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Abstract 

Traditional structural approach to model financial risk is basically based on mod-

eling the underlying dynamics or relationships among related factors. It may ignore 

the noise of the data itself which would contribute significantly to the risk assessed. 

We propose a hybrid financial risk model using a combination of structural model 

and neural networks, which jumps from the framework of uni- to bi-directional ap-

proach. At the same time modeling the risk structurally and learning the risk from 

data statistically, it would greatly improve the accuracy of the credit risk prediction. 

Its performance is demonstrated by applying the framework on the Merton (1974) 

structural default model. Through the study of the error curves - the behavior of 

the root mean square error (RMSE) on the testing set, the improved performance is 

observed. 

We apply neural network learning to two crucial problems of the Merton model: 

the unobserved data and severe risk underestimation. By parametric statistical esti-

mation and considering the risk induced by data noise such as imperfect accounting 

reports, the uni-directional Merton model is improved by the proposed bi-directional 

hybrid neural system. An application to seven Canadian firms and corresponding 

thirteen bonds in the real market is presented. The empirical results show that the 

new proposed method outperforms existing financial models 
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摄要 

傳統模擬金融風險的結構方法是根據有關風險因素的根本動態及關係而作出 

預測。這樣很多時忽略了數據本身的干擾而此也正正是風險的一重要部分。因 

此，我們提出了一應用結構方法及神經網絡的混合模型。有別於傳統單向的模 

型，這設計能夠在同一時間模擬結構風險以及學習數據中存在的風險，從而大 

大提升預測的準確度。爲了試驗混合模型的表現，我們利用了M e r t o n ( 1974 ) 

結構破產模型爲基礎作實驗硏究。透過硏究實驗中的误差曲線（R M S E ) ，我 

們便可以觀察到模型改善後的表現。 

我們應用了神經網络在M e r t o n模型中的兩個核心問題上：無法觀察到的金融 

數據及嚴重的風險低估。硏究發現在雙向的混合系統架構下，應用參數統計預 

測和考慮不完整會計報告風險可以有效改善單向模型的缺點。最後我們使用了 

七所在市場活躍的加拿大公司及對應的债券作試驗，結果顯示新提出方案的表現 

比現存的金融模型優勝。 



Chapter 1 

Introduction 

There are two major approaches to financial risk modeling: structural and statistical. 

Traditionally, the structural approach is based on modeling the underlying dynamics 

or relationships among related factors, say interest rate and asset value, to derive 

the risk. Using the terminology of Cherkassky (1993), that is actually a top-down 

("model-driven") approach, which believes that mathematics can be used to represent 

or model any financial behavior perfectly. Unfortunately, researchers found that many 

market dynamics are too complicated or chaotic to model^ Therefore, many derived 

models are found not quite consistent to the observed behaviors. This approach 

seemed to ignore the noises contained in the financial data that should be part of the 

risk to be assessed 

The statistical or empirical approach is that, instead of modeling the relationships 

directly, such relationships are learned from the historical data^. That 's why we also 

^ Other than mathematical models, some types of nonlinear system modeling and learning method-
ologies like neural networks, multiple models, and chaotic pattern detection are used in financial 
applications instead. See Ljung (1999) and Jang et al. (1997) for details. 

2for example, Duffie and Lando (2001) consider the imperfect of financial data as a risk factor 
and successfully improve the accuracy of risk prediction. 

3See Beaver (1966), Altman (1968) and Ohlson (1980). 

1 



CHAPTER 1. INTRODUCTION 2 

call it a bottom-up ("data-driven") approach. Preprocessing and feature extraction 

in a data pool will be the critical step to support the relationship learning. However, 

if only statistical approach is used to learn the patterns from data, from the financial 

analysis point of view, it may rely on assumptions which may be too weak. 

For example, in the case of credit risk modeling, statistical approach can only rely 

on sparse and noisy default data to generalize models, it is indeed a big challenge"*. 

Without the backing of fundamental theoretic assumptions such as market efficiency 

and the boundary of default on debt obligations, modeling framework is very loose 

and not convincing at all. 

We call the above stream of research, which uses only one approach, either pure 

structural or statistical, to dominate the whole modeling process, the uni-directional 

modeling. Although this stream is still active and popular in academia, disappointing 

accuracy from a variety of extensions and improvements drive us to find another 

stream out. 

Motivated by the shortcomings of uni-directional modeling, our research is to 

propose a new approach to financial risk modeling with a hybrid process - the bi-

directional modeling. The power of the new proposal is that financial risk is modeled 

structurally (top-down) and at the same time, relationship of the risk from data is 

learnt statistically (bottom-up). As a result, the shortcomings of each model can 

be compensated by each other and hence, the total risk can be estimated by such 

combination. The rigidity of structural modeling is improved by the flexibility from 

statistical modeling, which provides higher degree of freedom. 

As a key contribution of this research and also a better illustration of the proposed 

''Referred to Xu (2002), the key challenge of statistical learning is that learning is made on a 
finite size of samples but, we want it to be applied to all or as many as possible new coming samples 
in the future. 
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framework, Merton (1974) structural default model will be implemented based on the 

data set of seven Canadian firms and corresponding thirteen bonds in the real market 

to show how it can improve the accuracy (by observing the RMSE on the testing set) 

of credit risk estimation and outperform the uni-directional modelings. 

1.1 Credit risk modeling 

Defined by Moody's Investors Service (2000)，credit risk, or default risk, is defined 

as the potential that a borrower or counterparty will fail to meet its obligations 

in accordance with agreed terms. The failures may include a missed or delayed 

payment of interest or principal, a filing for bankruptcy or a distressed exchange. 

For financial engineers, it is always important to estimate the probability of default 

/ bankruptcy (PD) and the expected loss of the counterparty (either individual or 

corporate) accurately. So that, investors or banks can manage the corresponding 

credit risk and make better financial decisions. A number of the world's largest 

financial institutions are still researching and developing sophisticated models in an 

attempt to aid institutions better quantifying, monitoring and managing the credit 

risk. 

Statistical approaches based on historical data, which have the longest history 

(Beaver, 1966) and are the most frequently found in the literature of credit risk mod-

eling. However, the completeness and quality of data affect the accuracy and success 

of the analysis significantly. Over the last decades, structural approach emerged after 

the seminal work of Black and Scholes (1973), and Merton (1974) created an enor-

mous theoretical literature on credit risk modeling. Many researchers tried to find 

the main source of credit risk by studying the market information and corporate bond 
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yield spread so as to estimate the probability of default accurately. However, such 

structural models depend heavily on their assumptions to capture the true nature of 

the underlying dynamics and the accuracy of the model variables estimation. There-

fore, their performance was not really promising as expected. Many empirical testing 

of Merton model found that it could not generate sufficiently high yield spreads to 

match those observed in the market, for example, the early study by Jones, Mason 

and Rosenfeld (1984) and Eom, Helwege and Huang (2001). That means those models 

severely underestimated the probability of default and the associated risk. 

1.2 Uniqueness of bi-directional: hybrid system 

In this research, we try to model credit risk with the bi-directional approach - which 

is a new methodology that includes both bottom-up (data-driven or statistical) and 

top-down (model-driven or structural) approaches. That is to develop a hybrid sys-

tem that incorporates both structural model based on Merton model and statistical 

model learned from financial statement and corporate bond price. By integrating 

two dimensions of modeling, it is no longer relied on "data" or "model" but more 

importantly, it is "task-driven". Cherkassky (1993) indicated that future intelligent 

systems should be task-driven and their functionality can be enhanced by modular 

design using hybrid systems approach and multi-strategy learning. 

One example of using hybrid system is a short-term default risk model developed 

by Moody's Corporation (2000). It created a system that merged both a contingent 

claims model^ and a statistical reduced form model by using a non-linear regression 

approach. This system not only takes the results of Merton model as the inputs, but 

5 Merton models credit risk by treating the financial stress situation as an option (or contingent 
claim) to price. That is called Merton's options-theoretic view of firms. See more detailed discussion 
in section 3.1. 
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also includes (1) credit agency rating, (2) company financial statement, (3) equity 

market information and (4) macroeconomic variables that reflecting the economy 

state to improve the accuracy. Though the model has proved to be useful as an 

early warning system to monitor corporate credit risk and outperformed a variety of 

models such as linear, contingent claims and logistic regression models in literature, 

the drawback is that a huge default database is needed. In our research, however, we 

focus on modeling based on a small-scale database® as default data is somehow too 

scarce to be collected. Also, a detailed study about the strengths and weaknesses of 

Merton model is conducted to ensure that the corresponding tailor-made statistical 

model is the perfect match. 

1.3 Scope of the study 

In chapter 2, we briefly review both statistical and structural approaches in literature. 

We introduce three uni-directional models that would be intensively discussed in this 

study and their weaknesses in chapter 3. We show the strategy and methodology for 

the accuracy improvement problem in chapter 4. Chapter 5 proposes a bi-directional 

neural system to improve the Merton model. Finally, we do experiment to real data 

on seven Canadian firms and show empirical results in chapter 6 and conclude in 

chapter 7. 

^Taking the default models developed by Moody's for example, the data set contains about 
100,000 firm-year observations. Also, the sample of default events (up to 1400 cases) is included. 
It is always the best for data-driven models to have such huge and universal database. For more 
detail, see Moody's (2000). 



Chapter 2 

Literature Review 

There are two main approaches to credit risk modeling: statistical and structural. 

The statistical approaches are discussed first, starting from the earliest simple linear 

analysis to the latest and most frequently applied neural networks. Then, the struc-

tural approach with profound Merton model and its variants are reviewed. Finally, 

we present Merton's empirical analysis in literature. 

2.1 Statistical / Empirical approach 

The earliest pioneers of the empirical approach are Beaver (1966), Altman (1968) 

and Ohlson (1980). Beaver is the first person to study the prediction of default / 

bankruptcy using financial statement data. Though the analysis was simple, it opened 

the empirical approach and led many researchers to this new direction. Altman and 

Ohlson try to classify healthy and unhealthy firms using linear models. More detailed 

studies have been conducted about the inputs of financial ratios and even today, that 

classic set of the ratios are still widely used in more sophisticated models. For the 

models, the classical multivariate discriminant analysis (MDA) by Altman and the 

6 
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logistic regression approach (LR) by Ohlson are also widely studied in academia after. 

Neural networks (NN) can be treated as a general case of LR. That is, a non-

linear logistic regression achieved by a multi-layered network having either threshold 

or sigmoidal activation functions. Application of NN is broadly ranging from medical 

to environmental, financial application is one of the most active fields. In early 1990, 

researches about default risk prediction using NN have already started. One of the 

first studies was the work done by Odom and Sharda (1990), who use Altman's 

financial ratios as network inputs and compare its performance with MDA. In that 

study, NN achieved a Type I and Type II accuracy in a range up to 81.5% and 85.7% 

respectively. That significantly outperforms MDA. Tarn and Kiang (1991, 1992) 

focused on the problem of bank default prediction. They compared the performance 

between several statistical methods such as MDA, LR, K-nearest neighbor (KNN), 

IDS (a classification algorithm for decision tree), single-layer network and multilayer 

network. After all, the multilayer network has the best performance among. 

Over the decade, we can see many researchers put intensive efforts on applying 

NN in the problem of default risk prediction and compare it with other models, for 

example, Salchenberger et al. (1992), Coats and Fant (1993), Kerling and Poddig 

(1994)，Altman et al. (1994), Boritz and Kennedy (1995), Fernandez and Olmeda 

(1995)，Alici (1995), Leshno and Spector (1996), Zhang et al. (1999), Martinelli et al. 

(1999) and Atiya (2001). The overall accuracy obtained by NN outperforms existing 

models. From Lee et al. (1996) onwards, hybrid NN models are being considered to 

be another research stream. They not only used the network for a single problem, 

but also tested the possibility of combining NN with MDA, IDS, self-organizing maps 

(SOM) and genetic algorithm (GA). 
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2.2 Structural approach 

The seminal work of Black and Scholes (1973) and Merton structural default model 

(1974) is one of the most profound and broadly developed methods. An option pricing 

approach was used to price corporate liabilities so that the corresponding credit risk 

could be assessed. Merton assumes that the firm's asset value is governed by a 

geometric Brownian motion and hence the assumption of lognormality can be made. 

The success of the model is because of its using equity prices as the predictive index, 

which has never been the case before. Many variants have been further developed 

right after the novel Merton model, so that it would match the observed behavior in 

the market m o r e � 

Since the original Merton model can only deal with zero coupon bonds and con-

stant interest rates, the extended version such as LongstafF and Schwartz (1995) tried 

to treat a coupon bond as a portfolio of zero coupon bonds so that each part can be 

priced as the original version. Also, the model allows stochastic interest rates that 

are described by the Vasicek (1977) model. Geske (1977) just solved the problem 

in different way by treating the coupon as a compound option. Collin-Dufresne and 

Goldstein (2001) extended the LongstafF and Schwartz model to allow deviation from 

target leverage ratio of the firm only over short run. Extensive empirical study of 

the Merton structural model can be found in Jones, Mason, and Rosenfeld (1984)2. 

Moody's KMV Corporation (1993) has successfully put this model into a commer-

cial product. For detailed reference of Merton/KMV approach please find Sundaram, 

iSee Black and Cox (1976), Briys and de Varenne (1997), Ho and Singer (1982), Kim, Ramaswamy 
and Sundaresan (1993)，Leland (1994, 1998), Titman and Torous (1989), Duffie and Lando (2001), 
Huang and Huang (2002) 

2They apply the Merton model to a sample of firms with simple capital structures and secondary 
market bond prices during the 1977-81 period. The empirical implementation is found that the 
predicted prices from the model are too high by an average of 4.5% (i.e. the yield spreads are 
underestimated). 
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Rangarajan (2001). 

Recently, many financial products for credit risk modeling have been developed 

other than the Merton/KMV model. J.P. Morgan's CreditMetrics (1997) is a tool for 

assessing portfolio risk due to changes in debt value caused by changes in obligor credit 

quality. The mechanism is based on modeling the “ rating migration" so that the PD 

can be estimated, within a given time horizon, which is often taken arbitrarily as one 

year. Not only by possible default events, CreditMetrics but also include changes in 

value caused by upgrades and downgrades in credit quality. However, three major 

limitations come from three critical assumptions: (1) Same rating class have the same 

default rate, (2) actual default rate is equal to the historical average default rate and, 

(3) no market risk is considered (i.e. the interest rates are assumed to evolve in a 

deterministic fashion only). Credit-VaR of a portfolio is then derived by CIBC in a 

similar fashion as CreditMetrics for market risk. It is simply the percentile of the 

distribution corresponding to the desired confidence level. 

CreditRisk+ developed by Credit Suisse Financial Products (CSFP) (1997) is 

based on modeling default for individual bonds, or loans as a Poisson process. The 

default risk is only defined by default losses. CreditRisk+ does not explicitly model 

the credit migration risk. Instead, it allows for stochastic default rates which partially 

account, although not rigorously, for migration risk. J arrow and Tiirnbull (1995) 

develop another structural approach to model default as a point process with the 

time-varying hazard function for each credit class. Estimation is based on the credit 

spreads. 

Crouhy et al. (2000) and Eom et al. (2004) give a detailed review and comparative 

analysis of current structural credit risk models^. 

^See also Lyden and Saraniti (2000)，Wei and Guo (1997), Anderson and Sundaresan (2000), and 
Ericsson and Reneby (2001). 



Chapter 3 

Background 

In this chapter, we briefly introduce how the mechanism of Merton model goes, es-

pecially on the situation of yield spread prediction for risky debts which is the core 

that we are going to study and improve by bi-directional modeling. After studying 

the strengths and weaknesses of the model, an industrial practice of yield spread pre-

diction -cross-sectional regression analysis is presented. Finally, the neural network 

learning is introduced. We can see how the neural network of statistical approach 

plays the role of improving Merton structural model and learns the lesson from normal 

practice. 

3.1 Merton structural default model 

In Merton (1974) model, firms are assumed to have a very simple capital structure. 

That is, each firm at time t, with asset value Vt, is financed by equity with market 

price Et and a zero-coupon risky debt priced at Dt with face value F maturing at 

10 
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time T. By assuming that Vt is always governed by a geometric Brownian motion 

dVt = fiVtdt + av.VtdWt (3.1) 

where ji and (Jŷ  are the drift and volatility respectively, an option valuation approach^ 

could be used to price corporate liabilities so as to the corresponding credit risk. The 

risk-free rate r is assumed to be a constant. A simple illustration is shown in Figure 

3.1 and Table 3.1. 

The bond value Di is given as 

+ Fe-r(r_�$Wl4’;t，(7vJ — ( 3 . 2 ) 

where $ ( • ) is the standard normal distribution function and 

魏 即 靜 ) + (r 浮 / 2 ) ( T - ” (3.3) 
avtVT — t 

and the corresponding probability of default (PD) 

P. 二 < F ] =少 (3.4) 
\ aviVT - 1 / 

can be obtained. Following the formula for the bond value, the (credit) yield spread^ 

can be derived directly as 

= (3.5) 

This model provides great insight because it is the first model using forward 

1 Equity-holder's payoff at maturity T is max{T4 — F, 0}. The residual claim of equity-holder is 
simple the payoff from holding a long position in a call option on the firm asset, value Vi with a strike 
price F maturing at time T. For the debt-holder, the payoff would be min{Vi，F}. 

^Credit risk measurement: probability of default(PD) x loss given default(LGD) 



CHAPTER 3. BACKGROUND 12 

Table 3.1: Merton's options-theoretic view of firms 
Asset Value Debt-holder's Payoff Equity-holder's Payoff 

T ^ ^ D Wo 
t = T VT> D D ET = V T - D 

t = T VT<D Vr ET = Q 

DbtibLrtlon 
of asest value 
at the horizon 

ASMtS 丨 
PosBible I i I 

/ _ Default 
— I Point 

0 H nms 

Figure 3.1: An illustration of the Merton model 
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looking and going concern approach in default prediction analysis. Although its 

theory is really breakthrough and theoretically strong at that time, there are many 

empirical shortcomings during implementation. Many researchers therefore proposed 

many extended variants based on Merton model, for example, Longstaff and Schwartz 

(1995), Briys and de Varenne (1997), Madan and Unal (2000) and Collin-Dufresne 

and Goldstein (2001). 

Obviously, input variables are needed in order to implement Merton model em-

pirically. Four critical variables are concerned, as pointed out by KMV: (a) market 

values of assets, (b) volatility of asset values, (c) "shape" of the distribution of asset 

values, and (d) face values of obligations requiring servicing. Regarding the “ market 

values" of assets, it is extremely crucial for the implementation as asset values are 

actually unobservable. 

Here comes the first empirical problem in Merton model - underlying asset value 

is unobservable. It makes the estimation of the model parameters, such as, the drift 

and volatility of the asset value process difficult or inaccurate, and therefore bias or 

errors are prone. In order to solve the problem, an empirical analysis of the structural 

model has been studied extensively. Jones, Mason and Rosenfeld (1984) as well as 

Ronn and Verma (1986) can be referred to as the first group of researchers to conduct 

such studies. They used some observed quantities and the corresponding restrictions 

derived from the theoretical model to extract point estimates for the underlying asset 

value and its volatility parameter. The method actually relies on the two equations: 

one relating asset value to equity value and the other relating asset volatility and 

equity volatility. 

An iterated method used by KMV is another approach solving the parametric 

estimation problem. By starting with an initial guess of the asset volatility, the 
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invested asset values corresponding to the observed time series of equity prices are 

then obtained through the equity pricing equation. That is, the values for the firm's 

assets and volatility are implied from equity prices. Vassalou and Xing (2003) used 

the KMV method to obtain a default likelihood indicator. 

Under the framework of statistical approach, maximum likelihood estimation 

(MLE) is one of the methodologies to estimate parameters, which is based on the 

Bayesian learning. Diian (1994, 2000) proposes a likelihood function based on the ob-

served equity values derived by employing the transformed data principle in conjunc-

tion with the equity pricing equation. Ericsson and Reneby (2001) use this method 

in corporate bond pricing model. 

The second problem in the Merton model is that credit risk is severely under-

estimated. That is, the model cannot consistently represent the actual equity and 

bond price dynamics, even by substituting any well-estimated asset price and volatil-

ity. It results in the estimated credit spreads that differ greatly from those ob-

served empirically. As a result, credit risk is being under-estimated seriously. The 

inconsistency and insufficiency of the Merton model indicate the shortcoming of uni-

directional modeling: It ignores the risk induced by data noise such as imperfect 

accounting reports. This consideration is crucial for the proposed bi-directional mod-

eling and, it also makes perfect sense from the viewpoint of operational risk: Issues 

like fraud, opaque accounting practices and incomplete data source are risky. 

Another minor empirical problem is that Merton model assumes a zero-coupon 

debt, however, most corporations have much more complex liability structure. Also, 

the amount of debt determination for Merton，s framework is quite an arbitrary among 

many implementations. The proportion of short- and long-term liabilities is usually 

treated as one of the variables to be estimated. 
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3.2 Cross-sectional regression analysis (CRA) 

In normal industrial practice, yield spread is predicted using cross-sectional regression 

analysis. Researchers such as Sengupta (1998) and Yu (2005) have used similar 

approaches for yield curve estimations^. In general, companies will first select input 

variables that are statistically significant to account for the major portion of the cross-

sectional variation in the yield spread (YS), for example, leverage (LEV), equity 

volatility (VOL), and bond maturity (MAT). Then, for each time point i in the 

sample period, companies use the simplest ordinary least squares (OLS) to estimate 

the following regression 

YSi = A) + A LEV + �2VOL + /93MAT + £i (3.6) 

Because the regression can only capture linear function, piecewise linear function 

separating the whole set into subsets of different maturities needs to be introduced 

in order to model a nonlinear term structure of yield spreads. Then, by separating 

different interested groups, say high and low equity volatility, effect of particular 

variables on the level of yield spreads is studied''. 

Piecewise function is one of the approaches to handle nonlinearity in yield spread 

term structure. We however will see that neural networks, which actually derived 

from simple linear regression, do act as a much more general framework in function 

modeling including nonlinearity in the next section. 

3See also Lang and Lundholm (1993), and King and Khang (2002). 
4 For the detailed discussion of the piecewise linear function construction, see Yu (2005) 
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3.3 Neural network learning (NN) 

The field of learning theory emerges while the computational power and data storage 

volume keeps increasing. This stream of theory in fact is under the root of statistical 

/ empirical approach. It concerns how computational methods automatically improve 

with experience. Normally, it applied to large-scale problems with high complexity. 

Many successful applications have been developed ranging from pattern recognition, 

to dimension reduction, to function approximation. Computational finance is one 

of them. Time-series prediction via AR, ARM A models and neural networks are the 

cases that often encountered in literature. The key algorithms and methodologies that 

form the core of learning theory, as summarized by Mitchell (1997), are as follows: 

(a) decision tree learning, (b) artificial neural networks, (c) evaluating hypotheses, 

(d) Bayesian learning, (e) computational learning theory, (f) instance-based learning, 

(g) genetic algorithms, (h) learning sets of rules, (i) analytical learning, (j) inductive-

analytical learning and (k) reinforcement learning. 

Neural network is a non-linear regression (nested) model based on a combina-

tion of logistic regression. Its design has been inspired by the biological learning 

systems built of very complex webs of interconnected neurons in human brain. In 

this computer analogy, network is built out of a densely interconnected set of simple 

units, where each unit takes a number of real-valued inputs (possibly the outputs of 

other units) and produces a single real-valued output (which may become the input 

to many other units). It is a so-called universal approximator, which provides a ro-

bust approach to approximating real-valued, discrete-valued and vector-valued target 

functions, say, the relationship between probability of default and Altman's financial 

ratios as mentioned in previous chapter. Usually, predetermination of the relationship 

between inputs and outputs with the exact functional form is not necessary. 
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Advantages for neural network learning in finance are: 

1. non-linear relationships can be easily captured (normally financial data are in 

higher order non-linear relationships), 

2. it learn in real-time and adapt to changes, 

3. it makes reasonable decisions based on incomplete information (normally finan-

cial information is never complete), and 

4. it is shown to outperform existing traditional financial models in literature. 

Neural network is normally designed as proposed by Bishop (1995): a two-layer 

feed-forward network, because many literatures in the past have proved that any con-

tinuous functional mapping can be represented to arbitrary accuracy once, sigmoidal 

hidden units are used and sufficiently large number of hidden units are provided. 

Referring to Smolensky (1996), NN would also be perfect to estimate model's pa-

rameters (for example, the asset value, the drift and the diffusion coefficient in Merton 

model). Other than the architecture of the network, the cost / error functions must 

be considered. As a matter of fact, different error function settings suit for differ-

ent natures of problems. For the objective function to probability modeling, Bishop 

and Atiya (2001) suggests that neural network with cross-entropy error function can 

indeed achieve the estimation of probability of default and asset price distribution. 

To begin with the detailed discussion of neural network, we should start with the 

most fundamental element - single-layer network first. 

3.3.1 Single-layer network 

Our earliest pioneers of empirical research in credit risk, Altman (1968) and Ohlson 

(1980), have come across with the methods of multivariate discriminant analysis 
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(MDA) and the logistic regression approach (LR). They are in fact the very early 

stage of more complex multi-layer networks. 

In the early 60s, Altman of course has chosen the simplest discriminant function 

consisting of just a linear combination of the input variables to determine two classes: 

healthy and unhealthy firms. The outcome of such two-class classification problem 

can be represented in terms of a discriminant function y which takes the value greater 

than 0 if the vector x is classified as C\，and the value less than 0 if it is classified as 

C2. In general, the mapping is modeled in terms of mathematical function y which 

contains a number of adjustable parameters, whose values are determined with the 

help of a data set of examples. The function can be written as 

2/(x) = wTx + WQ (3.7) 

where w is denoted as the weight vector and the parameter Wq as the bias / threshold. 

If we represent this simple multivariate linear discriminant function as a diagram 

of neural network in figure 3.2, we can see that each component in the network is 

referring to a variable. The bias is simply considered as a weight parameter with an 

extra input Xq which is always set to positive 1. 

We can image if the network is extended to the case of several classes, the network 

diagram will become more complex as in figure 3.3. 

By considering not just a simple linear function of all the input variables, as what 

Ohlson (1980) has done in his research, linear discriminant function can be generalized 

by using a non-linear function p(參) 

y{x) = g (w^x + Wo). (3.8) 
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Figure 3.2: Single-layer network - 2 classes 

outputs 

inputs 

Figure 3.3: Single-layer network - c classes 
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In order to loose the linear decision boundary in a classification problem, we con-

sider the class-conditional densities p(x\Ck) and assume Gaussian. By using Bayes' 

theorem, we will find that the discriminant function y can be written as 

T 1 P(Ck\x) = + Wo) where ff(a) = — r. (3.9) 1 + exp(—a) 

The function g(a) is called the logistic sigmoid activation function, which allows 

the outputs of the discriminant to be interpreted as probabilities. It indeed furthers 

the possibilities of a discriminant function. In section 4.2, we will see how important 

is the network output being interpreted as probabilities in asset price modeling. 

3.3.2 Multi-layer perceptron (MLP) 

Due to the limitation that single-layer networks can only solve linearly separable 

problems^, networks with several layers are considered. We generally call the multi-

layer networks having sigmoidal activation functions multi-layer perceptrons (MLP). 

It is surprisingly proved that networks with just two layers of weights are already 

capable of approximating any continuous non-linear function. An example of MLP is 

shown in figure 3.4. 

There are d inputs, m hidden units and c outputs. Firstly, the 产 hidden unit 

output can be formulated as 

= + (3.10) 
1=1 

®Once the first layer of processing units are designed and fixed in advance (non-adaptive), single-
layer networks can in fact solve a particular linearly separable problem, but not in general. 
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o u t ]她 

yi ... yc 
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Figure 3.4: Architecture of neural network 

or simply include the bias with extra input Xq always set to 1 as 

� = f > ; � � (3.11) 
7=0 

where 旧）corresponds to a weight from input i to hidden unit j in the first layer. 

Then, a logistic sigmoid activation function g{*) is used for the activation of hidden 

units as 

Zj = g � a j � . (3.12) 

Finally, the output unit k of the network are obtained by a linear combination of all 

the outputs of the hidden units as 

h = . (3.13) 
j=0 

We can further add one non-linear activation function for the output units, say h. 
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After all, the function of the neural network can be depicted mathematically as 

m d 
= (3.14) 

j=0 i=0 

3.3.3 Back-propagation network 

After the formulation of the network, the next crucial issue is that how the weight 

parameters w can be adaptive / learned during the network training process. That 

is, how an error function being minimized with respect to the weights in the network. 

The most popular and powerful algorithm is called error back-propagation. 

For simplicity, we first focus on the particular pattern n in the training set and 

to find the derivative of the error E^ with respect to weight Wji. In the first layer of 

the network, since E^ depends on the weight wji only via a j to hidden unit j , we can 

write the following partial derivatives 

『 尋 ， (3.15) 
dwji ddj dwji 

where we denote the error as 

— (3.16) 

In the second layer, we can similarly evaluate the error of the output unit k as 

dE"^ 
4 = 1 (3.17) 

and the hidden units as 

dE- vdE-dh …只、 
—冗= (3.18) 

Therefore, by combining the above equations, the general back-propagation formula 



CHAPTER 3. BACKGROUND 23 

for propagating the error backwards from all k output units to a particular hidden 

unit j is 

^3= 9 ' ( 3 . 1 9 ) 
k 

3.3.4 Supervised, unsupervised and combine unsupervised-

supervised learning 

Normally learning algorithm can be categorized into three groups: supervised learn-

ing, unsupervised learning and combine unsupervised-supervised learning (combine 

learning). Neural network learning actually can be classified as either supervised 

or combine learning. Within these two main categories, there are also several sub-

categories under network learning while back-propagation network and radial basis 

function (RBF) are the most frequently used. The detailed classification of NN and 

other learning, feature selection algorithm is presented as table 3.2 below®. 

3.4 Weaknesses of uni-directional modeling 

Throughout this chapter, we have introduced three modeling methods for default 

risk prediction that can be also called uni-directional modeling. Merton model is 

purely structural and model-driven, and CRA and NN are statistical and heavily 

data-driven. We can observe the shortcomings as follows. 

For the Merton structural approach, the weakness mainly comes from how "closely" 

its assumptions and structure can capture the true world dynamics as well as the ac-

curacy of the estimated parameters in the model. Especially, the Merton model relies 

®For the detailed discussion of each of the learning algorithms, please refer to Bishop (1995) and 
Mitchell (1997). 
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Table 3.2: Learning algorithm classification 
Supervised Learning Combine Unsupervised- Unsupervised Learning 

Supervised Learning (Clustering) 
Neural Network Back-Propagation Radial Basis Function 
Algorithms (MLP), Hypersphere, (RBF), Incremental 

Classifier, Perceptron RBF, Learning Vec-
tor Quantizer (LVQ), 
Nearest Cluster Clas-
sifier, Fuzzy ARTMap 
Classifier 

Statistical and Gaussian Linear, Dis- Gaussian Mixture Clas- K-Means Clustering, 
Machine Learn- criminant, Gaussian sifier: Diagonal/Full Co- EM Clustering, Leader 
ing Algorithms Quadratic, K-Nearest variance, Tied/Per-Class Clustering, Random 

Neighbor (KNN), Binary Centers Clustering 
Decision Tree, Parzen 
Window, Histogram, 
Naive Bayes, Support, 
Vector Machine (SVM) 

Feature Selec- Linear Discrimi- Principal Components 
tion Algorithms nant (LDA), For- (PCA) 

ward/Backward Search 

heavily on theories about market efficiency. That is assumptions about the compre-

hensiveness of the information contained in market data when used within the model 

structure. However, knowledge of market information alone in fact does not inform 

an investor directly as to a borrower's creditworthiness. Some cases like liquidity 

problems, and information reflection from market data^ have been simply ignored. 

For the statistical approach like CRA and NN, since this method is heavily data-

driven, the weakness mainly comes from the fitness of data. That is actually a tradeoff 

of the generalization error in terms of the model size. If the model is too simple, it 

loses its power. Though if the model size is increased the generalization error decreases 

because a larger model has less bias and fits the data better, at some points the model 

becomes too large - overfitting occurs. In that case, even the error on the training 

set is driven to a very small value, but when new data is presented to the model the 

^For detailed discussion, see Sobehart and Keenan (1999). 
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error is very large. The reason is that the model is fitting the data noise also. It is 

nearly inevitable when using historical financial data®. 

As a summary, iini-directional weaknesses are in two fold. For the pure structural 

models, they have ignored the whole picture of the true nature. That is actually a 

combination of rational and irrational. Though, on the surface, corporate are be-

having as in Merton's eyes, many irrational, chaotic or hidden complicated behaviors 

are indeed happening below. For the pure statistical models, they have lost the ini-

tial orientation of the problem. Obviously, in some statistical literature, experiments 

being carried out may merely let the data speak for themselves (i.e. highly unsu-

pervised). The problem formulation is sometimes without sitting on any theoretical 

ground. Optimization of fitted model size should be taken much care. 

In order to have an optimal modeling, we think, it is always the best choice to 

let structural modeling plays the rational part and statistical modeling plays the 

irrational. Therefore, a hybrid system is proposed. 

®Based on the accounting principles, reported financial statements are just disclosed in a manda-
tory or voluntary manner and not necessarily reflecting the complete financial picture of the firm. 
See recent cases of accounting scandals, such as Enron, Authur Andersen, Worldcom, Adelphia, 
Global Crossing, Tyco, and Xerox for references. 



Chapter 4 

Methodology 

After many studies conducted in literature, we do understand the strengths and 

weaknesses of both Merton model and NN. The key issue in this research is how to 

match their rigidity and flexibility perfectly. In this chapter, we first describe how the 

bi-directional modeling merges both the top-down and bottom-up models based on 

their characteristics. Then, two key methodologies: asset price estimation and data 

noise quantification are presented. 

4.1 Bi-directional modeling 

To better illustrate the bi-directional modeling, we first imagine any kind of modeling 

as a "system" which is characterized by several variables. Basically, variables are 

categorized into two types: (1) independent variables / predictor variables / input 

variables and (2) dependent variables / responses / output variables, depending on 

the field of study. Referred to Friedman (1994)，the goal of any modeling or system 

M, undoubtedly, is to establish a relationship between the inputs and the outputs 

observed in the true world X, so as to determine / predict / estimate values for all 

26 
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X � tme world X ) >'* 
=(xO. x l x d ) f'(x) =(yO. yl..... yc) 

X ) system M � y ' = y* ？ 
=(xO. xl..... xd) f(x) 

Figure 4.1: True system vs. artificial system 

the new coming output variables given only the values of the input variables. 

System is represented by a square box and, the input is represented as an arrow 

on the left side of the box and output as an arrow on the right. Moreover, the inputs 

can be categorized into two sets, either observed (measured) or unobserved. We can 

imagine if there is a true system /*(x) governing the true nature, our learning / 

artificial system is trying to find a function / ' (x) as close as possible to the true 

function /*(x). In this research, we are interested in the following true system 

YS* = r{Vt,F,av, , r ,T. . . ) (4.1) 

where YS* denotes the observed corporate yield spread. We believe that the input 

vector X should include all the typical variables like those in Merton model but, should 

be more. 
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Historical eJui l^volI tS I ^ ^ ^ ^ ^ 
Face value ^ ^ YS 

Maturity ^ I ^ K S 
R i — e rate 

= fM(Vp^s,F,aE”r,T) = ) �二 、 _ T (4.2) 

where A = Vps^i-diVps^^OE,)) + - c jE^Vr^ t ) 

Figure 4.2: Merton model as an artificial "system" - System 1 

First, the artificial system being studied is the Merton model. The inputs have 

the asset value V, the face value F, the asset volatility oy, the risk-free rate r and 

maturity T and the output is the yield spread one-year-ahead. The goal of course 

is to predict the probability of default of the corporate from the knowledge of the 

input variables without having to actually wait for a year. It is always important for 

financial institutions to predict credit quality before any loan decision. 

Figure 4.2 shows a diagrammatic representation of Merton model. Two input 

variables (asset value, asset volatility) are actually unobserved and so replaced by 

estimations (asset value from financial statement (FS), historical equity volatility). 

Because this system is structural, the relationship f u between the values of inputs 

and outputs are determined before prediction. 

NN is another example of a system. The only difference is that, as it is statistical, 

the determination of the relationship beforehand is not necessary. The goal of NN 

is then to learn a useful approximation to that function by example. Therefore, a 

“training" sample and a learning process in response to the error (i.e. differences 
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between the artificial and real system outputs) function are required. 

We can see that the flexibility of NN system mainly come from the unnecessary of 

relationship predetermination. In the theory of bi-directional modeling, as a result, 

we play with the design of the network architecture (bottom-up) in an attempt to 

solve or counteract the weaknesses of the system in the other direction (top-down), 

say, the Merton Model in our case. Two of its critical empirical problems are the 

unobserved input variables (asset value and asset volatility) and the under-estimation 

of credit spreads. Hence, two neural network modules are assigned to each of the 

problems. 

Equity Price m t m m m m m ^ M m 

= (4.3) 
m d 

where 9 = ( 广 二 " ( E 秘 殆 ） 
j=0 z=0 

Figure 4.3: First neural network module (System 2) - solving unobserved asset value 
by learning the relationship among equity prices and asset prices 

In figure 4.3，one network system in charge of the unobserved variable is placed 

in front of the Merton system. By considering the relationship among equity prices, 

unobserved asset prices and asset values from financial statement (FS), the goal of 

the network system is to learn that relationship by real life financial data so as to 

give the best estimation for those unobserved variables. In the next section, we will 
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Figure 4.4: Second neural network module (System 3) - solving credit risk under-
estimation by predicting the risk residual (i.e. the difference between the observed 
and predicted spreads) 

find that asset price estimation could also be treated as a problem of distribution 

estimation. 

Yet this modular design is not quite enough for the second weakness of Merton 

model. Consequently, one more network system is placed. 

In order to address the underestimation, we hope the network system can help 

us to predict the risk residual suffered by Merton's estimation. This time, however, 

the input variables of the system are not as clear as before. It is essential for us to 

study what key factors y can address such residual. For a detailed discussion refer to 

"quantifying accounting data noise" and chapter 5. 

Based on structural models with the use of fairly flexible statistical models, bi-

directional modeling is shown to be a modular design of a large / hybrid "system" in 

figure 4.4. After detailed and systematic analysis, top-down and bottom-up directions 
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are interacting and complementing. 

4.2 Asset price estimation 

Before investigate how NN learn and predict the unobserved asset prices, we first take 

a look at how traditional methods work for asset price estimation. As mentioned in 

the previous chapter of Merton model background, it is a normal practice to relate 

asset prices to equity prices and asset volatilities to equity volatilities. Having success-

fully implemented Merton model and develop it as a successful commercial product, 

Moody's KMV model is indeed doing a good work on this relationship and worth 

studying. If we refer the equation of Merton model from the equity-holder viewpoint, 

it is already relating the asset prices and asset volatilities to equity prices as 

E = VN{di) - e-'^FN(d2). (4.5) 

However, one equation is not sufficient for two unknowns (the asset prices and asset 

volatilities). That is the fundamental problem in implementing Merton model. To 

solve that, Moody's KMV adds one more equation to relate asset volatilities and 

equity volatilities so that the two unknowns can be solved. 

(JE = ^N{d i )av (4.6) 

The example of KMV shows that the relationship of asset and equity prices is 

very close. From the point of view of neural networks, it is possible to estimate 

asset price as a probability distribution. We can either treat the network output as 

a probability density function directly or, create a network in which the outputs are 
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taken as determining free parameters of a parametric family of probability densities^. 

For the network's objective function to be density function directly, Kullback and 

Leibler's (1951) cross-entropy error function can serve the purpose. Suppose P and Q 

are the candidate probability density functions, we would like to determine a posterior 

density p(x) where q(x) is a prior density for the random variable X. Since we want 

the guessed distribution as objective as possible, we use maximum entropy principle 

and its solution is based on 

—J p{x) \ogp{x)dx (4.7) 

and it is identical to the solution of minimum cross-entropy as given by 

HP ： Q) = / p W l o g dx (4.8) 

where I{p : q) is called the Kullback-Leibler information criterion^. It is an informa-

tion theoretic measure of the "surprise" experienced when we believe X is described 

by q (prior knowledge) and are then informed that it is in fact described by p. To 

train the network, we associate a prior density q{x) with any network output indexed 

by weights 6 and denoted by qe. A log-normal distribution with approximated drift 

and volatility might be considered as an initial prior asset price density. Therefore, 

we would like to find an information theoretically optimal network weight 9* that 

minimize I{p : qe). That is equivalent to find an optimal network weight that solves 

the problem 
max 仏 log 彻 (4.9) 

e n 

iThe "shape" of the asset value distribution is usually assumed to be log-normal for facilitating 
the Merton's model implementation. 

^See Buchen and Kelly (1996) to estimate asset distribution from option prices by similar entropic 
principles. 
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Similar experiment conducted by Atiya (2001) claims that cross-entropy error 

function may not be very favorable. As motivated by the new entropic approaches 

from Edelman (2004), local cross-entropy (LCE) may be a new direction for the error 

function of network training. Edelman claims that LCE is a slightly smoothed version 

of cross-entropy and the performance for modeling should be improved. 

For the network in which the outputs are taken as determining free parameters 

of a assumed parametric family, we can approximate the asset price distribution as 

a Gaussian distribution (Rao, 1973，Lo, 1986, Duan et aL, 2003). Therefore, it is 

perfect to use the squared error function for network training. Free parameters such 

as mean and standard deviation of the pre-defined density can then be determined. 

input parameter probabilfty 
vector vector density 

^ c ^ ^ 八 

X c P ^ 8 A 姻 ⑴ 
V / V J 

neural parametric 
network distribution 

Figure 4.5: The parameters ^ of a pre-defined parametric model for the asset price 
distribution of x are determined by the outputs of a neural network 

4.3 Quantifying accounting data noise 

In order to input suitable variables for the NN system account for the risk resid-

ual prediction, some literature such as Yu (2003) are studied and showing that the 
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presence of a sizable credit spread due to accounting transparency are found. That 

can attenuate some of the empirical problems associated with structural credit risk 

models. 

In the last section, although the most "entropic" implied asset distribution above 

is estimated by one NN system, there is still one critical problem waiting to be solved -

the underestimation of credit spreads. Following related literature, Kim, Ramaswamy 

and Sunderasan (1993), and Wei and Gou (1997) do suggest that Merton model itself 

is insufficient no matter how well the estimation was made for the underlying asset. 

The model is in fact not a consistent representation of actual equity and bond price 

(D^) dynamics by the substitution of implied asset value and volatility. It is shown 
/V /S 

that the firm's assets and volatility implied from equity [Vt^,ayj often disagree with 

those obtained from bond prices (V/'^alrJ by 

YS^ = /m(玲,F, T) + /MW, F, <，r , T) = YS；. (4.10) 

That is why bond prices and hence yield spreads YS estimated by the Merton function 

/m always disappointing. This shortcoming proves that Merton model does ignore 

the risk (spread) that should be taken into account. Prom bi-directional point of 

view, it should be induced by noisy data. This consideration is somehow consistent 

with the theory of discretionary disclosure, incomplete accounting information model 

of Duffie and Lando (2001) as well as accounting transparency and credit spreads 

regression analysis conducted by Yii (2003). In these papers, they find that the 

imperfect observation of firm value is one of the major components of the credit 

spread, while nearly most of the existing structural credit risk models (including 

Merton model) have ignored this issue and assumed everything is perfectly measured. 

Now the question is how we can know that voluntary disclosed data are trustful. 
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Here the noise of data given by corporate is denoted as the discrepancy S between the 

true asset values p*(x\Oo) and announced asset values V. Since the truth is always 

unknown, 6 is usually estimated based on values V and the structural features of 

p{x\9), as summarized by Xu (2002). 

One important concept for accounting risk quantification is that - distribution is 

actually temporal. Therefore, we compare estimated distribution p{x\6) by neural 

network with realized accounting data V at each time point. Given information up 

to current time t, we have the best estimated asset distribution (one-period-ahead) 

Pi+i{x\9) up to time t. Suppose an accounting report V +̂i is released at time t + 1 then, 

Pi+\{x\0) is considered being trustful at time t + 1. The discrepancy S is estimated 

by the number of standard deviations that the estimated asset value (EAV) - mean 

of pi+]{x\6) will reach V….This number is called the Accounting Distance (AD)^. 

EAV - Mn^ 
"̂ 认+1 = EAVxa � 11) 

where a is the estimated asset volatility. Instead of giving full trust to the current 

information provided by accounting report, we make comparison between estimated 

and real data for the period. The proposed AD helps to quantify the data noise in 

reports so that the inconsistency (VS^ — VS^) of the Merton function or risk residual 

can be minimized. 

Once we have better credit spreads estimation at the time point of accounting 

report, the neural network is trained to interpolate such function. So, not only the 

given time point, AD can be estimated during other periods. For a broader view, we 

can consider it as adding one more feature in the function of credit spread estimation. 

^The concept of Accounting Distance is inspired by the similar concept proposed by KMV -
Distance to Default. That is, the number of standard deviation that the value of the firm's assets 
must drop in order to reach the default point is considered. 
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Figure 4.6: Accounting Distance 

This feature is directly accounting for the inconsistency of the model. Referring to 

cross-sectional regression analysis used in Yu (2003), however, it is essential to use 

other factors provided in the public (e.g. credit rating of the bond, maturity k 

duration, economical factors, bond age) as the basic predictive features to estimate 

the residual of credit spreads in practice. Hence, the network learning will be more 

accurate. In the next chapter, a proposed model is presented. 



Chapter 5 

Proposed Model 

In previous chapters, we have discussed how framework of bi-directional modeling 

interprets the Merton structural default model and the statistical NN model as a 

"system" in order to facilitate the design of a hybrid system. Following that modular 

design, we discuss in more detailed how the proposed model be realized in this chapter. 

First, we present the core of the model in detailed. Then, the analysis and selection 

of key features / variables for the model (especially for the risk residual) is shown 

and explained. The overall architecture of the model is illustrated at last. 

5.1 Core of the model 

The core of bi-directional modeling has two main components, the top-down and 

the bottom-up. They are responsible to model theoretic part and chaotic part of 

the true nature respectively. In the application to default risk modeling (specifically, 

prediction of yield spreads and hence the PD), we define: 

1. True nature: That is the underlying mechanism of default, or the observed 

37 
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market yield spreads. 

2. Theoretic part: We choose the most profound and theoretic Merton model. 

The reason is very obvious at all. As this part should only response to the 

basic rationale in nature, Merton's framework can indeed do so. It is shown in 

literature that thousands of variants has already been developed further and still 

active nowadays, just because the model is conceptual and theoretical enough. 

That perfectly captures the essence of default. We denote the function as / ( • ) . 

/m(X) where x = 04 ,F ,ay , , r ,T) (5.1) 

theoretic fji%) 

Figure 5.1: Core of "True Nature" 

3. Chaotic part: Contrast to the rationale, this part response to the chaotic 

behavior in nature. Obviously, a structure-free model would be the best choice 

as none can really model chaos by structural approach. We select two-layer 

feed-forward networks as the statistical learning approach so that relationship 
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can automatically be learned and improved with experience. By using non-

parametric estimation for the seemingly chaotic behavior, network learning is 

fairly suitable. The function of network is denoted by g(»). 

y) = "(f： where y = (AD, MAT, LEV, VOL, AOS) 
j=0 i=0 

(5.2) 

Based on our perception, the function g is trying to model the part that function f 

can never achieve. From the viewpoint of Gultekin et al. (1982), Jacquier and J arrow 

(1996) and Connor and Lajbcygier (1997), the function g is predicting the residuals 

between the "conventional" or "classic" function f and the observed behavior (say, 

yield spreads) in true nature. Referring to the previous chapter, we have already seen 

how NN can model the posterior probabilities by using cross-entropy error function. 

Even for the regression problem (a mapping from input variables x (selected features) 

to target variables t (residuals)) at this time, in fact, we can absolutely consider NN 

from a probabilistic viewpoint. Mentioned by Bishop (1995), the central thoughts are 

as follows: 

1. The goal is to model the conditional distribution of the output variables, con-

ditioned on the input variables for regression problems. While for classification 

problems the goal is to model the posterior probabilities of class membership 

conditioned on the input variables. 

2. The central goal in network learning is not to memorize the data, but to model 

the underlying generator of the data. 

3. The most general and complete description of the generator is in terms of the 

probability density p{x, t) in the joint input-target space. 
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Same as the situation in asset price distribution modeling, the error function and 

the corresponding optimization principle are the keys. This time, the error function 

is motivated by the principle of maximum likelihood. Because of the joint probability 

t) can be transformed as 

工,t) =p{t\oc)p{x). (5.3) 

The likelihood for a set of training data can be written as follows 

L = r i p c ? , 产 ） = 綱 . (5-4) 
n n 

For convenience, negative logarithm of the likelihood is minimized and the error 

function E is therefore minimized as 

E = = (5.5) 
n n 

By assuming that there are c target variables tk with k = l...c and, the distribution 

of the target data is Gaussian, we would find that the conditional density of target 

variables is 
( 冬 , � 1 ( {gk{w\x)-tkY\ A� 

P ( 力 刺 = ^ exp ( ^ " " " " j M ) 

where gk{w\ x) is the output of a neural network and w is the weight parameters 

governing the network mapping. Hence, the previous error function E can further 

transformed as 

E = l j : t { 9 d w ; x n - t i r (5.7) 
L n=�Jfc=:l 
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which is actually our very familiar squared error function. After all, in order to use 

NN to model the conditional probability density for regression problem, squared error 

function derived from the maximum likelihood principle on the Gaussian assumption 

of target data can achieve. 

However, if NN is really used for this prediction, more characteristics about this 

residual should be investigated in order that the input / predictor variables can be 

better selected. Feature extraction is the following process. 

Referring to the modular design and analysis of bi-directional modeling in last 

chapter, we know that g can also be treated as a "system" which is mainly for the 

troubleshooting of the second weakness of / - the risk underestimation. We actually 

treat the residual that / has simply ignored as yield spread to predict. The sensitivity 

test is given in the next section, 

5.2 Feature selection 

The direction is now clear that we would like to use neural network to model function g 

of the risk residual and consider its features of credit spread. One worth noticing point 

is how OTir proposed model treats the input variables and target values during training 

the network. As we assume that all corporate bonds issued by the counterparties 

are very creditsensiUve, their credit spreads should be the best choice of being the 

network's target values. Hence, the predicted spreads should be coherent with the 

actual credit risk of those corporate. For the input variables, therefore, we would 

consider both bond-oriented variables for the actual bond yield spread assessment 

and corporate-oriented variables for the corporate credit risk assessment. 

Summarized by the table 5.1，each element in the input vector y of function g 
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(excluding AD) are all well-known to be predictors for spreads in normal industrial 

practice. 

Table 5.1: Predictors for yield spread residual 
Predictors Corresponding Risk 
MAT, D U R - ma- Not directly correspond to risk but useful in determining the 
turity, duration yield curve shape 
(bond-oriented) 
LEV - lever- Explain the structural risk coming from firms by distance be-
age (corporate- tween firm value and default boundary - similar to distance-to-
oriented) default 
VOL - volatil- Also explain the structural risk from firms 
ity (corporate-
oriented) 
AOS - amount Explain the liquidity risk of the bond itself 
outstanding 
(bond-oriented) 
AD (corporate- Mainly account for the risk induced by incomplete (accounting) 
oriented) information which is always neglected by structural models. It 

can also refer as the disclosure/transparency of one firm 

In order to show how well these variables predicting credit spread and its residual, 

and to get the sense of nonlinearity of the relationship in nature, let's now consider 

our proposed model predictors: accounting distance (AD). 

Figure 5.2 plots the relationship bet,ween the yield spreads in basis points and 

the value of proposed AD for the using the dataset from the Canadian market^. By 

using a smoothed line superimposed within the data sample, we can successfully fit 

a trendline for the data. Obviously, variable AD shows its significant predictiveness. 

The red trendline plotted in the figure suggests that the yield spread increases as the 

AD increases in general. It does make perfect sense because more noisy the accounting 

reports should result in more risky firms and higher yield spreads. Most importantly, 

'This data set will be used throughout this paper. For detailed experimental preparation and 
results refer to chapter 6. 
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Figure 5.2: Relationships of AD on yield spreads in the sample set of Canadian firms 
and bonds: the level of yield spreads versus AD in panel A shows the nonlinear nature 
(a smoothed trendline superimposed on data) of the relationship and how predictive 
the AD is (in a univariate sense). 
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the trend prediction is not in a simple linear way but logarithmic (nonlinear). 

One crucial issue we must notice is the non-linear character of the relationships 

showing above, that pushes lis away from simple linear regression methods. In fact, 

similar relationships exist for each of the input variables used in the chaotic part of 

the bi-directional modeling as shown in figure 5.3 and 5.4. If, not only considering 

the univariate relationship (one independent variable with respect to one dependent 

variable) but all the relationships among variables (multivariate) are taken into ac-

count, we can imagine how complex the actual relationship will be. This sensitivity 

analysis of variables gives strong evidence why neural network is considered as the 

most appropriate approach to model such high-dimensional and non-linear nature of 

credit spread residual relationship. High flexibility is the major requirement. 

5.3 Bi-directional default neural system 

Neural network's high flexibility enables the modeling of chaotic part which is always 

a kind of relationship with high-dimension and non-linear nature. Once the whole 

modeling process combining with the theoretic part is carried out in a rational manner, 

it must outperform any existing uni-directional modeling methods and, the detailed 

experimental result will be shown in the next chapter. In this section, a walk-through 

of the default neural system is presented. 

In Merton (1974), the valuation of risky debt at any time point i is A = min{14, F} 

where the asset price dynamic Vt is used. Recall that the pricing equation is given by 

Dt = VM-d{Vt, t, av,)) + Fe-r(T-G$(d(V“ t, ay,) - av.VT^t) (5.8) 

Consequently, the model implies both the credit spread and the probability of 
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default of the corporate which is very important in credit risk measurement. We 

however do not observe Vq, VI,V2...VT and that is the first empirical problem of Merton 

model encountered. We therefore use a time series of the equity values 五。，丑i,五2...丑t. 

Based on the equity pricing equations introduced in last chapter (4.5 and 4.6)，they 

define the transformations between Ei and Vi and, (lEt and avt respectively. They are 

denoted by 

Et = g'{Vt,F,av,,r,T) (5.9) 

and 

c7E, = g"{Vt,Et ,F,av, , r ,T) (5.10) 

where crVt is the estimated asset volatility as we do not observe it either. 

For a better learning and generalization, we of course are more interested in the 

general distribution of the asset price dynamic rather than using the transformation 

equations to calculate the values at each time point. As a result, neural network 

is used. Recall that the network can either treat the output as a density function 

directly or as determining free parameters of a predefined density. In the proposed 

neural system, the latter method would be adopted. Since the point estimate for the 

asset value can be obtained by 

Vt = g ' - \ E t , F , a v , , r , T ) (5.11) 

and it is a continuously clifFerentiable function of (fv” the distribution for the asset 

value can be assumed and approximated by a Gaussian distribution (Rao (1973), Lo 

(1986), Diian et al. (2003)). As we have assumed that the distribution of the target 

da ta - asset value is Gaussian, it would then be perfect to use the squared error 

function for training the network. 
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A 
However, it can be observed that the estimated spread YS is different greatly 

from the real market behaviour and that is the second problem of Merton model. We 

introduce additive residual in our proposed model, that is 

YS* = fMiVt,F,av, ,r ,T) + r r (5.12) 

where rr is risk residual that can never be explained by Merton model. Here we can 

see two core parts of the bi-directional modelling: Merton model JM is a theoretic 

representation of the credit spread, while the residual is a chaotic representation of 

the model. Interestingly, the chaotic part is actually responsible to the empirical 

world and could be interpreted as a kind of unexplained variation from the model 

when confronted to empirical data, say, spreads, omitted variable like AD, or had 

model specAfication. After all, the proposed neural system can be depicted as follows: 

•KS* = Y S " ^ = / M ( X " " ) + gNN(y) (5.13) 

where are the neural network estimated variables, gNni*) is the neural network 

function and y are the factors explaining the residual rr. 
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Figure 5.3: Relationship between other variables and yield spreads (1)： Yield spread 
inclines gradually and goes steeper at the end while leverage and equity volatility 
increase. The level of yield spreads versus leverage and volatility shows the highly 
nonlinear nature (polynomial trendlines fitted in data with the order of 3 and 2 
respectively) of the relationship. 
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Figure 5.4: Relationship between other variables and yield spreads (2): For duration, 
yield spread reaches its highest point in the middle and then declines and stays 
flat after. Relationship between amount outstanding and yield spread is almost like 
normal distributed. Nonlinear nature is observed {polynomial trendlines fitted in data 
with the order of 5 and 4 respectively). 



Chapter 6 

Implementations 

Data preparation and experiments will be carried out in this chapter. Since the 

financial data is expensive and it is difficult to have a default database containing up 

to corporate-scale (i.e. thousands of firm-year observations), we have instead used a 

relatively long sample period (the number of trading days) for each of the Canadian 

fiiW. The limitation of using small sample is that only partial relationship can be 

captured out of the large sample. However, the analysis is strengthened by including 

wide ranges of credit quality, industry and firm size in the data set. We believe that 

the experimental results and findings are still significant and worth further studying. 

In the experiment, we first estimate all of the parameters required and preprocess 

the asset price time-series. Then, we generate instances of the Merton model for the 

theoretic part of the bi-directional modeling. Finally, we train the neural network 

to predict risk residual for chaotic part by using yield spreads from bond market as 

target values. Corporate yield spreads are hence estimated and empirical results are 

iln our database, we use 7 firms and 13 bonds from Canadian market because default data 
is expensive. Also, it is not usual for Asian financial data to be managed like in Reuters and 
DataStream officially. For better use of the sparse data for prediction, we use about 15 years of 
trading days for each firm. Therefore, we have a total of 7 x 15 x 252 sample points for experiment. 

49 
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presented at the end of this chapter. 

6.1 Data preparation 

We select a sample of firms from Canadian market with simple capital structures to 

implement bi-directional modeling, so that learning can focus on the pricing errors 

related to the deficiencies of the uni-directional model instead of the complication of 

liabilities. We use bond specifics, equity prices, the number of shares outstanding and 

interest rate from DataStream between 1993 and 2005. Data on company histories and 

financials such as total assets, annualized long- and short- term debts on accounting 

reports are collected from Reuters. 

By assuming default is a state that affects all obligations of that firm equally, 

credit-sensitive bonds issued are selected as the target values of the network. We 

consider the bonds having standard cashflows. That is, fixed rate coupons and prin-

cipal at maturity. We exclude convertible bonds and bonds with call options or put 

options. In order to keep the capital structure simple, we choose firms with only one 

or two publicly traded bonds in the market. Of course, the firms we choose must have 

publicly traded stock so as to estimate asset price and its volatility for the Merton 

model. Minimum ten years of equity price data must be contained for optimal net-

work training result. The final sample includes 7 firms and 13 bonds^. Wide range 

of industry is shown in table 6.1. 

Table 6.2 and 6.3 present summary statistics on the bonds and issuers in the 

sample. Table 6.2 shows that the average bond issue in our sample is associated 

with a coupon rate of 7.03%, a duration of 8.7 years and an amount outstanding of 

2 We exclude financial firms from our sample so that the leverage ratios in the dataset are more 
comparable. For detailed discussion, see Lyden and Saraniti (2000) and Eom, Helwege and Huang 
(2004). 
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Table 6.1: Canadian firms and corresponding industries in the sample 
Firm Industry 

Hudson's Bay Wholesale and Retail Stores 
Sears Canada Wholesale and Retail Stores 

Enbridge Electronic and High Technology 
Gaz Metro LP. Oil and Gas 

Loblaw Grocery 
Sobeys Construction 

Saskatchewan Wheat Pool Farming and Agriculture 

135 thousand. The firms have relatively high yield spreads averaged at 293 bp and 

large coverage of credit quality spectrum, ranged from 48 bp to 2106 bp. Also, they 

are very large with the average asset value up to 6.7 billion with fairly low leverage. 

Table 6.3 indicates that the observations in the sample come from different interest 

rate environments. Average interest rate (using one-year treasury rate) ranges from 

the highest point 7.26% in 1995 down to the lowest 2.58% in 2004. 

Table 6.2: Summary statistics on the bonds and issuers in the sample 
Mean Std. Dev. Min Max 

Coupon (%) L ^ 4 9 10.45 
Duration(year) 8.665 3.514 0.629 14.22 
Amount outstanding (000s) 135 49 50 300 
Yield spread (bp) 293.494 216.374 47.78 2106.02 
Asset value ($ millions) 6699 5966 520 24327 
Leverage 0.312 0.124 0.026 0.798 
Asset volatility (over 60 days) 0.172 0.133 0.037 1.019 
Accounting distance 2.475 1.461 0 9.179 

6.2 Experiment 

In this section, we will discuss the overall procedure of implementing the bi-directional 

modeling in an application to the Merton model. First of all, the estimation of 
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Table 6.3: Average risk-free rate in the sample period 
Observation Year Average 1-year Treasury Rate (%) 

^ 
1994 6.50 
1995 7.26 
1996 4.74 
1997 4.10 
1998 5.04 
1999 5.14 
2000 5.90 
2001 3.95 

2002 3.00 
2003 3.03 
2004 2.58 
200 5 ^ 

parameters for the model is introduced. 

In the Merton structural model, a set of parameters including firm value, levels 

of debt and assets, asset volatility and the risk-free rate must be estimated. In 

addition, parameters related to bond features are required for the implementation 

also. Table 6.4 summarizes how to estimate three main types of parameters, namely 

bond features, firm characteristics and interest rate. 

1. Firm-related parameters: To estimate the firm value as an asset price dis-

tribution, we first calculated the implied asset value and volatility by the KMV 

measure (equations 4.5 & 4.6). Then, a network will be trained based on the 

proposed neural system. Parameters of firm's equity price and volatility, sum 

of long- and short-term debts (book value of total liabilities) as face values and 

risk-free rate are essential (equation 4.3). The leverage is measured as total 

liabilities over the sum of total liabilities and market value of equity (i.e. total 

assets reported in the firm's financial statement). For the calculation of the 
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Table 6.4: Estimation of parameters 
Parameter Description Estimation Data Source 
Bond features: Duration DUB. Given DataStream 

Maturity MAT Given DataStream 
Amount oiitstand- Given DataStream 
ing AOS 
Yield spread YS Yield-to-maturity (YTM) of DataStream 

bond minus YTM of treasury 
bill 

Face value F Total liabilities: long- plus Reuters 
short- term debts 

Firm characteristics: Market value of eq- Equity price times number of DataStream 
uity MV shares outstanding 
Total assets Vps Total liabilities plus market Reuters 

value of equity 
Leverage LEV Total liabilities over total as- Renters 

sets 
Equity volatility aE Historical volatility DataStream 
Firm value V Parametric prediction by neu- DataStream and 

ral network with the KMV Reuters 
measure of (implied) asset 
value 

Asset volatility cry Historical equity volatility ad- DataStream and 
justed for leverage Reuters 

Accounting Dis- Number of standard devia- DataStream and 
tance AD tions that the firm value will Reuters 

reach total assets 
Interest rate: Risk-free rate r One year Canadian govern- DataStream 

ment treasury bill 
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corporate-oriented variable AD, total assets and the mean of estimated asset 

distribution are used (equation 4.11). 

2. Interest rate parameters: Interest rate parameters are estimated by using 

the yield to maturity of a representative one year Canadian government T-bill 

as risk-free rate. 

3. Bond related parameters: Most of the parameters are simply given in the 

database. The yield spread observed in the market is estimated by the difference 

between the yields from the bond and the one year T-bill. One point needed 

to be noticed is that total liabilities are used as the face value (i.e. the default 

boundary of the Merton structural model) instead of the bond's face value itself. 

After we have estimated all the parameters and organized them into one data set, 

data preprocessing is a very important step right before any of the learning procedure 

by neural network. That is helpful especially when high-dimensional problems are 

encountered like the financial ones. Normally preprocessing includes feature extrac-

tion, data normalization and feature selection. In the step one of the experiment, an 

asset price time-series is preprocessed for prediction. 

Step One: Preprocessing asset price time-series: We separate a time series 

{zt}t=i of asset price of 7 Canadian corporate into three parts: training , val-

idation and test series. One fourth of the series for the validation set, one 

fourth for the test set and one half for the training set. Since the data is 

a function of time and our goal is to predict the value of z a short time in 

the future, the set is extracted from the series by shifting a sliding window 

successively as shown in figure 6.1 below, where input pattern is denoted as 
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Z{t) = [zt, Zt+d] and its dimension is hence set at (i + 1, and output 

pattern is denoted as C/�=[/it+d+i^cFVtt+d+i] at each time point t. 

Z2 Zn ^ 
+ + + 

H S S H I � 

Figure 6.1: A sliding window extracts a sample set of input-output pairs from an 
asset price time-series. 

Here we set the dimension of input space to be 60 (trading days) to ensure 

the prediction based on sufficient historical data. A set of raw input data is 

then extracted from the time-series. To facilitate the network training and 

make efficiency use of computation time, normalization of input data are per-

formed so that only the subset of input features from raw data set needs to be 

used and most of the information can still be retained. We use two algorithms 

for data normalization: Simple Normalization (normalize input/output feature 

separately to zero mean and unit variance) and Principal Components Analysis 

(PCA). After the full set of pattern is normalized, inputs and targets are then 

scaled and fall in the range [-1, 1] approximately so that the training algorithm 

can work best. By performing PCA, we have retained those principal compo-

nents which account for 99.9% of the variation in the input data set while the 

size of the space has significantly reduced from 60 to 6. Now, the resulting input 

pattern is ready to training further. 
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Figure 6.2: Predicted temporal asset distribution (mean and std. dev.) for Hudson's 
Bay in 1990-2004 by neural network 

One of the prediction results ('Hudson's Bay') of the asset price dynamics from 

those seven firms are plotted in figure 6.2. For this example, a total of 3854 

trading day records are used for the analysis. A two-layer feed-forward network 

with 6 input nodes (normalized input space), 20 nodes in the hidden layer, and 

2 nodes as the output variables (parameters: mean and standard deviation of 

a Gaussian distribution). That is called a 6-20-2 network architecture. The 

target asset value is assumed to be Gaussian and mean squared error (MSB) 

function is therefore used for training. Table 6.5 summarizes the results below. 

The MSE decreases up to 200 iterations and then levels off at 204 with lowest 

error value (0.1277). 

Step Two: Generating instances of Merton equation (theoretic part): After all 
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Table 6.5: Results of network training obtained by using preprocessed asset price 
time-series and two- layer feed-forward network with 20 nodes in hidden layer (6-20-2 
architecture). 

Iterations Mean Squared Error 
0 6.3433 

25 0.1667 
50 0.1399 
75 0.1368 
100 0.1357 
125 0.1341 
150 0.1318 
175 0.1298 
200 0.1277 
204 0.1277 

of the parameters are estimated and most importantly, the asset price time-

series generator: a Gaussian distribution with mean /i and standard deviation 

(7ŷ  being predicted by the network in step one, we start to generate instances 

of our theoretic part - the Merton structural model. 

In our sample set of the seven Canadian firms, we have generated 26,126 in-

stances of yield spreads from the Merton equation (equations 4.2 & 4.3) starting 

in January, 1990 through March, 2005 which are used to calculate the risk resid-

ual. 

By observing the real spreads YS* in the market, we can therefore calculate the 

risk residual rr by YS* - /m(»). Here we have generated 13,071 instances of 

risk residual from 13 bonds in our sample for further training (in-sample) and 

testing (out-of-sample) in step three. 

Although we observe that the yield spreads from the Merton equation are far 

less than the observed spreads of the publicly-traded bonds, we trust the quality 



CHAPTER 6. IMPLEMENTATIONS 58 

250 

200 . , 

. 广 i 

.iH 
lA 
_a 100 • 

50 • 

0 , JLlu J_J . .__ 
0 200 如 0 600 800 1000 

trading da声 

Figure 6.3: An instance of yield spreads generated from the Merton equation for Sears 
Canada 

of the spreads generated by the theoretic model as KMV does^. That is, the 

spreads are in fact reflecting the credit risk in certain extent. The risk residual 

must be referring to other sort of risk (spread) and, able to be modeled and 

generated. Therefore, one network is used at the final step of the proposed 

system so as to approximate that function. 

Step Three: Training network for risk residual prediction (chaotic part): In the 

very beginning of the network training, we first testify which the best training 

algorithm is given the same sample set, the number of nodes in hidden layer 

and the activation function in the output layer. Based on the number of itera-

tions and test error (root mean squared error - RMSE), we choose Levenberg-

Marqiiardt algorithm for the rest of the analysis. 

In order to avoid the over-fitting problem of the trained network, we carefully 

3Moody's KMV model uses Merton's model as its very major and crucial component, With the 
help of huge database support and fine tuning parameters, KMV model can predict credit risk with 
promising accuracy. 
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Table 6.6: Summary of training algorithm performance 
—Number of nodes Activation function Training algorithm Number of iterations Test error ( R M S I ^ 

M Linear Gradient Descent 1000 0.38597 
20 Linear Conjugate Gradient 252 0.04950 
20 Linear Quasi-Newton 131 0.04359 
^ Linear Lcvenberg-Marquardt 72 0.04062 

consider (1) the number of nodes in the architecture (i.e. the complexity of the 

model) and (2) the generalization of the network training. For the first issue, 

we start to train the network from the most complex one (i.e. 40 nodes) to 

the simplest one (i.e. 10 nodes) and observe the test error changes in between. 

So that, the network is just large enough to provide an adequate fit but not 

"memorizing" the data. For the second issue, we consider two methods: reg-

ularization and early stopping. Briefly speaking, regiilarization is adding one 

regiilarizer called weight decay 

冷 ( 6 . 1 ) 

in the existing squared error function so that the trained network will be forced 

to have smaller weights and biases and hence smoother. Early stopping is using 

the error in the validation set to monitor the minimum number of iterations 

and weights and biases. Table 6.7 summarizes the training result below. 

Table 6.7: Prediction errors of the chaotic part of the bi-directional modeling on 
training (in-sample) and testing (out-of-sample) sets. 

Number of nodes Generalization methods Number of iterations RMSE (in-sample) RMSE (out-of-sample) 
40 Regiilarization 0.1455 0.9959 
30 Regiilarization 23 0.1840 0.9308 
20 Early slopping 8 0.5335 0.7961 
^ Early stopping 0.1332 1.4999 

As we can observe from the result, the prediction errors in the test sets vary 

with the complexity of the network architecture. It is shown that either too 

complex (40 nodes) or too simple (10 nodes) model did not provide suitable 
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fitness of data and result in large RMSE (over 0.93). RMSE in the training 

sets also give hints that once it is driven to a very small value (under 0.18), 

over-fitting problem still occurs. The time-series of the risk residual on the test 

set is plotted in figure 6.4. With generalizing to the new situation, the predicted 

basis points are able to capture the lowest point at 430 bp and have generally 

predicted the average level in 120-day testing set. The chaotic gNN{*) is capable 

to capture the risk ignored by the theoretic /m(*)-

After all, based on the equation 5.13, the corporate yield spreads are predicted 

by bi-directional modeling. 

5201 • 1 1 1 • 
pred. risk residual 

510 - real data A 

500- A ^ • 

：：• n 
1 4 7 0 . r n V . 

46�过 J 
450 - ， 、 I J -
44�- L y — n • 
430 • U 
420' 1 1 1 1 ‘ 

0 20 40 60 80 100 120 
trading day 

Figure 6.4: The prediction results of risk residual on testing set of bi-directional 
modeling 
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6.3 Empirical results 

Before showing the experimental results of the proposed bi-directional neural system, 

we must first take a close look at the actual ability of the uni-directional models: 

the Merton model and the ordinary least squares (OLS) regression to fit the market 

behavior, so that comparison can be made after. Figure 6.5 and 6.6 plot the predicted 

yield spreads from the uni-directional models and the actual yield spreads observed 

in the bond market. It clearly shows that extreme under- and over-estimation happen 

in many cases. When we present this figure in terms of percentage errors, it will be 

something much more obvious. 

6.3.1 Predicted spreads from the uni-directional models 

As plotted in table 6.8, we can see that no matter for the average percentage errors 

in yield or yield spread prediction'* the magnitude is fairly large. Also, the standard 

deviations suggest overall predictions by the Merton model have large dispersion error. 

These figures significant reflect the poor performance of the pure structural model 

and its systematic prediction errors. 

Table 6.8: Prediction percentage error of the Merton model: very large percentage 
errors and dispersion 

Percentage Error Absolute Percentage Error Absolute 
in Yield Percentage Error in Yield Spread Percentage Error 

in Yield in Yield Spread 
Mean '̂ ^KWo 55.6% -78.6% 115.2% 

Std. Dev. 153.7% 146.2% 211.0% 193.3% 

^The percentage errors in yields and spreads, and their absolute values, are calculated as the 
predicted value minus the observed value and then divided by the observed one. The errors are 
generated from implementing the Merton model using 13 bonds with simple capital structures during 
1993-2005. We consider the error in spreads to be the key measure of the model performance. They 
relate directly to the risk residual being predicted by our proposed networks. 
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predicted vs. actual yield spreads 
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Figure 6.5: Performance of the Merton structural model: extreme under- and over-
estimation 

Based on the observations of the relationships between yield spreads and selected 

features (figure 5.2, 5.3 & 5.4), we suggested that the concern of nonlinearity should 

be the key of modeling. We conclude in the last chapter that nonlinear modeling 

and learning such as neural networks and hybrid systems must be preferred in yield 

spread prediction. To testify the fitness of using nonlinear model, we therefore apply 

another uni-directional model: simplest OLS (equation 3.6) regression to estimate 

the yield spreads and observe its accurancy in the out-of-sample set. 

As shown in figure 6.6, the prediction result of linear regression is very disappoint-

ing and shown extreme over-estimation. The average out-of-sample RMSE is as high 

as 1.634. This figure significant reflect the poor performance of the pure statistical 

model and its systematic prediction errors. 
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yield spread prediction by OLS 
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Figure 6.6: Performance of the OLS regression (out-of-sample): extreme over-
estimation 

6.3.2 Predicted spreads from the proposed bi-directional model 

Finally, the bi-directional modeling is implemented and the prediction results are 

shown in the following figure and table. The new approach has significantly improved 

the average percentage errors of the overall prediction especially, the error in yield 

spread is just -0 .5%. Without keeping tracking to every single data point in the 

training set, the network prediction has decreased the generalization error. Even 

though examples of over- and under- estimation still exist, a majority of prediction 

shows promising accuracy already. 
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predicted vs. actual yield spreads 
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Figure 6.7: Performance of the bi-directional modeling: ability to generate high yield 
spreads and match the observed market. 

Table 6.9: Prediction percentage error of the bi-directional modeling: average per-
centage errors significantly improved 

Percentage Error Absolute Percentage Error Absolute 
in Yield Percentage Error in Yield Spread Percentage Error 

in Yield in Yield Spread 
Mean -2.8% 33.5% -0.5% 87.4% 

Std. Dev. 95.6% 89.6% 185.2% 163.3% 

6.3.3 Performance comparison 

As plotted in figure 6.8, the performance comparison among both iini- and bi-directional 

models is summarized in terms of the RMSE in the out-of-sample set®. The proposed 

bi-directional model (with the lowest test error 0.767) is shown to outperform other 

uni-directional models such as the Merton model (with the test error 1.272), OLS 

®The behavior of the root mean square error (RMSE) in the out-of-sample set significantly shows 
the generalization ability for the tested models. With a lower generalization (test) error, the model 
finds more support to characterize regularities and therefore generalizes better. 
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Figure 6.8: Accuracy for the six tested models in the out-of-sample set: the bars depict 
the performance of each of the default models tested (less RMSE represents better 
prediction). Note the performance gap between NN, OLS (statistical) and Merton 
model (structural). Also note the performance gap between Merton model and our 
proposed bi-directional model. These gaps represent the gain in model accuracy from 
incorporating additional financial information for prediction and learning process. 

regression (1.634) and neural network learning (2.192). We can also observe that the 

performance of Merton structural model is better than pure statistical regression mod-

els such as OLS and NN. The gap of RMSE difference can be seen as representing the 

gain in model accuracy from incorporating additional financial information for credit 

risk prediction. The flexibility and power of NN seem to be "over-acting" when it is 

used without any financial theoretic ground. Bi-directional modeling (with modular 

design and additional variables) is therefore shown to provide platform for merging 

both statistical and structural model so that the performance is further improved. 

True nature of dynamics is theoretic (structural) plus chaotic (statistical). 
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In the experiment, we have implement three models based on our proposed bi-

directional framework. They are generated by three different network architectures 

with different number of iterations (i.e. 20, 30 and 40 nodes in the hidden layers). We 

found that 20-node-architecture is the optimal and has the lowest test error. Hence, 

it is our ultimate bi-directional model. Interestingly, these three models also perform 

better than uni-directional models (either pure structural or statistical). We conclude 

that the accuracy of structural model is further improved by incorporating additional 

financial information (e.g. financial statements) and learning process by which real 

life experience (chaotic/empirical) is converted to knowledge. 



Chapter 7 

Conclusions 

Motivated by the shortcomings of the uni-directional modeling (i.e. pure structural 

and statistical models), we propose a hybrid financial risk model using a combination 

of structural model and neural networks. We demonstrate the proposed framework 

by applying on the Merton structural default model. The classic Merton model is 

theoretically strong. However, it faces several empirical problems during implementa-

tion. In this paper, we particularly focus on iinobservable underlying asset and severe 

risk underestimation problems. Though interested researchers in academia suggest 

many more theoretically stronger model and turn down most of the pure empirical 

approaches for those problems. The proposed hybrid system called bi-directional 

modeling tries to merge the best world between structural and statistical method-

ologies. Making use of the advantages in statistical learning theory, we can see its 

possibility of solving empirical problems in the Merton model. It is also shown that 

better accuracy in prediction can be made once the model is embedded a learning 

process by which real life experience is converted to knowledge and incorporating 

additional financial information onto uni-directional models. 

67 



CHAPTER 7. CONCLUSIONS 68 

Grounded on the above basic concept, the definition and selection of explanatory 

features for model inconsistency (i.e. the risk residual) would be the major problem 

encountered. In this paper, we define Accounting Distance (AD), number of stan-

dard deviations that the estimated asset value will reach the real data released in the 

accounting report, so that the accuracy of corporate yield spreads can be increased. 

Moreover, sensitivity analysis of selected features has been carried out to testify the 

nonlinear nature of the data and hence the neural networks and hybrid models are 

proposed to be used in the framework. For experimental demostration, an applica-

tion to seven Canadian firms and corrisponding thirteen bonds in the real market is 

presented. The empirical results show that the proposed bi-directional model out-

performs existing financial models including the Merton model, OLS regression and 

neural network learning. Data limitation in the experiment is still contained. It would 

be worth further studying for more complete data analysis. 
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