(9.177) 1.256(1.175) 0.0759(0.0800) 
18 3.464(3.534) 10.62(10.59) 1.332(1.364) 0.0955(0.0900) 
19 5.438(5.674) 17.26(18.09) 2.075(2.157) 0.1675(0.1700) 
20 5.323(4.799) 18.26(17.56) 1.998(1.772) 0.1979(0.1900) 

"Problem CSVC(IMP) 
N Iteration xlO^Repairs xlO^Learns xlO^ C P U time 
15 0.342(0.416) 2.124(2.390) 0.342(0.416) 0.0131(0.0100) 
16 0.642(0.763) 3.287(3.711) 0.642(0.763) 0.0199(0.0200) 
17 1.369(1.002) 7.162(6.072) 1.369(1.002) 0.0430(0.0400) 
18 1.256(1.011) 6.896(6.780) 1.256(1.011) 0.0459(0.0450) 
19 1.165(0.658) 7.302(4.656) 1.165(0.658) 0.0555(0.0300) 
20 1.333(1.443) 8.516(9.166) 1.333(1.443) 0.0736(0.0800) 

Table 4.10: CSVC{GENET) and CSVC(IMF) on quasigroup completion 
problems 
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Figure 4.77: The mean time results on quasigroup completion problems 
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escape from local minima. From Table 4.9 and 4.10，we see that the number of 

repairs done and steps taken in CSVC{GEmT) and CSVC{IMF) are fewer 

than the number of steps taken in PSS and its variants. It means that the 

search path of CSVC(GENET) and CSVC{IMF) are shorter than those of 

PSS and its variants. During the search, CSVC{GENET) and CSVC{IMF) 

select a direction that globally improves the current state, while PSS and IPSS 

select a direction that is dictated by the list T . The ordering in T is defined 

by the search dynamically. Therefore, PSS, IPSS and CSVC implementations 

have totally different search paths in solving QCPs. The experimental results 

show that the search strategy of PSS and IPSS are not as effective as that of 

CSVC{GENET) and CSVC{IMF) in this set of experiments. 

In general, PSS takes fewer steps than IPSS in solving QCPs. From Figures 

4.79(a), 4.82(a), 4.85(a), 4.88(a), 4.91(a) and 4.94(a), we conclude that the 

partial solutions are not easy to extend. IPSS takes more steps to find the 

next partial solution. Therefore, PSS has a better performance of IPSS in 

this set of experiments. It should be noted that max-PSS and max-IPSS are 

shown to have a great improvement on PSS and IPSS respectively. The timing 

results confirm that the heuristic guides the search to select a relatively better 

direction in the search space. 

4.4 Random CSPs 

A random binary CSP is generated with four parameters (n,m,pi,p2), where 

n is the number of variables, m is the domain size of the variables, pi is the 

constraint density, and p2 is the constraint tightness. Constraint density is 

the probability that a constraint exists between a pair of variables. Constraint 

tightness is the probability that a pair of values is incompatible with each other 

for a given pair of variables that is being constrained. 
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Figure 4.84: Numbers of violations and total inputs in each step of PSS and 
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Figure 4.91: Numbers of violations and total inputs in each step of IPSS and 

max-IPSS on Q C P of order 16 (short run-time case) 
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Figure 4.93: Numbers of violations and total inputs in each step of PSS and 
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4.4.1 Tight Random CSPs 

A set of random binary CSPs with n ranging from 120 to 170’ m = 10, pi = 0.6 

and P2 = 0.75 are used in this set of experiments. The execution limits of PSS 

and its variants in solving the problem instances are set to 5 million steps. The 

execution limits of CSVC{GENET) and CSVC{IMF) in solving the problem 

instances are set to 5 million iterations. W e use a superscript (x/100) besides 

the timing figures to indicate that only x out of the hundred runs are successful. 

Problem PSS IPSS “ 
n S t ^ C P U time Steps C P U time 
120 3.0(3.0) 0.0100(0.0100)(04/ioo) 182.9(159.0) 0.0159(0.0200) 
130 0.0(0.0) 0.0100(0.0100^(14/100) 155.5(143.5) 0.0150(0.0100) 
140 4.0(4.0) 0.0200(0.020oj(06/ioo) 225.2(181.0) 0.0241(0.0200) 
150 0.0(0.0) 0.0150(0.0150)(io/ioo) 340.2(294.5) 0.0398(0.0300) 
160 1.4(0.0) 0.0200(0.0200i(ii/i。。）592.7(484.0) 0.0786(0.0600) 
170 8.0(8.0) 0.020ob.020oi(oi/ioo) 217.8(192.0) 0.0281(0.0300) 

m a x - P S S max - IPSS 
^ m 8 0 . 0 ( 7 6 . 5 ) 0 . 0 1 1 2 ( 0 . 0 1 0 0 ) W i o o ) 185.8(168.0) 0 . 0 1 4 3 ( 0 . 0 1 0 0 ) 

130 70.1(89.0) 0.0144(0.0100)(43/IOO) 160.9(154.0) 0.0131(0.0100) 
140 97.2(93.0) 0 . 0 1 5 5 ( 0 . 0 1 0 0 一 2/100) 213.8(182.5) 0 . 0 2 0 1 ( 0 . 0 2 0 0 ) 

150 73.0(89.0) 0 .0176 (0 .0200 ) (2 I / IOO) 211.4(186.0) 0 . 0 2 1 3 ( 0 . 0 2 0 0 ) 
160 85.3(88.0) 0 . 0 2 0 5 ( 0 . 0 2 0 0 ) ^ 1 0 0 ) 340.9(351.5) 0.0370(0.0400) 
170 110.4(103.5) 0 . 0 2 2 5 ( 0 . 0 2 0 0 ) ( 2。 / _ 205.2(192.5) 0.0250(0.0200) 

Table 4.11: PSS and its variants on random CSPs 

Table 4.11 shows results of PSS and its variants on random CSPs. The 

results of £5P/:(GENET) and CSVC{IMF) on the same set of problems are 

given for comparison in Table 4.12. From the tables, we observe that PSS and 

max-PSS cannot always find solutions within the pre-set limit, and IPSS and 
c. 

max-IPSS have a better performance than others. 

The random CSPs with the above parameters are likely to have many 

flawed values [1]. W e record the numbers of violations against total inputs 

or objective values of IPSS, max-IPSS, £57:>£(GENET) and CSVC(IMP) on 

random CSP with n = 120 in Figures 4.96 - 4.101. The numbers of violations 
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Problem CSVCjGENET) . — .� 

n Iteration Repairs Learns C P U t i m e 
120 126.6(147.0) 3084(3500) 15.8(18.0) 0.4620(0.5200) 
130 136.8(153.0) 3513(3980) 16.4(18.5) 0 . 5 7 1 8 ( 0 . 6 5 0 0 ) 

140 135.8(154.0) 3672(4231) 15.9(18.0) 0 . 6 5 1 0 ( 0 . 7 5 0 0 ) 

150 164.7(170.0) 4653(4801) 18.7(19.0) 0 . 8 8 4 6 ( 0 . 9 1 0 0 ) 

160 160.4(167.0) 4773(4974) 17.8(19.0) 0.9787(1.0200) 
170 162.7(175.0) 4998(5426) 17.5(19.0) 1.0965(1.1900) 

-pToblem CSVCjlMP) . 
n Iteration Repairs Learns C P U time 
120 27.2(30.0) 2814(3093) 27.2(30.0) 0 . 4 2 4 3 ( 0 . 4 7 0 0 ) 

130 26.4(30.0) 2988(3419) 26.4(30.0) 0 . 4 9 6 2 ( 0 . 5 6 5 0 ) 

140 24.7(30.0) 2999(3719) 24.7(30.0) 0.5443(0.6700) 
150 27.6(32.0) 3641(4227) 27.6(32.0) 0.7122(0.8300) 

160 27.5(32.0) 3876(4518) 27.5(32.0) 0.8160(0.9400) 
170 29.1(32.0) 4374(4795) 29.1(32.0) 0.9821(1.0700) 

Table 4.12: CSVC{GENET) and CSVC{mF) on random CSPs 

against total inputs or objective values of IPSS, max-IPSS, £<SD/:(GENET) 

and CSVC{IMF) on random CSP with n = 170 are shown in Figures 4.102 -

4.107. 

Figures 4.97, 4.99 and 4.101 show the number of violations in each step 

of CSVC{GEmT) and CSVC{IMF) on random CSP with n = 120 in av-

erage run-time case, short run-time case and long-run time case respectively. 

Figures 4.103, 4.105 and 4.107 show the number of violations in each step of 

CSVC{GE^ET) and CSVC{mF) on random CSP with n = 170 in average 

run-time case, short run-time case and long-run time case respectively. W e 

observe that the number of violations typically maintains in a level (around 

several thousands), until it quickly drops to zero when a solution is found, 

after £<SP£(GENET) and CSVC{IM?) does learning several times. 

Figures 4.108(a) shows the number of violations in each step of PSS on 

random CSP with n 二 120. Figures 4.109(a) shows the number of viola-

tions in each step of PSS on random CSP with n = 170. W e see that the 

number of violations also typically keeps in a level. When the random CSP 

instance has many flawed values, PSS is not always able to find a solution like 
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£ 5 P £ ( G E N E T ) and CSVC{IMF) on random CSP with n = 120 (average 
run-time case) 
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Figure 4.98: Numbers of violations and total inputs in each step of IPSS and 
max-IPSS on random CSP with n = 120 (short run-time case) 
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time case) 
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Figure 4.100: Numbers of violations and total inputs in each step of IPSS and 
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Figure 4.104: Numbers of violations and total inputs in each step of IPSS and 

max-IPSS on random CSP with n = 170 (short run-time case) 
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Figure 4.105: Numbers of violations and objective values in each step of 

CSVC{GENET) and CSVC{IMF) on random CSP with n = 170 (short run-
time case) . 
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£ 5 P £ ( G E N E T ) does. Although max-PSS is also not always able to find a so- 、、 

lution, it is shown to have the best performance when we study the successful 

trials (refer to Table 4.11). Figures 4.108(c) and 4.109(c) show the number of 

violations against total inputs in each step of max-PSS on random CSP with 

n 二 120 and n = 170 respectively. W e see that the cluster selection heuristic 

guides the search to select an excellent direction in the search space. Inter-

estingly, IPSS has not suffered from the problem that PSS faced. W e observe 

that the partial solutions found can be extended to a complete solution with-

out much difficulty (Figures 4.96(a), 4.98(a), 4.100(a), 4.102(a), 4.104(a) and 

4.106(a)). Though with the help of heuristics, max-IPSS has about the same 

efficiency as IPSS. 
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Figure 4.110: The mean time results on random CSPs 

Figure 4.110 shows the mean timing results of IPSS, max-IPSS, CSVC 

(GENET) and £<SP£(IMP). As PSS and max-PSS can only solve the problem 
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instances in some trials, we omit their timing results in the figure. It can be “ 

seen that CSVC{GENET) and CSVC{IMF) perform significantly worse than 

IPSS and max-IPSS. 

4.4.2 Phase Transition Random CSPs 

A set of random binary CSPs close to the phase transition are used in this 

set of experiments. All problem instances used in this experiment are the 

same as that in [4]. The execution limits of PSS and IPSS in solving the 

problem instances are set to 5 million steps, while the execution limits of 

max-PSS and max-IPSS are set to 10 million steps. The execution limits of 

CSVC{GENET) and CSVC{IMF) in solving the problem instances are set to 

5 million iterations. W e use a superscript (x/100) besides the timing figures 

to indicate that only x out of the hundred runs are successful. 

"problem PSS IPSS 
n Steps xlO^ C P U time Steps xlO^ C P U time 
120 >5000 >66.4813(0/100) >5000 〉64.6240(o/ioo) 
130 >5000 >68.7239(0/100) >5000 〉66.3857(o/ioo) 
140 >5000 >68.3965(0/100) >5000 〉66.0671(o/ioo) 
150 >5000 >70.1852(o/_) >5000 〉66.7879(o/ioo) 
160 >5000 >71.1339(0/100) >5000 >67.1439(o/ioo) 
170 >5000 >71.5648(0/100) >5000 〉67.7324(o/ioo) 

max-PSS max-IPSS 

m >10000 >69.6243(0/100) >10000 >71^9720^^" 

130 >10000 >72.8381(0/100) >10000 〉76.4229(o/ioo) 
140 >10000 >75.9473(0/100) >10000 >79.0859(o/ioo) 
150 >10000 >79.1777(0/100) >10000 〉83.0627(o/ioo) 
160 >10000 >81.8229(0/100) >10000 〉85.5608(o/ioo) 
170 >10000 >84.2616(0/100) >10000 〉88.5191(o/ioo) 

Table 4.13: PSS and its variants on phase transition random CSPs 

Table 4.13 shows results of PSS and its variants on random CSPs close to 

the phase transition. The results of £ 5 D £ ( G E N E T ) and CSVC(IMF) on the 

same set of problems are given for comparison in Table 4.14. From Table 4.13, 

none of the trails can solve the problem instances. For CSVC implementations, 
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Problem CSVC(GENET) 
n Iteration xlO^Repairs xlO^Learns xlO^ C P U time 
120 688.6(304.0) 597.6(366.5) 375.8(144.0) 6.1133(3.8700)(i5/ioo) 
130 >5000 >3678 >2876 〉40.6479(oo/ioo) 
140 884.9(511.0) 811.5(583.1) 474.6(249.5) 8 . 7 2 7 5 ( 6 . 4 3 0 0 )⑶ /励） 

150 >5000 >4000 >2803 〉45.4193(oo/ioo) 
160 >5000 >4127 >2774 〉46.3004(oo/ioo) 
170 828.2(292.9) 831.2(450.1) 433.5(127.1) 9.5086(5.4100)(。7/ioo) 

"Problem CSVCjlMP) 
n Iteration xlO^Repairs xlO^~Learns xlO^ C P U time 
120 991.9(760.5) 1249(1047) 991.9(760.5) 9.8117(8.4650)(i2/ioo) 
130 2057(2057) 2564(2564) 2057(2057) 21.290(21.29oi(oi/ioo) 
140 731.0(410.9) 1070(743.1) 731.0(410.9) 8 . 8 6 6 8 ^ 6 . 4 5 0 0 ^ ( 1 9 /励） 

150 1886(1886) 2667(2667) 1886(1886) 2 3 . 1 5 0 ^ 2 3 . 1 5 0 > 1 /腦） 

160 383.7(197.1) 726.2(496.1) 383.7(197.1) 6.6350(4.7450) Wioo) 
170 2454(2473) 3615(3643) 2454(2473) 30.863(32.410) ("̂ /loo) 

Table 4.14: CSVC{GEmT) and CSVC{IMF) on phase transition random 
CSPs 

not more than 20% of the trails can solve the problem successfully. As these 

problem instances are hard to all solvers, it is difficult to make comparison. 

In order to compare the performance of PSS implementations to that of 

CSVC implementations on random CSPs close to the phase transition, we 

use slightly less difficult problem instances stated in [4] to conduct another 

experiment. 

Table 4.15 shows results of PSS and its variants on slightly easier phase 

transition random CSPs . The results of CSVC(GENET) and CSVC(IMF) on 

the same set of problems are given for comparison in Table 4.16. As mentioned 

in [4], this set of problem instances are difficult for stochastic solvers. For 

CSVC implementations, not all trails can find the solution successfully. From 

the tables, the performance of PSS and its variants are not as good as CSVC 

implementations in this set of experiments. 
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Problem P ^ 
n Steps xl03 C P U time Steps xlO^ C P U t i m e ^ 
120 >5000 〉68.3004(o/ioo) >5000 〉61.9739(o/ioo) 
130 >5000 〉70.8367(o/ioo) >5000 〉63.8469(o/ioo) 
140 > 5 0 0 0 > 6 9 . 8 5 1 2 ( 0 / 1 0 0 ) > 5 0 0 0 � 6 3 . 7 7 7 4 ( o / i o o ) 

150 >5000 >69.1622(0/100) >5000 〉65.1413(o/ioo) 
160 >5000 〉69.3043 ⑴/腦） >5000 〉66.1019(o/ioo) 

1 7 0 > 5 0 0 0 > 6 9 . 3 6 9 6 � / •) > 5 0 0 0 � 6 6 . 2 9 1 0 ( o / i o o ) 

max-PSS max-IPSS 
>10000 >69.5245(0/100) >10000 〉72.0099(o/ioo) 

130 >10000 >72.4805(0/100) >10000 >76.0063(o/ioo) 
140 >10000 >75.9728(0/100) >10000 〉78.6275(o/ioo) 
150 1695.4(1695.4) 1.4190(1.4190)(i/ioo) >10000 >82.0091(o/ioo) 
160 >10000 >81.5350(0/100) >10000 >85.2180(o/ioo) 
170 >10000 >83.5906(0/100) >10000 -〉87.1946(o/ioo) 

Table 4.15: PSS and its variants slightly easier phase transition random CSPs 

Problem £5P£(GENET) 
n Iteration xlO^Repairs xlO^Learns xlO^ C P U time 

120 753.7(439.9) 650.8(461.1) 410.4(220.7) 6 .4147 (4 .6600 ) W i o o ) 
130 1195(322.2) 995.3(403.4) 663.8(150.5) 10.496(4.4400) (ô /ioo) 
140 812.7(413.2) 740.1(474.3) 434.9(200.5) 7 . 3 8 4 6 ( 4 . 9 1 0 0 )脚 /舰） 

150 898.2(370.3) 848.2(467.0) 475.6(173.7) 8.8260(5.1600)(55/ioo) 
160 986.9(364.0) 953.5(492.4) 520.5(166.4) 10.240(5.5950) Wioo) 
170 689.9(274.9) 716.5(402.5) 354.9(122.2) 7 .6204(4 .5900) ^^Vioo) 

Problem £<SPZ:(IMP) 
n Iteration xlO^Repairs xlO^Learns xlO^ C P U time 
120 903.5(360.6) 1117(598.1) 903.5(360.6) 8 .4019(4.9000) (̂ Vioo) 
130 3572(3572) 4248(4248) 3572(3572) 33.480(33.480) (oVioo) 
140 625.3(222.5) 892.2(464.7) 625.3(222.5) 6 .8369 (3 .8900 ) (^^/loo) 
150 667.0(191.0) 1005(439.1) 667.0(191.0) 7 . 9 6 7 1 ( 3 . 9 8 5 0 ) ( 4 2 /湖） 

160 1717(1381) 2467(2124) 1717(1381) 1 9 . 4 2 0 ( 1 7 . 0 4 0 ) ( 2 2/ioo) 

170 614.5(153.2) 994.5(406.8) 614.5(153.2) 7.9194(3.7000) Wioo) 

Table 4.16: CSVC{GENET) and CSVC{IMF) on slightly easier phase transi-
tion random CSPs 



Chapter 5 

Concluding Remarks 

W e end the thesis in this chapter by concluding our contributions and giving 

possible directions for future work. 

5.1 Contributions 

In this thesis we present a novel stochastic search scheme, Progressive Stochas-

tic Search (PSS), for solving binary CSPs. A typical stochastic search method 

uses a cost function to evaluate the goodness of every point in a search space, 

and a neighborhoods function to define the neighbors of a particular point in 

the search space. The search starts from a random point in the search space 

and moves from one point to its better neighboring point until the stopping 

criteria are matched. This can be interpreted as that the move is driven solely 

by "potential energy", though the movement towards which better neighboring 

point is usually determined randomly. As the search only moves from one point 

to its neighboring point that gives an improvement in the cost, the search may 

stay at the current point and no other movements can be made. The search 

is trapped in local optima or plateaus. Random restart and heuristic learning 

are the methods used to escape from local optima or leave plateaus tradition-

ally. Intuitively, this search approach can be thought to be prudent. The main 

novelty of PSS is that the search is able to "rush through" the local optima 

159 
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and plateaus with the cooperation of a new heuristic repair method and a 

simple search path marking method. W e maintain a list of variables, which 

dictates the sequence of variables to repair. When a variable is being repaired, 

it is always assigned a new value even if its original value should give the best 

cost value. The search paths are slightly "marked" as the search proceeds by 

updating the weights of the connections at the end of each convergence step. 

Unlike the prudent approach used in the typical stochastic search method, the 

search approach of PSS is more progressive. This progressive approach shows 

an encouraging performance in some benchmarking problems. 

W e also present an incremental variant of PSS, namely IPSS. IPSS works 

on a partial assignment and performs PSS on that partial assignment to find 

a partial solution. This partial solution is then extended by adding a variable 

that is not involved in the partial solution until a complete solution is obtained. 

IPSS is found to be more efficient than PSS in some benchmarking problems 

that the partial solutions can be extended easily. As mentioned before, PSS 

and IPSS use a list of variable to dictate the sequence of variables to repair. 

The ordering is in a first-in-first-out manner. W e integrate the idea of greedy 

variable ordering into PSS and IPSS to form other variants, namely, max-PSS 

and max-IPSS respectively. Experimental results show that the greedy variable 

ordering provides an excellent direction for the search towards the solutions in 

some benchmarking problems. 

W e perform experiments using four types of benchmarking problems, namely 

the iV-Queens problems, the permutation generation problems, the quasigroup 

completion problems and Latin squares, and random constraint satisfaction 

problems. The results show that the PSS class of schemes can outperform 

/:OT£(GENET) and £cSP£(IMP) in TV-queens problems, Latin squares, ran-

dom permutation generation problems, and random CSPs. However, their per-

formance in increasing permutation generation problems and quasigroup com-

pletion problems are worse than that of £ 5 P £ ( G E N E T ) and CSVC{IMP). 
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W e present analysis of the search process of all these solvers in an attempt to 

provide an explanation to this phenomenon. 

5.2 Future Work 

W e believe this thesis presents an interesting new approach to the design of 

stochastic search schemes for solving constraint satisfaction problems. As fu-

ture work, we shall investigate other heuristics that can possibly improve the 

performance. For examples, the method that calculates the input of a label 

node, the learning rule that updates the connection weights, and the strat-

egy that selects a cluster for repair at the next convergence step. With the 

encouraging performance of max-PSS and max-IPSS in some benchmarking 

problems, we believe that other suitable heuristics for the above three parts 

can boost up the performance of PSS. 

The benchmarking problems used in the experiments of this research are 

almost the same as that used in CSVC [4] except for the hard graph-coloring 

problems. W e have conducted an experiment for the hard graph-coloring prob-

lems. The experimental results show that the PSS class of schemes cannot find 

solutions within the pre-set limit. Since we are still investigating what makes 

this kind of problems hard to the PSS class of schemes, we extract this part 

from experiments and put it as future work. It is also interesting to investi-

gate if other heuristics can help the PSS class of schemes to solve the hard 

graph-coloring problems. ‘ 

The possibility of its integration with G E N E T class solvers is also another 

issue to be researched into. The search approach of the PSS class of schemes 

is progressive, while that of G E N E T class solvers is prudent. The experimen-

tal results show that different approaches have their advantage in different 

benchmarking problems. It is worthwhile to research under what situations 

the search should decide to use progressive approach or prudent approach, so 
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that advantages from both side can be exploited. 

•t 
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