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Abstract 

A line drawing is defined as the 2D projection of the edges and vertices of a 3D object 

in a generic view, with or without hidden lines invisible. The line drawings might be the 

most straightforward and easiest way to illustrate 3D objects. Since the early stage of 

computer vision, understanding line drawings has been an important research area and 

invites numerous considerations and efforts. Of all these research topics on line drawings, 

reconstructing 3D objects from single 2D line drawings is the most important and difficult 

problem. The human vision system has the ability to interpret 2D line drawings as 3D 

objects without difficulty. However, such a task is not easy for a computer vision system. 

Researchers have presented some algorithms to recover 3D objects from line drawings, but 

the pervious work has two limitations. First, none of the previous methods can recover a 

complete object if the hidden lines of the object are not shown. Second, most of them can 

only handle line drawings of simple objects with planar faces. Reconstruction of curved 

objects remains an unsolved problem. Most of the work in this thesis is devoted to conquer 

these two limitations existing in the previous work. 

To reduce the first limitation, we show that given some constraints, the topology of the 

hidden parts in a line drawing could be effectively inferred by an algorithm proposed by us. 

Then we can employ a reconstruction method based on perceptual symmetry and planarity 

of the object to recover the 3D shape of both the visible parts and the hidden parts of the 

object. 

Our second contribution is to generalize the reconstruction from line drawings of objects 

with only planar faces to the objects with both planar and curved faces. Our approach 

includes (1) transforming the line drawing of an object with curved faces into one with 

planar faces only, (2) identifying the faces of the transformed line drawing, (3) reconstruction 

of a planar object from the transformed line drawing using the former methods, and (4) 

generation of the curved faces by developing Bezier curves and surface patches. In addition 

it also provides an interface to recover 3D models from images. To the best of our knowledge, 
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our work is the first to provide such reconstruction from single line drawings. 

Although our approach can carry out the 3D reconstruction for a large range of objects, 

the reconstruction of curved objects from single view is not fully solved. To reconstruct 

more complex objects, the nature and properties of general curved surface model should be 

explored. In the last part of this thesis, we define and study a new class of curved objects, 

called Degen generalized cylinders (DGCs) with the help of the surface model proposed 

by Degen for geometric modelling. The research of DGCs is derived from the discussion 

of the conditions when straight homogeneous generalized cylinders (SHGCs) and tori have 

planar limbs. Then, through the rigorous discription based on projective geometry and 

homogeneous coordinates, we prove that DGCs enjoy invariant properties that reveal the 

relations among the planar limbs and view directions, which generalize the work of D. Marr 

and J. Ponce. DGCs include tori, quadrics, cyclides, SHGCs and some other curved objects 

into a unified model. We expect the research of DGCs will benefit the reconstruction of 

curved objects in our future work. 
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摘要 

三維物體的頂點和邊在二維平面上的投影構成了錢條盡。在投影中，可以選擇窨出或者不 

盡出不可見的邊，由此構成的錢條盡作爲一種簡捷直觀的顯示三維物體的方法。理解錢條 

窗是计算机视觉中的一个重要的研究课题。人眼可以輕鬆的從二維錢條盡中感覺到物體的 

三維形狀，但是計算機視覺要完成類似的功能並非同樣輕鬆。已經有一些研究工作能夠成 

功的從二維錢條蟲中重建三維物體，但這些現有的工作都局限于平面物體，並且要求所有 

的不可見的邊都在錢條蟲中顯示出來。從錢條華中重建曲面物體，或者從沒有不可見邊的 

綫條盖中重建三維物體，都超出了現有算法的能力範圍。在本篇論文中，我們集中討論如 

何克服這兩方面局限。 

爲了克服第一种局限，我們證明了如果給定一些假設限制，錢條蟲中的不可見部分的拓 

撲形狀可以被一種新算法有效的推斷出來，随之我們採用了基於視覺對稱性和共面限制的 

重建算法來同時恢復可見部分和不可見部分的三維形狀。 

我們第二方面的貢獻是關於從錢條盡中重建三維物體。這些物體可以同時具有平面和曲 

面。我們的方法分爲四步：（1)將曲面物髓的錢條窗變換成只含有平面的錢條窬，（2) 

識別變換后物體的各個平面，（3)根據以前的方法重建平面物體’ （4)最後根據重建的 

平面物髓，再利用貝塞爾曲面元重建原曲面物髓。更進一步的，這種新方法提供了一種從 

照片或者岡像中購造三維物體的工具。据我們所知，我們的工作是第一個將從單個錢條畫 

中重建平面物體推廣到曲面物髓的方法。 

儘管我們的算法在很多例子上取得了成功，它並不能徹底地解決所有曲面三維物體的 

重建問题。为了处理更复杂的曲面物体，我們需要研究廣泛的更有代表性的曲面模型。本 

論文的最後一部分將討論並定義這樣一種新的曲面模型：德根廣義椎。這個模型推廣自德 

根的幾何建模工作。這方面的研究來源於關於圓環面和直諧廣義椎產生平面曲錢投影的條 

件的研究。我們使用投影幾何和廣義坐標證明了德根廣義椎具有一些投影不變量，這些不 

變量揭示了它們的平面曲綫投影和視角之問的關係。我們的結論推廣了馬爾和鹿斯以前的 

研究工作。德根廣義椎將_環面，常見二次曲面，四次曲面，直諧廣義椎等統一為一個模 

型，我們期望這方面的工作會對我們將來的關於重建等方面的工作有所躲助。 
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Chapter 1 

Introduction and Related Work 
I 
I 
I. 

1.1 Reconstruction from Single Line Drawings and the i 

Applications 

A line drawing is defined as a 2D projection of the edges and vertices of a 3D object in a 
generic view, with or without hidden lines invisible. The human vision system has the ability | 

to interpret 2D line drawings as 3D objects without difficulty. Emulating this ability is an ‘ 
I 

interesting research topic for enhancing machine vision system. Fig. 1.1 shows an example i 

of such reconstruction. i 
I 

(a) W (c) 

Figure 1.1: An example of Reconstruction from Line drawings, (a) A 2D line drawing, (b) 
Reconstructed 3D object, (c) Reconstructed 3D object in another view. 

With the development of computer vision research and the increasing requirement of 

interaction between human and computer, the reconstruction from line drawings find more 

applications, such as 

• flexible sketching input for conceptual designers who tend to prefer pencil and paper 

to mouse and keyboard in current CAD systems [3], [40], [71], [69], 
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Chapter 1 Introduction and Related Work 2 

• automatic conversion of existing industrial wireframe models to solid models [3], [2], 

• providing rich databases to object recognition systems and reverse engineering algo-

rithms for shape reasoning [2], [3], [78], 

• interactive generation of 3D models from images [20], [81], [75], 

• user-friendly query interface for 3D object retrieval from large 3D object databases 

and the Web, which lets users easily draw 3D objects as queries [56], [51], [92]. 

1.2 Optimization-based Reconstruction 
. I 

To emulate the human vision system's ability to interpret 2D line drawings as 3D objects, j 

some researchers formulated the 3D reconstruction as an optimization problem based on j 

different objective functions. Marill proposed a criterion, minimizing the standard deviation 1 
0 

of the angles (MSDA) in a reconstructed object to emulate human 3D perception of 2D line ] 

drawings [48]. This idea is followed by the researchers in [40], [69], [37], [70]. This approach i 

is tolerant of freehand sketching errors, but cannot reconstruct complete 3D objects if their 

hidden lines are not drawn. I 

Marill [48] presented his method based on a simple criterion: minimizing the standard ) 

deviation of the angles in the reconstructed object, which is called the MSDA principle. 

Motivated by the MSDA, Brown and Wang [10] proposed to minimize the standard deviation f 

of the segment magnitudes (MSDSM) in the recovered planar object. More recently, Shoji j 

et al. [70] presented the criterion of minimizing the entropy of angle distribution (MEAD), j 

and claimed that it is more general than both the MSDA and the MSDSM. The MSDA is 

also used in other related work [69], [37], [71]. All these methods can handle only planar 

objects and require all the hidden lines to be drawn. 

1.3 Other Reconstruction Methods 

There are still many other papers on the interpretation of line drawings in the literature, 

which are not so related to our work as those mentioned in the last chapter. We give a brief 

review of these reconstruction work in this section. 

1.3.1 Line Labeling and Algebraic Methods 

A large body of the work is about line labeling and 3D reconstruction based on a labeled 

drawing [30], [17], [90], [28], [46], [18], [77], [76], [31]. Line labeling focuses on finding a set 
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of consistent labels from a line drawing without hidden lines, and does not explicitly give 

the 3D structure represented by a line drawing. 

Since the early stage of computer vision , a large amount of work called line labeling has 

been carried out for line drawing interpretation [17], [30], [28], [46]. Line labeling focuses 

on finding a set of consistent labels from a line drawing without hidden lines, and does not 

explicitly give the 3D structure represented by a line drawing. 

Another body of work on line drawing interpretation is related to judging the correct-

ness of line drawings and give their possible reconstruction based on algebra test with linear 

equalities and inequalities [45], [77], [76], [88], [64]. The problem of these methods is that 

such a formulation is superstrict and not robust; an originally correct line drawing will be 

judged as impossible after a little deviation of one or more vertices, causing a 3D recon-

struction to fail [64]. 

1.3.2 CAD Reconstruction 

Another body of the work is in the reconstruction of a 3D CAD model from the model's 

three orthogonal projections [38], [44], [1], [35]. Because more information is available, such 

work is much easier than the reconstruction from one projection . 

1.3.3 Modelling from Images 

Tour into the image (TIP) proposed by Horry et al. [29] and later improved by Kang et al. 

[32] constructs a simple 3D scene model using vanishing points and a spidery mesh. Their 

works rely on the directly designation of vanishing points and spidery meshes by the user. 

Although TIP is easy to use and can achieve impressive results, but not strict in geometry 

and limited to the implied situation where the image plane must be vertical to the ground 

plane. 

More strictly reconstruction work are implored in the spirits of single view metrology 

(SVM)[39], [75], [36]. Their methods are based on calibration of camera intrinsic parameters, 

thus do not restrict to the assumption that the image plane is vertical to the image plane. 

However, such methods requires a lot of human interaction. Such system requires the user 

not only to set enough constraints to decide the camera intrinsic parameter, but also give 

hints to every plane or vertex. For example, to define a point, the user must tell the vertical 

projection of that point on to the ground plane or another reference plane [39],[36]. To define 

a plane, the user should tell its vanishing line. Such user inputs are burdensome since it is 

not much easier than input an object using traditional 3D modeler such as AutoCAD. Our 
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work is different with those work. We requires no human interactions and our reconstruction 

methods process single line drawings instead of images. 

1.4 Finding Faces of Line Drawings 

Face identification from a line drawing provide necessary information for reconstructing 3D 

objects. An object consists of faces. If the face configuration of an object is known before 

the reconstruction of its 3D geometry, the complexity of the reconstruction will be reduced 

significantly. 

In general, there are many cycles in a line drawing and only a small subset of them j 

represents its faces, and the number of cycles grows exponentially with the number of edges. i 

Thus finding the faces from a line drawing is not a trivial problem. Much effort has been | 
1 

made in this area [71], [42], [69], [3], [2], [37], [43]. Among these techniques, the algorithm j 

presented in [42] and [43] are useful for our work. i j 

1.5 Generalized Cylinder 

A challenging problem in reconstructing 3D objects from line drawings is to handle curved 

objects since almost all the previous optimization-based reconstruction are limited to planar ,'； 

objects. Thus it might be necessary to study the curve surface models. Generalized cylinder 
r 

(GC) is one of the most important models studied in computer vision. 丨j 

A generalized cylinder (GC) is a solid obtained by sweeping a planar region along an 

axis. The planar region is called the cross section of the GC and is not necessarily circular �/ 

or constant. The axis can also be curved in space. This model was at first proposed by 

Binford in 1971 [6], and has received extensive attention and become popular in computer 

vision in the past three decades. Because of their ability to represent objects explicitly and 

their object-centered coordinate frames derivable from image data, GCs have been applied 

to shape recovery [65], [23], [87], [66], [61], object modelling [53], [54], [26], [68], model-based 

segmentation and detection [94], [27]，[63], modelling tree branches in computer graphics [7], 

recovering blood vessels from medical images [55], designing robot vision systems [9], etc. 

FVom previous work on the study of the properties and recovery of GCs, we can roughly 

divide GCs into two groups: GC with straight axes and GCs with curved axes. In what 

follows, we call them straight GCs and curved GCs, respectively. Most of the work considers 

GCs in single views. Straight homogeneous generalized cylinders (SHGCs) are the most 

important subset of straight GCs, whose sweeping axes are straight and whose cross sections 
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are scaled along the axes. SHGCs were first defined by Shafer and Kanade [67], and then 

studied extensively by many researchers [65], [87], [61], [94], [27], [60], [82], [85], [86]. 

Compared with SHGCs, less work on curved GCs has been carried out. The difficulty is 

mainly due to two facts: the projection of the axis of a curved GC may not be necessarily 

the axis of its 2D contours [59], and the angle between the axis and the cross section in the 

image no longer keeps constant [95]. To interpolate the axis of a curved GC in scattered 

data, Shani and Ballard proposed an iterative solution of minimizing the torsion of the axis 

[68]. In [66], Sayd et al. presented a scheme to recover a constrained subset of curved GCs 

with circular and constant cross sections. Ulupinar and Nevatia focused on a subset of GCs 

whose axes are planar curves^ and normal to the constant cross sections [84]. Zerroug and 

Nevatia studied the invariants and quasi-invariants of a subset of GCs with planar curved 

axes and with circular (not necessarily constant) cross sections [93]. In [26], Gross considered 

GCs with planar curved axes or with circular cross sections, and presented an algorithm to 

recover the GCs using image contours and reflectance information. 

1.6 Research Problems and Our Contribution 

Although there have been a number of papers discussing the 3D reconstruction from single 

2D line drawings [48], [37], [10], [70], [71], [69], all of them handle only line drawings of 

planar objects, and most of them consider simple objects without holes. In addition, they 

all requires the hidden lines in the line drawings to be shown. 

Our work is mainly devoted to overcome these two constraints. Fig. 1.2 shows the results 

of our new scheme. To the best knowledge of us, our work is the first try to reconstruct 

from line drawings of curved objects or from line drawings without hidden lines. 

1.6.1 A New Criteria 

In Chap. 2，We proposes a new approach to 3D object reconstruction from single 2D line 

drawings. Our approach is based on the law of symmetry and the constraint of planarity. 

The former, coming from Gestalt psychology, reveals that human vision trends to interpret 

an object as symmetrical as possible. Inspired from it, we define a symmetry measure for a 

planar face in 3D space, which is equal to the ratio of the area to the perimeter squared of 

the face. The 3D object is reconstructed by maximizing the total symmetry of the object's 

surface, with the constraint of planarity. A number of examples are given to demonstrate 

that our approach outperforms the previous ones. 

^A planar curve is a curve lying on a plane in space. 
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^ (a) 

Figure 1.2: Our contributions, (a) Reconstruction from a line drawing without hidden lines, 
(b) Reconstruction from a line drawing as a curved objects. 

1.6.2 Recover Objects from Line Drawings without Hidden Lines 

Chap. 3 proposes an approach to the 3D reconstruction from line drawings without hidden 

lines. Compared with the line drawings with hidden lines visible, these line drawing are 

easier and more natural to draw. In addition, if we want to recover the complete 3D shape 

of an object in an image, we do not have the invisible edges to handle. Our approach mainly 

consists of two elements: inference of the topology of the hidden part of an object and 

reconstruction of the complete shape of the object. Fig. 1.2(a) shows an example of the the 

reconstructed results. And this work is also described in [11], [12]. 

1.6.3 Reconstruction of Curved Objects 

Reconstruction of curved objects is a much harder problem. Three non-collinear points 

determine a plane, but a curved surface often has much more degrees of freedom. Therefore, 

the reconstruction of curved objects owns a higher underconstrained nature. 

We propose an approach to the reconstruction from line drawings of objects with both 

planar and curved faces. We will show that a line drawing with hidden lines and silhouettes 

visible makes it possible to reconstruct its complete complex 3D shape. Fig. 1.2(b) shows an 

example of our reconstruction results. More details can be found in Chap. 4 and our paper 

[41]. 

1.6.4 Planar Limbs Assumption and the Derived Models 

In our research, starting from the discussion of the conditions when SHGCs and tori (a kind 

of curved GCs) have planar limbs, we define and study a new class of GCs, with the help 
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of the surface model proposed by Degen for geometric modeling [21], [22]. We call them 

Degen generalized cylinders (DGCs), which include SHGCs, tori, quadrics, cyclides, and 

more other GCs into one model. We present some invariant properties of DGCs that reveal 

the relations among the planar limbs, axes, and contours of DGCs. This work is summarized 

in Chap. 5 and [13]. 



Chapter 2 

A New Criteria for 
f 

Reconstruction ！ 
1 i i 

2.1 Introduction 

The human vision system can interpret a single 2D line drawing as a 3D wire-frame model j 

without much difficulty. Several reconstruction approaches have been proposed to emulate ： 

this ability. All of them are based on minimizing the distribution of angles in the recov- j 

ered object, except one that is based on minimizing the distribution of segment magnitudes. | 

In this paper, we propose a new method for the same purpose based on the law of sym-

metry from Gestalt psychology. This law reveals that human beings interpret objects as 

symmetrical as possible. Inspired from it, we define a symmetry measure for a planar face 

and reconstruct a 3D object from a line drawing by maximizing the total symmetry of the ！ 

object's surface with the constraint of planarity. We use an extensive set of experiments to 

demonstrate the significantly improved performance of the new algorithm over the existing 

ones. 

The human vision system has the ability to interpret 2D line drawings as 3D objects 

without difficulty. It will be very helpful if a computer can also have this ability. One appli-

cation is in fast and easy object design where tools are highly desirable that can convert a 

sketch into a 3D model directly. There have been a few approaches [48], [37], [10], [70] pro-

posed for this purpose, in which the reconstruction is formulated as optimization problems 

based on different objective functions and a number of successful examples are provided. 

Marill [48] presented his approach based on a very simple criterion: minimizing the 

standard deviation of the angles (SDA) in the reconstructed object, which is called the 

MSDA principle. Although some successful examples are given in his work, it is easy to find 

8 
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cases where the MSDA approach fails, as pointed out by Leclerc and Fischler [37]. Leclerc 

and Fischler's approach considers not only the MSDA principle, but also the planarity 

constraint exhibited on the faces of the reconstructed object. They showed some examples 

in [37] where the MSDA fails but their algorithm works well. They also explained why it is 

necessary to enforce the planarity constraint for the reconstruction. 

Motivated by the MSDA, Brown and Wang [10] proposed the principle of minimizing 

the standard deviation of the segment magnitudes (MSDSM) in the recovered object, as 

a counterpart of the MSDA. More recently, Shoji et al. [70] presented the criterion of 

minimizing the entropy of angle distribution, which is claimed to be more general than both 

the MSDA and the MSDSM. 

Of the above four approaches, three are based on minimizing the distribution of angles 

in the reconstructed object, and one is based on minimizing the distribution of segment 

magnitudes. 

In this chapter, we propose a new approach to 3D object reconstruction from single 2D 

line drawings. Here a line drawing is defined as the orthogonal projection of a wire-frame 

object in a generic viewpoint with all the edges and vertices shown. Moreover, only objects 

having planar faces are considered, as is the case in [48], [37], [10], [70]. Handling curved 

objects is much harder and is left for future study. 

Our approach is based on the law of symmetry and the constraint of planarity. The 

former, coming from Gestalt psychology, reveals that human vision trends to interpret an 

object as symmetrical as possible. Inspired from it, we define a symmetry measure for a 

planar face in 3D space, which is equal to the ratio of the area to the perimeter squared of 

the face. The 3D object is reconstructed by maximizing the total symmetry of the object's 

surface, with the constraint of planarity. A number of examples are given to demonstrate 

that our approach outperforms the previous ones. 

The rest of this chapter is organized as follows. In Section 2.2 we discuss human per-

ception of a line drawing and define the symmetry measure for a planar face in 3D space. 

The scheme of the 3D reconstruction of the whole object from a line drawing is presented 

in Section 2.3. The large set of reconstruction results generated by our approach and the 

previous ones are given in Section 2.4. Finally, Section 3.7 concludes this paper. 
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2.2 Human Visual Perception and the Symmetry Mea-

sure 

A phenomenon of human vision is that given a 2D line drawing, the perceived 3D shapes 

from it are limited although there exist infinite possible interpretations. As shown in Fig. 2.1’ 

for the 2D drawing, a human usually accepts the middle 3D object and rejects the other 

two. We may say that the projection is in a more generic view of the middle object. To 

accord with the human vision's perception, the study on line drawing interpretation mostly 

uses this generic view assumption. However, this qualitative concept gives little help in the 

derivation of the 3D geometry of the object from a line drawing. 

awing plane 

^^^涯 
3D objects ^ 

Figure 2.1: Infinite 3D objects that can project to the same line drawings. 

Visual psychologists have attempted to discover the laws of perceptual decisions made 

by the human visual system for hundreds of years. Gestalt psychology, one of the most 

influential theories with a long history, asserts that human being are innately driven to 

experience things as good a whole as possible. Here good can mean many things such as 

symmetry, regularity, simplicity, and order of an object [57], [34]. This nature leads us, when 

seeing, to strongly favoring certain shapes and configurations over others without high level 

identification. Gestalt laws of perceptual organization not only are popular in psychology, 

but also have applications in some fields of computer vision and pattern recognition [57], 

[97]. 

The law of symmetry is one of the most important Gestalt laws, which reveals that the 

human visual system is overwhelmed by symmetry and tends to interpret a figure in such 

a way as to produce an object that is as symmetrical as possible. Motivated by this law, 

we build up our reconstruction rule as follows: Given a 2D line drawing, reconstruct its 3D 

model such that it has as symmetrical faces as possible. 

It is necessary to convert this subjective term symmetry into a computable measure. Let 
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us consider a symmetry measure S for a closed planar figure first. It is defined as: 

S=备 (2.1) 

where A and P are the area and perimeter of the figure, respectively. 

It can be proved that 5 < ^ for any closed planar figure [4]. A circle is the most 

symmetrical planar object with 5 = For a polygon with m vertices, its symmetrical 

measure S < 4m tan(告）[4]. The maximum is achieved if and only if the polygon is the 

most symmetrical with m equal-length sides. These facts indicate that equation (3.4) is a 

rather reasonable measure of symmetry and in accordance with human perception. 

S is also called a compactness measure. It is easy to be computed and popular in image 

processing, computer vision and pattern recognition to describe the feature of an object 

[8], [25], [16]. Although this measure has been used elsewhere, it is new for 3D object 

reconstruction from line drawings. 

An object usually consists of more than one face. We treat the recovered object as the 

integration of all its 3D planar faces. Therefore, for an object with n faces, we define the 

whole symmetry measure of the object as 
〜 = • 每 （2.2) 

where Ai and Pj, 1 < i < n, are the area and perimeter of face i, respectively. We expect 

that given a line drawing, maximizing S^ would provide us with the most plausible recovered 

3D object. 

2.3 Reconstruction Based on Symmetry and Planarity 

2.3.1 Finding Faces 

To calculate Swi we must know the topological information of the individual faces in a line 

drawing, i.e., which circuits of the drawing stand for the faces of the corresponding 3D 

object. Finding faces from a 2D line drawing is not an easy problem. In general, a drawing 

has far more circuits than faces, and the number of circuits increases exponentially with 

respect to the number of faces. Fortunately, two algorithms [71], [42] are available for our 

use. We adopt the one in [42] because it is much more efficient than the other. 

2.3.2 Constraint of Planarity 

When we observe a line drawing representing a 3D object, it is obvious that we can identify 

the circuits that are faces. This face information is very useful in helping our perception of 
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the shape of the object. Leclerc and Fischler [37] recognized this importance and added the 

constraint of planarity into Marill's MSDA scheme, obtaining more successful examples. In 

our approach, we also enforce this constraint to our symmetry-based reconstruction. 

For a face with more than three vertices, it is not likely for all the vertices to be located 

exactly on a plane in 3D space, especially during the first steps of the reconstruction pro-

cedure. To compute the deviation from planarity for a face, Leclerc and Fischler used two 

different ways according to whether the face is convex or not [37]. However, we found that 

the commonly-used least square fitting technique is more robust than Leclerc and Fischler's 

method. 

Suppose that face i has m vertices {xij,yij,Zij), I < j < m. The plane that fits these 

vertices best can be expressed as: 

aiX + biy + CiZ - 1 = 0. (2.3) 

Thus, we evaluate DPi, the deviation from planarity for face i, by the sum of all the distances 

of the m vertices from the plane: 
1 m 

DPi = > . . . y " l^i^ii + biVij + CiZij - 1|. (2.4) 

V«i + + c? j t t 

The coefficients ai,bi,Ci of the plane can be obtained by the least square best-fit plane 

algorithm [62]. 

For an object with n faces, the total deviation from planarity DP is defined as: 
n 

DP = ^ D P i . (2.5) 
i=i 丨 

2.3.3 Objective Function 

Based on the above analysis, our objective of reconstruction is to maximize S^ while mini-

mizing DP (imposing the constraint of planarity). In order to combine the two targets into 

one objective function, Sw is replaced with S'̂  that takes the form 

= (2.6) 

S'̂  has an inverse trend with S^- Therefore, the objective function to be minimized is 

defined as 

f {zuz2, . . . , z , ;x ) = XSl + (1 - X)DP (2.7) 

where 0 < A < 1 is a weighting factor, v denotes the number of vertices in a line drawing, and 

zi,z2, axe the z-coordinates to be found. Minimizing / expresses our aim to construct 

a 3D object with faces as symmetrical as possible under the constraint of planarity. 
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2.3.4 Reconstruction Algorithm 

With a fixed A in (3.11), there are many optimization algorithms available to obtain the 

^-coordinates by minimizing /，such as the hill-climbing techniques and generic algorithms. 

Leclerc and Fischler [37] also provided a scheme, called the continuation method, for mini-

mizing their objective function which is in a similar form to (3.11). 

In the continuation method, A is not fixed. Instead, it is a sequence of descent steps 

applied to / for decreasing values of A. The sequence begins with the initial condition, 

； 二 ；2；2 二 ... = = 0, and some relative large Aq < 1. Then A is reduced by a given 

value and the descent algorithm is applied again, starting from the solution obtained by the 

descent algorithm for the previous value of A. This procedure is repeated until A goes to a 

predefined small value. Note that this strategy ensures that the symmetry is favored at the 

beginning of the optimization, and then the constraint of planarity becomes more and more 

dominating. 

After comparing the continuation method with some hill-climbing algorithms and genetic 

algorithms, we choose it to be our reconstruction algorithm since we have found that it can 

generate better results and is fast enough. 

2.4 Experimental Results 

In this section, we present a number of examples to illustrate and compare the 3D object 

reconstruction by our approach and the four methods in [48], [37], [10], [70]. 

For simplicity, Marill's method of minimizing the standard deviation of angles [48], 

Leclerc and Fischler's planarity enforcing and minimizing the standard deviation of an-

gles [37], Brown and Wang's minimizing the standard deviation of segment magnitudes [10], 

and Shoji et al.'s minimizing the entropy of angle distribution [70] are termed as MSDA, 

PEMSDA, MSDSM, and MEAD, respectively. 

The continuation method given in [37] is used to derive the ^-coordinates in the opti-

mization procedures of our approach and the PEMSDA. Marill's hill-climbing scheme [48] is 

used in the MSDA, MSDSM and MEAD, for which the continuation method is not suitable. 

The initial values of the 2;-coordinates of all line drawing are set to zero. All the algorithms 

are implemented in Visual C++. In our reconstruction tool, a recovered 3D object can be 

rotated so that we can view it in different directions and easily judge whether it is desirable 

or not. 

The first set of examples contains all the line drawings in [48], [37], [10], [70] except 

the three shown in Fig. 2.2，where there are edges that can not be used to form a face. 
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Figure 2.2: Three line drawings that are not included in our experiments. 

Fig. 2.3 shows the reconstruction results by the five algorithms. Each 3D object is rotated 

by an angle from its original position for better examination. The faces of the objects are 

distinguished by different gray levels. It should be noted that when an algorithm fails to 

recover an object from a line drawing, a circuit that stands for a planar face may not be 

located (even nearly) on a plane, rendering a strange 3D shape. In this case, we still use a 

grey level to show this "face" ； an obvious example is the result generated by the MEAD for 

line drawing (f) in Fig. 2.3. Here, when we say a result is successful, we mean that when 

the 3D object is viewed from different directions with our tool, the object does not look 

distorted from our perception. Otherwise, the result is considered failed, and it is displayed 

in a viewpoint that can clearly indicate the result is not correct. For the successful examples, 

it will be more convincing if we show each one in several different viewpoints, but the page 

limitation does not allow it. 

There are total 23 line drawings in Fig. 2.3, where we use or "x " to indicate 

whether a result is successful or not. Prom the figure, we can find that the three algorithms, 

MSDA, m e a d and MSDSM, do not work as well as the PEMSDA and our algorithm. The 

MSDSM produces most failed examples, and the MSDA is a little better than the MEAD. 

The PEMSDA fails for two examples, but our algorithm successes for all the line drawings. 

Fig. 2.4 shows a new set of line drawings which are more complex as a whole than those in 

Fig. 2.3. It is easy to see that the MSDA, MEAD and MSDSM fail for all the line drawings. 

The PEMSDA generates two correct results but fails for all the others. On the other hand, 

our algorithm is successful for all the reconstructions. 

We have also tested the stability of these five algorithms. We ran each algorithm on 

several drawn line drawings of every 3D object in different generic views. The results reveal 

that these algorithms are quite stable in the sense that if an algorithm fails (succeeds) to 

reconstruct the shape from one projection, it is very likely for it to be failed (successful) to 

reconstruct the shape from other projections of the object. All these algorithms are very 

fast in computation. On a 2 GHz Pentium IV PC, each algorithm takes less than 0.7 second 

to reconstruct each of the line drawings. 

It is not difficult to understand why the MSDA, MEAD and MSDSM do not perform 
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Liat Drawing Our Algorithm PEMSDA MSDA MEAD MSDSM 
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Figure 2.3: Reconstruction results for the line drawings in [48], [37], [10], [70]. 
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Figure 2.3: Continued. 
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Figure 2.4: Reconstruction results for a new set of line drawings. 
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well. The main reason is that they do not include the constraint of planarity, which is an 

important factor in human perception of a line drawing. The reason why our algorithm 

can work better than the PEMSDA, both of which have the planarity constraint, is not so 

obvious. After a careful examination of the PEMSDA scheme, we have found that there are 

two inherent shortcomings in it. The first can be explained with Fig. 2.5. For the two 3D 

objects each with three faces (one object is the extension of the other), they lead to exactly 

the same value of the PEMSDA objective function for every A [37], although they are not 

the same objects clearly. The second shortcoming is that for a vertex where more than three 

edges meet at it (say, I edges), all the Cf angles (each formed by two edges) will take part 

in the calculation of value of the objective function. However, not every such angle is an 

angle of a planar face. These extra angles might cause the failure of the PEMSDA. 

Figure 2.5: Two different 3D objects that give the same value of the PEMSDA objective 
function. 

2.5 Summary 

We have presented a novel approach to 3D reconstruction from single 2D line drawings. It 

is based on the law of symmetry from Gestalt psychology and the constraint of planarity. 

Both elements reflect how human beings perceive the 3D structure from a line drawing 

that represents the object. The objective function is quite simple, yet powerful to do the 

reconstruction work. A large set of examples has been shown to demonstrate that our 

algorithm outperforms the previous MSDA, MEAD, MSDSM, and PEMSDA algorithms. 

The criteria proposed in this chapter will be used in the following chapters. It is with 

this powerful criteria that we are able to extend the reconstruction of limited objects to the 

future reconstruction of curved objects and reconstruction from incomplete line drawings. 



Chapter 3 

Line Drawings without Hidden 

Lines: Inference and 

Reconstruction 

3.1 Introduction 

The human vision system can interpret a single 2D line drawing as a 3D object without 

much difficulty even if the hidden lines of the object are invisible. Several reconstruction 

approaches have tried to emulate this ability, but they cannot recover the complete object 

if the hidden lines of the object are not shown. 

This paper proposes an approach to the 3D reconstruction from line drawings without 

hidden lines. Compared with the line drawings with hidden lines visible, these line drawing 

are easier and more natural to draw. In addition, if we want to recover the complete 3D 

shape of an object in an image, we do not have the invisible edges to handle. Our approach 

mainly consists of two elements: inference of the topology of the hidden part of an object 

and reconstruction of the complete shape of the object. Fig. 3.1 shows the two steps with 

an example. 

Given a line drawing without hidden lines, there are infinite possible structures being 

the hidden part of the object. Therefore, we have to impose reasonable constraints for the 

inference of the hidden structure such that the final recovered 3D object is in accordance 

with our perception from the line drawing. Besides, in this first work, we restrict our 

reconstruction to a class of polyhedra where each vertex is of degree 3. This class covers a 

large set of common objects. 

19 
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(a) (b) (c) 

Figure 3.1: (a) A line drawing without hidden lines, (b) The inferred hidden topological 
structure, (c) Reconstructed complete 3D object. 

3.2 Terminology 

For easier understanding of the technical content of our approach, we first summarize the 

terms that will be used in the rest of the paper. Some of these terms are illustrated with 

Fig. 3.2. 

• Degree. The degree d{v) of a vertex v is the number of edges meeting at v in a line 

drawing. 

• Incomplete vertex. An incomplete vertex v is a vertex of d{v) = 2. 
• Complete vertex. A complete vertex v is a vertex of d{v) = 3. 
• Broken vertex. A broken vertex u is a vertex of d{v) = 1. 
• Cycle. A cycle is a closed trail in a line drawing where all its vertices except the end 

vertices are distinct. 

• Visible face. A visible face is a face bounded by a cycle composed of all visible edges 

in a line drawing. 

• Rank. The rank R{e) of an edge e is the number of visible faces with edges passing 

through e. 
• Zero edge. A zero edge e is an edge of R{e) = 0. 
• Boundary edge. A boundary edge e is an edge of R{e) = 1. 
• Boundary cycle. A boundary cycle is a cycle where all its edges are boundary edges. 
• Hidden cycle. A hidden cycle is a cycle where all its edges and vertices are hidden. 
• Nh. Nh denotes the number of hidden vertices. 
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7 1̂5 少 2 

Figure 3.2: Illustration of some terms. Here vi-q are complete vertices, i»io-i4 are incomplete 
vertices, and Vi5 is a broken vertex. Edge ( v h j V q ) is a boundary edge, and (vi^vi^) is a 
zero edge. Cycle (vio, vsj^^ii, vq,^12, vs, vio) is a boundary cycle. 

3.3 Theoretical Inference of the Hidden Topological Struc-

ture 

3.3.1 Assumptions 

Although the 2D projection of a 3D objects has lost the depth information of the 3D vertices 

and edges, human beings still have the ability to perceive the complete 3D shape from the 

line drawing even if its hidden lines are invisible. Emulating this function obviously presents 

a very hard problem. In this first work to tackle the problem, we focus on a class of relatively 

simple solids and make the following assumptions. 

Assumption 3.1 The 3D objects are polyhedra with all the vertices met by three edges 

and all the edges passed through by two faces. 

Assumption 3.2 A line drawing is the parallel or near-parallel projection of the visible 

edges and vertices of a single polyhedron defined above in a generic view. 

Assumption 3.3 Every hidden vertex is connected with at least one visible vertex. 

Why do we need Assumption 3.3? If all the three invisible edges meeting at a hidden ver-

tex are allowed to connect to other hidden vertices, there will be infinite possible structures 

being the hidden part. Assumption 3.3 restricts the infinite structures to limited simpler 

cases. Gestalt psychology, one of the most influential theories with a long history, asserts 

that human being are innately driven to perceive things as good a whole as possible. Here 

good can mean many things such as simplicity and symmetry [57]. Assumption 3.3 reflects 

the perception of simplicity by human beings. 
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3.3.2 Finding the Degrees and Ranks 

Given a line drawing, there are three types of vertices as defined in Section 3.2. Incomplete 

vertices are easy to find, but to distinguish broken vertices from complete vertices is not 

obvious. The following theorem allows us to identify the broken vertices. 

Figure 3.3: Part of a line drawing where vi, vo and V2 are collineax. 

Theorem 3.1 If a vertex vq touches a straight line in a line drawing as shown in Fig. 3.3， 

then uo is a broken vertex. 

Proof . Suppose, to the contrary, that vq is not a broken vertex. Then it is a complete 

vertex. With the assumption that every edge of the object is passed through by two faces, 

there are three planar faces passing through vo. Let them be / i = {vi,v0,v2, —•,vi),f2 = 

{VI,V0,V3,...VI) and fz = (W2，vo’V3’ …，?；？). since vi,v0,v2 are collinear, the straight line 

{vi,v2) and the vertex 1*3 that is not on this line defines a plane, implying that the two faces 

/2 and fs are coplanax. Thus the edge (V3’V0) should not exist. Therefore, if edge {v3,vo) 

is a visible edge of the object, vq is a broken vertex. 口 

Knowing all the types of vertices, we can find the degrees of the vertices directly. To 

find the ranks of the edges, we have to find the visible faces first. Face identification from 

a line drawing is not a trivial problem. Fortunately, there have been algorithms avail-

able for this purpose. We can use one of the algorithms published in [71] and [42] to 

find the visible faces. For example, the four visible faces found from the line drawing 

shown in Fig. 3.2 are ( u i , V 2 , v i ) , {ve^vg^vn.vs^ve), {v2,v3,v5,vi0,v8,ve,v7,vu,v2), 

and {vA,V3,V5,vn,V9,ve,V7,vi3,V4). R{v2,v3), R{v3,V4), R{v3,V5), R{ve,v7), R{v6,V8), and 

Rive.vg) are all equal to 2. R{vuv2), RivuVi), R{v2,vu), R{v7,vu), R{v5,vio), i?(t^io’V8), 

R{v8,vi2), R{vi2,V9), R{v9,vu),丑(Vii，V5)，and i?(U7，t;i3) are all equal to 1. Since vis is a 

broken vertex, we cannot find the visible face passing through (vi，i;i5) at this stage. Thus, 

R{vi,vi5) = 0. Note that when V15 is found to be a broken vertex, the line from V7 to fi3 
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is one edge but not two. 

3.3.3 Constraints for the Inference 

The key to the inference of the invisible vertices and edges is to determine the number of 

hidden vertices Nh and the connections among invisible, incomplete, and broken vertices. 

The following theorems gives constraints useful for the inference. 

Theorem 3.2 Let V j and Vb be the set of incomplete and broken vertices of a given line 

drawing, respectively. Then we have 

NH < |Vi| + |VB|, (3.1) j 

where | • | denotes the number of elements in a set. | 
f. 

Proof . A complete vertex does not connect to any hidden vertex. An incomplete vertex 丨’: 
I.' 

connects to one hidden vertex. A broken vertex connect to one hidden vertex too. Prom ) 
[：： 

Assumption 3，the largest value of Nh appears when all the hidden vertices connect to i 

different visible vertices, which implies the inequality in (3.1). • f； 

The following Lemma [91] is used to prove Theorem 3.3. 
丨i 

Lemma 3.1 Let Q be any graph, E be the set of edges and V be the set of vertices in Q. It j：' 

holds that 
丨‘ 

uev ！':、 

I；' 

Theorem 3.3 Given a line drawing, if \Vz\ + \Vb\ is even (odd), Nh of the line drawing 

must be even (odd). 

Proof . Suppose there are Nh hidden vertices and I hidden edges in the object. If we 

construct a graph using all the hidden edges, hidden vertices, incomplete vertices, and 

broken vertices (without all visible edges), from Lemma 1 we have 

E I + E I + E 3 = 2Z， 
v£Vi v€Vb veVn 

where Vj, Vb and Vn are the sets of incomplete, broken, and hidden vertices, respectively, 

and \Vu\ = Nh- The above equation can be rewritten as |V;z:| + jVej + Nh = - Nh). 

Therefore, if |Vi| + |Vb| is even (odd), Nh must be even (odd) too. • 

：产 Z ‘ • 
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Theorem 3.4 Given a line drawing, we have 

R{ei) < d{v), (3.2) 
d{v) 
Y^R{ei) = 2F, (3.3) 
»=i 

where ei, i = 1,2,...’ are the edges adjacent to vertex v, and F is the number of visible 

faces passing through v. 

Proof. K v i s a broken vertex, then a is a zero edge. From Section 3.3.2 we know R{ei) = 0. 

Thus R{ei) < d(v) = 1. If u is an incomplete vertex, then R(ei) < 1 and li(ei) < d{v) = 2. 

If V is a complete vertex, then R{ei) < 2 and R{ei) < d{v) 二 3. Thus (3.2) holds. 

Since a visible face passing through v passes through two of the ei,i = 1,2，...,d(v), and 

R(ei) is the number of visible faces passing through a , we have (3.3) immediately. • 

Theorem 3.5 If a line drawing has no zero edges，an incomplete vertex must be on a 

boundary cycle. 

Proof . We divide the proof into four parts. 

(i) We first show that every incomplete vertex is connected with two boundary edges. 

For an incomplete vertex v/ with its two adjacent edges ei and 62, d(vi) = 2. From (3.2) we 

have R(ei) < 2 and R(e2) < 2. Since there are no zero edges, we have E(ei)=丑(e2) = 1. 

Thus the two edges are boundary edges. 

(ii) We prove that each of the two vertices of a boundary edge e is connected with one 

and only one other boundary edge. 
• When a vertex of the boundary edge is an incomplete vertex, the statement is true by 

� • 

• When a vertex of the boundary edge is a complete vertex, let its other two edges be 

ei and e � . P r o m (3.3) we know that + R(ei) + R{e2) is even. Since R{e)= 

1’ 丑(ei) ^ 0,R{e2) • 0,i2(ei) < 2，i?(e2) < 2, there are only two cases for R{ei) and 

R(e2), i.e.,丑(ei) = 1’丑(62) = 2 or R(ei) = 2，丑(e?) = 1. Thus one and only one of 

the two edges ei and 62 must be a boundary edge. 

(iii) We verify that all the boundary edges must be on one of the boundary cycles in the 

line drawing. By the statement in (ii), we can always walk from a boundary edge to another 

boundary edge (See Fig. 3.4). Since the line drawing has finite vertices, we must meet 

one of the vertices on the path we have passed through. However, the case in Fig. 3.4(b) 

cannot happen because the vertex Vi are met by three boundary edges, which contradicts 

/ 
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(a) “ (b) 

Figure 3.4: Walking along boundary edges, (a) A boundary cycle, (b) An impossible path. 

the statement in (ii). Thus we can only have the case shown in Fig. 3.4(a), which forms a 

boundary cycle. 

(iv) Since all the incomplete vertices are on boundary edges, they must be on a boundary 

cycle by the statement given in (iii). • 

When a line drawing has zero edges, we remove these edges and thus reduce the line 

drawing to a new one without zero edges. Then Theorem 3.5 applies to this new line 

drawing. Fig. 3.5 shows a line drawing with R{vi,v2) = 0. After removing the edge (vi, V2), 

the reduced line drawing is given in Fig. 3.5 (b), where the bold edges illustrate two boundary 

cycles. We can also see that all the incomplete vertices are on the cycles. 

^ y L M y 
(a) (b) 

Figure 3.5: (a) A line drawing with a zero edge, (b) Two boundary cycles (bold) with 
incomplete vertices (filled-in circles) on them. 

3.4 An Algorithm to Recover the Hidden Topological 

Structure 

In this section, an algorithm based on the constraints and properties stated in the previous 

theorems is designed to infer the hidden vertices and edges in a line drawing. We consider 
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the line drawing without zero edges first. How to handle line drawings with zero edges is 

discussed at the end of this section. 

3.4.1 Outline of the Algorithm 

Step 1. Finding the degrees of all the vertices and the ranks of all the edges from a line 

drawing. 

Step 2. Finding boundary cycles (see Fig. 3.6(b)). 

Step 3. Constructing an initial hidden topological structure (see Fig. 3.6(c)). 

Step 4. Reducing the initial hidden structure to one according to human visual perception 

of the 3D object (see Fig. 3.6(d)). 

Step 1 has been described in Section 3.3.2. Step 2 can be done according to Theorem 

3.5. We discuss Steps 3 and 4 in the following two sections. 

3.4.2 Constructing the Initial Hidden Structure 

Theorem 2 lets us know that the largest Nh = |Vi| since we consider the line drawings 

without zero edges (thus Vb = 0). We set \Vx\ hidden vertices and connect each incomplete 

vertex to a different hidden vertex. Two hidden vertices are connected if their corresponding 

incomplete vertices are closest on the boundary cycle. One example is given in Fig.3.6(c), 

where the cycle {vi,v2,v3,v4,v5,vi) is a hidden cycle. Note that the result of this initial-

ization meets the constraints presented in Section 3.3.3. 

mm 
(a) (b) (c) (d) 

Figure 3.6: An example of inferring the hidden topology from line drawing, (a) A line 
drawing, (b) Finding the boundary edges (the bold cycle) and the incomplete vertices 
(filled-in circles), (c) Initial hidden vertices (open circles), (d) Reduction of the initial 
hidden vertices. 
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3.4.3 Reducing Initial Hidden Structure 

Beginning with the initial hidden structure, we design a procedure to search for other possible 

hidden structures with fewer hidden vertices. The procedure uses a strategy of cutting-and-

merging of edges and vertices. Cutting one edge on a hidden cycle removes this edge from the 

cycle while keeping the two vertices of the edge. After the cutting, the two hidden vertices 

of the edge are met by only two hidden edges (see Fig. 3.7(b)). To maintain that every 

vertex is met by three edges, we merge the two vertices to their adjacent hidden vertices 

(see Fig. 3.7(c)). Since each cutting-and-merging reduces two of the hidden vertices, the 

resulting number of hidden vertices is even (odd) if the initial Nh is even (odd), which 

satisfies the constraint by Theorem 3.3. 

a a a 

、>!、•,/、、)] / K�/ / 
V̂ v /V5 v;\� /V3 / 

c/ \d cZ 3 � � � d cZ 3 \ � d 
(a) (b) (c) 

P P K / K / K vj / 
、、广 z Z � � � Z z V 飞、 'V vJ I V \ V 

) (V4 I \ ：——�V4 
/Z V 、二 I \ /Z V 

c.z 3 \ � d d c , , 3 \ � d 

(d) (e) (f) 

Figure 3.7: Illustration of the cutting and merging procedure where a-e are incomplete 
vertices, t;i_5 are hidden vertices, and (vi, V2, V3, ^5,^1) is a hidden cycle, (a) The initial 
hidden structure, (b) Cutting one edge (vi’”5)，(c) Merging vi to V2 and V5 to uj. (d) 
Cutting two edges (vi’ V5) and (V3, V4). (e) Merging vi and V3 to V2\ V5 and V4 disappearing 
after being merged, (f) Cutting two edges (vi’i;5) and (^4,^5), where V5 has no place to be 
merged. 

At first, the cutting is applied to one hidden edge on the hidden cycle each time, resulting 

in different hidden structures. The cutting is also used to cut two or more such edges each 

time. It should be emphasized that not every cutting of two edges or more each time is 

valid. Fig. 3.7(d) and (f) show two examples of cutting two edges each time. The former is 

valid but the latter is not. 

The cutting-and-merging procedure is always applied to the initial hidden structure, 

cutting one edge or multiple edges each time. The maximal edges that can be cut each time 
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is the largest integer < Nh/2 because removing one edge reduces two hidden vertices. All 

the hidden structures obtained from the procedure plus the initial structure are kept for the 

selection of the most plausible one. Fig. 3.8 shows one example. 

8gg纖 
纖 講 . . 

Figure 3.8: The initial hidden structure and all others derived by the cutting-and-merging 
procedure. 

3.4.4 Selecting the Most Plausible Structure 

Given a set of possible hidden structures, the selection of the most plausible one is based 

on some visual psychological properties from Gestalt psychology, which is one of the most 

influential perception theories with a long history. It asserts that human being are innately 

driven to experience things as good a whole as possible. Here good can mean many things 

such as symmetry, simplicity, regularity, and order of an object [57], [34]. This nature leads 

us, when seeing, to strongly favoring certain shapes and configurations over others without 

high level identification. 

The law of symmetry is one of the most important Gestalt laws, which reveals that the 

human visual system is overwhelmed by symmetry and tends to interpret a figure in such a 

way as to produce an object that is as symmetrical as possible. When this law is applied to 

the inference of the hidden structure of a line drawing, each hidden face should correspond 

to a similar visible face. At this stage, since we discuss topological structures only, we say 

that two faces are similar if they have the same number of edges. These two similar faces 

are also called topologically same. Motivated by this law, the rule of selecting the most 

plausible hidden structure is: given a set of hidden structures from a line drawing, select 

the one having as many hidden faces similar to the visible faces as possible (Rule 1). 
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We define a non-symmetry measure NSM for the selection. Suppose there are n hidden 

structure, at first, we set NSMi = 0,1 < i < n. For every hidden face in the ith structure, 

we check if there is a corresponding topologically same visible face. If no, increase NSMi 

by 1. For each structure, one visible face cannot be used more than once in the checking. 

The most plausible is the jth structure with NSMj =丄；^.安{NSMi}. 

When there are two or more such plausible structures, we choose the one with fewest 

hidden vertices (Rule 2). It is based on the property of simplicity in Gestalt psychology. 

If finally there are still more than one candidate after applying Rules 1 and 2, all of them 

are reconstructed and the user can select one. However, in all of our experiments, only one 

most plausible hidden structure in each line drawing is obtained using Rules 1 and 2. For “ 

the example shown in Fig. 3.8, the second hidden structure is selected. ‘ 

When a line drawing has zero edges, which can be found by the scheme presented in : 

Section 3.3.2’ we can remove these edges such that the resulting line drawing has no zero ‘ 

edges. An example is given in Fig. 3.5. The algorithm developed above can be applied to 

this new line drawing. In the experimental section, we can see that the hidden structures of 

many line drawings with zero edges are recovered successfully. 

3.5 Reconstruction of 3D Objects 

In what follows, we call a line drawing with its recovered hidden structure a complete line 

drawing. After recovering a complete line drawing, the next important work is to reconstruct 

its 3D shape. Since we already know the face topology of the complete line drawing, we only 

need to derive the 3D coordinates of all the visible and hidden vertices. We consider a line 

drawing is a parallel (or near parallel) projection of a 3D object. The x- and y-coordinates 

of each visible vertex is thus already known, and only the ^-coordinate (depth) has to be 

derived. However, all the a>，y- and 2;-coordinates have to be found for hidden vertices. 

This reconstruction problem is more difficult than those in the previous work [40], [69], [48], 

[37], where all the vertices and edges of a line drawing are given in the 2D projection. In 

addition, the previous methods cannot recover the complete 3D object from a line drawing 

without hidden vertices and edges. 

In the following, we propose an optimization-based approach to tackling the reconstruc-

tion problem. It inflates a flat line drawing into a 3D object by assigning depths to all the 

vertices and x- and ^/-coordinates to all the hidden vertices. The recovered object should be 

in accordance with our visual perception. We develop an objective function first and then 

give an algorithm for the reconstruction. 
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Based on the spirit of the law of symmetry from Gestalt psychology, we consider a 

symmetry measure S for a closed planar figure first. It is defined as: 

S=备 (3.4) 

where A and P are the area and perimeter of the figure, respectively. 
It holds that 5 < ^ for any closed planar figure [4]. A circle is the most symmetrical 

planar figure with 5 = For a polygon with m vertices, its symmetrical measure S < 

4m tan(盖）[4]. The maximum is achieved if and only if the polygon is the most symmetrical 
with m equal-length sides. These facts indicate that (3.4) is a rather reasonable measure of 
symmetry. ； 

An object consists of more than one face. We treat the recovered object as the integration J 
» t 

of all its 3D planar faces. For an object with n faces, we define the whole symmetry measure I 

of the object as 
& = E 4 (3.5) V 

t=i » 
where Ai and Pi, I < i < n, are the area and perimeter of face i, respectively. We expect i: 

that given a line drawing, maximizing Sw combined with other two criteria would provide 1 

us with the most plausible recovered 3D object. This measure S^ plays the main role in the ‘ 

reconstruction, with the other two involved to get better results. 

Marill [48] presented his approach to 3D reconstruction based on a simple criterion: 

minimizing the standard deviation of all the angles (SDA) in the reconstructed object. SDA : 

can be calculated by: | 
SDA = Var(cos-^(ui • u,)) (3.6) '丨 ij . 

where Uj and Uj are the unit vectors of two lines meeting at a vertex of the 3D object. This 

criterion can be regarded as another form of symmetry constraint and is also incorporated 

into the objective function. 

When we observe a line drawing representing a 3D polyhedron, we can clearly identify 

the cycles representing faces. This face information is very useful in helping our perception of 

the shape of the object [37]. We also enforce this planarity constraint in the object function. 

For a face with more than three vertices, it is not likely for all the vertices to be located 

exactly on a plane in 3D space, especially during the first steps of the reconstruction. To 

compute the deviation from planarity for some vertices, the least square fitting technique is 
employed. 

Suppose that face i has m vertices {xij,yij,Zij), 1 < j < m. The plane that fits these 
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vertices best can be expressed as: 

ttiX + hiy + CiZ - 1 = 0. (3.7) 

Thus, we evaluate the deviation from planarity DPi for face i, by the sum of all the distances 

of the m vertices from the plane: 

1 ^ 
DPi = -j====== V \aiXij + hiVij + azij 一 1|. (3.8) 

The coefficients a,, bi,Ci of the plane can be obtained by the least square best-fit plane 

algorithm [62]. 

For an object with n faces, the total deviation from planarity DP is defined as: 
n 

DP = Y^DPi. (3.9) 
t=i 

Based on the above analysis, our objective of reconstruction is to maximize Sw while 

minimizing DP and SDA. In order to combine the three targets into one objective function, 

Sw is replaced with S'̂  that takes the form 

= (3.10) 

Finally, the objective function to be minimized is defined as 

f{z\，22，..., Zv,Xhl,yhl,Xh2,yh2i …，Xhu, Vhu) 

=XiSl + X2SDA + X3DP (3.11) 

where Ai, A2 and A3 are weighting factors, zi,z2,Zv are the depths of all the v visible and 

hidden vertices, and {xhi，Vhi), {Xh2,yh2),...’ {xhu, Vhu) are the x- and y-coordinates of all the 

u hidden vertices. Minimizing / expresses our aim to construct a 3D object as symmetrical 

as possible under the constraint of planarity. 

Although there are many optimization methods available, no one can guarantee to find 

the optimal solution to this multi-dimensional non-linear optimization problem. Genetic 

algorithms (GAs) have become a popular approach due to its good performance in finding 

optimal solutions in hard problems [47]. In our work, we also design a GA to minimize / in 

order to obtain the values of the variables (coordinates) in (3.11). Here the implementation 

of the GA is straightforward. Each of the variable is encoded with a length of two bytes (16 

bits), and all the variables are combined to form a long string. The fitness function of the 

GA is simply defined as foA = l / ( / + l ) , where ( / + 1 ) guarantees that the denominator does 

not vanish. The larger is foA (i.e., the smaller is /)，the fitter is the solution represented 

by the string. The principle how GAs work can be found in [47]. 
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3.6 Experimental Results 

In this section, we present a number of examples to illustrate the proposed approach to 

the inference and reconstruction of complete objects from line drawings without hidden 

edges and vertices. The weighting factors Ai, A2, and A3 are chosen to be 0.65，0.3，0.05， 

respectively. These values are obtained by a few experiments first and then fixed in the 

reconstruction of all the objects. These parameters are not sensitive in the sense that if 

they are changed by 10%, the reconstruction results are quite similar. Here A3 is set to a 

value much less than Ai and A2 because DP is usually much larger than S'^ and SDA in 

(3.11). The four parameters of the GA, population size, maximum generation, mutation 

rate, and crossover rate, are set to 100，30’ 0.1 and 0.8, respectively. These parameters are 

not sensitive either. 

Fig. 3.9 shows a set of line drawings and their reconstruction results. The original line 

drawings are given in the first column. The results of the inference of the hidden structures 

are illustrated in the second column. The third and fourth columns show the recovered 3D 

shapes in two views each. From Fig. 3.9, we can see that the reconstructed objects quite 

accord with our visual perception. The algorithm implemented in C runs fast enough. It 

takes less than 1 second to do the inference and reconstruction for every line drawing. 

Although the objects shown in Fig. 3.9 are not very complex, our work with these 

encouraging results is the first step towards the research on handling a wider range of 

objects. 

3.7 Summary 

We have proposed a novel approach to 3D reconstruction from single 2D line drawings 

without hidden lines. We first infer the hidden structure of a line drawing with the help of 

the constraints given in several theorems. Then we present an optimization-based method 

to recover the 3D shape from the complete line drawing. The objective function is developed 

based on perceptual symmetry and planarity. A genetic algorithm is designed to carry out 

the optimization. A number of encouraging results have been obtained, which demonstrate 

the success of the proposed approach. Our future work will focus on handling more complex 

polyhedra and curved objects. 
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%%駕書 Figure 3.9: Results of the inference and reconstruction. 
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Figure 3.9: Continued: Results of the inference and reconstruction. 



Chapter 4 

Curved Objects Reconstruction 
I 

from 2D Line Drawings i 

4.1 Introduction 

Single 2D line drawings provide a straightforward, easy way to illustrate 3D objects. An 

important research area in computer vision is developing algorithms that can reconstruct 

the 3D surface of an object represented by a single 2D line drawing. Previous work can only 

handle line drawings of simple objects with planar faces. In this chapter, we go further by : 

providing an approach to the reconstruction from line drawings of objects with both planar | 
丨 

and curved faces. Fig. 4.1(a) shows a line drawing obtained by scanning the sketch image 丨 

on paper, and Fig. 4.1(c) comes from the screen drawn with a mouse. In what follows, we ! 

call an object with only planar faces a planar object, and call an object with at least one : 

curved face a curved object. 

There have been a number of papers discussing the 3D reconstruction from single 2D 

line drawings [81], [48], [37], [10], [70], [77], [64], [89], [71]. However, all of them handle only 

line drawings of planar objects, and most of them consider simple objects without holes. 

Reconstruction of curved objects is a much harder problem. Three non-collineax points 

determine a plane, but a curved surface often has much more degrees of freedom. Therefore, 

the reconstruction of curved objects owns a higher underconstrained nature. 

In this paper, we propose an approach to the reconstruction from line drawings of objects 

with both planar and curved faces. Our approach consist of (1) transforming the line drawing 

of an object with curved faces into one with planar faces only, (2) identifying the faces of 

the transformed line drawing, (3) reconstruction of a planar object from the transformed 

line drawing, and (4) generation of the curved faces by developing Bezier curves and surface 

35 
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署 

(a) (b) 

(c) (d) 

Figure 4.1: Two line drawings and their reconstructed shapes. Line drawings may be in-
putted from sketches, images, digitizer tablets, and the screen. 
patches. A number of results axe provided to demonstrate the ability of the approach to 

performing the reconstruction. Our algorithm can also be used as an interface to recover 

3D models from images. 
4.2 Related Work 
Related work on the interpretation of line drawings can be classified into two groups: (1) 

line labeling, and (2) face identification and 3D reconstruction from single line drawings 

with hidden lines visible. Line labeling focuses on finding a set of consistent labels from a 

line drawing without hidden lines and does not explicitly give the 3D shape represented by 

the line drawing. Our work belongs to the second group. 
4.2.1 Face Identification 
Face identification from a line drawing is a necessary step. An object consists of faces. If 

the face configuration of an object is known before the reconstruction of its 3D geometry, 

the complexity of the reconstruction will be reduced significantly. 

In general, there are many cycles in a line drawing and only a small subset of them 

represents its faces, and the number of cycles grows exponentially with the number of edges. 

Thus finding the faces from a line drawing is not a trivial problem. Much effort has been 

made in this area [71], [42], [69], [3], [2], [37], [43]. Among these techniques, the algorithm 
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presented in [42] is most suitable and adopted for face identification in our work. 

4.2.2 3D Reconstruction of planar objects 

Marill [48] presented his method based on a simple criterion: minimizing the standard 

deviation of the angles in the reconstructed object, which is called the MSDA principle. 

Motivated by the MSDA, Brown and Wang [10] proposed to minimize the standard deviation 

of the segment magnitudes (MSDSM) in the recovered planar object. More recently, Shoji 

et al. [70] presented the criterion of minimizing the entropy of angle distribution (MEAD), 

and claimed that it is more general than both the MSDA and the MSDSM. The MSDA is 

also used in other related work [69], [37], [71]. All these methods can handle only planar 

objects. 

4.3 Reconstruction of Curved Objects 

This section discusses our work in the reconstruction of curved objects. At first, we give 

the scheme to transform the line drawing of a curved object into the line drawing of a 

planar object. Then, we present our new method of reconstructing planar objects. Finally 

we propose the method for the generation of curved faces with Bezier curves and surface 

patches based on the reconstructed planar objects. 

4.3.1 Transformation of Line Drawings 

As mentioned in Section 4.1, the reconstruction of curved objects is a much harder problem 

than that of planar objects. To reduce the complexity in the problem and to remove am-

biguity in some line drawings, when a line drawing is drawn, extra lines may be added on 

curved faces so that they can be approximated by planar patches. Then the line drawing is 

transformed into one representing a planar object by straightening all the curves in it. 

Let us look at several examples in Fig. 4.2. If the line drawing in Fig. 4.2(a) is trans-

formed into Fig. 4.2(b) by replacing the curves with straight lines, the face configurations 

of them are the same. For the cylinder shown in Fig. 4.2(d), if the four curved edges are 

straightened, the transformed line drawing in Fig. 4.2(e) does not represent a solid. How-

ever, if two lines bf and dh are added when drawing the object, as shown in Fig. 4.2(f), 

the new representation of the cylinder has a corresponding line drawing of a polyhedron 

(Fig. 4.2(g)) with the same face topology. Another advantage of adding the new lines is 

eliminating the ambiguity in face identification when the algorithm in [42] is used. There 
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Figure 4.2: Examples of the transformation of line drawings, where hidden lines are displayed ‘ 
in dashed for easier observation. 
are two solutions of face identification for Fig. 4.2(d): one set of faces is {(a,d, c, b,a), 

ie,h,g,f,e), (a’6，c，^’/’e，a)’ {a,d, c,g,h,e,a)}, another set is {{a,d, c,b,a), {e,h,gj,e), 

(a, b, c, g, h, e, a), (a, d, c, g, /，e, a)}. For Fig. 4.2(f) or (g), there is only one set of six faces 

as the solution. 

Replacing the two curves in Fig. 4.2(i) by two straight lines, we obtain the line drawing in 

Fig. 4.2(j). However, this is not a valid representation of a polyhedron, causing both the face 

identification and the reconstruction to fail. The problem can be overcome by adding one 

line on the curved faces as shown in Fig. 4.2(k), which has a valid polyhedron approximation 

(Fig. 4.2(1)). 

In this work, we do not define where and how many extra lines must be added to the 

curved faces of a line drawing; the user has the choice. The basic rule is that the transformed 

line drawing should be a valid planar object representation of the curved object with the 

same face topology, and each curve has one vertex or more between its two endpoints. The 

last condition is for determining the curve in the 3D space (see Section 4.3.2 for why). 

Adding more lines to a line drawing imposes a little more work on the user (note that the 

step of straightening the curves is not manual), but doing this can reduce the complexity of 

the reconstruction, and often provide better visual perception of a line drawing. 

Given the line drawing of a curved object, we transform it into a line drawing of a planar 

object, and then employ the face identification algorithm in [42] to find the face topology. 

Figs. 4.2(c), (h) and (m) give the found faces from Figs. 4.2(b), (g) and (1). Next we discuss 



r 

Chapter 4 Curved Objects Reconstruction from 2D Line Drawings 39 

how to reconstruct the 3D shapes from line drawings representing planar objects. 

Given the line drawing of a polyhedron, we can use the algorithm proposed in [43] to 

find the face topology, and use the technique in Chap. 2 to build the 3D polyhedron. Next 

we discuss how to generate the curved object from the polyhedron. 

4.3.2 Finding 3D Bezier Curves 

By observing numerous common curved objects, we find that most of them are composed 

of both planar and curved faces, and most of the curved edges of these objects are formed 

by the intersection between a curved face and a planar face. This can be seen from all 

the objects shown in this paper. Therefore, we focus on the reconstruction of such objects, 

and make the assumption that every curve in a line drawing is piecewise planar. With this 

assumption, we first recover the 3D curves based on the recovered planar object and the 

original 2D line drawing. 

Let a 3D curve C{t) be described in the parameterized form 

C � = 刚 ， y ⑷ ， 尊 (4.1) 

Under the parallel projection, the 2D image of C(t) is simply 

C(t) = (x ( t ) ,M) - (4-2) 

Now we need to recover z(t) from C � . I n general, given C(t) and several specific 3D points 

on C(t), it is impossible to determine other 3D points on it. As stated in Proposition 5.1, 

however, this can be achieved in our case where the 3D curve is planar and each curve has 

one vertex or more between its two endpoints (see Section 4.3.1). 

Proposition 4.1 If a 3D curve C(t) is planar, then its parallel projection C(t) and its three 

non-collinear points in 3D space define it uniquely. 

Proof . Suppose the equation of the plane C(t) lies on is z = ax + bp + c. Then z ( t ) = 

ax{t) + by{t) 4- c. The three parameters o, b, and c can be obtained uniquely by solving the 

linear system 

axi + byi + c = Zi, i = 1,2,3, (4.3) 

with the three available non-collinear 3D points {xi,yi,Zi), i = 1,2,3. • 

The manipulation of the curve C � is not convenient because we do not have explicit 

expressions for x{t) and y{t). We use Bezier curves to represent general curves in this paper, 
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which are convenient to be drawn with a few control points [5]. A Bezier curve of degree n 

is specified by a sequence of n + 1 control points Pi, 0 <i <n. Its equation is 

C{t) = f ^ F i B U t h (4.4) 
i=0 

where Bi’n � is the Bernstein polynomial function 

Bi,n{t)=(^^t\l-tr-\ (4.5) 

From (4.4), we can see that the n + 1 control points Pi define the curve completely. In 

our reconstruction tool, the user is able to move the control points freely to change the shape 

of a curve. If a line drawing is obtained by scanning a sketch image, we can find the control 

points by fitting a Bezier curve to an inputted curve using the technique in [58]. When the 

control points are collineax, the Bezier curve degenerates to a straight line. Thus, it can be 

used to represent straight lines too. 

Let the control points of a curve C(t) in the 2D projection plane be Pi = (xj, pi), meaning 

that ^ 

C(t) = f^PiBi,n(t). 
i=0 

Then we can find its corresponding Bezier curve C(t) in 3D space: 

C(t) = f^PiBi,n(t) 
i=0 

by deriving Pi = (Xi,yi’Zi) with Zi = axi + bpi + c, where o,6,c are obtained from the 

solution of (4.3). 

4.3.3 Bezier Surface Patches and Boundaries 

Bezier surfaces are also popular in surface representation. A Bezier surface patch S(u,v) 

is defined by a (n + 1) x (m + 1) array of control points P i j , as shown in Fig. 4.3. The 

parametric form of S{u,v) is 
n m 

S(u，”）= Y ^ J 2 P u B U u ) B j , m ( v ) . (4.6) 
t = 0 j=0 

Now we derive the equations of the boundaries of the patch S(u,v). A Bezier patch 

comprises two families of parameterized curves C(u) and C(v). Without loss of generality, 

the parameters u,v are chosen to lie in the interval [0,1]. Thus the boundaries of S(u,v) 

are four curves Ci(v) , C2{v), Csiu), and C4(w)’ with respect to u = 0,1 and v 二 0,1. 
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Pn,m=S{\,\) 

Po,o = 5(0,0) 

Figure 4.3: Bezier surface patch S{u,v) and its control points. 

Considering Ci(v) where it = 0, we have 
m 

Ci{v) = S(0,T；) = (4.7) 
3=0 

since 5o,n(0) = 1 and Bi,„(0) = 0 for alH 0. Similarly, we have the other three boundaries 
m 

C2{v) = S(l,t;) = (4.8) 
j=o 

n 
C3(w) = S(u, = Pi,oBi,n(u) (4.9) 

t = 0 

n 
C4(W) = S(u, 1) = Pi,mBi,n(u). (4.10) 

t = 0 

Obviously, Ci一4 are Bezier curves defined by their control points, which are also part of the 

(n + 1) X (m + 1) control points of S(u,v) in (4.6). 

4.3.4 Generating Bezier Surface Patches 

Given the patch boundaries represented by the 3D Bezier curves C1-4 found using the 

scheme described in Section 4.3.2，our final task is now to generate the Bezier patch. This is 

equivalent to finding all the other control points P j j of S(u,t;) based on the known control 

points, Po,j•，Pnj, Pi.o, and Pi,爪’ of Ci_4 where 0 < i < n,0 < j < m. 

Consider three new surfaces obtained from the boundaries: 

Si {u, v) = il- u)S(0, v) + uS(l，V) (4.11a) 

S2(u,u) = (l-v}S{u,0) + vS(u,l) (4.11b) 

S3(u’ v) = ( l - u)(l - v)S(0,0) + (1 - — S ( 0 ’ 1) 

+ u(l - v)S(l ’ 0) + uvS(l, 1). (4.11c) 

Here, (4.11a) is a surface passing through curves S(0，u) and S(l,v), (4.11b) is a surface 

passing through curves S(u，0) and S(u, 1)，and (4.11c) is a surface passing through the four 
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corners, S(0,0), S(0,1)，S(1,0), and S(l, 1)，of the patch S(u,u). If we consider the surface 

defined by the sum Si (w, v) + S2(w，v), we will find that each corner is counted twice. Hence, 

if we subtract S3(w，v) from the sum, we will recover a surface that passes through the four 

boundaries with each corner counted once: 

S*(u’t;) = Si(u,u) + S2(u,u)-S3(u,v) 

= ( 1 - u)S(0,v) + uS(l,u) + (1 - v)S{u,0) 

+ t ;S (u , l ) - ( l -w) ( l -u )S(0 ,0 ) 

- ( 1 一 w)vS(0,1) - w(l - v)S(l, 0) - uvS{l, 1). (4.12) 

S*{u,v) is called the Coons surface patch [19]. Note that this kind of surface patches 

gives not only an easy way of interpolation from the boundaries, but also good results in 

accordance with human vision observation. 

Motivated by the Coons patch, we use a similar manner to interpolate all the control 

points P j j of the Bezier patch S(u, v) based on the known control points, Po j , Pn,i» Pi’o’ 

and Pi’m, of the boundaries Ci_4 where 0 <i <n,0 < j <m. The interpolation equation 

is written as 

• • • • 

- ( 1 - - ) ( 1 —丄)Po’0 - (1 - - ) - P o , m 
n m ’ n m 

(4.13) 
n m n m 

The following proposition points out that the control points chosen in such a way generate 

a Bezier patch equivalent to the Coons patch. 

Proposit ion 4.2 The Bezier patch S(w,v) defined by the (n + 1) x (m + 1) control points 

Pi，j in (4.13) is the same as the Coons patch in (4.12). 

Proo f . Substituting P i j in (4.13) into S(w,u) in (4.6) yields 

S 一 ) = - > 0 ’ j + ^Pnj] 
i=0 j=0 

+ E E 氏 ,“讽，m � [ ( 1 - + ^Pi,m] 
i = 0 j=0 
“ ^ i j - E E 万 ‘ ’ - - 吉 ) p � , o 

i=0 j=0 

+ (1 一 丄 ) 丄 P 一 + - ( 1 - )̂Pn,0 + 
n m n m n m 

(4.14) 
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Further we simplify some terms in (4.14). 

i=0 i=l \ ' 

Similarly, we can derive 
n . m E 一 ；^) = 1 - U ， = V, 

t=o “ i=0 

m • 

J=0 爪 

Hence, (4.14) becomes 
m 

S(u,v) = - u)Po,j + ixP„’,]5j>>) 
J = 0 

n 
+ - i;)Pi,o + - (1 - w)(l - t;)Po’0 

1 = 0 

-(1 一 ti)vPo,m — U(1 — v)Pn,0 —仰Pn,m 

= ( 1 - u)S(0,v) + wS(l,v) + (1 - t;)S(u,0) 

+ i ;S(u， l ) - ( l - i i ) ( l -v)S(0 ’0) 

- ( 1 - w)vS(0’ 1) - u(l - v)S(l, 0) - uvS{l, 1), 

which is equal to S*{u,v) in (4.12)，and thus completes the proof. • 

4.4 Results 

We have implemented a complete tool for the object reconstruction from single 2D line 

drawings, including line drawing input, edge-vertex graph extraction, transformation of a line 

drawing, face identification, planar object reconstruction, and curved object reconstruction. 

All the algorithms are implemented in Visual C++, running on a 2 GHz Pentium IV PC. 

The two parameters m and n in Bezier patches are both set to 3. The weighting factors 

Ai-3 are chosen to be 0.65，0.1，and 0.25, respectively. 

A number of objects with curved faces have been drawn to test our approach. Fig. 4.4 

shows part of the line drawings and their reconstruction results. Each result is displayed 

from two different viewpoints. The last two line drawings come from two scanned sketches 

drawn on paper, and the others are obtained by the inputs drawn on the screen with a 

mouse. We can see that the results accord with our visual perception quite well, although 

we do not have a precise definition of a 3D object corresponding to a given line drawing. 
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Figure 4.4: A set of line drawings and their reconstructed results, each shown from two 
views. 
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HHHHD � (e) 
Figure 4.5: Reconstruction of a car from a color image, (a) Boundaries drawn by the user 
as the line drawing, (b) (c) Two views of the recovered 3D car with texture mapped, (d) 
(e) Two views of the 3D car without texture 

Our tool can also be used for generating photo-realistic 3D models from 2D images. The 

user first draws lines and curves as the boundaries of an interested object. Then the tool 

automatically reconstructs the 3D shape of the object from the line drawing. Finally, the 

texture on the image is mapped onto the surface of the object. Fig. 4.5 shows such an 

example. 

Our algorithm is also efficient and runs fast enough. After a line drawing is available, 

the tool does all the jobs automatically and can show the reconstructed object within two 

seconds for each of the line drawings illustrated in the section. 

4.5 Summary 

3D object reconstruction from single 2D line drawings has been a long-standing challenging 

problem in computer vision. Some methods exist in the literature but they can only handle 

simple planar objects. In this paper, we propose a novel reconstruction approach to dealing 

with line drawings representing objects with curved faces. It includes (1) the transformation 

of the line drawing of a curved object into the line drawing of a planar one, (2) face identi-

fication from the transformed line drawing, (3) reconstruction of the planar object from the 

transformed line drawing, and (4) reconstruction of the curved faces by the interpolation 

with the developed Bezier curves and surface patches. To the best of our knowledge, our 

work is the first attempt to provide a complete tool for the 3D reconstruction of curved 

objects from single 2D line drawings. 

In the experimental section, a number of examples are given to demonstrate the ability 

of our approach to perform the 3D object reconstruction. The results are quite satisfactory 

and in accordance with human visual perception of the objects. The developed tool can also 

be used to create photo-realistic 3D models from images. Our algorithm is efficient; it can 

finish a reconstruction job within two seconds after a line drawing is available, for each of 
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the line drawings given in the experiments. 

Future work in this research includes tackling objects with more complex surfaces, and 

developing an algorithm that can do the reconstruction incrementally in order to handle 

more complicated objects. 



Chapter 5 

Planar Limbs and Degen 

Generalized Cylinders 

5.1 Introduction 

Generalized cylinder (GC) has played an important role in computer vision since it was 

brought out in the 1970s. While studying GC models in human visual perception of shapes 

from contours, Marr [49] assumed that GCs limbs are planar curves. Later, Koenderink [33] 

and Ponce [61] pointed out that this assumption does not hold in general by giving some 

examples. In this paper, we show that straight homogeneous generalized cylinders (SHGCs) 

and tori (a kind of curved GCs) have planar limbs when viewed from points on specific 

straight lines. This property leads us to the definition and investigation of a new class of 

GCs, with the help of the surface model proposed by Degen for geometric modeling. We call 

them Degen generalized cylinders (DGCs), which include SHGCs, tori, quadrics, cyclides, 

and more other GCs into one model. Our rigorous discussion is based on projective geometry 

and homogeneous coordinates. We present some invariant properties of DGCs that reveal 

the relations among the planar limbs, axes, and contours of DGCs. These properties are 

useful for recovering DGC descriptions from image contours as well as for some other tasks 

in computer vision. 

A generalized cylinder (GC) is a solid obtained by sweeping a planar region along an 

axis. The planar region is called the cross section of the GC and is not necessarily circular 

or constant. The axis can also be curved in space. This model was at first proposed by 

Binford in 1971 [6], and has received extensive attention and become popular in computer 

vision in the past three decades. Because of their ability to represent objects explicitly and 

their object-centered coordinate frames derivable from image data, GCs have been applied 

47 
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to shape recovery [65], [23], [87], [66], [61], object modelling [53], [54], [26], [68], model-based 

segmentation and detection [94], [27], [63], modelling tree branches in computer graphics [7], 

recovering blood vessels from medical images [55], designing robot vision systems [9], etc. 

From previous work on the study of the properties and recovery of GCs, we can roughly 

divide GCs into two groups: GC with straight axes and GCs with curved axes. In what 

follows, we call them straight GCs and curved GCs, respectively. Most of the work considers 

GCs in single views. Straight homogeneous generalized cylinders (SHGCs) are the most 

important subset of straight GCs, whose sweeping axes are straight and whose cross sections 

are scaled along the axes. SHGCs were first defined by Shafer and Kanade [67], and then 

studied extensively by many researchers [65], [87], [61], [94], [27], [60], [82], [85], [86]. 

Compared with SHGCs, less work on curved GCs has been carried out. The difficulty is 

mainly due to two facts: the projection of the axis of a curved GC may not be necessarily 

the axis of its 2D contours [59], and the angle between the axis and the cross section in the 

image no longer keeps constant [95]. To interpolate the axis of a curved GC in scattered 

data, Shani and Ballard proposed an iterative solution of minimizing the torsion of the axis 

[68]. In [66], Sayd et al. presented a scheme to recover a constrained subset of curved GCs 

with circular and constant cross sections. Ulupinar and Nevatia focused on a subset of GCs 

whose axes are planar curves and normal to the constant cross sections [84]. Zerroug and 

Nevatia studied the invariants and quasi-invariants of a subset of GCs with planar curved 

axes and with circular (not necessarily constant) cross sections [93]. In [26], Gross considered 

GCs with planar curved axes or with circular cross sections, and presented an algorithm to 

recover the GCs using image contours and reflectance information. 

The analysis of the previous work on SHGCs and curved GCs is explicitly separate, 

focusing on special classes of GCs. In this chapter, starting from the discussion of the 

conditions when SHGCs and tori (a kind of curved GCs) have planar limbs, we define 

and study a new class of GCs, with the help of the surface model proposed by Degen for 

geometric modeling [21], [22]. We call them Degen generalized cylinders (DGCs), which 

include SHGCs, tori, quadrics, cyclides, and more other GCs into one model. Our rigorous 

discussion is based on projective geometry and homogeneous coordinates. We present some 

invariant properties of DGCs that reveal the relations among the planar limbs, axes, and 

contours of DGCs. We also discuss how the proposed properties can be used for recovering 

DGC descriptions from image contours, and for generating good initializations for a new 3D 

deformable DGC model in 3D data fitting and segmentation. 
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Figure 5.1: 2D Projections unable to fully describe the 3D information of the space curve. 

5.2 Planar Limbs and View Directions 

This section discusses two classes of GCs that have planar limbs when viewed from specific 

directions. These GCs with the property of planar limbs are the motivation of our work. 

In this paper, image contours are referred to as the projections of contour generators that 

are curves in space. There are two kinds of contour generators: limbs and edges [61], [52]. 

Limb points are the points where the surface turns smoothly away from the observer, and 

edge points are those where the surface orientation is discontinuous. A limb is sometimes 

called a rim [49], viewpoint-dependent edge, or virtual edge [96]. 

Although a curve in 3D space can be formed freely, its projected contours cannot keep 

all the information of its 3D shape. Fig. 5.1 shows such a limitation. Prom the projection 

of a curve, one cannot judge whether it is planar or not in 3D space. To guess the ability of 

human vision on recovering 3D information from contours, Stevens assumed that one tends 

to interpret the 2D projection of a space curve as the projection of a planar curve [73], [74]. 

We can see this tendency from the projections in Fig. 5.1 if the space curve is not shown. 

In differential geometry, the torsion of a planar curve is zero, which was used by Shani and 

Ballard as the minimization criterion to recover 3D curved axes [68]. 

Marr also assumed that limbs are planar in human visual interpretation. With this 

assumption and other constraints, Marr showed that human beings always interpret the 

projected surface as part of a GC; limbs being planar is a basic assumption in the study of 

reconstructing object surfaces in Marr's fundamental vision theory [49]. 

However, this assumption does not hold generally as pointed out by Koenderink [33]. 

He showed that the contour of a torus, which is a curved GC, is often the projection of 

a non-planar limb. Later Ponce and Chelberg revealed that even SHGCs cannot possess 

planar limbs from all viewing directions [60]. Fig. 5.2 gives such an example, where the bold 

black curves are the intersection of a plane and the GCs surface. Prom the two viewing 
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Figure 5.2: (a) Planar limbs, (b) Non-planar limbs. 

X a ����� I 

Figure 5.3: The coordinate system with a SHGC and the viewing direction v. 
directions, the limbs in Fig. 5.2(a) are planar, but the limbs in Fig. 5.2(b) are not. Now we 

discuss in what conditions SHGCs and tori can have planar limbs. 

We use the similar notation and the coordinate system as those in [61] and [60]. Suppose 

that the axis of a SHGC coincides with the z-axis as shown in Fig. 5.3. The surface of a 

SHGC can be represented in the polar coordinate system by 
x{z, 9) = cos ei + pi9)r{z) sin + zk (5.1) 

where ^ € [a, 6], 6 e [0,27r], and p defines the reference cross section on the x-y plane, and 

r defines the scaling sweeping rule of the SHGC. Let v be the viewing direction, and n be 

the normal vector to the surface at the points on a limb. Then according to the definition 

of limbs, we have the relation 
V . n 二 0. (5.2) 

Theorem 5.1 A SHGC has planar limbs when the viewing direction is normal to the axis 

of the SHGC under orthographic projection. 

Proof . Assume the viewing direction is given by its spherical coordinate {a,(see Fig. 5.3). 

Then 
V == sin cos ai + sin ̂  sin aj + cos /?k. (5.3) 
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With (5.2), Ponce [61] proved that points on a limb satisfy 

p V cosP = [p{e) cos{d - a ) + p'{e) sm{e - a)] sin； .̂ (5.4) 

When V is normal to k, = 90°. Hence 

p{e) cos{e -a) + p'{e) sm{e 一 a) = O, (5.5) 

which implies a function 0 of a only (independent of z), i.e., 0 = f(a). We can write the 

limb equation as 

二 r � / 0 ( / ( a ) ) ( c o s / ( a ) i + sin/(a)j) + zk 

=r(z)u(a) + 2k, (5.6) 

where u(a) = p(/(a))(cos f(a)i + sin / (a)j) . Prom (5.6), 

r (^ )=r" (^ )v (a ) (5.7) 

l"'(z) = r'"(z)v(a) (5.8) 

l"(z) X r(z) = 0. (5.9) 

Hence l'(z) x l"(z) x V"(z) = 0’ which indicates that the limb is a planar curve, because the 

torsion of a planar curve is equal to zero [15]. 口 

Although a torus (a curved GC) does not belong to the class of SHGCs, it also has planar 

limbs when viewed from specific directions. Note that the axis of a torus is a circle inside 

the torus. 

Theorem 5.2 A torus has planar limbs while viewed from a point where the line through 

the point and the torus center is orthogonal to the torus axis. 

Proof. Without loss of generality, we assume that the axis of the torus is located on the 

x-y plane, the center of it coincides with the origin, and the viewpoint is at Ik, as shown in 

Fig. 5.4. Then the surface of the torus can be parameterized by [50] 

x{z, e) = {R-r cos z) cos 

+ {R-r cos z) sin 6j + r sin zk. (5.10) 
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z 

/k 

Figure 5.4: A torus with the viewpoint at the z-axis. 

The normal to the surface is given by 

‘ 们 dx dx 

= - r cos z{R 一 r cos z) cos 0i 

- r cos z[R - r cos z) sin 9j 

+ {R + r sin z){R-r cos z)k. (5.11) 

The viewing direction from Ik to the surface is 

y{z,e) = x{z,e)-lk. (5.12) 

Substituting v in (5.12) and n in (5.11) into (5.2) yields 

rlsinz + Rrcosz- Rr s inz -r^ +RI = 0, (5.13) 

which implies a function ^ of I only (independent of 0). i.e., ；2 = g(l). Thus we can write 

the limb equation as 

m = x(g(l),0) 

二（i?_rcos5(Z))(cos^ + sin0j) + r«siniKOk. (5.14) 

It is easy to show 

1 ' ⑷ X 1 " ⑷ X 1'"⑷ 二 0. (5.15) 

Thus the limb is planar since its torsion is zero. • 
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5.3 DGCs in Homogeneous Coordinates 

We have shown that SHGCs and tori have planar limbs when viewed from some specific 

directions. There are also other curved GCs sharing the same property. This property 

leads us to the investigation of DGCs. For mathematical convenience, we will mainly use 

homogeneous coordinates and projective geometry in the following discussion of DGCs. 

5.3.1 Homogeneous Coordinates 

Homogeneous coordinates are used in projective geometry [24], [72]. They are a useful tool in 

computer vision and graphics. Points in homogeneous coordinates are represented by vectors 

p = {w, X, y, z)"^ e M4 \ {(0,0，0，0)T}. The w, x, y, z are called homogeneous coordinates of 

p. p and pp with p G E\{0} define the same point. Given a point p = (w,x,y’z)T with 

It； ^ 0 in homogeneous coordinates, its corresponding point p in Cartesian coordinates is 

= (5.16) 

If ly = 0, the point (0,x,j/, z) stands for a point at infinity (called an ideal point). 

Orthogonal projection can be treated as a special case of perspective projection when 

the viewpoint is at infinity. Thus under perspective projection, Proposition 5.1 states that a 

SHGC has planar limbs when the viewpoint is at infinity and the viewing direction is normal 

to the axis of the SHGC. 

Using homogeneous coordinates, points on a straight line L can be represented by 

L = aa + jdb, (5.17) 

where a,j3 €R and a, b are two independent points in the projective space. In what follows, 

we denote the line L by a 八 b. Similarly, points on a plane P can be represented by 

P = aa + j3h + jc (5.18) 

where € M and a ,b , c are three independent points. We denote the plane P by 

a A b Ac. Therefore, a curve C(s) is planar if it can be written in this form 

C(s) = pi(s)a + P2(s)h + P3(s)c. (5.19) 

To verify whether a curve is planar or not, this way is more convenient than calculating the 

torsion of the curve in Cartesian coordinates. 
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5.3.2 Degen Surfaces 

Degen proposed a novel surface model for geometric modelling in [21] and [22]. We call those 

surfaces Degen surfaces. They cover a wide range of curved surfaces such as those showed 

in Fig. 5.5. A Degen surface is parameterized by the following equation in homogeneous 

coordinates 

X(w, v) = a{u)sL + 0{u)h + 7(v)c + (5(t;)d 

= p(w) + q(t;), (5.20) 

where p(u) = a{u)a + /3{u)h, q{v) = j{v)c + 5(u)d，u G [ui,u2], v G [vi，v2]’ a ’ b ’ c ’ d are • 

independent, and axe certain functions. The two straight lines a 八 b and c A d are 

called the axes of the Degen surface. 

5.3.3 DGCs 

Before defining DGCs, we show that SHGCs and tori can be represented in the form of Degen 

surfaces in homogeneous coordinates. The parameterized surface of a SHGC in homogeneous 

coordinates is simply 

X(u, v) = (1, p{u)r{v) cos u, p{u)r{v) sin u, (5.21) 

where the and 8 in (5.1) are replaced by u and v, respectively. Then X(u,u) = p(u) + q( f ) 

with 

p(u) = (0，p{u) cos u, p{u) sinu, 0)^ (5.22) 

q � = i ( l ,0 ,0，”)T. (5.23) 

Furthermore 

p(u) = p{u) (cos w)a + p{u) (sin u)h (5.24) 

q � 命 d (5.25) 

with a = (0’ 1’ 0，0广’ b = (0’ 0,1’ 0 , ’ c = (1，0’ 0,0广’ d = (0，0，0，1广. 

Similarly, replacing the z and 6 in (5.10) with u and v, respectively, we can show that a 
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Figure 5.5: Some Degen Surfaces, among which (a), (b), (c) and (d) are a SHGC, an open | 
torus, a cyclide and a quadric, respectively. Ji 

y 
丨丨 

torus belongs to a Degen surface by 
！1 || 

一 = T 丨丨 

= 1 a + sintz b (5.26) 
r(_R — rcosii) R-rcosu || 

q(i;) = - (0’ cos V, sin v, 0广 ‘I 

cosv smv , /c 
= c + d, (5.27) r r 

with a = (1’ 0,0,0)T，b = (0’ 0,0，1)T’ c = (0’ 1,0’ Of，d = (0,0,1,0,. 

Definition 5.1 On a Degen surface, when v = vq is fixed, the curve Ci(u) = X{u,vo) is 

called a u-curve\ when w = uq is fixed, the curve C2(v) = X{uo,v) is called a v-curve. 

In the above examples, the it-curves of a SHGC are (0，p{u) cos w’ p{u) sinw, 0广 + q(vo), 

which are closed when u G [0,27r]; the v-curves of the SHGC are p(uo) + f^(l，0’0’ 

Both the u-curves and u-curves of a torus are circles, which are also closed. 

On a Degen surface with u € [wi’W2]’ v e [ui’V2]’ the family of it-curves { C i ( u ) = 

X(u,vo) I Vo e [t̂ i’W2]} covers the whole surface. Thus a Degen surface can be seen as a 

surface obtained by sweeping a w-curve when vq varies from vi to V2. If the u-curve is closed, 
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Figure 5.6: A Degen surface with neither u-curves nor v-curves closed. 

the region bounded by it can be regarded as the cross section of a GC. Note that all the 

w-curves and v-curves are planar as stated in Lemma 5.3 in Section 5.4. 

Definition 5.2 A Degen generalized cylinder (DGC) is a solid bounded by a Degen surface 

X(w, v) = Q:(w)a + /3{u)h + 7(v)c + (5(v)d with closed w-curves, or closed v-curves, or both. 

The axes of the DGC are the two straight lines a A b and c A d. ‘ 
I 

Obviously, the surface of a DGC is a Degen surface. However, a Degen surface with 

neither u-curves nor v-curves closed does not form a DGC. Fig. 5.6 gives such an example. 

The Degen surfaces showed in Fig. 5.5 form six DGCs if the cross sections are considered as 

regions instead of curves. 

It should be emphasized that a conventional GC has only one axis and the axis of a 

conventional curved GC is a curve. It is often more difficult to recover curved axes than to 

recover straight axes. 

5.4 Properties of DGCs 

In this section, we present the properties of DGCs that are useful for some computer vision i 

tasks. 
i 

Theorem 5.3 The axis of a SHGC coincides with one of the two axes of the DGC that is 

the corresponding representation of the SHGC in homogeneous coordinates. Another axis 

of the DGC is a line at infinity. 

Proof . When a SHGC is written as (5.1), its axis is the z-axis (Fig. 5.3). The same 

SHGC can be represented in the form of a DGC as in (5.21)—(5.25). One axis of the DGC 

is c A d, i.e., a line passing through (1,0,0,0)^ and (0,0,0,1)^, which denotes the 2;-axis 

in homogeneous coordinates. Another axis of the DGC is a line at infinity, which passes 

through the two ideal points a = (0，1，0’ 0产 and b = (0,1，0,0)厂 • 

It is also easy to find the two axes of a torus when it is represented in the form of a DGC. 

Suppose a torus in Euclidean geometry is expressed by (5.10). From (5.26) and (5.27), we 

see that one axis of the torus is a 八 b with a = (1,0,0,0)^ and b = (0,0,0,1)^, which 
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is the 2;-axis in homogeneous coordinates. Another axis is c A d with c = (0’ 1,0,0)^ and 

d = (0’ 0’ 1’ 0)T’ which is a line through the two ideal points c and d at infinity. 

As pointed out in Propositions 5.1 and 5.2，both SHGCs and tori have planar limbs when 

viewed from the special directions. Now we show that all DGCs have this property. At first, 

we give two lemmas that are proved in [21]. 

Lemma 5.3 All the u-curves and v-curves of a DGC are planar. 

Lemma 5.4 All the tangent planes on a u-curve X(u, vo) (v-curve X(uo,v), respectively) 

pass through the same point 7'(uo)c + <5'(uo)d (a'(uo)a + y3'(wo)b’ respectively). 
( 

Theorem 5.4 A DGC has planar limbs when viewed from points on its two axes a A b and 

c A d, and the planar limbs are w-curves and v-curves. 

Proof . Prom Lemma 5.4，we know that all the tangent planes on a w-curve X{u,vo) pass 

through the point 7'(vo)c + d'{vo)d. All such points with different values of vq lie on the 

axis c Ad. Therefore, if the DGC is observed from one of the points, the viewing directions 

must lie on these tangent planes at points on the it-curves. Thus the u-curve becomes a |j 

limb of the DGC. By Lemma 5.3，the limb is planar. Similarly, the DGC has planar limbs it 
. I 

when observed from points on another axis a A b . • Ij 
ii 
I ! 

Theorem 5.5 For any two contour points from the same u-curve (u-curve, respectively), | 

the tangents to the contours at the two points intersect on the projection of the axis c A d j 

(a A b, respectively). j 

Proof . Prom Lemma 5.4，all the tangent planes of the u-curve (v-curve，respectively) meet 

at the same point on the axis cAd (aAb, respectively). Since the tangent plane at a point of 

the limb is projected onto the tangent at the corresponding point on the contour generated 

by the limb [83], this theorem holds. • 

Fig. 5.7 illustrates this invariant property. Note that when a DGC is a SHGC, one 

axis becomes the axis of the SHGC (Proposition 5.3). Thus the SHGCs invariant property 

stated in Lemma 4 in Ponce et al.'s work [61] becomes a special case of Proposition 5.5. 

Definition 5.5 Let X(u,Vi) and X(u,Vj) be two w-curves of a DGC. Two points X(uk,Vi) 

and X(uk,vj) on the two w-curves define a line of correspondence from the two w-curves. 

Let X(um,v) and X(w„，u) be two v-curves of a DGC. Two points X(um,Vg) and X{un,Vq) 

on the two v-curves define a line of correspondence from the two v-curves. 
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/A 
A I 

Figure 5.7: Illustration of Proposition 5.5. ! 

Theorem 5.6 All the lines of correspondence from any two it-curves (v-curves, respectively) 

of a DGC intersect at the same point on the axis c A d (a 八 b, respectively). 

I丨 

Proof . Let X(u, v,) and X(w’Vj-) be two it-curves as shown in Fig. 5.8，the line of corre- I 

spondence passing through the two points X(Uk,v‘) and X(wa；, vj) can be expressed as || 
I丨 

X(uk,Vi)-i-\X(uk,vj), A € E . (5.28) j 

When A = - 1 , | 

X(uk,Vi)-X(uk,Vj) |i 

二 [P(Wfc) + q(Vi)] - [p(Wfc) + q(vj)] 
=q(v i ) — q(Vj) 
=[j{vi) - + [S{vi) - (H巧)]d， (5.29) 

c A d 

/ X{u,Vj) 

a A b 

Figure 5.8: Illustration of Proposition 5.6. 
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which is a point on the axis c A d. Since this point is independent of Uk, all such lines from 

the two u-curves intersect at this point. In the same way, we can also prove that the theorem 

is true for the lines of correspondence from two v-curves. • 

From Theorem 5.6，we can obtain a corollary, the geometry of which is illustrated in 

Fig. 5.9. The proof is omitted due to space limitation. 

Corollary 5.6 The two axes a 八 b and c A d of a DGC can be determined from a pair of 

w-curves and a pair of u-curves of the DGC. 

Z 取，V ) 

r w " ^ i 
V \ 
M ^ r ^ t … … … ; ^ ：丨 

取 V , ) y � I / x(u,vj) z 

取’ v ) \ / / 
\ 1 / )!' \ I / I \ I / 1 \ I / ti 

a A b I}' 
ii! 

Figure 5.9: Illustration of Corollary 5.6. f 
\ 

5.5 Potential Applications j 

5.5.1 Recovery of DGC Descriptions 
In Lemma 4 in [61], Ponce et al. presented their main finding which states that tangents to 

the contours at the points of the same cross section of a SHGC intersect at a point on the 

projection of the axis. With this invariant property, they developed an algorithm to recover 

the description of a SHGC, i.e., to search for the straight axis of a SHGC in the image. The 

algorithm first computes the intersections of all tangents at edgels, and then employs the 

Hough transform to detect the axis. 

From Propositions 5.3 and 5.5, we can find that Ponce et al.'s Lemma 4 is a special 

case of our Theorem ？?. It is not difficult to see that Ponce et al.'s algorithm is directly 

applicable to finding one axis of a DGC in an image. With the edge points that contribute 

to the axis in the Hough space, the contours of the DGC can also be detected. 
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5.5.2 Deformable DGCs 

A 3D deformable model is useful for model-based segmentation, tracking, recognition, and 

fitting of objects in 3D images. A 3D image can be a range image or a 3D medical image 

where an image point denotes its location in 3D space. In [80], Terzopoulos et al. proposed 

a deformable cylinder model using locally deformable techniques. Later Terzopoulos and 

Metaxas used superquadrics as the global shape model for more flexible deformation [79]. 

Since DGCs can represent a wide range of object shapes, they can also be used as a good 

global deformable model with much freedom and efficient calculation. 

The equation of a Degen surface in (5.20) can be written as an equivalent tensor product 

Bezier representation 
n m 

X — ) = (5.30) 
t=0 j=0 

where and B^{v) are the Bernstein functions, and b^ are (n + 1) x (m + 1) control 

points in homogeneous coordinates satisfying certain conditions [22]. This expression shows 

that a DGC can be deformed by changing the control points, and is more flexible than the 

locally deformable cylinder in [80]. 

For a point X = {w, x, y, z)^ on the surface of the DGC in homogeneous coordinates, its 

corresponding point x in Cartesian coordinates is jt = {pcjw�jw^zlwY. Similarly to the 

deformation scheme in [79], a point f on the deformable DGC can be expressed by 

f = t + R(x + s), (5.31) 

where t is a reference point at the starting end of the deformable DGC, s is a function 

that controls the local deformation from the global model, and R denotes a rotation matrix. 

The deformable DGC in (5.31) can be manipulated using the similar external forces and 

numerical simulation as those in [79]. However, the deformation of this model requires 

linear calculation (see (5.30)) instead of the nonlinear deformation of superquadrics [79]. 

When a deformable model is applied to image data, a good initialization is often necessary 

which brings the model to the object of interest as closely as possible in order to produce 

satisfactory fitting within reasonable time. For the application of our deformable DGC onto 

a 3D image, if a given set S of points from the image (or part of the image) is known to 

form an approximate DGC, the properties developed in Section 5.4 can be used to generate 

a good initialization as described below. 

With S, the limbs of the object surface in 3D space can be obtained by setting an 

arbitrary viewpoint with a simple algorithm. After trying a number of viewpoints (say, 50) 

in 3D space randomly, we can find a set of limbs. The pair of limbs that exhibit best planarity 
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at some viewpoint is what we want to have. This pair can be treated as two u-curves of 

the DGC (Theorem 5.4). Then we use two planes that are perpendicular to the limbs to 

cut the limbs, resulting in a pair of ？;-curves approximately. According to Corollary 5.6, 

these two pairs of curves can be used to find the two axes of the DGC. Therefore, we can 

approximately generate a DGC with the found axes, w-curves, and v-curves. This DGC is 

a good initialization for the deformable DGC model. This technique is also useful for the 

initialization for fitting DGCs to 3D data where the deformation is not performed. 

5.6 Summary 

GCs have been used in many applications of computer vision. Previous work on GCs focuses 

on relatively narrow sets of GCs. In this paper, we have proposed a new set of GCs, called 

Degen generalized cylinders (DGCs). DGCs cover a wide range of GCs, including SHGCs, 

tori, quadrics, cyelides, and more other GCs into one unified model. We have presented a 

number of properties existing in DGCs. Our rigorous discussion is based on homogeneous 

coordinates in projective geometry, which is more general than Euclidean geometry. The 

invariant properties of DGCs reveal the relations among the planar limbs, axes, and contours 

of DGCs. We also discuss how the properties can be used for recovering DGC descriptions 

from image contours, and for generating good initializations for a new 3D deformable DGC 

model in 3D data fitting and segmentation. 



Chapter 6 

Conclusion and Future Work 

This thesis examines the issues related with reconstructing 3D object from line drawings. 

The main research contributions are: 

1. Presenting a new criteria based on symmetry and planarity for reconstructing 3D 

objects from line drawings. This criteria is shown to be more robust than former 

MSDA and other measure, and is necessary for the second step work: reconstruction 

from line drawings without hidden lines. 

2. Firstly exploring possibility to reconstruct 3D objects from line drawings while hidden 

lines are not shown. 

3. Firstly generalizing the reconstruction of 3D objects with planar faces only to the 

objects with both planar faces and curved faces. 

4. Presenting a new curved surface model named DGC. We prove that DGCs enjoy many 

nice invariants, which can be regarded as a generalization of the work by Marr [49] 

and Ponce [61]. DGC unified SHGC, tori, and some quadric surfaces into one model, 

which is expected to be the atoms for future reconstruction work. 

With the current results, we can expect many directions for future work. Some of the 

options are described below, and we hope one or two of them to flourish in the future work. 

New Query Interface for 3D Object Retrieval Current work in 3D object retrieval 

[56], [92] uses an existing models as the query for 3D retrieval. Our next work will 

be focus on the apply the algorithms in Chap. 4 as providing more comfortable and 

straight forwards query tools to the retrieval. For this aim, we have done some work 

recently which is planned to submitted to ECCV [14] later. 

62 
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Applications of DGCs Another subsequent work is to explore the applications of DGCs 

based on theoretical work in Chap. 5，such as the reconstruction of complex surfaces, 

connecting and blending two quadric surfaces using DGCs. 

Extracting Line Drawings from Images There have been mature algorithms to detect 

edges from images. However, to extract a good line drawings from images require 

more efforts on the edge-grouping and simplifying. Although there has been some 

elementary work for some simply models [65], this work is still mostly untouched. 

Other Directions Other research topics includes present the optimization-based recon-

struction into a Bayesian framework, finding a faster and more robust optimization 

algorithms to perform the optimization, reconstruction under perspective projection, 

etc. 

To conclude, our work on reconstruction 3D objects from line drawings has generalized 

the previous work to many cases they cannot handel. We believe many interesting and 

exciting directions still lie ahead. 
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