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Abstract 

In this thesis we study the following MAXIMUM /C-VERTEX 
C O V E R problem from the parameterized complexity point of 
view: find k vertices in a graph that cover a maximum number 
of edges. 

We give uniformly polynomial-time algorithms for solving 
the problem on various graph classes. In particular, we devise 
Oik'^n) algorithms for trees, partial 力-trees and cographs. Fur-
thermore, we introduce an extension method that enables us to 
extend a maximum (k — 1)-vertex cover to a maximum /c-vert ex 
cover, and use the method to obtain a uniformly polynomial-
time algorithm for planar graphs. 

We also consider two related problems for some classes of 
perfect graphs. Our investigation produces an 0(/cn^) algorithm 
to find a maximum dominating k-set in an interval graph, and 
a uniformly polynomial-time algorithm to find a maximum k-
vertex subgraph in a chordal graph. 
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醒 

在本論交中，我們從參數化複雜性的角度研究「最大k頂點覆 
蓋」的問題：從一幅圍中找出k悃頂點去覆蓋最多的邊。 

我們提出了劃一多項式時閨算法以在數個S類中解决此問題。 

首先，我們爲樹形圍�©SPt-樹形圍及CO-圄設計了 0(k2n)的 
算法。更進一步，我們引入了「擴展法」幫助我們把一個最大 

(k-1)頂點覆蓋擴展成一個最大k頂點覆蓋，利用這個方法我們 

爲平面圔找到劃一多墳式時間算法。 

我們亦在完美圄上硏究兩個相關問題。我們找到0(knZ)的算法 

去在一幅區m圄上拔出最大k頂點支配，及割一多項式時閨算 

法以在一幅弦圍中找出最大k頂點導出圍。 
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Chapter 1 

Introduction 

1.1 Motivat ions 
Let us start with the following well known graph problem. 

V E R T E X COVER 
INPUT : Graph G 二 E) and nonnegative integer k. 
QUESTION : Does G contain a vertex cover of size 
at most k, that is, a subset V' of at most k vertices 
such that every edge in G is incident with at least one 
vertex in V'7 

The problem is one of the classical NP-complete problems [10:. 
However, in spite of the intractability, it can be solved in 0{kn+ 
1 . 2 9 �t i m e [28], which is linear time for each fixed value of k. 

Now consider the problem of setting up some convenient 
stores at road intersections. Let the profit of these stores be 
proportional to the total number of roads connected to the inter-
sections with convenient stores. We can model the road network 
as a graph with each road intersection as a vertex and each road 
as an edge. Then the problem of setting up a minimum number 
of stores to gain profit from all roads corresponds to the problem 
of finding a minimum size vertex cover in the graph. However, 
it often happens that we have limited resource and thus can-

1 



CHAPTER 1. INTRODUCTION 2 

not set up enough stores to cover the whole road network. In 
such a situation, we usually try to make the most profit under 
the constraint on the number of stores. Therefore, we need to 
solve the problem of setting up k stores to maximize our profit, 
which corresponds to the MAXIMUM /C-VERTEX COVER prob-
lem - f i n d k vertices in a graph to cover a maximum number of 
edges. 

Clearly, MAXIMUM A:-VERTEX COVER is as hard as VERTEX 
C O V E R if /C is a part of input, and can be solved in 0(n左(m+n)) 
time by exhaustive search. The problem has been studied in the 
literature, but most of the work deals with approximation algo-
rithms. An article of Feige and Langberg (J. Alg. 41 174-211, 
2001) contains a mini-survey on approximation algorithms on 
the problem. 

In this thesis, we take the parameterized complexity point of 
view to study MAXIMUM /C-VERTEX COVER, i.e., regard the 
cardinality k of the solution as a fixed parameter. We are inter-
ested in solving the problem in uniformly polynomal time, i.e., 
0{f{k)n^) time for a computable function f{k) and a constant 
c independent of k. Recently, Cai (Parameterized complexity 
of cardinality constrained optimization problems, manuscript 
2005) has proved that the problem is fixed-parameter intractable 
and is thus very unlikely to be solvable in uniformly polynomial 
time. Therefore in this thesis we consider the problem for special 
classes of graphs. In particular, we use the dynamic program-
ming method to devise uniformly polynomial-time algorithms 
for trees, partial t-trees and cographs. Furthermore, we intro-
duce an extension method that enables us to extend a maximum 
(A: — l)-vertex cover to a maximum /c-vertex cover, and use the 
method to obtain a uniformly polynomial-time algorithm for 
planar graphs. 
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Apart from MAXIMUM /C-VERTEX COVER, we also consider 
two related problems for some classes of perfect graphs. Our 
investigation produces uniformly polynomial-time algorithms for 
finding a maximum dominating k-set in an interval graph, and 
a maximum /c-vertex subgraph in a chordal graph. 

1.2 Related work 
1.2.1 Fixed-parameter tractability 

A parameterized problem consists of a pair (/, k), where I is the 
actual input and k the parameter. Downey and Fellows[23] have 
introduced a theoretical framework to deal with parameterized 
problems. A parameterized problem (/, k) is fixed-parameter 
tractable if it admits a uniformly polynomial-time algorithm, i.e., 
an algorithm that runs in 0{f{k)\I\^) time, where | / | denotes the 
size of input, for some computable function /(/c) and constant 
c independent of k, and fixed-parameter intractable if it is hard 
for some W[i] in the W-hierachy also introduced by Downey and 
Fellows. 

V E R T E X COVER is one of most studied problems in the field 
of parameterized complexity. The first uniformly polynomial-
time algorithm for VERTEX COVER was proposed by Buss[22 
with running time Since then many researchers 
have tried to improve the complexity ([23], [24], [25], [26], [27]). 
The currently fastest algorithm is due to Chen et al.[28]，which 
runs in 0{kn + 1.2852” time and is practical for A: in a couple 
of hundreds. 

MAXIMUM /C-VERTEX COVER is an example of cardinality 
constrained optimization problems that ask for solutions of fixed 
cardinality to optimize solution values. Recently, Cai [44] has 
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initiated the study of the parameterixed complexity of cardi-
nality constrained optimization problems by considering twenty 
some fundamental graph problems. 

1.2.2 Maximum A:-vertex cover 

Most of the existing work for MAXIMUM /C-VERTEX COVER 
use semidefinite programming to approximate the solution. For 
example, [30], [31] give an approximation algorithm that find 
a set of k vertices covers 0.8a edges in experiment where a is 
the maximum number of edges that can be covered by k vertices. 

Gandhi studied a related problem called PARTIAL VERTEX 
COVER, i.e., find the minimum number of vertex to cover k 
edges in a graph. He gives an approximation algorithm of ap-
proximation ratio in a graph of bounded degree d. 

Recently, Cai[44] has studied the parameterized complexity 
of MAXIMUM /C-VERTEX COVER and shown that the problem 
is W[l]-complete when restricted to regular graphs. He has also 
established W[L]-completeness of some special types of M A X I -
MUM /c-VERTEX COVER for bipartite graphs (personal commu-
nication). 

1.2.3 Dominating set 

Finding a minimum dominating set in a general graph is NP-
complete[29]. Furthermore, it was shown by Downey and Fel-
lows that the problem is VK [2]-complete[32 . 

For special graph classes, DOMINATING SET can be solved in 
polynomial time. For example, this problem is polynomial time 
solvable for series parallel graphs [33], outerplanar graphs[34 
and interval graphs [35]. Downey and Fellows[23] showed that 
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the problem becomes fixed parameter tractable when restricted 
to planar graphs by presenting an algorithm of O(ll^n) time, 
which has been considerably improved to by Al-
ber et al. [45] using a much more sophisticated technique of tree 
decomposition. 

1.3 Overview of the thesis 
In Chapter 2, we fix notation and definitions. Then we intro-
duce an extension method that can be used to find a maximum 
/c-vertex cover efficiently for some spcial classes of graphs. 

The main results of this thesis appear in Chapters 3 and 4. 
In Chapter 3, we first present an O(k^n) algorithm for finding 
maximum /c-vertex covers in trees and partial 亡-trees. Then we 
combine the "extension method" and the result on partial t-
trees to derive a uniformly polynomial-time algorithm of finding 
a maximum /c-vertex cover in a planar graph. 

In Chapter 4, we consider MAXIMUM /C-VERTEX COVER and 
two related problems for some subclasses of perfect graphs. First 
we give an 0{k'^n) algorithm for finding a maximum A:-vertex 
cover in a cograph. Then we present an Oikv?) algorithm for 
finding a maximum dominating /c-set in an interval graph. We 
also show how to find a maximum /c-vertex subgraph in a chordal 
graph in uniformly polynomial time. 

In last chapter, we give our concluding remarks and discuss 
some open problems. 



Chapter 2 

Preliminaries 

2.1 Notat ion and definitions 
2.1.1 Basic definitions 

In this thesis we follow standard notation and definition for 
graphs in [9]. All the graphs in this thesis are simple and undi-
rected. The vertex set and the edge set of a graph are repre-
sented by V and E respectively. We will use n and m to denote 
the size of V and E respectively. For an edge e = (u,v), the 
edge e is covered by it (and v). For any 2 adjacent vertices 
u dominates v, and vice versa. 

The complement of a graph G is the graph G = such 
that uv e E' iff uv ^ E. A graph H = {V, E') is a subgraph of 
graph G = {V, E) ifV' CV and E' <ZE, H is an induced sub-
graph, denoted by G\y'], if iJ is a subgraph of G and it contains 
all the edges uv iiu.v e V' and uv G E{G). A path is a list of 
vertices such that two vertices are consecutive in list if they are 
adjacent in the graph. A cycle is a path with identical ends. The 
length of a cycle/path is the number of edges in it. A chord of a 
cycle is an edge that is connecting two non-consecutive vertices 
in the cycle. 

6 



CHAPTER 2. PRELIMINARIES 7 

A vertex cover of a graph is a set of vertices V' V such 
that for all edge uv, at least one of it, i; G A dominating set 
of a graph is a set of vertices V^ C V such that for all vertices 
V, V e V' or some of its neighbor is in V^. A clique of a graph 
is a complete subgraph. The clique number of a graph is the 
size of maximum clique in the graph. The chromatic number of 
a graph G is the minimum number of color to color V(G) such 
that no two adjacent vertices share the same color. 

2.1.2 Partial t-trees 

Tree is one of the most well-known graph classes in graph theory. 
In 1983, Robertson and Seymour introduced the idea of tree-
decomposition and partial t-tree to generalize the tree classes [21 . 
Many NP-Complete will become solvable in polynomial time 
when restricted to partial 亡-trees of some fixed t. We will use 
the theory of partial t-tree in Chapter 3, so we first give some 
basic definiton and lemma about partial t-tree. 
Definition 2.1.1 A complete graph of t vertices is a t-tree. 
Given a t-tree of n vertices； G, we can construct a t-tree of 
n+1 vertices by adding a new vertex v to G, which is made 
adjacent to each vertex of some clique of size t. 

Based on this definition, all the trees are 1-trees. 
Definition 2.1.2 A graph G is a partial t-tree if it is a spanning 
subgraph of some t-tree. 
Definition 2.1.3 A tree-decomposition of a graph G 二 (V，JE) 
is a pair {{X^ | ” e T 二（Vt’ 丑r)) with {Xy \ v E VT} 
a family of subsets of V, one for each node of T, and T a tree 
such that 
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• for all edges (u, w) G E, there exists anv eVr with u e Xy 
and w e Xy. 

• for any v eV and a,b,c G Vr： if v e Xa and v G X � , then 
V E Xt for any b on the path from a to c. (That is, all the 
subsets containing v are connected) 

Definition 2.1.4 The treewidth of a tree-decomposition is 
max^gVr — 1. 
Definition 2.1.5 [14]The treewidth of a graph G is the mini-
mum treewidth of a tree-decomposition of G. 
Theorem 2.1.6 (Scheffier,[12]) G has treewidth at most t if 
and only if G is a partial t-tree. 
a^ b d f 

— K I 

© © ( i 
h i Tree decomposition T 

Graph G 
Figure 2.1: A graph G of treewidth 2 and its tree decomposition. 

Determining the treewidth of a general graph G is NP-Complete. 
However, for certain classes of graph, there exist polynomial 
time algorithm to determine their treewidths. Part of these re-
sults are summarized in table 2.1.2[2 . 
Theorem 2.1.7 (Bodlaender,[l]) For any constant t, there is a 
linear time algorithm to determine if a graph G is of treewidth at 
most t, and if so, finds a tree-decomposition of G with treewidth 
at most t. 



CHAPTER 2. PRELIMINARIES 9 

Class Treewidth 
Trees 1 
Series-parallel graphs 2 
Halin graphs 3 
Outer planar graphs 2 
k-outerplanar graphs < 3A; — 1 
Chordal graphs Size of max. clique - 1 
Split graphs Size of max. clique - 1 
Bipartite graphs NP-Complete to determine 
Table 2.1: Treewidth of different classes of graph. 

Sometimes researchers will consider a special kind of tree-
decomposition called "regular" tree-decomposition ({Xy 卜 G Vr}, T 二 
(Vt,五r)) that also fulfills the following three properties: 

• T is rooted at some node r, 
• for all V G Vr, =力 + 1，and 
• for all { i j ) e Et, - Xj\ = 1. 
The extra properties of "regular" tree-decomposition can make 

the description of algorithm of partial t-tree simpler. As shown 
by Martin and Julian, any tree-decomposition of treewidth t, can 
be transformed into a "regular" tree-decomposition in 0{nt)[l3 . 

2.1.3 Cographs 

We will consider finding maximum k-vertex covers in cographs 
in Section 4.1. Here we first give its definition: The class of 
cograph is defined recursively as follows: 
i) A single vertex is a cograph. 
ii) If G2 are vertex disjoint cographs, then Gi U G2 is a 
cograph. 
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© © © 
Figure 2.2: A regular tree decomposition of the graph G in Figure2.1. 

iii) If G is a cograph, then its complement G is also a cograph. 
As shown by Corneil et.al.[7], cographs are exactly the class 

of graphs that contain no induced P4, and a cograph can be 
represented by a tree structure, called cotree, Cotrees enable us 
to use dynamic programming to solve many difficult problems on 
cographs. We will also use cotrees to find a maodmum /c-vertex 
cover in cographs. 

G： T： V root 

播# 
f e Figure 2.3: A cograph G and its cotree T 

A cotree T of a cograph G is a rooted tree where each leaf 
represents a vertex of G and each internal node represents an 
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union-complement operation on its children. Furthermore the 
root of the cotree is labelled as a 1-node, and every child of a 
1-node is labelled as a 0-node and vice versa. A cograph G and 
its cotree T are shown in Figure 2.3. 

We can use T to construct graph G bottom-up from leaves to 
the root by taking union-complement operation at each internal 
node. 

An important property of cotree is, two vertices n, u are 
adjacent in G if and only if, in the cotree T, the path from leaf 
V to root and the path from leaf u to root meet at a 1-node. For 
example, in Figure 2.3, vertex a and d are adjacent in G and 
their paths to root in T meet at the root, a 1-node. 

2.1.4 Chordal graphs and interval graphs 

A chordal graph is a graph where every cycle of length greater 
than 3 has a chord, i.e., an edge joining 2 nonconsecutive ver-
tices in the cycle. Gavril [8] showed that a chordal graph will 
have a perfect elimination order. That is, the vertices set can 
be ordered as a =[t>i，v̂ , . . . , fn] such that for each Vi, the 
set Xy. = {x e < is a complete subgraph. 
We will consider finding maximum /c-vertex subgraph in chordal 
graphs in Section 4.3. 

A graph G = (F, E) is an interval graph if every vertex can be 
associated with an interval on the real line, such that two vertices 
are adjacent if their associated intervals intersect. Interval graph 
is a subclass of chordal graphs and we will present the algorithm 
for finding a maximum dominating k-set in an interval graph in 
Section 4.2. 
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2.2 Upper bound 
Definition 2.2.1 For a graph G, let f(k) be the maximum num-
ber of edges that can be covered by k vertices from G. 
Definition 2.2.2 A maximum k-vertex cover, Sk, of a graph 
G is a set of k vertices from G which covers f{k) edges. 
Lemma 2.2.3 If a graph G needs at least k vertices to cover all 
edges, then for all i < k, f{i - 1) + I < f{i) < 2f{i - 1). 
Proof Clearly, /(z - 1) + 1 < f{i) is trivial. 

To prove / ( i ) < 2f{i - 1), we first introduce some notation. 
Given two vertex covers Si-i and Si of G. We can divide V into 
four parts: 

- S i - i 门 Si, this part is called B. Any edgess covered by 
these vertices are covered by both Si-i and Si. 

- S i - i — Si, we call this part D. 
-Si — Si-i, note that the size of this part is equal to \D\ +1. 

So we call this set AU v where v is an arbitrarily vertex 
from this set and \A\ = \D . 

- T h e vertices not in the above three parts, this part is called 
R. 

In Figure 2.4, we use ei to es to represent the number of edges 
between the vertex sets: 
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R 
/ Z 一 、 

( 1 ^ ^ ) z B 

D A U V 

Figure 2.4: Relations among sets of vertices. 

ei the number of edges between A and D 
62 the number of edges in the graph induced by A U f 
63 the number of edges between A and R 
64 the number of edges in the graph induced by D 
65 the number of edges between D and R 
66 the number of edges between v and D 
67 the number of edges between v and R 
eg the number of edges covered by B  

We now prove that f{i) < 2f{i - 1). Since B U D is a 
maximum (i — l)-vertex cover, number of edges covered by 
BU A is less than or equal to that oi BuD. That is, 

62 + 63 + ei + eg < 64 + 65 + 66 + ei + es 
62 + 63 < 64 + 65 + 66 (2.1) 

Suppose that f{i) > 2f{i - 1). Then: 
62 + 63 + 66 + 67 + ei + 68 > 2(64 + 65 + 66 + ei + eg) 
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62 + 63 + e? > 264 + 265 + 66 + 61 + 68 
62 + 63 + 67 > 264 + 265 + 66 + 61 

By (2.1), 
64 + + 6(3 + 67〉264 + 265 + 6 1 + 6 6 

67 > 64 + 65 + ei 
This implies that v covers more edges than D, and thus B Uv 
covers more edges than a maximum {% — l)-vertex cover, a 
contradiction. 

〇^̂ ^̂ ^ 
Figure 2.5: Example of f(2)=2f(l) 

The upper bound is tight. For example, in Figure 2.4, / ( 2 ) = 
2/(1). 口 

2.3 Extension method 
Definition 2.3.1 A maximum k-vertex cover S is extendible 
if it can be extended to a maximum (k+l)-vertex cover S，by 
adding one more vertex. 
Definition 2.3.2 For a subset V^ of vertices of a graph G, let 
e{V') denote the number of edges covered by V'. 
Lemma 2.3.3 (Extension Lemma) For every maximum k-
vertex cover S, I < k < n, if S is not extendible, then for any 
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maximum (k + 1)-vertex cover S', every vertex in S' - S is 
adjacent to some vertices in S — S'. 
Proof Let v be an arbitrary vertex in S' — S. If v is not adjacent 
to any vertex in S - then the number of edges covered by 
V but not by S (ei and 62 in Figure 2.6) is more than or equal 
to the number of edges covered by v but not hy S' - v (ei in 
Figure 2.6). Since e(5) > e{S' -v), we have e{S yjv)> e{S'). 
Therefore SUv is a maximum{i + l)-vertex cover, contrary to 
S being not extendible. 

V-(S U S') 

SnS, 

w Figure 2.6: S and S' • 
The Extension Lemma enables us to solve MAXIMUM k-

VERTEX COVER by continuously extending a solution of size i 
to a solution of size i + 1, until the solution size becomes k. This 
method may lead to a uniformly polynomial-time algorithm if 
the time spent for each extension is not too much. 
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Let US consider bounded degree graphs as an example. In 
a graph G with bounded degree d where d is a constant, any 
subset S of its vertices has at most d\S\ neighbors and there are 

combinations of subset from the set of neighbors. Using 
this property, we can solve MAXIMUM /C-VERTEX COVER on 
bounded degree graphs as follows. First we take an arbitrary 
vertex with maximum degree as a maximum 1-vertex cover. 
Then for each i < k, based on Lemma 2.3.3, we can extend a 
maximum i-vertex cover 5 to a maximum {i + l)-vertex cover 
by either adding a vertex to S {0{n) possible ways) or replac-
ing L> C 5 by |L>| + 1 vertices in N{D) ( 0 ( 2 �p o s s i b l e ways). 

In last paragraph, every extension step requires ⑷）time. 
So this method can solve the MAXIMUM /C-VERTEX COVER 
on bounded degree graphs in uniformly polynomial time, that 
is, 0{rff{k)) for some constant c. This method can also be 
applied on any graph G where for every subset S of vertices of 
G, the size of N{S) is independent of n. In Chapter 3 we will 
apply the extension method on planar graphs to get a uniformly 
polynomial time algorithm. 



Chapter 3 

Planar Graphs 

In this chapter, we consider MAXIMUM /C-VERTEX COVER on 
planar graphs. In Section 3.1，we present an 0{k'^n) algorithm 
for finding a maximum /c-vertex cover in a tree. Then we ex-
tend the algorithm to solve MAXIMUM /C-VERTEX COVER on 
partial 亡-trees in Section 3.2. In Section 3.3, we use the algo-
rithm on partial 亡-trees and the Extension Lemma in Section 
2.3 to develop a uniformly polynomial-time algorithm to find a 
maximum /c-vertex cover in a planar graph. 

3.1 Trees 
For trees, one can easily solve the classical VERTEX COVER 
problem in linear time. However, it seems much more difficult to 
obtain an efficient algorithm for MAXIMUM A;-VERTEX COVER. 
In this section, we give an 0{k'^n) dynamic programming algo-
rithm for finding a maximum /c-vertex cover in a tree T. 

When n = k,\t is trivial that the vertices of the entire tree 
forms a maximum /c-vertex cover, so we assume n > A; in this 
section. First, we arbitrarily choose a vertex r as the root of T 
and arbitrarily order the children of each internal vertex of T. 
Henceforth we regard T as an ordered rooted tree. 

17 
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Definition 3.1.1 For each vertex v ofT, c{v) denotes the num-
ber of children of v, and vi, I < i < c{v), denotes the i-th child 
ofv. 

Note that c(v) = deg{;i/) for v = r and c{v) = deg{；v) — 1 for 
V ^ r . 

Definition 3.1.2 For each vertex v, Ty denotes the subtree rooted 
atv, andTJj, 0 < i < c{v), denotes the rooted tree T^；—|Jj=i+i 
i.e., rooted tree obtained from Ty by deleting subtrees T”T”沿， 

Note that T^ is the tree containing the single vertex v, and 
Ty = T^…).For each rooted tree T^, 0 < i < c(v), we define two 
parameters a{Tl , j ) and for 0 < j < A; that will be used 
in our dynamic programming algorithm. 
Definition 3.1.3 For each 0 < i < c(v) and 0 < j < k, 

a{Tl^j) equals the maximum number of edges in T that can 
be covered by j vertices from T^ that include vertex v, i.e., vertex 
V and j — I vertices from T^ — v. For convenience, we define 
a{TiJ) to be -oo if j > \Ti . 

equals the maximum number of edges in T that can 
be covered by j vertices from T^ that exclude v, i.e., j vertices 
from Tl — V. For convenience, we define j) to be —oo if 
j > \Ti\ - 1. 

Clearly, the maximum number of edges in T that can be cov-
ered by k vertices is equal to max(a(Tr, k)). In order to 
compute a{Tr, k) and P{Tr, k), we establish recurrence relations 
for a{Ti, j) and PiT^J) in the following lemma. Note again that 
Ty = T少)and T^ is the tree containing the single vertex v. 
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Lemma 3.1.4 For every 0 < i < c{v), 0 < j < k, we have 
a(TtO) = 0 

1) = deg{v),and 
, - o o i f j > \Ti\ 

� mdix[a{Ty.J - I) - — /)]} otherwise 
(Note that the recurrence relation implies that 

= deg{v)+max[a{T,^J - 1) - 1 抓” j — 1)].) 

• V 

Figure 3.1: v and T^-^ in a(7；、j) 

For every 0 < i < c⑷，0 < j < /c, we have 
(巧,0) = 0 

‘ - o o i f j > \ T i \ - l 

� max[a{Ty.J - — /)]} otherwise 
(Note that the recurrence relation implies that 
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‘̂«=:>CL!!"   
“ V  
T ^ v 

Figure 3.2: v and T广i in P{TiJ) 
Proof We first prove the recurrence for j ) . It is clear by 
definition that 0) = 0, a{Tl 1) = deglv), and for j > |1；$|， 

= - o o . 
It remains to consider j < Note that T^ can be parti-

tioned into two vertex disjoint trees and Ty.. Let V' be a 
set of j vertices in T^ with v eV that covers edges in 
T. Then V' contains I vertices in for some I < I < j and 
j — I vertices in T̂；.. These I vertices cover I) edges of T. 
The remaining j — I vertices in Ty. cover — I) edges of T 
if vertex Vi G V'^ and — I) edges of T if vertex vi ^ V'. 
Since in the former case, edge vvi is covered by v as well, these 
j — I vertices cover max(a(T^., j - /) - 1, P{Ty.J — I)) edges not 
covered by the I vertices in T广.Therefore V' covers 

a{Tt\I) + niax(a(7;,,j — 0 — 1 ， - I)) 
edges, and hence equals the maximum of the above value 
among all possible values of I. 

The proof for P{TiJ ) is very similar to that of and 
we will omit it. • 
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The recurrences in Lemma 3.1.4 lay the foundation of our 
dynamic programming algorithm. To compute a{Tr^ k) and 
P{Tr, A:), we associate with each vertex v two arrays ay[0..c{v),0..k 
and 0..A:] such that a^[i,j] = and by[ij = 

To compute these 2n arrays, we process vertices according to 
their depth in Tr starting with the deepest leaves. In computing 
ay[0..c(t'), 0../c], similarly for by[0..c{v), 0..A:], we fill the array row 
by row. 

For a tree with n vertices, 泥 � + 1) = 0{n). There-
fore the total number of entries in arrays a秦.c�，0.丄]and 
�[0..C�，0../c] is 0{kn). Since it takes 0{k) time to compute 
each entry of these arrays, the total time for our dynamic pro-
gramming algorithm is 0{k'^n), 

To find a maximum vertex cover in we need to store 
some extra information in the dynamic programming algorithm. 
For each vertex v, we use four arrays l^l0..c(v), 0../c], l^[0..c(v), 0../c], 
A"[0..c(t'), 0..A:], A^[0..c(f), O-./c] to store the extra information. 
As discussed in the proof of Lemma 3.1.4, a maximum j-vertex 
cover V^ of T^ consists of I vertices from and j — I vertices 
from T^.. If V' contains vertex v, then such a value I can be 
obtained in the process of computing j] and we store it in 

Otherwise, I can be obtained in the process of comput-
ing by[i^j] and we store it in . 

Furthermore, to obtain the required j — I vertices from Ty., 
we need to know whether V' contains vertex Vi or not. There-
fore, in computing j], we put a symbol a or in Xy[i,j_ 
depending on whether Vi G i.e., whether a{Ty.J — 1) — 1 > 

— I). Similarly, in computing by[z, j], we put a symbol 
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a or in j] depending on whether Vi G i.e., whether 

Therefore for each ay[i^j] • —oo, we maintain values 
and j], and for each b y + —oo, we maintain values 

j] and j]. It is easy to see that it takes 0(1) extra work 
to compute these four values for each valid a^[i^j] and by . 
We now use these four values to construct a maximum k-vertex 
in T as follows. Let a), > J, be a maximum j-cover 
in Ti that includes vertex v, and j，/3)，> j + 1, be a 
maximum j-cover in T^ that excludes vertex v. Then we have 
the following recurrences for a) and (3): 

CC7；•’ l，a) = W， 

and 

It is important to note that whenever > j , ly[i,3] is de-
fined and thus both Z?[i，j]，a) and C(T叫 j], 
are defined. Furthermore, whenever > j+1 , is defined 
and thus both and —奶 i, j], A 作,j]) 
are defined. 

Since =n and n > /c+l, either k, a) or Ci^jf'�, k, (3) 
is a maximum /c-vertex cover V* of T” we can use the above re-
currences to compute these two /[；-vertex covers and take the 
larger one as V*. Because and TY. are vertex disjoint, it is 
easy to see that the total time for recursive calls in constructing 
y* is 0 (n ) . Therefore the total time to construct y* is 0{k'^n). 
Theorem 3.1.5 A maximum k-vertex cover of a tree T of n 
vertices can be found in 0{k'^n) time. 
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3.2 Partial t-trees 
In this section, we extend the idea in the last section to de-
rive a uniformly polynomial time algorithm to solve MAXIMUM 
/c-VERTEX C O V E R on partial t-tiees in 0{k'^n) time. The al-
gorithm will be used as a subroutine to solve MAXIMUM k-
V E R T E X C O V E R for planar graphs in the next section. 

Our algorithm will use a "regular" tree-decomposition of a 
partial 力-tree G = (V, E). Recall that a "regular" tree-decomposition 
is a tree-decomposition G VT},T = (VT.ET)) that has 
the following three properties: 

• T is rooted at some vertex r, 
• for all V e Vr, \Xv\ = t + 1，and 
• for all ( i j ) e Et, - Xj\ = 1. 

For the detail please refer to Section 2.1. 

Similar to the dynamic programming algorithm for trees in 
the previous section, we arbitrarily order the children of each 
internal node of T. And we regard T as an ordered tree rooted 
at vertex r. 

To avoid confusion, we refer to vertices in T as nodes. Before 
describing the algorithm, we first give some definitions, some of 
them are similar to that in the previous section: 

• For each node v of T, c{v) is the number of children of v in 
T. Note that c{y) equals to deg{v)-l, if v is not the root of 
T and deg{v) if v is the root of T. 

• For a node v, Vi represents the z-th child of v. 



CHAPTER 4. PERFECT GRAPHS 24 

• Ty denotes the subtree rooted at node v. T^ fi < i < c(v), 
denotes the rooted tree Ty — U 卖 i . e . , rooted tree 
obtained from Ty by deleting subtrees T叫 , T y . ^ ^，…， 
Ty咖Note that T^ = v. 

• For any subtree T' of T, X{T') denotes the set of vertices 
{u G G T'). 

• For 0 < 2 < c{v), 0 < j < A: and Z C X,, a{Tl j, Z) 
equals the maximum number of edges that can be covered 
by a set S of j vertices from X{Ti) with S Xy = Z. 

Note that for some combinations of T ^ j , Z, it is impossible 
to have a set S of j vertices from X(Tj;) with S'plX^ — Z. We 
define j , Z) as —oo for such case so that it will be ignored 
in the computation. And based on the definition, the maximum 
number of edges can be covered by k vertices in G is equal to 
the largest a(T^，k, Z) among all subsets Z of X^. 
Lemma 3.2.1 For 0 < i < c{v), 0 < j < k , a ( T l j , Z ) 
satisfies the following recursive formulas. 
For all node v (leave node and internal node): 

I —OO otherwise 

For each internal node v and 1 < i < c(v) where Xy — u = Xy. — w for some vertices u, w: 
‘ i f 1^1 < 3 

max[a(Ty.,j - x \Z - u\, Z — u), 
a(7tj，Z) = a{Ty,J-x + \Z-ulZ-u + w;)]}-

e(Z - u) 
—oo otherwise 
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Proof Z) means choosing j vertices only from node 
Xy, under the restriction of Z. If j is not equal to \Z\, we can't 
choose such a set of j vertices. So we have 

(”,",) i e(Z) otherwise 
Now we consider \Z\ < j. We first show that 

majc[a{Ty,J - x+\Z-ulZ -u), ( H ) 
-ulZ-u + w)]}- • 

e{Z - u) 
Consider a set V' of j vertices from X{Tl) which covers Z) 
edges and V'^X^ = Z. We claim that V'^X^. = {Z - u) or 
{Z — u w) depending on whether w G 

As we are given V' {^Xy = Z and = Xy — u+w^ (Z —it) C 
y' n (if W ^V) ox [Z -u + w) C w e V). 

Assume there is a vertex y, such that y G V' p| Xy. and y • 
{Z — u){ox {Z — u + w)). Because u ^ Xy., y u. Then we know 
that y ^ Xy^ y E Xa for some node a in 一i — v. Consider the 
path { a , … , V , Vi] in T, ^ G Xy^ and y • Xy. This violates 
the definition of tree decomposition that the subsets containing 
y have their nodes connected in T. So V' H Xy. — {Z — u) if 
w i VCiXy^ = {Z-u + w) ifw eV. 

Since V' C T工 V' contains x vertices in T广 for some 0 < 
X < J, and thus V' contains j — x \Z — u\ vertices in Ty.. The 
relation is shown in Figure 3.3. The number of edges covered by 
these j — X \Z — u\ vertices in Ty. will be less than or equal to 
max[a(T；” j — Z — w), 0；(7；‘，j — — ti|，Z-u+w)], 
so we get the above inequality. 
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r-""- 
I . I , ' : / " ^ 、 
I y I / Vertices \ 
I ^ /• • ' ' i shared by Xy 

I o ……6 I 6:::T 
• I w � / \7 t I ‘ Xvand Xy, / 
I L : 上 ： v i 「 • . . . . 

i X vertices chosen in X(Ti ) i “ 

y vertices chosen in X(Ti) 
Figure 3.3: Relation between X^ and Xy. 

We now show that 
maxla{TviJ - X\Z -u^Z -u), (3.2) 

- X \Z - ul Z - u w)]}-
e{Z - u) 

Consider a set V' of j — x + \Z — u\ vertices from 
which covers max[a(Ti；.,j — x + | Z _ i i | , Z _ i i )， — x + 
Z-u\,Z-u-^w)] edges and V' f ] X^. = {Z-u) or {Z-u-]-w), 

depending on which choice covers more edges. 
We claim that V' {^Xy = {Z - u). Assume there is a vertex 

y such that y G V^ f]Xy and y • {Z — u). Because w 朱 Xy, 
y ^ w. Then we know that y e Xa for some node a in the 
subtree Ty.. Consider the path ...，a} in T, y 6 Xy, Xa 
and y • X”�This violates the definition of tree decomposition 
that the subsets containing y have their nodes connected in T. 
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So V ' f ] X y = {Z-u). 

By combining V' and a set of x vertices V" from T^"^ where 
V" {^Xy = Z, we get a set of j vertices in By definition, 
the edges covered by these j vertices will be less than or equal 
to Z). So we get the above inequality. 

By combining inequalities 3.1 and 3.2, we know that, 
a i J t j , Z)= m^x{a{Tt\x,Z) 

0<x<j mdix[a{Ty.^ j — rc + — Z _ u), 
o:(Ty.,j — X -h IZ — ul, Z — u + 'w^)]]-— 

e(Z-u) 
• 

The recurrence in Lemma 3.2.1 is the main part of our dy-
namic programming algorithm. To compute a(T, k, Z), we asso-
ciate each node v with an array 0..A:, S] where S C Xy 
such that ay Z] = Z). 

To compute the array for each node, we process nodes ac-
cording to their depth in T starting with the deepest leaves. 
For each Z C X”, we fill the array â ;[0..c(̂ ;)，0../c, Z] row by row. 

For a regular tree decomposition T of a graph of n ver-
tices, ^ c{v) = 0(n). For each node Xy, there are 2力十丄 pos-

veT 
sible subsets of it. So the total number of entries in array 
ay[0..c{v),0..k,S] for all S C Xy is 0(A;n2力+”. Each entry re-
quires 0{k) time to compute, so the total running time of the 
dynamic programming algorithm is 
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To find a maximum /c-vertex cover in G, we need to store 
extra information in the dynamic programming algorithm. For 
each node Xy, we use two arrays 0..A:, Z] and A抓.c�，0../c, Z 
for each Z Xy to store the extra information. As discussed in 
the proof of Lemma 3.2.1, for a set of j vertices V' C T^ which 
covers a J T ^ j , Z) edges and V^ p| Xy = Z, V' will contain x 
vertices in Ẑ一i and j — x \Z — u\ vertices in Ty.. The value 
of X can be found during the computation of j, Z) and we 
store it in Z . 

Furthermore, to know the j — x+\Z — u\ vertices in we 
need to know whether the V' contain vertex w, the only vertex 
in Xy. — Xy. In computing Z), we put the vertex w or 0 
in Xvl'^jj, depending on whether V' contains w. 

Therefore, for each a^lij^ Z] + —oo, we maintain the values 
Z] and A”[i，j，Z]. It is obvious that the computations of 
Z] and A ” [ � j , Z] take 0(1) extra work. Let Z), 

with Z) + —oo, be a set of j vertices from X(T^), such 
that it covers Z) edges in G and Z) fl X̂； 二 Z. 
Then we have the following recurrence: 

'Z i f i = 0 
Z) = i C{Ti-\x,[iJ, ZIZ)U otherwise 

� — Zj + lZ-ul,ZU Z]) 
(In the recurrence, u represents the only vertex in Xy — Xy..) 

According to Lemma 3.2.1，when a办 j, Z) — —oo for z > 0, 
then there exists two values Z) + —oo and a{Ty.,j — 
rr + — ^ x|，— o o for some 0 < x < j and Z' C X^.. So 
when Z) + - o o , CiT^j, Z) is defined and so as the two 
subsets constructing it. 
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For all Z C X” the set C(^T” k, Z) that covers the maximum 
number of edges will be the maximum /c-vertex cover V* of G. 
We can use the above recurrence to compute all 2叫 /c-covers 
and take the largest as V*. 

In the above recurrence, the two subsets from T广 and Ty. 
may not be disjoint. As the size of these two subsets are at most 
k, we can construct j，Z) in 0{k) time. And there are up 
to 0{kn) recursive calls of the above recurrence. Therefore the 
total time to find F* is time. 
Theorem 3.2.2 A maximum k-vertex cover on a partial t-tree 
can be found in time. 
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3.3 Planar graphs 
In this section, we present the main result of this chapter — a 
uniformly polynomial-time algorithm for finding a maximum k-
vertex cover in a planar graph. The main idea of our algorithm 
is to use the Extension Lemma in Chapter 2 to reduce the prob-
lem on a planar graph to that on a partial i-tree, and then use 
the algorithm in the previous section to solve the problem. 

To find a maximum /c-vertex cover in a planar graph, we start 
with a maximum 1-vertex cover by taking an arbitrary vertex 
of maximum degree. Then for each 1 < z < A; — 1, we use the 
Extension Lemma to update a maximum z-vertex cover 5 to a 
maximum (2+1)-vertex cover S' by either adding a vertex to S 
or replacing a subset D C 5 by a set D' of \D\ + 1 vertices from 
N{D) - S. 

If S is extendible to a maximum [i + l)-vertex cover S'” 二 
S U {吐 then f is a vertex of maximum degree in G — which 
can be found in linear time. Otherwise, for every D C we 
find a replacement D丨 of D in N{D) — S and hence a candidate 
{i + l)-vertex cover S'd = S - D . Amongst all (z +1)-vertex 
covers in {5^, D C 5}, we take the one that covers the 
maximum number of edges as the maximum {i +1)-vertex cover 
S'. 

To find the set D' for a given D, we construct a graph G' 
from G[N{D) - 5], the subgraph of G induced by N{D) - S, 
by the following operations. For every edge (u^v) in G with 
u e N{D) - S, V • N{D) U ( 5 - D), we add a new vertex w肌 
and connect it with vertex u in G[N{D) - S]. See Figure 3.4 for 
an example. 
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S N(D)-S 
/ � 

• - . / \ 

.... / 、、 — 

i ( 、 、 ^ ^ ^ L ® 4 ® i 

Figure 3.4: An example on constructing G' 

A maximum i-vertex cover of G' is called internal if it con-
sists of vertices in N{D) — S only. Note that for any set V' of 
vertices in G' with Wuv G V'^ the number of edges covered by 
V' will not be decreased if we replace w— by u. Therefore G' 
always has an internal maximum (|D| + 1)-vertex cover. 
Lemma 3.3.1 For any DCS, every internal maximum {\D\ + 
I)-vertex cover C of G' is a required set D丨 for D. 
Proof Assume the lemma is wrong, that is, there is a set of 
{\D\ + 1) vertices in N{D) — S, say V', covers more edges than 
C m G — [S — D). Note that the construction of G' guarantees 
that any subset of N{D) — S covers the same number of edges 
in both G—{S — D) and G'. So V' covers more edges than C in 
G'. This contradicts to that C is a maximum {\D\ + 1)-vertex 
cover of • 
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By Lemma 3.3.1, we can find the required set D' by finding 
an internal maximum {\D\ + 1)-vertex cover in G'. The main 
steps of our algorithm are summarized in the following pseudo 
code. 
Algorithm Maximum /c-Vertex Cover in planar graphs 
1. S = {v} where v is an arbitrary vertex of maximum degree. 
2. FOR i = 2 TO A: DO 
3. S' = S Uv where f is a vertex of maximum degree m G — S 
4. FOR i ^ C ^ D O 
5. IF - 5 1 > p l + 1 THEN ； 
6. Construct the graph G' from D | 
7. D' = arbitrary internal maximum (|i:)|+l)-vertex cover of G' | 
8. IF e{S-D + D') > e{S') THEN j 
9. S' = S-D + D' I 
10. 5 = 5' 5 I'J-
11. output S ；:: i 

We claim that the above algorithm runs in uniformly poly- ^ 
nomial time. The key to this claim is that the graph G' has > 
bounded tree width and thus we can use the algorithm for par- J 
tial i-trees in the precious section to find D'. First we note that % 
G[N[D]], which is related to G' as we will see shortly, is a planar ； 
graph with domination number < \D\, since D forms a domi- I 
nating set. It follows from the following lemma that G[N[D] 
has treewidth at most 
Lemma 3.3.2 (Alber et.al. [3]) A planar graph with domina-
tion number d has treewidth at most 6\/M\/d and such a tree 
decomposition can be found in 0{\fdn) time. 

For graph we recall that it is constructed from G[N{D)— 
S] by attaching degree-one vertices. It is easy to see, by the 
definition of partial t-trees, that the treewidth of G' is the same 
as G[N{D) - S\. Since G[N[D) - S\ is an induced subgraph 
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of G[N[D]], it also has treewidth at most There-
fore G丨 has treewidth at most and thus is a partial 
( 6 \ / 3 4 v ^ ) - t r e e . By Theorem 3.2.2, a maximum {\D\ + 1)-
vertex cover in G' can be found in time. 
Theorem 3.3.3 Algorithm Maximum k-Vertex Cover in 
planar graphs can solve MAXIMUM /C-VERTEX COVER on 
planar graphs in time. 
Proof In the algorithm, line 5-9 will be executed for 0{k2^) 
times. By Lemma 3.3.2, line 6 can be done in 0{Vkn) time. 
Line 7 requires 

operations. So the total running 
time for finding a maximum k-vertex cover on a planar graph is 



Chapter 4 

Perfect Graphs 

A graph G is called a perfect graph if for every induced sub-
graph H of G, its clique number equals chromatic number. The 
notion of perfect graph was introduced by Berge in early 1960s, 
and since then, many classes of graph are shown to be perfect. 
In this chapter, we study MAXIMUM /C-VERTEX COVER and 
some related problems for various subclasses of perfect graphs. 
In Section 4.1，we will show how to solve MAXIMUM /C-VERTEX 
C O V E R in a cograph in 0(k'^n) time. In Section 4.2, we give 
an 0�hn?) algorithm to find a maximum dominating A:-set in an 
interval graph, and, in Section 4.3, we present a uniformly poly-
nomial time algorithm to find a maximum /c-vertex subgraph in 
a chordal graph. 

4.1 Maximum /c-vertex cover in cographs 
In this section, we give an 0{k'^n) algorithm to find a maxi-
mum /c-vertex cover in a cograph. For the definition of cographs 
please refer to Section 2.1.3. 

To derive a dynamic programming algorithm for finding a 
maximum /c-vertex cover in a cograph G, we first give some 
definitions. We assume that G has at least k + l vertices, and 

34 
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its cotree T is a rooted ordered tree. 
Definition 4.1.1 Let v be a node of a cotree T. We use c{v) 
represent the number of children of v, and Vi {I < i < c{v)) to 
represent the i-th child of v. 
Definition 4.1.2 For each node v of a cotree T，% denotes the 
subtree rooted at v, and Tj; ,0 <i< c{v), denotes the rooted tree 
Ty — Uj=i+i ^vj, i.e., rooted tree obtained from T” by deleting 
subtrees Ty…，T”计]，...，'^Vc(v) • 

Note that is the tree containing the single node v, and 
rp _ rpC{v) 
丄 U — V • 
Definition 4.1.3 Let G(Ty) represent the graph induced by the 
vertices of G corresponding to leaves ofTy. We use \G{Ty)\ to 
denote the number of vertices in G{Ty), i.e., the number of leaves 
ofT,. 
Definition 4.1.4 For each node v of a cotree T, f{Tl,j) equals 
the maximum number of edges in G that can be covered by j 
vertices corresponding to leaves ofTl. If j > number of leaves 
in Ti, f{TiJ) is defined as - o o to represent it is impossible. 

By definition, the maximum number of edges can be covered 
by k vertices in a cograph is equal to / (T” k). 
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Lemma 4.1.5 For every 0 <i < c{v), 0 < j < k, sat-
isfies the following recursive formula. 
If T^ is a leaf node, 1) 二 degree of the corresponding ver-
tex. 
Forj = 0, f { T l j ) = 0 
For i> 0 andj > \G{Ti)\, f { T l j ) 二 - oo . 
For the other cases, 

‘ m a x [ / ( T r \ j - 0 + f{Tvo 01 if ” is 0-node 
f{T\j) = 0 処 

“ max[/(rr\i - 0 + 0 - Kj - 0] if ^ is 1-node 
V 0<l<j 

Proof The first 2 lines of the lemma are self-explaning. 
When i > 0 and j > \G{Tj;)\, it is impossible to choose such 

amount of vertices from G(T^), so we define /(T^, j ) as - o o to 
ignore such case. 

For the remaining cases, when is a 0-node, consider u, a 
leaf node of T .̂ and w, a leaf node of where i — The cor-
responding vertices of u and w are not adjacent in G, because 
the path from u to r meets the path from it; to r at a 0-node, 
V. So, for a set V' of j leave vertices of T^ which covers 
edges in G, if I vertices is from Ty., these I vertices cover /(T^., I) 
edges in G. 

For ̂； is a 1-node, consider u, a leaf node of Ty. and w, a leaf 
node of Ty., where i + z'.The corresponding vertices of u and 
w are adjacent in G, because the path from u to r meets the 
path from IL* to r at a 1-node, v. So, when we combine I leave 
vertices from Ty. with j - I leave vertices of l{j — I) edges 
are covered by both sets. So in the formula we minus the term 
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l{j — I) to cancel the double counting. 

. . • I vertices W W W W … w 
G(TI) G(TVM) G(TVi) G(TVI+I) G(T 中)） 

j-l vertices from TI covers 
f (Tj-i J-l) edges 

Figure 4.1: When ̂； is a 0-node, the subgraphs induced by all its subtree are 
not connected. 

• • • I vertices • • • 

G(Tvi) G(TVi.i) G(To(v)) 

j-l vertices from Ty covers 
f(Tj" \ j - l ) edges 

Figure 4.2: When v is a 1-node, vertices in different subtrees are adjacent to 
each other. 

• 
To compute /(T^, j ) , we associate each node with an array 

ay[0..c{v), O-./c] such that ay[ij] = To compute the ar-
ray for each node, we process nodes according to their depth in 
T starting with deepest leaves. For each node, we fill the array 
ay [i,j] row by row. 

As every internal node of a cotree has at least 2 children 
node, ^ ^ c{v) = 0{n). So for the whole cotree, there are totally 

VGT 
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0{kn) entries in array ay[ij] to be filled. Each entry requires 
0{k) time to compute, so the total time of the dynamic pro-
gramming algorithm is 0(/c^n). 

To find a maximum /c-vertex cover in G, we need to store 
extra information in the dynamic programming algorithm. For 
each node v, we use an array ly[0..c(v),0..k] to store the extra 
information. As discussed in the proof of Lemma 4.1.5, a set of 
j vertices V' in G{Ty) that has the nodes from T^ will contain 
I nodes from Ty. for some I. The value of I can be found in 
computation of f{T^J) and we store it in Q i J . 

Let C{TiJ) with f{TiJ) — - o o "be a set of j vertices repre-
sented by leave nodes of T^ such that it covers /{T^J) edges in 
G{Ty). Then we have the following recurrence: 

‘vertex represented by v if t; is a leave node and j = l 
C{Ti,j) = I (j) if is a leave node and j = 0 

[C(Ti-\j - Ivihj]) U C{Ty,,k[iJ]) otherwise 

According to Lemma 4.1.5，when /(T^, j ) — —oo with v is 
an internal node, then there exists f { T i - \ j - I) ^ —oo and 
/(T；，)，I) + - o o for some 0 < / < So when /(T；、j) + -oo , 
C { T i J ) is defined and so as the 2 subsets constructing it. 

In the above recurrence, there are up to 0{kn) recursive calls 
of the recurrence, and each call requires 0(1) operation. So the 
above recurrence can form in 0(kn). As we need 
0{k'^n) to build the /̂ [z, j] table, the total running time to find 
a maximum /c-vertex cover in a corgaph is 0{k'^n). 
Theorem 4.1.6 A maximum k-vertex cover in a cograph can 
be found in 0(/c^n) time. 
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i i faU) 
0 0-2 0 

T: 1 0 0 
1 1 4 

root̂ ,̂ ^ 1 2 7 

_ j _ i _ t n L h W ^ 1 t 
0 0-2 0 2 2 7 

1 1 1 / \ i j f(lLj) 
1 2 1 / \ 0 0-2 0 
2 0 0 / \ 1 0 0 
2 1 1 f ^ 1 1 0 
2 2 W 2 0 ^ 

i i fdlJl / \ / \ 2 2 0 

1 0 ? y \ / \ 
i M Q c d e f \ \ ； / \ 

a b 

Maximum 2-vertex cover = {b，c} 

Figure 4.3: Finding a maximum 2-vertex cover of the cograph in Figure 2.3 

4.2 Maximum dominating fc-set in interval graphs 
In this section, we present an 0(n^/c + n , algorithm to find 
a maximum dominating k-set in an interval graph, where n切, 
current w ^ 2.376, is the running time of multiplying two nxn 
matrices. 

A graph G 二 (V, E) is an interval graph if every vertex can 
be associated with an interval on the real line, such that two 
vertices are adjacent if their associated intervals intersect. A set 
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S of k vertices is a maximum dominating k-set in a graph G if 
N[S]\ is maximum among all the set of k vertices. 

0 ^ 3 4 ^ 9 IjO C 15 16 d 17 18 ^ 23 24 ^ 26 28 9 30 
^ h 13 ‘ 20 22 i 29 3 e  

2 k 11 12 P 14 21 I 25 27 ^ 31 

Figure 4.4: An interval graph and its corresponding interval set. 

Interval graphs are a subclass of chordal graphs. Using a 
result of Gavril[15], one can find all maximal cliques of an inter-
val graph in linear time. Gilmore and Hoffman [4] proved that 
the maximal cliques of an interval graph can be linearly ordered 
such that for each vertex v, the maximal cliques containing v 
occur successively. Such an ordering of maximal cliques can be 
found in linear time [5 . 
Definition 4.2.1 We call the linearly ordered cliques as Ci, C2,…Cp 
where p is the number of maximal cliques in G. 
Definition 4.2.2 For each Q, we define Li as follow. Lp = 
Cp, Li = Ci - uPj=i+iCj for i < p. That is, if v e Li, Q 
contains the last appearance of v in the ordered cliques. Note 
that LiU L2U ...U Lp = V. 
Definition 4.2.3 The index F{v) ofv is the smallest number 
i such that v e Ci. Let Vi be a vertex in Li with the smallest 
index. 
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i Cj ^ Vj F{vi) 
1 {k, n, a } {a} a 1 
2 {k, n, b, h} {n, h} n 1 
3 {k, 0’ b } {b} b 2 
4 {k, 0’ c } {k} k 1 
5 {i, o, c, p} {c, p} c 4 
6 {i, 0’ d } {d} d 6 
7 {i, 0，e } {i, o} o 3 
8 {j, 1, e } {e} e 7 
9 {j’l，f} {1, f} 1 8 
10 {j, m，g } {j, m, g} I j I 8 

Table 4.1: Q , Li, Vi and F{vi) of the interval graph in the Figure 4.4 

Lemma 4.2.4 A maximum dominating k-set of G can be ob-
tained from k vertices in {t^i, . •., Wp}. 
Proof For a vertex u in Li, it appears in CF{U)CF{U)+I . . . Q -
Since Vi appears in CF{vi)CF{vi)+i …Ci where F{vi) < F{u), so 
N[u\ C 口 

Before deriving the algorithm to find a maximum dominating 
A:-set, we first introduce a labelling scheme that will help us to 
derive the algorithm. Ramalingam and Rangan [6] showed that 
for an interval graph G = its vertices can be labelled 
from 1 to n, represented by label{v), such that for i < j < k, 
if {i, k) e E, then (j, k) e E. They also gave an algorithm for 
finding such labelling. We slightly modify their algorithm so 
that Vi will get the smallest label in U. This property will be 
used in the next part to derive the final algorithm. 
Algorithm Labelling 
1. Z = n 
2. FOR i = p downto 1 DO 
3. FOR each vertex v in Li DO 
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4. label v as I 
5. / = 
6. V = Vi (the vertex with smallest F{v) in Li). 
7. 二 the vertex with smallest label in Li. 
8. IF V ^ u , THEN swap their label. 
Lemma 4.2.5 The labelling produced by algorithm Labelling 
will maintain the following 2 properties: 

• For i < j < k, if (z, k) G E, then {j, k) G E. 
• Vi will get the smallest label among all vertices in Li 

Proof To prove the first property, we will use first{v){last{v)) 
to represent the minimum (maximum) index i such that v e Q. 
In the algorithm, vertices in L^+i will be labelled before that of 
Li. So for i < j < k, last{i) < last{j) < last{k). If {i,k) G E, 
i, k will both exist in some clique Cx where x < last{i), and so 
first{k) < last{i). Prom this inequality, we see that first{k) < 
last{i) < last{j) < last{k), that means j,k will both exist in a 
certain maximal clique. So we know (j, k) G E. 

The second property is obviously maintained by lines 6-8 of 
the algorithm. • 

Definition 4.2.6 Let DS{i, k') be the maximum number of ver-
tices dominated by Vi and k'-l vertices from {i>i+i，i>i+2,. •., 
where vi has the smallest F{v) among the k' vertices. 

Note that for certain z, A/, there may be less than k'-l vertices 
in {夠+1，^»i+2，...,�} with F{v) > F{vi), in such case we define 
DS{i,k') = -oo . 
Lemma 4.2.7 For 1 < i < p, 1 < k' < k, DS{i,k,�satisfies 
the following recurrence relation: 
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Fork' == 1, DS(i,k') = 
For the other cases, 

‘ - o o F(vi) > F � Va; > i 
DS(i k'�= I max (DS(x,k' - 1) + \N[vi]\ otherwise 

、，7 i<x<p,Fivi)<F{vx) 

� -liVHHiVNI) 
Proof First line of the lemma is trivial. 

To prove the correctness of second line, let S be the set of 
vertices corresponding to DS{x, k, — 1) as S. If F{vi) > F{vx) 
for all X > 2, then we have no need to consider taking vi because 
N[vi] C N[vx], and this should be considered as impossible and 
defined with the value —oo. 

Now we assume F{vi) < F{vx) for some x > i, we will show 
that every vertex u dominated by both Vi and S is dominated by 
Vx. First, label{vi) < lahel{vx)> Because our labelling algorithm 
will first label vertex in Lx before labelling Li for i <x. label{u) 
will fall in either one of the following cases: 

• label(u) > label{vx) 
Because labeliyi) < label{vx) < label(u), {vi,u) G E implies 

e E. 
• label{u) < label(vx) 

As label{u) < label{vx), u e L^' for some x' < x. 
Assume u is dominated by some Vy{y > x) in S but not Vx^ 
Then the edge {u, Vy) will not exist in CV ⑷，CV �+i， . . . 
otherwise the edge (u, Vx) exists. If (u, Vy) exists in C V � 
for ^ > 0, then F(vy) < F(vx), violating v^ has the small-
est F{v) in S. If (u, Vy) exists in C^+s for (5 > 0, then it 
conflicts with u G L^' for some x' < x. 

As every vertex u dominated by both Vi and S is dominated by 
Vx, we know that there are Pi A/"[i;�vertices dominated by 
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both S and Vi. So we get we formula DS{x, A/ — 1) + \N[vi]— 
外 川 冲 』 . • 

By definition, the maximum number of vertices dominated 
by k vertices is equal to maximum DS{i, k) for 1< i < p. How-
ever, DS{i, k) may be equal to - o o for oil I < x < p if the 
interval graph can be dominated by less than k vertices, so we 
will compute all DS{i, k') iox I < i < p, I < k' < k, and output 
the entry with maximum value as the solution. As finding the 
consecutive clique ordering Ci, C 2 , C p can be done in linear 
time, we assume it is part of the input. 

Algorithm MaxDS(/c) 
1. Find Vi ioT 1 <i < p. 
2. Compute A iVliijl for all pair of f, u by matrix multiplication 
3. DS(p, 1) = deg(vp) + 1 
4. FOR i = p-l downto 1 DO 
5. FOR k' = 1 to k DO 
6. Compute DS{i^ k') based on the Lemma 4.2.7. 
7. IF = 1 THEN 
8. all, k'] = 0 

9. ELSE IF DS{i, k') ^ -00 THEN 
10. a[i,k'] = Vi . 
11. Find z, k' where DS{i, k') is maximum. 
12. S = (f) 
13. WHILE k' > 0 
14. S = S\Jvi 
15. i = a[i, k'] 
16. k' = k' -1 
17. OUTPUT S 
Theorem 4.2.8 The algorithm MaxDS(k) can find a maxi-
mum dominating k-set in an interval graph in 0{n'^k+ri^) time. 
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Proof The algorithm uses Lemma 4.2.7 to compute DS{i,k') 
for all possible i, pairs. Prom Lemma 4.2.7, we know that the 
maximum value of DS{i, k') must be positive, since DS(i, 1) > 0 
for all i. For each DS{i, k') — -oo , a[z, k^] is defined and 
store the next vertex to be included in the set corresponding 
to DS{i, k'). So in line 11 to line 17, our algorithm will find out 
the maximum dominating k-set correctly. 

The complexity analysis of the algorithm is as follows. Line 
1 needs 0(n) operations. Line 6 to 10 will be run for 0(pk)= 
0(nk) times, where each time needs 0(n) operations. So line 
6 to 10 needs 0{n^k) operations. Line 11 to 17 can be done 
in 0{nk) time. So the total complexity of our algorithm is 

+ where n切 is running of multiplying two n x n matri-
ces. (The best matrix multiplication algorithm currently known 
was presented by Don Coppersmith and S. Winograd in 1990 
16], has an asymptotic complexity of • 

l | 2 ! 3 
10 6 -oo -oo 
9 4 6 -oo 
8 5 5 8 
7 7 7 13 
6 3 3 9 
5 5 5 12 
4 7 7 16 
3 5 5 15 
2 5 5 16 
1 I 3! ^ iL 

Table 4.2: DS{i, k') of interval graph in the Figure 4.4 

For a subclass of interval graphs, called proper interval graphs, 
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there is an ordering such that for all vertex v, iV[f] comes in a 
consecutive sequence. And this ordering can be found in linear 
time[17]. With this ordering, we can find \N[v] Pi N[u\\ in 0(1). 
So we can modify the line 2 of our algorithm to find a maximum 
dominating k-set in proper interval graphs in 0(n^/c) time. 
Theorem 4.2.9 A maximum dominating k-set can be found in 
a proper interval graph in Oin^k) time. 

4.3 Maximum fc-vertex subgraph in chordal 
graphs 

A set S of k vertices is a maximum /c-vertex subgraph of graph 
G if the subgraph induced by 5, G{S), has the maximum num-
ber of edges among all the subgraphs induced by k vertices of 
G. In this section we first derive a uniformly polynomial time 
algorithm for finding a maximum /c-vertex subgraph in partial t-
trees. And then extend the algorithm to an algorithm 
for finding a maximum k-veitex subgraph in chordal graphs. 

4.3.1 Maximum /c-vertex subgraph in partial t-trees 

In this part we will find a maximum A:-vertex subgraph in a par-
tial t-tree G = {V, E) by using its "regular" tree-decomposition 
{{X,\veVT}.T={yT,ET)). 

We also use the same notation c{v), vi 工 and X{T') as 
section 3.2. 
Definition 4.3.1 Let Z) be the size of a maximum sub-
graph induced by a set, S, of j vertices from X(T^) with SnX幻 
= Z . 

Recall that in a "regular" tree-decomposition, for all 
G Et, \Xi — Xj\ = 1, and we have the following definition. 
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Definition 4.3.2 We use u to represent the only vertex in Xy — 
Xy. and w to represent the only vertex in Xy* — Xy. 
Lemma 4.3.3 For 0 <j < c{v), 0 < j < k, a{Tlj, Z) satis-
fies the following recursive formulas. 

For all node v (leave node and internal node): 

”’， 1 size of the subgraph induced by Z otherwise 

For each internal node v and I <i < c{v) where Xy—u = Xy.—w 
for some vertices w, w: 

‘ - o o if IZI > j 
max {a(r广 1, x, Z)+ otherwise 
0 < x < j 

size of the subgraph induced by Z 
\ 

The proof of this lemma and the algorithm for finding a maxi-
mum /c-vertex subgraph is similar to that in Section 3.2, we omit 
it here. 

4.3.2 Maximum /c-vertex subgraph in chordal graphs 

A graph G is called a chordal graph if every cycle of length 
greater than 3 has a chord, i.e., an edge joining 2 non-consecutive 

‘ vertices in the cycle. Split graphs and interval graphs are sub-
classes of chordal graphs. For chordal graphs, there exists lin-
ear time algorithm to find its maximum clique[15] and its tree-
decomposition [20 . 

For any graph G, the size of a maximum A:-vert ex subgraph 
is between 0(the k vertices form an independent set) and k{k — 
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l ) /2( the k vertices form a clique). So we can find a maximum 
/c-vertex subgraph in a chordal graph G in this way. First, find 
a maximum clique C in G. If C contains more or equal to k 
vertices, output C as solution. Otherwise the treewidth of G 
< /c (treewidth of a chordal graph is bounded by the size of its 
maximum clique), then we can a maximum A:-vertex subgraph 
by the uniformly polynomial time algorithm in section 4.3.1. 

The running time of the above method is dominated by the 
algorithm of finding a maximum /c-vertex subgraph in a partial 
亡-tree, which needs time. If the treewidth is bounded 
by k, the running time becomes So we come to the 
following result. 
Theorem 4.3.4 A maximum k-vertex subgraph can be found in 
a chordal graph in time. 



Chapter 5 

Concluding Remarks 

5.1 S u m m a r y of results 
In this thesis, we have mainly studied the problem of finding 
maximum /c-vert ex covers in various graph classes. 

First we have obtained the Extension Lemma which shows 
a useful relation between maximum {k - l)-vertex covers and 
maximum /c-vertex covers in general graphs and plays a key role 
in our uniformly polynomial time algorithm for planar graphs. 

For trees, we have given an 0{k'^n) algorithm to find max-
imum A:-vertex covers. We have also devised an 
algorithm to find maximum /c-vertex covers in partial t-trees. 
Combining the Extension Lemma and the algorithm for partial 
亡-trees, we have obtained a uniformly polynomial algorithm for 
finding maximum /c-vertex covers in planar graphs. We have also 
obtained an 0{k'^n) algorithm for finding maximum /c-vertex 
covers in cographs. 

Furthermore we have studied two related problems for some 
subclasses of perfect graphs. We have devised an 0(/cn^) algo-
rithm to find maximum dominating /c-sets in interval graphs, 
and a uniformly polynomial time algorithm for finding maxi-

49 
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mum induced /c-subgraphs in chordal graphs. 

5.2 Open problems 
In Chapter 3, we develop an 0(/c^n) algorithm to find a max-
imum /c-vertex cover in a tree. It is interesting to investigate 
the structural properties of tree, to help us solving the problem 
more efficiently. If we can find a faster algorithm, it may give us 
direction to improve the algorithm of partial t-trees and planar 
graphs. 

Extension Lemma is the key idea of Section 3.3. We can 
consider if this Lemma can be applied in other graph classes 
to solve M A X I M U M /C-VERTEX COVER efficiently. Using similar 
logic, we can easily derive the "Extension Lemma" for MINIMUM 
/ C - V E R T E X COVER ： 

Lemma 5.2.1 For every minimum k-vertex cover S, I <k < 
n, if S is not extendible, then for any maximum {k-{-l)-vertex 
cover S', every vertex in S' - S is NOT adjacent to any vertex 
inS- S丨. 

It is interesting to study if this lemma can help us to solve MIN-
IMUM A：-VERTEX COVER Or MINIMUM ( n — k)-YEKTEX COVER. 

In section 2.3, we proposed the Extension method to solve 
M A X I M U M /C-VERTEX COVER on bounded degree graphs. Such 
methods can be applied to any problem once we find some rela-
tionship between solution of size i and solution of size (z + 1). So 
we are interested to find such relationship in other NP-Complete 
problems. 

V E R T E X COVER becomes polynomial time solvable when re-
stricted to various graph classes, for example, bipartite graphs, 
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interval graphs, chordal graphs, etc. However, in these graph 
classes, it is still unknown how fast we can solve MAXIMUM k-
VERTEX COVER. 
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