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Abstract of thesis entitled: 
On the Relation between Linear Dispersion and Generic Net-
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for the degree of Master of Philosophy 
at The Chinese University of Hong Kong in June 2006 

Network coding is one of the most popular research topics in 
recent years. It refutes the folklore that the capacity of a net-
work can be achieved by routing alone. Rather, coding may 
need to be employed at the intermediate nodes. It have been 
proved that linear network codes are sufficient for achieving the 
network capacity when there is only one source. 

Different classes of linear network codes have been discussed 
in the literature, namely multicast, broadcast, dispersion and 
generic network code, where each of these classes is strictly 
stronger than the preceding one. In this thesis, we establish a 
nontrivial relation between linear dispersion and generic linear 
network code. 
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脑 亜 
3同 女 

網絡編碼是當今最熱門的硏究項目之一。在網絡編碼出現之前，人們普遍認 

爲單單使用路由便能達到網絡的最大容量，但是網絡編碼反騒這個想法，網絡中的 

節點可能需要進行編碼以令網絡的容量得以充分利用。已有證明指出，當網絡中只 

有一個源節點的時候，線性編碼已經足以令網絡達到最大容量0 

在已有的文獻中，已經有人提出了不同類別的線性網絡碼，即多重播送 

(multicast)，廣播送（broadcast) ’分散播送（dispersion)及通用網絡碼（generic 

network code)�他們還證明了這四類網絡碼分別都比其前者強。在這篇論文中，我 

們將會建立線性分散播送與通用網絡碼之間的非平凡關係。 
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Chapter 1 

Introduction 

Summary 

This chapter aims to give a brief overview on the the-

ory of network coding. Network coding suggests that 

when information is multicast in a point-to-point net-

work, maximum possible throughput can be achieved if 

coding is allowed at the intermediate nodes within the 

network. 

The notion of network coding was first introduced in [1 . 

Since its emergence, network coding has been become one of 

the hottest research topics [3] [7] [8]. We model a communication 

network by a finite directed graph G — {V, E) where multiple 

edges from one node to another are allowed. Each vertex v e V 

represents a communication node in the network, which may be 

1 



CHAPTER 1. INTRODUCTION 2 

a personal computer, a router or a switch. The edges between 

the vertices are the channels between the nodes through which 

information is sent. Some of the nodes are designated as source 

nodes from which the message is generated and sent out. The 

capacity of direct transmission from a node to its neighbour is 

determined by the multiplicity of channels between them. In 

addition, a communication network is said to be acyclic if it 

contains no directed cycles. The network in Figure 1.1(a) is an 

example of acyclic networks. 

Consider a communication network as shown in Figure 1.1(a) 

9]. There is one source node s, which generates two data bits 

hi and 62. These two bits are to be multicast from source node s 

to the sink nodes ti and 力2. All the channels in the network are 

of capacity 1. If only store-and-forward is allowed, i.e., every 

intermediate node is only allowed to send out replica of the bits 

it received, every channel would carry either bit 61 or bit &2 as 

shown in Figure 1.1(a). It is easy to check that a multicast rate 

of only 1.5 bits per unit time can be achieved. 

If the intermediate nodes are allowed to re-encode the bits 

it received, as shown in Figure 1.1(b), a higher rate can be 

achieved. Instead of forwarding the bits it received, node z de-
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rives a new bit bi © 62, the exclusive-OR of 61 and 62, and sends 

it out. Node w forwards the bit it received to nodes ti and 力2. 

Both sink nodes ti and t? can decode both bi and 62 from the 

bits they received. 

bi bi b2 bi bi®b2 b2 
nLL J/ 

0 00 O 
(a) No coding is allowed (b) Coding is allowed 

Figure 1.1: Multicasting over an acyclic network 

In a general setting, a communication network is a directed 

graph G 二 (V, E), allowing multiple edges from one node to 

another. Every edge represents a communication channel with 

capacity of one data unit per unit time. Throughout this thesis, 

the source node will be denoted by s. For every node t ^ V, 
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let In{t) denote the set of incoming channels to t and Out{t) 

the set of outgoing channels from t. In particular, let In{s) 

denote a set of imaginary channels which terminate at the source 

node s but are without originating nodes. The number of these 

imaginary channels is context dependent and always denoted by 

u. Furthermore, for any two nodes ti,t2 G V, the number of 

channels from ti to t? is denoted by 力2). 

A data unit is represented by an element of a certain base 

field F, The message generated at the source node s consists of 

uj data units and therefore is represented by an cj-dimensional 

row vector x G F^. 

A non-source node does not necessarily receive all the in-

formation symbols to identify the value of the whole message 

X. Its encoding function simple maps the ensemble of received 

symbols from all its incoming channels to a symbol for each out-

going channel. A network code is specified by such an encoding 

mechanism for every node [10 . 

Definition 1.1. [Local description of a network code] Let F be 

a finite field and cj be a positive integer. An c<;-dimensional 

F-valued network code on an acyclic communication network 
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consists of a local encoding mapping 

ke : 丨坤)丨—F 

for each node t in the network and each channel e G Out{t). 

The acyclic topology of the network provides an upstream-

to-downstream procedure for the local encoding mappings to 

accrue into the values fe{x) transmitted over all channels e. It 

implies another equivalent definition of a network code: 

Definition 1.2. [Global description of a network code] Let F be 

a finite field and Cc； be a positive integer. An cj-dimensional 

F-valued network code on an acyclic communication network 

consists of a local encoding mapping 

h : F 剛 丨 — F 

and a global encoding mapping /e : —> F for each channel e 

in the network such that: 

1. For every node t and every channel e G Out{t), fe{x) is 

uniquely determined by {fd{x),d G In(t)), and ke is the 

mapping via 

{fd{x),deln{t))^ fe{x). 
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2. For the uj imaginary channels e, the mappings fe are the 

natural projections from the space F � to the UJ different 

coordinates respectively. 

• End of chapter. 



Chapter 2 

Linear Network Coding 

Summary 

This chapter aims to focus on linear network coding. It 

has been proved in [8] that linear coding is sufficient 

to achieve the maximum possible rate when there is 

only one single source. It has further been discussed in 

[10] that there are four levels of strength of linear net-

work codes, namely multicast, broadcast, dispersion and 

generic network code. It was proved in [10] that each of 

these four codes is strictly stronger than the preceding 

ones. Code construction algorithms for some of them 

will be discussed at the end of this chapter. 

7 



CHAPTER 2. LINEAR NETWORK CODING 8 

2.1 Single Source Network Coding 

Given a communication network G 二 {V, E), at least one node 

s E V IS designated as the source node. The message x is 

generated at the source node(s) and sent out. When there is 

only one source, we will refer to it as single source network 

coding. 

It has been proved in [8] that in case of single source net-

work coding, linear coding is sufficient to achieve the maximum 

possible rate. By saying linear coding, we constrain the nodes 

to perform only linear operations over some finite field, i.e. ad-

dition and scalar multiplication, on the symbols they received. 

Therefore, each node receives some information symbols from 

its incoming links and sends out some linear combinations of 

those symbols on its outgoing links. In particular, routing can 

be considered as a special case of linear network coding. 

Furthermore, it has been proved in [8] that the maximum 

possible rate of sending information from source node 5 to a 

non-source node t is determined by the maximum flow from s 

to t. We denote this quantity by maxflow{t). The definitions 

of flow and maximum flow are as follows [5]: 
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Definition 2.1. Let G = {V, E) be a directed graph and s,t G V 

where 5 is the source node and t is a sink node. A flow from 

to t is a function T : E n which obeys three types of 

constraints: 

1. T{e) < C{e) for all eeE, 

2. Edein{v) •^(cO = T.eeOut{v) ^ ( e ) for all G \ {<§，t}, 

3. > 0 for all e 6 E. 

The value of a flow JT is defined as E e e / n � ^ ( e ) . The maximum 

value of all possible flows is the maximum flow from s to t, 

denoted by maxflow{t). 

2.2 Descriptions of Linear Network Codes 

As discussed in the previous chapter, a network code can be 

specified either by a local or global description. For a linear 

network code, the local and global description can be simplified 

as follows [10]: 

Definition 2.2. [Local description of a linear network code] Let 

F be a finite field and a; be a positive integer. An cj-dimensional 
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F-valued linear network code on an acyclic communication net-

work consists of a scalar kci,e, called the local encoding kernel, for 

every adjacent pair of edge (c?, e) in the network. Meanwhile, the 

local encoding kernel at the node t means the |/n(t)| x \Out{t) 

matrix Kt = [/c^i，eWnW’ee(9u"0-

Definition 2.3. [Global description of a linear network code] Let 

F be a finite field and cj be a positive integer. An cj-dimensional 

F-valued linear network code on an acyclic communication net-

work consists of a scalar kd’e for every adjacent pair of edge 

(d, e) in the network as well as an cj-dimensional column vector 

fe G F^ for every channel e such that: 

1. fe = E d e / n � kd,efd, where e E Out{t). 

2. The vectors /g for the uj imaginary channels e G In{s) form 

the natural basis of the vector space 严 . 

The vector fe is called the global encoding kernel for the channel 

e. 

The message is denoted by x, which is a c^-dimensional row 

vector, and the global encoding kernel for a particular channel 

e is /e, which is a cj-dimensional column vector. Therefore, the 
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actual information symbol sent over channel e is x-fe. A message 

X = [6i 62] of two bits 61 and 62 is multicast over the network in 

Figure 2.1. The actual symbols sent over the channels and the 

global encoding kernels for the channels are shown. 

( s ) ⑴（0 f o � 

r T f C7 ) r ? ) >7 ) 

CO w(OW 
丫 f O fo) 

bi bi®b2 b2 n 1 
W [\J VV 

0 W (t^丨)(丨始 
(a) Actual symbols sent over the (b) Global encoding kernels of each 
network channel 

Figure 2.1: A message x = [bi 62] of two bits 61 and 62 is multicast over the 
network 
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2.3 Desirable Properties of Linear Network 
Codes 

From the global description of linear network codes, we can see 

that a particular node t E V can receive all the information 

symbols, and hence decode the source message x, if the global 

encoding kernels of all its incoming channels span the whole 

vector space 严 . I n other words, node t can decode the message 

X from its received symbols if 

({f,:deIn(t)}} = F-. 

In the above expression, we adopt the notation that (•) repre-

sents the linear span of a set of vectors. 

Given a node t E V, denote Vt by 

Vt^ifd'-de In{t)). 

This vector subspace Vt can be regarded as the "knowledge" 

known by node t. The degree of such "knowledge" can be used to 

classify linear network nodes into four levels of strength [10]. As 

suggested in [10], a linear network code qualifies as a multicast, 

broadcast or dispersion, respectively if the following conditions 

hold: 
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1. dim{Vt) 二 � for every non-source node t with maxflow{t) > 

UJ. 

2. dim{Vt) — min{ijj^ maxflow{t)} for every non-source node 

t, 

3. dim({Uter^^}) 二 miri{uj, maxf low(J^")�for every collection 

V of non-source nodes. 

Furthermore, a linear network code qualifies as a generic net-

work code if the following condition is satisfied: 

For an arbitrary set of channels {ei , 62，...，e^}, where each 

Cj G Out{tj)^ the vectors /ei,/e2，...，/e^ are linearly indepen-

dent (and hence m <u) provided that 

for 1 < j < m. 

It has been pointed out in [10] that a dispersion is necessarily 

a broadcast and a broadcast is necessarily a multicast. In [10], it 

has also been proved that a generic network code is necessarily 

a dispersion. However, the converse is not true. 

Theorem 2.1. Every generic linear network code is a linear dis-

persion. 
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Proof. The proof can be found in [10]. • 

2.4 Linear Network Codes Constructions 

Several algorithms have been proposed to construct a linear net-

work code on a given network [8] [10] [6]. Li et al. first proposed a 

construction algorithm in [8]. Given a positive integer u and an 

acyclic network G = (y, the algorithm is able to construct 

a generic network code on G, which is the strongest code, with 

certain requirement on the size of the base field. Jaggi et al. 

and Sanders et al. gave a refined version of the algorithm [6 . 

The refined algorithm would require a smaller base field and of 

less computational complexity. However, the refined algorithm 

was only capable to construct a multicast, which is the weakest 

code. 

The algorithm proposed by Li et al. [8] constructs a generic 

linear network code by assigning a vector to each channel. It is 

proved in [10] that a base field F is sufficient for this algorithm 

if 

^ ( 阅 +CJ — 1 \ 

V w — 1 / 

Meanwhile, the refined algorithm proposed by Jaggi et al. and 

Sanders et al. only requires the base field F to have more than rj 
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elements, where 77 is the number of receiver nodes with max flow 

bigger than or equal to cj, i.e., 

� I {力 6 V" : maxflow{t) > u}. 

• End of chapter. 



Chapter 3 

Node-Based Characterization 
of Linear Network Codes 

Summary 

It has been suggested in [10] that a linear network code 

can be specified by an assignment of c^-dimensional vec-

tors to the channels. In this chapter, we give a nec-

essary condition from a node-based perspective for the 

existence of a linear network code. 

3.1 Channel-based characterization 

As discussed in the previous chapter, a linear network code has 

both local and global descriptions. We will focus on global de-

scription in this chapter. Let F be a finite field and a； be a 

16 



CHAPTER 3. NODE-BASED CHARACTERIZATION 17 

positive integer. The global description of an cj-dimensional F-

valued linear network code on an acyclic communication network 

G 二（!/，E) can be interpreted as an assignment of cj-dimensional 

vector /e E F � to each channel e E E such that the actual infor-

mation sent over channel e is x • /e, where x is an cj-dimensional 

row vector representing the message. 

In other words, we can construct a linear network code by 

assigning vectors inside the vector space F � to the channels 

subject to one constraint: For every node t eV and its outgoing 

channel e G Out(t), 

fe^ifd'-de In{t)). 

This constraint is to abide the law of information flow. 

3.2 A Necessary Condition for the Existence 
of Linear Network Codes 

Besides considering linear network codes from an assignment of 

vectors to the edges, we can view a linear network code from 

a node-based perspective. Let the vector subspace known by a 

node t E V he Vt, i.e., 

Vt = {fd:de In{t)). 
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In particular, for the source node s, we have 

K = 严 . 

Furthermore, define two functions, hi and /12, from V to the 

power set of V, V{V), such that u E hi{t) C V if there exists an 

edge from u to t and v E h2{t) C V if there exists an edge from 

t to V. In particular, we define 

h 似 = t 

Lemma 3.1. For any finite acyclic directed graph G = {V, E), 

there exists at least one node a E V such that hi{a) = {5 } , 

where s E V denotes the source node. 

Proof. As the graph is connected, we can assume hi{a) + 0 for 

all a G y \ {s}. Assume the contrary, i.e., 

{ a : / i i ( a ) 二 = 

Then fix a particular node a! G V. Since hi{ai) ^ {5 } , we can 

always find another node a^ G hi{ai) \ {5} . Similarly we can 

find another node a^ E h认a�)\ {s}. By continuing the process, 

we can obtain a sequence of nodes {a^}, where 

a � G \ {5} . 
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Since there is a finite number of nodes, the set of all a '̂s cannot 

be infinite. Hence, there exists two distinct positive integer j 

and j, such that aj = a^. Note that the reverse of the sequence 

{a i } actually defines a path in the graph. Therefore the fact 

that dj = dj' implies a directed cycle in the graph, contradicting 

the assumption that the graph is acyclic. Thus we can conclude 

that 

{a:hi{a) = {s}}^fD. 

• 

Theorem 3.1. Given a linear network code specified by fe for 

oil e e E and for each node t eV \ { s } , let 

hl{t) 二 {UI,U2,. •. 

and 

C[ui,t) 二 Ui 

where C{ui^ t) denotes the capacity of edge {ui ,t). Then 

and for any subset 2" C {1, 2,.. .，p}, 

E^z > dim{Vt) — dim {Vt H (u^-^jK,)). 
iel 
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In particular, if we set X to be { 1 , 2 , . . . then we would obtain 

p 
dim{Vt) < Y^rii. 

i=l 

Proof. By Lemma 3.1, there exists at least one node a E V such 

that 

hi{a) = {5} . 

Obviously, as 

K = 严， 

we have 

K c K. 

Moreover, since 

Va=-{fd'deln{a)}, 

we have 

dim{Va) < C{s, a). 

Hence the condition holds for all nodes a eV with hi{a) = {5} . 

For a general node t e V in the network, let 

hi{t) = {t̂ i : z = 1 , 2 , . . . 

for some positive integer p, and 

C{Ui,t) = Hi 
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where rii is a positive integer for z = 1, 2 , . . . (Figure 3.1). 

Q O • • • O 
niA^ -\-m y ^ n p 

V 
Figure 3.1: There are p nodes in hi{t). 

For any integer z = 1, 2 , . . . let 

V̂ , =〈{/；: e G O i i t � n / n W } � . 

Then, 

K c 

and 

Hence, 

Also, we have 

dim{Vi) < rii. 



CHAPTER 3. NODE-BASED CHARACTERIZATION 22 

Moreover, for any subset I C {1, 2，…，p}, 

dim(Vt) = G!im(�Uil/0 

=dim {{{{UreiV^) H V,) U {{Uj^jVj) H ⑷〉） 

< dim {{U^eIV,) n Vt) + dim {{Uj^jVj) H Vt) 

lel 

Therefore, 

dim{Vt) - dim ((u^-^jK,) H Vt). 
iel 

• 

3.3 Insufficiency of the condition 

The condition given in the last section is a necessary but not 

sufficient condition for a linear network code. Consider the ex-

ample in Figure 3.2. It is easy to check that the assigned vector 

subspaces to the nodes satisfy the condition mentioned in the 

previous section. Nevertheless, there exists no legitimate lin-

ear network code with such vector subspace assignment. Since 

node z has to receive the vector subspace it must receive 

two linearly independent vectors, in which one of them must be 
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1 0 0 
Vs = 010 

0 0 1 

10 10 
Vx 二 0 0 ( X ) ( y ) Vy = 0 1 

01 V _ X . X i y 00 

10 
Vz= 0 1 

0 1 

Figure 3.2: Insufficiency of node-based characterization. 

received from node x and the other must be received from node 

y. Observe that 

K r w 广 � [ 1 0 0 广〉 

and 

i ^ n V； =〈[ 1 0 0 广〉. 

It means that nodes x and y must co-operate such that node z 
r can receive the vector O i l . However, in doing so, the 

r - |T 
vector 1 0 0 cannot be sent to node z. Hence, we cannot 
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find a linear network code which would result in such vector 

subspace assignment. Therefore, the condition is a necessary 

but not sufficient condition. 

• End of chapter. 



Chapter 4 

Relation between Various 
Classes of Linear Network 
Codes 

Summary 

This chapter aims to describe the relation between the 

four linear network codes as discussed in the previous 

chapter, namely multicast, broadcast, dispersion and 

generic network code. Though it has been proved in [10] 

that each of these four codes is strictly stronger than the 

preceding ones, we observed that certain transformation 

can be performed on the network G such that a weaker 

network code on the transformed network G is equiva-

lent to a stronger code on the original network G. 

25 
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In [10], it has been proved that there exist four levels of lin-

ear network codes: multicast, broadcast, dispersion and generic 

network code. Each of these four codes is strictly stronger than 

the preceding ones. Nevertheless, it has also been pointed out 

in [10] that by transforming the original network G into another 

network G, a linear multicast on G incorporates a linear broad-

cast on G. Similarly, by installing new nodes and channels to the 

network G, a linear broadcast on the new network incorporates 

a linear dispersion on the original network. In this chapter, we 

further propose another transformation to establish the relation 

between linear dispersion and generic network code. 

4.1 Relation between Multicast and Broad-
cast 

4.1.1 Auxiliary Graph 

For every acyclic digraph G = (V, E), we derive an auxiliary 

graph G = {V, E) from G through the following mechanism: 

Let cj be a positive integer. For every non-source node t ^ V 

where max flow (t) < cj, we install a new node i and uj incoming 

channels to this new node, among which maxflow{t) of them 
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are from t and the remaining u — maxflow{t) are from the 

source node s. This node has no outgoing channels. This newly 

constructed acyclic digraph is designated as the auxiliary graph 

G of the original graph G. An example of auxiliary graph is 

shown in Figure 4.1. 

0 0 I 
M 、 -， I 、乂 ! 

’d/̂ lS：!),/ 
W O (!> 一 z: 

(a) Original graph G (b) Auxiliary graph G 

Figure 4.1: An example of auxiliary graph. The dotted nodes and edges are 
added to form the auxiliary graph. 

Theorem 4.1. A linear multicast on the auxiliary graph G in-

corporates a linear broadcast on the original graph G. 

Proof. Let cj be a positive integer. Suppose we are given an 



CHAPTER 4. RELATION BETWEEN LINEAR NETWORK CODES 28 

acyclic digraph G = (1/, E) and a linear multicast on its auxil-

iary graph G = (V, E). 

For every node t 6 V^ we consider two cases: 

1. Case 1: If max flow (t) > uj, then by the property of the 

given linear multicast, we have 

dim{Vt) 二 (jJ. 

2. Case 2: If maxflow{t) < u, then, by the construction of 

auxiliary graph G, there exists a node t E V such that there 

are u incoming channels to t among which maxflow{t) of 

them are from t and the remaining u — max flow (t) are 

from source node s. It is easy to check that 

max flow (Tj = UJ. 

Hence, by the property of the given linear multicast, we can 

conclude that 

dim{Vj) = UJ. 

Since there are only u channels terminating at i, the global 

encoding kernels of each of the incoming channels must 

be linearly independent. Also, as maxflow{t) of them are 

from t, we can conclude that 

dim{Vt) > maxflow{t). 
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It has been proved in [8] that the maximum information 

rate is upper bounded by the maximum flow. Hence, 

dim{Vt) < maxflow{t). 

Therefore, we have 

dim{Vt) = max f low {t). 

Combining both cases, we can conclude that for every node t G 

dim{Vt) = mzn{cj, maxflow{t)}. 

By removing the installed nodes t and their incoming channels 

from G, we can obtain a linear broadcast on G. • 

4.2 Relation between Broadcast and Disper-
sion 

4.2.1 Expanded Graph 

For every acyclic digraph G 二 {V, E)^ we expand this graph to 

form an expanded G 二 (V, E) from G through the following 

mechanism: Let cj be a positive integer. For every non-empty 

collection V of non-source nodes where \P\ > 1, we install a new 

node i-p and there exist maxflow{V) incoming channels to this 

new node. This new node has no outgoing channels. For each 
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node t G P, there exist max f low{t) channels from t to tp. T\v\s 

newly constructed acyclic digraph, is designated as ttie expanded 

graph G of the original graph G. An example oi expanded gxap\i 

is shown in Figure 4.2. 

V Y \ \ > : � 乂 
、 、 - ) ( " 、 ) ( 一 -

八 

(a) Original graph G {h) Expanded gxapla G 

Figure 4.2: An example of expanded giapli. Tlie doUed nodes and edges aie 
added. 

Theorem 4.2. A linear broadcast on tlie expanded gcapli G m -

corporates a linear dispersion on tlie oxiginal gjapli G . 

Proof. Let u; b e a positive integer. S u p p o s e w e a i e ^Weiv aiv 

acyclic digraph G = (V , E) a n d a lineax k o a d c a s l o n te ex-

p a n d e d g r a p h G = 

For every co l lec t ion o { n o n - s o u i c e n o d e s ? C V 肌 d v Wval 
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A ^ 

V � 1 , there exists a corresponding node tp G V. It is easy to 

check that 

max flow (Jp) 二 maxflow(J^). 

If \V\ > 1, then, by the property of the given linear broadcast, 

dim (吟J = maxflow{tp) 

=maxflow{V). 

Besides, for each t E V C V^ we have 

dim {Vt) -—— maxflow{t). 

Hence, for every collection of non-source nodes V C V^ we have 

dim [(UtevVt)) — maxf low(V). 

After removing the installed nodes tp and their incoming chan-

nels, it would result a linear network code which is guaranteed 

to be a dispersion. • 

4.3 Relation between Dispersion and Generic 
Network Code 

4.3.1 Edge Disjoint Path 

Definition 4.1. A walk [4] in a graph G 二 is a sequence 

of vertices and edges of G of the form: 

Ol, {VI,V2),V2, . . . ,Vn-l, (v^-l, Vn), Vn), 
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where Vi e V and {vi-i,vi) G for i = 1, 2 , . . . , n. A walk is 

called a path if Vi • Vj for i • F o r simplicity, a path can be 

written as a sequence of edges only. 

Given a path P = {(t^i, (仍，vs),…，（〜—i,�)} on a acyclic 

directed graph G, we define a relation -<(p on P such that for 

any (vi.vi^i), { v j . v j ^ i ) G P, {vi,vi+i) •<p (巧•，巧+1) if there ex-

ists a path in G from Vi to Vj. Likewise, we denote {vî  Vi-^i) ^ p 

{vj^vj^i) if there exists a path in G from Vj to Vi. Obviously, 

this relation is a partial ordering on the set of edges in path 

P. 

We say two paths Pi and P2 intersect with each other if 

Pi n P2 0. 

An edge e is called a junction edge between two intersecting 

paths Pi and P2 if 

e G P i f l P s . 

Lemma 4.1. For any acyclic digraph G = {V, E), let 5 G ̂  be 

the source node and t E ̂  be an arbitrary node such that 

max flow (t) = n. 

Then there exist n edge-disjoint paths (EDP) from s to t. 
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Proof. The proof can be found in [8]. • 

By Lemma 4.1, although we are guaranteed to find n edge-

disjoint paths from source node s to node t if max flow (t) = n, 

the choice of such n edge-disjoint paths may not be unique. In 

Fig. 4.3, the maximum flow to node t is two. There exist two 

edge-disjoint paths from s to t. One of them must be the path 

((5, x), (x, a), (a，t)). For the other path, there are two choices, 

which are 

and 

Figure 4.3: There are two choices of choosing the edge-disjoint paths. 
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If there is only one choice to choose such edge-disjoint paths， 

the graph is referred to as an unique graph [2]. Network coding 

on unique graphs has been studied in [2 . 

4.3.2 Path Rearrangement 

For any acyclic digraph G = {V, E)^ let s be the source node 

and A and B be two sets of nodes such that 

Ac B CV. 

Assume 

max flow (A) = a, 

and 

max/low (B) = jS. 

It is possible to find a EDP's from source node s to A and (3 

EDP's from s to B. Let us assume P > a. For simplicity, denote 

the a paths to A by Pf, P^,..., P^ and the /? paths to B by 

P f , P f , . . . ， W e will refer to the paths P ^ , . . .，P j as 

A-paths and P f , Pf ,…，P晋 as 压paths. 

Lemma 4.2. For any fixed i = 1，2，...，a，there exists an integer 

1 < J < /? such that 

Pt n Pf + 0. 
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In other words, each A-path must intersect with some fi-path(s). 

Proof. Assume the contrary, i.e., for some i, P产 is edge-disjoint 

with P ^ for all j 二 1，2,..., /?. Then the set of paths, 

{ i f : j 二 1 , 2 , . .•， / 3 } u { i ^ � 

accounts for /3 + 1 edge-disjoint paths from source node s to the 

set B. Hence, 

maxflow{B) 二 + 1， 

which is a contradiction. • 

An edge on P产 which is a junction edge between P/^ and P^ 

for some k will be referred to as a junction edge of P^. Likewise, 

an edge on Pf which is a junction edge between Pf and P/^ for 

some I will be referred to as a junction edge of P f . 

Suppose there are K junction edges of Pf. Let this set be 

" f (1)，"f ( 2 ) , . . . , hf{K) such that 

hf{X) ^Pf hfif,) 

if A < /i. Let 7j(-) be a function such that 

Since 

all P^'s are edge-disjoint, 7j(A：) is well-defined. 
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Definition 4.2. Consider the set of paths [ P ^ ] and { P / } as 

described above. A set of edges { q : i = 1, 2，...，a} is a set 

of critical edges of { P f ' } with respect to [ P ^ ] if the following 

conditions are satisfied: 

1. For each z, q E Pf 门 Pf for some j 二 1, 2 , . . . , /?. 

2. There exists no integer j such that Q, Ci' G Pf for i ^ . 

3. For a where 

Pf 

and 

then there exists no edge e G H P f such that Ci丨 ypB 

e ypA Ci. 

In condition 3 above, by symmetry, we can exchange the roles 

of i and i' so that there also exists no e E P-^^ H Pf such that 

a ypB e y-pA Ci,. This is illustrated in Fig. 4.4. 
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Pf Pi今 Pl今 Pf 
• • 參 • 

P j • • • 

C i ! C i ’ j 

-PjB • -pjB • 
r j i • • r j • • •̂鲁 

e 丨 e i 
f̂t • ̂ ft f̂t • ̂ ft 

I i^i 
• • — • • • 參 

» 

參 • 參 參 

(a) (b) 

Figure 4.4: In the figures, the thick edges form two ^-paths and the dotted 
edges form two B-paths. The edge e cannot exist if q and q/ are critical. 

Lemma 4.3. Consider the set of paths {P/^} and { P f } as de-

scribed above. Then there exists a set of critical edges of {P/^} 

with respect to {Pf}-

This lemma will be proved by an implicit construction of the 

set of edge { q } in Algorithm 4.1. 
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Algorithm 4.1. The following algorithm prescribes a mechanism 

to find a set of critical edges q 's for each P/^. 

f 
I 

for (i = l]i < a]i + 

r 
I 

rii := 1; 

Ci ：二 the rii-th most downstream junction edge of Pf; 

\ J 

//This is just the initialization and the ci ,s will be updated. 

while (9 a pair (q, Cj) on some path P^) 
{ 

if (cj c J 

r 
I 

Uj + +; 

Cj ：二the Uj-th most downstream junction edge of Pf; 

} else { 

rii + +/ 
a ：二 the rii-th most downstream junction edge of P^; 

\ J 

} 
I J 
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For the time being, let us assume that the algorithm always 

terminates and denote the terminal value of q by c* for 1 < i < 

a . 

Lemma 4.4. 

� � ) " f � . 
Proof. Assume the contrary, i.e., 

According to the algorithm, c ) ) � must equal hf{l) at some 

point. As another edge is subsequently assigned to ĉ .̂(i), there 

must exist a junction edge e of such that 

e ^pB " f � . 

By the definition of such a junction edge e cannot exist, 

and this leads to a contradiction. • 

Lemma 4.5. For all A： > 2, if 

、户�.(&) "f ⑷， 

then 

二 hf{l) 
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for some I < k. 

Proof. We will prove the lemma by induction on k. For k 二 2) 

i.e., if 

we will consider three cases: 

Case I: 

⑴=稱 
The proof is immediate. 

Case II: 

《 )⑴、户〜召⑴ . 

This is impossible as is proved in Lemma 4.4. 

Case in： 

� j � 尸 ⑴ ⑴ . 

From the given condition, c � � must equal hf{2) at some point 

and later be re-assigned. Nevertheless, in this case such a re-

assignment cannot happen. 

Combining three cases, the lemma is seen to be true for k = 2. 

Assume it is true for some k >2. Given that 

《 脚 1 ) ) 
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then must equal + 1) at some point and be re-

assigned later. There are two possible cases: 

Case 1: 

^Pf 彻 

for all I < /c + 1. This is obviously impossible because if so, 

� ( / c + i ) cannot be re-assigned. 

Case 2: There exists some integers " < A; + 1, such that 

Let Im be the smallest such I'. If 

then the proof is done. Otherwise, by Lemma 4.4, 

Then by induction hypothesis, 

(『物 

for some I < Im < This completes the proof of the lemma. 

• 
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Justification of Algorithm 4.1. We first need to show that the 

algorithm will terminate at some point. 

We are going to illustrate the algorithm using a table as fol-

lows. There are a rows in the table, where each row corresponds 

to a path Every time the while-loop is executed, the q，s 

are assigned with some values that forms a new column of the 

table on the right. The algorithm will end when all the entries 

on the last column are on different Pf's. 

Pf ei ei . . . 

P2 62 62 … 

P^ 62 63 … 

Py ^a ^a • • • 

To prove that the algorithm will terminate, we observe that 

every time the while-loop is executed, the edge corresponding 

to one of the A-paths is replaced by another upstream edge on 

the same path, while the edges correspond to all the other A-

paths remain unchanged. Hence, the table can only have at 

most Ei columns. 

It remains to show that the c*'s found by the algorithm have 

the properties stated in Definition 4.2. According to the algo-

rithm, the c*'s are selected from the set of all junction edges 



CHAPTER 4. RELATION BETWEEN LINEAR NETWORK CODES 43 

of the paths P产s. Therefore, each c* must be a junction edge 

between P/^ and P f for some integer j so that Condition 1 in 

Definition 4.2 is satisfied. Condition 2 is also satisfied because 

there exists at most one c* on each Pj^'s, or else the while-loop 

will continue to execute. To prove that {c*} forms a set of criti-

cal edges, it remains to show that they satisfy Condition 3，i.e., 

for any two c* and c*, where 

and 

clePfnP^?, 

there exists no edge e G fl P罕 such that 

c*/ y- pB e >- pA c*. 

This will be shown by contradiction. Assume the contrary, i.e., 

for some i • i,, where 

c^ePfnPf 

and 

there exists an edge e e P/^ D P孕 such that 

4卜尸声e ypA c*. 
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Since 

e y-pA c*, 

by Lemma 4.4, 

e^hf{k) 

for some k > 2. Then by Lemma 4.5，there exists an integer 

I < k such that 

� / W ="卯). 

This implies that c ; , � is on P,, Since 

4 e, 

cl is also on P^. This is a contradiction because when the 
2 J 

algorithm terminates, two critical edges cannot be on the same 

5-path. • 
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Algorithm 4.2. Given the EDP's P f , P ^ , . . . , P^ to A and EDP's 

p f , p f , . . .，p f to B, where A C B, the following algorithm 

constructs EDP's to A and EDP's P f , P f , 
B 

. . t o B such that the former is a subset of the latter. 
{ 

for (i = l]i < a]i +) { 

n ： = 斤 / 

； 

for (j = l'J + { 

TB .= pB. 
厂J • 上3 , 

\ J 

//This is just the initialization. 
B 

//The P^ and P�will be updated later. 

for (i = l;i < a;i -\-J 
{ 

c ：二 the critical edge of Pf^; 

P^ := the pB which contains c; 

Pf {ee e Pf : en <PB c}U{c}U{eA G if : c -<pA ca}； 

. 二 pA. 
厂）• 1 " 

\ J 

I J 
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The output of the algorithm is the set of a newly rearranged 

paths from source node s to A, { p f : i = l，2,...，a} and 

the set of (3 newly rearranged paths from source node 5 to B, 

{P^ : j = l , 2 , . . . , / 3 } . We claim that the set of rearranged 

paths from 5 to A is a subset of the set of rearranged paths from 
B 

s to B and every Pj is edge-disjoint with each other. Mathe-

matically, we can write 

{ P f : 2 = 1, 2，….,a} C { P f : J = 1, 2,….，/?}， （4.1) 

and, for any j i + j2, 

= (4.2) 
Justification. We first prove equation (4.1). According to the 

— ^ — Q 

last line of the algorithm, each P^ is assigned to be P j . There-

fore the proof is trivial. 
We now prove equation (4.2). Referring to the construction 

B 

of the P j ’s, we can see that either one of the following must be 

true: 
I. = Py for some positive integer j' < (3, 

11. pf = {cb e P/ : cb ^ c}u {c} U {CA e P,^ ： c ^ ca} 

for some positive integers < a and j' < (3 and some edge 

c e E. The edge c must be the critical edge of P / . 
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For a particular P，, we say it is of Type I if it satisfies Condition 

I. Otherwise, it is of Type II (if it satisfies Condition II). For 
B B 

any two distinct Pj^ and we consider the following three 

mutually exclusive cases: 

Case 1： Both T，�and are of Type I. 

If both of them are of type I, then there exist two positive inte-

gers j [ , j 2 < such that 

TB = P弓 

and 

TB 二 P与 
r 32 ^32 • 

Since P灵 and P晃 are edge-disjoint, P f and P ^ must be edge-

disjoint too. 

Case 2： Both P^ and are of Type II. 

If both of them are of type II，then there exists two positive 

integers i,”i'2 < a and jJ, < f3 and two edges Ci,C2 G E such 

that 

pf , 二 {eB G P | ： e e � C i } U { c i } U {ca E /^f : ci ^ e ]， 
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and 

p I = {eB e P | ： e B � C 2 } U {C2} U {eA G 增 ： C 2 � e ^ } . 

The ci and C2 are the critical edges of P^ and P ‘ respectively. 

Since P灵 and P黑 must be edge-disjoint, {e^ G P灵:cb ~< c i } 

must be edge-disjoint with { c b G P晃:e^�C2}. Also, 

C2 多 { eB G P是：CB ci}. 

Moreover, { c b G P^ : cb -< ci] must be edge-disjoint with 
J1 

[ c a G P^ : C2 ^ ca}, or otherwise, there would be an edge 

e n R^ such that 

C2 -<pA e, -<pB ci, 

无2 h 

which is a contradiction to the fact that Ci and C2 are critical. 

Since P � m u s t be edge-disjoint with P良、w e can conclude that 

{tA e ： Ci Ca} and {ca E P^ ： C2 •< e^} are edge-disjoint, 

and hence, 

c\ + C2 
and 

ci 车{cA e P^ : C2 e ^ } . 

Thus, each component of P g is edge-disjoint with all of the 
B —B • 

components of Pj^. By symmetry, each component of Pj^ is 
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B B 
edge-disjoint with all of the components of P力 too. Hence, P力 

B and Pj^ are edge-disjoint. 

Case 3： One of them is of Type I while the other is of 

Type II. 
召 B 

Without loss of generosity, suppose P ^ � i s of Type I and Pj^ is 

of Type II. Then there exists a positive integer j[ < (3 such that 
~pB 二 p弓 

力 Ji ‘ 

Besides, there exist positive integers i!] < a and j'2 < (3 such 

that 

PI = {CB e P | ： eB < C2} U {C2} U {CA e Pt : C2� 

where C2 G ^ is the critical edge of P�.Observe that {ca ^ 

P^ ： C2 ^ ca] must be edge-disjoint with Pj?, or otherwise C2 

cannot be the critical edge of P良.Obviously, Pj? and are 
B 

edge-disjoint. We can conclude that Pj^ is edge-disjoint with 

TB 

Therefore, in all three cases, any two paths in the set [ P ^ : 

j = 1 , 2 , . . . , / ? } are edge-disjoint. This proves equation (4.2) 

and hence justifies Algorithm 4.2. • 
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4.3.3 Extended Graph 

For every acyclic digraph G 二（X 五)，we extend this graph 

to form an extended graph G丨={V, E') from G through the 

following mechanism: For every channel e — {a^h) ^ E where 

a,b E V, we segment it into two sub-edges, (a, c) and (c, 6), 

and install a new node c between them. This newly constructed 

acyclic digraph is designated as the extended graph G丨 of the 

original graph G. 

For a digraph G 二 (y, E) and its extended graph G,= 

( y ' , E')^ we define two functions 

gi: E — E, 

and 

92-E-^E' 

such that for all a,b eV and c eV'\V such that (a, c), (c, b) G 

E' and (a, b) G E, 

Pi((a，b)) 二（a,c), 

and 

"2((a,6)) = (c, 6). 

An example of extended graph is shown in Figure 4.5. 
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< X > 
V \ r 
(a) Original graph G (b) Extended graph G' 

Figure 4.5: An example of extended graph. The nodes Ui,U2, u^ and U4 are 
inserted and the edges are segmented into two. 

Theorem 4.3. An cj-dimensional linear dispersion on the ex-

tended graph G' implies an cj-dimensional generic linear network 

code on the original graph G. 

Proof. Suppose we are given an acyclic digraph G = (V, E) 

and an cj-dimensional linear dispersion on its extended graph 

G' = {V',E') specified by J,, G for each e! G E'. Without 

loss of generosity, we can assume that 

f没1(e) = fff2(e) 

for all e G B. We first prove a property of such a dispersion 

on G' that will enable us to construct a generic linear network 
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code on G. Let {e^, 63,…，心} be an arbitrary set of edges in 

G' with m < CJ, such that 

e;. G Out{tj), 

and 

e'j E In{uj). 

(c.f. Fig. 4.6) 

0 0 Q Q 
I A丨 攀拳擎 八丨 眷會會 

e 1 e 2 eJ em 

6 6 o 0 
T T T T 

Figure 4.6: We are given a dispersion on G' 

Given that 

for 1 < j < m, we now prove the linear independence of , /已/?,...，f^,. 

Since 

二 � { h : d G I n _ 靖 （ . k 础 
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for 1 < j < m, there exists a vector w G Vt^ such that 

— � { 7 e ; : W } � . 

Therefore, we have 

dim {Vt^ U { L . ： k + j } ) > dim ({Je； ： k + j}) (4.3) 

Furthermore, as it is a linear dispersion, 

=dim {{Uk^jVu,)) 

=max flow {{uk ： k + j})， 

and 

dim {{Vt^ U : k ^ j})) 

二 min�(jj, maoof low[{tj]^ U {uk ： k + j})). 

We will prove that / e；.运 ( { / e j . : k • j � � . Assume the contrary 

is true, i.e., 

Then 

maxflow{{uk : /c 二 1, 2’ …，m}) 

二 cfon (�U/cKxJ) 
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=dim (({7,, : A: = 1’2,... ,m}〉） 

=maxflow{{uk : k + j}). (4.4) 

Let 

max flow [{uk : /c = 1，2，...，m}) = a 

and 

maxflow{{tj} U {uk ： k • j}) = j3. 

Hence, by (4.4), 

maxflow[{uk ： k + j}) = a. 

Obviously, we have 

{uk {tj}U{uk - k ^ j ) . 

Hence, we have 

Assume 

P > a, 

or equivalently, 

P-a>0. 
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Then by Algorithm 4.2, we can choose (3 EDP's from s to {tj}U 

{uk ' k ^ j} in which a of them terminate at {uk : k ^ j} 

and /3 — a of them terminate at tj. As a path from s to tj 

implies a path from s to Uj, there exists one path (among those 

(3 —a paths) from s to Uj which is edge-disjoint with the a edge-

disjoint paths from s to {uk : k ^ j}. Therefore, there are at 

least a + 1 edge-disjoint paths from s to {uk : A: = 1’ 2 , . . . , m} . 

It implies that 

maxflow{{uk : /c 二 1, 2 , . . . , m}) > a + 1, 

which is clearly a contradiction. Hence we conclude that 

卢二 a， 

that is, 

maxflow{{tj} U {uk ： k + j}) 

=maxflow{{uk : /c = 1, 2 , . . . , m}) 

=maxflow{{uk : k + j}) 

and hence 

=min{(jj, maxflow{{tj} U {uk ： k • j } ) ) 
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< maxflow{{tj} U {uk ： k ^ j}) 

=max flow [{uk : k • j}) 

二 dim ： k + j})), 

which is a contradiction to (4.3). Therefore, we conclude that 

/g/ 法（J[fe�•• k _ j � ) . Therefore all /^/'s are linearly indepen-

dent. 

Finally, we construct a generic linear network code on G 二 

(y, E) by letting fe 二 fe' for all e e E where e! = pi(e). Hence 

we conclude that a linear dispersion on the extended graph in-

corporates a generic linear network code on the original graph. 

• 

• End of chapter. 



Chapter 5 

Upper Bound on the Size of the 
Base Field 

Summary 

This chapter aims to describe the relation between the 

size of the base field and the four classes of linear net-

work codes as discussed in the previous chapters. Al-

though the upper bound on the size of the base field 

for a generic network code has been given in [10], we 

can obtain another upper bound through analyzing the 

relation between the four classes of linear network codes. 

57 
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5.1 Base Field Size Requirement 

5.1.1 Linear Multicast 

A linear network code construction algorithm has been given by 

6]. This algorithm constructs an a;-dimensional F-valued linear 

multicast on an acyclic network when |F| > rj, the number of 

non-source nodes t in the network with maxf low(t) > uj. It 

implies that a base field with at least 77 + 1 elements is sufficient 

for constructing a linear multicast. In other words, the upper 

bound on the minimum possible size of the base field F is 7? + 1. 

5.1.2 Linear Broadcast 

Consider a network G 二（V̂ ，and its auxiliary network G 二 

( y , E) as defined in Chapter 4. Suppose we construct a linear 

multicast on G using the algorithm devised in [6]. The upper 

bound on the minimum possible size of the base field for this 

multicast is 7/ + 1, which is the number of non-source nodes 

t E V in the network G with max flow (J) > UJ. We can easily 

check that 

々=I巧一 1-

Since we have proved that a linear multicast on G incorpo-

rates a linear broadcast on G, the base field size requirement for 
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a multicast on G is equivalent to the requirement for a broad-

cast on G. Hence we can conclude that the minimum possible 

size of the base field for constructing a linear broadcast is upper 

bounded by \V . 

5.1.3 Linear Dispersion 

Consider a network G — (V^，E) and its expanded network G = 

(y, E) as defined in Chapter 4. Suppose we construct a linear 

broadcast on G. The upper bound on the minimum possible size 

of the base field for this broadcast is |y|. We can easily check 

that 

< 2丨外 1. 

Since we have proved that a linear broadcast on G incorpo-

rates a linear dispersion on G, the base field size requirement for 

a broadcast on G is equivalent to the requirement for a disper-

sion on G. Hence we can conclude that the minimum possible 

size of the base field for constructing a linear dispersion is upper 

bounded by 2丨乂丨-！. 
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5.1.4 Generic Network Code 

Consider a network G 二 (y, E) and its extended network G' 二 

(y', E') as defined in Chapter 4. Suppose we construct a linear 

dispersion on G'. The upper bound on the minimum possible 

size of the base field for this dispersion is 2丨^一1. We can easily 

check that 

2 in -1 = 2丨乂丨+阅—1. 

Since we have proved that a linear dispersion on G' incorpo-

rates a generic network code on G，the base field size require-

ment for a dispersion on G' is equivalent to the requirement for 

a generic network code on G. Hence we can conclude that the 

minimum possible size of the base field for constructing a generic 

network code is upper bounded by 2丨”+问-1. 

The upper bounds are summarized in the following table. 

Linear Network Code Upper Bound 
Multicast r] 
Broadcast \V\ 
Dispersion 2 丨外 i 

Generic Network Code 2丨啊丑丨-1 

Table 5.1: The upper bound of linear network codes. 
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5.2 Upper Bounds Comparison for Generic 
Network Code 

As we proved in the previous section, the upper bound on the 

minimum possible size of the base field for constructing a generic 

network code is 2 丨昨间 T h i s quantity only depends on \V\ and 

E\. In other words, this bound only depends on the topology 

of the network. 

Nevertheless, another upper bound has been proposed in [10 . 

An algorithm was proposed in [10] to construct an cj-dimensional 

F-valued linear generic network code when the base field F con-
(间 +0； — 1 ) 

tains more than elements. This bound depends 
V u — 1 

on both and a;, i.e., it depends on the topology of the net-

work and the dimension of the network code. 

The upper bound imposed on the base field size depends on 

the network code construction mechanism. In order to minimize 

the required field size, we need to analyze the network topology 

and the dimension of the network code before we can decide 

which algorithm would be used to construct the network code. 

• End of chapter. 



Chapter 6 

Future Work 

Compared with multi-source network coding, single-source net-

work coding is much better understood. Much work has been 

done on single-source and linear network coding. Yet, there are 

still some future works. 

For a linear broadcast, every non-source node would be able 

to receive some dimensions of the original message. If the max-

imum flow of the node t is large enough, i.e., 

maxf low[t) > u;, 

it would receive the complete message. Otherwise, it would 

receive some linear combinations of the message. For example, 

in the classical example of network coding (Figure 6.1), all three 

nodes cc, y and w have maximum flow being 1, and therefore they 

all receive one dimension of the original message. 

If we re-design the network code such that node w can receive 

62 
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(S J 

M 
0 0 

Figure 6.1: Nodes x, y and w have maximum flow being one. 

bi and nodes ti and 力2 remain to receive both 61 and 62，then we 

can arrive at the solution as shown in Figure 6.2. 

In a linear broadcast, we in general cannot control which 

dimensions/linear combinations of the source message each node 

will be receiving. This problem is highly related to the multi-

source network coding problem. 

In Chapter 3，we have derived a necessary condition for the 

existence of linear network codes from a node-based perspective. 

If we can further derive a sufficient condition based on the same 
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bi®b2Z \b2 

( ? ) Q 

( z ) 
vV 

bi®b2 bi b2 

df Q 
Figure 6.2: Re-design of network code to let node w receive hi. 

formulation, we will have a complete node-based characteriza-

tion of linear network code and hence a linear network code can 

be described as an assignment of vector subspaces to the nodes. 

One of the possible future work on linear network coding is to 

devise an algorithm which can construct a linear network code 

by assigning vector subspaces to the nodes, instead of assigning 

vectors to the channels. One common step in many construc-

tion algorithms currently available [1][6][10] is to assign a vector 

within some vector subspace to a channel. If there exists an al-
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gorithm which can construct a linear network code by assigning 

vector subspaces to the nodes, it is expected that there would 

be a similar step in the algorithm, i.e., there would be a step 

in which a vector subspace is assigned to a node, in which the 

vector subspace must satisfy some properties. In choosing this 

vector subspaces, we may be able to deliberately select a partic-

ular vector subspace for a particular node such that a particular 

vector is inside this subspace. Hence, to certain extent, we can 

control the dimensions which the nodes receive. 

• End of chapter. 
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