
M a x i m u m K-vertex Covers for

S o m e Classes of Graphs

Leung Chi Wai

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Master of Philosophy
in

Computer Science and Engineering

f

©The Chinese University of Hong Kong
Aug 2005

The Chinese University of Hong Kong holds the copyright of this thesis. Any
person(s) intending to use a part or whole of the materials in the thesis in
a proposed publication must seek copyright release from the Dean of the
Graduate School.

\

f y m^iitn^^
_(」DlC m jij

~UNIVERSITY/MJ

. J

Abstract

In this thesis we study the following MAXIMUM /C-VERTEX
C O V E R problem from the parameterized complexity point of
view: find k vertices in a graph that cover a maximum number
of edges.

We give uniformly polynomial-time algorithms for solving
the problem on various graph classes. In particular, we devise
Oik'^n) algorithms for trees, partial 力-trees and cographs. Fur-
thermore, we introduce an extension method that enables us to
extend a maximum (k — 1)-vertex cover to a maximum /c-vert ex
cover, and use the method to obtain a uniformly polynomial-
time algorithm for planar graphs.

We also consider two related problems for some classes of
perfect graphs. Our investigation produces an 0(/cn^) algorithm
to find a maximum dominating k-set in an interval graph, and
a uniformly polynomial-time algorithm to find a maximum k-
vertex subgraph in a chordal graph.

i

ii

醒

在本論交中，我們從參數化複雜性的角度研究「最大k頂點覆
蓋」的問題：從一幅圍中找出k悃頂點去覆蓋最多的邊。

我們提出了劃一多項式時閨算法以在數個S類中解决此問題。

首先，我們爲樹形圍�©SPt-樹形圍及CO-圄設計了 0(k2n)的
算法。更進一步，我們引入了「擴展法」幫助我們把一個最大

(k-1)頂點覆蓋擴展成一個最大k頂點覆蓋，利用這個方法我們

爲平面圔找到劃一多墳式時間算法。

我們亦在完美圄上硏究兩個相關問題。我們找到0(knZ)的算法

去在一幅區m圄上拔出最大k頂點支配，及割一多項式時閨算

法以在一幅弦圍中找出最大k頂點導出圍。

Acknowledgement

With a deep sense of gratitude, I wish to express my sincere
thanks to my supervisor Prof. Cai Leizhen, for his support and
patience in last three years. He gave me generous guidance and
encouragement when I got stuck in my research. It is an invalu-
able experience to have my studies under his supervision.

I also want to thank my colleague Man Lam Ho, who gave
me a lot of help in my studies. He really helped me to adapt to
the research work in a short time.

iii

Contents

Abstract i

Acknowledgement iii

1 Introduction 1
1.1 Motivations 1
1.2 Related work 3

1.2.1 Fixed-parameter tractability 3
1.2.2 Maximum /c-vertex cover 4
1.2.3 Dominating set 4

1.3 Overview of the thesis 5
2 Preliminaries 6

2.1 Notation and definitions 6
2.1.1 Basic definitions 6
2.1.2 Partial t-trees 7
2.1.3 Cographs 9
2.1.4 Chordal graphs and interval graphs 11

2.2 Upper bound 12
2.3 Extension method 14

3 Planar Graphs 17

3.1 Trees 17
3.2 Partial 力-trees 23
3.3 Planar graphs 30

iv

CONTENTS V

4 Perfect Graphs 34
4.1 Maximum /c-vertex cover in cographs 34
4.2 Maximum dominating A:-set in interval graphs . . 39
4.3 Maximum /c-vertex subgraph in chordal graphs . . 46

4.3.1 Maximum A;-vertex subgraph in partial t-
trees 46

4.3.2 Maximum /c-vertex subgraph in chordal
graphs 47

5 Concluding Remarks 49
5.1 Summary of results 49
5.2 Open problems 50

List of Figures

2.1 A graph G of treewidth 2 and its tree decompo-
sition 8

2.2 A regular tree decomposition of the graph G in
Figure2.1 10

2.3 A cograph G and its cotree T 10
2.4 Relations among sets of vertices 13
2.5 Example of f(2)=2f(l) 14
2.6 S and S' 15
3.1 V and T t ^ in a { T i J) 19
3.2 ^ and T^^ in P{TiJ) 20
3.3 Relation between Xy and Xy. 26
3.4 An example on constructing G' 31
4.1 When v is a, 0-node, the subgraphs induced by all

its subtree are not connected 37
4.2 When f is a 1-node, vertices in different subtrees

are adjacent to each other 37
4.3 Finding a maximum 2-vertex cover of the cograph

in Figure 2.3 39
4.4 An interval graph and its corresponding interval

set 40

vi

List of Tables

2.1 Treewidth of different classes of graph 9
4.1 Ci, Li, Vi and F{vi) of the interval graph in the

Figure ？? 41
4.2 DS{i, k') of interval graph in the Figure ? ? • . . . 45

vii

Chapter 1

Introduction

1.1 Motivat ions
Let us start with the following well known graph problem.

V E R T E X COVER
INPUT : Graph G 二 E) and nonnegative integer k.
QUESTION : Does G contain a vertex cover of size
at most k, that is, a subset V' of at most k vertices
such that every edge in G is incident with at least one
vertex in V'7

The problem is one of the classical NP-complete problems [10:.
However, in spite of the intractability, it can be solved in 0{kn+
1 . 2 9 �t i m e [28], which is linear time for each fixed value of k.

Now consider the problem of setting up some convenient
stores at road intersections. Let the profit of these stores be
proportional to the total number of roads connected to the inter-
sections with convenient stores. We can model the road network
as a graph with each road intersection as a vertex and each road
as an edge. Then the problem of setting up a minimum number
of stores to gain profit from all roads corresponds to the problem
of finding a minimum size vertex cover in the graph. However,
it often happens that we have limited resource and thus can-

1

CHAPTER 1. INTRODUCTION 2

not set up enough stores to cover the whole road network. In
such a situation, we usually try to make the most profit under
the constraint on the number of stores. Therefore, we need to
solve the problem of setting up k stores to maximize our profit,
which corresponds to the MAXIMUM /C-VERTEX COVER prob-
lem - f i n d k vertices in a graph to cover a maximum number of
edges.

Clearly, MAXIMUM A:-VERTEX COVER is as hard as VERTEX
C O V E R if /C is a part of input, and can be solved in 0(n左(m+n))
time by exhaustive search. The problem has been studied in the
literature, but most of the work deals with approximation algo-
rithms. An article of Feige and Langberg (J. Alg. 41 174-211,
2001) contains a mini-survey on approximation algorithms on
the problem.

In this thesis, we take the parameterized complexity point of
view to study MAXIMUM /C-VERTEX COVER, i.e., regard the
cardinality k of the solution as a fixed parameter. We are inter-
ested in solving the problem in uniformly polynomal time, i.e.,
0{f{k)n^) time for a computable function f{k) and a constant
c independent of k. Recently, Cai (Parameterized complexity
of cardinality constrained optimization problems, manuscript
2005) has proved that the problem is fixed-parameter intractable
and is thus very unlikely to be solvable in uniformly polynomial
time. Therefore in this thesis we consider the problem for special
classes of graphs. In particular, we use the dynamic program-
ming method to devise uniformly polynomial-time algorithms
for trees, partial t-trees and cographs. Furthermore, we intro-
duce an extension method that enables us to extend a maximum
(A: — l)-vertex cover to a maximum /c-vertex cover, and use the
method to obtain a uniformly polynomial-time algorithm for
planar graphs.

CHAPTER 1. INTRODUCTION 3

Apart from MAXIMUM /C-VERTEX COVER, we also consider
two related problems for some classes of perfect graphs. Our
investigation produces uniformly polynomial-time algorithms for
finding a maximum dominating k-set in an interval graph, and
a maximum /c-vertex subgraph in a chordal graph.

1.2 Related work
1.2.1 Fixed-parameter tractability

A parameterized problem consists of a pair (/, k), where I is the
actual input and k the parameter. Downey and Fellows[23] have
introduced a theoretical framework to deal with parameterized
problems. A parameterized problem (/, k) is fixed-parameter
tractable if it admits a uniformly polynomial-time algorithm, i.e.,
an algorithm that runs in 0{f{k)\I\^) time, where | / | denotes the
size of input, for some computable function /(/c) and constant
c independent of k, and fixed-parameter intractable if it is hard
for some W[i] in the W-hierachy also introduced by Downey and
Fellows.

V E R T E X COVER is one of most studied problems in the field
of parameterized complexity. The first uniformly polynomial-
time algorithm for VERTEX COVER was proposed by Buss[22
with running time Since then many researchers
have tried to improve the complexity ([23], [24], [25], [26], [27]).
The currently fastest algorithm is due to Chen et al.[28]，which
runs in 0{kn + 1.2852” time and is practical for A: in a couple
of hundreds.

MAXIMUM /C-VERTEX COVER is an example of cardinality
constrained optimization problems that ask for solutions of fixed
cardinality to optimize solution values. Recently, Cai [44] has

CHAPTER 1. INTRODUCTION 4

initiated the study of the parameterixed complexity of cardi-
nality constrained optimization problems by considering twenty
some fundamental graph problems.

1.2.2 Maximum A:-vertex cover

Most of the existing work for MAXIMUM /C-VERTEX COVER
use semidefinite programming to approximate the solution. For
example, [30], [31] give an approximation algorithm that find
a set of k vertices covers 0.8a edges in experiment where a is
the maximum number of edges that can be covered by k vertices.

Gandhi studied a related problem called PARTIAL VERTEX
COVER, i.e., find the minimum number of vertex to cover k
edges in a graph. He gives an approximation algorithm of ap-
proximation ratio in a graph of bounded degree d.

Recently, Cai[44] has studied the parameterized complexity
of MAXIMUM /C-VERTEX COVER and shown that the problem
is W[l]-complete when restricted to regular graphs. He has also
established W[L]-completeness of some special types of M A X I -
MUM /c-VERTEX COVER for bipartite graphs (personal commu-
nication).

1.2.3 Dominating set

Finding a minimum dominating set in a general graph is NP-
complete[29]. Furthermore, it was shown by Downey and Fel-
lows that the problem is VK [2]-complete[32 .

For special graph classes, DOMINATING SET can be solved in
polynomial time. For example, this problem is polynomial time
solvable for series parallel graphs [33], outerplanar graphs[34
and interval graphs [35]. Downey and Fellows[23] showed that

CHAPTER 1. INTRODUCTION 5

the problem becomes fixed parameter tractable when restricted
to planar graphs by presenting an algorithm of O(ll^n) time,
which has been considerably improved to by Al-
ber et al. [45] using a much more sophisticated technique of tree
decomposition.

1.3 Overview of the thesis
In Chapter 2, we fix notation and definitions. Then we intro-
duce an extension method that can be used to find a maximum
/c-vertex cover efficiently for some spcial classes of graphs.

The main results of this thesis appear in Chapters 3 and 4.
In Chapter 3, we first present an O(k^n) algorithm for finding
maximum /c-vertex covers in trees and partial 亡-trees. Then we
combine the "extension method" and the result on partial t-
trees to derive a uniformly polynomial-time algorithm of finding
a maximum /c-vertex cover in a planar graph.

In Chapter 4, we consider MAXIMUM /C-VERTEX COVER and
two related problems for some subclasses of perfect graphs. First
we give an 0{k'^n) algorithm for finding a maximum A:-vertex
cover in a cograph. Then we present an Oikv?) algorithm for
finding a maximum dominating /c-set in an interval graph. We
also show how to find a maximum /c-vertex subgraph in a chordal
graph in uniformly polynomial time.

In last chapter, we give our concluding remarks and discuss
some open problems.

Chapter 2

Preliminaries

2.1 Notat ion and definitions
2.1.1 Basic definitions

In this thesis we follow standard notation and definition for
graphs in [9]. All the graphs in this thesis are simple and undi-
rected. The vertex set and the edge set of a graph are repre-
sented by V and E respectively. We will use n and m to denote
the size of V and E respectively. For an edge e = (u,v), the
edge e is covered by it (and v). For any 2 adjacent vertices
u dominates v, and vice versa.

The complement of a graph G is the graph G = such
that uv e E' iff uv ^ E. A graph H = {V, E') is a subgraph of
graph G = {V, E) ifV' CV and E' <ZE, H is an induced sub-
graph, denoted by G\y'], if iJ is a subgraph of G and it contains
all the edges uv iiu.v e V' and uv G E{G). A path is a list of
vertices such that two vertices are consecutive in list if they are
adjacent in the graph. A cycle is a path with identical ends. The
length of a cycle/path is the number of edges in it. A chord of a
cycle is an edge that is connecting two non-consecutive vertices
in the cycle.

6

CHAPTER 2. PRELIMINARIES 7

A vertex cover of a graph is a set of vertices V' V such
that for all edge uv, at least one of it, i; G A dominating set
of a graph is a set of vertices V^ C V such that for all vertices
V, V e V' or some of its neighbor is in V^. A clique of a graph
is a complete subgraph. The clique number of a graph is the
size of maximum clique in the graph. The chromatic number of
a graph G is the minimum number of color to color V(G) such
that no two adjacent vertices share the same color.

2.1.2 Partial t-trees

Tree is one of the most well-known graph classes in graph theory.
In 1983, Robertson and Seymour introduced the idea of tree-
decomposition and partial t-tree to generalize the tree classes [21 .
Many NP-Complete will become solvable in polynomial time
when restricted to partial 亡-trees of some fixed t. We will use
the theory of partial t-tree in Chapter 3, so we first give some
basic definiton and lemma about partial t-tree.
Definition 2.1.1 A complete graph of t vertices is a t-tree.
Given a t-tree of n vertices； G, we can construct a t-tree of
n+1 vertices by adding a new vertex v to G, which is made
adjacent to each vertex of some clique of size t.

Based on this definition, all the trees are 1-trees.
Definition 2.1.2 A graph G is a partial t-tree if it is a spanning
subgraph of some t-tree.
Definition 2.1.3 A tree-decomposition of a graph G 二 (V，JE)
is a pair {{X^ | ” e T 二（Vt’ 丑r)) with {Xy \ v E VT}
a family of subsets of V, one for each node of T, and T a tree
such that

CHAPTER 2. PRELIMINARIES 8

• for all edges (u, w) G E, there exists anv eVr with u e Xy
and w e Xy.

• for any v eV and a,b,c G Vr： if v e Xa and v G X � , then
V E Xt for any b on the path from a to c. (That is, all the
subsets containing v are connected)

Definition 2.1.4 The treewidth of a tree-decomposition is
max^gVr — 1.
Definition 2.1.5 [14]The treewidth of a graph G is the mini-
mum treewidth of a tree-decomposition of G.
Theorem 2.1.6 (Scheffier,[12]) G has treewidth at most t if
and only if G is a partial t-tree.
a^ b d f

— K I

© © (i
h i Tree decomposition T

Graph G
Figure 2.1: A graph G of treewidth 2 and its tree decomposition.

Determining the treewidth of a general graph G is NP-Complete.
However, for certain classes of graph, there exist polynomial
time algorithm to determine their treewidths. Part of these re-
sults are summarized in table 2.1.2[2 .
Theorem 2.1.7 (Bodlaender,[l]) For any constant t, there is a
linear time algorithm to determine if a graph G is of treewidth at
most t, and if so, finds a tree-decomposition of G with treewidth
at most t.

CHAPTER 2. PRELIMINARIES 9

Class Treewidth
Trees 1
Series-parallel graphs 2
Halin graphs 3
Outer planar graphs 2
k-outerplanar graphs < 3A; — 1
Chordal graphs Size of max. clique - 1
Split graphs Size of max. clique - 1
Bipartite graphs NP-Complete to determine
Table 2.1: Treewidth of different classes of graph.

Sometimes researchers will consider a special kind of tree-
decomposition called "regular" tree-decomposition ({Xy 卜 G Vr}, T 二
(Vt,五r)) that also fulfills the following three properties:

• T is rooted at some node r,
• for all V G Vr, =力 + 1，and
• for all { i j) e Et, - Xj\ = 1.
The extra properties of "regular" tree-decomposition can make

the description of algorithm of partial t-tree simpler. As shown
by Martin and Julian, any tree-decomposition of treewidth t, can
be transformed into a "regular" tree-decomposition in 0{nt)[l3 .

2.1.3 Cographs

We will consider finding maximum k-vertex covers in cographs
in Section 4.1. Here we first give its definition: The class of
cograph is defined recursively as follows:
i) A single vertex is a cograph.
ii) If G2 are vertex disjoint cographs, then Gi U G2 is a
cograph.

CHAPTER 2. PRELIMINARIES 10

© © ©
Figure 2.2: A regular tree decomposition of the graph G in Figure2.1.

iii) If G is a cograph, then its complement G is also a cograph.
As shown by Corneil et.al.[7], cographs are exactly the class

of graphs that contain no induced P4, and a cograph can be
represented by a tree structure, called cotree, Cotrees enable us
to use dynamic programming to solve many difficult problems on
cographs. We will also use cotrees to find a maodmum /c-vertex
cover in cographs.

G： T： V root

播#
f e Figure 2.3: A cograph G and its cotree T

A cotree T of a cograph G is a rooted tree where each leaf
represents a vertex of G and each internal node represents an

CHAPTER 2. PRELIMINARIES 11

union-complement operation on its children. Furthermore the
root of the cotree is labelled as a 1-node, and every child of a
1-node is labelled as a 0-node and vice versa. A cograph G and
its cotree T are shown in Figure 2.3.

We can use T to construct graph G bottom-up from leaves to
the root by taking union-complement operation at each internal
node.

An important property of cotree is, two vertices n, u are
adjacent in G if and only if, in the cotree T, the path from leaf
V to root and the path from leaf u to root meet at a 1-node. For
example, in Figure 2.3, vertex a and d are adjacent in G and
their paths to root in T meet at the root, a 1-node.

2.1.4 Chordal graphs and interval graphs

A chordal graph is a graph where every cycle of length greater
than 3 has a chord, i.e., an edge joining 2 nonconsecutive ver-
tices in the cycle. Gavril [8] showed that a chordal graph will
have a perfect elimination order. That is, the vertices set can
be ordered as a =[t>i，v̂ , . . . , fn] such that for each Vi, the
set Xy. = {x e < is a complete subgraph.
We will consider finding maximum /c-vertex subgraph in chordal
graphs in Section 4.3.

A graph G = (F, E) is an interval graph if every vertex can be
associated with an interval on the real line, such that two vertices
are adjacent if their associated intervals intersect. Interval graph
is a subclass of chordal graphs and we will present the algorithm
for finding a maximum dominating k-set in an interval graph in
Section 4.2.

CHAPTER 2. PRELIMINARIES 12

2.2 Upper bound
Definition 2.2.1 For a graph G, let f(k) be the maximum num-
ber of edges that can be covered by k vertices from G.
Definition 2.2.2 A maximum k-vertex cover, Sk, of a graph
G is a set of k vertices from G which covers f{k) edges.
Lemma 2.2.3 If a graph G needs at least k vertices to cover all
edges, then for all i < k, f{i - 1) + I < f{i) < 2f{i - 1).
Proof Clearly, /(z - 1) + 1 < f{i) is trivial.

To prove / (i) < 2f{i - 1), we first introduce some notation.
Given two vertex covers Si-i and Si of G. We can divide V into
four parts:

- S i - i 门 Si, this part is called B. Any edgess covered by
these vertices are covered by both Si-i and Si.

- S i - i — Si, we call this part D.
-Si — Si-i, note that the size of this part is equal to \D\ +1.

So we call this set AU v where v is an arbitrarily vertex
from this set and \A\ = \D .

- T h e vertices not in the above three parts, this part is called
R.

In Figure 2.4, we use ei to es to represent the number of edges
between the vertex sets:

CHAPTER 2. PRELIMINARIES 13

R
/ Z 一 、

(1 ^ ^) z B

D A U V

Figure 2.4: Relations among sets of vertices.

ei the number of edges between A and D
62 the number of edges in the graph induced by A U f
63 the number of edges between A and R
64 the number of edges in the graph induced by D
65 the number of edges between D and R
66 the number of edges between v and D
67 the number of edges between v and R
eg the number of edges covered by B

We now prove that f{i) < 2f{i - 1). Since B U D is a
maximum (i — l)-vertex cover, number of edges covered by
BU A is less than or equal to that oi BuD. That is,

62 + 63 + ei + eg < 64 + 65 + 66 + ei + es
62 + 63 < 64 + 65 + 66 (2.1)

Suppose that f{i) > 2f{i - 1). Then:
62 + 63 + 66 + 67 + ei + 68 > 2(64 + 65 + 66 + ei + eg)

CHAPTER 2. PRELIMINARIES 14

62 + 63 + e? > 264 + 265 + 66 + 61 + 68
62 + 63 + 67 > 264 + 265 + 66 + 61

By (2.1),
64 + + 6(3 + 67〉264 + 265 + 6 1 + 6 6

67 > 64 + 65 + ei
This implies that v covers more edges than D, and thus B Uv
covers more edges than a maximum {% — l)-vertex cover, a
contradiction.

〇^̂ ^̂ ^
Figure 2.5: Example of f(2)=2f(l)

The upper bound is tight. For example, in Figure 2.4, / (2) =
2/(1). 口

2.3 Extension method
Definition 2.3.1 A maximum k-vertex cover S is extendible
if it can be extended to a maximum (k+l)-vertex cover S，by
adding one more vertex.
Definition 2.3.2 For a subset V^ of vertices of a graph G, let
e{V') denote the number of edges covered by V'.
Lemma 2.3.3 (Extension Lemma) For every maximum k-
vertex cover S, I < k < n, if S is not extendible, then for any

CHAPTER 2. PRELIMINARIES 15

maximum (k + 1)-vertex cover S', every vertex in S' - S is
adjacent to some vertices in S — S'.
Proof Let v be an arbitrary vertex in S' — S. If v is not adjacent
to any vertex in S - then the number of edges covered by
V but not by S (ei and 62 in Figure 2.6) is more than or equal
to the number of edges covered by v but not hy S' - v (ei in
Figure 2.6). Since e(5) > e{S' -v), we have e{S yjv)> e{S').
Therefore SUv is a maximum{i + l)-vertex cover, contrary to
S being not extendible.

V-(S U S')

SnS,

w Figure 2.6: S and S' •
The Extension Lemma enables us to solve MAXIMUM k-

VERTEX COVER by continuously extending a solution of size i
to a solution of size i + 1, until the solution size becomes k. This
method may lead to a uniformly polynomial-time algorithm if
the time spent for each extension is not too much.

CHAPTER 2. PRELIMINARIES 16

Let US consider bounded degree graphs as an example. In
a graph G with bounded degree d where d is a constant, any
subset S of its vertices has at most d\S\ neighbors and there are

combinations of subset from the set of neighbors. Using
this property, we can solve MAXIMUM /C-VERTEX COVER on
bounded degree graphs as follows. First we take an arbitrary
vertex with maximum degree as a maximum 1-vertex cover.
Then for each i < k, based on Lemma 2.3.3, we can extend a
maximum i-vertex cover 5 to a maximum {i + l)-vertex cover
by either adding a vertex to S {0{n) possible ways) or replac-
ing L> C 5 by |L>| + 1 vertices in N{D) (0 (2 �p o s s i b l e ways).

In last paragraph, every extension step requires ⑷）time.
So this method can solve the MAXIMUM /C-VERTEX COVER
on bounded degree graphs in uniformly polynomial time, that
is, 0{rff{k)) for some constant c. This method can also be
applied on any graph G where for every subset S of vertices of
G, the size of N{S) is independent of n. In Chapter 3 we will
apply the extension method on planar graphs to get a uniformly
polynomial time algorithm.

Chapter 3

Planar Graphs

In this chapter, we consider MAXIMUM /C-VERTEX COVER on
planar graphs. In Section 3.1，we present an 0{k'^n) algorithm
for finding a maximum /c-vertex cover in a tree. Then we ex-
tend the algorithm to solve MAXIMUM /C-VERTEX COVER on
partial 亡-trees in Section 3.2. In Section 3.3, we use the algo-
rithm on partial 亡-trees and the Extension Lemma in Section
2.3 to develop a uniformly polynomial-time algorithm to find a
maximum /c-vertex cover in a planar graph.

3.1 Trees
For trees, one can easily solve the classical VERTEX COVER
problem in linear time. However, it seems much more difficult to
obtain an efficient algorithm for MAXIMUM A;-VERTEX COVER.
In this section, we give an 0{k'^n) dynamic programming algo-
rithm for finding a maximum /c-vertex cover in a tree T.

When n = k,\t is trivial that the vertices of the entire tree
forms a maximum /c-vertex cover, so we assume n > A; in this
section. First, we arbitrarily choose a vertex r as the root of T
and arbitrarily order the children of each internal vertex of T.
Henceforth we regard T as an ordered rooted tree.

17

CHAPTER 4. PERFECT GRAPHS 18

Definition 3.1.1 For each vertex v ofT, c{v) denotes the num-
ber of children of v, and vi, I < i < c{v), denotes the i-th child
ofv.

Note that c(v) = deg{;i/) for v = r and c{v) = deg{；v) — 1 for
V ^ r .

Definition 3.1.2 For each vertex v, Ty denotes the subtree rooted
atv, andTJj, 0 < i < c{v), denotes the rooted tree T^；—|Jj=i+i
i.e., rooted tree obtained from Ty by deleting subtrees T”T”沿，

Note that T^ is the tree containing the single vertex v, and
Ty = T^…).For each rooted tree T^, 0 < i < c(v), we define two
parameters a{Tl , j) and for 0 < j < A; that will be used
in our dynamic programming algorithm.
Definition 3.1.3 For each 0 < i < c(v) and 0 < j < k,

a{Tl^j) equals the maximum number of edges in T that can
be covered by j vertices from T^ that include vertex v, i.e., vertex
V and j — I vertices from T^ — v. For convenience, we define
a{TiJ) to be -oo if j > \Ti .

equals the maximum number of edges in T that can
be covered by j vertices from T^ that exclude v, i.e., j vertices
from Tl — V. For convenience, we define j) to be —oo if
j > \Ti\ - 1.

Clearly, the maximum number of edges in T that can be cov-
ered by k vertices is equal to max(a(Tr, k)). In order to
compute a{Tr, k) and P{Tr, k), we establish recurrence relations
for a{Ti, j) and PiT^J) in the following lemma. Note again that
Ty = T少)and T^ is the tree containing the single vertex v.

CHAPTER 4. PERFECT GRAPHS 19

Lemma 3.1.4 For every 0 < i < c{v), 0 < j < k, we have
a(TtO) = 0

1) = deg{v),and
, - o o i f j > \Ti\

� mdix[a{Ty.J - I) - — /)]} otherwise
(Note that the recurrence relation implies that

= deg{v)+max[a{T,^J - 1) - 1 抓” j — 1)].)

• V

Figure 3.1: v and T^-^ in a(7；、j)

For every 0 < i < c⑷，0 < j < /c, we have
(巧,0) = 0

‘ - o o i f j > \ T i \ - l

� max[a{Ty.J - — /)]} otherwise
(Note that the recurrence relation implies that

CHAPTER 4. PERFECT GRAPHS 20

‘̂«=:>CL!!"
“ V
T ^ v

Figure 3.2: v and T广i in P{TiJ)
Proof We first prove the recurrence for j) . It is clear by
definition that 0) = 0, a{Tl 1) = deglv), and for j > |1；$|，

= - o o .
It remains to consider j < Note that T^ can be parti-

tioned into two vertex disjoint trees and Ty.. Let V' be a
set of j vertices in T^ with v eV that covers edges in
T. Then V' contains I vertices in for some I < I < j and
j — I vertices in T̂；.. These I vertices cover I) edges of T.
The remaining j — I vertices in Ty. cover — I) edges of T
if vertex Vi G V'^ and — I) edges of T if vertex vi ^ V'.
Since in the former case, edge vvi is covered by v as well, these
j — I vertices cover max(a(T^., j - /) - 1, P{Ty.J — I)) edges not
covered by the I vertices in T广.Therefore V' covers

a{Tt\I) + niax(a(7;,,j — 0 — 1 ， - I))
edges, and hence equals the maximum of the above value
among all possible values of I.

The proof for P{TiJ) is very similar to that of and
we will omit it. •

CHAPTER 4. PERFECT GRAPHS 21

The recurrences in Lemma 3.1.4 lay the foundation of our
dynamic programming algorithm. To compute a{Tr^ k) and
P{Tr, A:), we associate with each vertex v two arrays ay[0..c{v),0..k
and 0..A:] such that a^[i,j] = and by[ij =

To compute these 2n arrays, we process vertices according to
their depth in Tr starting with the deepest leaves. In computing
ay[0..c(t'), 0../c], similarly for by[0..c{v), 0..A:], we fill the array row
by row.

For a tree with n vertices, 泥 � + 1) = 0{n). There-
fore the total number of entries in arrays a秦.c�，0.丄]and
�[0..C�，0../c] is 0{kn). Since it takes 0{k) time to compute
each entry of these arrays, the total time for our dynamic pro-
gramming algorithm is 0{k'^n),

To find a maximum vertex cover in we need to store
some extra information in the dynamic programming algorithm.
For each vertex v, we use four arrays l^l0..c(v), 0../c], l^[0..c(v), 0../c],
A"[0..c(t'), 0..A:], A^[0..c(f), O-./c] to store the extra information.
As discussed in the proof of Lemma 3.1.4, a maximum j-vertex
cover V^ of T^ consists of I vertices from and j — I vertices
from T^.. If V' contains vertex v, then such a value I can be
obtained in the process of computing j] and we store it in

Otherwise, I can be obtained in the process of comput-
ing by[i^j] and we store it in .

Furthermore, to obtain the required j — I vertices from Ty.,
we need to know whether V' contains vertex Vi or not. There-
fore, in computing j], we put a symbol a or in Xy[i,j_
depending on whether Vi G i.e., whether a{Ty.J — 1) — 1 >

— I). Similarly, in computing by[z, j], we put a symbol

CHAPTER 4. PERFECT GRAPHS 22

a or in j] depending on whether Vi G i.e., whether

Therefore for each ay[i^j] • —oo, we maintain values
and j], and for each b y + —oo, we maintain values

j] and j]. It is easy to see that it takes 0(1) extra work
to compute these four values for each valid a^[i^j] and by .
We now use these four values to construct a maximum k-vertex
in T as follows. Let a), > J, be a maximum j-cover
in Ti that includes vertex v, and j，/3)，> j + 1, be a
maximum j-cover in T^ that excludes vertex v. Then we have
the following recurrences for a) and (3):

CC7；•’ l，a) = W，

and

It is important to note that whenever > j , ly[i,3] is de-
fined and thus both Z?[i，j]，a) and C(T叫 j],
are defined. Furthermore, whenever > j+1 , is defined
and thus both and —奶 i, j], A 作,j])
are defined.

Since =n and n > /c+l, either k, a) or Ci^jf'�, k, (3)
is a maximum /c-vertex cover V* of T” we can use the above re-
currences to compute these two /[；-vertex covers and take the
larger one as V*. Because and TY. are vertex disjoint, it is
easy to see that the total time for recursive calls in constructing
y* is 0 (n) . Therefore the total time to construct y* is 0{k'^n).
Theorem 3.1.5 A maximum k-vertex cover of a tree T of n
vertices can be found in 0{k'^n) time.

CHAPTER 4. PERFECT GRAPHS 23

3.2 Partial t-trees
In this section, we extend the idea in the last section to de-
rive a uniformly polynomial time algorithm to solve MAXIMUM
/c-VERTEX C O V E R on partial t-tiees in 0{k'^n) time. The al-
gorithm will be used as a subroutine to solve MAXIMUM k-
V E R T E X C O V E R for planar graphs in the next section.

Our algorithm will use a "regular" tree-decomposition of a
partial 力-tree G = (V, E). Recall that a "regular" tree-decomposition
is a tree-decomposition G VT},T = (VT.ET)) that has
the following three properties:

• T is rooted at some vertex r,
• for all V e Vr, \Xv\ = t + 1，and
• for all (i j) e Et, - Xj\ = 1.

For the detail please refer to Section 2.1.

Similar to the dynamic programming algorithm for trees in
the previous section, we arbitrarily order the children of each
internal node of T. And we regard T as an ordered tree rooted
at vertex r.

To avoid confusion, we refer to vertices in T as nodes. Before
describing the algorithm, we first give some definitions, some of
them are similar to that in the previous section:

• For each node v of T, c{v) is the number of children of v in
T. Note that c{y) equals to deg{v)-l, if v is not the root of
T and deg{v) if v is the root of T.

• For a node v, Vi represents the z-th child of v.

CHAPTER 4. PERFECT GRAPHS 24

• Ty denotes the subtree rooted at node v. T^ fi < i < c(v),
denotes the rooted tree Ty — U 卖 i . e . , rooted tree
obtained from Ty by deleting subtrees T叫 , T y . ^ ^，…，
Ty咖Note that T^ = v.

• For any subtree T' of T, X{T') denotes the set of vertices
{u G G T').

• For 0 < 2 < c{v), 0 < j < A: and Z C X,, a{Tl j, Z)
equals the maximum number of edges that can be covered
by a set S of j vertices from X{Ti) with S Xy = Z.

Note that for some combinations of T ^ j , Z, it is impossible
to have a set S of j vertices from X(Tj;) with S'plX^ — Z. We
define j , Z) as —oo for such case so that it will be ignored
in the computation. And based on the definition, the maximum
number of edges can be covered by k vertices in G is equal to
the largest a(T^，k, Z) among all subsets Z of X^.
Lemma 3.2.1 For 0 < i < c{v), 0 < j < k , a (T l j , Z)
satisfies the following recursive formulas.
For all node v (leave node and internal node):

I —OO otherwise

For each internal node v and 1 < i < c(v) where Xy — u = Xy. — w for some vertices u, w:
‘ i f 1^1 < 3

max[a(Ty.,j - x \Z - u\, Z — u),
a(7tj，Z) = a{Ty,J-x + \Z-ulZ-u + w;)]}-

e(Z - u)
—oo otherwise

CHAPTER 4. PERFECT GRAPHS 25

Proof Z) means choosing j vertices only from node
Xy, under the restriction of Z. If j is not equal to \Z\, we can't
choose such a set of j vertices. So we have

(”,",) i e(Z) otherwise
Now we consider \Z\ < j. We first show that

majc[a{Ty,J - x+\Z-ulZ -u), (H)
-ulZ-u + w)]}- •

e{Z - u)
Consider a set V' of j vertices from X{Tl) which covers Z)
edges and V'^X^ = Z. We claim that V'^X^. = {Z - u) or
{Z — u w) depending on whether w G

As we are given V' {^Xy = Z and = Xy — u+w^ (Z —it) C
y' n (if W ^V) ox [Z -u + w) C w e V).

Assume there is a vertex y, such that y G V' p| Xy. and y •
{Z — u){ox {Z — u + w)). Because u ^ Xy., y u. Then we know
that y ^ Xy^ y E Xa for some node a in 一i — v. Consider the
path { a , … , V , Vi] in T, ^ G Xy^ and y • Xy. This violates
the definition of tree decomposition that the subsets containing
y have their nodes connected in T. So V' H Xy. — {Z — u) if
w i VCiXy^ = {Z-u + w) ifw eV.

Since V' C T工 V' contains x vertices in T广 for some 0 <
X < J, and thus V' contains j — x \Z — u\ vertices in Ty.. The
relation is shown in Figure 3.3. The number of edges covered by
these j — X \Z — u\ vertices in Ty. will be less than or equal to
max[a(T；” j — Z — w), 0；(7；‘，j — — ti|，Z-u+w)],
so we get the above inequality.

CHAPTER 4. PERFECT GRAPHS 26

r-""-
I . I , ' : / " ^ 、
I y I / Vertices \
I ^ /• • ' ' i shared by Xy

I o ……6 I 6:::T
• I w � / \7 t I ‘ Xvand Xy, /
I L : 上 ： v i 「 •

i X vertices chosen in X(Ti) i “

y vertices chosen in X(Ti)
Figure 3.3: Relation between X^ and Xy.

We now show that
maxla{TviJ - X\Z -u^Z -u), (3.2)

- X \Z - ul Z - u w)]}-
e{Z - u)

Consider a set V' of j — x + \Z — u\ vertices from
which covers max[a(Ti；.,j — x + | Z _ i i | , Z _ i i)， — x +
Z-u\,Z-u-^w)] edges and V' f] X^. = {Z-u) or {Z-u-]-w),

depending on which choice covers more edges.
We claim that V' {^Xy = {Z - u). Assume there is a vertex

y such that y G V^ f]Xy and y • {Z — u). Because w 朱 Xy,
y ^ w. Then we know that y e Xa for some node a in the
subtree Ty.. Consider the path ...，a} in T, y 6 Xy, Xa
and y • X”�This violates the definition of tree decomposition
that the subsets containing y have their nodes connected in T.

CHAPTER 4. PERFECT GRAPHS 27

So V ' f] X y = {Z-u).

By combining V' and a set of x vertices V" from T^"^ where
V" {^Xy = Z, we get a set of j vertices in By definition,
the edges covered by these j vertices will be less than or equal
to Z). So we get the above inequality.

By combining inequalities 3.1 and 3.2, we know that,
a i J t j , Z)= m^x{a{Tt\x,Z)

0<x<j mdix[a{Ty.^ j — rc + — Z _ u),
o:(Ty.,j — X -h IZ — ul, Z — u + 'w^)]]-—

e(Z-u)
•

The recurrence in Lemma 3.2.1 is the main part of our dy-
namic programming algorithm. To compute a(T, k, Z), we asso-
ciate each node v with an array 0..A:, S] where S C Xy
such that ay Z] = Z).

To compute the array for each node, we process nodes ac-
cording to their depth in T starting with the deepest leaves.
For each Z C X”, we fill the array â ;[0..c(̂ ;)，0../c, Z] row by row.

For a regular tree decomposition T of a graph of n ver-
tices, ^ c{v) = 0(n). For each node Xy, there are 2力十丄 pos-

veT
sible subsets of it. So the total number of entries in array
ay[0..c{v),0..k,S] for all S C Xy is 0(A;n2力+”. Each entry re-
quires 0{k) time to compute, so the total running time of the
dynamic programming algorithm is

CHAPTER 4. PERFECT GRAPHS 28

To find a maximum /c-vertex cover in G, we need to store
extra information in the dynamic programming algorithm. For
each node Xy, we use two arrays 0..A:, Z] and A抓.c�，0../c, Z
for each Z Xy to store the extra information. As discussed in
the proof of Lemma 3.2.1, for a set of j vertices V' C T^ which
covers a J T ^ j , Z) edges and V^ p| Xy = Z, V' will contain x
vertices in Ẑ一i and j — x \Z — u\ vertices in Ty.. The value
of X can be found during the computation of j, Z) and we
store it in Z .

Furthermore, to know the j — x+\Z — u\ vertices in we
need to know whether the V' contain vertex w, the only vertex
in Xy. — Xy. In computing Z), we put the vertex w or 0
in Xvl'^jj, depending on whether V' contains w.

Therefore, for each a^lij^ Z] + —oo, we maintain the values
Z] and A”[i，j，Z]. It is obvious that the computations of
Z] and A ” [� j , Z] take 0(1) extra work. Let Z),

with Z) + —oo, be a set of j vertices from X(T^), such
that it covers Z) edges in G and Z) fl X̂； 二 Z.
Then we have the following recurrence:

'Z i f i = 0
Z) = i C{Ti-\x,[iJ, ZIZ)U otherwise

� — Zj + lZ-ul,ZU Z])
(In the recurrence, u represents the only vertex in Xy — Xy..)

According to Lemma 3.2.1，when a办 j, Z) — —oo for z > 0,
then there exists two values Z) + —oo and a{Ty.,j —
rr + — ^ x|，— o o for some 0 < x < j and Z' C X^.. So
when Z) + - o o , CiT^j, Z) is defined and so as the two
subsets constructing it.

CHAPTER 4. PERFECT GRAPHS 29

For all Z C X” the set C(^T” k, Z) that covers the maximum
number of edges will be the maximum /c-vertex cover V* of G.
We can use the above recurrence to compute all 2叫 /c-covers
and take the largest as V*.

In the above recurrence, the two subsets from T广 and Ty.
may not be disjoint. As the size of these two subsets are at most
k, we can construct j，Z) in 0{k) time. And there are up
to 0{kn) recursive calls of the above recurrence. Therefore the
total time to find F* is time.
Theorem 3.2.2 A maximum k-vertex cover on a partial t-tree
can be found in time.

CHAPTER 4. PERFECT GRAPHS 30

3.3 Planar graphs
In this section, we present the main result of this chapter — a
uniformly polynomial-time algorithm for finding a maximum k-
vertex cover in a planar graph. The main idea of our algorithm
is to use the Extension Lemma in Chapter 2 to reduce the prob-
lem on a planar graph to that on a partial i-tree, and then use
the algorithm in the previous section to solve the problem.

To find a maximum /c-vertex cover in a planar graph, we start
with a maximum 1-vertex cover by taking an arbitrary vertex
of maximum degree. Then for each 1 < z < A; — 1, we use the
Extension Lemma to update a maximum z-vertex cover 5 to a
maximum (2+1)-vertex cover S' by either adding a vertex to S
or replacing a subset D C 5 by a set D' of \D\ + 1 vertices from
N{D) - S.

If S is extendible to a maximum [i + l)-vertex cover S'” 二
S U {吐 then f is a vertex of maximum degree in G — which
can be found in linear time. Otherwise, for every D C we
find a replacement D丨 of D in N{D) — S and hence a candidate
{i + l)-vertex cover S'd = S - D . Amongst all (z +1)-vertex
covers in {5^, D C 5}, we take the one that covers the
maximum number of edges as the maximum {i +1)-vertex cover
S'.

To find the set D' for a given D, we construct a graph G'
from G[N{D) - 5], the subgraph of G induced by N{D) - S,
by the following operations. For every edge (u^v) in G with
u e N{D) - S, V • N{D) U (5 - D), we add a new vertex w肌
and connect it with vertex u in G[N{D) - S]. See Figure 3.4 for
an example.

CHAPTER 4. PERFECT GRAPHS 31

S N(D)-S
/ �

• - . / \

.... / 、、 —

i (、 、 ^ ^ ^ L ® 4 ® i

Figure 3.4: An example on constructing G'

A maximum i-vertex cover of G' is called internal if it con-
sists of vertices in N{D) — S only. Note that for any set V' of
vertices in G' with Wuv G V'^ the number of edges covered by
V' will not be decreased if we replace w— by u. Therefore G'
always has an internal maximum (|D| + 1)-vertex cover.
Lemma 3.3.1 For any DCS, every internal maximum {\D\ +
I)-vertex cover C of G' is a required set D丨 for D.
Proof Assume the lemma is wrong, that is, there is a set of
{\D\ + 1) vertices in N{D) — S, say V', covers more edges than
C m G — [S — D). Note that the construction of G' guarantees
that any subset of N{D) — S covers the same number of edges
in both G—{S — D) and G'. So V' covers more edges than C in
G'. This contradicts to that C is a maximum {\D\ + 1)-vertex
cover of •

CHAPTER 4. PERFECT GRAPHS 32

By Lemma 3.3.1, we can find the required set D' by finding
an internal maximum {\D\ + 1)-vertex cover in G'. The main
steps of our algorithm are summarized in the following pseudo
code.
Algorithm Maximum /c-Vertex Cover in planar graphs
1. S = {v} where v is an arbitrary vertex of maximum degree.
2. FOR i = 2 TO A: DO
3. S' = S Uv where f is a vertex of maximum degree m G — S
4. FOR i ^ C ^ D O
5. IF - 5 1 > p l + 1 THEN ；
6. Construct the graph G' from D |
7. D' = arbitrary internal maximum (|i:)|+l)-vertex cover of G' |
8. IF e{S-D + D') > e{S') THEN j
9. S' = S-D + D' I
10. 5 = 5' 5 I'J-
11. output S ；:: i

We claim that the above algorithm runs in uniformly poly- ^
nomial time. The key to this claim is that the graph G' has >
bounded tree width and thus we can use the algorithm for par- J
tial i-trees in the precious section to find D'. First we note that %
G[N[D]], which is related to G' as we will see shortly, is a planar ；
graph with domination number < \D\, since D forms a domi- I
nating set. It follows from the following lemma that G[N[D]
has treewidth at most
Lemma 3.3.2 (Alber et.al. [3]) A planar graph with domina-
tion number d has treewidth at most 6\/M\/d and such a tree
decomposition can be found in 0{\fdn) time.

For graph we recall that it is constructed from G[N{D)—
S] by attaching degree-one vertices. It is easy to see, by the
definition of partial t-trees, that the treewidth of G' is the same
as G[N{D) - S\. Since G[N[D) - S\ is an induced subgraph

CHAPTER 4. PERFECT GRAPHS 33

of G[N[D]], it also has treewidth at most There-
fore G丨 has treewidth at most and thus is a partial
(6 \ / 3 4 v ^) - t r e e . By Theorem 3.2.2, a maximum {\D\ + 1)-
vertex cover in G' can be found in time.
Theorem 3.3.3 Algorithm Maximum k-Vertex Cover in
planar graphs can solve MAXIMUM /C-VERTEX COVER on
planar graphs in time.
Proof In the algorithm, line 5-9 will be executed for 0{k2^)
times. By Lemma 3.3.2, line 6 can be done in 0{Vkn) time.
Line 7 requires

operations. So the total running
time for finding a maximum k-vertex cover on a planar graph is

Chapter 4

Perfect Graphs

A graph G is called a perfect graph if for every induced sub-
graph H of G, its clique number equals chromatic number. The
notion of perfect graph was introduced by Berge in early 1960s,
and since then, many classes of graph are shown to be perfect.
In this chapter, we study MAXIMUM /C-VERTEX COVER and
some related problems for various subclasses of perfect graphs.
In Section 4.1，we will show how to solve MAXIMUM /C-VERTEX
C O V E R in a cograph in 0(k'^n) time. In Section 4.2, we give
an 0�hn?) algorithm to find a maximum dominating A:-set in an
interval graph, and, in Section 4.3, we present a uniformly poly-
nomial time algorithm to find a maximum /c-vertex subgraph in
a chordal graph.

4.1 Maximum /c-vertex cover in cographs
In this section, we give an 0{k'^n) algorithm to find a maxi-
mum /c-vertex cover in a cograph. For the definition of cographs
please refer to Section 2.1.3.

To derive a dynamic programming algorithm for finding a
maximum /c-vertex cover in a cograph G, we first give some
definitions. We assume that G has at least k + l vertices, and

34

CHAPTER 4. PERFECT GRAPHS 35

its cotree T is a rooted ordered tree.
Definition 4.1.1 Let v be a node of a cotree T. We use c{v)
represent the number of children of v, and Vi {I < i < c{v)) to
represent the i-th child of v.
Definition 4.1.2 For each node v of a cotree T，% denotes the
subtree rooted at v, and Tj; ,0 <i< c{v), denotes the rooted tree
Ty — Uj=i+i ^vj, i.e., rooted tree obtained from T” by deleting
subtrees Ty…，T”计]，...，'^Vc(v) •

Note that is the tree containing the single node v, and
rp _ rpC{v)
丄 U — V •
Definition 4.1.3 Let G(Ty) represent the graph induced by the
vertices of G corresponding to leaves ofTy. We use \G{Ty)\ to
denote the number of vertices in G{Ty), i.e., the number of leaves
ofT,.
Definition 4.1.4 For each node v of a cotree T, f{Tl,j) equals
the maximum number of edges in G that can be covered by j
vertices corresponding to leaves ofTl. If j > number of leaves
in Ti, f{TiJ) is defined as - o o to represent it is impossible.

By definition, the maximum number of edges can be covered
by k vertices in a cograph is equal to / (T” k).

CHAPTER 4. PERFECT GRAPHS 36

Lemma 4.1.5 For every 0 <i < c{v), 0 < j < k, sat-
isfies the following recursive formula.
If T^ is a leaf node, 1) 二 degree of the corresponding ver-
tex.
Forj = 0, f { T l j) = 0
For i> 0 andj > \G{Ti)\, f { T l j) 二 - oo .
For the other cases,

‘ m a x [/ (T r \ j - 0 + f{Tvo 01 if ” is 0-node
f{T\j) = 0 処

“ max[/(rr\i - 0 + 0 - Kj - 0] if ^ is 1-node
V 0<l<j

Proof The first 2 lines of the lemma are self-explaning.
When i > 0 and j > \G{Tj;)\, it is impossible to choose such

amount of vertices from G(T^), so we define /(T^, j) as - o o to
ignore such case.

For the remaining cases, when is a 0-node, consider u, a
leaf node of T .̂ and w, a leaf node of where i — The cor-
responding vertices of u and w are not adjacent in G, because
the path from u to r meets the path from it; to r at a 0-node,
V. So, for a set V' of j leave vertices of T^ which covers
edges in G, if I vertices is from Ty., these I vertices cover /(T^., I)
edges in G.

For ̂； is a 1-node, consider u, a leaf node of Ty. and w, a leaf
node of Ty., where i + z'.The corresponding vertices of u and
w are adjacent in G, because the path from u to r meets the
path from IL* to r at a 1-node, v. So, when we combine I leave
vertices from Ty. with j - I leave vertices of l{j — I) edges
are covered by both sets. So in the formula we minus the term

CHAPTER 4. PERFECT GRAPHS 37

l{j — I) to cancel the double counting.

. . • I vertices W W W W … w
G(TI) G(TVM) G(TVi) G(TVI+I) G(T 中)）

j-l vertices from TI covers
f (Tj-i J-l) edges

Figure 4.1: When ̂； is a 0-node, the subgraphs induced by all its subtree are
not connected.

• • • I vertices • • •

G(Tvi) G(TVi.i) G(To(v))

j-l vertices from Ty covers
f(Tj" \ j - l) edges

Figure 4.2: When v is a 1-node, vertices in different subtrees are adjacent to
each other.

•
To compute /(T^, j) , we associate each node with an array

ay[0..c{v), O-./c] such that ay[ij] = To compute the ar-
ray for each node, we process nodes according to their depth in
T starting with deepest leaves. For each node, we fill the array
ay [i,j] row by row.

As every internal node of a cotree has at least 2 children
node, ^ ^ c{v) = 0{n). So for the whole cotree, there are totally

VGT

CHAPTER 4. PERFECT GRAPHS 38

0{kn) entries in array ay[ij] to be filled. Each entry requires
0{k) time to compute, so the total time of the dynamic pro-
gramming algorithm is 0(/c^n).

To find a maximum /c-vertex cover in G, we need to store
extra information in the dynamic programming algorithm. For
each node v, we use an array ly[0..c(v),0..k] to store the extra
information. As discussed in the proof of Lemma 4.1.5, a set of
j vertices V' in G{Ty) that has the nodes from T^ will contain
I nodes from Ty. for some I. The value of I can be found in
computation of f{T^J) and we store it in Q i J .

Let C{TiJ) with f{TiJ) — - o o "be a set of j vertices repre-
sented by leave nodes of T^ such that it covers /{T^J) edges in
G{Ty). Then we have the following recurrence:

‘vertex represented by v if t; is a leave node and j = l
C{Ti,j) = I (j) if is a leave node and j = 0

[C(Ti-\j - Ivihj]) U C{Ty,,k[iJ]) otherwise

According to Lemma 4.1.5，when /(T^, j) — —oo with v is
an internal node, then there exists f { T i - \ j - I) ^ —oo and
/(T；，)，I) + - o o for some 0 < / < So when /(T；、j) + -oo ,
C { T i J) is defined and so as the 2 subsets constructing it.

In the above recurrence, there are up to 0{kn) recursive calls
of the recurrence, and each call requires 0(1) operation. So the
above recurrence can form in 0(kn). As we need
0{k'^n) to build the /̂ [z, j] table, the total running time to find
a maximum /c-vertex cover in a corgaph is 0{k'^n).
Theorem 4.1.6 A maximum k-vertex cover in a cograph can
be found in 0(/c^n) time.

CHAPTER 4. PERFECT GRAPHS 39

i i faU)
0 0-2 0

T: 1 0 0
1 1 4

root̂ ,̂ ^ 1 2 7

_ j _ i _ t n L h W ^ 1 t
0 0-2 0 2 2 7

1 1 1 / \ i j f(lLj)
1 2 1 / \ 0 0-2 0
2 0 0 / \ 1 0 0
2 1 1 f ^ 1 1 0
2 2 W 2 0 ^

i i fdlJl / \ / \ 2 2 0

1 0 ? y \ / \
i M Q c d e f \ \ ； / \

a b

Maximum 2-vertex cover = {b，c}

Figure 4.3: Finding a maximum 2-vertex cover of the cograph in Figure 2.3

4.2 Maximum dominating fc-set in interval graphs
In this section, we present an 0(n^/c + n , algorithm to find
a maximum dominating k-set in an interval graph, where n切,
current w ^ 2.376, is the running time of multiplying two nxn
matrices.

A graph G 二 (V, E) is an interval graph if every vertex can
be associated with an interval on the real line, such that two
vertices are adjacent if their associated intervals intersect. A set

CHAPTER 4. PERFECT GRAPHS 40

S of k vertices is a maximum dominating k-set in a graph G if
N[S]\ is maximum among all the set of k vertices.

0 ^ 3 4 ^ 9 IjO C 15 16 d 17 18 ^ 23 24 ^ 26 28 9 30
^ h 13 ‘ 20 22 i 29 3 e

2 k 11 12 P 14 21 I 25 27 ^ 31

Figure 4.4: An interval graph and its corresponding interval set.

Interval graphs are a subclass of chordal graphs. Using a
result of Gavril[15], one can find all maximal cliques of an inter-
val graph in linear time. Gilmore and Hoffman [4] proved that
the maximal cliques of an interval graph can be linearly ordered
such that for each vertex v, the maximal cliques containing v
occur successively. Such an ordering of maximal cliques can be
found in linear time [5 .
Definition 4.2.1 We call the linearly ordered cliques as Ci, C2,…Cp
where p is the number of maximal cliques in G.
Definition 4.2.2 For each Q, we define Li as follow. Lp =
Cp, Li = Ci - uPj=i+iCj for i < p. That is, if v e Li, Q
contains the last appearance of v in the ordered cliques. Note
that LiU L2U ...U Lp = V.
Definition 4.2.3 The index F{v) ofv is the smallest number
i such that v e Ci. Let Vi be a vertex in Li with the smallest
index.

CHAPTER 4. PERFECT GRAPHS 41

i Cj ^ Vj F{vi)
1 {k, n, a } {a} a 1
2 {k, n, b, h} {n, h} n 1
3 {k, 0’ b } {b} b 2
4 {k, 0’ c } {k} k 1
5 {i, o, c, p} {c, p} c 4
6 {i, 0’ d } {d} d 6
7 {i, 0，e } {i, o} o 3
8 {j, 1, e } {e} e 7
9 {j’l，f} {1, f} 1 8
10 {j, m，g } {j, m, g} I j I 8

Table 4.1: Q , Li, Vi and F{vi) of the interval graph in the Figure 4.4

Lemma 4.2.4 A maximum dominating k-set of G can be ob-
tained from k vertices in {t^i, . •., Wp}.
Proof For a vertex u in Li, it appears in CF{U)CF{U)+I . . . Q -
Since Vi appears in CF{vi)CF{vi)+i …Ci where F{vi) < F{u), so
N[u\ C 口

Before deriving the algorithm to find a maximum dominating
A:-set, we first introduce a labelling scheme that will help us to
derive the algorithm. Ramalingam and Rangan [6] showed that
for an interval graph G = its vertices can be labelled
from 1 to n, represented by label{v), such that for i < j < k,
if {i, k) e E, then (j, k) e E. They also gave an algorithm for
finding such labelling. We slightly modify their algorithm so
that Vi will get the smallest label in U. This property will be
used in the next part to derive the final algorithm.
Algorithm Labelling
1. Z = n
2. FOR i = p downto 1 DO
3. FOR each vertex v in Li DO

CHAPTER 4. PERFECT GRAPHS 42

4. label v as I
5. / =
6. V = Vi (the vertex with smallest F{v) in Li).
7. 二 the vertex with smallest label in Li.
8. IF V ^ u , THEN swap their label.
Lemma 4.2.5 The labelling produced by algorithm Labelling
will maintain the following 2 properties:

• For i < j < k, if (z, k) G E, then {j, k) G E.
• Vi will get the smallest label among all vertices in Li

Proof To prove the first property, we will use first{v){last{v))
to represent the minimum (maximum) index i such that v e Q.
In the algorithm, vertices in L^+i will be labelled before that of
Li. So for i < j < k, last{i) < last{j) < last{k). If {i,k) G E,
i, k will both exist in some clique Cx where x < last{i), and so
first{k) < last{i). Prom this inequality, we see that first{k) <
last{i) < last{j) < last{k), that means j,k will both exist in a
certain maximal clique. So we know (j, k) G E.

The second property is obviously maintained by lines 6-8 of
the algorithm. •

Definition 4.2.6 Let DS{i, k') be the maximum number of ver-
tices dominated by Vi and k'-l vertices from {i>i+i，i>i+2,. •.,
where vi has the smallest F{v) among the k' vertices.

Note that for certain z, A/, there may be less than k'-l vertices
in {夠+1，^»i+2，...,�} with F{v) > F{vi), in such case we define
DS{i,k') = -oo .
Lemma 4.2.7 For 1 < i < p, 1 < k' < k, DS{i,k,�satisfies
the following recurrence relation:

CHAPTER 4. PERFECT GRAPHS 43

Fork' == 1, DS(i,k') =
For the other cases,

‘ - o o F(vi) > F � Va; > i
DS(i k'�= I max (DS(x,k' - 1) + \N[vi]\ otherwise

、，7 i<x<p,Fivi)<F{vx)

� -liVHHiVNI)
Proof First line of the lemma is trivial.

To prove the correctness of second line, let S be the set of
vertices corresponding to DS{x, k, — 1) as S. If F{vi) > F{vx)
for all X > 2, then we have no need to consider taking vi because
N[vi] C N[vx], and this should be considered as impossible and
defined with the value —oo.

Now we assume F{vi) < F{vx) for some x > i, we will show
that every vertex u dominated by both Vi and S is dominated by
Vx. First, label{vi) < lahel{vx)> Because our labelling algorithm
will first label vertex in Lx before labelling Li for i <x. label{u)
will fall in either one of the following cases:

• label(u) > label{vx)
Because labeliyi) < label{vx) < label(u), {vi,u) G E implies

e E.
• label{u) < label(vx)

As label{u) < label{vx), u e L^' for some x' < x.
Assume u is dominated by some Vy{y > x) in S but not Vx^
Then the edge {u, Vy) will not exist in CV ⑷，CV �+i， . . .
otherwise the edge (u, Vx) exists. If (u, Vy) exists in C V �
for ^ > 0, then F(vy) < F(vx), violating v^ has the small-
est F{v) in S. If (u, Vy) exists in C^+s for (5 > 0, then it
conflicts with u G L^' for some x' < x.

As every vertex u dominated by both Vi and S is dominated by
Vx, we know that there are Pi A/"[i;�vertices dominated by

CHAPTER 4. PERFECT GRAPHS 44

both S and Vi. So we get we formula DS{x, A/ — 1) + \N[vi]—
外 川 冲 』 . •

By definition, the maximum number of vertices dominated
by k vertices is equal to maximum DS{i, k) for 1< i < p. How-
ever, DS{i, k) may be equal to - o o for oil I < x < p if the
interval graph can be dominated by less than k vertices, so we
will compute all DS{i, k') iox I < i < p, I < k' < k, and output
the entry with maximum value as the solution. As finding the
consecutive clique ordering Ci, C 2 , C p can be done in linear
time, we assume it is part of the input.

Algorithm MaxDS(/c)
1. Find Vi ioT 1 <i < p.
2. Compute A iVliijl for all pair of f, u by matrix multiplication
3. DS(p, 1) = deg(vp) + 1
4. FOR i = p-l downto 1 DO
5. FOR k' = 1 to k DO
6. Compute DS{i^ k') based on the Lemma 4.2.7.
7. IF = 1 THEN
8. all, k'] = 0

9. ELSE IF DS{i, k') ^ -00 THEN
10. a[i,k'] = Vi .
11. Find z, k' where DS{i, k') is maximum.
12. S = (f)
13. WHILE k' > 0
14. S = S\Jvi
15. i = a[i, k']
16. k' = k' -1
17. OUTPUT S
Theorem 4.2.8 The algorithm MaxDS(k) can find a maxi-
mum dominating k-set in an interval graph in 0{n'^k+ri^) time.

CHAPTER 4. PERFECT GRAPHS 45

Proof The algorithm uses Lemma 4.2.7 to compute DS{i,k')
for all possible i, pairs. Prom Lemma 4.2.7, we know that the
maximum value of DS{i, k') must be positive, since DS(i, 1) > 0
for all i. For each DS{i, k') — -oo , a[z, k^] is defined and
store the next vertex to be included in the set corresponding
to DS{i, k'). So in line 11 to line 17, our algorithm will find out
the maximum dominating k-set correctly.

The complexity analysis of the algorithm is as follows. Line
1 needs 0(n) operations. Line 6 to 10 will be run for 0(pk)=
0(nk) times, where each time needs 0(n) operations. So line
6 to 10 needs 0{n^k) operations. Line 11 to 17 can be done
in 0{nk) time. So the total complexity of our algorithm is

+ where n切 is running of multiplying two n x n matri-
ces. (The best matrix multiplication algorithm currently known
was presented by Don Coppersmith and S. Winograd in 1990
16], has an asymptotic complexity of •

l | 2 ! 3
10 6 -oo -oo
9 4 6 -oo
8 5 5 8
7 7 7 13
6 3 3 9
5 5 5 12
4 7 7 16
3 5 5 15
2 5 5 16
1 I 3! ^ iL

Table 4.2: DS{i, k') of interval graph in the Figure 4.4

For a subclass of interval graphs, called proper interval graphs,

CHAPTER 4. PERFECT GRAPHS 46

there is an ordering such that for all vertex v, iV[f] comes in a
consecutive sequence. And this ordering can be found in linear
time[17]. With this ordering, we can find \N[v] Pi N[u\\ in 0(1).
So we can modify the line 2 of our algorithm to find a maximum
dominating k-set in proper interval graphs in 0(n^/c) time.
Theorem 4.2.9 A maximum dominating k-set can be found in
a proper interval graph in Oin^k) time.

4.3 Maximum fc-vertex subgraph in chordal
graphs

A set S of k vertices is a maximum /c-vertex subgraph of graph
G if the subgraph induced by 5, G{S), has the maximum num-
ber of edges among all the subgraphs induced by k vertices of
G. In this section we first derive a uniformly polynomial time
algorithm for finding a maximum /c-vertex subgraph in partial t-
trees. And then extend the algorithm to an algorithm
for finding a maximum k-veitex subgraph in chordal graphs.

4.3.1 Maximum /c-vertex subgraph in partial t-trees

In this part we will find a maximum A:-vertex subgraph in a par-
tial t-tree G = {V, E) by using its "regular" tree-decomposition
{{X,\veVT}.T={yT,ET)).

We also use the same notation c{v), vi 工 and X{T') as
section 3.2.
Definition 4.3.1 Let Z) be the size of a maximum sub-
graph induced by a set, S, of j vertices from X(T^) with SnX幻
= Z .

Recall that in a "regular" tree-decomposition, for all
G Et, \Xi — Xj\ = 1, and we have the following definition.

CHAPTER 4. PERFECT GRAPHS 47

Definition 4.3.2 We use u to represent the only vertex in Xy —
Xy. and w to represent the only vertex in Xy* — Xy.
Lemma 4.3.3 For 0 <j < c{v), 0 < j < k, a{Tlj, Z) satis-
fies the following recursive formulas.

For all node v (leave node and internal node):

”’， 1 size of the subgraph induced by Z otherwise

For each internal node v and I <i < c{v) where Xy—u = Xy.—w
for some vertices w, w:

‘ - o o if IZI > j
max {a(r广 1, x, Z)+ otherwise
0 < x < j

size of the subgraph induced by Z
\

The proof of this lemma and the algorithm for finding a maxi-
mum /c-vertex subgraph is similar to that in Section 3.2, we omit
it here.

4.3.2 Maximum /c-vertex subgraph in chordal graphs

A graph G is called a chordal graph if every cycle of length
greater than 3 has a chord, i.e., an edge joining 2 non-consecutive

‘ vertices in the cycle. Split graphs and interval graphs are sub-
classes of chordal graphs. For chordal graphs, there exists lin-
ear time algorithm to find its maximum clique[15] and its tree-
decomposition [20 .

For any graph G, the size of a maximum A:-vert ex subgraph
is between 0(the k vertices form an independent set) and k{k —

CHAPTER 4. PERFECT GRAPHS 48

l) /2(the k vertices form a clique). So we can find a maximum
/c-vertex subgraph in a chordal graph G in this way. First, find
a maximum clique C in G. If C contains more or equal to k
vertices, output C as solution. Otherwise the treewidth of G
< /c (treewidth of a chordal graph is bounded by the size of its
maximum clique), then we can a maximum A:-vertex subgraph
by the uniformly polynomial time algorithm in section 4.3.1.

The running time of the above method is dominated by the
algorithm of finding a maximum /c-vertex subgraph in a partial
亡-tree, which needs time. If the treewidth is bounded
by k, the running time becomes So we come to the
following result.
Theorem 4.3.4 A maximum k-vertex subgraph can be found in
a chordal graph in time.

Chapter 5

Concluding Remarks

5.1 S u m m a r y of results
In this thesis, we have mainly studied the problem of finding
maximum /c-vert ex covers in various graph classes.

First we have obtained the Extension Lemma which shows
a useful relation between maximum {k - l)-vertex covers and
maximum /c-vertex covers in general graphs and plays a key role
in our uniformly polynomial time algorithm for planar graphs.

For trees, we have given an 0{k'^n) algorithm to find max-
imum A:-vertex covers. We have also devised an
algorithm to find maximum /c-vertex covers in partial t-trees.
Combining the Extension Lemma and the algorithm for partial
亡-trees, we have obtained a uniformly polynomial algorithm for
finding maximum /c-vertex covers in planar graphs. We have also
obtained an 0{k'^n) algorithm for finding maximum /c-vertex
covers in cographs.

Furthermore we have studied two related problems for some
subclasses of perfect graphs. We have devised an 0(/cn^) algo-
rithm to find maximum dominating /c-sets in interval graphs,
and a uniformly polynomial time algorithm for finding maxi-

49

CHAPTER 5. CONCLUDING REMARKS 50

mum induced /c-subgraphs in chordal graphs.

5.2 Open problems
In Chapter 3, we develop an 0(/c^n) algorithm to find a max-
imum /c-vertex cover in a tree. It is interesting to investigate
the structural properties of tree, to help us solving the problem
more efficiently. If we can find a faster algorithm, it may give us
direction to improve the algorithm of partial t-trees and planar
graphs.

Extension Lemma is the key idea of Section 3.3. We can
consider if this Lemma can be applied in other graph classes
to solve M A X I M U M /C-VERTEX COVER efficiently. Using similar
logic, we can easily derive the "Extension Lemma" for MINIMUM
/ C - V E R T E X COVER ：

Lemma 5.2.1 For every minimum k-vertex cover S, I <k <
n, if S is not extendible, then for any maximum {k-{-l)-vertex
cover S', every vertex in S' - S is NOT adjacent to any vertex
inS- S丨.

It is interesting to study if this lemma can help us to solve MIN-
IMUM A：-VERTEX COVER Or MINIMUM (n — k)-YEKTEX COVER.

In section 2.3, we proposed the Extension method to solve
M A X I M U M /C-VERTEX COVER on bounded degree graphs. Such
methods can be applied to any problem once we find some rela-
tionship between solution of size i and solution of size (z + 1). So
we are interested to find such relationship in other NP-Complete
problems.

V E R T E X COVER becomes polynomial time solvable when re-
stricted to various graph classes, for example, bipartite graphs,

CHAPTER 5. CONCLUDING REMARKS 51

interval graphs, chordal graphs, etc. However, in these graph
classes, it is still unknown how fast we can solve MAXIMUM k-
VERTEX COVER.

Bibliography

1] Hans L. Bodlaender. A Linear Time Algorithm for Finding
Tree-decompositions of Small Treewidth, SI AM Journal on
Computing, Vol. 25, 1305-1317, 1996.

2] Hans Bodlaender. A tourist guide through treewidth, Acta
Cybernetica 11，1-21, 1993.

3] Jochen Alber and Hans L. Bodlaender and Henning Fer-
nau and Rolf Niedermeier. Fixed Parameter Algorithms
for PLANAR DOMINATING SET and Related Problems,
Scandinavian Workshop on Algorithm Theory, 97-110, 2000

4] P.C. Cilmore and A.J. Hoffman. A characterization of com-
parability graphs and of interval graphs. Canadian J. Math.,
Vol. 16, 539-548, 1964.

5] K.S. Booth, G.S Leuker. Testing for the consecutive ones
property, interval graphs and graph planarity using PQ-tree
algorithms. J. Comput. Syst. ScL, Vol. 13, 335-379, 1976.

6] G. Ramalingam, and C. Pandu Rangan. A unified approach
to domination problems in interval graphs. Information
Processing Letters, Vol. 27, 271-274 1988.

7] D.G.Corneil, H.Lerchs, L.Stewart Burlingham. Comple-
ment Reducible Graphs. Discrete Applied Mathematics,
Vol. 3, 163-174, 1981.

52

BIBLIOGRAPHY 53

8] F. GavriL Algorithms for minimum coloring, maximum
clique, minimum covering by cliques and maximum inde-
pendent set of a chordal graph. SI AM J. Comput. 1, 180-
187, 1972.

'9] D.B. West, Introduction to Graph Theory, Prentice Hall,
Upper Saddle River 1996.

10] Karp, R.M., “ Reducibility among combinatorial problems",
in Complexity of Computer Communications, R.E. Miller
and J.W. Thatcher (editors) , pp.85-103, Plenum Press,
New York 197

11] I. Dinur and S. Safra. The importance of being biased. In
Proceedings of the 33th Annual ACM Symposium on The-
ory of Computing, Montr eal, Canada, pages 33-42, 2002

12] P. Scheffler. The graphs of tree-width k are exactly the par-
tial /c-trees, manuscript 1986.

13] Martin Grohe and Julian Mari. Definability and Descriptive
Complexity on Databases of Bounded Tree-Width, LNCS
Vol. 1540, 70-82, 1998.

14] N. Robertson, PD Seymour. Graph minors 11. Algorithmic
aspects of tree-width, Journal of Algorithms, Vol.7, 309-
322, 1986.

15] Fanica GavriL Algorithms for Minimum Coloring, Maxi-
mum Clique, Minimum Covering by Cliques, and Maximum
Independent Set of a Chordal Graph, SIAM J. Comp. VoLl,
180-187, 1972.

16] D. Coppersmith and S. Winograd. Matrix multiplication
via arithmetic progressions, J. Symbolic Computation Vol.
9, 251-280, 1990.

54 BIBLIOGRAPHY

[17] D R Fulkerson, O.A. Gross. Incidence matrices and interval
graphs, Pacific J. Math., VoL15 (1965)，835-855.

[18] S. Arnborg and A. P r o s k u r o w s k i . Linear time algorithms for
NP-hard problems on graphs embedded in k-trees. Discrete
Applied Mathematics, 23:11-24, 1989.

[19] A Hans L. Bodlaender. Dynamic Programming on Graphs
with Bounded Treewidth, in Proc. 15th International Collo-
quium on Automata, Languages and Programming, LNCS
317(1988), 105-118.

[20] Golumbic, Martin Charles, Algorithmic graph theory and
perfect graphs, published by New York : Academic Press,
1980.

21] N. Robertson and P. D. Seymour, Graph Minors I. Exclud-
ing a forest, J. Combin. Theory Ser. B 35 (1983), 39-61.
8.

22] J. F. Buss and J. Goldsmith, Nondeterminism within P,
SIAM J. Comput. 22 (1993), 560-572.

23] R. G. Downey and M. R. Fellows, Parameterized computa-
tional feasibility, in Feasible Mathematics II (P. Clote and
J. Remmel, E d s .) , PP. 219-244, Boston, Birkhauser, 1995.

24] R. G. Downey, M. R. Fellows, and U. Stege, Parameterized
complexity: A framework for systematically confronting
computational intractability, in Contemporary Trends in
Discrete Mathematics: From DIMACS and DIMATIA to
the Future (F. Roberts, J. Kratochvil, and J. Nesetril,
E d s .) , AMS-DIMACS Proceedings Series, Vol. 49, pp. 49-
99, Am. Math . Soc.，Providence, 1999.

25] R. Niedermeier and P. Rossmanith, Upper Bounds for Ver-
tex Cover Further Improved, Lecture Notes in Computer

55 BIBLIOGRAPHY

Science, Vol. 1563, STACS99, pp. 561-570, Springer-Verlag,
New York, 1999.

[261 R. Niedermeier and P. R o s s m a n i t h , A general method to
speed up f i xed -pa rame te r t r ac t ab l e algorithms, Inform. Pro-
cess. Lett. 73 (2000), 125-129.

[27] R. Bal朋ubramanian, M.R. Fellows, V. Raman, An im-
proved fixed parameter algorithm for vertex cover, Inform.
Process. Lett. 65 (3) (1998) 163-168.

[28] J. Chen, LA. Kanj, W. Jia, Vertex cover: Further obser-
vations and further improvements, J. Algorithms 41 (2001)
280V301 A preliminary version appeared in: WG99, in:
Lecture Notes in Comput. Sci., Vol. 1665, Springer-Verlag,
1999, pp. 313-324.

[29] M. R. Garey, D. S. Johnson, Computers and Intractability
：A Guide to the Theory of NP-Completeness, published by
W. H. Freeman, NewYork, 1979.

30] Uriel Feige, Michael Langberg, Approximation Algorithms
for Maximization Problems Arising in Graph Partitioning,
Journal of Algorithms Volume 41, Issue 2, Pages 174-211
(November 2001)

31] Qiaoming Han, Yinyu Ye, Hantao Zhang and Jiawei Zhang.
On Approximation of Max-Vertex-Cover, European Journal
of Operational Research , Vol. 143’ No. 2 (2002), 207-220.

32] R. G. Downey, M. R. Fellows, Parameterized Complexity,
pubished by Springer, 1997.

33] T. Kikuno, N. Yoshida, Y. Kakuda, A linear time algo-
rithm for the domination number of a series-parallel graph
Discrete Appl. Math. 5 1983, 299-311.

BIBLIOGRAPHY 65

34] B. Baker. Approximation algorithms for NP-complete prob-
lems on planar graphs. Journal of the ACM, Volume
41(1):153-180.

35] Kellogg Booth, J. Johnson. Dominating sets in chordal
graphs. SIAM J. Comput, 11:191-199, 1982.

36] M. Hallett, G. Gonnet, and U. Stege, "Vertex Cover Re-
visited: A Hybrid Algorithm of Theory and Heuristic,"
manuscript 1998.

37] Judit Bar-Ilan and Guy Kortsarz and David Peleg, How to
allocate network centers, J. Algorithms, Vol. 15, number 3,
pages 385-415, 1993.

38] S. E. Dreyfus and RA Wagner. The Steiner problem in
graphs. Networks, 1:195-207, 1971.

39] H. Kaplan, R. Shamir, and R. E. Tarjan. Tractability of
parameterized completion problems on chordal and interval
graphs: Minimum fillin and physical mapping. In Proceed-
ings of the 35th Symposium on Foundations of Computer
Science, pages 780-791. IEEE Computer Science Press, Los
Alamitos, California, 1994.

'40] Jochen Alber , Henning Fernau，Rolf Niedermeier, Param-
eterized complexity: exponential speed-up for planar graph
problems, Journal of Algorithms, v.52 n.l, p.26-56, July
2004.

41] Rajiv Gandhi and Samir Khuller and Aravind Srinivasan,
Approximation algorithms for partial covering problems, J.
Algorithms, Vol. 53，page 55-84, 2004.

42] Michael R. Fellows, Michael A. Langston, On search, de-
cision, and the efficiency of polynomial-time algorithms

BIBLIOGRAPHY 66

Source Journal of Computer and System Sciences archive
Volume 49 , Issue 3 Pages: 769-779, 1994

43] RG Downey and MR Fellows, "Parameterized Compu-
tational Feasibility," Proc. Second Cornell Workshop on
Feasible Mathematics (Birkhauser,Boston), page 219-244,
1995.

44] Leizhen Cai, The complexity of finding fixed-size optimal
solutions, manuscript, 2005.

45] J. Alber, H丄.Bodlaender, H. Fernau, R. Niedermeier,
Fixed parameter algorithm for planar dominating set and
related problems. SWAT 2000, LNCS 1851, pp. 97-110.

C U H K L i b r a r i e s

圓__11_11
0 0 4 2 8 0 6 5 3

