A Progressive Stochastic Search Method for
Solving Constraint Satisfaction Problems

P

Bryan Chi—ho Lam

A Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of
Master of Philosophy
in

Computer Science and Engineering

©The Chinese University of Hong Kong
August, 2003

The Chinese University of Hong Kong holds the copyright of this thesis.
Any person(s) intending to use a part or the whole of the materials in this
thesis in a proposed publication must seek copyright release from the Dean of

the Graduate School.

(30 1)

INVSIY v~ /J

“t""LIBRARY SYSTEM/"//

Abstract

Constraint Satisfaction Problem (CSP) provides a powerful tool for model-
ing and solving many real-life problems and they are NP-complete in general.
While traditional systematic search cannotfindsolutions within a reasonable
time when solving large—scale and hard CSPs, stochastic search methods have
attracted much attention of the research community. A typical stochastic
search starts at a random point in a search space and moves from one point
to its neighbor iteratively, provided that the new point gives a better cost
value. Traditionally, a stochastic solver escapes from local optima or leaves
plateaus by random restart or heuristic learning. In this thesis, we propose
Progressive Stochastic Search (PSS) and its variants for solving binary CSPs.
One characteristic of PSS is that we maintain a list of variables, which dic-
tates the sequence of variables to repair. When a variable is designated to
be repaired, it always has to choose a new value unless its original value does
not cause any violations. Intuitively, the search can be thought to be mainly
driven by a “force” so that the search is able to “rush through” the local min-
ima and plateaus. The search paths are also slightly “marked” as the search
proceeds. Random restarts are no longer necessary, and expensive heuristic
learning is replaced by simple path marking. Timing results show that this
approach outperforms CSVC implementations in iV-Queens, Latin squares,
random permutation generation problems and random CSPs, while it fails to
win CSVC implementations in quasigroup completion problems and increas—

ing permutation problems. This prompts an interesting new research direction

in the design of stochastic search schemes.

ii

W

9*

i 22

Lom e (CSP) Ryat 2 EIEA G P Ay R AT (1t 17— (58 Ry 5
HOKEE TR - BEERATS ERME R NP2 - & #HGH R GE
FORAEAE & B A R Fi] A S R R R e PR 5 Y & R i S T REL SR Ry - R AR
RS THIFRABIVER - — AR RERR —[EERE ARER
RS [m —(E AR AR I B A S EEERRS - Ea b BRERIBEE LS
B i B L B BB - R & o A PR AR AR B B B B A A - FEAR
s L o PR {8 ¥ T &Y SRR e R R Ry T HUME AR R | Ty
E(PSS) LR e Ry — EE ST - E: 8 AR F 2 Ay JHL o — (8] 2 Z R 0BG R o 1
—EZEERECEENBERY - B —HEEWRIEEBENREE > BRIFE
FAFTEHET AR > SAIEEgN —(EFE - [KEREER LXK
st A DV E R E g Ty BB(E > T, BEe/MLE K
IR - ERERETR RIS N aCet o WIMTE AR EEHE
PEOEHT RLEY - M & B WY RS SN SR VAN i B Y B S s LA - B Bmas &R
BURN EREWAERAERANEZEHE - fT 58 - BT ER E
FIBE % &Y F ke [AR YR > e BB CSDC - a2 » EAEM A A
B 52 I 5 R R 394 B R 471 A B] R B Y SR B A A e @ SD LS {8 45 SR AE B
IR T W EGET EfEon T — A BAVH TR 5 A -

iii

Acknowledgments

I would like to thank all those people who made this thesis possible and a
memorable experience for me.

Firstly, I would like to express my sincere gratitude tomy supervisor, Pro—
fessor Ho—fung Leung. Without his guidance, advices and encouragements, this
thesis could not be presented. I wish to thank for his generosity and valuable
discussions for the research.

I also deeply appreciate Professor Jimmy Ho Man Lee for giving me the
lectures of Constraint Satisfaction. He also gave me valuable suggestions and
comments for improving this work. I would like to thank him for providing
the source code of CSVC and all benchmarks used in the experiments of this
thesis.

I am grateful to the other members of constraint research group for the
wonderful discussions and a pleasant working atmosphere.

Finally, I would like to take this opportunity to express my deepest appre—
ciation to my family and Miss Tammy Pui Shan Chan for the constant care

and support.

iv

Contents

1 Introduction

2 Background
2.1 Constraint Satisfaction Problems
2.2 Systematic Search
2.3 Stochastic Search
2.3.1 Overview
2.3.2 GENET
2.3.3 CSVC
2.3.4 Adaptive Search
2.4 Hybrid Approach

3 Progressive Stochastic Search
3.1 Progressive Stochastic Search
3.1.1 Network Architecture
3.1.2 Convergence Procedure
3.1.3 An Illustrative Example
3.2 Incremental Progressive Stochastic Search
3.2.1 Network Architecture
3.2.2 Convergence Procedure
3.2.3 An Illustrative Example

3.3 Heuristic Cluster Selection Strategy

co O O O B~ b

10
12
13

14
14
15
16
21
23
24
24
25
28

4 Experiments

4.1
4.2

4.3

4.4

iV—Queens Problems

Permutation Generation Problems

4.2.1 Increasing Permutation Problems

4.2.2 Random Permutation Generation Problems
Latin Squares and Quasigroup Completion Problems
4.3.1 Latin Square Problems

4.3.2 Quasigroup Completion Problems

Random CSPs

4.4.1 Tight Random CSPs

4.4.2 Phase Transition Random CSPs

5 Concluding Remarks

o.1
5.2

Contributions

Future Work

vi

31
32
53
o4
75
96
96
118
120
139
156

159
159
161

List of Figures

2.1 An example of GENET network 9
3.1 The network architecture of PSS 16
3.2 The algorithm of PSS . 22
3.3 PSS: 4-Queens example 23
3.4 The algorithm of IPSS 26
3.5 IPSS: 4-Queens example 27
3.6 max—PSS: 4-Queens example 29
4.1 The mean time results on iV-queens 33

4.2 Numbers of violations and total inputs in each step of PSS and
max—PSS on 100-Queens problem (average run—time case) 3b
4.3 Numbers of violations and total inputs in each step of IPSS and
max—IPSS on 100-Queens problem (average run—time case) ... 36
4.4 Numbers of violations and objective values in each stepof £5P£ (GENET)
and CSVC{IMP) on 100-Queens problem (average run—time case) 37
4.5 Numbers of violations and total inputs in each step of PSS and
max—PSS on 100-Queens problem (short run—time case) 38
4.6 Numbers of violations and total inputs in each step of IPSS and
max—IPSS on 100-Queens problem (short run—time case) 39
4.7 Numbers of violations and objective values in each step of £5P/: (GENET)

and £iSr>£(IMP) on 100—Queens problem (short run—time case) 40

vii

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4. 18

4.19

4. 20
4.21

Numbers of violations and total inputs in each step of PSS and

max—PSS on 100-Queens problem (long run—time case) 41
Numbers of violations and total inputs in each step of IPSS and

max—1PSS on 100-Queens problem (long run—time case) 42
Numbers of violations and objective values in each step of £{SP£ (GENET)
and CSVC{IMF) on 100-Queens problem (long run-time case) . 43
Numbers of violations and total inputs in each step of PSS and

max—PSS on 200-Queens problem (average run—time case) 44
Numbers of violations and total inputs in each step of IPSS and

max—1PSS on 200—Queens problem (average run—time case) ... 45
Numbers of violations and objective values in each step of CSI)C{GENET)
and £4SP>C (IMP) on 200—Queens problem (average run—time case) 46
Numbers of violations and total inputs in each step of PSS and

max—PSS on 200-Queens problem (short run—time case) 47
Numbers of violations and total inputs in each step of IPSS and

max—IPSS on 200-Queens problem (short run—time case) 48
Numbers of violations and objective values in each step of CST>C{GENET)
and CS’DC(IMF) on 200—Queens problem (short run-time case) 49
Numbers of violations and total inputs in each step of PSS and

max—PSS on 200-Queens problem (long run—time case) 50
Numbers of violations and total inputs in each step of IPSS and

max—IPSS on 200-Queens problem (long run—time case) 51
Numbers of violations and objective values in each step of CSVC{GENET)
and CSVC(IMP) on 200-Queens problem (long run—time case) . 52
The mean time results on increasing permutation problems ... 55
Numbers of violations and total inputs in each step of PSS and

max—PSS on increasing permutation problem with n = 10 (av—

erage run—time case) 56

viii

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4. 30

Numbers of violations and total inputs in each step of IPSS

and max—IPSS on increasing permutation problem with n = 10

(average run—time case) 57
Numbers of violations and objective values in each step of £(SP£ (GENET)
and £0T£ (IMP) on increasing permutation problem with n =

10 (average run—time case) 58
Numbers of violations and total inputs in each step of PSS and

max—PSS on increasing permutation problem withn = 10 (short

run—time case) 59
Numbers of violations and total inputs in each step of IPSS

and max—IPSS on increasing permutation problem with n = 10

(short run-time case) 60
Numbers of violations and objective values in each step of CSVC{GENET)
and CSVC(IMF) on increasing permutation problem with n =

10 (short run—time case) 61
Numbers of violations and total inputs in each step of PSS and

max—PSS on increasing permutation problem withn = 10 (long

run—time case) 62
Numbers of violations and total inputs in each step of IPSS and

max—1PSS on increasing permutation problem withn = 10 (long

run-time case) 63
Numbers of violations and objective values in each step of CSVC(GE1~ET)
and CSVC(IMF) on increasing permutation problem with n =

10 (long run—time case) 64
Numbers of violations and total inputs in each step of PSS and
max—PSS on increasing permutation problem with n = 20 (av-

erage run—time case) 5h

ix

4. 31

4.32

4.33

4. 34

4.35

4. 36

4.37

4. 38

4.39

4. 40

Numbers of violations and total inputs in each step of IPSS

and max—IPSS on increasing permutation problem with n =20

(average run—time case) 66
Numbers of violations and objective values in each step £5P£ (GENET)
and CSVC{IMF) on increasing permutation problem with n =

20 (average run—time case) 67
Numbers of violations and total inputs in each step of PSS and
max—PSS on increasing permutation problem withn = 20 (short
run—time case) 68
Numbers of violations and total inputs in each step of IPSS

and max—IPSS on increasing permutation problem with n =20

(short run-time case) 69
Numbers of violations and objective values in each step of £51>£ (GENET)
and CSVC(IMF) on increasing permutation problem with n =

20 (short run—time case) 70
Numbers of violations and total inputs in each step of PSS and
max—PSS on increasing permutation problem with n = 20 (long
run-time case) 71
Numbers of violations and total inputs in each step of IPSS and
max—1PSS on increasing permutation problem withn = 20 (long
run—time case) 72
Numbers of violations and objective values in each step of GENET)
and CSVC(IMP) on increasing permutation problem with n =

20 (long run—time case) . 73
The mean time results on random permutation generation prob—

lems 71
Numbers of violations and total inputs in each step of PSS and
max—PSS on permutation generation problem with n = 50 (av-

erage run—time case) 78

4. 41

4.42

4. 43

4.44

4. 45

4. 46

4. 47

4. 48

4. 49

Numbers of violations and total inputs in each step of IPSS
and max—IPSS on permutation generation problem with n = 50
(average run—time case)

Numbers of violations and objective values in each step of

and CSVC{IMF) on permutation generation problem with n =
50 (average run—time case)

Numbers of violations and total inputs in each step of PSS
and max—PSS on permutation generation problem with n = 50
(short run—time case)

Numbers of violations and total inputs in each step of IPSS
and max—IPSS on permutation generation problem with n = 50

(short run—time case)

79

(GENET)

80

81

82

Numbers of violations and objective values in each step £<SP£ (GENET)

and CST>C{IMF) on permutation generation problem with n =
50 (short run—time case)

Numbers of violations and total inputs in each step of PSS and
max—PSS on permutation generation problem withn = 50 (long
run—time case)

Numbers of violations and total inputs in each step of IPSS
and max—IPSS on permutation generation problem with n = 50
(long run—time case)

Numbers of violations and objective values in each step of

and >C5r>£ (IMP) on permutation generation problem with n =
50 (long run—time case)

Numbers of violations and total inputs in each step of PSS and
max—PSS on permutation generation problem with n = 100 (av—

erage run—time case)

xi

83

84

85

(GENET)

86

87

4.50 Numbers of violations and total inputs in each step of IPSS and
max—IPSS on permutation generation problem with n = 100
(average run—time case) 88

4.51 Numbers of violations and objective values/total inputs in each
step CSVC(GENET) and CSVC{IMF) on permutation gener—
ation problem with n = 100 (average run—time case) 89

4.52 Numbers of violations and total inputs in each step of PSS and
max—PSS on permutation generation problem with n = 100
(short run—time case) 90

4.53 Numbers of violations and total inputs in each step of IPSS and
max—IPSS on permutation generation problem with n = 100
(short run-time case) 91

4.54 Numbers of violations and objective values in each step CSVC{GENET)
and CSVC{IMF) on permutation generation problem with n =
100 (short run—time case) 92

4.55 Numbers of violations and total inputs in each step of PSS and
max—PSS on permutation generation problem with n = 100
(long run—time case) 93

4.56 Numbers of violations and total inputs in each step of IPSS and
max—IPSS on permutation generation problem with n = 100
(long run—time case) 94

4.57 Numbers of violations and objective values in each step of CSVC{GENET)
and £5P£ (IMP) on permutation generation problem with n =
100 (long run—time case) - 95

4.58 The mean time results on Latin square problems 98

4.59 Numbers of violations and total inputs in each step of PSS and
max-PSS on Latin square problem with N = 10 (average run-

time case) 100

xii

4. 60

4.61

4. 62

4.63

4.64

4. 65

4. 66

4.67

4. 68

Numbers of violations and total inputs in each step of IPSS

and max—IPSS on Latin square problem with N = 10 (average

run—time case) 101
Numbers of violations and objective values in each step of £5X) £ (GENET)
and £SVjC(IMP) on Latin square problem with N = 10 (aver—

b

age run—time case) 102
Numbers of violations and total inputs in each step of PSS and
max—PSS on Latin square problem with N = 10 (short run—time
case) 103
Numbers of violations and total inputs in each step of IPSS

and max—IPSS on Latin square problem with TV = 10 (short
run-time case) 104
Numbers of violations and objective values in each step JCSVjC(GENET)
and jJCSVjC(IMP) on Latin square problem with N = 10 (short
run—time case) 105
Numbers of violations and total inputs in each step of PSS and

max—PSS on Latin square problem with N = 10 (long run—time

case) 106
Numbers of violations and total inputs in each step of IPSS and

max—IPSS on Latin square problem with = 10 (long run—time

case) 107
Numbers of violations and objective values in each step of £<SD£ (GENET)

and £SVjC(IMP) on Latin square problem with iV = 10 (long
run-time case) 108
Numbers of violations and total inputs in each step of PSS and
max—PSS on Latin square problem with N = 85 (average run—

time case) 109

xiii

4. 69

4.71

4.73

4.75

4.76

4.1

4.78

4.79

Numbers of violations and total inputs in each step of IPSS

and max—IPSS on Latin square problem with N = 35 (average

run—time case) 110
Numbers of violations and objective values in each step of £5D£ (GENET)
and CSVCilM?) on Latin square problem with N = 3b (aver—

age run—time case) 111
Numbers of violations and total inputs in each step of PSS and

max—-PSS on Latin square problem with N = 35 (short run—time

case) 112
Numbers of violations and total inputs in each step of IPSS

and max—IPSS on Latin square problem with iV = 35 (short

run-time case) 113
Numbers of violations and objective values in each step of CSVC{GENET)
and £4SP£ (IMP) on Latin square problem with IN = 85 (short

run—time case) 114
Numbers of violations and total inputs in each step of PSS and

max—PSS on Latin square problem with N = 35 (long run—time

case) 115
Numbers of violations and total inputs in each step of IPSS and

max—IPSS on Latin square problem with AT = 35 (long run—time

case) 116
Numbers of violations and objective values in each step of CSVC{GENET)
and CSVC{IMF) on Latin square problem with A~ = 35 (long

run-time case) 117

The mean time results on quasigroup completion problems . . .119
Numbers of violations and total inputs in each step of PSS and

max—PSS on QCP of order 15 (average run—time case) 121
Numbers of violations and total inputs in each step of IPSS and

max—IPSS on QCP of order 15 (average run—time case) 122

xiv

4.80

4.81

4.82

4.83

4.84

4.85

4. 86

4.87

4. 88

4.89

4.90

4.91

4.92

4.93

Numbers of violations and objective values in each step of £<SX>£ (GENET)
and CSVC(IMF) on QCP of order 15 (average run-time case) . 123

Numbers of violations and total inputs in each step of PSS and

max—-PSS on QCP of order 15 (short run—time case) 124
Numbers of violations and total inputs in each step of IPSS and

max—IPSS on QCP of order 15 (short run-time case) 125
Numbers of violations and objective values in each step of £5P£ (GENET)
and CSVC{IMP) on QCP of order 15 (short run-time case) ... 126
Numbers of violations and total inputs in each step of PSS and

max—PSS on QCP of order 15 (long run—time case) 127
Numbers of violations and total inputs in each step of IPSS and

max—IPSS on QCP of order 15 (long run—time case) 128
Numbers of violations and objective values in each step of (GENET)
and CSVC(IMF) on QCP of order 15 (long run—time case) ... 129
Numbers of violations and total inputs in each step of PSS and

max—PSS on QCP of order 16 (average run—time case) 130
Numbers of violations and total inputs in each step of IPSS and

max—1PSS on QCP of order 16 (average run—time case) 131
Numbers of violations and objective values in each step of £<SX>£ (GENET)

and CSVC{IMF) on QCP of order 16 (average run-time case) . 132

Numbers of violations and total inputs in each step of PSS and

max—PSS on QCP of order 16 (short run—time case) 133
Numbers of violations and total inputs in each step of IPSS and

max—IPSS on QCP of order 16 (short run-time case) 134
Numbers of violations and objective values in each step of £vSD£ (GENET)

and CSVC{IMF) on QCP of order 16 (short run—time case) ... 135
Numbers of violations and total inputs in each step of PSS and

max—PSS on QCP of order 16 (long run—time case) 136

4.94 Numbers of violations and total inputs in each step of IPSS and

max—IPSS on QCP of order 16 (long run—time case) 137
4.95 Numbers of violations and objective values in each step of (GENET)
and CSVCiIMP) on QCP of order 16 (long run—time case) ... 138

4.96 Numbers of violations and total inputs in each step of IPSS and
max—1PSS on random CSP with n = 120 (average run—time case) 141
4.97 Numbers of violations and objective values in each step of £{SD£ (GENET)
and CSVC(IMP) on random CSP with n = 120 (average run—
time case) 142
4.98 Numbers of violations and total inputs in each step of IPSS and
max—IPSS on random CSP with n = 120 (short run—time case) . 143
4.99 Numbers of violations and objective values in each step of £5P£ (GENET)
and CSVC{IMF) on random CSP with n == 120 (short run—time
case) 144
4. 100Numbers of violations and total inputs in each step of IPSS and
max—1PSS on random CSP with n = 120 (long run—time case) . . 145
4. 101Numbers of violations and objective values in each step of CSVC(GENET)
and CSVC{IMF) on random CSP with n = 120 (long run—time
case) 146
4. 102Numbers of violations and total inputs in each step of IPSS and
max—1PSS on random CSP with n = 170 (average run—time case) 147
4. 103Numbers of violations and objective values in each step of >C<SX>£ (GENET)
and CSVC{IMF) on random CSP with n = 170 (average run—
time case) 148
4. 104Numbers of violations and total inputs in each step of IPSS and
max—IPSS on random CSP with n = 170 (short run—time case) . 149
4. 105Numbers of violations and objective values in each step of £{SP£ (GENET)
and CSVC{IMF) on random CSP with n = 170 (short run—time
case) 150

xvi

*f

4. 106Numbers of violations and total inputs in each step of IPSS and

max—1PSS on random CSP with n = 170 (long run—time case) . . 151
4. 107Numbers of violations and objective values in each step of £<SD£ (GENET)
and CSVC{IMF) on random CSP with n = 170 (long run—time
case) 152
4. 108Numbers of violations and total inputs in each step of PSS and
max—PSS on random CSP with n = 120 153
4. 109Numbers of violations and total inputs in each step of PSS and
max—PSS on random CSP with n = 170 154

4. 110The mean time results on random CSPs 155

xvii

List of Tables

4.1
4.2
4.3
4.4

4.5
4.6

4.7
4.8
4.9
4.10

4.11
4.12
4.13
4.14

4.15
4.16

PSS and its variants on A/’ —Queens problems 32
CSVC(GENET) and =~~~ (IMP) on iV-queens problems ... 33
PSS and its variants on increasing permutation problems -+ - . . b4
>C5P£ (GENET) and CSVCY{IMF) on increasing permutation

problems 54

PSS and its variants on random permutation generation problems 76
CSVC{GENET) and CSVC{IMP) on random permutation gen—

eration problems 76
PSS and its variants on Latin square problems 97

CSVC(GE*ET) and CSVC(IMF) on Latin square problems . . 97

PSS and its variants on quasigroup completion problems118
CSVC{GENET) and on quasigroup completion

problems 119
PSS and its variants on random CSPs 139
CSVC{GEmT) and CSVC{IMF) on random CSPs .. -+ --.. 140
PSS and its variants on phase transition random CSPs 156
CSVC{GENET) and CSVC{IMP) on phase transition random

CSPs 157
PSS and its variants slightly easier phase transition random CSPs 158

CSVC{GENET) and £SD£ (IMP) on slightly easier phase tran—
sition random CSPs 158

xviii

Chapter 1

Introduction

Constraint Satisfaction Problem (CSP) [15] provides a powerful tool for mod-
eling and solving many real-life problems. A CSP is conventionally defined as
a problem offindinga consistent assignment of discrete values to a finite set
of variables such that the assignment satisfies a finite set of given constraints
over these variables.

CSPs are NP-complete in general. Many solvers for CSPs have been de-
veloped over the past three decades. The traditional approach is systematic
search methods [13, 19] which are complete algorithms. However, they cannot
find solutions within a reasonable time when solving large—scale and hard CSPs.
An alternative approach, stochastic search methods [4, 5, 6° 910, 30, 31] are
incomplete, but their fast solving speed often compensates this drawback.

A typical stochastic search method isa hill-climbing algorithm, which in
cludes a cost function that gives a value to every point in a search space, and a
neighborhoods function that defines the neighbors of a particular point in the
search space. The search moves from a point in the search space to a neighbor—
ing point if the latter has a better cost value than the current point. This can
be interpreted as that the move is driven solely by “potential energy”, though
which better neighboring point to go to is usually determined randomly. The
goal of the algorithm is to reach a point in the search space that has the op—

timal value according to the cost function, which corresponds to a solution to

Chapter 1 Introduction 2

the original CSP. For solving CSPs, a typical cost function used is counting
the number of conflicts [17]. The problem with hill-climbing algorithms is that
they can be trapped in local optima, and lose direction in plateaus.

Traditionally, a stochastic solver escapes from local optima or leaves plateaus
by random restart or heuristic learning. The former approach relies on the fact
that there is a non—zero probability that a solution will be found after the search
restarts at a randomly chosen point in the search space, if solutions really ex—
ist. The latter approach attempts to change the landscape of the search space
as depicted by the cost function, until the local optimum or plateau the search
is being trapped in ceases to exist.

In this thesis, we propose the Progressive Stochastic Search (PSS) and its
variants for solving binary CSPs. One characteristic of PSS is that we maintain
a list of variables, which dictates the sequence of variables to repair. When a
variable is designated to be repaired, it always has to choose a new value even
if its original value should give the best cost value. Intuitively, the search can
be thought to be mainly driven by a “force” so that the search is able to “rush
through” the local minima and plateaus. The search paths are also slightly
“"marked” as the search proceeds so as to help gathering information of the
search space. Random restarts are no longer necessary, and expensive heuristic
learning is replaced by simple path marking. Timing results show that this
approach outperforms /:SVE(GENET) and £SV/:(IMP) in N-Queens, Latin
squares, random permutation generation problems and random CSPs, while
it fails to win £5P£ (GENET) and £SV/:(IMP) in quasigroup completion
problems and increasing permutation generation problems. This prompts an
interesting new research direction in the design of stochastic search schemes.

This thesis is organized as follows. In Chapter 2 > we briefly introduce
Constraint Satisfaction Problem and review some solving techniques published
in the literatures. These solving techniques can traditionally be classified into

two categories: systematic search and stochastic search. As our work can be

Chapter 1 Introduction 3

classified into the category of stochastic search, some related work are also
given. These include GENET, CSVC and Adaptive Search. In recent years,
a hybrid approach of systematic and stochastic search has raised interest in
CSP community. A brief introduction on this hybrid approach is also given

in Chapter 2. The Progressive Stochastic Search scheme and its variants are

described in Chapter 3. Experiments on benchmarking problems and some
analysis of results are presented in Chapter 4. Chapter 5 summarizes our

contributions and sheds light on future work.

Chapter 2

Background

In this chapter, we provide background information related to our research.
We give a brief introduction on Constraint Satisfaction Problem (CSP). In
addition, a summary of CSP solving techniques is also presented. These solving
techniques can traditionally be classified into two categories: systematic search
and stochastic search. As our work can be classified into the category of
stochastic search, some related work is also given in the section of stochastic
search. In recent years, a hybrid approach of systematic and stochastic search
has raised interest in CSP community. A brief introduction on this hybrid

approach is also given at the end of this chapter.

2.1 Constraint Satisfaction Problems

A CSP < > is a tuple consisting of a set V of variables, a set V of
domains and a set C of constraints. Each variable ii G V isassociated with a
domain dfvi) GV which contains the set of possible values for vi. A constraint
¢ G C ranging over a number of variables specifies the combination(s) of values
these variables can take. A binary CSP isa CSP with unary and binary
constraints only. - A solution of a CSP is an assignment of values to all

variables such that all constraints are satisfied.

iNote that any n-ary constraints CSP (n > 2) can be transformed to an equivalent binary

CSP [23].

W

Chapter 2 Background 5

Numerous algorithms have been developed for solving CSPs. These algo—

rithms can be typically classified into two categories: systematic search and

stochastic search.

2.2 Systematic Search

The traditional search method used in solving CSPs is chronological back—
tracking tree search. Variables are assigned values from their domains one
after another. After a variable is assigned a value, the currently partial as—
signment is checked for consistency. If it violates any of the constraints, the
currently considered variable is assigned an alternative value. If no value is
available for this variable, the most recently variable that has been assigned a
value is revised. The above process is repeated until either a solution is found
or all partial assignments have been checked for consistency. In the latter case,
the chronological backtracking algorithm concludes that no solution exists for
the CSP.

Various constraint propagation techniques can be combined with backtrack—
ing tree search to enhance the solving efficiency [13, 19]. These techniques
include node consistency [15], arc consistency [15], path consistency [15] and
bounds consistency [16]. The purpose of these techniques is to remove incon-
sistent values from the domains of variables. As a result, the search space
in the search tree is reduced. These algorithms virtually explore the whole
search tree systematically by depth—first search. Therefore, they are complete
algorithms that guarantee tofinda solution if it exists, and to report unsatis—
fiability otherwise. Various variable- and value—ordering heuristics [2, 11] have
been investigated to improve the search speed. These heuristics aim at reduc—
ing the number of backtracks required in a search. However, systematic search

generally becomes less efficient when solving large—scale and hard CSPs due to

the NP-complete nature of CSP.

.

Chapter 2 Background 26

2.3 Stochastic Search

2.3.1 Overview

Another category of approaches to search, stochastic search has drawn BEch
attention of the Artificial Intelligence (AI) community. This category of im
complete algorithms often solve some standard benchmarking problems, such
as 1V—Queens and graph—coloring, inorders of magnitude better than the tradi-
tional tree search approach. Typical stochastic search algorithms first generate
a complete initial variable assignment (probably random and inconsistent) and
then repair the assignment by heuristic local search until a solution is found.
The heuristic local search repairs the variable assignment with reference to a
cost function. A possible cost function used is one that counts the number
of constraint violations by the variable assignment. A variable is selected and
repaired by being assigned a new value that optimizes the cost function. A
drawback of this category of solving methods is that the execution can eas—
ily be trapped in local optima, i.e., non—solution states in which no further
improvement can be made. Two main approaches have been developed for
escaping local optima. One approach israndom restart [17]. Although it is
simple and intuitive, information generated in a search process is completely

lost. Another approach associates weights with the constraints and defines

the cost function as a weighted sum of constraints violations [4, 6, 18" 28, 30).

When a local optimum is reached, the weights are updated. This helps not

only escape from the local optima but also guides the search to solution states.

In the last decade, various stochastic search variants have been proposed,
which use different cost functions, variable-orderings and escape strategies to
boost the performance. In the context of satisfiability problem (SAT), GSAT
27] is a greedy local search method. Several extensions, which integrated with
a random walk [25, 26], clause weight learning [7, 25], averaging in previous

assignments [25] and tabu-like move restrictions [8], improve the original GSAT

.

Chapter 2 Background 27

in some kinds of SAT problems. The Lagrange multiplier method is a well—
known technique for solving constrained optimization problems. Wah et al.
extend the classical Lagrange multiplier method to handle discrete problems
28" 34]. Their extention, called DLM (Discrete Lagrangian—based global-search
method), uses the Lagrangian function as a cost function and a complicated
weight update scheme to escape from local minimum.

GENET [6, 30] isa local search approach for solving binary CSPs. It uses
iterative repair method tofinda solution to the CSP. A heuristic learning rule
is applied to escape from local minima and to help preventing the network from
being trapped in the same local minima again. Several variants of GENET are
developed for solving different kinds of CPS’ s. Fuzzy GENET [33] is proposed
to solve binary fuzzy CSPs. E-GENET [14] extends GENET to handle non—
binary constraints. CSVC [4] basically explains the behaviour of GENET as
a discrete Lagrangian search algorithm and improves on GENET by choosing
different parameters. Guided Local Search (GLS) [31] extends GENET to
handle combinatorial optimization problems. Adaptive Search [5] introduces
an error function to determine which variable is repaired at next. For each
constraint, it is not associated with a weight but an error function to represent
the “degree of satisfaction”. Each variable is associated with an error. The
error is the sum of the error function values of all constraints in which the
variable is involved. The variable with the maximum error will be selected to
repair in the next iteration.

In the following sections, we give details of other research work that are

related to our work. These include GENET, CSVC and Adaptive Search. We
first give a summary of GENET because our proposed method, Progressive
Stochastic Search (PSS) isa heuristic search method for solving binary CSPs

and the modeling of CSP in PSS is similar to that inGENET. CSVC is a dis-

Crete Lagrange multiplier method for solving integer constrained minimization

Chapter 2 Background 8

problems. One of the variants of CSVC, CSVC{GENET), is a Lagrangian re-
construction of GENET. CSVC(GENET) is the most efficient implementation
of GENET that we know of. We use the performance of CSVC{GENET) in

experiments to compare the performance of PSS and its variants. A descrip—

tion of CSVC is given next. Adaptive Search isa heuristic search method for
solving CSPs. The key idea of thismethod is using variable—based information
to decide which variable should be repaired at next. This idea is closely related

to the list of variables—to—be—repaired used in PSS.

2.3.2 GENET

GENET [6°>30] is a local search approach for solving CSPs with binary con—
straints. GENET uses iterative repair method tofinda suitable assignment of
variables. Once it is trapped in a local minimum, a heuristic learning rule is
applied to escape from the local minimum and to avoid the network settled in
the same local minimum again.

GENET first models a given binary CSP < > as a neural network.
Each node in the network represents an assignment of a value to a variable.
The state Si of node i is either 1 for on or 0 for off. If a node ison, it means the
corresponding value is being assigned to the variable. A duster is the set of
all nodes that represents the assignments of the same variable. A connection
between two nodes of different clusters represents an incompatible . tuple of a
binary constraint. Each connection contains a weight, which is initialized to
—-1. The weight of the connection between node i and j is denoted as Wij.
The input to a node is the weighted sum of all its connected nodes’ states.
At any time, only one node in each cluster is on. Therefore, every state of
the network represents an assignment of values to the variables from their
respective domains. A solution to the binary CSPs is at any network state, in

which no two on nodes are connected to each others. For instance, the GENET

Chapter 2 Background 9,,.

network of a CSP with V. 41 di{X) = d(Y) = d{Z) = {1,2,3} and
C={X+y >3 v +7Z> 3} is showed in Figure 2. 1.

Wow w3

Figure 2.1: An example of GENET network

GENET startswith randomly turning on one node in each . duster. In each
convergence cycle, every node in each cluster calculates its input. The node
with maximum input in each cluster is turned on and the others are turned
off. Note that the node with maximum input in each cluster represents the
assignment with the fewest number of constraint violations. If there are more
than one node have maximum input, a tie breaking system is run: if one of
them was on in the previous cycle, it will remain on. If all the nodes were off
in the previous cycle, a random choice is made. This is to avoid chaotic or
cyclic wandering of the network states.

When the network reaches to a stable state, i.e., no more changes to the
on nodes in the network, GENET checks if that state represents a solution.

A solution state is all on nodes have zero input. Otherwise, the network is
trapped in a local minimum.

When GENET settles ina local minimum, it represents that there are some
on label nodes that still receive negative input, i.e., some constraints are still
violated. The cause of this situation is the variable assignments are based on
the local information received at each cluster of nodes. To escape from the lo-

cal minima, a heuristic learning rule is used to update the weight of connections

wli = Wij- SiX Sj

Chapter 2 Background 10 -

Note that only the connections between two on nodes are being updated and
the value of weight is decreased by one each time. Therefore, after sufficient
learning cycles, the on node i and the on node j will not be the winner in its
cluster. Since the weights of the connections leading to local minima has been

updated, the heuristic learning rule avoids the network settling in the same

local minima again.

2.3.3 CSVC

CSVC [4] is a discrete Lagrange multiplier method [28] for solving integer
constrained minimization problems. CSVC hasfiveparameters and so it has
several variants. CSVC(GE"ET), one of the variants, isa Lagrangian recon—
struction of GENET. Choi et al [4] establish a relationship between GENET
and discrete Lagrange multiplier methods. CSVC{GENET) is shown to have
the same performance as the original GENET implementation. The best vari-
ant of CSVC reported in [4] outperforms the reconstructed GENET by an
order of magnitude. To solve a binary CSP, CSVC first converts the given
binary CSP into an integer constrained minimization problem. Then a dis—
crete Lagrange multiplier method is applied to solve the converted integer
constrained minimization problem.

CSVC first uses a GENET network to model a binary CSP <V,V,C >.
Then the GENET network is converted into an integer constrained minimiza—
tion problem. Suppose all values in domain d(vi) G V for all Vi~V are integers.
Each cluster 1 of the network corresponds to an integer variable in an integer
constrained minimization problem. Each node in cluster i corresponds to one
domain value of Zi. Each connection of the network is transformed into an

incompatibility function

1 iiZi=jAZR =1
— 4 [

v

. 2-1
8 otherwise (2-1)

Chapter 2 Background 11,

wherez = (..., Zi,...) is avector of integer variables and (i, j) {/c, I)is a connec—
tion between the node j in cluster i and the node I in cluster k of the network.
With the incompatibility function, the integer constrained minimization prob—

lem can be defined as follows,

min /(2) 2.2
subject to 7iG d4), Mvi G V> (2.3)

=0 V((Z,J),{/C,0)Ed, (2.4)

where z = ,Z1,...) 1isa vector of integer variables and I is the set of all
incompatible label pairs (/c,/)). The objective function /(%) typically

used is the total number of constraint violations in an assignment [32] or just
a constant, i.e., /(i) — 0.

With the resultant integer constrained minimization problem (2.2)-(2.4),
CSVE solves the given binary CSP using a discrete Lagrange multiplier method.
The Lagrangian function L{z, A) is defined as

Lz,) = /@B + E AT €007) (2.5)
(G-)° e
where f =(++> 2. >...) is avector of integer variables and A =(--- > X{i, j) {k 1),. -.)
is a vector of Lagrange multipliers. The goal is to obtain a global minimum of
the resultant integer constrained minimization problem (2.2)-(2.4) by finding
a saddle point [34] of the Lagrangian function L{z, A). The saddle point can
be found by searching descent direction in the discrete variable space of z and

ascent direction in the Lagrange multiplier space of A.

A S— (2.6)

Xsti =+ (4)> 2.7

where f® denotes the value of x in the sth iteration, A~ is the discrete gradient,
GD is a gradient descent function and = (.., 9i))tk,){",...) isa vector

of incompatibility functions.

Chapter 2 Background 12

CSVC hasfTiveparameters, namely (/) the objective function, (I*) initial-
ization of the integer vector (/X)) initialization of the Lagrange multipliers
A, {GD) the gradient descent function, and (f/) condition for updating the
Lagrange multipliers A. GENET can be reconstructed as an instance of CSVC
with a set of appropriate parameters. The details about the parameters for

reconstructed GENET can be found in [4:.

2.3.4 Adaptive Search

Adaptive Search [5] is a heuristic search method for solving CSPs. The key
idea of this method is using variable—based information to decide which variable
should be repaired at next. Then min—conflict heuristics [17] is applied to select
a suitable value for the repaired variable. Adaptive Search is an iterative repair
method. It terminates if either a solution is found or a pre—set limit of iterations
is reached. If the search is trapped in local minima, the variable caused the
trap ismarked tabu [9, 10] and cannot be selected for a number of coming
iterations.

The variable-based information used in Adaptive Search is obtained from
the constraints during the search. For each constraint, it associates with an er-
ror function. An error function value returned by the error function represents
the “degree of satisfaction” of the corresponding constraint. For instances, the
error function associated to constraints X -AY = Sand F - Z = 2 can be
defined as X + v — 5 and Y — Z - 2 respectively. Each variable is associ—
ated with an error. The error is the sum of the error function values of all
constraints in which the variable involved. The variable with the maximum
error will be selected to repair in the next iteration. For example, suppose the
variable assignments are X -5 » = 4 and Z = I, the error associated to
variable X, Y and Z are 4, 5 and 1 respectively. The total error of the variable

assignments is then computed as the sum of the absolutes values of the errors,

2

Chapter 2 Background 13

which is equal to 10. Therefore, variable Y will be repaired by assigning a

value that minimizes the total error.

2.4 Hybrid Approach

A hybrid approach of systematic and stochastic search has raised interest in
CSP community in recent years.

Yokoo proposes Weak—commitment Search [35] which employs min—conflict
heuristics [17] on backtracking algorithm. All variables are given tentative ini—
tial values. The process proceeds by repeatedly constructing consistent partial
solutions and extend them to include new variables one by one, until a consis—
tent complete solution is found. If a partial solution cannot be extended, the
whole partial solution is abandoned and a new partial solution is constructed
from scratch, which uses the current value assignment as new tentative ini—
tial values. Richards et al. [22] propose learn—-SAT algorithm that modified
Weak—commitment Search with learning—by-merging [21] for SAT problem. Pe-
sant et al. [20] use systematic branch—and-bound search to explore the set of
local search neighborhoods in combinatorial optimization problems. Schaerf
24] proposes a technique that constructs a partial consistent solution incre—
mentally. Local search is performed on the partial solution each time when
the construction reaches a dead—end. Jussien et al. [12] propose Path-repair
algorithm that performs local search as a basis, and usesfilteringmethods to

prune the search space and help in selecting neighborhoods.

W

Chapter 3

Progressive Stochastic Search

This chapter gives an introduction to Progressive Stochastic Search (PSS). PSS
is a new heuristic search method for solving binary CSPs. One characteristic
of PSS is that we maintain a list of variables, which dictates the sequence of
variables to repair. When a variable is designated to be repaired, it always has
to choose a new value even if its original value should give the best cost value.
Intuitively, the search can be thought to be mainly driven by a “force” so
that the search is able to “rush through” the local minima and plateaus. The
search paths are also slightly “marked” as the search proceeds. Incremental
PSS (IPSS) is a variant of PSS. This variant shows an improvement over PSS
on some benchmarks. Details of IPSS are also given in this chapter. Finally,
we shall talk about a heuristic cluster selection strategy that integrates with

PSS and IPSS to boost the performance on some benchmarks.

3.1 Progressive Stochastic Search

Our proposed method, Progressive Stochastic Search (PSS), is anovel heuristic
search method for solving binary CSPs. In order to present our idea in a
systematic way, we adopt the presentation of GENET [6, 30] to illustrate the
idea of PSS.

14

m Chapter 3 Progressive Stochastic Search 15

3.1.1 Network Architecture

In PSS, a binary CSP < V,V,C > is represented by a network similar to
GENET. A variable Vi isrepresented by a cluster i of label nodes. Each label
node rui corresponds to a value m in the domain of Vi. We assume that each
domain contains more than one domain values. If a domain of a variable
contains only one value, this variable can be explicitly assigned the only value
and the CSP can be simplified by removing that variable and redefining the
constraints. The state of a label node is either on or off. At any moment, there
is exactly one label node that is in the on state in any cluster. Intuitively, a
label node is in the on state means the corresponding value is being assigned
to the variable.

A binary constraint ¢ e Con variables Vi and Vj is represented by weighted
connections between pairs of label nodes in clustersi and j respectively. There
is a connection between two label nodes rUi and Uj ifvi = m/{ Vj = n is prohib—
ited according to c. Each connection is associated with a weight initialized to
one. The weight of the connection between a label node mrii and a label node
Uj is denoted as Wrmnj— The output Orm of a label node rUi is 1 if the node is

on or 0 if off. The input Inn to a label node rrii is the weighted sum of all its

connected label nodes’ outputs:

Im.= E [B . 31

T'ij is connecting to I'T'LL
As at most one label node in each cluster is on at any time, a state of
the network represents an assignment of values to the variables from their
respective domains. A solution to the binary CSP corresponds to any network
state in which no two on label nodes are connected to each other. For instance,
the network architecture of a binary CSP withV = {X|Y,Z}, d{X) = d(Y)=
d(Z)= {1,2,3} and C — {5~ y = Z} is showed in Figure 3. 1.

m Chapter 3 Progressive Stochastic Search 16

ft ~ i

Figure 31: The network architecture of PSS

3.1.2 Convergence Procedure

The goal of executing the convergence procedure is to choose one label node
in each cluster to turn on so that no two connected label nodes—are turned on
at the same time.

The network is initialized as follows. Initially, all label nodes in all clusters
are in the off state. All weights of connections are initialized to one. Let U
denote the set of all clusters with all label nodes in off state. Therefore U
initially contains all clusters. Clusters are then removed from the set U one
after another. When a cluster x is removed from the set U, each label node in
X calculates its input, and the label node with the minimum input is turned
on. Ties are broken randomly. The greedy initialization [17] completes when
the set U is empty.

We maintain a list T to be used in the convergence procedure. Immediately
after the initialization, we append all clusters into the list T one by one, in
an arbitrary order. In each convergence step, the head cluster A of the list
is removed from the list. Let ph denote the on label node in h. If phhas a
zero input, then it remains on and nothing needs to be done. Otherwise, ph is
turned off, and the label node kh with minimum input among all label nodes
other than ph is turned on. Any cluster with its on label node connecting to
h is then appended to the list JT if it is not already in the list.

In order to guide the search towards solutions, we adopt the following

“m

Chapter 3 Progressive Stochastic Search 17 .

heuristic learning rule to update the connection weights.

Wnetx; — yold + -
” Phnj Phfij T 7j

(3.2

T
where ph is the previous on label node in the cluster h and rij isa label node
in the cluster j connecting to Ph’ This heuristic learning rule states that the
weight of the connection Wp'n,— that exists between ph and Uj is incremented
by one if rij is on, otherwise it remains unchanged.

After that, another cluster is removed from the list JT, and the above process
is repeated. The convergence procedure terminates when the list T becomes
empty. -

As the input of a label node represents the number of weighted conflicts
between this label node and the other on label nodes, the label node turned on
by the above convergence procedure in each cluster represents a value assigned
to the corresponding variable with the least number of weighted constraint
violations. Clusters are appended to the list JT if and only if its on label node
connecting to kh in a convergence step. Therefore, an empty list T at the
end of a convergence step implies all on label nodes receive a zero input. A
solution is found if all inputs of the on label nodes are zero. The overall PSS

algorithm is shown in Figure 3. 2.

Definition 3.1 A convergence step is one execution of the codes from line 11

to line 28 in Figure 3.2. ‘

Lemma 3.1 Denote /(pt) = is connected top” where A' 0is
a set of clusters, Pi is the on label node in cluster i. Let U be the set of all
clusters in the network, and Ujr be the set of clusters in the list T.

At the end of a convergence step (Figure 3.2 line 28),

kmPi-iirZ~(3)

“m

Chapter 3 Progressive Stochastic Search 18

Proof. We use Mathematical Induction to prove the lemma. Let U, ;. be the
set of clusters in the list T at the nth convergence step. Before starting the
convergence procedure of PSS, the list JF is initialized by appending all clusters
in an arbitrary order (Figure 3.2 line 11). At the first convergence step, the
list J” is not empty, and one cluster Amust be removed from the list 7' (Figure

3.2 lines 13-15). Therefore, U —K)) . ={/i}. There are three cases afterward:

1. Iph = Q (The condition of line 16 in Figure 3.2 is false).

Therefore, I{pf,, {h}) isalso zero as no other clusters in {/i} with their on

label nodes connected to phm The lemma holds in this case.

2. I = 0 (The condition of line 16 in Figure 3.2 is true) and =0
(Figure 3.2 lines 17-18).
Therefore, I{kh, {h}) isalso zero as no other clusters in {h} with their on

label nodes connected to kh. The lemma holds in this case.

3. Iph = 0 (The condition of line 16 in Figure 3.2 is true) and -0
(Figure 3.2 lines 17-18).
Therefore, /(@'>{1) is zero as no other clusters in {h} with their on label

nodes connected to kh. The lemma holds in this case.

As a result, the lemma holds for the first convergence step.

Assume that the lemma holds for the rth convergence step. At the (r+ 1)st
convergence step, the list ! F isnot empty, and one cluster A must be removed
from the list ' (Figure 3.2 lines 13-15). Therefore, U- wjT+i) = U- U U
th} — where isa set of clusters with their on label nodes connected to

kh. There are three cases afterward:

1. Ip = 0 (The condition of line 16 in Figure 3.2 is false).
It means that — 0and KX =0. Therefore, (& -/ +) is also zero
as 1A —-14+”) QU.

“m

Chapter 3 Progressive Stochastic Search 19

Since
hp”’u-uo JEIAP
and
hpH.u-u'~r'") = 0.
Therefore,

L pi’ri)) = ., Vie” —

The lemma holds in this case.

. Iph © 0 (The condition of line 16 in Figure 3.2 is true) and =0

(Figure 3.2 lines 17-18). ’

It means that Ifkhju) = - and = 0. Therefore, "ch MMy) is also zero
as ipi — C U. Note that kh is the current on node in cluster A.
Since

I —(; > =(3)- 2
and

W-4" +1)) = 0.

Therefore,

The lemma holds in this case.

. Ip” = 0 (The condition of line 16 in Figure 3.2 is true) and Ik - 0

(Figure 3.2 lines 17-18).
As all clusters with their on label nodes connecting to kh are no longer in
the set {U —#fi+") (Figure 3.2 lines 19-20), becomes zero
at line 28 of Figure 3.2

Since

W i) = 0’

Chapter 8 Progressive Stochastic Search 20 .

and

Therefore,

Since

and

MNRUK-uPyn) = 0.
Therefore,
Tm§+l)):0’ "ﬂ:”_”'T)

The lemma holds in this case.

As a result, the lemma holds for (r+ 1)st convergence step.

By the principle of Mathematical Induction, the lemma holds for all conver—

gence steps. 1

Theorem 3.1 PSS is in a solution state if the list T is empty at the end of a
convergence step. If PSS is in a solution state, then either the list 7' isempty,

or it will become empty in afinitenumber of convergence steps.

Proof. We first prove the statement: “PSS isin a solution state if the list T
is empty at the end of a convergence step.”

Since the list T isempty at the end of a convergence step, the set Uj : is
an empty set in Lemma 1. By Lemma 1, all inputs of the on label nodes in
U must be zero at the end of a convergence step. When all inputs of the on
label nodes in all clusters are zero, no two on label nodes are connected to
each other. This network state represents a solution state.

We then prove the statement: “If PSS is in a solution state, then either

the list T is empty, or it will become empty in a finite number of convergence

steps. ”

“m

Chapter 3 Progressive Stochastic Search 21 .

Since PSS is in a solution state, all inputs of the on label nodes in the
network are zero. There are two cases for the state of the list /F. Suppose the
list T is empty, then the statement is trivially true. Suppose the list T is not
empty, a cluster A must be removed from the list T in each convergence step
(Figure 3.2 lines 13-15). As all inputs of the on label nodes are zero, nothing
needs to be done in A and no cluster is appended to the list 77 (Figure 3.2,
the condition of line 16 is false). The list ~ will eventually become empty as
one cluster is removed from it in each convergence step (Figure 3.2 lines 13-15)

and the number of clusters in the list T is finite. 1

3.1.3 An Illustrative Example

We show an example on the well-known A —Queens problem to illustrate the
execution of PSS. A/ —Queens problem is a puzzle game, which consists of plac—
ing N queens on & N x N chessboard so that no two queens attack each other.
This puzzle game can be modeled as CSP with IN variables. Each variable
with domain {1,2,..., iV}. The 3 x N(IN — 1)/2 constraints state that no
pair of queens can ever be on the same row, up—diagonal or down—diagonal. In
this example, we use the 4—Queens problem as a demonstration (Figure 3.3).
For clarity of presentation, we have omitted the connections between the label
nodes in the figure. Figure 3.3(a) shows the initial network state. One label
node in each cluster is turned on. The list contains all clusters with an arbi-
trary order initially. In the first convergence step, cluster X1 is removed from
the list. Each label node calculates its input. As the current on label node Ixi
receives a zero input, it remains on in this convergence step (Figure 3.3(b)).
Cluster X2 is removed in the next convergence step. Since the current on label
node 3x2 does not receive a zero input, it must be turned off. The label node
1x2 has theminimum input, and it is turned on in cluster X2. As the on label

node in cluster X1 is connected to 1x2, H 1is appended to the list (Figure

m Chapter 8 Progressive Stochastic Search

1 /* Initialize the network */

2 for each Wrmnj do

3 Wm,nj — 1

4 end for

5 Let 7/ be a set and all clusters are in U initially
6 while U is not empty do

7 select and remove a cluster x from U
8 turn on a label node inx with minimum input,
9 breaking tie by random selection

10 end while

11 append all clusters to a list T in an arbitrary order
12 /* Convergence Step */

13 while list T is not empty do

14 remove and get the head cluster A,

15 denote ph as its on label node

16 if input of Ph — 0 ‘
17 turn on a label node RhPh) with minimum input,

18 breaking tie by random selection

19 append clusters with their on label nodes connecting to kh
20 to the list JF

21 for all clustersj h) do

22 denote rij as its on node

23 if rij is connecting to Ph

24 Wp A—Wp.n, + On.

25 end if

26 end for

27 end if

28 end while

Figure 3.2: The algorithm of PSS.

“m

Chapter 3 Progressive Stochastic Search 23 .

X bdh2bshd] e |\add] B[D | VNI
X XI X3 X4 X\ XI Xi X*X XI Xi %
IMAAA MAAA MMAA
20b 0o - O0O0O- O00O£
30 -OOWO'WOO 0000

(4) (b © <« -
Haé’\:lierI Ix’\ x”N x| XIJ!’ HXi41x\ [XI Xz
bhias MWNEe a¥es
30000 OO00O0 000

Wuwu WuWu W W

@ © ®

Figure 3.3: PSS: 4-Queens example.

3.3(c)). Since the previous on label node 3x2 is connected to the on label
node 4x3, the weight 1°3724x3 isupdated. In the next two convergence steps,
both on label nodes of X3 and X4 receive a zero input, and no changes occur
in the network (Figure 3.3(d) and (e)). In the fifth convergence step, cluster
XI isremoved from the list again. The label node 3xi receives the minimum
input (zero input) and is selected to turn on. As there are no clusters with on
label nodes connecting to 3xi, no clusters are appended to the list. Since the
previous on label node Ixi is connected to the on label node 1x2, the weight
is updated. As the list becomes empty at the end of this convergence

step, a solution is found (Figure 3.3(f)).

3.2 Incremental Progressive Stochastic Search

As mentioned in the previous section, PSS works on a complete assignment and
performs a heuristic search to find a solution. In this section, we introduce
a variant of PSS which is called incremental PSS (IPSS). IPSS selects one
cluster at a time. One label node in the selected cluster is turned on. The aim

of the search in IPSS is to finda consistent partial assignment. This partial

m Chapter 3 Progressive Stochastic Search 24 .

solution is then extended until a complete solution is obtained. The details of
the network architecture and convergence procedure of IPSS are discussed in

the following sections.

3.2.1 Network Architecture

The network architecture of IPSS is the same as that of PSS. However, the
definition of the state of the network is refined. In PSS, a state of the network
represents a complete assignment of values to the variables from their respec—
tive domains. A cluster without any on label node corresponds to a variable
that has not been assigned a value. In IPSS, however, a state of the network
represents a partial assignment of values to the variables from their respective
domains. Therefore, any network state in which no two on label nodes connect

to each other represents a partial solution to the CSP.

3.2.2 Convergence Procedure

The convergence procedure of IPSS is based on that of PSS. The network is
initialized by setting all label nodes in every cluster to the off state. This
network state denotes an empty assignment at the beginning.

After the network initialization, IPSS divides the set of clusters in the
network into two subsets. One is a subset Via of clusters, inwhich each cluster
has one on label node. Another one is a subset Uu of clusters, inwhich’ all label
nodes in these cluster are in off state. Initially, all clusters are in the set Ul,
and the set Ua is empty. Clusters are selected from Uu and moved to Ua one by
one. After a cluster i is moved to the set Ua, each of the label nodes in cluster
i calculates its input, and the label node rrii in cluster i with the minimum
input is turned on. Ties are broken randomly. We also maintain a list /F to
be used in the convergence procedure. The list 7' is initialized to be empty.

Any cluster in the set Ua with its on label node connecting to mii is appended

“m

Chapter 3 Progressive Stochastic Search 25

to the list T if it is not already in the list. Then we apply the convergence
step in PSS to the set Ua until the list T" becomes empty. After the list T
becomes empty, another cluster is selected from the set Uu and moved to Ua.
The convergence procedure in IPSS terminates when the set Uu and the list T

are both empty. The overall IPSS algorithm is shown in Figure 3.4.

3.2.3 An Illustrative Example

We use 4-Queens problem to illustrate the execution of IPSS (Figure 3.5).
For clarity of presentation, we have omitted the connections between the label
nodes in thefigure. Initially, all label nodes in the network are in off state.
The set Uu contains all clusters. The set Ua and the list are both empty (Figure
3.5()). In Figure 3.5(b), cluster XI is selected from Uu and moved to I4a. As
all label nodes in XI receive a zero input, random selection ismade to break
the tie. We assume the label node 1°i is turned on. Since no on label nodes
connect to Ixi, no clusters are appended to the list. Figure 3.5(c) shows the
next network state. Cluster X2 is selected from Uu and moved to Ua- Each
of the label nodes calculates its input. The label nodes 3x2 and 4x2 both
receive the minimum (zero) input, random choice is made. We assume the
label node 3x2 is turned on. As a consistent partial assignment is obtained,
another cluster is selected from Uu- Suppose cluster X3 is selected from U,
the label nodes 1x3 » 2x3 and 4x3 receive the minimum input. We assume the
label node 4x3 is turned on. At this time, the on label node 3x2 is connecting
to the on label node 4x3, and so cluster X2 is appended to the list (Figure
3.5(d)). A non—empty list at the end of each convergence step indicates that
the network state represents an inconsistent partial assignment. Therefore,
cluster X4 : will be selected from Uu if the list becomes empty at the end of the
convergence step. Since the list isnot empty, the head cluster X2 is removed

from the list. The current on label node 3x2 receives a non—zero input, and it

Chapter 8 Progressive Stochastic Search 26

1 /* Initialize the network */
2 all label nodes in the clusters are in off state
3 Uu = the set of all clusters

424=0

5 for each do
6 Wnmg — 1
7 end for

8 initialize a list T to be an empty list
9 while Uu is not empty do
10 select a cluster 1 gUu

11 turn on a label node rrit with minimum input,

12 breaking tie by random selection

13 append clusters in Ua with the on label node connecting to rui
14 to the list J”

15 move the cluster i from Uu to Ua

16 /% Perform PSS to the clusters in Ua */
17 while list J is not empty do

18 remove and get the head cluster A from the list

19 denote ph as its on label node

20 if input oi ph” 0

21 turn on a label node kA Ph) with minimum input,

22 breaking tie by random selection

23 append clusters with their on label nodes connecting to kh
24 to the list &

25 for all clustersj e do

26 denote uj as its on label node

27 if rij is connecting to ph

28 VVp.nj —_— + ()n’ °
29 end if

30 end for

31 end if

32 end while

33 end while

Figure 3.4: The algorithm of IPSS.

m Chapter 3 Progressive Stochastic Search 27

vl ITITI=ITIT1™8 ITTITITIHAR IT I

XTI X2 X3 X4X\ XI B¥ XIX2 B ¥ X\ XI X» XA
ITAAAAT R A A Al MNiIM Al
20000 | oooo [olo]]o0 0]0]0]o0
30000 |ob oo lolK|lo o olYlolo
tplpJE bMAY1¥Qy
V. V. U, v. V. V. V.
@) (b) © d

[J+] TTTI™9TTTIT™=TTITT I
XNXI X3 X M XTI X3 X4X XTI X3 X

1 OWxebl /0¥ =" - fPWC’ O offnode
20lololo oloio o ololo|»
3olololo -loloio -lololo
4 pAgfelWI AQOA. JWIIplpl. ic
t/- U V. Vu Vm

© ® ©
Figure 3.5: IPSS: 4-Queens example.

must be turned off in this convergence step. As all other label nodes receive
the minimum input, random selection is made. We select 1x2 to be turned on.
Unfortunately, the on label node Ixi is connecting to 1x25 and so cluster X7
is appended to the list (Figure 3.5(e)). Since the previous on label node 3x2

is connected to the on label node 4x3 » the weight 1°324x3 is updated. As the
list is still non—empty, the head cluster XI is removed from the list. The label
node turned on this time is 3xi because it is the only label node that receives
a zero input in cluster XI (Figure 3.5(f)). Since the previous on label node
1x1 1is connected to the on label node 1x2, the weight is updated.
After the above two convergence steps, the list becomes empty. Therefore, the
cluster XA is selected from Uu and moved to Via. The label node 2x4 receives
a zero input and is selected to turn on. Since no on label nodes connect to
2x4, no clusters are appended to the list (Figure 3.5(g)). As both Uu and the

list are empty, a solution of 4-Queens problem is found.

“m

Chapter 8 Progressive Stochastic Search 28 .

3.3 Heuristic Cluster Selection Strategy

We have mentioned numerous stochastic search algorithms in Chapter 2. Dif-
ferent algorithms may use different neighborhood function to select which vari-
able should be repaired next. GSAT [27] uses a greedy strategy. A variable will
be selected next if the change of its value gives the most improvement over
other variables. DLM [28] uses a descent strategy which picks any variable
that has improvement.

PSS and IPSS both use a list T to store which cluster should be repaired
at the next convergence step. The ordering is in a first-in-first-out manner.
A heuristic that has been proved to improve efficiency in many cases is to
integrate the idea of greedy variable ordering into PSS and IPSS. In each
convergence step, a cluster with its on label node that has the maximum input
among all on label nodes in other clusters is removed from the list T. Tie is
broken by random selection. We denote max—PSS and max—IPSS as variants
of PSS and IPSS that use this greedy variable ordering respectively. A related
heuristic called max—input ordering (MI0) for GENET or EGENET has been
proposed in [29]. MIO dynamically arranges the clusters to be repaired in
GENET or EGENET according to descending order of inputs for the current
assignment. This approach shares the same idea with max—PSS to improve the
efficiency.

We use 4-Queens problem to illustrate how the heuristic works, on PSS
(Figure 3.6). For clarity of presentation, we have omitted the connections
between the label nodes in the figure. Figure 3.6(a) shows the initial network
state. One label node in each cluster is turned on. The list contains all
clusters with an arbitrary order initially. In each convergence step, a cluster
with its on label node that has the maximum input among all on label nodes
in other clusters is removed from the list. The input of on label node in cluster

XI, X2, X3 and X4 are 0, 1, 1and O respectively. As both cluster X2 and X3

“m

Chapter 3 Progressive Stochastic Search 29 .

list: XI X2 X3 X4 list: XI X3 X« list: X3 X4

X\ X2 BX4 X\ X2 XM X4X| XIBM
1 aaa M/®¥AA A MAA

20b o+ o0 o0 o - p oo ®

30O - 00 o00O0 OO0
WWwW wwwlV WulWu

(@) (b) (0)

%t on node

1 1 1 0 of f node

la/<¥aA AMAA
2000 - 000
3-0p 0 2000
WuWu www
(d ()

Figure 3.6: max—PSS: 4-Queens example.

have their on label node with maximum input, one of them will be removed
from the list. In the first convergence step, we assume that cluster X2 is
removed from the list. Each label node in cluster X2 calculates its input.
Since the current on label node 3x2 does not receive a zero input, it must
be turned off. The label node 1x2 has the minimum input, and it is turned
on in cluster X2. As the on label node in cluster X1 is connected to 1x2 >
XI should appended to the list. However, cluster XI is already in the list,
nothing needs to be done (Figure 3.6(b)). Since the previous on label node
3x2 is connected to the on label node 4x3, the weight VK3%J4{] is updated. At
the beginning of the second convergence step, the input of on label node in
cluster XI, X3 and X4 are I’ 0 and O respectively. Therefore, cluster XI is
removed from the list. The label node 2xi receives the minimum input (zero
input) and is selected to turn on (Figure 3.6(c)). As there are no clusters
with on label nodes connecting to 2xi, no clusters are appended to the list.
Since the previous on label node Ixi is connected to the on label node 1x2,
the weight Wi" i~ isupdated. In the next two convergence steps, both on
label nodes of X3 and X4 receive a zero input, and no changes occur in the

network (Figure 3.6(d) and (e)). As the list becomes empty at the end of this

“m

Chapter 3 Progressive Stochastic Search

convergence step, a solution is found (Figure 3.6(e)).

<<V fisr.-.

30

Chapter 4

Experiments

In order to evaluate the efficiency of PSS and its variants, namely, IPSS, max—
PSS and max—IPSS, experiments on four sets of problems are conducted. These
include a set of N-Queens problems, a set of permutation generation problems
(including increasing permutation generation and random permutation gener—
ation), a set of quasigroup completion problems (including the special cases of
Latin squares) and a set of randomly generated binary CSPs (including tight
CSPs and phase transition CSPs). We compare the performance of PSS and
its variants with that of GENET) [4], themost efficient implementation
of GENET that we know of, and cSVC{IMF) (4], the most efficient variant
of CSVC,

The implementation of PSS and its variants are based on the implementa—
tion of csvc, which encompasses all of £{SP/: (GENET), csvJcamr) and
the lazy variants in one implementation. Therefore, the comparison between
PSS and csve is fair.

All the benchmarks are performed on a Pentium4 1.4 GHz machine with
512 Mb of memory running Linux RedHat 8.0. For each problem, 100 runs
of results are recorded. The term “steps” in the tables means the number of
times that the clusters are considered to select a label node to turn on. All
the timings are measured in seconds. The timing figures without brackets are

the averages of hundred runs while the figures with brackets are the medians.

31

Chapter 4 Experiments

All the timing results are the search time only. All problem instances used in

the experiments are the same as those used in [4 -

4.1 iV-Queens Problems

TV—Queens problem is a puzzle game, which consists of placing N queens on
SI N X N chessboard so that no two queens attack each other. This puzzle
game can be modeled asa CSP with N variables. Each variable has a domain
{1,2,..., A"}. The 3X 7V(7V— 1) /2 constraints state that no pair of queens can
ever be on the same row, up—diagonal or down—diagonal. This set of experi—
ments consists of 5 instances: 100—queens, 125—queens, 150—queens, 175—queens
and 200—queens. Table 4.1 shows the experimental results of PSS and its vari-
ants. The results of CSVC(GENET) and CSVC{IMF) are presented in Table

4.2. The mean timing results are plotted in the Figure 4.1 for comparison.

Problem PSS PSS

N Steps CPU time Steps CPU time

100 119.8(117.0) 0.0082(0.0100) 125.4(122.0) 0.0088(0.0100)
125 145.0(142.5) 0.0122(0.0100) 149.5(147.0) 0.0129(0.0100)
150 166.7(165.0) 0.0181(0.0200) 173.2(172.0) 0.0173(0.0200)
175 199.8(197.0) 0.0252(0.0200) 198.7(195.5) 0. 0241 (0. 0200)
200 221.0(218.0) 0.0311(0.0300) 223.2(220.0) 0.0312(0.0300)

max-PSS max-IPSS

m 126.4(122.0) 0.0084(0.0100) 122.1(118.5) 0.0071(0.0100)
125 149.0(146.0) 0.0135(0.0100) 148.2(144.0) 0.0124(0.0100)
150 176.0(172.0) 0.0189(0.0200) 173.1(171.0) 0.0175(0.0200)
175 198.7(196.5) 0.0245(0.0200) 200.0(197.0) 0.0242(0.0200)
200 226.5(223.5) 0.0332(0.0300) 222.7(220.0) 0. 0310(0. 0300)

Table 4.1: PSS and its variants on iV-Queens problems

As shown in Tables 4.1 and 4.2, PSS and all its variants are more efficient
than CSVC(GEJ*~ET) in all cases and CSVCIMF) inmost cases (except 100-
queens). In general, the performance of PSS and its variants are almost the
same, which is about 55% of the time taken by CSVC/GENET). From the data

in Table 4.2, it can be concluded that £{S:D£ (GENET) and cSvVCaMF) do

52

Chapter 4 Experiments

N CSVCjGENET)

Iteration Repairs Learns CPU time
100 42.9(30.5) 93.6(89.5) 19.6(13.5) 0.0132(0.0100)
125 39.5(30.0) 109.4(105.0) 18.0(13.0) 0.0218(0.0200)
150 37.3(30.5) 125.1(124.0) 16.7(13.5) 0.0316(0.0300)
175 43.1(35.0) 144.5(141.0) 19.6(16.0) 0.0436(0.0400)
200 44.8(36.0) 159.5(156.5) 20.3(16.0) 0.0559(0.0600)
~~N CSVCilMP)
100 23.2(17.5)54.0(49.0)23.2(17.5) 0.0078(0.0100)
125 33.3(24.5) 72.9(63.5) 33.3(24.5) 0.0153(0.0150)
150 27.6(19.0) 72.3(63.5) 27.6(19.0) 0.0206(0.0200)
175 33.5(23.0) 85.8(75.5) 33.5(23.0) 0.0290(0.0300)
200 34.1(24.0) 91.6(83.5) 34.1(24.0) 0.0377(0.0400)

Table 4.2: £5P£(GENET) and CSVC{IMF) on A”-queens problems

0Ofi 1 I
& PSS
-e- max-PSS
-A- IPSS
-0- max-IPSS
0.05- A LSDL(GENET)
0 LSDL(IMP)
A
- 0.04
0 X
S
o o 3
01 1 1 1
100 125 150 175 200

Number of queens

Figure 4.1: The mean time results on A*-queens

Chapter 4 Experiments 54

learning a number of times to escape from local minima. Recall that learning

is a process that updates the weights of the connections, the corresponding
constraints of which are violated. We note that learning is expensive in the
CSVC implementations. For each learning in CSVC implementations, the
weights of several connections are updated. However, PSS and all its variants
also update the weights of the connections at the end of each convergence step.
If we compare the number of weights updated of CSVC implementations with
that of PSS and its variants, we conclude that these numbers are almost the
same in all problem instances. Therefore, learning is not the factor that affects
the performance in this set of experiments.

To explain why PSS and its variants have a better performance than
CSVCiGENET) and CSVC{IMF), we analyzed search processes in the ex—
periments. From Table 4.1 and 4.2, CSVC{GEmT) and £5P/: (IMP) use
fewer repairs than PSS and all its variants. However, CSVC{GENET) and
CSVCilMP) take more steps tofinda solution. The number of steps taken in
CSVC{GENET) and CSVC{IMP) is equal to the number of variables times
the number of iterations. For example, the mean number of steps taken in
CSVC{GE/ET) to solve 200-queens is 8,960 (200 x 44.8). Among these steps,
the clusters are actually repaired in only 159.5 steps and nothing really needs
to be done in all other steps. Worse, these repairs have little effect on the
subsequent search process. Figures 4.2 - 4.10 show the numbers of violations
against total inputs or objective values of PSS, max—PSS, IPSS, max—IPSS,
CSVC(GENET) and CSVC({IMF) on 100-queens problem. Figures 4.11 -
4.19 show the numbers of violations against total inputs or objective values of
PSS, max-PSS, IPSS, max-IPSS, £<{SP£ (GENET) and cSvcamF) on 200~
queens problem. We can see that PSS and max—PSS quickly rush through
large plateaus and the ordering to repair variables (the list JT) provides excel-
lent direction towards solutions. For IPSS and max—IPSS, the partial solutions

found can be extended easily. This is the reason why PSS and its variants have

Chapter 4 Experiments 55

better timing results than that of £0T£ (GENET) and CSVC{IMF).

m ¢ 13 ¢ ¢ n/j 13 13
9 s
8
T - 7
V) |
& _ . gi «
Z3 1 3 L
2 I
1-

kel 100 150 200 250 300 o

50 .00 150
Number Of steps

Number of steps

(a) PSS: Violation vs. Step

B) ¢) ¢ ol ‘ ‘
9 9
8 8
2 -7

O [13

I-n 3 g

eIs -;1"

. \ N \
3 A -1
2 S
F I y

' . n ' 1 0-1 1 1— >
50 100 150 200 250 300 0 50 100 150
Number of steps Number of steps

(c) max-PSS: Violation vs. Step

Figure 4.2: Numbers of violations and total inputs in each step of PSS and

max—PSS on 100-Queens problem (average run—time case)

200

(b) PSS: Total input vs.

1
200

250

Step

1
250

(d) max-PSS: Total input vs. Step

300

300

Chapter 4 Experiments 36

H_ (4 3 (4 3 !H 3 3 (4 (13 3
o
7
§
1 1,
% 1
4- 0O
3
z 3~ 3
2% 2%
: im __ ., [51 _,[IB . _ AA,
0 50 100 150 200 T 250 T T 300 0 o 100 150 — 20 250 300
Number of steps Number of steps
(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step
D‘I 3 3 3 3 3 1’1 D 1 3 3 3 3 3
9- 9
8- 8.
7 7
8 .
r |
E 4
3- "
2- 2.
]77; III 777:77’771 ’1 ’ m Y ——y — —
0 50 100

200 250 300 0 50

150 100
Number of steps

150 200 250 300
Number of steps

(¢) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.3: Numbers of violations and total inputs in each step of IPSS and
max—IPSS on 100-Queens problem (average run—time case)

Chapter 4 Experiments 37

7.\

100-
I 1
I 80. f
1 & - T«
z

40-

20 .

/\/\‘[ﬁj A A
0 ~ " 4 « K) A~ n A A ° 0 2000 4000 6000 8000 10000 12000 14000 16000
Number Of steps Number of steps

(a) £SVjC(GENET): Violation vs. Step (b) >C5P£(GENET): Objective value vs. Step

140-1

120+

1/)
1)
1, eo- 1
% e
S
I & ¢ ©
3
z
40-
p.1} p.1}
A"——’——’——’——’——’——i OkA——’——’——— _—— —_—— —_
0 2000 4000 BOD%HMbEBrOCLOf s‘EPISDOQD 12000 Uooo 16000 0 2000 4000 Ech‘uthBrDﬂnC’f S‘EPlSDODU 12000 14000 15000
(c) £5PL£(IMP): Violation vs. Step (d) CSVjC(IMP): Objective value.vs. Step

Figure 4.4: Numbers of violations and objective values in each step of
£<{SP£L£ (GENET) and Jcsveamp) on 100-Queens problem (average run—time
case)

Chapter 4 Experiments 38

IH: ¢ 3 3 ¢ ¢ h 1] n! ¢ ¢ 3 3 ¢

€
A S
1 4 4
3. 3.
2- 2.
1 1 1 I
0j 1 r IS 0-1 1 T- 7T ’ . 1-
0 1 be' Df steps 200 250 300 0 50 100 Number of steps 200 250 300
(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step
oH h
9- 9-
B - 8
7. 7-
1 1,
0 B
1 [13
; 3 1 3 1
0l . j . 1 1 T (1 1 —r- 1
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Number of stills umber of steps
(c) max-PSS: Violation vs. Step (d) IPSS: Total input vs. Step

Figure 4.5: Numbers of violations and total inputs in each step of PSS and
max—PSS on 100—Queens problem (short run—time case)

Chapter 4 Experiments

(S
@
"\

39

I;]._,U A A

) ’

Number of steps

(a) IPSS: Violation vs. Step

H 3 ¢ 3 3 3

©

3 e] =
® -

-
»

Oazuaama

s0 150 200
Number Of steps

(¢) max-IPSS: Violation vs. Step

- —_ =
300 0 50 100 150 200 250 300
Number of steps

(b) IPSS: Total input vs. Step

\ 3 ¢ 3 ¢ ¢

— J——B———

300 o 50 100 200 250 300

150
Number of steps

(d) PSS: Total input vs. Step

Figure 4.6: Numbers of violations and total inputs in each step of IPSS and
max—IPSS on 100-Queens problem (short run—time case)

Chapter 4 Experiments 40

WH fo— 1<0"|
7.3 0-
100
1 80- 5
5 f
] @ o J -
z
20 <0
p. p. 3
o . L A L, . . — o k A — — — — . — - = - = = = = =
0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 [Veoe) 16000
Number of steps Number of steps

(a) CSVC{GENET): Violation vs. Step (b) CSVC{GENET): Objective value vs. Step

140 H ’ ‘ ‘ ‘ ‘ ‘ ‘ [1401
120- 120
100-
|l @ g
16 R @
E
?
20
2 p. 3
o . B - - _ 1 o h . - " .
0 2000 4000 600?‘lumbe8r0000f 5tep150000 12000 14000 16000 0 2000 4000 EOOa“mbeﬁgfﬁ)' steplsDOOO 12000 14000
(c) £5P£(IMP): Violation vs. Step (d) CSVC{IMF): Objective value vs. Step

Figure 4.7: Numbers of violations and objective values in each step of
£5DL (GENET) and cSvciaMF) on 100-Queens problem (short run—time
case)

Chapter 4 Experiments 41

101 h 104 —A

8 8 -
¥ 7- 7,
N ,' 9 ° n °

2 1 21 1

I 1 I ~

0L 1 1 11 . T O . ‘ e ¢ ¢

0 SO 100 Numbe}ng steps 200 250 300 0 50 100 Numbe}sgf steps 200 250 300

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step
Dl 3 3 ¢ ¢ ¢ _1 ﬂ_]: 3 3 ¢ 3 1

0
‘16 36
1 t,
s 5
14 o
3
z
3- 3-
: A
)) ’) I I —] 9 9 ’ 9 I s -
) so 100 150 200 250 300) 50 100 150 200 250 300
Number of steps Number of steps
(¢) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.8: Numbers of violations and total inputs in each step of PSS and
max—PSS on 100-Queens problem (long run—time case)

Chapter 4 Experiments 42

1 1 1 1 m
"
N
g
g
7
.
,
=
0 4z
4 Ky
3
; ,
N
» n

I » fn >

_ - — Y - — —

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step
Q_I 3 3 l|1 (3 3

3
9-

[—
R)

11 1

(€) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs.. Step

Figure 4.9: Numbers of violations and total inputs in each step of IPSS and
max—IPSS on 100-Queens problem (long run—time case)

Chapter 4 Experiments 63

WH

120-

- o 4 H@ﬂ
(a) CSVCiGENET): Violation vs. Step
%j < < <

T ~ K “« A . ~ « ~ 1

Number of steps

(c) £5P£(IMP): Violation vs. Step

o+ — D=

P |

120-

100-

- I

A
Al

(b) £52)£(GENET): Objective value vs. Step

3 13 < <

H

a
o

fE HH Nbeofshs

Number ot sieps

B GE

(d) £5DL(AMP): Objective value vs. Step

[ole)

Figure 4.10: Numbers of violations and objective values in each step of
£5P£ (GENET) and £<SP£(IMP) on 100—Queens problem (long run—time

case)

Chapter 4 Experiments

0-1 , 1 . 1 1 1
50 100 150 200 250
Number of steps

(a) PSS: Violation vs. Step

DH < < < <
8 1
I/) 7 1 1
5 ¥
1: U
(3 : L
r H
A , . 1 . jNI

150 200
Number of steps

(c) max-PSS: Violation vs. Step

44
[. l /! < < < ‘_'\‘ <
- 9.
s
,
G
“5
5
bad]
o R
1- I
OH 1 1 1 " n
300 0 50 100 150 200 250 300
Number of steps
(b) PSS: Total input vs. Step
h D i < < < <
5 -
8
=
. 5 ’ 1
L] °
o U
Do L
- S
r o 1 1 T
300 0 50 100 200 250 300

150
Number of steps

(d) max-PSS: Total input vs. Step

Figure 4.11: Numbers of violations and total inputs in each step of PSS and
max—PSS on 200-Queens problem (average run—time case) ‘

Chapter 4 Experiments 45

IOH

h-
15 15
z 3 3.

i nm _ _ S R | | I :

0 50 100 150 200 250 300 0 50 100 150 200 250 300

Number of steps Number of steps
(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

H] < < < < < h DH < < < _ < <

9- 9-

8 8

7- 7-
14

[]

V_ 1 .
I4 €L .
3
z 3 3.

2 2

I m , S R | F1 ,

0 50 too 150 200 250 300 0 50 100 150 200 250 300

Number of steps Number of steps
(¢) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.12: Numbers of violations and total inputs in each step of IPSS and
max—IPSS on 200-Queens problem (average run—time case)

Chapter 4 Experiments 46

250-1

©
1o - i I
I 100- g 100-
3
z

50 5 0

0- \ . 1 1 1 1 1 0-\ _ o« _f _ e " "

0 2000 4000 6000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000

Number of steps Number of steps

(a) CSVC{GENET): Violation vs. Step (b) CSVC{GENET): Objective value vs. Step

1 10

1B 1B

I]

1 & &
234) Q0

y T
0l = 1~ - I 1 1 1 " oJ ™ 1 «

0 2000 4000 8000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 uooo
Number of steps Number of steps

3 ¢

16000

(¢) CSVC{IMF): Violation vs. Step (d) CSVC{IMF): Objective value vs. Step

Figure 4.13: Numbers of violations and objective values in each step of
CSVC{GENET) and CSVC{IMF) on 200-Queens problem (average run—time

case)

Chapter 4 Experiments

F
01 1 1 1 > 1

50 100 150 200 250
Number of steps

(a) PSS: Violation vs. Step

H_I < 3 3 3 <
2

2 1

01 1 1 . rJ 1

150 200 250
Number of steps

(¢) max-PSS: Violation vs. Step

Figure 4.14: Numbers of violations and total inputs in each step of PSS and

h El < < < <
7
16
\
t S
I/ 61 1 < < ~
300 0 50 00

150 200 250
Number of steps

(b) PSS: Total input vs. Step

h tOj]. 3 3 3 ¢ 3
9-
&
3 1
i 1
r o 1 | r]
300 0 50 100 200 250

150
Number of steps

(d) max-PSS: Total input vs. Step

max—PSS on 200-Queens problem (short run—time case)

47

300

300

Chapter 4 Experiments
10H h 10-1
9- 9-
8- 8-
7- 7
9
1 -3
T _ 2
3
3- 3-
9.
. N\ .
L, N m LI ;U T , ,
0 so 100 150 200 250 300 0 50 100 200
Number of steps

Number of steps

(a) IPSS: Violation vs. Step

3-

3

)

_ Y — - —
0 50 00

i].
a1l __1
200 250 00
Number of steps

(¢) max-IPSS: Violation vs. Step

50 100

Number of steps

SO 200

48

250 300

(b) IPSS: Total input vs. Step

u .

— 9
250 300

(d) max-IPSS: Total input vs. Step

Figure 4.15: Numbers of violations and total inputs in each step of IPSS and

max—IPSS on 200—Queens problem (short run—time case)

Chapter 4 Experiments

o Ik .

0 2000

(a) CSVC{GENET):

’)
6000 8000
Number Of steps

Violation vs

))
4000 10000 12000 14000

. Step

N}—<U~|}—H—4®§

A

K

0 2000

6000 8000 10000 5 2000 14000 , 6000

Number Of steps

(c) £5P£(IMP)l:l Violation vs. Step

4000

49

J

0

6000 8000 10000 12000 14000

Number of steps

2000 4000

(b) £5DL(GENET): Objective value vs. Step

140 H
120-

100-

0 2000 4000

Number of steps

(d) £OTL(IMP): Objective value V6. Step

Figure 4.16: Numbers of violations and objective values in each step of

CSVC{GENET) and £<Sr>/: (IMP) on

case)

200-Queens problem (short run—time

Chapter 4 Experiments

=

©

S

N —

o @ M P

1 1 1

50 100 200

150
Number of steps

(a) PSS: Violation vs. Step

1 T 1 1

50 100 200

150
Number of steps

(c) max-PSS: Violation vs. Step

50
< 4+ IH < 3 ¢ < _ <
8
7-
S
3 1
A . AN
. ’
rJ VvV o 1 1 ‘ C
250 300 0 50 100 150 200 250 300
Number of steps
(b) PSS: Total input vs. Step
10-1
0
8-
7
. 36
§.
z s
-
3- > 1
2 >1 -
1 F *
1 ~ ¥ Gl 1 3 < 3 < *
250 300 0

250

Step

150 300
Number of steps

(d) max-PSS: Total input vs.

50 100

Figure 4.17: Numbers of violations and total inputs in each step of PSS and
max—PSS on 200—Queens problem (long run—time case)

Chapter 4 Experiments

Ipi
1 1 1

50 100 150 200 250
Number of steps

(a) IPSS: Violation vs. Step

] — 0y ——) — 1 n
50 100 150 200 250
Number of steps

(¢) max-IPSS: Violation vs. Step

i1T71,

51
¢ ¢ “ 1
ifim
1 1 , 11111

50 100 150 200 250
Number of steps

(b) IPSS: Total input vs. Step
1 : ’ 1

S , irn

S0 100 150 200 250
Number of steps

(d) max-IPSS: Total input vs. Step

300

300

Figure 4.18: Numbers of violations and total inputs in each step of IPSS and
max—IPSS on 200-Queens problem (long run—time case)

Chapter 4

250

b
0 2000

(a) CSVCiGENET):

250+

1
0 2000

(c) CSVCilMP):

Experiments

’
6000 8000
Number of steps

4000

. .
4000 6000 8000

Number of steps

Violation vs. Step

Violation vs. Step

h 250-1
200-
1s0-
7
g 100-
50-
, 1 "
10000 12000 14000 0 2000 4000 6000 8000 10000 12000

Number of steps

(b) CSVC{GENET):

Objective value vs

h 250-1 : : 1

200

A 150-

s 100

so-

L]
A 1.
ol B .) ;) ,

10000 12000 14000 0 2000 4000 6000 8000 10000 12000

Number of steps

52

14000

. Step

14000

(d) £0TL£(IMP): Objective value vs. Step

Figure 4.19: Numbers of violations and objective values in each step of
CSVC{GENET) and CSVC{IMP) on 200-Queens problem (long run—time

case)

Chapter 4 Experiments 53

4.2 Permutation Generation Problems

The permutation generation problem is a combinatorial theory problem that
construct a permutation p of integers 1 ton fulfilling conditions of monotonies

and advances. The vector of monotonies m of sizen — 1 is defined as

i1 fPH>H

mii = A1)
I 0 otherwise
forall 1 < i< n— 1. The vector of advances @ of sizen — 1 is defined as
f
1 ifpj Pi+ 1APi nforalll< j<z-1
fli = < 4.2)
0 ifpj Pi+t lforall z+ 1< j< n

\

forall 1< z< n- 1

This problem can be modeled as a CSP with n variables. Each variable
has a domain {1,2,...H}. The constraints

i — Xj
for alli — j and I < i,j < n restrict all variables take different values. The
constraints

Xi+i > Xi, if mii = 1,

ooiti < Xi, if mii = 0,
for all 1 < 2< n — 1 state the condition of monotonies m. The condition of
advances @ is stated by the constraints

-+ 1A n, VI<j<z-1, ifa = 1,
Xj— ai+ 1, Vz+ 1< j<n, ifa =0
forall 1< z< n- L

Two types of permutation generation problems are used in this set of ex—
periments. Thefirsttype problem is a set of increasing permutation problems.
The permutation required is a sequential permutation of integers from 1 to
n. The second type problem is a set of permutation problems in which the

monotonies and advances are randomly generated.

Chapter 4 Experiments 54

4.2.1 Increasing Permutation Problems

Table 4.3 shows the experimental results of PSS and its variants on the set
of increasing permutation problems, while Table 4.4 shows the experimental
results of CSVC(GENET) and CSVC{IMF) on the same set of problems.
The mean timing results for increasing permutation problems are showed in

the Figure 4. 20 for comparison.

IPSS
CPU time
0. 0000 (0. 0000)
0. 0405 (0. 0400)
0. 4816 (0. 4600)
393.9(387.1) 2.5104(2. 4650)

PSS

CPU time
0. 0000 (0. 0000)
0. 0422 (0. 0400)
0. 4417 (0. 4400)

"problem
n Steps x10°
10 0. 645 (0. 645)
20 14. 71(14. 16)
30 98.37(97.51)
40 399.3(398.4) 2.5867 (2. 5800)
50 1123(1058) 9.7123(9.1350) 1164(1120) 9.9537 (9. 5700)
max—PSS max—I1PSS
10 0. 467 (0. 231) 0. 0000 (0. 0000) 0. 572 (0. 572) 0. 0000 (0. 0000)
20 17.23(14.32) 0.0517(0.0500) 24.11(25.08) 0.0701 (0. 0750)
30 140.4(147.5) 0. 6664 (0. 6950) 183.6(193.7) 0. 8450 (0. 8900)
40 590.0(599.2) 4.0994 (4. 1550) 812.6(821.6) 5.5212(5.5900)
50 1625(1648) 15.017(15.205) 2352(2382) 21.524(21.785)

Steps x10~
1. 103(1. 103)
13.67(14. 14)
110.9(105. 6)

Table 4.3: PSS and its variants on increasing permutation problems

Problem CSVC{GENET)
n Tteration x10 Repairs x10 Learns x10~ CPU time
10 0.361(0.365 0.259(0.262) 0.180(0.182) 0.0000 (0. 0000)
20 11.98(11.96) 8.746(8.675) 5.997(5.980) 0. 0348 (0. 0300)
30 51.42(52.68) 42.15(43.08) 25.70(26.32) 0.2332(0. 2400)
40 160.0(153.6) 136.7(134.0) 80.03(76.81) 1. 0025 (0. 9900)
50 390.6(385.3) 343.6(341.2) 195.5(192.8) 3. 1528(3. 1050)

Problem CSVC{mP)
n Tteration x10 Repairs x10 Learns x10° CPU time
10 0.804(0.924) 0.926(1.040) 0.804(0.924) 0. 0000 (0. 0000)
20 6.671(5.447) 8.641(7.308) 6.671(5.447) 0. 0244 (0. 0200)
30 24.86(24.25) 35.26(35.62) 24.86(24.25) 0.1512(0. 1600)
40 77.19(80.63) 114.8(128.1) 77.19(80.63) 0. 6738(0. 7600)
50 196.8(199.0) 300.0(326.6) 196.8(199.0) 2. 2416 (2. 4450)

Table 4.4: CSVC{GENET) and CSVC{IMP) on increasing permutation prob—

lems

Chapter 4 Experiments 55

25 1. A f.
PSS
-e- max-PSS
-A- IPSS
-0- max-IPSS p
A LSDL(GENET) !
20- 1.0. LSDL(IMP) / -

ol .
10 20 30 40 50
n
Figure 4.20: The mean time results on increasing permutation problems

The increasing permutation problem is a special case of permutation gener—
ation problem: it has only one solution. In Table 4.4, CSVC(GE]"ET) needs
around 390,600 iterations and 195,500 learning to solve the increasing per—
mutation problem with n — 50. It means that for every two iterations, one
learning is required to escape from local minimum. Besides, the increasing
permutation problem has another property that makes it hard for local search
solvers. There exist a large number of assignments in which the number of vi-
olations equals to only 1 even though the assignment is “very wrong”. We use
an example to illustrate this. Assume that n = 5 and the variable assignment
isxi =2 X2 = 3, X3 = 4a4= 5, x = 1. All variables take the wrong values.
However, only one constraint {X4 < X5) is violated.

The timing results indicate that the performance of PSS and itsvariants
are much worse than £0T£ (GENET) and CSVC{IMP) in this problem. We

record the numbers of violations against total inputs or objective values of

Chapter 4 Experiments 56

Pl ‘ ‘ ‘ ‘ “ h MW
10- 10-
« & . 8 -
0-1 1 1—1 1 0-1 1 o1 i . ' : 1
200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 MOO
Number of steps Number of steps
(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step
Ei < < < < < If]2_{ < < < < < <
10 10

Ly

— T
AS

01 1 1 1 1 1 01 1 = 1 1 1 1
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Number of steps Number of steps
(d) max-PSS: Total input vs. Step

(c) max-PSS: Violation vs. Step
Figure 4.21: Numbers of violations and total inputs in each step of PSS and
max—PSS on increasing permutation problem with n = 10 (average run—time

case)

Chapter 4 Experiments 57

10- 10-

a0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Number of steps Number of steps

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

Ei < < < < < I/ E‘I < < < < < <

A
Ny — L_a_a_aJ_ Y 9_9__9_

0 200 400 600 a0o0 1000 1200 1400 0 200 400 600 600 1000 1200 1400
Number of steps Number of steps

(¢) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step
Figure 4.22: Numbers of violations and total inputs in each step of IPSS and
max—IPSS on increasing permutation problem with n = 10 (average run—time
case)

Chapter 4 Experiments 58

jud @
[
]

0 1 L , , 1 3 01 1 1 1 ¢ ¢
0 2000 4000 6000 6000 10000 12000 0 2000 1000 6000 8000 10000 12000

Number of steps Number of stifis

(a) CSVC{GENET): Violation vs. Step (b) CSVC{GENET): Objective value vs. Step

Ei < < < < ~ h < < < —‘ <
10-
nn | _ Mil I I
< < <« <
01 , , . —J 1 €1 1 :
0 2000 4000 Numbeh;'n%ol steps 8000 10000 12000 0 2000 4000 NumbeﬁrO%nl steps 8000 10000 12000
(¢) CSVC{IMF): Violation vs. Step (d) CSVC{IMP): Objective value vs. Step

Figure 4.23: Numbers of violations and objective values in each step of
(GENET) and CSVC{IMF) on increasing permutation problem with
n = 10 (average run—time case)

Chapter 4 Experiments

10.

4
G
-0
3
e
(154
mn
o J-1
0 200 400 1000

600 800
Number of steps

(a) PSS: Violation vs. Step

E_| < < < <

O\]___)_’ y

0 200 400 1000

600 800
Number of steps

(¢) max-PSS: Violation vs. Step

59

< < < < < <
P1
10.
8.
K
~E 6
[
- 4
d . < < < <
r o ~~i— t
1200 1400 0 200 400 1000 1200 MOO

Nﬁ(}%ber of sgt%ops
(b) PSS: Total input vs. Step

< < <

< h R—I < < < _

10-

i J -)) — —_— b)

1200 1400 0 200 400 1000 1200 1400

600 800
Number of steps

(d) max-PSS: Total input vs. Step

Figure 4.24: Numbers of violations and total inputs in each step of PSS and

max—PSS on increasing permutation problem with n =

case)

10 (short run—time

Chapter 4 Experiments 60

E‘l ¢ ¢ ¢ I I ¢ h 3 3 3 13 < 3

10 oo
W 8 - 8
s
i 3
I le-

0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 Moo
Number of steps Number of steps
(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

< < < < < < < < < < <
PH ‘ h Bl

10 10
» 8- 8-
1 I,
0 - S
[]
[]
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Number of steps Number of steps
(¢) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.25: Numbers of violations and total inputs in each step of IPSS and
max—IPSS on increasing permutation problem with n = 10 (short run—time
case)

Chapter 4 Experiments 61

12-]

I <
I I
A 11 . 1 1 1 [61 1I 1 . 1 1
(a) CSVC{GENETYy. Violation vs. Step (b) GENET): Objective value vs. Step

3 ¢ ¢ ¢ 3

Bl ¢ 3 1 3 3 h]21

1 111 1 1 ++ &6 1 111 1 1

6000 8000 10000 12000 0
Number of steps

Number of steps

0]

0 2000 4000

(c) £<SP/:(IMP): Violation vs. Step (d) £SPL£(IMP): Objective value vs. Step

Figure 4.26: Numbers of violations and objective values in each step of
CSVC{GENET) and CSVC{IMF) on increasing permutation problem with

n = 10 (short run—time case)

Chapter 4 Experiments 62

—r
®

>
®

I
E
01 r. 1 1 t+ o ‘1 “Cr
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Number of steps Number of steps
(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step
12-1 v 12-1
10 10
13
L. . .11
0-1 1 1 1 1~1 1 1_ 0-1 1 1 1 A~T 1
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Number of steps Number of steps
(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.27: Numbers of violations and total inputs in each step of PSS and
max—PSS on increasing permutation problem with n = 10 (long run—time case)

Chapter 4 Experiments

IZ}» < < < <
10-
L]
° o o o
99
o 1 . 1 . 1
0 200 400 600 800 1000 1200

Number of steps

(a) IPSS: Violation vs. Step

12-]

—_

rppilatu”

0433 .
0 200 400 600 BOO 1000 1200
Number of steps

() max-IPSS: Violation vs. Step

}l Iz+ < < < < < <

10-

o] 1 1

200 400 600 800 1000 1200
Number of steps

1400

(b) IPSS: Total input vs. Step

10-

: ~

0-M-J L . 1 1—=J 1 1
1400 0 200 400 600 800 1000 1200
Number of steps

(d) max-IPSS: Total input vs. Step

63

1400

1400

Figure 4.28: Numbers of violations and total inputs in each step of IPSS and
max—1PSS on increasing permutation problem withn = 10 (long run—time case)

Chapter 4 Experiments 64

W a 8
(]
1 3

i 1
I’ 1

Ol 1 1-f-1 1 1 n 0L . 1-1-1 . 1
0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000
Number of steps Number of steps

(a) £<SPL£(GENET): Violation vs. Step (b) £«S2:'€(GENET): Objective value vs. Step

E_{ < < < < < h ﬂ'l

< < < < <

o1 1 1 1 1 1 1~ oL , 1 1 1 1 1
0 2000 4000 6000 6000 10000 12000 0 2000 4000 6000 8000 10000 12000
Number of steps

Number of steps

(¢) CSVC{IMPy. Violation vs. Step (d) £5PL£(IMP): Objective value Vs. Step

Figure 4.29: Numbers of violations and objective values in each step of
CSVC(GENET) and CSVC{1MF) on increasing permutation problem with
n = 10 (long run—time case)

Chapter 4 Experiments

40 ' . . : . . o ADA
35 35-
30- 30
)
1 a25- 25-
1 I
>520- .
E A
115 15
“O O
’ ’
01 1 1 . 1 1 1 1~L 01
0 05 1 15 2 25 3 35 0
Number of steps x 10*
(a) PSS: Violation vs. Step
40H — 40H
35 35
30 30
s 25- 25-
.
0-1 1 1 It 1 , . 1~ 0-1
os 1 15 2 26 3 35 0
Number of steps xio

(c) max-PSS: Violation vs. Step

65
(31111

1 -1 1 . 1 1~L

05 1 15 2 25 3 35
Number of steps x10°

(b) PSS: Total input vs. Step
9 o

1 1 1 r , 1 1

0.5 1 15 2 25 3 35
Number of steps , io’

(d) max-PSS: Total input vs. Step

Figure 4.30: Numbers of violations and total inputs in each step of PSS and
max—PSS on increasing permutation problem with n = 20 (average run—time

Case)

Chapter 4 Experiments 66

40-1 40-j

35 35

30- 30
SgZSV 25
p «
1
A A D
I- - [, nlii

|
0 S 1 J m
0 0.5 1 15 2 25 3 35 0 0.5 1 15 2 25 3 35
Number of steps xio* Number of steps xio*
(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

40-1 r 40j

35 35

30- 30

' I\
'
0 0.S 1 15 2 25 3 35, 0 0.5 1 15 2 25 3 35
Number of steps «io" Number of steps ,,0"
(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.31: Numbers of violations and total inputs in each step of IPSS and
max—IPSS on increasing permutation problem with n = 20 (average run—time
case)

Chapter 4 Experiments 67

2 25-
I I
I
§ 15- 15-
10 1011 111, |1 iiiitiiidii h
fojuiiy FfrreM™ T, £
1 1 1 1~L 01 1 . 1 1 1 1 1~L
0 0.5 1 15 2 25 3 35 0 0.5 1 15 2 25 3 35
Number of steps xio' Number of steps Xio»

(a) >C«SP£(GENET): Violation vs. Step (b) £5PE£(GENET): Objective value vs. Step

0 Tl

imnrkyUiuy : ™
[\ 1 1 1 1 1 1 1 1L 01 1 B i B B L

' ' '
35 0 0.5 1 15 2 25 3 35

0 05 1 15 2 25 3
Number of steps kio »

Number of steps xio'

(c) £SVC(IMP).’ Violation vs. Step (d) JCSVJC{IMP}.’ Objective value vs. Step

Figure 4.32: Numbers of violations and objective values in each step
£<SPL(GENET) and JCSVE(Ip) on increasing permutation problem with
n = 20 (average run—time case)

Chapter 4 Experiments

1 I
A20 =20
1 1s- 15-
NQ o O °
TT e lira Il nil _ mm I
01 1 1 1 1 1 1 11 01 1 11 B .
0 0.5 1 1. 2 25 3 35 0 0.5 1 15 2 25 3
Number of steps xio' Number of steps
(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step
40-| r 40-1 1
35- 35-
30- 30-
]
1025' A 25-
i I
A 20- + 020,
:[I 10 1
01 1 1 11 1 1 . . 01 1 1 11 1 1 B
0 0.5 1 15 2 25 3 35 0 0.5 1 15 2 25 3
Number of steps xio' Number of steps
(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

68

'
35
xio*

Figure 4.33: Numbers of violations and total inputs in each step of PSS and
max—PSS on increasing permutation problem with n = 20 (short run—time

CEISG)

Chapter 4 Experiments 69

5 o
AN N\ [
u I H I n
0 0.5 1 i - 5 2 25 3 35 0 05 1 .5 2 3 35
Number Of steps xio’ Number of steps ,10%
(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

way . i - 40+

P J| |
“wimM T ywiwi

0 05 ‘ n 25 3 35 0 0.5 1 15 2 25 3 35

Number Of steps 10' Number of steps

(¢) max-IPSS: Violation vs. Step ' (d) max-IPSS: Total input vs. Step
Figure 4.34: Numbers of violations and total inputs in each step of IPSS and
max—IPSS on increasing permutation problem with n = 20 (short run—time

case)

Chapter 4 Experiments

0 0.5 1 25 3 35

1.5 2
Number Of steps

(a) £5DL(GENET): Violation vs. Step

0 05 1 2
Number Of steps

(c) £OTL(IMP): Violation vs. Step

25 3 35

70

0 0.5 1 25 3 35

15
Number of steps

(b) £<Sr>£(GENET): Objective value vs. Step

"o 0.5 1 15 2 25 3 35

Number of steps

(d) £5PL£(IMP): Objective value vs. Step

Figure 4.35: Numbers of violations and objective values in each step of

CSVC(GEmT)

n = 20 (short run—time case)

and CSVC{IMF) on increasing permutation problem with

Chapter 4 Experiments

40H — —
36-
£ 30
n ' 2 A 3 36 0 05 1 15 2 25 3 3s
0 " Number Of steps X,0" Number of steps
(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step
40-j——~"
0 Zs I]l ; 7s 5 4 0.5) 15 J 25 3 35
Number Of steps xio' Number of steps «io

(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.36: Numbers of violations and total inputs in each step of PSS and
max—PSS on increasing permutation problem with n = 20 (long run—time case)

Chapter 4 Experiments 92

I 15_ T 1
lis- —~ :
b 1 ilyimiiiiiiiiiiii £
- o o » ‘NLberofWs A “ N | S, S
(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step
35 5
ot : ltlumsherzof steps ’ o Y ” ' liljmber of Zsleps * ’ >
(¢) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.37: Numbers of violations and total inputs in each step of IPSS and
max—IPSS on increasing permutation problem withn = 20 (long run—time case)

. 73
Chapter 4 Experiments

¢ ”

"
a m] < ~'umber Of Steps)

(a) CSVCiGENET): Violation vs. Step (b) £5PL£(GENET): Objective value vs. Step

° [m} : Number of steps : , 0.

i o Y3, . s 1 e ' @@
(c) £5PL£(IMP): Violation vs. Step (d) £5r»£(IMP): Objective value vs. Step
Figure 4.38: Numbers of violations and objective values in each step of
£5D£ (GENET) and jCSVAIMP) on increasing permutation problem with

n — 20 (long run—time case)

Chapter 4 Experiments 74

PSS, max-PSS, IPSS, max-IPSS, CSVC{GENET) and CSVC{IMF) on in-
creasing permutation problem with n . ., in Figures ..., . s .». The num-
bers of violations against total inputs or objective values of PSS, max-PSS,
IPSS, max-IPSS, CSVC{GENET) and CSVC{IMF) on increasing permuta-
tion problem with n = 20 are shown in Figures 4.30 - 4.38. We first recall
that there exists only one solution in an increasing permutation problem. Fig-
Ures 4 .23cay. «+.26¢a) and 4. 29(a) show the number of violations in each step of
CSVC{GENET) on increasing permutation problem with n . ., in average
run-time case, short run-time case and long run-time case respectively. Fig-
Ures «.32¢ay. 4.35¢ay and 4.35¢.) show the number of violations in each step
of CSVC(GENET) on increasing permutation problem with n . ., in av-
erage run-time case, short run-time case and long run-time case respectively,
Prom the figures, there exists a large number of valley-like plateaus in the
search space, (GENET) carefully performs learning and modifies the
landscape of the search space when it traverses these valleys. This prudent ap-—
proach helps it reach a solution quickly. Although CSVC(GE ET) uses more
steps to solve the increasing permutation problem, it repairs fewer clusters to
find a solution. On the contrary, PSS uses a lot more steps to traverse the
plateaus, and it pays less attention to the landscape when it rushes through
the plateaus (Figures 4.21(a), 4.24(a), 4.27(a), 4.30(a), 4.33(a) and 4.36(a)).
CSVC{IMF) performs more learning than CSVC{GENET). This approach
quickly modifies the landscape of the search space and increases the contrast
between the landscape of the solutions and that of the non-solutions. There-
fore, the timing results of CSVC{IMF) outperforms /:SVC(GENET), PSS
and its variants. “

Figures 4.22¢s). 4.25¢2) and 4.25¢., show the number of violations in each
step of IPSS on increasing permutation problem with n = 10 in average run-

time case, short run-time case and long run-time case respectively. Figures

4.31¢a), 4.34¢a) and 4.37(.) show the number of violations in each step of

Chapter 4 Experiments 75

IPSS on increasing permutation problem with n = 20 in average run—time
case, short run—time case and long run—time case respectively. For IPSS, the
situation is worse as the first several hundreds steps are basically wasted: the
partial solutions found are not usually a subset of the final solution. Assume
that n = 5 and the current partial solution is Xi 2> 2= 3713 = 4. This
partial solution can be extended by assigning 5 to variable T4 However, all
existing variables take the wrong values with respect to the complete solution.
The timing results of IPSS are hence worse than that of PSS because IPSS
spends time on doing those futile steps. The cluster selection heuristics actually

makes the situation worse, as the search is directed to rough areas.

4.2.2 Random Permutation Generation Problems

The timing results of PSS and its variants on random permutation genera—
tion problems are showed in Table 4.5. Table 4.6 shows the timing results of
CSVC{GENET) and CSVC{IMF) on the same set of problems. Figure 4.39
shows the mean time results of all implementations on random permutation
generation problems. Problems in this set are easy for CSVC implementations
and PSS implementations. All problem instances are solved almost immedi-—
ately. PSS and its variants are slightly more efficient than CSVC(GENET)
and CSVC(IMF) for this set of problems. The difference is more significant
when the problem size grows larger and the number of solutions increases.
Figures 4.40 - 4.48 show the numbers of violations against total inputs
or objective values of PSS, max—PSS, IPSS, max—IPSS, /:5P/: (GENET) and
CST>C{IMF) on random permutation generation problem with n = 50. Fig—
ures 4.49 — 4. 57 show the numbers of violations against total inputs or objective
values of PSS, max—PSS, IPSS, max—1PSS, CSVC(GE"ET) and CSVC{IMF)
on random permutation generation problem with n = 100. In the figures about

>COTEL (GENET), we can see that CSVC{GENET) carefully performs learning

Chapter 4 Experiments 76

“P " em PSS IPSS
n St~ CPU time Steps CPU time
50 87.8(83.0) 0.0029(0.0000) 85.3(83.0) 0.0025(0.0000)
60 127.5(111.0) 0. 0053 (0. 0100) 136.5(119.0) 0. 0054 (0. 0100)

70 151.7(141.0) 0.0079(0.0100) 156.2(143.5) 0. 0071 (0.0100)

80 134.4(126.5) 0. 0082 (0. 0100) 132.7(126.0) 0. 0054 (0. 0100)

90 152.6(146.5) 0.0097 (0. 0100) 173.6(162.0) 0. 0102 (0. 0100)

100 144. 4(142.0) 0. 0098 (0. 0100) 153.0(150.0) 0. 0094 (0. 0100)
max—PSS max—IPSS

) 103.5(105.0) 0. 0030 (0. 0000) 102. 3(95. 5) 0. 0027 (0. 0000)

60 137.3(122.0) 0. 0054 (0. 0100) 129.6(110.0) 0. 0041 (0. 0000)

70 160.2(146.5) 0. 0088(0. 0100) 155.8(147.0) 0. 0064 (0. 0100)

80 140.8(137.5) 0. 0073 (0. 0100) 129.4(127.5) 0. 0055 (0. 0100)
90 160. 1(155.5) 0.0099 (0. 0100) 164.9(157.0) 0. 0090 (0. 0100)
100 155.4(153.0) 0.0101(0.0100) 155.4(151.0) 0. 0098 (0. 0100)

Table 4.5: PSS and its variants on random permutation generation problems

"Problem CSVCjGEISIET)
n Iteration Repairs Learns CPU time
50 35.6(23.00 62.1(65.0) 16.1(10.0) 0. 0040 (0. 0000)
60 76.1(67.5) 96.7(88.5) 36.2(32.0) 0.0060(0.0100)
70 122.8(63.5) 142.1(114.0) 58.6(29.0) 0. 0088 (0. 0100)
80 132.7(59.0) 146.7(107.0) 64.0(27.0) 0.0114(0.0100)
90 107.3(57.5) 141.7(117.5) 51.4(27.0) 0.0132(0. 0100)
100 64.4(40.0) 123.1(109.5) 29.7(18.0) 0.0134(0.0100)

—Problem CSVCjiMP) —
n Iteration Repairs Learns CPU time
50 21.5(16.0) 50.1(48.0) 21.5(16.0) 0. 0030 (0.0000).
60 35.9(26.00 77.3(69.0) 35.9(26.0) 0.0040 (0. 0000)
70 62.2(52.5) 155.1(147.0) 62.2(52.5) 0. 0092 (0. 0100)
80 68.4(46.5) 133.9(106.5) 68.4(46.5) 0.0092 (0. 0100)
90 49.1(31.5) 130.5(114.0) 49.1(31.5) 0.0109(0.0100)
100 32.8(23.5) 114.7(108.0) 32.8(23.5) 0.0142(0. 0100)

Table 4.6: CSVC{GENET) and CST>C{IMP) on random permutation gener—

ation problems

Chapter 4 Experiments

ES

14-

21

o»oO>o0

]

SS
max-PSS

- IPSS
- max-IPSS

LSDL(GENET)
LSDL(IMP)

7

(i

71>

Figure 4.39: The mean time results on random permutation generation prob—

lems

and modifies the landscape of the search space when it traverses the plateaus.

This time the prudent approach reduces the search speed as there exist many

solutions in the search space. The progressive approach used in PSS quickly

traverses the plateaus and reaches the solution. This set of experiments illus-

trates the advantage of progressive approach in some benchmarking problems.

The partial solutions found by IPSS can be extended easily. This further con—

firms that there are many solutions in this set of problem instances.

Chapter 4 Experiments

A A
wm
Number Of steps

(a) PSS: Violation vs. Step
@1 < <

o m m
Number of steps

(¢) max-PSS: Violation vs. Step

I
i o 9 I ()]
Number of steps
(b) PSS: Total input vs. Step
—t <
-y
.
1
- 11h.
o
| 10

Number of steps

(d) max-PSS: Total input vs. Step

78

iso

Figure 4.40: Numbers of violations and total inputs in each step of PSS and
max—PSS on permutation generation problem with n — 50 (average run—time

case)

79
Chapter 4 Experiments

i 1
s, 3
E .
Z:l 10- to
J AL M onnr— i d 7 M 1
0 " Number of steps 1 bl Number of steps
(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step
I n
& i
1 .10.
on nfr-i—--, 1 ok) 1
0 _erofs(eps 1fn s Nu.”ro,steps
(¢) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.41: Numbers of violations and total inputs in each step of IPSS and
max—1PSS on permutation generation problem with n — 50 (average run—time

case)

Chapter 4 Experiments 80

? ¢ < << << ” ¢ <« < ¢
0)
(<3

< & ®

1% 1<,

s 1

" g R

7% -30-
og A «
» 0
Q

0 W Om W MWW W WM o0 W wm W W W W

Number of steps umber of steps

(a) £51?£(GENET): Violation vs. Step (b) £<SP£(GENET)N: Objective value vs. Step

@1 < < < < < < < 1_ S}} < < < < < < <
0 O

© - o

“.]:b* 6

L% ic8

S

14 0B

i3 ©

SO- 20-

uuuuu jajj

0 W MO MWW B 0D W B W I W W AW

Number of steps Number of steps

(¢) CSVC{IMP): Violation vs. Step (d) £5P£(IMP): Objective value vs. Step

Figure 4.42: Numbers of violations and objective values in each step of
CSVC{GENET) and CSVC{IMF) on permutation generation problem with

n = 50 (average run—time case)

Chapter 4 Experiments 81

« X p.
? 3
5F - 1%
E A
; 10 v 10 ¥
0 1) 1 + 01 . % ¢)
o 50 100 150 0 50 too 150
Number of steps Number of steps
(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step
30A - 30H
25- 25-
w 20 .20.
1 3
‘i &
)
- -
E
z 10 o
[1 1 1 1 oH 1 ’ 1
0 50 100 150 0 50 100 150
Number of steps Number of steps
(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.43: Numbers of violations and total inputs in each step of PSS and

max—PSS on permutation generation problem with n = 50 (short run—time
case)

Chapter 4 Experiments 82

H 304
« X 20.
I
= _
E A
I
ib - 10
5 5
Ja AAA a A¥h . I oU A M A Ann
(a) IPSS: Vlz)nilgzcifos;;psvs Step (b) IPSS: Totalierlorflls)tiﬁ vs. Step
gd. i3
I I

5- 5-

J ~ A/ y/V : d] :

0 100 150 100 150
Number of steps Number of steps

(c) max- IPSS Violation vs. Step (d) max- IPSS Total input vs. Step

Figure 4.44: Numbers of violations and total inputs in each step of IPSS and
max—IPSS on permutation generation problem with n = 50 (short run—time
case)

Chapter 4 Experiments

‘1 -

0 500 1000 1500
N

1

2000 2500
umber of steps

1

3000

1

3500

I

4000

(a) CSVC{GENET): Violation vs. Step

90-1 h
80-
70-
« @ -
1 50-
1 40
E
Z 30-
20-
.
. . . L] . . 1
0 500 1000 1500 2000 2500 3000 3500 4000

Number of steps

(¢) CSVC{IMF): Violation vs. Step

Figure 4.45: Numbers of violations

83

iin

-
04 I

0 500

]

1500
N

o1 1
1000 2500
P

2000 3000 4000
umber of steps

3500

(b) £5PE£(GENET): Objective value vs. Step

90i
80-
70-
|50-

«

0 40-
30-
20-

e ey X

0 500 1000 1500 2000 2500 3000 3500 4000

Number of steps

(d) £5P£(IMP): Objective value vs. Step

and objective values in each step

CSVC{GENET) and CSVC{IMF) on permutation generation problem with

n = 50 (short run—time case)

Chapter 4 Experiments

gd-
I
ﬁ EA
7 I
o 1 1
0 Number of steps
(a) PSS: Violation vs. Step
« X
S
‘1
1
YA ¥
Vri
01 ~

50 100
Number of steps

(¢) max-PSS: Violation vs. Step

S

F o

150

o

84

m b))

Number of steps

(b) PSS: Total input vs. Step

Tatv

50 too 150
Number of steps

(d) max-PSS: Total input vs. Step

Figure 4.46: Numbers of violations and total inputs in each step of PSS and
max—PSS on permutation generation problem withn = 50 (long run—time case)

Chapter 4 Experiments

304

85

I
I
E 10- 10.
oA A__AA nm~ o—J ATATYAA/U nm
’ * Number of steps o e ’ * Number of steps " e
(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step
30 — h 30-1
I
[!
5 7
E
0 n rMiVATV -~ 0 n aj¥/mr”" ,

0 100 150 0 100 150
Number of steps Number of steps

(¢) max- IPSS Violation vs. Step (d) max- IPSS Total input vs. Step
Figure 4.47: Numbers of violations and total inputs in each step of IPSS and
max—IPSS on permutation generation problem with n = 50 (long run—time
case)

Chapter 4 Experiments 86

90-j h 90-1

: &0

n n
« 60 - @ -

~

1
1 50-
Z 30- 30

20 - 20

. s ST L niAPAIAATL @i « 1T e w1 A
01 1 1 I t 1 o1 1 £ o, 1 1 1 I . .
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Number of steps Number of steps

(a) £<SD£(GENET): Violation vs. Step (b) £5DL(GENET): Objective value vs. Step

@i‘l < < < < < < E 9}1 < < < 3 < < <

80 80
70- 70

g 60 60

gl

1 50- |50

~ 7

SR

B 10 040

zZ 30- 30

Q " - T TR T o . . C

0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Number of steps Number of steps
(¢) CSVC{IMF): Violation vs. Step (d) CSVCiIMF): Objective value vs. Step

Figure 4.48: Numbers of violations and objective values in each step of
£5P£L£ (GENET) and CSVC(IMP) on permutation generation problem with
n = 50 (long run—time case)

Chapter 4 Experiments 87

25-

g 20.
i
1 I
1
Z 10. o 10-0
LJ_n LJ_n
. 1 N
[]
. n
0 50 100 150 200 250 0 50 100 150 200 250
Number of steps Number of steps
(a) PSS: Violation vs. Step i - (b) PSS: Total input vs. Step
25- 25-
1S tf
i I
I V 2 S
to- U

—
01 y) r)) + o . . ,
0 50 100 150 200 250 0 Ee) 100 IsC 200 250
Number of steps Number of steps
(¢) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.49: Numbers of violations and total inputs in each step of PSS and
max—PSS on permutation generation problem with n = 100 (average run—time

case)

Chapter 4 Experiments 88

30| ’ 1

I I
b
r
1 -
z 10- to-
o] € t, ft- il VjA ninrr ¥ , L1 kL <1 BN =Y
0 50 100 150 200 250 0 SO 100 150 200 250
Number of steps Number of steps
(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step
30H h 30-j 1 1
25- 25-
g 20- 20-
1 I

d 1liA-m:z=H , 1 & &A mz=EH , > ,
0 50 100 150 200 250 0 50 100 150 200 250
Numb'er of steps Number of steps
(¢) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.50: Numbers of violations and total inputs in each step of IPSS and
max—IPSS on permutation generation problem with n = 100 (average run—time

case)

Chapter 4 Experiments 89

120. 120-
100- 100-
2
I &0 @

40- 40

20 20-

01 I i ‘l T 1 1 1 1 1 1 1 0‘1 1 I I 1 1 1 1 1 1 I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

Number of steps umber of steps

(a) /I:5D£(GENET): Violation vs. Step (b) £<<SP£(GENET)N: Objective value vs. Step

140 H ‘ ‘ ‘ ‘ ' ' ‘ ‘ ‘ ‘ by 140 H
120- 120.
100- 100-

Sy

% °°

40- 1
0-1——1 1 1 1 1 1 1 . 1 1 k 01 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
Number of steps Number of steps

(¢) CSVC{IMFy. Violation vs. Step (d) CSVC{IMF): Objective value vs. Step

Figure 4.51: Numbers of violations and objective values/total inputs in each
step CSVCiGENET) and CSVC{IMF) on permutation generation problem
with n = 100 (average run—time case)

Chapter 4 Experiments

(R R

0 50 100 150

Number of steps

(a) PSS: Violation vs.

”» \

01 1 1 A 1
(c) max-PSS: Violation vs. Step

Figure 4.52: Numbers of violations and total inputs in each step of PSS and
max—PSS on permutation generation problem with n = 100 (short run—time

case)

100 150
Number of steps

200

Step

1

200

25-

I.
—
10- 1
61 . . ~ <
0 50 100 150
Number of steps
(b) PSS: Total input vs.
30-1
25-
D

/

01 1 . A

100 150
Number of steps

200

Step

200

(d) IPSS: Total input vs. Step

Chapter 4 Experiments 91

30H ‘ ‘ ‘ ' 1 30i
25- 25

20- . 20.

250

1 t
E
7z b b
5- S
J *ft. * ninnmAwnn 1 o >A. 1 ninAHMm_,
0 50 100 150 200 250 0 50 100 150 200 250
Number of steps Number of steps
(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step
:ﬂl < < < < [‘(:91 < < < <
25- 25
W2 2
1 -
E
210 U
ol t(mr\ . . i ol On—tptmn——,
[+] so too 150 200 250 [+] 50 100 150 200
Number of steps Number of steps
(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.53: Numbers of violations and total inputs in each step of IPSS and

max—IPSS on permutation generation problem with n = 100 (short run—time
case)

Chapter 4 Experiments 92

140 H : : : : . : : : . . - 140 H
120- 120-
100- 100-
i i ‘
% 60— 60
z
40- 40-
20 - 20-
L v
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 0 1000 2000 3000 4000 5000 6000 7000 6000 9000 10000 11000
Number of steps Number of steps

(a) £5PL£(GENET): Violation vs. Step (b) £5PL(GENET): Objective value vs. Step

1405 ' ' ' ' : : : : ' 1 i 140 - : : 1 1 1
120 120
100 100 .

@ 80-,
40 40
205 ; 20- Q
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
umber of steps Number of steps

(c) CSVCilMF): Violation vs. Step (d) jC,SVC{IMFy. Objective value vs. Step

Figure 4.54: Numbers of violations and objective values in each step
£5P>C (GENET) and csvjcame) on permutation generation problem with
n = 100 (short run—time case)

Chapter 4 Experiments 93

@1 < < < <
25 25
« X p.1 3
(o]
1 t
5 C
I (o]
z 10 ‘ (3 ‘
0 B 1 1 OH 1 ‘ ’ n
0 50 100 150 200 250 0 50 100 150 200 250
Number of steps Number of steps
(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step
V]| h m
25 25
I B
%5 @
S5 15
1
Z1 y 10 y
0 1 1 1 1 “r d 1 1 1 I
0 50 100 150 200 250 0 M 100 150 200
Number of steps Number of steps
(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.55: Numbers of violations and total inputs in each step of PSS and
max—-PSS on permutation generation problem with » = 100 (long run—time
case)

250

Chapter 4 Experiments 114

30H

25

~1 « %lurlfY—> -

mber of steps

(a) IPSS: Violation vs. Step

n nnn fro” Anrnm
0 100
Number Of steps

() max-IPSS: Violation vs. Step

ool M H g

Number of steps

~ OOJ>>M

(b) IPSS: Total input vs. Step

[\fth D nm fH “ArtOmZT”

250 150 200 250
mber of steps

(d) max-IPSS: Total input vs. Step

Figure 4.56: Numbers of violations and total inputs in each step of IPSS and
max—IPSS on permutation generation problem with n = 100 (long run—time

case)

Chapter 4 Experiments 95

]4)H ¢~ o« ¢ ¢ 3 3 ¢ ¢ ¢ 3 3 ¢ ¢ ¢ @ <
I & °
E
z
40- .
~ ~
. I .. . 1o -
0 3 0 0 0 4000 5000 6000 7000 8000 9000 10000 11000 0 1000 2000 3000 4000 50M 7000 8000 9000 10000 11000

Number Of steps Number of steps

(a) CSVCiGENET): Violation vs. Step (b) CSVC{GENET): Objective value vs. Step

140 -j——'
% S
| 60-
Zjj. i

20- \

‘o M .wro A 0 .] ”
Number of steps Number of steps
(c) £5DL£(IMP): Violation vs. Step (d) £5P£(IMP): Objective value vs. Step

Figure 4.57: Numbers of violations and objective values in each step of
jcsvicGEJS!IET) and £<SP£L£(IMP) on permutation generation problem with
n — 100 (long run—time case)

Chapter 4 Experiments 96

4.3 Latin Squares and Quasigroup Completion
Problems

A Latin square of order N is N x N table of N symbols in which every
symbol occurs exactly once in each row and column of the table. An incomplete
Latin square of order AMs a partially filled Latin square of order N. The
quasigroup completion problem (QCP) [3] is a highly structured problem. The
QCP isthe problem that determines if the partial Latin square can be filled
to be a complete Latin square.

A Latin square of order N can be modeled as a CSP with PP variables.
Each variable represents one cell in the N x N table and has a domain
{1,2,..., A"}. The constraints state that no value occurs twice in a row or
a column. A QCP can be modeled as a CSP that is similar to the modeling
of Latin square except that the filled variables have their domains fixed to the
pre—assigned value. Two sets of problems are used in this set of experiments.
The first set of experiments consists of six instances of Latin square problems
with orders ranging from iV — 10 to iV = 35 in steps of 5. The second set of
experiments consists of six instances of quasigroup completion problems with

orders ranging from = 15 to ‘N — 20.

4.3.1 Latin Square Problems

Table 4.7 shows the results of PSS and its variants on the set of Latin square
problems. We give the results of CSVC(GENET) and csvJcamp) of the
same problems in Table 4.8 for comparison. The mean timing results of all
implementations are shown in Figure 4.58. Prom the timing figures, csvc
(GENET) has a better performance than PSS. £5P£ (IMP) has a better tim-
ing results than PSS, max—PSS and csve (GENET). IPSS and max—-IPSS

outperform the original PSS and also csvc implementations.

Chapter 4 Experiments

Problem

N

10
15
20
25
30
35

10
15
20
25
30
35

PSS

St’
149. 7(120. 0)
430. 3(396. 0)
1008 (965. 0)
1716 (1546)
2667 (2524)
3706 (3246)

CPU time

0. 0000 (0. 0000)
0000)
0100)
0400)
0700)
1100)

0. 0046 (0.
0. 0134 (0.
0. 0377 (0.
0. 0728 (0.
0. 1227 (0.

max-PSS

121.6(138.0)
349. 6(312. 0)
649. 8 (641. 0)
1090 (1070)
1601 (1578)
2250 (2189)

0. 0000 (0.
0. 0029 (0.
0. 0092 (0.
0. 0245 (0.
0. 0445 (0.
0. 0740 (0.

0000)
0000)
0100)
0200)
0400)
0700)

Steps
112.6(119. 0)
270.9(274. 0)
510. 5(503. 0)
796. 6(790. 0)
1160(1151)
1586 (1579)

IPSS

CPU time ™
0000)
0000)
0000)
0100)
0200)
0400)

0. 0000 (0.
0. 0017 (0.
0. 0040 (0.
0.0136(0.
0. 0227 (0.
0. 0368 (0.

max-IPSS

123.7(124. 0)
273.8(281. 0)
502. 1(501. 0)
796. 6(785. 0)
1140 (1134)
1589 (1587)

0. 0000 (0.
0. 0030 (0.
0. 0060 (0.
0. 0154 (0.
0. 0255 (0.

Table 4.7: PSS and its variants on Latin square problems

“Problem

CSVC(GENET)

N Iteration Repairs Learns

10 46.3(49.0) 134.6(133.0) 19.2(20.0)
15 65.6(36.0) 227.5(244.0) 27.6(14.0)
20 100.9(94.0) 535.8(520.0) 43.1(40.0)
25 196.2(163.5) 955.0(928.5) 88.4(71.0)
30 241.8(190.0) 1393(1332) 109.4(84.0)
35 275.8(221.0) 1896(1838) 124.6(97.0)

Problem CSVCjIMP)

N Tteration Repairs Learns

10 32.3(7.000 86.69(23.00) 32.3(7.00)
15 27.0(25.0) 138.5(131.0) 27.0(25.0)
20 55.5(33.0) 302.8(263.0) 55.5(33.0)
25 71.7(55.0) 508.5(510.0) 71.7(55.0)
30 72.6(68.5) 754.3(787.5) 72.6(68.5)
35 116.0(96.0) 1201(1170) 116.0(%.0)

OO OO OO

CPU time

. 0001 (0. 0000)
. 0042 (0. 0000)
.0121 (0. 0100)
. 0324 (0. 0300)
. 0587 (0. 0600)
. 0957 (0. 0900)

CPU time

. 0000 (0. 0000)
. 0031 (0. 0000)
.0077(0. 0100)
. 0202 (0. 0200)
. 0355 (0. 0400)
. 0654 (0. 0600)

0000)
0000)
0100)
0200)
0300)
0. 0451 (0. 0400)

97

Table 4.8: £{SX>£ (GENET) and CSVC{IMF) on Latin square problems

Chapter 4 Experiments 98

014 1 I ‘ ‘ —
-A- PSS
-e- max-PSS
-A- IPSS]
0 -n. -O- max-IPSS /-
A LSDL(GENET) /
O LSDL(IMP) /
C a®- / _
I
— 1
0.02- X)A(e .
0 1 .
10 15 20 25 30 35

N

Figure 4.58: The mean time results on Latin square problems

Chapter 4 Experiments 99

The timing results show that IPSS has a better performance than PSS. Fig-
ures 4. 59 — 4. 67 show the numbers of violations against total inputs or objective
values of PSS, max—PSS, IPSS, max—1IPSS, CSVC/GEMT) and CSVC{MF)
on Latin square of order 10. Figures 4. 68 — 4. 76 show the numbers of violations
against total inputs or objective values of PSS, max—PSS, IPSS, max—IPSS,
£<{SP£ (GENET) and cSvcamr) on Latin square of order 35. In Figures
4.60(a), 4.63(a), 4.66(a), 4.69(a), 4.72(a) and 4.75(a), the partial solutions
found by IPSS can be easily extended: only several steps are required to incor—
porate a new variable. We note that the points with zero number of violations
represent the partial solutions. Moreover, IPSS always keeps the number of
violations to extremely small values (typically 1), in contrast to that in the
original PSS, which can be a dozen or two (Figures 4.59(a), 4.62(a), 4.65(a),
4.68(a), 4.71(a) and 4.74(a)). This experiment demonstrates the advantage of
using incremental search to solve this kind of problem. On the other hand,
max—PSS much improves on PSS in solving Latin square problems. Analysis
of traces of execution shows that the cluster selection heuristics used helps
decreasing the number of violations in a fast rate (Figures 4.59(c), 4.62(c),
4.65(c), 4.68(c), 4.71(c) and 4.74(c)). We note that max—IPSS has almost the
same performance as IPSS. Prom Table 4.7, max—IPSS requires a little bit more
time than IPSS to solve the problems. The reason is that max—IPSS needs time
to select the suitable cluster in the list T for repairing.

From the tables, we can see that the number of repairs in £{SP£ (GENET)
is nearly the same as that of IPSS, max—IPSS and max—PSS. However, the
number of steps taken in CST>C{GENET) ismuch more. This is the reason
that all variants of PSS outperform (GENET) . Although £5P£ (IMP)
uses fewer repairs than IPSS, max—IPSS and max—PSS, it takes more steps to

find the solution. That makes all variants of PSS outperform £<SD£ (IMP).

Chapter 4 Experiments 100

m < < < < < < [’\2[< < < < < <

B I 1 D % 1
W& U 8 h
[. 1 1
S5 8 . s
E
i 4 S

ol , , ! . . L—— . 1" 0-1 . 1 1

0 50 100 150 200 250 300 350 400 0 50 100 IS0 200 250 300 350 400
Number of steps Number of steps
(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step

I I I

S5 8 3

E

1 4 U S -
2> L 2 U
H 1 1— . . i 1 g . S ‘ ‘ ‘
0 50 100 15(}\‘umbe'2'08f stepSZSO 300 350 400 0 50 100 15(}\‘umbe'2'08f StepSZSO 300 350 400

() max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.59: Numbers of violations and total inputs in each step of PSS and
max—PSS on Latin square problem with TV = 10 (average run—time case)

Chapter 4 Experiments 101

i U] fi m
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Number of steps Number of steps
(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step
DH < < < < < < E El < < < < <
9- 9-
8- B-
T:
1 4 M4
z
3- 3
2- 2-
] n nl\ ff] 2l , n, n m ;
0 20 40 60 eo 100 120 140 0 20 10 60 80 100 120 140
Number of steps

Number of steps

(¢) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.60: Numbers of violations and total inputs in each step of IPSS and
max—IPSS on Latin square problem with N = 10 (average run—time case)

Chapter 4 Experiments 102

90— 90—
70 70
*5 50— I
]: 40) 10
z
30- 30
]) F oo i ‘
ol 1 T .
0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000
Number of steps Number of steps

(a) £<SD£L£(GENET): Violation vs. Step (b) CSVC{GENET): Objective value vs. Step

m) H < < < < ~ ~ < _ 1 OO_ 1 < < < < < <
90 D
o o
o 70
* L]
. 1 N
S s
I 40- - f 40-
3
:
30- 30-
20- 20-
co 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000
Number of steps, X Number of steps
(c) Violation vs. Step (d) CSVCiIMF): Objective value vs. Step

Figure 4.61: Numbers of violations and objective values in each step of
£5D£ (GENET) and CSVC{IMF) on Latin square problem with N = 10
(average run—time case)

Chapter 4 Experiments 103

12H

10 10
| 1 I I
r 1 T 1
S > S

2
« 1 1 1 1 P . 1 F+ 6 1 1

150 200 250 300 350 400
Number of steps

(b) PSS: Total input vs. Step

150 200 250 300 350 400
Number of steps

(a) PSS: Violation vs. Step

< < < <
iy ‘ — ‘ F PH
10- 10-
q 8- - 8
I 3
I o
I , °
z 4 \ 4 \
I 1 _
0 1 n 1 . i 1 T o i H 1 1 1
300 350 400

0 50 100 150 200 250 300 350 400 0 50 100 150 200 250
Number of steps Number of steps

(¢) max-PSS: Violation vs. Step (d) max-PSS: Total input vs.. Step
Figure 4.62: Numbers of violations and total inputs in each step of PSS and
max—PSS on Latin square problem with iV = 10 (short run—time case)

Chapter 4 Experiments 104

Bl < < < < < < Bl < < < < <
I -3
I .15i
o .
13 4
7 3

]9 m 1 1 “’Il

0 20 40 60 60 100 120 140 0 20 40 60 80 100 120 140
Number of steps Number of steps

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step
8 8
14
3
] fu i, 1 fu -~

Number of stfls Number of steps

(¢) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.63: Numbers of violations and total inputs in each step of IPSS and
max—IPSS on Latin square problem with N = 10 (short run—time case)

Chapter 4 Experiments

0 2000 4000 6000 8000 10000
Number of steps

12000 14000

(a) £5PL£(GENET): Violation vs. Step

— ——

S

ow
SS

AN
A
0+ . .
0 2000 6000 8000
Number of steps

(c) £«S:D£(IMP): Violation vs

.
4000 10000

Figure 4.64:

«
12000

. Step

14000

80-
70-
60-

50-
40
30-
20-

1%
0 2000 4000

(b) CSVC{GENET):

I00OH
90-

80-

40-

30-
20-

h
01~ 1 1

0 2000 4000

(d) CSVC{IMF):

105

o,

6000 10000 12000 14000
steps

6000
Number of

Objective value vs. Step

1 1 1 1
6000 8000 10000 12000
Number of steps

Objective value vs. Step

uooo

Numbers of violations and objective values in each step

CSVC(GENET) and £<SP/: (IMP) on Latin square problem with N = 10

(short run—time case)

Chapter 4 Experiments

z LI U IUUL

0L 1 1 . 1 1 1

0 50 100 150 200 250 300 350
Number of steps

(a) PSS: Violation vs. Step

o
e

0 1 1 U 1 1 1 1

0 50 100 150 200 250 300 350
Number of steps

(c) max-PSS: Violation vs. Step

106
L.
I 1 ,n L n
2 II I iUU L
o . 1 1 1 1 1 &
0 50 100 lnﬂNumbeing stePSZFvﬂ 300 350 400
(b) PSS: Total input vs. Step
6 S -
h
S
\'
. I .
01 1 1 V) 1 1 1 1

200 250 300 350 400
Number of steps

(d) max-PSS: Total input vs. Step

Figure 4.65: Numbers of violations and total inputs in each step of PSS and
max—PSS on Latin square problem with iV= 10 (long run—time case)

Chapter 4 Experiments

107
Kz] 1 1 < 1 < < Bi < 1 < < < <
9- 3-
8- 8-
7- 7 -
K 0
[ey
4
3- 3=
2. 2
], 1 ,a. nna, J , , , nnna,
0 20 40 60 80 100 120 140 0 20 40 [ce) 80 100 120 140
Number of steps Number of steps
(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step
D_{ < < < < < h IBI < < < < < <
9- 9-
8- 5.
7- 7-
F r
! -1
p
3- 3-
] h kn m n n I j ¥ « "'n n n
0 20 40 Nu6r91ber of Stseops 100 120 140 0 20 40 Nufir%ber of Stsgps 100 120 140

(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.66: Numbers of violations and total inputs in each step of IPSS and
max—IPSS on Latin square problem with iV= 10 (long run—time case)

Chapter 4 Experiments

90- 90-

80 80

70- 70-
o

I. 60- . I 60-

I.
3
z

30- 30-

20- 20-

0-1 1 1 1 1 1 I 1- O-i

0 2000 4000 6000 8000 10000 12000 14000 0

Number of steps

(a) £5DL(GENET): Violation vs. Step

E)H 3 3 3 ¢ 3 ¢ 1 m

0- 90-
80- so-
T0- 70-
T 60 I 60
50 I so
40 40
z
30 30-
20 20
s rufx/"
01 1 1 1 1 H 1 T 01
0 2000 4000 6000 8000 10000 12000 14000 0

Number of steps

(c) CSVC{IMP): Violation vs. Step

Figure 4.67:

(d) CSVCilMF):

1 1 1 « 1 —
2000 4000 6000 ft000 10000 12000
Number of steps

(b) £5PE£(GENET): Objective value vs

3 3 3 3 3 3
I
1 1 . B d 1
2000 4000 6000 8000 10000 12000

Number of steps

Objective value vs.

CSVC{GENET) and CSVCilMP) on Latin square problem with TV =

(long run—time case)

108

14000

. Step

14000

Step

Numbers of violations and objective values in each step of

10

Chapter 4 Experiments

70|

60-

jud @

01

k
v¥AY

1000 2000 3000 4000 5000
Number of steps

(a) PSS: Violation vs. Step

\

i

1 ~J . . .
1000 2000 3000 4000 5000
Number of steps

(c) max-PSS: Violation vs. Step

6000 0

L 01

6000 0

109

¥
Vvy

1000 2000 3000 4000 5000 6000
Number of steps

(b) PSS: Total input vs. Step

' — ' ' '
1000 2000 3000 4000 5000 6000
Number of steps

(d) max-PSS: Total input vs. Step

Figure 4.68: Numbers of violations and total inputs in each step of PSS and
max-PSS on Latin square problem with N = 3b (average run—time case)

Chapter 4 Experiments

o 11 1N iiidiiiiiiiirn, .

400 600 800 1000 1200 1400 1600 1800 2000
Number of steps

(a) IPSS: Violation vs. Step

to-j — h
9
s-
i .
.
z
3
2
I rrpriy_r -,
0 200 400 600 800 1000 1200 1400 ~ 1600 1800 2000

Number of steps

(¢) max-IPSS: Violation vs. Step

row

0

1 LI

110

. o o o
IMmimiii
800 1000 1200 1400 1600
Number of steps

(b) IPSS: Total input vs. Step

’]]1 n 99 :
200 coe] 2000

400 1800

| IHIPPEL

800 1000 1200 1400 1600
Number of steps

200 400 600 1800 2000

(d) max-IPSS: Total input va. Step

Figure 4.69: Numbers of violations and total inputs in each step of IPSS and
max—IPSS on Latin square problem with N = 35 (average run—time case)

Chapter 4 Experiments 111

1400 H ‘ ’ : : ’ ! ‘ h 1400-)
1200- 1200"

1000- 1000-

an- 3 o
600- 600-
z
400 - 400-
200~ 200- 1
0-1 1 I- 1 1 1 1 1 1 h 0-1 ' . 1 1 .
0 05 1 15 2 2s 3 35 4 45 0 05 1 15 2 25 3 35 4 45
Number of steps X 10 Number of steps 5 iO»

(a) "*"*"*(GENET): Violation vs. Step (b) £5PL£(GENET): Objective value vs. Step

1400 H ‘ ‘ ‘ ‘ ‘ ’ ’ h 1400 H
1000- 1000-
%E(D 3 8B
¥ {
iE an an
3
z
400 - 400-
a0 - - a -
-y D K)y
0 05 1 15 3 35 4 4"5 0 05 1 15 35 4 4s

2 25 2 25 3
Number of steps Number of steps ,100

(c) £OTE(IMP): Violation vs. Step (d) CSVC{IMF): Objective value vs. Ste

Figure 4.70: Numbers of violations and objective values in each step of
/:5P£(GENET) and CSVC(IMF) on Latin square problem with N = 35

(average run—time case)

Chapter 4 Experiments

60 -

¥

01 1 1 11 1 1
0 1000 2000 3000 4000 5000
umber of steps

(a) PSS: Vgolatiosn vs. Step

70+-

@

i ¥

i %

HE |

b ¥

T

Number of steps

(c) max-PSS: Violation vs. Step

h 70-1 1
60-
50-
_ <
b
.o \
:[30- \
¥ *
I 01 1 ' ' '
6000 0 1000 2000 3000 4000 5000
Number of steps
(b) PSS: Total input vs. Step
h 70H 1 1
a0
- ¥
3 40-
.1 I
13- ¥
A 1
[]
B ¥
L & 1 1 , , ,
6000 0 1000 2000 3000 4000 5000

Number of steps

(d) max-PSS: Total input vs.. Step

112

6000

6000

Figure 4. 71: Numbers of violations and total inputs in each step of PSS and
max—PSS on Latin square problem with TV = 35 (short run—time case)

Chapter 4 Experiments 113

9 9-
8- 8
7 7-
1 6 C -6
1 I
«
r
2
3 3
2- 2-
DI I (A, 1T] WITJJI[Bfm_ ,
0 00 400 600 800 1000 1200 1400 1600 1800 2000 0 20i 400 600 800 1000 1200 1400 1600 1800
Number of steps Number of steps
(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step
m (3 [3 _ (3 [3 [3 (3 [3 (3 h]Ol [3 [3 3 3 1 [3 3 1 1
9 9-
I . 6
I5 =S
r
z
3 3
O N O 0 A S|
0 200 400 600 600 1000 1200 MOO 1600 1800 2000 0 200 400 600 800 1000 1200 MOO 1600 1800
Number of steps Number of steps
(¢) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs, Step

[

2000

2000

Figure 4.72: Numbers of violations and total inputs in each step of IPSS and

max—IPSS on Latin square problem with A" = 35 (short run—time case)

Chapter 4 Experiments 114

MDA I MD 1 1 1 1 I I
1200- 1200-
9 1000~ - 1000~
I #F L
% @ : 600
#
400 400-
0 201
0 06 1 15 2 25 3 36 4 45 0 05 1 15 2 25 3 3s 4 4s
Number Of StlfiS .0’ Number of steps

(a) £<S2)£(GENET): Violation vs. Step (b) £5DL£(GENET): Objective value vs. Step

! ¢ ¢ n ¢ ¢ ¢ 1 ¢ h Wwm—1 ¢ 1 1 1 1 I
. 1000"
S5 80 - 380
> B
0 —
I r @
7
40
[200-1
O k - b - = . b b b b _—— —) —_— o k) —————) — =) b
Number of steps . xio’ Number of stils . »0'
(¢) CSVC{IMP): Violation vs. Step (d) £<SP£L£(IMP): Objective value vs. Step

Figure 4.73: Numbers of violations and objective values in each step of
CSVC{GENET) and CSVC(IMF) on Latin square problem with TV — 35

(short run—time case)

Chapter 4 Experiments

115
70-1 h 70-1 1
® N N
L[] L]
130- \ iso. \

’ ’ ~ ~

o - VMV AW o- VmkA v
OJ;) 7177;77U O.]rffy ’ .]—77 ’ L
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000

of steps

(a) PSS: V;:)"i;‘rcion vs. Step

J wh

1000 MOO 3000 4000 5000

Number of steps

(¢) max-PSS: Violation vs. Step

umber of steps

(b) PSS: Total input vs. Step

&
_ \
r wh

3000 4000 000
Number of steps

(d) max-PSS: Total input vs. Step

6000

Figure 4.74: Numbers of violations and total inputs in each step of PSS and
max—PSS on Latin square problem with N = 35 (long run—time case)

Chapter 4 Experiments 116

9 9
8 8
7 7

15-
£4- A
Z? 3 3
: [II Jiuiiiiiiiiiiirniiri,] @ ,iiwiii__ _i
0 200 400 600 600 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 uoo 1600 1800 2000
Number of steps Number of steps
(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step
io-| 1 1 1 h ion 1 1 1
. .
' 6 - _6
I =
3
z
3 3
2 2
S e I Y 1/ S A B i B R A
0 200 400 600 Bpfzmbelroooﬂf stelngO 1400 1600 1600 2000 0 200 400 600 Bp?ambelroooﬂf stel;zo 1400 1600 1800 2000
(¢) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.75: Numbers of violations and total inputs in each step of IPSS and
max—IPSS on Latin square problem with N = 85 (long run—time case)

Chapter 4 Experiments 117

1400H ‘ ' ‘ 1 ‘ : ‘ ' i 14001
1200 * 1200-
1000- 1000-
1800- "3 800-
2" 600- 600-
E
3
7
40 400
20 - 200-
01 . 1 1 1 1 I I I 01 r | W 1 . 1 .
0 05 1 15 2 25 3 35 4 a5 0 05 1 15 2 25 35 4 45
Number of steps Xio Number of Steps

(a) £5PL£(GENET): Violation vs. Step . (b) CSVC{GENET): Objective value vs. Step

1400 H 1 1 1 j 1400 H 1 1 1
1200- 1200-
1000- 1000-
S
5 80 3 &
I' a0 &161)
z
400 - 400-
- A
0 T i S Sy S e Rl ST 0 05 17 2 P S i 45
Number of steps X10° Number of steps x 109
(c) £0TL(IMP): Violation vs. Step (d) £5P£(IMP): Objective value vs. Step

Figure 4.76: Numbers of violations and objective values in each step of
CSVCiGENET) and CSVC{IMF) on Latin square problem with N =

(long run—time case)

Chapter 4 Experiments 118

4.3.2 Quasigroup Completion Problems

The instances of QCP used in this set of experiments are randomly generated
instances used in [4], which are believed to be in phase transition state, i.e.,
roughly around 42% of the cells have pre—assigned values [3 .

Table 4.9 shows the results of PSS and its variants on the set of QCPs. We
give the results of CSVC{GENET) and CSVC{IMF) of the same problems in

Table 4.10 for comparison. From the tables, the timing results indicate that
the performance of PSS and its variants are not as good as £<{SX>£ (GENET)
and i2tSPL£(IMP) in QCPs. The mean timing results of solving QCPs are

shown in Figure 4. 77.

Problem P~ IPSS

N Steps x10~ CPU time Steps x10” CPU time

15 41.07(40.19) 0. 1949 (0. 1900) 66.42(68.35) 0. 2871 (0. 2900)
16 68.65(67.60) 0.3795(0.3750) 91.07(92.92) 0. 4716 (0. 4800)
17 113.6(111.9) 0.7173(0.7100) 178.4(184.9) 1.0432(1. 0800)
18 166.5(166.9) 1.1692(1.1750) 136.5(132.4) 0. 8842 (0. 8600)
19 302.1(301.2) 2.3302(2.3400) 507.6(486.6) 3.6415(3.5350)
20 426.1(431.3) 3.7098(3.7550) 497.8(513.6) 4. 0663 (4. 1900)

- max—PSS max—IPSS

15 10.44(0.954) 0. 0657 (0. 0600) 24.68(25.54) 0. 1040 (0. 1100)
16 18.68(16.79) 0. 1225(0. 1200) 27.68(26.48) 0. 1366 (0. 1300)
17 26.10(26.01) 0. 1857(0. 1850) 68.55(65.46) 0. 3436 (0. 3300)
18 26.47(35.50) 0.2787(0. 2800) 46.98(45.83) 0. 2788(0. 2800)
19 59.64(58.68) 0.4669 (0. 4650) 125.1(120.4) 0. 7454 (0. 7300)
20 60.71(59.60) 0.5447 (0. 5400) 98.54(99.57) 0.6913 (0. 7000)

O — O OO
W o — O O

Table 4.9: PSS and its variants on quasigroup completion problems

Figures 4.78 — 4.86 show the numbers of violations against total inputs
or objective values of PSS, max—PSS, IPSS, max—IPSS, CSVCiGENET) and
CSVC{IMF) on QCP of order 15. Figures 4.87 —4.95 show the numbers of
violations against total inputs or objective values of PSS, max—PSS, IPSS,
max—IPSS, CSVC{GENET) and CSVC{IMF) on QCP of order 16. From
the figures about £0T£ (GENET), we conclude that there exist many local

minima in the search space. CSVC{GENET) does learning a lot of times to

Chapter 4 Experiments

119

Problem £5PZ (GENET)
N Tteration x10 Repairs x10 Learns x10° CPU time
15 1. 893 (1. 926) 5.351(5.598) 0.743(0.751) 0. 0366 (0. 0400)
16 1. 549(1. 255) 4.714(4.162) 0.595(0.465) 0. 0366 (0. 0300)
17 3.224(3. 058) 9.43509.177) 1.256(1.175) 0. 0759 (0. 0800)
18 3.464(3.534) 10.62(10.59) 1.332(1.364) 0. 0955 (0. 0900)
19 5. 438 (5. 674) 17.26(18.09) 2.075(2.157) 0. 1675(0. 1700)
20 5. 323 (4. 799) 18.26(17.56) 1.998(1.772) 0. 1979 (0. 1900)
“Problem CSVC(IMP)
N Tteration x10 Repairs x10 Learns x10° CPU time
15 0. 342(0. 416) 2.124(2.390) 0.342(0.416) 0.0131(0. 0100)
16 0. 642(0. 763) 3.287(3.711) 0.642(0.763) 0.0199 (0. 0200)
17 1. 369 (1. 002) 7.162(6.072) 1.369(1.002) 0. 0430(0. 0400)
18 1. 256(1. 011) 6.896(6.780) 1.256(1.011) 0. 0459 (0. 0450)
19 1. 165(0. 658) 7.302(4.656) 1.165(0.658) 0. 0555 (0. 0300)
20 1. 333(1. 443) 8.516(9.166) 1.333(1.443) 0. 0736 (0. 0800)
Table 4.10: CSVC{GENET) and CSVC(IMF) on quasigroup completion
problems
4.5 1 1 1
% PSS
-e- max-PSS
i -A. IPSS AN
-0 - max-IPSS z -
A LSDL(GENET) z —
O LSDL(IMP) /
3.5- / -
¥ 3. / / B}
« / /
a 2.5 / /
I, Y.]
Q /
01.5- /
=
-) X A A

Figure 4.77: The mean time results on quasigroup completion problems

Chapter 4 Experiments 120

escape from local minima. From Table 4.9 and 4. 10 » we see that the number of
repairs done and steps taken in CSVC{GEmT) and CSVC{IMF) are fewer
than the number of steps taken in PSS and its variants. It means that the
search path of CSVC(GENET) and CSVC{IMF) are shorter than those of
PSS and its variants. During the search, CSVC{GENET) and CSVC{IMF)
select a direction that globally improves the current state, while PSS and IPSS
select a direction that is dictated by the list T. The ordering in T is defined
by the search dynamically. Therefore, PSS, IPSS and CSVC implementations
have totally different search paths in solving QCPs. The experimental results
show that the search strategy of PSS and IPSS are not as effective as that of
CSVC{GENET) and CSVC{IMF) in this set of experiments.

In general, PSS takes fewer steps than IPSS in solving QCPs. From Figures
4.79(a), 4.82(a), 4.85(a), 4.88(a), 4.91(a) and 4.94(a), we conclude that the
partial solutions are not easy to extend. IPSS takes more steps to find the
next partial solution. Therefore, PSS has a better performance of IPSS in
this set of experiments. It should be noted that max—PSS and max—IPSS are
shown to have a great improvement on PSS and IPSS respectively. The timing
results confirm that the heuristic guides the search to select a relatively better

direction in the search space.

4.4 Random CSPs

A random binary CSP is generated with four parameters (n,m, pi, p2), where
n is the number of variables, m is the domain size of the variables, pi is the
constraint density, and p2 is the constraint tightness. Constraint density is
the probability that a constraint exists between a pair of variables. Constraint
tightness is the probability that a pair of values is incompatible with each other

for a given pair of variables that is being constrained.

Chapter 4 Experiments 121

400-1 h 400 H

350- 350-

300- 300-

J 250 - 250-
h 11
o0
- m.,
01 , 1 171 1 1 1 h 01 b r 1 U 1 1 ,
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7
Number of steps x10' Number of steps k10
(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step
400 H ’ ‘ 1 h 400 |
350- 350-
300 - 300-
1 250- 250-
1 A
I 1s0- 150-
z
100- loo-
se- 50-
o, P*W
0 ! 2 3Numl:ver“of steps 6 6 7 xici'8 0 ! 2 6 7 8

3 4 5
Number of steps

(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.78: Numbers of violations and total inputs in each step of PSS and
max—PSS on QCP of order 15 (average run—time case)

Chapter 4 Experiments 122

400-j - o1
360- 350
0 0
- b Y. I 1m
%o_ y Ul,
° o0 nun
. - lifclituld 1
- — . B MJtarfitW j
. B MJ j
’ ' ’ 3Number“cpf steps ’ ° ’ «io"8 ’ ' ’ 3Number“cpf steps ’ ’ ’ <io'
(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

@j < < < < < < < @% < < < < < < <

»
1 260- 250-
il\-
I 150- 150.
z
100- 1w
_) b b ’ —_ b ’ - ’ b
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7
Number of steps «io’ Number of steps kio'
(c) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.79: Numbers of violations and total inputs in each step of IPSS and
max—IPSS on QCP of order 15 (average run—time case)

Chapter 4 Experiments

123
400-1 h 400-1
350- 350-
300+ 300-
I 250- 250-
% 200- =200-
1 150 150.
z
100- 100-
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Number of steps x10' Number of steps x10"
(a) GENET): Violation vs. Step (b) CSVC{GENET): Objective value vs. Step
400 H h 400-i
350+ 350-
300 - 300-
J 250 250-
1 I
«5200. =]
§ 150- 150-
2
100 0
f— [b f— pr— b — f— b [— f— b 0 .) f—) b) b b b .
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Number of steps x10" Number of steps x 10+
(¢) CSVC{IMP): Violation vs. Step (d) CSVC{IUF): Objective value vs. Step

Figure 4.80: Numbers of violations and objective values in each step of

CSVC(GENET) and CSVCiIMP) on QCP of order 15 (average run—time case)

Chapter 4 Experiments 124

400-1 ’ ‘ ‘ ‘ ! ’ ‘ 1 400"] ‘ ! ! —
350- 350-
300- 300-
250- 250-
¢
% 200~ - % 200-
I 1s0- 150- L

» W | ijivijii

I 1 . .

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Number of steps xiof Number of steps * 10
(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step
400-| ' : : : : ' : H 400-j
350 - 350-
300- 300-
w
0 250- 250-
% 200- =200-
I 1s0- " 10
z
100- 100-

A

A
oK — P | . ° 9 a9 o
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Number of steps x10" Number of steps , 10%
(¢) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.81: Numbers of violations and total inputs in each step of PSS and
max—PSS on QCP of order 15 (short run—time case)

Chapter 4 Experiments 125

400-1 ‘ ‘ ‘ ’ ' ‘ ‘ h

400-1
350- 350
300- 300-
1 250- 250-
1 150- 150. Ltt) i
y ——) ——) —— Y — OkW.JW !:[t !)]: y —Y ——Y —
0 1 2 3 4 5 6 7 8 0 t 2 3 4 5 6 7 8
Number of steps * Number of steps x lo*
(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step
400+ [N h 4001
350 350-
300- 300-
S 250- 250-
. 1
gloo. . =200
I)
I 150 150-
z
10 - 100
50 - 50-
o] ! _))) b b y [OJ l fwy—)))) b b
0 1 2 3 4 5 6 7 6 0 1 2 3 4 5 6 7 8
Number of steps ,io" Number of steps , io'
(¢) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.82: Numbers of violations and total inputs in each step of IPSS and
max—IPSS on QCP of order 15 (short run-time case)

Chapter 4 Experiments

< < < <
350-
300-
I
I
e
I 150-
z
100-
n 1 3 r 5
Number Of steps
(a) CSVCiGENET): Violation vs. Step
400-3
350-
300
:[250
1
=
T__‘Al.‘()r
z

! 2

(¢) CSVC{IMP): Violation vs. Step

Number Of steps

126

< < < < < ~ <
if1
o .
-11
1 -
8 0 1 3 4 5 6 7 8
Number of steps xio'

(b) £5PE£(GENET): Objective value vs. Step

i

ki)

300

5 6

L4 ~

Number of steps

(d) CSVC{IMP): Objective value vs. Step

Figure 4.83: Numbers of violations and objective values in each step of
£<SP£ (GENET) and CSVC(IMF) on QCP of order 15 (short run—time case)

Chapter 4 Experiments 147

400 H ‘ ' ’ ' ' I

350- R B

"~ |y i w f L J

’ 3Number JOfsteps ’ ’ ! x,o'8 ’ ' ’ SNumberlf steps ’ ’ ’
(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step
ot A A A B
360- m
300 500
:rE 0 s 0
I .t

% o
150.

z

100-

W]~ Vvhmum o MO s s — s
0 ’ 2 3 1 5 6 7 8 0 1 2 3 4 5 6 7
Number Of steps kio' Number of steps
(c) max-PSS: Violation vs. Step (d) IPSS: Total input vs. Step

Figure 4.84: Numbers of violations and total inputs in each step of PSS and
max—PSS on QCP of order 15 (long run—time case)

o

Chapter 4 Experiments 128

S 6 7

400-1 e ’ ’ ‘

5 ® ‘ f
xio

[1 2 3 1

Number Of steps xio'e ° ' : Numl:er o; st‘eps
(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step
400-1 ‘ ‘ ‘ ‘ ‘ ' LIES|
350- i
30 30
22 =
2 200. .
E 150- 'SO-
z
)] ()]
n ——777’77)777
1 2 3 4 5 6 7 8 0 1 2 . n »
Number of steps ,10' Number of steps «io'
(¢) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.85: Numbers of violations and total inputs in each step of IPSS and
max—IPSS on QCP of order 15 (long run—time case)

Chapter 4 Experiments

129
400- 1 " . : : . . . Uj}[j’l
350- .
300. L
I p=ig =13
h |
1 150.
100-
N A s N7 ~
pro - - wKAA1 ™ “MMVM
0 N 2 1 4 5 — 6 7 e 0 1 2 3 4 5 6 7 8
Number Of steps 10' Number of steps .'o

(a) £5PL£(GENET): Violation vs. Step (b) £5r>£(GENET): Objective value vs. Step

400-1

350-

I I
-5 200- 'S
I
I w0 '50-
z

100- U1

5 6 7 8 0 1 2

4 5 6 7 8
Number of steps

Number of steps xio'

(c) £5r>£(IMP): Violation vs. Step (d) CSVC{IMF): Objective value vs. Step
Figure 4.86: Numbers of violations and objective values in each step of
£5D£ (GENET) and CSVC(IMF) on QCP of order 15 (long run—time case)

Chapter 4 Experiments 130

1) Ujif

500~ 4 .

« 400 L/

13- 1=
1. oo 1)) | |
if "mmiNimtum"™" . . 0-- , -1 ,
r o ’ o 5 10 15
Number of steps xio' Number of steps W
(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step
U] - U I ‘
500~ o .
” 400~ L
{{} - 130G
t- o
E
i 200. .200.
100-
e
» d*ﬁ* b
0 5 15 0 5 10 15
Number Of steps ,10' Number of steps «io'
(¢) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.87: Numbers of violations and total inputs in each step of PSS and
max—PSS on QCP of order 16 (average run—time case)

Chapter 4 Experiments 131

1: O ill

| l

rs 0 5 10 15
mber Of steps 10'

) Number of steps x<o'
(a) IPSS: Vlolatlon vs. Step (b) IPSS: Total inptupt vs. Step

60j 600-j~—
400- Him-

L 3

- 20 4l

te o

S

ZI 2‘(0)0' A . . W
Q. iw wii , ojsmiUti™ 1 i

° i Number of steps © <|0'15 ° i Number of steps 8 xio15
(¢) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.88: Numbers of violations and total inputs in each step of IPSS and
max—1PSS on QCP of order 16 (average run—time case)

Chapter 4 Experiments

o 6

Number Of steps

(a) /:SVEGENET): Violation vs. Step

600-1

» 400~

1~ 300-

Z 200-

100-

o S

Number Of steps

(c) JCSVCIIMP): Violation vs. Step

132

un

i,

IS 0 5 o

Number of steps

600+

I

) b
0 5 10
Number of steps

Is
xio'

(b) jJCSVJC(GENET): Objective value vs. Step

xio'

(d) £«Sr>£(IMP): Objective value vs. Step

Figure 4.89: Numbers of violations and objective values in each step of
£{SX>£ (GENET) and £SVE(IMP) on QCP of order 16 (average run—time case)

Chapter 4 Experiments 133

@1 < < I/ [13
50 50
400~ #
i 300- . :)[
L 0
L i 1 1
S y | |) -
00 5 10 15 0 5 10 IS
Number of steps x Number of steps xio
(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step
& ‘ F &M ‘
500- 500-
w 400- 400-
1 I
130 - 30
1 “
7 b))
ol , , oi” , 1
0 5 10 15 0 5 10 'S5
Nurr}ber of slteps Number of fteps «io'
(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.90: Numbers of violations and total inputs in each step of PSS and
max—PSS on QCP of order 16 (short run—time case)

Chapter 4 Experiments 154

600-|-
500-

« 400~

o)

*ﬁIlIIM\ m>*H '
0 10
mber Of steps

(a) IPSS: Vlolatlon vs. Step

b b

n MMt
" : 10
Number Of steps

(¢) max-IPSS: Violation vs. Step

o

400-

-~ vin-

! J
II1
1 O\\fJPfI-[’\\m"‘I
15 0 10
xio' Number of steps
(b) IPSS: Total input vs. Step
500"
- 400-
I
o
.200 .
0Pt < ‘

15 0 5
Number of steps

(d) max-IPSS: Total input vs. Step

x'o

kio'

Figure 4.91: Numbers of violations and total inputs in each step of IPSS and
max—IPSS on QCP of order 16 (short run—time case)

) 1 e
Chapter 4 Experiments L

600H U]
500.
« 400~ &
$
= I
| 2 1N
I
i 200. .
(103 <
5) < is 0 5) 0 ‘
Number Of steps xio' Number of steps
(a) £5DL(GENET): Violation vs. Step (b) CSVjC(GENET): Objective value vs. Step
@D{ < [[bm: < <
600- <o
g 400 L
S
I I
- 30 -5 i
I (o]
1 200. HE
’@ w
Q] 0. 5 10 15
‘ mber ofsteps «to' Number of steps
(c) £5D£(IMP) Vlolatplon vs. Step (d) CSV£(IMP): Objectivz value vs. Step

Figure 4.92: Numbers of violations and objective values in each step of
/:8V.C(GENET) and £<SPL(IMP) on QCP of order 16 (short run-time case)

Chapter 4 Experiments

f100H

600.

jud
(|

I

)l

10
Number of steps xio'

Number of steps

(a) PSS: Violation vs. Step (b) PSS: Total input vs. Step

600+ ————

500- U

400- .

300-

z 200- DJJH

100-

[0y ~
"0 5 W t o of* 5

’0
Number Of steps xio"

(c) max-PSS: Violation vs. Step (d) max-PSS: Total input vs. Step

Figure 4.93: Numbers of violations and total inputs in each step of PSS and
max—PSS on QCP of order 16 (long run—time case)

Number of steps xio'

156

Chapter 4 Experiments 157

1 5 A
Number Of steps

(a) IPSS: Violation vs. Step

600-1

500-

Z 200-

»)

70

Number Of steps

5
(c) max-IPSS: Violation vs. Step

1

Number of steps "o

(b) IPSS: Total input vs. Step

5

O-AXAHM "S”, . i

s 10 15
Number of steps

(d) max-IPSS: Total input vs. Step

Figure 4.94: Numbers of violations and total inputs in each step of IPSS and
max—IPSS on QCP of order 16 (long run—time case)

Chapter 4 Experiments 138

’
@1 h
500- 500
w 40 . § 40
;% 300~ Lol
t o
Z 200- H)JD-
)
(2 ®
»
0 5 b 5 0 5 0 5
Number Of steps xio' Number of steps "to'

(a) CSVC{GENET): Violation vs. Step (b) £S7:>£(GENET): Objective value vs. Step

<

1) ‘ h -
500 500
« 40
I I
g X0 i
E .
E
100-
5 D 5 0 5 b o) 5
Number of steps xio' Number of steps xio'
(¢) CSVC{IMP): Violation vs. Step (d) CSVC{IUF): Objective value vs. Step

Figure 4.95: Numbers of violations and objective values in each step of
CSVC{GENET) and CSVC{IMF) on QCP of order 16 (long run—time case)

Chapter 4 Experiments 139

4.4.1 Tight Random CSPs

A set of random binary CSPs with n ranging from 120 to 170’ m = 10, pi = 0.6
and P2 = 0.75 are used in this set of experiments. The execution limits of PSS
and its variants in solving the problem instances are set to 5 million steps. The
execution limits of CSVC{GENET) and CSVC{IMF) in solving the problem
instances are set to 5 million iterations. We use a superscript (x/100) besides

the timing figures to indicate that only x out of the hundred runs are successful.

Problem PSS IPSS «
n St’ CPU time Steps CPU time
120 3.0(3.0) 0.0100(0. 0100) (04/i00) 182.9(159.0) 0. 0159 (0. 0200)
130 0.0(0.0) 0.0100(0. 0100 (14/100) 155.5(143.5) 0. 0150 (0. 0100)
140 4.0(4.0) 0. 0200 (0. 0200j (06/i00) 225.2(181.0) 0. 0241 (0. 0200)
150 0.00.0) 0.0150(0.0150) (io/ico) 340.2(294.5) 0. 0398 (0. 0300)
160 1.40.00 0.0200(0.0200i ii/i > -) 592.7(484.0) 0.0786(0. 0600)
170 8.0(8.0) 0. 0200b. 02001 (0i/i00) 217.8(192.0) 0.0281 (0. 0300)
max-PSS max-IPSS

- m 80.0(76.5)0.0112(0.0100) Wioo) 185.8(168.0) 0.0143(0.0100)
130 70.1(89.0) 0.0144(0.0100) (43/100) 160.9(154.0) 0.0131(0. 0100)
140 97.2(93.0) 0.0155(0.0100 — 2/100) 213.8(182.5) 0.0201(0.0200)
150 73.0(89.0) 0.0176(0.0200)(21/I00) 211.4(186.0) 0.0213(0.0200)
160 85.3(88.0) 0.0205(0.0200)"100) 340.9(351.5) 0. 0370(0. 0400)
170 110.4(103.5) 0.0225(0.0200)(2 - /_ 205.2(192.5) 0.0250(0. 0200)

Table 4.11: PSS and its variants on random CSPs

Table 4.11 shows results of PSS and its variants on random CSPs. The
results of £5P/: (GENET) and CSVC{IMF) on the same set of problems are
given for comparison in Table 4. 12. From the tables, we observe that PSS and

max—PSS cannot alwaysfindsolutions within the pre—set limit, and IPSS and
C

max—1PSS have a better performance than others.

The random CSPs with the above parameters are likely to have many
flawed values [1]. We record the numbers of violations against total inputs
or objective values of IPSS, max—IPSS, £57:>£(GENET) and CSVC(IMP) on

random CSP with n = 120 in Figures 4.96 —4. 101. The numbers of violations

Chapter 4 Experiments

140

Problem CSVCjGENET) . —
n Iteration Repairs Learns CPU time
120 126.6(147.0) 3084(3500) 15.8(18.0) 0. 4620 (0. 5200)
130 136.8(153.0) 3513(3980) 16.4(18.5) 0.5718(0.6500)
140 135.8(154.0) 3672(4231) 15.9(18.0) 0.6510(0.7500)
150 164.7(170.0) 4653(4801) 18.7(19.0) 0.8846(0.9100)
160 160.4(167.0) 4773(4974) 17.8(19.0) 0. 9787 (1. 0200)
170 162.7(175.0) 4998 (5426) 17.5(19.0) 1.0965 (1. 1900)

-pToblem CSVCjIMP) .

n Tteration Repairs Learns CPU time

120 27.2(30.0) 2814(3093) 27.2(30.0) 0.4243(0.4700)
130 26.4(30.0) 2988(3419) 26.4(30.0) 0.4962(0.5650)
140 24.7(30.0) 2999(3719) 24.7¢30.0) 0.5443(0. 6700)
150 27.6(32.0) 3641(4227) 27.6(32.0) 0.7122(0. 8300)
160 27.5(32.0) 3876(4518) 27.5(32.0) 0.8160(0. 9400)
170 20.1(32.0) 4374(4795) 29.1(32.0) 0.9821(1.0700)

Table 4.12: CSVC{GENET) and CSVC{mF)

on random CSPs

against total inputs or objective values of IPSS, max—IPSS, £<SD/: (GENET)
and CSVC{IMF) on random CSP with n = 170 are shown in Figures 4.102 —
4. 107.

Figures 4. 97, 4.99 and 4.101 show the number of violations in each step

of CSVC{GEmT) and CSVC{IMF) on random CSP with n = 120 in av—

erage run—time case, short run—time case and long—run time case respectively.
Figures 4. 103, 4.105 and 4. 107 show the number of violations in each step of

CSVC{GE~ET) and CSVC{mF)

on random CSP with n = 170 in average
run—time case, short run—time case and long—run time case respectively. We
observe that the number of violations typically maintains in a level (around
several thousands), until it quickly drops to zero when a solution is found,

after £{SP£ (GENET) and CSVC{IM?) does learning several times.

Figures 4.108(a) shows the number of violations in each step of PSS on

random CSP with n — 120. Figures 4.109(a) shows the number of viola—

tions in each step of PSS on random CSP with n = 170. We see that the

number of violations also typically keeps in a level. When the random CSP

instance has many flawed values, PSS is not always able tofinda solution like

Chapter 4 Experiments 161

(a) IPSS: Violation vs. Step

P

m o
8

(C) max-IPSS: Violation vs. Step

(b) IPSS: Total input vs. Step

Bk

max-IPSS: Total input vs. Step

Figure 4.96: Numbers of violations and total inputs in each step of IPSS and
max—IPSS on random CSP with n = 120 (average run—time case)

Chapter 4 Experiments

14000+

¥, , 11

0 0.5

(a) CSVC{GENET)

1.5 2
ber of step

"Violation vs. Step

14000 T
12000~
10000 *

z

4000~

01 L, 1 1

(c) CSVCUP): s, Step

Figure 4.97:

run—time case)

14000 'T

-12000-

G 1 1 ‘

0.5 P> 14

ber of steps

(b) £5I>>C(GENET) ObJectlve value vs.
\ [
10000 -
_ o liid
6000~ P
-

2000-

(H -1 1 ‘ ‘

0.5 2

) CSVC{IMP): Objective

V

ZV.S

142

Sxtep

ZS
nio'

Ob]ectlve value vs. Step

Numbers of violations and objective values in each step of

£5P£ (GENET) and CSVC{IMF) on random CSP with n = 120 (average

Chapter 4 Experiments

0 50 100 150 200
Number of st/lls

(a) IPSS: Violation vs. Step

]1 < < <

0 50 100 150 200
Number of steps

(¢) max-IPSS: Violation vs. Step

143

- 1
r
L,
- H
I [)
250 0 50 100 150 200 250
Number of steps
(b) IPSS: Total input vs. Step
h < < < <
N
1
S

0 50 100 150 200 250
Numbar of steps

) :

(d) max-IPSS: Total input vs. Step

Figure 4.98: Numbers of violations and total inputs in each step of IPSS and
max—IPSS on random CSP with n = 120 (short run—time case)

Chapter 4

12000~

10000~

© am

2000~

J
0

w1
7118

1 &0
T aw
?

4000~

2000 -

0

60 11 >

Experiments

Oos 1
Number of steps

(a) CSVC{GE"ET):

< <

Violation vs. Step

N]ﬁmber of step}s’s ka.S

(c) £<SPL£(IMP): Violation vs. Step

.12000 -

i —

<<

(b) CSVC{GENET):
h w1 ¢

=W .
S
Ay

-
r 061 11
o 05
(d) CSVC{IMF):

144

— R i L — R j—
1 15 2 25
Number of steps x 10'

Objective value vs. Step

< < < <
< (49 I/
r
N]ﬁmber of stepls5 2 11 02"S

Objective value vs. Step

Figure 4.99: Numbers of violations and objective values in each step of

CSVC{GENET) and CSVC{IMF) on random CSP with n = 120 (short run—

time case)

Chapter 4 Experiments 145

» -
10 10
¥
1 6 d
! | 6
F 6
00 50 100 150 200 250 0 50 100 150 200 250
Number of steps Number of steps
(a) TPSS: Violation vs. Step (b) IPSS: Total input vs. Step
&j < < < < h m < < <
» »
10-
V>
18 2
16 T e
oln) = _U-, 1 olo—, — - U -
0 so 100 IS0 200 250 0 50 100 150 200 J50
Number of steps Number of steps
(¢) max-IPSS: Violation vs. Step (d) max-IPSS: Total input vs. Step

Figure 4. 100: Numbers of violations and total inputs in each step of IPSS and
max—IPSS on random CSP with n = 120 (long run—time case)

Chapter 4 Experiments 146
14000-1 1
12000- 12000-
10000- 10000-
I
I 8 - 181
1 6000- 6000.
; 4000- <000~
W —F—fw-"-A""JJJ " TLJJI
2000- “~ 2000- « < 3
01 1 r 1 1 01 1
0 05 1 15 2 25 0 05 1 15 2 25
Number of steps b/ Number of steps x io

(a) £5DL(GENET): Violation vs. Step

14000 j

12000-

01 U T

1 15
Number of steps

(c) £5P£L(IMP): Violation vs. Step

(b) £<SPL£(GENET): Objective value vs. Step

T uooo
12000-
10000~
I -lyjn
i T 01 U P
2 25 0 05 1 15 2 25
»10" Number of steps «10'

(d) £5DL£(IMP): Objective value vs. Step

Figure 4.101: Numbers of violations and objective values in each step of

CSVC{GE"ET) and CSVC{IMF) on random CSP with n = 120 (long run—

time case)

Chapter 4 Experiments 147

v 2
b - _
?[%_ F//
0 S
5 6 - M6
5
& - &
| . :
0 50 100 150 200 250 0 50 100 150 200 250
Number of steps Number of steps
(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step
m < < < < E H i < < < <
v 7
0 o
i
I
r
s;- 6- 6-
z
4

A

200 200 250
umber of steps

0 50 umber of steps
(c) max-IPSS: lea&%n vs. Step (d) max-IPSS: Total input vs. Step

Figure 4.102: Numbers of violations and total inputs in each step of IPSS and
max—1PSS on random CSP with n = 170 (average run—time case)

Chapter 4 Experiments 148

g c12
S
0 2
lE 15- 15
z
0-1 1 1 1 I 11 1 1 3 o 1 1 1 . I
0 0.5 1 15 2 25 3 35 A 0 0.5 1 15 2 25 3 35 4
Number of_steps . x Number .uf steps X
(a) /:<SPL£(GENET): Violation vs. Step (b) £5r>£(GENET): Objective value vs. Step
—_— (_._7_ (_ (_h — e (_ (_._._ <
3- 3
f) 25- 25-
3 2 « D 2
I t —-JJ
115- -1
0.5-4 1 0.5
6 - 1 . . . r o4 J 1 1 < ‘ ¢ ¢
0 0.5 1 5 2 2.5 3 35 4 0 0.5 1 1-5 2 25 3 35 4
Number of steps X to* Number of steps x
(¢c) £SV/:(IMP): Violation vs. Step (d) £5r>£(IMP): Objective value vs. Step

Figure 4.103: Numbers of violations and objective values in each step of

£51>£ (GENET) and £5P£ (IMP) on random CSP with n = 170 (average
run—time case)

Chapter 4 Experiments 169

56
E
z
"
0 M
Number Of steps
(a) IPSS: Violation vs. Step
Hj- < < < <
12-
>
§ 6
Z
.-
2
lu . ;
0 z TO 1M X0

Number Of steps

(¢) max-IPSS: Violation vs. Step

B
— o —
°0 50 100 '50 200 250
Number of steps
(b) IPSS: Total input vs. Step
”i:[¢ ¢
[]
L,
4
2
O}d<) b b b -

50 100 150 200 250

250 0
Number of steps

(d) max-IPSS: Total input vs. Step

Figure 4.104: Numbers of violations and total inputs in each step of IPSS and
max—1PSS on random CSP with n = 170 (short run—time case)

Chapter 4 Experiments

2.5-

15-

Num T egper

0.6
1 1
2 25
Number of steps

n f -, ,
05 1 15

(a) £5P£(GENET): Violation vs. Step

0 !
T i J i R

tS 2 25

05 1
Number of steps

(¢) CSVC{IMPy. Violation vs. Step

xio'

150

S AL J XK1

0 1 1 1 1
0 0.5 1 Is 2 25 3 35
Number of steps «io

n

(b) £5P£(GENET): Objective value vs. Step

O 1 L —_ b —_ —_ b b K b
5 2 25 3
Number of steps

(d) CSVC{IMF): Objective value vs. Stei)

4 0 05 1 35

Figure 4.105: Numbers of violations and objective values in each step of

CSVC{GENET) and CSVC{IMF) on random CSP with n = 170 (short run—

time case)

Chapter 4 Experiments 151

50 100 150 200 250

50 too IS0 200 250 0
Number of steps

Number of steps

(a) IPSS: Violation vs. Step (b) IPSS: Total input vs. Step

"o 50 100 150 200 250 0 50 100 150 200 250
Number of steps

(c) maX-IPSS?u\"}bie(;fgttiegn vs. Step (d) max-IPSS: Total input vs. Step
Figure 4. 106: Numbers of violations and total inputs in each step of IPSS and
max—IPSS on random CSP with n = 170 (long run—time case)

P
b
¢
1§ -1

Chapter 4 Experiments

152
< < < < <
- - - e — — - f - - P — —_ = —_ = — =
3- 3-
25
« 2- - 3 2
5 H
E
2
1 nnn
i k1
a5 05
Q . . . 1 1 1 J o1 1 - 1 1 g A
0 05 1 15 2 25 3

Number of steps

(a) CSVC{GENET): Violation vs. Step

1 15 2 25 3 35 4
x Number of steps

(b) /:<SP£(GENET): Objective value vs. Step

25-
f
0.5-+ 1 .5
0 '1 f——) —)) ——)) ——) — ——1 O J ——J_’ b b M r_—’ -
0 0.5 1 15 2 25 3 35 4 0 05 1 5 2 25 3 35 4
Number Of steps «io'

Number of steps

(c) /:SVE£(IMP): Violation vs. Step (d) £SVEL(IMP): Objective value vs. Step

Figure 4.107: Numbers of violations and objective values in each step of

£SV/: (GENET) and £5P£ (IMP) on random CSP with n = 170 (long run-
time case)

Chapter 4 Experiments
14000-1
-
(13
g
1
0-1———,—~—, 1 1
0 0s 1 15 2
Number of steps

(a) PSS: Violation vs. Step

1800 H
1600-

1400-\

g W ¥
N ¥
[00. ¥
7@ ¥

>

0 P I8 1 1
0 50 100 150 200
Number of steps

(¢) max-PSS: Violation vs. Step

153

ol

@ il
- J v/~
e 4)11/
-.2 W / ? H
A m _I_ A
X é.\s ’ o ﬁumber of steIpSs ? X (26'5
(b) PSS: Total input vs. Step
v ET
[Y
- ¥
I- ¥
I- ¥
@ ¥
il \
o ¥
1 .)

Number of steps

(d) max-PSS: Total input vs. Step

Figure 4.108: Numbers of violations and total inputs in each step of PSS and

max—PSS on random CSP withn = 120

Chapter 4 Experiments

is.
1 pp *
01 R . 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5
Number of steps
(a) PSS: Violation vs. Step
@B]_ < < < <

6000-

« 4000~ \

I EE
1 a0 \
\
100 "\
o1 , 1’ - P

200
umber of steps

(c) max-PSS: Violation vs. Step

Figure 4.109: Numbers of violations and total inputs in each step of PSS and

“«

- Is. jI'lA
—7—A
° - H| -
T 01 1 1

4 0 0.5 1 15 2
Number of steps

2.5 3 35

(b) PSS: Total input vs. Step

£ fio00i ¢
I ¥
+\? A\
¥
- \
H - \\\
roo 1 ‘

200
umber of step

(d) max-PSS: Total input vs. Step

max—PSS on random CSP with n = 170

154

250

Chapter 4 Experiments 155

£5PL£ (GENET) does. Although max—PSS is also not always able tofinda so- ..
lution, it is shown to have the best performance when we study the successful
trials (refer to Table 4.11). Figures 4. 108(c) and 4. 109(c) show the number of
violations against total inputs in each step of max—PSS on random CSP with

n — 120 and n = 170 respectively. We see that the cluster selection heuristic
guides the search to select an excellent direction in the search space. Inter—
estingly, IPSS has not suffered from the problem that PSS faced. We observe
that the partial solutions found can be extended to a complete solution with—

out much difficulty (Figures 4.96(a), 4.98(a), 4.100(a), 4.102(a), 4.104(a) and
4.106(a)). Though with the help of heuristics, max—IPSS has about the same

efficiency as IPSS.

14 —-——

-A- IPSS
-0- max-IPSS
A LSDL(GENET)
12- 1.0. LSDL(IMP)
1- A 0
A
0)
4 0
n] o
3 ..A. O _
Q
o~... -
0.4-
0.2-
45 :
° e e o
C;"F T —_ 1 1 I r
120 130 140 150 160 170

Figure 4.110: The mean time results on random CSPs

Figure 4.110 shows the mean timing results of IPSS, max—-IPSS, CSVC
(GENET) and £<SP£(IMP). As PSS and max—PSS can only solve the problem

Chapter 4 Experiments 156

instances in some trials, we omit their timing results in thefigure. It can be

seen that CSVC{GENET) and CSVC{IMF) perform significantly worse than
IPSS and max—IPSS.

4.4.2 Phase Transition Random CSPs

A set of random binary CSPs close to the phase transition are used in this
set of experiments. All problem instances used in this experiment are the
same as that in [4]. The execution limits of PSS and IPSS in solving the
problem instances are set to 5 million steps, while the execution limits of
max—PSS and max—IPSS are set to 10 million steps. The execution limits of
CSVC{GENET) and CSVC{IMF) in solving the problem instances are set to
5 million iterations. We use a superscript (x/100) besides the timing figures

to indicate that only x out of the hundred runs are successful.

“problem PSS IPSS
n Steps x10° CPU time Steps x10° CPU time
120 >5000 >66. 4813 (0/100) >5000) 64. 6240 (0/100)
130 >5000 >68. 7239 (0/100) >5000) 66. 3857 (0/100)
140 >5000 >68. 3965 (0/100) >5000) 66.0671 (0/i00)
150 >5000 >70. 1852 (o/_) >5000) 66. 7879 (0/1i00)
160 >5000 >71.1339(0/100) >5000 >67. 1439 (0/100)
170 >5000 >71. 5648 (0/100) >5000) 67.7324(0/100)
max—PSS max—IPSS
m >10000 >69. 6243 (0/100) >10000 >71°9720 7
130 >10000 >72. 8381 (0/100) >10000) 76.4229(0/100)
140 >10000 >75.9473(0/100) >10000 >79. 0859 (0/i00)
150 >10000 >79. 1777(0/100) >10000) 83. 0627 (0/100)
160 >10000 >81. 8229 (0/100) >10000) 85. 5608 (0/100)
170 >10000 >84. 2616 (0/100) >10000) 88.5191 (0/1i00)

Table 4.13: PSS and its variants on phase transition random CSPs

Table 4. 13 shows results of PSS and its variants on random CSPs close to
the phase transition. The resultsof £5D£ (GENET) and CSVC(IMF) on the
same set of problems are given for comparison in Table 4. 14. From Table 4. 13,

none of the trails can solve the problem instances. For CSVC implementations,

Chapter 4 Experiments 157

Problem CSVC(GENET)
n Tteration x10 Repairs x10 Learns x10~ CPU time
120 688.6(304.0) 597.6(366.5) 375.8(144.0) 6. 1133(3.8700) (i5/i00)
130 >5000 >3678 >2876) 40. 6479 (00/1i00)
140 884.9(511.0) 811.5(583.1) 474.6(249.5) 8.7275(6.4300)(3)/fh)
150 >5000 >4000 >2803) 45, 4193 (00/i00)
160 >5000 >4127 >2774) 46. 3004 (00/i00)
170 828.2(292.9) 831.2(450.1) 433.5(127.1) 9.5086(5.4100) (. 7/i00)
“Problem CSVCjlIMP)
n I[teration x10 Repairs x10" Learns x10" CPU time
120 991. 9(760. 5) 1249(1047) 991.9(760.5) 9.8117(8.4650) (i2/i00)
130 2057 (2057) 2564(2564) 2057(2057) 21.290(21. 2901 (0i/i00)
140 731.0(410.9) 1070(743.1) 731.0(410.9) 8.866816.45007(19/Jif)
150 1886(1886) 2667(2667) 1886(1886) 23.150723.150>1/H8)
160 383.7(197.1) 726.2(496.1) 383.7(197.1) 6.6350 (4. 7450) Wioo)
170 2454 (2473) 3615(3643) 2454(2473) 30.863(32.410) ("/1o0)

Table 4.14: CSVC{GEmT) and CSVC{IMF) on phase transition random
CSPs

not more than 20% of the trails can solve the problem successfully. As these
problem instances are hard to all solvers, it is difficult to make comparison.

In order to compare the performance of PSS implementations to that of
CSVC implementations on random CSPs close to the phase transition, we
use slightly less difficult problem instances stated in [4] to conduct another
experiment.

Table 4.15 shows results of PSS and its variants on slightly easier phase
transition random CSPs . The results of CSVC(GENET) and CSVC(IMF) on
the same set of problems are given for comparison in Table 4. 16. As mentioned
in [4], this set of problem instances are difficult for stochastic solvers. For
CSVC implementations, not all trails canfindthe solution successfully. From
the tables, the performance of PSS and its variants are not as good as CSVC

implementations in this set of experiments.

Chapter 4 Experiments

Problem
n Steps x103
120 >5000
130 >5000
140 >5000
150 >5000
160 >5000
170 >5000
>10000
130 >10000
140 >10000
150 1695. 4(1695. 4)
160 >10000
170 >10000

CPU time
) 68.3004(0/i00)
) 70. 8367 (0/100)
>69.8512(0/100)
>69. 1622 (0/100)
> 69.3043(1)/k)
>69.36960 [)»
max—PSS
>69. 5245 (0/100)
>72. 4805 (0/100)
>75. 9728 (0/100)
1. 4190 (1. 4190) (i/i00)
>81. 5350 (0,/100)
>83. 5906 (0/100)

158
Steps x10° CPU time~
>5000) 61.9739(0/ic0)
>5000) 63. 8469 (0/100)
>5000 63.7774(0/ioo)
>5000) 65.1413(0/i00)
>5000) 66.1019(0/io0)
>5000 66.2910(0/ioo)

max—IPSS

>10000) 72.0099(o/ioo)
>10000 >76.0063 (0/i00)
>10000) 78.6275(0/i00)
>10000 >82.0091 (0/i00)
>10000 >85.2180(0/i00)
>10000 —) 87.1946(0/i00)

Table 4. 15: PSS and its variants slightly easier phase transition random CSPs

Problem £5P£ (GENET)
n Iteration x10 Repairs x10 Learns x10°
120 753.7(439.9) 650.8(461.1) 410.4(220.7)
130 1195(322.2) 995.3(403.4) 663.8(150.5)
140 812.7(413.2) 740.1(474.3) 434.9(200.5)
150 898.2(370.3) 848.2(467.0) 475.6(173.7)
160 986.9(364.0) 953.5(492.4) 520.5(166.4)
170 689.9(274.9) 716.5(402.5) 354.9(122.2)

Problem £4SPZ: (IMP)
n Tteration x10 Repairs x10 Learns x10"
120 903. 5(360. 6) 1117(598.1) 903. 5(360. 6)
130 3572(3572) 4248 (4248) 3572 (3572)
140 625.3(222.5) 892.2(464.7) 625.3(222.5)
150 667.0(191.0) 1005(439.1) 667.0(191.0)
160 1717 (1381) 2467 (2124) 1717 (1381)

170 614. 5(153. 2)

994. 5(406. 8)

614. 5(153. 2)

CPU time
6.4147(4.6600) Wioo)
10. 496 (4. 4400) (0 /i)
7.3846(4.9100)H /M)
8.8260(5.1600)(55/i00)
10. 240 (5. 5950) Wioo)
7.6204(4.5900) ~*Vioo)

CPU time
8.4019(4.9000) ('Vioo)
33. 480(33. 480) (oVioo)
6.8369(3.8900) (*/loo)
7.9671(3.9850)(42/7)
19.420(17.040)(22/i00)
7.9194 (3. 7000) Wioo)

Table 4.16: CSVC{GENET) and CSVC{IMF) on slightly easier phase transi—

tion random CSPs

Chapter 5

Concluding Remarks

We end the thesis in this chapter by concluding our contributions and giving

possible directions for future work.

5.1 Contributions

In this thesis we present a novel stochastic search scheme, Progressive Stochas—
tic Search (PSS), for solving binary CSPs. A typical stochastic search method
uses a cost function to evaluate the goodness of every point in a search space,
and a neighborhoods function to define the neighbors of a particular point in
the search space. The search starts from a random point in the search space
and moves from one point to its better neighboring point until the stopping
criteria are matched. This can be interpreted as that the move is driven solely
by “potential energy”, though the movement towards which better neighboring
point is usually determined randomly. As the search only moves from one point
to its neighboring point that gives an improvement in the cost, the search may
stay at the current point and no other movements can be made. The search
is trapped in local optima or plateaus. Random restart and heuristic learning
are the methods used to escape from local optima or leave plateaus tradition—
ally. Intuitively, this search approach can be thought to be prudent. The main

novelty of PSS is that the search is able to “rush through” the local optima

159

Chapter 5 Concluding Remarks 160

and plateaus with the cooperation of a new heuristic repair method and a
simple search path marking method. We maintain a list of variables, which
dictates the sequence of variables to repair. When a variable is being repaired,
it is always assigned a new value even if its original value should give the best
cost value. The search paths are slightly “marked” as the search proceeds by
updating the weights of the connections at the end of each convergence step.
Unlike the prudent approach used in the typical stochastic search method, the
search approach of PSS is more progressive. This progressive approach shows
an encouraging performance in some benchmarking problems.

We also present an incremental variant of PSS, namely IPSS. IPSS works
on a partial assignment and performs PSS on that partial assignment to find
a partial solution. This partial solution is then extended by adding a variable
that is not involved in the partial solution until a complete solution is obtained.
IPSS is found to be more efficient than PSS in some benchmarking problems
that the partial solutions can be extended easily. As mentioned before, PSS
and IPSS use a list of variable to dictate the sequence of variables to repair.
The ordering is in afirst-in-first-outmanner. We integrate the idea of greedy
variable ordering into PSS and IPSS to form other variants, namely, max—PSS
and max—IPSS respectively. Experimental results show that the greedy variable
ordering provides an excellent direction for the search towards the solutions in
some benchmarking problems.

We perform experiments using four types of benchmarking problems, namely
the iV-Queens problems, the permutation generation problems, the quasigroup
completion problems and Latin squares, and random constraint satisfaction
problems. The results show that the PSS class of schemes can outperform
/:0T£(GENET) and £cSP£(IMP) in TV-queens problems, Latin squares, ran—
dom permutation generation problems, and random CSPs. However, their per—
formance in increasing permutation generation problems and quasigroup com—

pletion problems are worse than that of £5P£ (GENET) and CSVC{IMP).

Chapter 5 Concluding Remarks 161

We present analysis of the search process of all these solvers in an attempt to

provide an explanation to this phenomenon.

5.2 Future Work

We believe this thesis presents an interesting new approach to the design of
stochastic search schemes for solving constraint satisfaction problems. As fu-
ture work, we shall investigate other heuristics that can possibly improve the
performance. For examples, the method that calculates the input of a label
node, the learning rule that updates the connection weights, and the strat—
egy that selects a cluster for repair at the next convergence step. With the
encouraging performance of max—PSS and max—IPSS in some benchmarking
problems, we believe that other suitable heuristics for the above three parts
can boost up the performance of PSS.

The benchmarking problems used in the experiments of this research are
almost the same as that used in CSVC [4] except for the hard graph—coloring
problems. We have conducted an experiment for the hard graph—coloring prob—
lems. The experimental results show that the PSS class of schemes cannot find
solutions within the pre—set limit. Since we are still investigating what makes
this kind of problems hard to the PSS class of schemes, we extract this part
from experiments and put it as future work. It is also interesting to investi—
gate if other heuristics can help the PSS class of schemes to solve the hard
graph—coloring problems. ¢

The possibility of its integration with GENET class solvers is also another
issue to be researched into. The search approach of the PSS class of schemes
is progressive, while that of GENET class solvers is prudent. The experimen—
tal results show that different approaches have their advantage in different
benchmarking problems. It isworthwhile to research under what situations

the search should decide to use progressive approach or prudent approach, so

Chapter 5 Concluding Remarks 162

that advantages from both side can be exploited.

Bibliography

1] D. Achlioptas, L.M. Kirousis, E. Kranakis, D. Krizanc, M. S. 0. Molloy,
and Y. C. Stamatiou. Random constraint satisfaction: A more accurate
picture. In Proc. 3rd International Conference on Principles and Practics

of Constraint Programming, pages 107-120, 1997.

2] J. Bitner and E. M. Reingold. Backtrack programming techniques. Com-
munications of the ACM, 18:651-655, 1985.

3] C.Gomes and B. Selman. Problem structure in the presence of perturba—

tions. In Proc. AAAI-97, pages 221-226, 1997.

4] M. F. Choi, J.H.M. Lee, and P.J. Stuckey. A lagrangian reconstruction of
GENET. Artificial Intelligence, 123:1-39, 2000.

5] P. Codognet and D. Diaz. Yet another local search method for constraint

solving. In SAGA, pages 73-90, 2001.

6] A. Davenport, E. RK. Tsang, C.J. Wang, and K. Zhu. GENET: A con-
nectionist architecture for solving constraint satisfaction problems by it~

erative improvement. In Proc. AAAI-94, pages 325-330 1994,

7] J. Prank, P. Cheeseman, and J. Allen. Weighting for godat: Learning
heuristics for gsat. In Proc. AAAI-96, pages 338-343 > 1996.

8] LP. Gent and T. Walsh. Towards an understanding of hill-climbing pro-
cedures. In Proc. AAAI-93, pages 28-33, 1993.

163

9] F. Glover. Tabu search part I. Operations Research Society of America

10]

11]

12]

13]

14]

15]

16]

[17]

19]

(ORSA) Journal on Computing, 1(3):109-206, 1989.

F. Glover. Tabu search part II. Operations Research Society of America

(ORSA) Journal on Computing, 2(1) :4-32, 1989.

R. M. Haralick and G. L. Elliot. Increasing tree search efficiency for con—

straint satisfaction problems. Artificial Intelligence, 14:263-313 > 1980.

N. Jussien and 0. Lhomme. The path-repair algorithm. In CP99 Post-
conference workshop on Large scale combinatorial optimisation and con-

straints, volume 4, 2000.

V. Kumar. Algorithms for constraint satisfaction problems: A survey. Al

Magazine, 13(1) :32-44, 1992.

J.H.M Lee, H.F. Leung, and H. W. Won. Extending GENET for non—
binary constraint satisfaction problems. In 7th International Conference

on Tools with Articial Intelligence, pages 338-342, 1995.

A. K. Mackworth. Consistency in networks of relations. Artificial Intelli-

gence, 8(1) :99-118, 1977.

K. Marriott and P.J. Stuckey. Programming with constraints. The MIT

Press, 1998.

S. Minton, M. D. Johnston, A. B. Philips, and P. Laird. Minimizing con—
flicts: A heuristic repair method for constraint satisfaction and scheduling

problems. Artificial Intelligence, 58(1-3) :161-205, 1992.

P. Morris. The breakout method for escaping from local minima. In Proc.

AAAI-93, pages 40—45 > 1993.

B. A. Nadel. Constraint satisfaction algorithms. Computational Intelli-
gence, 5:188-224, 1989.

164

20] G. Pesant and M. Gendreau. A view of local search in constraint pro-

gramming. In Principles and Practice of Constraint Programming, pages

353-366, 1996.

21] E. T. Richards, Y. Jiang, and B. Richards. Ng-backmarking — an algorithm
for constraint satisfaction. AIP Techniques for Resource Scheduling and

Planning, BT Technology Journal, 13(1), 1995.

[22] E. T. Richards and B. Richards. Non-systematic search and learning: An
empirical study. In Proc. Conference on Principles and Practice of Con-

straint Programming, pages 370-384, 1998.

23] F. Rossi, C.]J. Petrie, and V. Dhar. On the equivalence of constraint

satisfaction problems. In Proc. ECAI-90, pages 550—556, 1990.

"24] A. Schaerf. Combining local search and look—ahead for scheduling and

constraint satisfaction problems. In Proc. IJCAI-97, pages 1254-1259,
1997.

25] B. Selman and H. Kautz. Domain—independent extensions to gsat: Solving

large structured satisfiability problems. In Proc. IJCAI-93, pages 290-295,
1993.

26] B. Selman, H.A. Kautz, and B. Cohen. Noise strategies for improving

local search. In Proc. AAAI-91 pages 337-343, 1994.

27] B. Selman, H. Levesque, and D. G. Mitchell. Ta new method for solving

hard satisfiability problems. In Proc. AAAI-92, pages 440-446, 1992.

28] Y. Shang and B.W. Wah. A discrete lagrangian—based global-search
method for solving satisfiability problems. Journal on Global Optimiza-
tion, 12:61-100, 1998.

165

.29]

30]

31]

32]

33]

34]

.30]

P.J. Stuckey and V. W. L. Tarn. Improving GENET and EGENET by new
variable ordering strategies. In Proc. of the International Conference on

Computational Intelligence and Multimedia Applications, pages 107-112,
1998.

E. Tsang and C.J. Wang. A generic neural network approach for con—
straint satisfaction problems. In Neural Network Applications, pages 12—

22. SpringerVerlag, 1992.

C. Voudouris and E. Tsang. Guided local search and its application to the

traveling salesman problem. Europenan Journalof Operational Research,

113:469-499, 1999.

B.W. Wah and Y. J. Chang. Trace-based methods for solving nonlinear
global optimization and satisfiability problems. Journal on Global Opti-
mization, 10:107-141, 1997.

J.H.Y. Wong and H.F. Leung. Extending GENET to solve fuzzy con—
straint satisfaction problems. In Proc. AAAI-98, pages 380-385, 1998.

Z. Wu. The discrete lagrangian theory and its application to solve nonlin—
ear discrete constrained optimization problems. MSc Thesis, Department

of Computer Science, University of Illinois, Urbana—Champaign, IL, 1998.

M. Yokoo. Weak—commitment search for solving constraint satisfaction

problems. In Proc. AAAI-91 pages 313-318 » 1994.

166

e o - o\ﬂn.\\u —
QO P o o0 o po o)
-,

b]
e N \

v OER
Voo

€UHI< ubrgriss

aoyorreqy

