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：商要 

自從 F. Deutsch及其合作者在1997年提出強CHIP (the Strong 

Conical Hull Intersection Property, abbrev. the Strong CHIP )‘性質以來， 

此槪念在優化的很多領域裡佔着重要的位置。在賦範綫性空間中給定 

一族閉凸集 : i e l }；如果它們的法錐（N o r m a l Cone)滿足以下關 

係： 

" n c / 又 ) = 2 X ⑶ ， V 础 c , _ ， 

則稱此閉凸集族滿足強CHIP性質。由法錐性質可知上式等價於： 

〜 C . ⑶ g I X ⑶ ， V x e f l C , . 
U ‘ iel ‘ 

本文將有系統地介紹強CHIP性質並硏究它與其他在優化中十分重要的 

性 質 的 相 互 關 係 ， 例 如 基 本 規 範 條 件 （ t h e Basic Constraint 

Qualifications)�綫性正則性（the Linear Regularity)等。我們亦會建 

立法院強CHIP性質的一些充分條件，當中包括涉及到上圖和（Epi-

sum)的最新發展。這些將構成論文的前三章。論文的最後一章則是簡 

介本人與浙江大學的李沖教授以及我的論文導師吳恭孚教授的一 

些工作，主要是關於上圖和硏究的延續，詳情見香港中文大學數學硏 

究報告 2 0 0 6 — 0 2 ( Mathematics Research Report Series 2006-02, 

the Chinese University of Hong K o n g ) � 



The Strong Conical Hull Intersection Property 1 

Abstract 

The strong conical hull intersection property (the strong CHIP) of a system of closed 

convex sets in a normed linear space plays an important role in various aspects of 

optimization theory since it was first defined by F. Deiitsch et al. in 1997. A system of 

closed convex sets {Ci : z G /} in a normed linear space X with nonempty intersection 

is said to have the strong CHIP if their normal cones satisfy the following property 

= Y^Nc人X), \fx ef]Ci. (*) 
iei iei 

By definition of normal cones, (*) is satisfied if and only if 

iei iei 

In this thesis, we intend to give a systematic survey on recent results regarding the 

relationship of the strong CHIP with other important properties in optimization like 

the Basic Constraint Qualifications, the linear regularity, etc. W e shall also give an 

overview of various existing sufficient conditions for the strong CHIP. Recent devel-

opment involving the study of epi-siim is also discussed. The last chapter serves as a 

summary of the results a joint work with Professor Chong Li from Zhejiang University 

and m y supervisor Professor Kung Fu Ng, mainly on the extension involving epi-sum. 

For details, we refer the readers to Mathematics Research Report Series 2006-02, the 

Chinese University of Hong Kong. 
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Chapter 1 

Introduction 

The Strong Conical Hull Intersection Property (the strong CHIP), since its introduction 

in a 1997 paper, has received attention from many researchers. The property originates 

from considerations concerning the projection algorithm. In this thesis, we aim at 

surveying the main development concerning this property. 

In Chapter 2，as preparation for later discussions, we collect some basic facts con-

cerning convex analysis, such as some properties of normal cones, the separation theo-

rem and some properties of the Minkowski functional, etc. W e also include some results 

concerning the epigraphs of convex lower semicontinuous functions in the last section 

of Chapter 2. 

The definition of the strong CHIP is to be given in Chapter 3. In this chapter, 

we shall first discuss the relationship between the strong CHIP and projections onto 

closed convex sets, which was the first relationship between the strong CHIP and other 

concepts in optimization being studied historically. Digressions into cases involving 

systems of closed nonconvex sets are also addressed. The relationship between the 

strong CHIP and the Basic Constraint Qualification (the B C Q ) is to be discussed in 

section 3.3. In the last section, we study a special pair of closed convex sets. W e 

shall prove the result first obtained by F. Deutsch et al.’ which states that by suitably 

shrinking one of the two given sets without altering the set of intersection, we shall 

arrive at a pair of closed convex sets having the strong CHIP. 

Sufficient conditions for the strong CHIP have been extensively studied in the lit-

5 
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erature. This will be the topic of Chapter 4. The first part concerns the sufficient 

condition for the strong CHIP of a system of finitely many closed convex sets. While 

most of them concerns interior point conditions, recent development concerning the 

epi-sum is also addressed. The boundedly linear regularity, an important concept orig-

inated from the projection algorithm, is also shown to be a sufficient condition for the 

strong CHIP. The second part addresses the results in the case when infinitely many 

closed convex sets are involved, which was mainly the work of Li and N g (see [28]). 

The last chapter serves as a summary of the results in a joint work with Professor 

Chong Li from Zhejiang University and m y supervisor Professor Kimg Fu Ng, mainly 

on the extension involving epi-sum. For the full text we refer the readers to the Math-

ematics Research Report Series 2006-02，the Chinese University of Hong Kong. 



Chapter 2 

Preliminary 

2.1 Introduction 

In this chapter, necessary tools for our subsequent discussion are given. They are 

mainly concerned with convex analysis and set-valued analysis. 

2.2 Notations 

The meaning of X varies from sections to sections. In some sections, it will denote 

a real normed linear space, while in others it may denote a Banach space or even a 

Hilbert space. W e shall specify what X denotes at the beginning of each section and 

most of the time in the statement of the theorems. By X*，we mean the dual space of 

X. W e shall use x to denote vectors in X, and x* to denote vectors in X*. For x £ X 

and X* G X*, we shall write {x*,x) for the value 

A n extended real-valued function is said to be proper if it is not equal to —oo (the 

negative infinity) anywhere and there exist some point at which its value is finite. The 

set on which a proper function / : X —> (—00, +00] is finite is called its domain, that is 

dom f := {x e X : f{x) < +00}. 

Let / be a proper lower semicontinuous extended real-valued function on X . Then the 

7 
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sub differential of f Sit x e X, denoted by df{x), is defined by 

df{x) :== {z* e X* : /Or) + {z\y-x)< f{y) for all y G X}, 

(thus df{x) = 0 if a; G X \ d o m /). Let /，g be proper functions respectively defined 

on X and X*. Let /*, g* denote their conjugate functions (with respect to the duality 

{X,X*)), that is 

f*{x*) := sup{(a:*,2：) - f{x) : X G X}, for each x* G X*, 

g*{x) := sup{(a:*,a;) 一 g{x*) : x* e X*}, for each x e X. 

Recall that the ？i；*—topology in X* is, by definition, the weakest topology making each 

linear functional x* {x*,x) continuous on X*, where x E X. W e note that if / is a 

proper convex lower semicontinuous function on X, then its conjugate function f* is a 

proper convex it;*—lower semicontinuous function on X*, and 

r = f (2.2.1) 

(see [35，Corollary 2.3.2 and Theorem 2.3.3]). The epigraph of a function / on X is 

denoted by epi f and defined by 

epi f := {(a;,r) eX xR: f{x) < r}. 

Recall further that for proper lower semicontinuous extended real-valued convex func-

tions fi and /2 on X, the following equivalences hold: 

/i < /2 ̂  fi > 1*2 ^ epi n C epi /r， (2.2.2) 

where the forward direction of the first arrow and the second equivalence are easy 

to verify, while the backward direction of the first arrow is standard (cf. [35，Theo-

rem 2.3.3]). 

T w o special types of convex lower semicontinuous functions will be used extensively. 

Given a closed convex set A in X, its indicator function 5a and support function a a 

are defined by: 
f 
0, X e A 

：= < . 

00, otherwise 

(Ja{x*) := for all x* € X*. 
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W e use B(x, e) to denote the closed ball with center x and radius e and B to denote 

the closed unit ball in X. For a set A in X (or in W), the interior {resp. closure, convex 

hull, convex cone hull, linear hull, affine hull, boundary) of A is denoted by mtA {resp. 

A, CO A, cone A, span A, aff A, bdry A). Some other basic notations and definitions will 

be given in the remaining parts of this chapter. 

2.3 On properties of Normal Cones 

The following definition of normal cones is well known, see for example [7’ Section 2.1]， 

[16, III Definition 5.2.3]. 

Definition 2.3.1. Let C be a dosed convex set in a normed linear space X. The 

normal cone Nc{x) of C at a point x £ C is defined by: 

Nc{x) := {x* e X* : {x\y- x) < 0, V^ € C}. (2.3.1) 

The next proposition collects some useful properties of normal cones. Parts (i) to 

(V) can be found in standard references for convex analysis, see for example [7]，[11] 

and [35]. Since the references are scattered, we give proofs for these statements for 

completeness. Part (vi) is proved here for later use. To proceed, we first recall two 

definitions from the literature. 

Definition 2.3.2 (see [35’ Page 227]). A Banach space X is said to be smooth if the 

unit ball has a unique supporting hyperplane at every point of its boundary, that is, for 

any boundary point x of the unit ball B{0,1) in X, the set 

{x* e X* : ||a;”|=:l 二 � r c V � } 

is a singleton. 

Definition 2.3.3 (see [35, Page 230]). Let X be a Banach space. The duality map 

J : X X* is defined by 

J{x) {x* e X* : {x\x) = ||:r||2 = \\x*f}, for each xeX. 
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Proposition 2.3.1. Let C,D be dosed convex sets in a normed linear space X. Then 

the following statements are true: 

(i) Nc{x) = d6c{x) for all xeC. 

(ii) //(7门 D # 0，then Nc{x) + Nd{x) C Ncnoix) for allxeCnD. 

(iii) If C C D , then ND{X) C NC{X) for all X E C . 

(iv) Nc{x) = |JA>O C) for any x e C. 

(v) If X is a Banach space, then the following equivalence is valid for any xq ^ X 

and u G C: 

J{xo -u)n Nc{u) Pc{xo), (2.3.2) 

where Pc is the projection on C and J is the duality map. In particular, if X is 

smooth, then we have 

JixQ -u)e Nc{u) ^ue Pc{xo)- (2.3.3) 

If assume further that X is Hilbert, then we have 

xo-ue Nciu) = Pc{xo). (2.3.4) 

(vi) If X is a smooth and reflexive Banach space, and C = x + K for some vector 

X e X and closed convex cone K，then for any y £ X and u e C, the following 

implication holds: 

u G Pc{y) X £ Pc{y -u-\-x). 

In particular, when X is a Hilbert space, we have 

u = Pc{y) x = Pc{y -u + x). 

Proof. The verification of (iii) is straightforward. N o w we start to prove (i). B y the 

definitions, the following equivalences hold: 

{x*,y-x)<6c{y)-6c{x), Vy G X , 

{x*,y- x) < 6c{y) — (5c(x), V?/ e C, (since 5c{-) = +oo on X\C), 

<=> {x*,y-x)<0, \/ye C, (since Sc{-) = 0 on C). 
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Thus (i) is seen to hold. 

To prove part (ii), we take c* G Nc{x) and d* G ND{X). By definition of normal 

cones, we have in particular that 

{c*,y-x) < 0, Vy eC 八D and {d\y - x) < 0, Vy 

Adding the two inequalities, we obtain 

{c* + d\y-x) < 0，Vy € (7门1)’ 

which means c* + d* G iVcnD⑷-This proves part (ii). 

To prove (iv), let a; G C; and thus d{x, C) = 0 and 5c{x) = 0. Take y* G dd{x, C) 

and A > 0. Then for any y G C, it follows from the obvious inequality Xd{-,C) < 6c{-) 

that, 

{Xy\y- X) < X[d{y,C) - d{x,C)] = \d{y,C) < Sc{y) = 6c{y) - 5c{x), 

which implies Xy* G dSc{x) and hence that Xy* G Nc{x), by (i). This implies that 

Ua>O C) C Nc{x) for any x e C. Conversely, suppose y* e Nc{x). Then 

that is, a; is a minimizer of /(.) := {y*,x — •) over C. Since / is a Lipschitz function 

of rank \\y*\\, it follows from [11，Proposition 2.4.3] that a; is a global minimizer of the 

function {y*,x-y) + \\y*\\d{y,C) on X，i.e., 

{y\x-y) + \\y*\\d{y,C)>0, ^y E X. 

This gives y* £ \\y*\\dd{x,C), and so y* e U入>o 工,C). This proves part (iv). 

Now, we turn to part (v). By [35, Theorem 2.5.7], the subdifFerential sum rule ([35, 

Theorem 2.8.7]) and (i), we have the following equivalences: 

u e Pc{x) 

分 u minimizes ^HXQ — .IP + Sc{-) 

0 € -J{xo-u) i-Nc{u). 
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This proves (2.3.2). Moreover, if X is assumed to be smooth, then J is single valued 

(cf. [35，Page 230]) and hence (2.3.3) follows immediately from (2.3.2) for the case 

when X is smooth. Finally, assume that X is Hilbert (which is smooth in particular). 

Then, by the natural identification between X and X*, J = I (the identity map) 

and the projection onto any nonempty closed convex sets is single valued (cf. [35, 

Proposition 3.8.6]). Thus (2.3.4) is a re-statement of (2.3.3) in the case when X is a 

Hilbert space. This proves part (v). 

Finally, we prove part (vi). Let y e X and u e C, we first claim that for this 

specific C = x + K, 

u € Pc{y) =4> (J{y < 0 , Vfc G K. (2.3.5) 

To see this, let u G Pciv)- Since X is smooth, by part (v), we have J{y — u) G Nc{u). 

This gives 

{J{y -u),x + k-u) <0, \/k e K. 

Since is a cone, this gives {J{y — u), k) < 0 for all k E K. N o w we start to prove the 

implication stated in part (vi). Note that u G Pciv) implies 

{J{y-u),k) <0, "^keK. (2.3.6) 

This implies that 

{J{{y -u + x)-x),x + k-x) <0, \/k e K, 

and hence that J{{y-u + x)-x) G Nc{x) and so x G Pc{y — u + x) by (2.3.3). The case 

when X is a Hilbert space follows readily from (2.3.4), since the projection onto any 

nonempty closed convex sets is single valued (cf. [35, Proposition 3.8.6]). The proof is 

completed. • 

W e shall need to use the following simple observation of normal cones, which is an 

easy consequence of the Hahn-Banach extension theorem. See [28，Corollary 2.1] for 

the case when C is a polyhedron. To proceed, we introduce the following notation. 

Definition 2.3.4. Let C be a closed subset of a normed linear space X，Z be a sub space 

of X such that C C Z. The normal cone of C as a subset of Z at the point x ^ X is 
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defined by 

N§{x) := {y* e Z* : {y\y- x) < 0, Vy G C}, 

Proposition 2.3.2. Let C be a closed subset of a normed linear space X, Z be a 

subspace of X such that C C Z. Then, for any x E C, the normal cone of C as a 

subset of Z at the point x, NQ{X), is equal to 

Nc{x)\z ••= {y* ez*： - {x\y- x) < 0, V?/ G C). 

Proof. It is obvious that Nc{x)\z C N§{x). To show the converse inclusion, we take 

y* E NQ{X). By Hahn-Banach extension theorem, there exists x* G X* such that 

x*\z = y*. Then since x e C and C C Z, we have 

{x\y-x) = {y\y-x)<0, MyeC, 

where the inequality follows from the definition of Thus y* G Nc{x)\z- This 

finishes the proof. • 

2.4 Polar Calculus 

W e recall the following separation theorem. 

Theorem 2.4.1 (cf. [35’ Theorem 1.1.5], [33’ Theorem 2.2.28]). (i) LetC be a closed 

convex set in a normed linear space X, and y • C. Then there exist x* € X*\{0} 

and 7 G R such that 

> 7 > {x\u),\/ueC. 

(ii) Let C be a w* — closed convex set in the dual normed linear space X*, and y* 來 C. 

Then there exist x G X\{0} and 7 G M such that 

{y\x)>^>{u\x),W eC. 

Definition 2.4.1 (cf. [16，III Definition 3.2.1], [35, Page 7]). Let C be a closed convex 

set in a normed linear space X. The negative polar of C is defined by 

C ® := {x* G X * : {x\x) < 0 , V x e C}. 
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For a set C in X*, we define analogously the negative polar of C as 

C® :={xeX : {x*,x) < 0,\/x* e C}. 

Remark 2.4.1. It follows easily from definition that for C Q X, C® is a w* — closed 

cone in X*, while for C C X*, C ® is a closed cone in X. (cf. [17, Page 67]) 

Proposition 2.4.1 ([18，1.1.6]). Let D be a convex set in a normed linear space X. 

Then cone D is a convex cone. 

Proof. It is easy to verify that cone D is homogeneous in the sense that \D C D for 

all A > 0. To prove that coneD is convex, let x,y E coneD, and t G (0,1). W e have 

to show that tx + {1 — t)y G coneD. Since this is clearly true if a; = 0 or j/ = 0, we 

suppose henceforth that a: ̂  0 and ？/ 0. Then there exists Ai, A2 > 0, and di,d2 G D 

such that X = Xidi and y = \2d2. Let A = iAi + (1 — t)\2 + 0. Then A > 0 and thus 

tx-h{l- t)y 二 iAidi + (1 — t)\2d2 = + (1 二 )〜 2 ) G coneD, 

since + (工-丄)〜2 e D hy the convexity oiD. • 

Definition 2.4.2 (cf. [25], [28]). Let {Ci : i £ 1} he a family of closed convex sets in 

a normed linear space X. Then 

j^c, .= : Cj e Cj,JC I,\J\ < +00}, 

ie/ I {0}, otherwise 

Some properties regarding negative polars are collected in the next proposition. 

Proposition 2.4.2 (cf. [35’ Theorem 1.1.9], [17，Page 113，Exercise 2.2.8]). Let {Ai : 

i e 1} be a collection of closed convex cones in a normed linear space X where I is an 

index set. Let C, D be closed convex sets in X. Then the following statements are true. 

(i) (Z)©)© - c ^ ^ ; 

(ii) If CCD, then D © C C©. 

(iii) 

where Y^ denotes the w* — closure of Y for any subset Y of X*. 
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Proof. The proof of (ii) is straightforward. W e only prove (i) and (iii). 

W e first prove part (i). Let y G coneD. Then by definition, there exist A > 0 and 

d e D such that y = Xd. Thus, for any u* e D®, we have 

〈21*，?/〉二 A〈w*，d〉仏 

which implies that y G (D©)©. Since (D©)© is closed (as is easily verified), it follows 

that coneD C (D®)®. To prove that the above inclusion is in fact an equality, we 

suppose that 

coneD C (D©)© (2.4.1) 

Then there exists x G (D®)®\coneD. Recalling from Proposition 2.4.1 that coneD 

is a closed convex cone. It follows from Theorem 2.4.1 that there exists y* G X* and 

a G M such that 

{y\x) >a> {y\d), W G coneD. (2.4.2) 

Since 0 G coneD, (2.4.2) implies that a > 0. O n the other hand, since d G coneD 

implies td € cone D for any t > 0 by definition, we see that for any fixed d e cone D, 

a>t{y*,d), V t > 0 , 

which implies {y*,d) < 0 for all d G coneD. Thus a = 0 satisfies (2.4.2)，that is 

〈？Ax〉> 0 > {y*,d), Md G coneD. 

The second inequality implies y* G D ® and it follows from the first inequality that 

X 车(D®)®. This contradicts the choice of x and (i) is proved. 

To prove part (iii), for each fixed k e I, since Ai C Af：, it follows from part 

(ii) that Af C This implies Eie/A®"' ^ (fke/A尸，since (flie/成尸 is 

a It;*—closed convex cone. To prove the equality, we suppose on the contrary that 

iel i£l 
w* 

Thus there is a y* G (Hie/ ̂ i)® but y* 朱 ^ f • By Theorem 2.4.1’ there is an 

X £ X and a constant 7 G M such that 

{y\x)>-f> {u\x)yu* e Afyi e i. (2.4.3) 
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As in part (i), (2.4.3) is true with 7 = 0 and so the second inequality implies that 

X G (A®)® and so x € by (i). Since this is true for each z G / we have x € PlieJ 成 

and it follows from the first inequality in (2.4.3) that y* ̂  (Hie/ ̂ i)®- This contradicts 
w* 

the choice of y*. Thus (Hie/ ̂ i)® = Eie/ ̂ ？ . 口 

Next we introduce a definition. 

Definition 2.4.3 ([1, Definition 4.1.1 and Page 122]). Let D be a closed convex set in 

a normed linear space, x £ D. Then the (contingent) tangent cone TD[OC) to D at X is 

defined by 

Td{X) := {h : 3hn h,tn i 0，such that x + TNHN € D, foreach n G N}. 

W e have the following proposition. 

Proposition 2.4.3 ([1, Page 139]). Let D be a closed convex set in a normed linear 

space, X £ D. Then the following statements are true. 

(i) NDix) = { D - x ) ^ . 

(ii) ND{X) = {TD{X)R. 

Proof. Part (i) is immediate from the definition of negative polar and normal cones. 

W e now prove (ii). Let y* G ND{X). Take any h G TD{X). Then there exist by 

definition hn — h and 丄 0 such that x + tnhn G D for each n. Since y* G iVD (工）， 

y* E {D — x)® by part (i) and thus 

tn{y\hn)<0 (2.4.4) 

Dividing both sides of (2.4.4) by tn and letting n converge to infinity, we obtain {y*, h) < 

0. Since h is an arbitrary element in TD{X), we have proved ND{OC) C {TD{X))^. W e 

now turn to the converse inclusion. Let y* G Let h e D - x. Then the 

line segment := {x + th : 0 < t < 1} is contained in D because is a convex 

set containing x. Thus x + G D for all n G N and so h E TD{X). Consequently, 

{y*, h) < 0. Since h G D - x is arbitrary, we have y* £ {D - x)^. By part (i), 

y* € N D { X ) and this completes the proof. • 



The Strong Conical Hull Intersection Property 17 

2.5 Notions of Relative Interior 

The first notion to be introduced here is the notion of relative interior. 

Definition 2.5.1 ([6, Definition 2.1]). Let C,D be closed convex sets in a normed 

linear space X• A point x is said to be in the relative interior of C, denoted by nC, 

if there exists 6 > 0 such that B{x,6)门 aff 〔（7，where aff C is the affine hull of C. 

A point X is said to be in the D-interior of C, denoted by I'mtDC, if there exists ^ > 0 

such that B{x, (5) D aff D C C. 

Next, consider a family of closed convex sets {D,Ci : i e 1} in X with nonempty 

intersection, where I is an index set. W e call such a family a closed convex set sys-

tem with base set D, abbreviated CCS-system with base-set D. Let \J\ denote the 

cardinality of a set J. 

Definition 2.5.2 ([28, Definition 3.1)). Let {D’Ci \ i £ I] he a CCS-system with 

base-set D. The CCS-system {D,Ci : i e 1} is said to satisfy: 

i) the D-interior-point condition if 

D PI ( n rintDa) 0； (2.5.1) 

ii) the strong D-interior-point condition if 

Dnl^rintDplC^i)传, (2-5.2) 
V IEI ) 

in) the weak-strong D-interior-point condition with the pair (/i,/2) if there exist two 

disjoint finite subsets Ii and I2 of I such that each Ci (i £ I2) is a polyhedron and 

( \ ( \ 
riDfl r i n t z )门 Q 门 f| riCi fl fl 0. (2-5.3) 

\ ie/\(/iuJ2) / \ie/i / ieh 

Any point x belonging to the set on the left-hand side of (2.5.1) (resp. (2.5.2), 

(2.5.3)) is called a D-interior point {resp. a strong /̂ -interior point, a weak-strong D-

interior point with the pair (/i,/2)) of the CCS-system {D,Ci : i G /}. Similarly, the 

notion of an interior point [resp. a strong interior point, a weak-strong interior point 

with the pair (/i,/2)) of the CCS-system {D,Ci : z G /} is defined. 
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2.6 Properties of Minkowski functional 

Definition 2.6.1 (cf. [35, Page 4]). Let C be an absorbing convex subset in a linear 

space X, i.e. for all x e X, there exists A > 0 such that G C. The Minkowski 

functional of C is defined by: 

pc{x) := inf{A > 0 : X-^x G C}，for all xeX. 

Remark 2.6.1. By [17, 3C Lemma], Minkowski functional of an absorbing convex set 

is a suhlinear functional. 

Remark 2.6.2. If C is a set in a normed linear space such that 0 G int C, then C is 

absorbing. 

Proposition 2.6.1 (cf. [35, Proposition 1.1.1]). Let C be an absorbing convex subset 

with 0 G int C in a normed linear space X. Then the following statements are true: 

(i) iiitC= {x: pc{x) < 1}; 

(ii) pc(a:)<l} . 

Proof. W e first show that under the assumption 0 G intC, the Minkowski functional 

is a continuous sublinear functional. By Remark 2.6.1，we need only to prove the 

continuity. First of all, by the assumption 0 G intC, there exists a > 0 such that 

aB C C, where B denotes the unit ball. Thus for all x G X\{0}, g G C. This implies 

for all X e X, 

P c ( a : ) < i | | x | | , (2.6.1) 
oc 

(The inequality holds trivially if x = 0). Thus pc is a continuous sublinear functional. 

W e now begin to prove (i). It follows directly from the definition of Minkowski 

functionals and 0 G C that 

pc{x) <l^xeC. (2.6.2) 

O n the other hand, by continuity of pc, {a; : pc{x) < 1} is open. Combining this with 

(2.6.2), we see that {x : pcix) < 1} C intC. Conversely, let x € intC\{0}. there 

exists a ball B{x,'y) C C for some 7 > 0 . Note that |[丨丨言"{“飞工-工II = 7 - This implies 
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丨丨I丨丨Iĵ3： G B{x,'y) C C. Thus pc{x) < ！丨 j ” < 1. O n the other hand, it is obvious that 
II ill 

Pc{0) = 0 < 1. Combining these we get the converse inclusion intC C [x : pc{x) < 1}. 

These give (i). 

W e now turn to prove (ii). Let pc{x) < 1. Then by definition, for all e〉0， 

G C. This implies x e C. Conversely, let x e C. Then since 0 G int C, tx 6 int C 

for all t e (0,1) by convexity of C. By (i), this means that for all t G (0,1)，Pcit̂ :) < 1, 

which implies by sublinearity that pc(x) < Letting t | 1, we see that pc{x) < 1. 

This completes the proof. • 

2.7 Properties of Epigraphs 

W e collect some properties of epigraphs in this section. The following lemma is easy 

and the proof is standard. 

Lemma 2.7.1. Let f be a proper convex function defined on X*. Then e p i / � = 

epis 广，where epi^ f := {(rc*，a) e X* xR: a > f{x*)}. 

Proof. It follows readily from definition that epi 广 D epi^ 广 . T o prove the converse 

inclusion, take {x*,a) G epi/ . Then there exists a net {xy.ay) G epi/ with w*-

limit (a:*,Q；). Consider a net (3v > 0 with limit 0. Then {xy.ay + (3v) ^ epi^/ and 
yj* 

lini(a:y,av + /Sy) = (x*,a). This shows that (a:*, a) G epi^/ , which completes the 

proof. • 

W e shall need the following definition in the next lemma. 

Definition 2.7.1 (cf. [35’ Theorem 2.1.3 (ix))). Let {fi : 1 < i < n} be proper convex 

lower semicontinuous functions on X. The infimum convolution is defined by 

n n 

(/1口/2 . • . •/n)(x) ：= i n f { ^ fiiXi) ： J2xi = x} 

i=l i=l 

The formula (2.7.1) in the next lemma was mentioned in [10’ Remark 2.1] for the 

case when n = 2 and in [8，Corollary 2.3] for the general case. In both papers, the 

functions are defined on a Banach space. 
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Lemma 2.7.2. Let {fi : 1 < i < n} be proper convex lower semicontinuous functions 

on X with fi being proper. Then 

n — 

EPI(J2FIY = • (2-7.1) 
i=l i=l 

Proof. Since fi are proper for each i�by [35，Theorem 2.3.3], /* are proper for all i. Not-

ing that g** = g for convex lower semicontinuous functions g (see [35, Theorem 2.3.3]), 

we have for each x* G X* that 

(/;口/2* ••.•/：)* ⑷ = s u p {〈0：*，：̂〉-(/1*口/2*...口/】0；*)} 

n n 

= s u p sup{(x*,x} - ： y ' ^ = X*} 

=sup{X;;[«,a;) - /*«)] ： x:eX*,l<i< n} 
i=l 

= E F R ( ^ ) 

n 

i=i 

Thus we have 

(/1*口/! ••••/；：广= f > . 
i=l 

Taking conjugations on both sides, we see that, 

(/1*口/2* …•/；：广* = (2.7.2) 
i=l 

By properness of EJLi fi, there exists a G M and xq e X such that fii^o) < c^. 

By definition of conjugations, we see that for all x* 6 X*, 
n 

(/rn/2 • • • Of:)(x*) > (x*,xo} — Y^ Mxo) > {x*,xo) - a. 

It then follows from the definition that co {f^nf^ . • ••/*)"' {x*) > {x*,xo) - a. Com-

bining this with the properness of f* (which follows from the properness of fi and [35, 

Theorem 2.3.3])，we see that co (/i^D/l ••• which is equal to (/；•/! ... 
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by convexity of infimum convolution (cf. [35, Theorem 2.1.3 (ix)]), is proper. By (2.7.2) 

and [35, Theorem 2.3.4 (i)]，we obtain 

epi(/i^n/2*.. - epi fir-

i=l 
A n application of [35, Theorem 2.1.3 (ix)] and L e m m a 2.7.1 gives the desired result. • 

The next proposition was proved in [9, L e m m a 3.1] for two closed convex sets in a 

Banach space and in [21, L e m m a 3.4] for finitely many closed convex sets in a Banach 

space. 

Proposition 2.7.1. Let {Ci : 1 < i < n} be a collection of closed convex sets in X 

(7 0. Then 

-n 
epi ac = ^ epi c q . (2.7.3) 

i=l 
Proof. Note that YA=I 知‘ 二 ̂ C and 5q = ac, and it follows from (2.7.1) that 

n 
epi Gc = epi 5c = epi (J] 

i=\ 

i=l 
• 

The following reveals a relationship between the epigraph of support functions of a 

closed convex set and the normal cone of the closed convex set. 

Proposition 2.7.2. Let A be a closed convex set in a normed linear space X and let 

xeA,x*e X*. Then 

X* e NA{X) (TA{X*) < (x*,x} <=> (x*, (x*,x}) e epifJA. (2.7.4) 

Proof. The following equivalences hold: 

X* G NA(X) 

(x*,a- x) < 0 , Va G A, 

aA{x*) < {x*,x) 

{x*, {x*,x)) e epio-^. 

• 



Chapter 3 

The Strong Conical Hull 

Intersection Property (Strong 

CHIP): Definition and Some 

Properties 

3.1 Introduction 

Roughly speaking, the strong conical hull intersection property (strong CHIP) is a 

property that concerns the decomposition of the normal vectors of the set of intersection 

into the sum of normal vectors of the constituent sets. The concept of the strong CHIP 

naturally arises in different branches of optimization. Here are some examples. 

Example 3.1.1. Consider the problem of minimizing a continuous convex function g 

defined on subject to an abstract closed convex constraint set C. Suppose that XQ 

is a minimizer to the problem. Then by the sum rule (cf. [35，Theorem 2.8.7 iii)]) and 

[35，Theorem 2.5.7], we have 

0 e dg{xo) + Nci'xo), 

where NC{OOO) is the normal cone of C at XQ. If it is also known that C = Hie/ CI for 

22 
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some system of closed convex sets {Q : i G / } , and that the system has the strong 

C H I P at rro, then we have 

iei 

or equivalently, there exists y* e dg{xo), x* G Nci{xo), i e I, with only finitely many 

of them being nonzero, such that 

iei 

The next example illustrates the original motivation for proposing the strong CHIP. 

Example 3.1.2. Suppose we are given two closed convex sets A and B in a Hilbert 

space X. Suppose that the projection onto A is much more easy to compute than the 

projection onto 召 or A n 丑，then it is natural to try to express PA^B {X) in terms of 

Fyi(x), where PAnBi^) and PA{X) are projections of the point x onto An B and A 

respectively. It turns out that if {A, B} has the strong CHIP, then for each x e X, 

there exists a point b G NB{PAnB{^)) such that, 

PAnB{x) = PA{x-b). 

See Theorem 3.3.1 below. 

The strong C H I P was originally proposed in connection with the projection property 

illustrated in example 2. See for example [14], [13], [12], [24], [25]. Later on some 

authors identified the importance of the strong C H I P in the characterization of the 

point of best approximation and the minimizers in many other optimization problems 

as illustrated in example 1. See for example [27]. Some authors related the study of the 

strong C H I P with other concepts in optimization like the basic contraint qualifications 

(BCQ) (see for example [24], [25]). 

In this chapter, we shall first define the strong CHIP. Then we shall study how 

different authors relate the strong C H I P with other useful properties. Finally, we shall 

follow [13] (see also [14] and [12]) and try to produce a pair of sets with the strong 

C H I P from a pair without such property. Since properties of projections onto closed 

convex sets would be simpler in the Hilbert space setting, we shall mainly study the 
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strong CHIP of sets in Hilbert space in this chapter. However, the definition of the 

strong CHIP is given for systems of closed convex sets in general normed linear spaces 

for later use. Readers who are interested in the relationship between the strong CHIP 

and projections onto closed convex sets when the ambient space is a general Banach 

space are referred to [25], [26] and [28]. 

3.2 Definition of the strong CHIP 

The following definition is due to [13, Definition 3] when the index set is finite, and to 

[28, Definition 2.1] when the index set is arbitrary. The definition of infinite sum used 

here is given in Definition 2.4.2. 

Definition 3.2.1. Let {Ci : i E 1} he a collection of dosed convex sets in a normed 

linear space X with nonempty intersection, I be an index set. The system is said to 

have the strong conical hull intersection property (the strong CHIP) at a point x £ C := 

fke/Ci, if 

Nc[x) = jyc人 X). 
i€l 

The system is said to have the strong CHIP if it has the strong CHIP at every point in 

the intersection. 

This concept was first introduced in [13, Definition 2.3] under a Hilbert space set-

ting. Later on, Li and N g studied this concept when X is a normed linear space (see 

for example [25] and [28]). 

The next proposition, originally stated for sets in Hilbert spaces (see [13, L e m m a 2.4]), 

gives some equivalent conditions for the strong CHIP. 

Theorem 3.2.1. Let {Ci : i G 1} be a collection of closed convex sets in a normed 

linear space X with nonempty intersection, I be an index set. Write C := Hie/ 

Then the following statements are equivalent: 

(i) {Ci : i e /} has the strong CHIP. 

(ii) Nc{x)CZ.^jNc,{x),for allxeC. 
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(iii) (C - x)© = Eieli^i - 炉 for all xeC. 

(iv) cone (C — 二 门么日,cone {Ci — x) for all x e C, and — is w* —closed 

for all X £ C. 

Proof. The equivalence between (i) and (ii) is immediate from Proposition 2.3.1 (ii), 

while the equivalence between (i) and (iii) follows from Proposition 2.4.3 (i). 

W e now prove the equivalence between (iii) and (iv). Suppose first that (iii) is true. 

Taking polar on both sides of the equation in (iii) and invoking Proposition 2.4.2 (iii), 

we see that for each x £ C, 

which gives the first half of (iv) by Proposition 2.4.2 (i). N o w observe that 八Ci 一 

x)® is w;*—closed for all a; G C since (C - x)® is lu*—closed for all x e C. This 

gives the second half of (iv). Thus the implication (iii)=>(iv) is proved. N o w we turn 

to prove (iv)=>(iii). Fix any x £ C. Taking polar on both sides of cone (C — x)= 

Hie/ cone {Ci — x) and applying part (iii) of Proposition 2.4.2，we get 

w* 

i£l 

Since Ylie八Ci — a;)® is it;*—closed by assumption, part (iii) follows. This completes 

the proof. • 

The following proposition, though simple, will be used several times in the next 

section. 

Proposition 3.2.1. Let {Ci : i G 1} be a family of closed convex sets in a normed 

linear space X, I he an index set. Suppose there exists an affine space Z such that 

Ci Q Z for all i e i . If {Ci : i £ 1} has the strong CHIP as subsets in Z, then 

{Ci-.ie 1} has the strong CHIP. 

Proof. Write C := Hie/ Ci. Fix XQ £ C and let y* € Nc{xo). B y translation, we may 

assume without loss of generality that :ro = 0. Then Z is a subspace containing Q for 
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all i e I. Then y*\z G Nc{0)\z. By Proposition 2.3.2 and the strong CHIP assumption, 

there exists G A^Ci(0)|z for each i e I such that 

y*\z = J 2 < - (3-2.1) 
iei 

By the Hahn-Banach Theorem, there exists, for each i G I, an extension u* of u* to 

X* with norm l|u*l|. Since Q C Z for all i e I, it follows directly from definition of 

normal cones (see (2.3.1)) that u* G Nci (0) for i e I. It now follows from (3.2.1) that 

e ii；" + Z丄 g ； ^ N c M + Z丄 （3.2.2) 

ia i£l 

Since Ci C Z for all i G I, we have Z丄 g Nci(O) for all i and thus (3.2.2) gives 

i£l 

which completes the proof. • 

3.3 Relationship between the strong CHIP and 

projections onto sets 

W e start by proving the following theorem, from which we shall obtain several related 

results in the literature as corollaries. 

Theorem 3.3.1. Let {£", Si : i G /} be a collection of closed convex sets in a Hilbert 

space X with nonempty intersection, I be an index set. Then the following statements 

are equivalent: 

(i) {E, Si : i G / } has the strong CHIP. 

(ii) For all x and XQ in X, Pĵ nfi Si 二 ^o if and only if there exist a finite set 

Iq Q I, Xi e NSI (xo) for each i e Iq such that Pe{x — Y^i^JQ ^i) = xq-

Proof. Let :=丑 A f^^j Si. Then, by the given assumptions, 5 is a nonempty closed 

convex set. 



The Strong Conical Hull Intersection Property 27 

(ii) Let x G X and XQ G S he such that Ps{x) = XQ. By (i), we have 

NSIXO) = NE{XO) + Y.NS,{XO). (3.3.1) 

ie/ 
B y Proposition 2.3.1 (v), it follows that the following equivalences hold: 

xo = Ps{x) 

X - a;o G Ns{xo) 

3xi G Ns{xo)yi G I with finitely many nonzero such that 

x - x o - ^ X i E NE{xo), (3.3.2) 

i=I 

where (3.3.2) can be equivalently rewritten as 

= (3.3.3) 

iei 

(ii)=>(i) Let xq e S. B y Theorem 3.2.1 (ii), we need only to show that 

Ns{xo) C Ne{xo) + Y^ Ns,{xo). 
i£l 

Let z G NsipCQ). Then, by Proposition 2.3.1 (v), Ps{z + XQ) 二 rco- By assumption in 

(ii), there exist a finite set IQ Q I, XI E NS^XQ) for each i E IQ such that PE{XQ + 

z — 工i) 二工0. B y Proposition 2.3.1 (v) again, the last equation is equivalent to 

xo + z — Xlie/o Xi — Xq G Ne{xo). This implies that 

G Ne{xo) + C Ne{xo) + Y^ Ns, {xo), 
i&Io iel 

which completes the proof. • 

The first corollary is the implication 1 分 2 of [14，Theorem 3.2]. 

Corollary 3.3.1. Let {Hj : 1 < i < nj be a collection of translations of closed half-

spaces in a Hilbert space X with nonempty intersection, i.e. Hi := {x E X : {hi, x) < 

6i} for some hi E： X, bi £ R, I < i < n. Suppose C is a closed convex subset such that 

C n Hi ^ 0. Then the following statements are equivalent: 

(i) {C,Hi : l<i<n} has the strong CHIP. 
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(ii) For all x and xq in X, Pcnf]^^^ Hii^)=工o if and only if there exist Aj > 0 for 

each 1 <i <71 such that Pc{x — XI二i Xihi) = xq, with \i = 0 for all 1 < i < n 

such that {hi,xo) = bi. 

Proof. In view of Theorem 3.3.1，it suffices to show that for each 1 <i <n, 

cone hî  if rco € bdry Hi 
NHiM = < . 

{0}， otherwise 

\ 

If xo G int Hi, since Hi — xq contains a neighborhood of zero, it follows that NHi(ocQ)= 

{Hi - Xo)® = {0}. For Xq e bdry Fi, it follows that {hi,xo) = bi. Thus = 

{Hi — Xo)® = {hex : {h,x) < 0’ Wx such that〈"“ x) < 0} = cone hi. • 

The next corollary is [25, Theorem 4.2] for the case when the scalar field is the field 

of real numbers. 

Corollary 3.3.2. Let {Si : i G 1} be a collection of sets in a Hilhert space X with 

nonempty intersection in the form Si := {x e X : {hi,x) e Oj} for some hi G X, 

rii C E with Qi being closed and convex, i E I. Suppose C is a closed convex subset 

such that C A Pke/ Si ^ 0. Then the following statements are equivalent: 

(i) {C, Si : i G /} has the strong CHIP. 

(ii) For all x and xq in X, = if and only if there exist Xi G 

Nuiiihi.xo)) for each i e I such that Pc{x - 泊 Xiht) = XQ. 

Proof. In view of Theorem 3.3.1 again, it suffices to show that for each i e I, 

Ns,{xo) = {Xihi :入i G NQ,((hi,xo})}. (3.3.4) 

Note that y G Nsi{xo) is equivalent to 

{y,x- Xo) < 0, Vx € Si. 

Thus y e Nsi{xo) if and only if xq is a minimizer of the following optimization problem: 

Minimizexgx -{y,x) + SnMhi.x)) 
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B y [35，Theorem 2.5.7] and [35，Theorem 2.8.3], this is further equivalent to: 

0 ed{-{y,-)){xo) + d6nMhu-)){xo) 

分 0 G - y + 

from which (3.3.4) follows. This completes the proof. • 

The next corollary is [13，Theorem 3.2]. Before proving it, we need to prove a simple 

lemma on computation of normal cones. Given a continuous linear m a p A : X ^ Y 

from a Hilbert space X to another Hilbert space Y", we write A* : Y* X* as its 

conjugate map. W e also write ker A := {x G -X" : Ax = 0} and R{A*) := {a;* G X* : 

Lemma 3.3.1. Let A : X ^Y be a continuous linear map from a Hilbert space X to 

another Hilbert space Y and b eY. Suppose that A* has closed range. Then 

= R{A*), \/x e A-^b. 

Proof. Let x e A'^b. Note that A'^b-x = keiA. Thus 

AU-16 � = ( k e r ^ ) © 
=(ker⑷丄 

=R{A*), 

where the first equality follows from Proposition 2.4.2 (i), the second equality is true 

since ker A is a subspace, while the third equality follows from (cf. [12, L e m m a 8.33]) 

and the last one from the assumption. This completes the proof. • 

It is easy to see that for any continuous linear operator A : X ^ Y between two 

Hilbert spaces, R{A*) is closed if Y is finite dimensional. This fact is to be used in the 

next corollary. 

Corollary 3.3.3 ([13, Theorem 3.2]). Let C be a closed convex set in a Hilbert space 

X, A : X —^Y a continuous linear map from the Hilbert space X to a finite dimensional 

Hilbert space Y and b G Y . Then the following statements are equivalent: 
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(i) {C,A-^b} has the strong CHIP; 

(ii) For every x E X, there exists y eY such that 

A[Pc{x + A*y)] = b- (3.3.5) 

(iii) For every x e X, there exists y GY such that 

PcnA-^b{x) = Pc{x + A*y). (3.3.6) 

Moreover, for the same x e X, the corresponding y in part (ii) and (iii) can be taken 

to be the same. 

Proof. W e start by proving the equivalence of (i) and (iii). Suppose that (i) is true. In 

view of the implication of Theorem 3.3.1，there exists v G 

such that Pc{x - v) = PcnA-'^bi^)- O n the other hand, by L e m m a 3.3.1, there exists 

y £ X such that v = —A*y. Thus (iii) follows. W e now prove the converse implication. 

Suppose (iii) holds. Since by L e m m a 3.3.1, (…)二 丑(乂*) = ： y G 

X}, condition (iii) implies that for any G X, 

PcnA-^bi^)=工0 there exist u 6 A^a-^6(^CnA-16(^)) such that Pc{x — u) — a;o. 

it follows from the implication of Theorem 3.3.1 that (i) holds. This proves 

(i)^(iii)-

W e now turn to the equivalence of (iii) and (ii). Fix x £ X. Suppose first that 

(iii) is true for some y. Then we have, 

Pc{x + A*y) e n C. (3.3.7) 

This implies in particular that Pc{x + A*y) G A'^h and thus A[Pc{x + A*y)] = b, 

proving (iii)=»(ii). N o w suppose conversely that (ii) is true for some y. B y (v) of 

Proposition 2.3.1，we have 

x + A*y- Pc{x + A*y) G Nc{Pc{x + A*y)). 

In view of L e m m a 3.3.1 and A[Pc{x + A*y)] = b, we see that -A*y G R{A*)= 

NA-^b{Pc{x + A*y)). This gives 

x-Pc{x + A*y) G Nc{Pc{x + A � ) ) - A�C Nc{Pc{x + A*y)) + Na-x^{Pc{x + A*y)). 
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Combining this with Proposition 2.3.1 (ii), we obtain 

a: - Pc{x + A*y) G N^-ibnc{Pc{x + A*y)). 

By Proposition 2.3.1 (v) again, we obtain •FU—ibnc(工)=Pc{x + This completes 

the proof. • 

Remark 3.3.1. Actually, in [13], the authors devoted most parts of the paper studying 

the pair of closed convex sets {C, rather than the family of closed convex sets 

{Ci，. • • ,Cn}. 

Besides projections onto closed convex sets, relationship between the strong CHIP 

and projections onto some kinds of nonconvex sets was also addressed in the literature, 

see for example [24] for the case of Hilbert space. As before, we concentrate mainly on 

the case when the ambient space is a Hilbert space. Let D be a closed convex set in a 

Hilbert space X, Ai be Frechet differentiable functions on X, hi i e I, h^J h = I 

and HF\L2 = 0. Write K := D R\ flie/Jx : AI{X) = HI]门 flie/si^ : M^) < 

Definition 3.3.1 ([24, Definition 3.2，Definition 3.3]). Let x e K. A vector d is called 

a linearized feasible direction of K at x if 

{d,VAi{x)) = 0, Mi eh, 

Mi G I{x), 

where VAi{x) is the Frechet derivative of Ai at x, I{x) is the active index set for x, 

i.e. I{x) ：二 {i e /2 : = bi}. The set of all linearized feasible directions of K at 

X is denoted by LFD(a:). 

A vector d is called a sequentially feasible direction of K at x if there exist a sequence 

{dk} Q X and a sequence {J/J of real positive numbers such that 

dk — d, 6k 0, X + 5kdk e K, V/c G N. 

The set of all sequentially feasible directions of K at x is denoted by SFD(x). 

Definition 3.3.2 (See the remark below [24’ Proposition 3.1]). For XQ G K , define 

KS{XQ) = co{xo + SFD(a:o)) n D, 

I<L{XO) = {XO + LFD(rro)) n D. 
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Lemma 3.3.2 (See the remark below [24，Proposition 3.1]). For XQ G K ， K S { X Q ) C 

KL{XQ). 

Proof. Fix an XQ G K. W e first show that SFD(a;o) C LFD(a;o). Let d e SFD(a:o). 

Then there exist in i 0 and dn — d such that xo + tndn G K. For i £ Ii, Ai{xo + tndn)— 

Ai(xo) = 0 - 0 = 0. This gives {d,VAi{xo)) 二 0. For i £ /(XQ), we have Ai{xo) = 0. 

Thus Ai{xo + tndn) = Ai{xo + tndn) _ Ai{xo) < 0’ which gives {d,VAi{xo)) < 0. 

Combining the last two sentences we have d e LFD(a;o). Thus we have shown that 

d e LFD(a:o) and hence that SFD(xo) C LFD(a;o). This implies that 

co{xo + SFD(a;o)) C co(a:o + LFD(a:o)). (3.3.8) 

However, as is easily checked, LFD(rro) is a closed convex set. Thus (3.3.8) gives 

— 0 + SFD(a:o)) Ca;o + LFD(xo), 

which gives the desired result. • 

Proposition 3.3.1 ([24, Corollary 3.1]). Let XQ G K . Consider the following state-

ments: 

(i) K C KL{XQ) and Ks{xo) = KL{XO); 

(ii) For any x e X, XQ £ P K { X ) P K ^ = ^o； 

(iii) For any x e X, XQ e PK{^) PKL(^) 二 ^o-

Then (i)==>(ii)=»(iii). If assume in addition that K C Ks{xo), then the three state-

ments are equivalent. 

Proof. W e first prove Let XQ G PK{^) and y G XQ + SFD(a:o). W e wish to 

show that = XQ. B y definition of sequential feasible directions, there exist 

a sequence 丄 0 and dn — y _ ocq such that a;o + tndn G K for all n. By definition of 

projections, we obtain 

Ik - xoll < ||x - (a;o + Mn)||, Vn G N. 

Squaring both sides and expanding, we get 

2tn{dn:xo-x) + tl\\dnf>0, Vn. 
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Divide both sides by tn and let n go to infinity, we see that for each y £ xo + SFD(xo), 

we have 

{x -xo,y- xo) < 0. (3.3.9) 

It now follows readily from the bilinearity and continuity of inner product that (3.3.9) is 

true for all y G co(a:o + SFD(a;o)). Invoking Proposition 2.3.1 and thanks to KS{XQ) C 

co(xo + SFD(a:o)) (see Definition 3.3.2), we obtain XQ = PKS{XQ){'^)- Since by assump-

tion Ks(xo) = Kl(xo) given in (i), we have shown that xq = Pkl{xo){^)- Conversely, let 

Xo = Pkl{xo){^)' Since by assumption given in (i), K C Kl{xo), we obtain xq G Pk{x) 

as desired. This finishes the proof for (i)=^(ii). 

Since (ii)=J>(iii) is obvious, what remains is to show that the three statements are 

equivalent under the additional assumption K C Ks{xo)-

Suppose that (iii) holds. Then for all x £ X, 

PKS{XO){^) =Xo=^Xoe PK{X) PKLixo)i^) 二 邮. (3-3.10) 

W e claim that KL{XQ) C KS{XQ). Suppose on the contrary that this is not true. Then 

there exists a ?/ G KL{XQ)\KS{XQ). Since by Definition 3.3.2，we have KL{XQ) Q D, it 

follows that y 车 G, here we use G co(xo + SFD(a;o))=工0 + co(SFD(;eo)). Thus G 

is a translate of a closed convex cone. Let u = Pciv)- By Proposition 2.3.1 (vi), we 

see that xq = Pciv + â o - u). Combining this with Proposition 2.3.1 (v), we see that 

y - u e NG{XO) (3.3.11) 

It now follows from (3.3.11) and [35’ Corollary 3.8.5] that xq 二 尸 w h e r e Xt ：= 

XQ + t{y - u) for t > I. This implies xq = PKS{XO)M since xq G KS{XO) Q G (see 

Definition 3.3.2). To finish the proof, we shall show however that, xq ̂  PKLixo){^t) for 

large t and this will contradict (3.3.10). To see this, in view of u = Pciy) and a;。G G, 

we have by definition of normal cones that, 

{xo - u , y - u ) < 0. 
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Thus we obtain 

W^t-yf = \\xo + t{y-u)-yf 

= \\xo-u + {t-l){y-u)f 

= {t- l)2||y - uf + 2{t - l ) ( a ; o - % y - u ) + ||a;o - w||2 

<{t-iny-uf + \\xo-uf 

<t^y-uf = \\xt-xof, 

for large t. This implies xq 朱 PK[^{xo){xt) for large t and leads to the desired contradic-

tion. Thus KL{XO) C KS{XO). Combining with L e m m a 3.3.2, we get KL{XQ) = KS{XO). 

Since it is assumed that K C KS{xo), we obtain K C Kl{xo). is proved. • 

To state the next theorem, we introduce the following notations, as was done in 

[24]. Based on the notations used in Definition 3.3.1, given XQ G K, we write HI ：二 

{h ： {h,VAi{xo)) <bi- Ai{xo) +〈a:。’ VAiOco)〉} for i G h�Pi ：= {" : {h,VAi{xo))= 

{xQ,S/Ai{xo))} for i G h. Note that in this case 

xo + LFD(a;o) = {xo + d : {xq + d, VAi{xo)) < {xo,VAi{xo)),i G I{xo), 

{xo-\-d,VAi{xo)) = (a:o,VAi(xo)),i G h} 

={h : {h,VAi{xo)) < {xo,VAi{xo)),i e I{xo), 

{h,\/Ai{xo)) = (xo,VAi(xo)},i G /i} 

= n HIH n PJ. (3.3.12) 

i€l(xo) je/i 

N o w we are ready for the next theorem. 

Theorem 3.3.2 (cf. [24，Theorem 4.1]). Let a ;�€ K. Suppose that K C Kl{xq) and 

Ks{xo) 二 Then the following statements are equivalent: 

(i) {D,Pi,Hj : i e h j e I{xo)} has the strong CHIP at XQ； 

(ii) {D,Pi, Hj : i £ Ii,J E H} has the strong CHIP at XQ； 

(iii) For any x,XO E X, XQ E PK{X) is equivalent to the following statement: 

3Xi > 0, 2 G / 2 , Ai = 0, i E h such that XQ = PD{X - ^ AiVyli(xo)). 
iei 
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Proof. Note that for XQ G Hj with j • /(xq), XQ 6 intHj since bj > Aj(xo) and 

V^j(a:o) is a continuous linear map. Thus the equivalence of (i) and (ii) follows from 

Theorem 4.2.3 in the next chapter. W e now show that (i) is equivalent to (iii). By 

Proposition 3.3.1，statement (iii) is equivalent to 

(iii*) For any X^XQ £ X, XQ e PK^ is equivalent to the following statement: 

3Ai > 0, 2 e /2 , Ai = 0, i E II such that XQ = PD{X - ^ AiV>li(xo)), 

iei 

where KL{XO) = Dnf|祐厂工。）丑iAflje/i according to (3.3.12). Now, the equivalence 

between (i) and (iii*) will follow from Theorem 3.3.1 once we establish the following 

relationship: 

(I) Np.{xq) = {AVA,(a:o) ： A G M}, i € 7i； 
f 

M “ � coneV^i(xo), i G I{xo) 
(II) N h A X Q ) = 

[ {0}, i i lixo) 

W e first prove (I). Note that Np^{xo) = {Pi 一 xq)® = P^^ since Pi are subspaces, (I) 

follows. W e now prove (II). If i • /(xq), then XQ G int Hi, since Hi - XQ contains 

a neighborhood of zero, it follows that Nfj办o) = {Hi - xo)® = {0}. Otherwise, 

xo e hdiy Hi. It follows that {VAi{xo),xo) = k. Thus iV//.(a:o) = {Hi — xo)® = {/i € 

X : (/?., x) < 0,Va: such that (VAi(a:o),x> < 0} = cone VAi(a;o), (II) follows. This 

completes the proof. • 

3.4 Relationship between the strong CHIP and 

the Basic Constraint Qualifications (BCQ) 

In subsequent years, the concept of the strong CHIP has been studied by some authors 

together with the concept of the basic constraint qualifications (BCQ) (c.f [21], [25]). 

W e first give the definition of the B C Q . The original definition was given for continuous 

convex functions in M " (see [30’ Definition 2.1 b)]). W e restate it for continuous convex 

functions in normed linear spaces. 



The Strong Conical Hull Intersection Property 36 

Definition 3.4.1. Let {gi : i E /} be a family of continuous convex functions in 

a normed linear space X and G{x) sup祐j gi(x) < +00 for all x € X. Write 

Ci := {x : gi{x) < 0} for each i£l,C:= fjig/ Ci = {x: G{x) < 0}. The BCQ is said 

to hold at a point XQ £ C if 

Nc{xo) = cone (%(a;o)), (3.4.1) 

iei{xo) 

where I{xo) := {i £ I : gi{xo) — G{xo) = 0}. Here we adopt the convention that 

summing over a null index set equals {0}. 

The main clue that leads people to relate the strong CHIP and the B C Q lies in the 

fact that if G satisfies some good conditions, like the Slater condition, i.e. 

3 x such that G{x) < 0, 

then for each i £ I and each XQ G {a;: G{x) < 0}, we have (ci [11，Theorem 2.4.7, Corol-

lary 1]) 

Nciixo) = cone (%(a:o)). 

Under these assumptions, the equation (3.4.1) is just a restatement of the strong CHIP 

of {Ci : i £ I}, where Q {x e X : gi{x) < 0}. One natural question is that, given 

a family of closed convex sets {Ci : i e 1} having the strong CHIP, is it possible to 

construct continuous convex functions gi with corresponding lower level sets Ci, i G /, 

so that {gi : i G /} satisfies the B C Q ? This turns out to be true when the system of 

closed convex sets has suitably good properties. In [28], the authors exploited this to 

study the strong C H I P for a system of infinitely many closed convex sets. This is to 

be discussed in the second part of Chapter 3. 

In [25]，the authors established a relationship between the strong CHIP for a system 

of closed convex sets and the B C Q for a system of continuous convex functions in a 

Banach space X. These results have been applied to obtain new characterizations for 

the minimizers of a best approximation problem in the Banach space of all continuous 

functions defined on a compact set. See [25，Section 5] for details. 

To state the results, we need the following definition. For the remainder of this 

subsection, X will denote a Banach space. Let {gi : i € /} be a family of continuous 
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convex functions in a Banach space X and G(x) := sup沒/ gi(x) < +00 for all x e X, 

D he a closed convex set with A : G(x) < 0} 0. Write Q := {2; : gi(x) < 0} 

for each i e I, C := flie/ Q = {x : G(x) < 0}. 

Definition 3.4.2 ([25, Definition 2.1]). The system {gi : i E 1} is said to satisfy the 

BCQ relative to D at a point XQ if 

NC{XQ) = ND{XO) + Y^ cone(%(a;o)), (3.4.2) 

i€/(xo) 

where I{xo) := {i € I: gi{xo) = G(xo) = 0}. Here again we adopt the convention that 

summing over a null index set equals {0}. 

Definition 3.4.3 ([25, Definition 2.4]). LetxE DnC. An element d £ X is called 

(i) a linearized feasible direction of the system {gi : i £ 1} at x if 

{x\x)<0, y dgi{xo). 
IG/(X) 

(ii) a sequentially feasible direction 0/ D Ci C at x if there exists a sequence dk — d 

and a sequence of positive real numbers tfc 0 such that x -f- tj^dk ^ D DC for 

all k. 

Definition 3.4.4 ([25, Definition 2.5]). For oc G DnC’ define 

Ks{x) = co{x + SFD(a:)) n D, 

KL{X) = (ar + LFD⑷）n_D. 

Lemma 3.4.1 ([25，Proposition 2.1]). For x 6 K D nC，K Q Ks{x) C KL{X). 

Proof. Fix Sin X G K. W e first show that SFD(x) C LFD(a;). Let d G SFD(a:). Then 

there exist | 0 and dn d such that x + tndn G K. For i £ I{x), we have 

gi{x) 二 0. Thus gi{x + tndn) - gi{x) = 9i{x + tndn) < 0，which gives (z*, cQ < 0 for all 

G Uie/(x) Letting n -> 00, we have d G LFD(a;). Thus we have shown that 

SFD(x) C LFD(a:). This implies that 

co{x + SFD(:r)) C co(x + LFD(:r)). (3.4.3) 
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However, as is easily checked, LFD(a;) is a closed convex set. Thus (3.4.3) gives 

co(x + S F D⑷ ) g x + LFD(x), 

which gives Ks(x) C KL{X). It now remains to show that K C Ks{x). Let d e K. 

Then since x e K,we have x + t{d — x)eK for alH G (0,1) by convexity. This implies 

by definition that d — x G SFD(a:), from which we obtain d£x + SFD(a:). Combining 

this with d £ K C D, we see that d E Ks{x) as desired. • 

Lemma 3.4.2 ([25, Lemma 3.2]). Suppose X is reflexive and smooth, Ti, T2 are two 

closed convex cones. If x E PDn{x+T2){y) x G PDn{x+Ti){y) for all y e X, then 

Dn(:E + ri) c Dn{x + T2). 

Proof. Suppose on the contrary that this is not true. Then there exists a 2/ G D 门(工 + 

TI)\D n (工 + T2). Since 门(a; + Ti) g D, we must have Y^G, where G:=X + T2,3I 

translate of a closed convex cone. Let u € Pciv)- Then by Proposition 2.3.1 (vi), we 

see that x € Pciy + x - u). Combining this with Proposition 2.3.1 (v), we see that 

J{y-u)eNG{x), (3.4.4) 

where J is the duality map. It now follows from (3.4.4) and [35, Corollary 3.8.5] that 

X e PG{^t)^ where xt ：= a; + t{y - u) for t > 1. Since re e n (x + T2) C G, we 

actually obtained x 6 "PDrXi+Ts)!工t). W e shall show that however, x • PDn{x+Ti){^t) 

for suitably large t and this will contradict the assumption. To see this, in view of 

u G Pciy), X e G and the definition of normal cones, we see that, 

{J{y-u),x-u)<0. (3.4.5) 

Thus we obtain for each i > 1 that, 

W^t-yf = {J{xt-y),xt-y) 

=t{J{xt-y),y -u) + (J(xf - y ) - J{t{y -u)),x-y) 

+ {J{t{y-u)),x-u) - {J{t{y-u)),y-u), 

< Îkt - 2/1111" - 一 {J{xt — y) — my - y) — t\\y —…l'，(3.4.6) 
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where the last inequality holds due to (3.4.5) and the relationship {J{t{y — u)),y — u)= 

— u|p > 0’ which holds by definition of duality maps (see [35’ Page 230]). Note that 

lim h{J{xt-y)-J{t{y-u)),x-y))= \im{{J{y-u + ^^)-J{{y-u)),x-y)) = 0, 
t~*oo t t-*oo t 

since J is norm-it;* continuous ([35, Page 230]). It now follows from (3.4.6) that for 

large t > l 

This implies x • PDr\{x+Ti){^t) for large t and leads to the desired contradiction. Thus 

L) n (a; + g n (a: + T2). • 

The following theorem stating a relationship between the strong CHIP of {Ci : i € 

/} and the B C Q of the system {讲：i G /} was proved in [25, Theorem 3.1]. W e write 

Sz* (a;o) ：= {x : {z*,x - Xo) < 0} for each 2* G UiG7(a;o) ̂ ^i(^o)- It is direct from 

definition that 

KL{xo) = DnS{xo), (3.4.7) 

where S{xo) := fll-^e'C^o) : G Uie/(a;o)石分i(工0)}. W e shall need the following 

lemma. 

L e m m a 3.4.3 ([25，Lemma 3.1]). Let rco e ：二 •Dn(7. Then for any xe X, we have 

rco e Pk{X) ^Xoe PKs{xo)i^)-

Proof. Since by L e m m a 3.4.1，K C KS{XQ), we see that XQ € PKS{XO){^) ^O ^ 

It remains to show the converse implication. Let XQ G By Proposition 2.3.1 (v), 

there exists x* G J{x — XQ) such that 

(3.4.8) 

for all y e K. For any d G SFD(a:o), there exist i„ 丄 0 and dn — d such that XQ-^tndn G 

K. Thus (3.4.8) implies that {x*,d) < 0 for all d E SFD(a;o). Since inner product is 

bilinear and continuous, it then follows that {x*,y—xo) < 0 for all y £ co{xo + SFD(xo)) 

and hence for all y G KS{XQ). Thus x* € J{x - XQ) n iV/Cs^C工0) 0. It follows from 

Proposition 2.3.1 (v) that XQ € 尸/^^⑷⑷.The proof is completed. • 
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Theorem 3.4.1 ([25, Theorem 3.1]). Let € := D n C. Consider the following 

statements: 

(a) the system {gi : i E 1} satisfies the BCQ relative to D at XQ； 

(b) Ks{xo) = KL{XQ), and the family {D,SZ'{XQ) : z* G \Ji£I{xo)^has the 

strong CHIP at XQ； 

(b*) Ks{xo) = KL{XO), and the family of functions {〈2;*’.一a;。〉： G Uie/(:co)谷"“工。)} 

satisfies the BCQ relative to D at XQ； 

(c) for each x G K, XQ E PK{X) if and only if 

( \ 
J{x - XQ) n ND{XQ) + Y. conea分iOro)作 (3.4.9) 

V IEI{XO) 

Then the following implications hold: 

(i) (a)=>(c); (b)^(b*)=^(c); 

(ii) (a)<J=>(b)=>(c) if X is reflexive; 

(iii) (a)分(b)公(c) if X is reflexive and smooth. 

Proof. The results are trivial when rco € D A intC*，since all the statements hold auto-

matically. Hence we assume that ;ro G D A bdry (7. Thus G{XQ) = 0 and that 

ND{XO) + Y . CONEDGI{XO)CNK{XO). (3-4.10) 

ie/(xo) 

(i) Assume (a). B y Proposition 2.3.1 (v), XQ G PK{X) is equivalent to J{x- XO) N 

NK{XO) ^ 0. (c) follows from this and the definition of the B C Q relative to D. This 

proves (a)=>(c). O n the other hand, the equivalence between (b) and (b*) follows 

directly from definition. W e turn to show (b*)=^>(c). W e first show that XQ G PK {^ ) 

implies (3.4.9). Note that the B C Q assumption in (b*) and (3.4.7) imply that 

= ND{XO) + <^onedgi{xo). (3.4.11) 

ie/(xo) 



The Strong Conical Hull Intersection Property 41 

O n the other hand, since XQ G PK(^) is equivalent to XQ G by L e m m a 3.4.3, 

thus in particular 

rro € PK(X) => J(x - XQ) PI N K S M I- 0. (3.4.12) 

In view of the assumption KL{XO) = i^s(a^o) in (b*) and (3.4.11), (3.4.12) implies 

(3.4.9). As to the converse implication, note that (3.4.10) and (3.4.9) implies that 

J{x — XO) n NK(OOO) + 0, which gives XQ G PK{X) in view of Proposition 2.3.1 (v). This 

proves (b*)=>(c). 

(ii) Suppose that (iii) is valid, and X is reflexive. There exists an equivalent norm 

on X such that X is smooth (cf. [15’ Page 186]). Then it follows from (iii) that (a) 

and (b) are equivalent. Combining this with the equivalences proved in (i), part (ii) 

is proved. 

(iii) In view of (i), it remains to show that (c) implies (a) and (b*). W e first show 

that (c) implies (a). In view of (3.4.10), we need only to prove the converse inclusion. 

Let y* G NK{XO). B y reflexivity and [35，Corollary 3.8.5], we see that XQ G PK{XO + U) 

for all u e J~^{y*). Then (c) implies that there exists x* e J{XQ + U — XO) = J{u) such 

that 

x* G ND{XO) + ^ conedgiixo). (3.4.13) 

i€l{xo) 

Since X is smooth, J is single-valued (see [35，Page 230]), x* 二 = y*. Thus 

(3.4.13) is equivalent to y* G Noixo) + Zlie7(xo) cone9^i(a:o)- This proves (c)^(a). 

W e now turn to the implication that (c)=>(b*). By L e m m a 3.4.1，we see that 

K C Ks{xo) C KL{XQ). This implies that for each x e X,we have 

工0 G Pks(xo)(^) PK{X) (3.4.14) 

Conversely, if XQ G by (c), this is equivalent to 

J{x - XQ) E ND{XO) + ^ conedgi{xo). (3.4.15) 

i€lixo) 

W e first check that 

conedgiixo) C (3.4.16) 

ie/(xo) 
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To see this, let i G I{xo) and 2：* G dgi{xo). Take y G KL{XO). Then by (3.4.7), we see 

that, 

{ z \ y - X Q ) < Q . (3.4.17) 

Since this is true for all y G KL{XQ), we have shown that for each i G /(xq), dgi{xo) C 

Since is a cone, it follows that c o n e 谷 ^ 

O n the other hand, since KL{XO) C D, we have NOIXO) C iV/̂ LOco)(工o). Combining 

this with (3.4.15) and (3.4.16), we see that J(x - XQ) G which in turn 

gives XQ e thanks to Proposition 2.3.1 (v). Thus we have 

â o G ^XOE Pks(XO)(^) ̂ XQE PK{X)- (3.4.18) 

It then follows from L e m m a 3.4.2 that KS{XQ) = KL{XQ). 

W e now continue on the proof of (c)=^(b*). W e obtain from (c) and (3.4.18) 

that XO G if and only if J{x - â o) € ND{XO) + ！Eie/Oro)cone0i^i(:co)，ac-

cording to (3.4.7). Applying the implication (c)=»(a) to the system {(z*, • - XQ): 

e in place of {gi : i e I{xo)}, we see that {{z*, • 一 xq) ： € 

Ui€/(xo)谷仿(工0)} has the B C Q relative to D at XQ. This completes the proof. • 

Remark 3.4.1. [24, Theorem 5.1] follows from part (c) of the previous theorem by 

taking X as a Hilbert space. 

3.5 The strong CHIP of extremal subsets 

In [13], the authors considered the system {C, where C is a closed convex set 

in a Hilbert space X, A : X Y a, continuous linear m a p from a Hilbert space X to 

a finite dimensional Hilbert space Y and b EY. B y Corollary 3.3.3, the strong CHIP 

of the system of sets {C, is equivalent to (3.3.5)，from which we can find the 

projection onto C n •A—ib by an algorithm proposed in [13]. However, it is not always 

true that {C^A'^b} has the strong CHIP. In [12, Chapter 10], [13] and [14], the authors 

considered an extremal subset C{, of C. They proved that by replacing the set C by a 

subset Cb, while keeping its intersection with unchanged, the system 

always has the strong CHIP. 
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W e begin with the definition of extremal sets. 

Definition 3.5.1 ([17, Section 8 A]). Let X be a normed linear space, A he a convex 

set in X. E C A is called an extremal subset of A if x,y e. A, and there exists some 

t £ (0,1) such that tx + {1 — t)y G E, then x,y £ E. 

Proposition 3.5.1. Let X be a Hilbert space, Y be a finite dimensional Hilbert space. 

Suppose C is a closed convex set in X, A is a continuous linear map from X to Y and 

b G R{A). Then the following statements are true: 

(i) There exists a minimal extremal subset Cb of C such that 

(ii) There exists a minimal extremal subset F{, of A{C) such that 

beFb. 

Proof. To begin with, note that by definition of extremal subsets, intersection of ex-

tremal subsets is also an extremal subset. 

W e now prove (i). It is easy to see that C itself is an extremal subset of itself with 

the prescribed property. O n the other hand, suppose E and B are extremal subsets of 

C such that 

C n A'^h = = A'^b. 

Then (丑 n 丑)n A—ifo = C 门 Since B n 五 is also extremal by our earlier note, 

there exists a minimal extremal subset Cb of C such that 

C7nA-i?) = CbnA-i?)， 

namely, 

Cb = ： EQC,E IS closed convex extremal in C, En A'^b = Cn A-^b}. 

This proves (i). 

Part (ii) follows from a similar argument, using the fact that b G A{C) and that if 

b £ B Siudb e E, then be BnE. • 



The Strong Conical Hull Intersection Property 44 

Write Cpk C" n A-i(Fjj). W e have the following theorem. 

Theorem 3.5.1 ([13, Proposition 4.3]). Let X be a Hilbert space, Y be a finite dimen-

sional Hilbert space. Suppose C is a closed convex set in X, A is a continuous linear 

map from X to Y and b € R{A). Then the following statements are true: 

(i) Ct = CF,; 

(ii) b e riA(Cb); 

(iii) A ( a ) = Fb. 

Proof. The proof proceeds as follows: we shall first prove that Ch C (7凡.Then we show 

that (ii) and (iii) are satisfied for CF^, in place of Cb. Finally, we show that Cpf, Q Cb-

W e start by proving Cb C C"凡.We shall show that Cpf, is an extremal set such that 

Cf, n A-^b = C7 n 4一1(&). (3.5.1) 

This together with the definition of Cb proves our claim. To see this, let x,y e C and 

A G (0’ 1) be such that Ax + (1 - X)y e C凡.Then XAx + (1 - X)Ay e Fb- Since Fb is 

extremal in A{C), this implies Ax, Ay € F^. Thus x,y e = Cf^ and hence 

Cpf, is extremal. O n the other hand, (3.5.1) is true since 

CF, n A-ife = n n yTife 

thanks to the fact that b e Fb. This shows that Cb C Cpf, by definition of Cj,, proving 

our first claim. 

Next we show that A(CfJ = F5. First of all, Since F^ C A{C) and Cf^ = C n 

A~^{Fb), it is trivial that Fb C TO prove the converse inclusion, let y £ A{CFJ. 

There exists x € CFJ, such that y = Ax. But CF^ = C n A'^Fb) Q thus 

y == Arr G Fb. This proves our second claim. 

N o w we show that b G r L 4 ( O J = hFb. B y considering {6} and Fb as subsets of 

span {FB - b) =: Vb (Note that YQ is closed since it is finite dimensional), the assertion 

becomes b G int Fb. Suppose this is not true. B y Theorem 2.4.1, there exists y G ^0*\{0} 

such that 

{y,b)>{y,x), Vrr G Fj,. (3.5.2) 
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B y the Hahn Banach theorem, there exists an extension y of y to X* preserving the 

norm. W e claim that there exists some f E Fb such that 

{y.b)>{yj)- (3.5.3) 

Suppose this is not true, then y G {Ft, — 丄，which means that 引y。= y = 0, contra-

dicting the choice of y. Thus (3.5.3) holds. This implies that n iJ is a proper subset 

of Fb, where H := {x e Fi, : {y,x) = {y,b)}. To see that it is extremal in A{C), let 

x,ue A{C) and A G (0，1) be such that Aa; + (1 — X)u e 厂b n 丑.By extremality of Fb, 

we obtain oc,u G Fb. But then (3.5.2) and Xx + {1 — X)u e H implies that 

which implies that {y, x) = {y,u) = {y, b), and thus x,u G H. This shows that FbD H 

is a proper subset of Fb containing b which is also extremal in A{C), a contradiction. 

Thus we have also proved b G riyl(Cfj,) = riî b. 

Finally, we prove that Cpf, Q Cb. Let x G Cp,,- Then y := Ax G A{CF(,) = Fi,. 

Since b G riF̂ ,, there exists u e Fb and A G (0，1) such that A?/ + (1 — \)u = b. Take 

xo e 4一iwnC. Then Arc + (1 - A)a:o G 4一ifenC* C Cb. Since Cb is extremal, we obtain 

X G Cb, which is the desired result. • 

Note that b G riyl(C) implies the strong C H I P of the system (see Theo-

rem 4.2.6). In other words, by shrinking C to Cb (without changing the intersection), 

we obtain a system {Cb, which has the strong CHIP. 



Chapter 4 

Sufficient Conditions for the 

Strong CHIP 

4.1 Introduction 

Since the strong CHIP was first proposed by F. Deutsch, W . Li and J. Ward, many 

researchers have given sufficient conditions for the strong CHIP. In [13], the authors 

have given interior point type conditions (see section 3.2 below) sufficient for the strong 

CHIP. In a later paper [5] by Borwein et al., the authors studied a relationship between 

the strong CHIP and the linear and bounded linear regularity for systems of closed 

convex sets in Euclidean spaces. The task of extending the results in [5] concerning 

the strong CHIP from a Hilbert space setting to a Banach space setting was taken up 

in [32]. In recent years, Jeyakumar et al. gave new sufficient conditions in terms of 

epigraphs of the support functions of the sets involved (cf. [9], [21]). 

Concerning results in more general settings, N g and Song (see [31, Theorem 4.2, 

Theorem 4.3, Corollary 4.1]) gave some sufficient conditions for the strong CHIP of 

systems of closed convex sets in locally convex spaces. Since we focus mainly on sets 

in normed linear spaces, and especially those in Banach spaces, we shall not pursue in 

this direction. Interested readers are referred to [31]. 

The case when the system consists of infinitely many closed convex sets was also 

46 
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addressed. In 2005，Li and N g studied in [28] the strong CHIP for possibly infinitely 

m a n y closed convex sets in normed linear spaces and gave new interior point type 

sufficient conditions (see section 3.2 below). These results have been applied to obtain 

new characterizations for the minimizers of a best approximation problem in the Banach 

space of all continuous functions defined on a compact set. See [27, Theorem 3.2 to 3.5] 

for details. 

In this chapter, we give a brief overview of these sufficient conditions for the strong 

CHIP. To end this introductory section, we give two examples to show that the strong 

C H I P does not hold automatically for systems of closed convex sets. 

Example 4.1.1. Consider two sets in defined respectively by 

A := {(x,y) gR^ : y>x^} 

B:={(x,y)GR^: p = 0} 

Then A n S =： {(0,0)}. Thus AUis((0’0)) = Yet NA((0,0)) = {A(0,-1) : A > 0} 

since A has smooth boundary at the origin, and iVj5((0’0)) = {A(0,1) : A G R}. Thus 

NA((0, 0)) + NB((0, 0)) = {A(0,1) : A G K}, showing that the strong C H I P cannot hold 

at the origin. Thus the system of closed convex sets does not have the strong CHIP. 

Example 4.1.2. W e shall consider an infinite index set in this example. Consider the 

system of closed convex sets {B(0, C X : n € N} in a Banach space X. Then 

rUNB(0’ 去）={0}. Since 0 € intB(0’ 去）for all n G N, IVB(o’去)W = {0}- On the 

other hand, iV{o}(0) = X, showing that the system does not have the strong CHIP. 

4.2 is finite 

4.2.1 Interior point conditions 

In this section, X will be a normed linear space unless otherwise specified. By Propo-

sition 2.3.1 (i), we have for each closed convex set C, d5c{x) = Nc{x) for all x e C. 

Moreover, for two closed convex sets C and D with nonempty intersection, 5c{x) + 

5D{X) = for all x £ X. In this sense, the strong C H I P is a special case of 
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the subdifferential sum rule for convex lower semicontinuous functions. To derive suf-

ficient conditions for the strong CHIP, we first recall some sufficient conditions for the 

subdifferential sum rule for convex lower semicontinuous functions. 

W e begin our discussion with the following definitions. The definition was stated 

originally for X = W. 

Definition 4.2.1 ([7，Section 5.1]). A set C in X is called a polyhedral set (or polyhe-

dron) if there exist a* £ X*, bi £ R, 1 < i < n, such that 

C = {xeX : {a*i,x) <bi,l<i< n}. 

A function f : X — (—oo, oo] is called a polyhedral function ifepif := {(x,r) e X xR : 

r > f{x)} is a polyhedral set 

It follows immediately from the definition that polyhedral sets are closed convex 

sets. Thus polyhedral functions are convex lower semicontinuous functions. 

Theorem 4.2.1 (ci [35’ Section 2.8], [7, Corollary 5.1.9]). Let f, g be convex lower 

semicontinuous functions defined on a Banach space X. Then the sum rule holds, i.e. 

d{f + g){x) = df{x) + dg{x) for all x e X if at least one of the following conditions 

holds: 

(i) 0 G int(dom/ — domg); 

(ii) d o m / n int(domg) 一 0; 

(iii) 0 G core (dom/ — domp); 

(iv) cone(dom/ — d o m ⑷ = X ; 

(v) X is R", f ’ g are polyhedral functions such that dom / 门 dom r̂ 0. 

The following theorem concerning sufficient conditions for the strong CHIP follows 

immediately from the above theorem. 

Theorem 4.2.2 (cf. [13], [14], [32], [31], [9]). Let C, D be closed convex sets in a 

Banach space X with nonempty intersection. Then the strong CHIP holds if at least 

one of the following conditions holds: 
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(i) O G i n t ( C - D ) ; 

(ii) C n intD ^ 0; 

(iii) 0 € core(C - D); 

(iv) cone(C - D) = X; 

(V) X is R", C, D are polyhedral sets. 

Proof. Note that d o m 如 = C and d o m So = D. The first four statements follow 

immediately from an application of Theorem 4.2.1 with f = Sc, g = So- The last 

statement follows from Theorem 4.2.1 and the fact that Sc and 6d are polyhedral 

functions if C, D are polyhedral sets. • 

The following theorem, termed D L W in [28], summarizes some sufficient conditions 

for the strong CHIP. It was first proposed in [14] in the Hilbert space setting. 

Theorem 4.2.3 (cf. [28’ Theorem 2.2]). Let {D,Ci, • •. Cn} be closed convex sets in a 

normed linear space X. Let D A 门 C i ^ 0. Then the family has the strong CHIP if 

one of the following conditions is satisfied: 

(i) jDnintAJLiCi — O，-

(ii) ri D n nr=i Ci 辛迅 and each Ci is a polyhedral set; 

(iii) There exist a subset Iq of I := {1,2, •.. ,n} such that Ci is a polyhedral set for 

each i G I\Io and 

nD n (int f | Ci) n ( Pi Ci) + 0. 

i€/o ie/\/o 

Proof. It is easy to see that part (iii) is true granting (i) and (ii). To see this, fix any 

re e D n nr=i Ci- Applying (i) to D n CliaXlo Ci in place of D and to {CI : i e Iq} in 

place of {Ci : I < i < n}, we obtain that 

^ � + E 似 工 ) . 
iGlo 
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Finally, applying (ii) to {Ci : i G /\/o} in place of [Ci : 1 < z < n}, we obtain further 

that 

〜。 n i u C i⑷ ^ 〜门 r W \ / o c‘⑷ + E NcM C Nd{x) + ^ Nc人X), 
iG/o i€/ 

which completes the proof for (iii). 

To see that part (i) is true, we recall that for a family {fi : 0 < i < n} of proper 

convex functions, the sum rule 

1 = 0 i=0 

holds if dom/o n int d o m fi 丰 0 (cf. [35’ Theorem 2.8.3]). Part (i) follows by 

applying this result with /o := and fi := 5ci for 1 < 2 < n and noting the fact that 

d o m 6E = E IOT A set E. 

N o w we turn to prove (ii). To begin with, we claim that for polyhedral sets P 

{x ^ X : {a*,x) < bi,l < i < n} for some o* G X* and bi e M, the corresponding 

normal cone at a point p G P is 

Np{p) = cone{< : i e I{p)}, (4.2.1) 

where I{p) := {z : 1 < i < n, {a*,p) = bi}. To see this, we first show that (see 

Definition 2.4.4 for the definition of tangent cones) 

Tp{p) = {h : {alh) < 0，Vz G I{p)}. (4.2.2) 

Denote the right hand side of (4.2.2) by C{p). Let h e C{p). W e wish to show that 

there exists > 0 so that p-\-th G F for all 0 < t < S. Note that p+th e P is equivalent 

to 

{alp + th)<bi, Wiel. 

If i e I{p), then (a;,p + th) < bi for all t > 0. N o w fix any i • I{p). If�a;,h) = 0, then 

(a:,p + th) < bi is again true for all t>0. O n the other hand, if {a*,h) > 0, then t has 

to be less than or equal to 〜<:iy〉so that (a*,p + th) < bi. Summarizing the above 

discussion, we set c := max{0, (a*, h) : i • I{p)} > 0 and define 

‘—g/(p){bi-〈a,’’p〉} i f c > 0 

[ 1， if c = 0 
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Then it follows from the above discussion that for all 0 < t < <5, 

(ALP + TH) < BI, VIE I. 

This shows that h G Tp(p). To prove the converse inclusion, we let h G Tp{p). By 

definition of tangent cones, there exist Pn ^ P, tn> 0 such that hn ：— ^ ^ —> h and 

p + tnhn G P. This implies that for any i G I{p), (a*,p + tnhn) = bi + (a*, tnhn) < h. 

This gives < 0 for all z G I{p). Thus h e C{p). This proves (4.2.2). Prom this 

and the fact that Np{p) = (Tp(p))® (see Proposition 2.4.3 (i)), we immediately see 

that (4.2.1) holds. W e now prove that if {Ci : i = 1, • • • ,n} is a collection of finitely 

m a n y polyhedrons, then it has the strong CHIP. To see this, we note that there exist 

a*j G X*, bij G M with 1 < j < n^ for some integer ni, 1 < i < n, such that 

Ci ：= [x : {a*ij,x) < bij, 1 < j < rii}. 

Thus for any points c G ASLi Ci, writing 7j(c) as the active index of c in Q , and noting 

that / (c ) = UILi ^t(c), we have, by (4.2.1), 

�iUCi(c) = coneKj. ： 3 ^ h{c),l <i <n] 
n 

= ^ cone{a^ : j G /“c)} 

i=l 

i=l 

Thus the strong C H I P holds for a system of finitely many polyhedrons [Ci : i = 

1, •. • ,n}. In view of this and the fact that finite intersection of polyhedrons is still a 

polyhedron, in order to prove (ii), it remains to show that if riZ) A (7 # 0，where D 

is a closed convex set and C is a polyhedron, then the system {D, C} has the strong 

CHIP. Without loss of generality, we m a y assume that 0 G ri DnC*. Write for simplicity 

Z := spanD. Fix any a;。e C 门 iX Since (C n Z)门 int i：) # 0 as a subset of Z, by 

part (i), {CNZ, DJ has the strong C H I P as subsets in Z. Thus, by Proposition 3.2.1, 

{C n Z, D] has the strong CHIP, and thus in particular, 

Ncnoixo) C Ncnzixo) + ND{XO)- (4.2.3) 

To complete the proof of the theorem, we claim that, 

Ncnzixo) C Ncixo) + Nz{xo). (4.2.4) 
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Since C is a polyhedron, we may assume without loss of generality that there exist 

functionals a* e X* and 6{ G R, 1 < z < n such that 

C = {x: (a-,x) <bi,l<i< n}. 

Thus 

= {a*\z,x) <bi,l<i< n}. 

B y (4.2.1)， 

Ncnz{xo)\z = cone{a-12 : i e I{xo)} = Nc{xo)\z 

Thus, for any y* G Ncnzi^o), there exists u* G Nc{xo) such that u* — y* G •丄= 

Nz{xo). This proves (4.2.4). Combining (4.2.4) with (4.2.3) and the fact that Nz{xo) Q 

ND{XO) (which follows from Proposition 2.3.1 and the obvious inclusion D C Z), we 

complete the proof of part (ii). • 

4.2.2 Boundedly linear regularity 

Another concept, the boundedly linear regularity (see [4], [3], [5], [32])’ which is closely 

related to the projection algorithm, was found to imply the strong CHIP. 

Linear regularity and boundedly linear regularity were first defined in [4, Defi-

nition 5.1, Definition 5.6]. Boundedly linear regularity was found to be one of the 

sufficient conditions to guarantee linear convergence of the sequence generated by the 

projection algorithms, with suitable starting point. Under the even stronger assump-

tion of linear regularity, one can even assert the linear convergence of the sequence 

generated by the projection algorithms, regardless of the starting point. See [4，The-

orem 5.7，Theorem 5.8] for details. The projection algorithms were designed to solve 

the convex feasibility problem, that is, to find a point x G nS=i Ci given {Ci, • • • ,C„} 

with nonempty intersection. See [4] for a comprehensive survey. 

Recall that the strong C H I P is also closely related to projections onto closed convex 

sets, as was surveyed in the last chapter. Borwein et al. proved that the boundedly 

linear regularity implies the strong CHIP when the ambient space is (see [5, The-

orem 3]). N g and Yang extended the result to general Banach space (see [32, The-

orem 4.2]). Actually, N g and Yang have gone further and proved that the family of 
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closed convex sets is linearly regular if and only if they have the strong CHIP and 

the corresponding normal cones at every point in the intersection has the Jameson's 

Property (G). This point will be further elaborated in Chapter 5. 

W e begin our discussion with the following definition of the linear regularity and 

the boundedly linear regularity. 

Definition 4.2.2 ([3, Definition 4.2.1]). A collection of closed convex sets {Cijie/�打 

a normed linear space X with some index set I, is said to be linearly regular if there 

exists /c > 0 such that 

d{x, C) < k sup d{x,Ci), VRR G X. 

The family is said to be boundedly linearly regular if for each r > 0, there exists kr > 0 

such that • 

d{x,C) < kr sup d{x,Ci), \/x G rB. 
iel 

The following theorem is an extension of [5，Theorem 3] to a normed linear space 

setting. 

Theorem 4.2.4. Let {Ci, • • • , Cn} be finitely many closed convex sets in a normed 

linear space X. Suppose {Ci, • • • , Cn} is boundedly linearly regular. Then the system 

has the strong CHIP. 

Proof. Fix c e C := fllLi ̂ i- Since {Ci, • • • ,Cn} is boundedly linearly regular, for 

r = ||c|| + 1，there exists kr > 0 such that 

d(x,C) < kr sup d{x,Ci), \/x e rB, (4.2.5) 
l<i<n 

that is 

d(x,C) < kr sup d(x,Ci) + (5rB(a：)，Vx € X. (4.2.6) 
l<i<n 

Let y* e Nc(c), that is, there exist A > 0 and u* e dd(c, C) such that y* = Xu*, 

thanks to (iv) of Proposition 2.3.1. N o w since d(c, C) = d(c,Ci) = 0 for all 1 < i < 

n and drB{^) = 0 for all a; in a neighborhood of c, it follows from (4.2.6) and [35, 
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Corollary 2.8.13] (thanks to the continuity of the distance functions) that 

y* = Xu* e Xdkr sup d{-,Ci){c) + Xd5rB{c) 
l<i<n 

=Xdkr sup d(-,Ci)(c) 
l<i<n 

n 

� r C O IJ 况(•，Ci)(c) 
i=l 

n 

q E 秘 ) . 
i=l 

This completes the proof. • 

4.2.3 Epi-sum 

In [9], [21], Jeyakumar et al. have proved the following sufficient condition for finitely 

m a n y closed convex sets in a Banach space to have the strong CHIP. See [21，Theo-

rem 3.1]. His proof is actually valid when the ambient space is a normed linear space. 

Theorem 4.2.5. Let {Ci, • • • ,Cn} be closed convex sets in a normed linear space X 

with nonempty intersection. Suppose S?=i ^Pi is w* — closed. Then {Ci, • • • ,Cn} 

has the strong CHIP. 

Proof. B y the assumption, it follows from Proposition 2.7.1 that 

n 

epi (Jc = Y^, epi CTQ . (4.2.7) 

i=l 

To show that {Ci, • • • ,C„} has the strong CHIP, fix an a; G C and take y* G Nc{x). 

Then by (2.7.4), {y*, {y*,x)) £ epiac- Applying (4.2.7), {y*, {y*,x)) can be written as 

n 

= (4.2.8) 
i=l 

for some (仏，，ai) € epi CTQ , 1 < i < n. This implies that iVi > = SiLi This 

together with the obvious inequalities ai > (rciivl) > for each i imply that 

o^i = orciivt) =〈2/7,3：〉’ for each i. 



The Strong Conical Hull Intersection Property 55 

Thus (y*, (y-,x)) G epidCi for 1 < i < n. B y (2.7.4) again, we obtain y* e Nc人x) for 

1 < 2 < n. Combining this with (4.2.8), we see that 

i=i i=i 
which completes the proof. • 

W e shall discuss further on this topic in chapter 5, in which we shall give new 

sufficient conditions for the strong C H I P of a system of infinitely many closed convex 

sets. 

The next theorem was first proved in [13] in a Hilbert space setting (see [13, Theo-

rem 3.2], [13, Theorem 3.12]). W e provide a different proof via the use of epi-sum. 

Theorem 4.2.6. Let C be a closed convex set in a normed linear space X, A is a 

continuous linear map from X to a finite dimensional normed linear space Y. Suppose 

b G nA(C). Then {C, A'^b} has the strong CHIP. 

Proof. W e m a y assume by translation that 6 = 0, that is 0 G riA(C). Thus 0 is an 

interior point of A{C) in the space Yi := span A{C) = A (span C) To complete the proof, 

it then suffices to show that {C, ker A } has the strong CHIP. Define Ai : span C -> Yi 

by Aix = Ax. Then 

0 G intAiC. (4.2.9) 

W e wish to show that epi ac + epi cTker Ai is iw*-closed as a subset of (span C)* x M. Let 

(a;*,a) € n (-epio"kerAi). Then (X*,q；) G -epi(XkerAi, i.e. - a > 0"kerAi(-?). 

This implies, since ker Ai is a subspace, that 

a < 0, X* G (ker Ai)丄. （4.2.10) 

It follows from [12，Lemma 8.33] and the finite dimensionality of R{Al) that x* G 

( k e r u 4 i ) 丄 = T h u s , there exists y* G Y{ such that 工* = A\y\ O n the other 

hand, since (x*,a) also belongs to epi ac, we have 

a>(Jc{x*) = (TA,c{y*)- (4.2.11) 
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Combining this with (4.2.9), which asserts the existence of 5 > 0 such that SBi C AiC, 

where Bi is the unit ball in Yi，we obtain 

Combining this with (4.2.10) and (4.2.11), we see that y* = 0 and a 二 0. From 

X* = A*7/*, we see that x* = 0. This shows that epi ac 门(—epi (Jker Ai) is zero. Since 

both epigraphs are ii;*-closed convex cones, and — epicjker is finite dimensional and 

thus locally compact, by the Dieudonne Theorem (cf. [35, Theorem 1.1.8]), epi ac + 

epi <Tker Ai is K;*-closed. Since ker = ker A 门 spanC, by Theorem 4.2.5, {C",kerAn 

span C} has the strong C H I P as subsets in spanC. B y Proposition 3.2.1, {C，kerAn 

s p a n C ) has the strong CHIP, i.e. 

NcnkerAix) Q Nc{x) + iVker AHspanc(a：), Vx € C H ker A. (4.2.12) 

O n the other hand, since 0 G (ri (span C7))nker A and ker A is a polyhedron as Y is finite 

dimensional, it follows from Theorem 4.2.3 that {span C, ker A} has the strong CHIP. 

Combining this with (4.2.12) and the fact that iVspanc(a^) C Nc{x) (which follows from 

Proposition 2.3.1 and the obvious inclusion C C span C) for all x 6 C, we see that for 

all X G C n ker A, 

NcnkerAix) Q Nc{x) + Nker AOspan C (â ) Q Nc{x) + iVspanc(ic) + a{x) 

二 iVcOr) + iVker A(a；), 

i.e., {C,ker A } has the strong CHIP. This completes the proof. • 

4.3 is infinite 

Li and N g ([28]) extended the notion of the strong C H I P to the case when the index set 

is infinite and gave some sufficient conditions for the strong CHIP to hold. Following 

them, w h o did their analysis on general normed linear spaces, we shall let X denote a 

normed linear space in this section unless otherwise specified. 
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4.3.1 A Sum Rule 

The following lemma on subdifferential is crucial in the derivations in [28]. It was 

contained in [25, Theorem 2.1] as an intermediate step for the proof of that theorem. 

W e isolate the statement as follows. 

Lemma 4.3.1. Let {gi : i G /} be a family of continuous convex functions in X such 

that sup^g/ gi{x) < +oo for all x E X. Assume that I is a compact metric space and 

that the function i gi{x) is upper semicontinuous on I at each x £ X. Let C be a 

nonempty closed convex subset of X such that dim span C < oo. Then the following 

subdifferential formula holds: 

dsupgi{x) C Nc{x) + J ] cone(%(a:)), Vrc G C, (4.3.1) 

i€l{x) 

where I{x) = { j e I: s u p 拓 = ffj(x)}. 

Proof. Write Z = spanC, G{x) = supj^/ gi{x) for each x. Fix any x e C and let 

y* £ dG{x). Then in particular, {y\y - x) < G{y) 一 G{x) for any y E Z. Thus 

y*\z G dG\z{x), where f\z denotes the restriction of the function / on Z. B y [16, 

VI Theorem 4.4.2], we have 

e c o U dgi\z{x). 
i£l{x) 

Then there exist a finite index set J C I{x), a;* G dgi\z{x) and A^ > 0 for each i e J 

with ^ - g j Xi = 1 such that 

y*\z = Y ^ \ i x l (4.3.2) 

ieJ 

Now for each i G J,〈仏 < � < gi\z{x-,y) = gl{x-,y) {•.= limtjo for all 

y G Z. B y continuity and convexity of gi, we see that g[{x] •) is a continuous sublinear 

functional (ci [35, Theorem 2.4.9]). B y the Hahn-Banach extension theorem (cf. [33, 

Theorem 1.9.5]), for each i e J, there exists x* G X* such that 

x:\z = X： and {xly) < g[{x-y), My 6 X. 
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This inequality and [35，Theorem 2.4.4] tell us that x* e dgi{x) for all i e J. Combining 

this with (4.3.2), we see that 

y*- Y. A成* eZ^C Nc{x). 
i€l(x) 

This implies 

y* Ai* + iVc(a:)CiVc(a:)+ Y ^ cone(%⑷)， 

ie/(a;) iel{x) 

which completes the proof. • 

4.3.2 The C-Extended Minkowski Functional 

In [28], Li and N g studied sufficient conditions for the strong CHIP of the system 

{L>,Ci}ig/, where Ci,D are closed convex sets with dim span D < +oo, in a normed 

linear space. Li and N g related a closed convex set having some kinds of interior points 

to a continuous function having properties similar to that of the Minkowski functional 

of the set. Recall that the notion of interior point and the definition of the Minkowki 

functional were given in chapter 1. W e also recall the following definition from [28]. 

Definition 4.3.1 ([28, L e m m a 3.1, Theorem 3.2]). Let A and C be two closed convex 

subsets of a normed linear space X containing the origin. A continuous suhlinear 

functional PA on X is called a C—extended Minkowski functional of A if p^lspanC 

equals the Minkowski functional o/义门 spanC" in the vector space span (7. 

W e will need the following lemma on closure of sets. 

L e m m a 4.3.2. Let C, D be convex sets in a normed linear space. Suppose that 0 € 

D 门 int (7 and that D is closed. Then CnD 二 P 门]：：>. 

Proof. Since the inclusion C is obvious, we only check the converse 

inclusion. Let x £ CnD. Since 0 G intC, it follows from Proposition 2.6.1 that for all 

t € (0,1), tx G intC C C. O n the other hand, by virtue of convexity of D and the fact 

that 0 G D, we also have tx £ D for all t e (0,1). Thus we have te e (7 门 D for all 

t e (0,1). O n taking limits, we have 

X = lim tx e G 门 jD. m 
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This completes the proof. • 

The next lemma is adapted from L e m m a 3.1 of [28]. 

Lemma 4.3.3 ([28，Lemma 3.1]). Suppose 0 G rintc-A, i.e. there exists a > 0 such 

that 

0 G B ( 0 , a ) n s p a n C C A, (4.3.3) 

where A, C are closed convex sets. Let Z denote the closure of spanC and let A := 

co{{A n Z) U •5(0，a)). Then p^, the Minkowski functional of the set A, is a C—extended 

Minkowski functional of A” and 

p^(x) < i||x||, VxGX. (4.3.4) 

Moreover, 

A n span C = An span C. (4.3.5) 

Proof. W e first check that q又 is continuous. Let x G X\{0}. Then g G B(0,a). 

This implies < for all x G X\{0}. Since it is direct from definition that 

p义(0) = 0, we have p义(rc) < for all x e X, which means that p^(-) is continuous 

since p^(-) is sublinear. 

W e now show that p^lspanC = PAnspan c on span C. W e start by checking 

DnZ 二 4门2， (4.3.6) 

where D = co((A 门 Z) U B(0，o；)). W e need only to verify the reversed 

inclusion is evident. Let ；r € 门Z. W e have to show that a; G •A门Since x e DnZ, 

there exists 2 0，入2 2 0 with Ai + A2 = 1 and a e An Z, b e B(0,a) such that 

X = Aia + A26. (4.3.7) 

W e m a y assume that A2 + 0. It follows immediately from (4.3.7) that b £ Z. Thus 

there are b^ G span (7 such that bk —> b. If 6 G intB(0,Q；), then for large k, bk G 

(spanC) n _B(0’q：). This implies b e A hj the closedness of A and (4.3.3). O n the 

other hand, if 6 G bdry J5(0,a), then for large k,丨|6fc|| + 0. Define bk ：二 j ^ . Then 

bk G (span C) n 5(0’ a) C A. By the closedness of A again, b e A. Combining the two 
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cases, 6 € A n Z . It then follows from the convexity of AnZ and (4.3.7) that a; e A门Z". 

This proves (4.3.6). 

W e now prove (4.3.5)，that is 

AnZ = Ar]Z. (4.3.8) 

To this end, we observe that 

A n Z 二万门 z = ^DTT^ 二 4 门 z， 

where the second last equality follows from L e m m a 4.3.2’ while the last equality follows 

from (4.3.6) and the closedness of A D Z. This proves (4.3.5). 

N o w we have from (4.3.5) that 

A n span (7 = 门 Z n span C = AnZ D span (7 = A 门 span C (4.3.9) 

Thus for all x G span C 

p论）=inf{A > 0 : X G \A n span C} 

=inf{A > 0 : 2； e X A 门 span C} 

=PAnspanC ⑷. 

This completes the proof. q 

The next lemma shows that the existence of C—extended Minkowski functional is 

equivalent to the existence of a type of interior points. 

Lemma 4.3.4 ([28, Theorem 3.2]). Consider the system of closed convex sets : 

i e 1} in a normed linear space with dim afF D < +oo, where I is a compact metric 

space and i h^ (aff D) n Ci is assumed to be lower semicontinuous. Let a; G D n C 

Write C :==门这/ Ci — x, Ci Q - x, D := D - x. The the following statements are 

equivalent: 

(i) 0 G S n r i n t ^ C ; 

(ii) For each i e i , there exists D—extended Minkowski functional pg. of the set C^ 

such that the function 

P{x) := supp^.(a;), V x G X, 
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is continuous on X and i (a;) is upper semicontinuous for each x £ X. 

Proof. Write for simplicity that Z := span C. W e first show that (ii) implies (i). Note 

that by definition of D—extended Minkowski functionals, we have (spanD)nCi = {x E 

spanD : (X) < 1}, and thus 

D n C = D n { x e span3 : supp^_(x) < 1}. 

iei * 
O n the other hand, by assumption in (ii), x h is continuous. Continuity 

of supjg/pg.(-) implies that 0 G D fl rint^C, that is, (i) holds. 

N o w we prove the converse implication. Assume that (i) holds. B y L e m m a 4.3.3, 

there exist D—extended Minkowski functional for the sets Ci for each i e l . Moreover, 

by (4.3.4)，for each i G /，we have 

VxgX, 

where a > 0 is such that B{0, a) A spanD Q D 门 C. By definition, we have 

< Va; e X, 

thus P is continuous on X. 

To complete the proof, it remains to show that under assumption (i), i i-> ⑷ 

is upper semicontinuous for every x E. X, i.e. for any io £ I and x E X, 

limsupp^Xx) < PQ, {X). (4.3.10) 

i—*io I to 

Suppose not. Then by sublinearity of Minkowski functional, there exists x e X such 

that 
lim suppg,(a:) > 1 > PQ (X). (4.3.11) 

Prom the second inequality and property of Minkowski functional (see Proposition 2.6.1), 

we have x e co((Cio n Z) U B(0,a)). Then for each n G N, there exist Ain, > 0 

with Ain + A2n = 1, bn G B(0,a) and Zn e (7么。门 Z such that 

^n •= Mnbn + hn^n 一 工. 

B y lower semicontinuity of i A Z (which follows from the lower semicontinuity 

assumption of i (aff D) A Ci), for each n G N, there exists G 门 Z such that 
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\\zn - CnJI — 0 as i — IQ. Define X m = Xinbn + >̂ 2nCni for each i and n G N. Then 

Xui G co((Ci n Z) U so p^.{Xni) < 1, but 

PcS^) < P c S ^ - ^ n i ) + P c S ^ n i ) < + l < " + Asnl^n " CnJ|) + 1-

Thus limsup“化 pgj(re) < 1，contradicting (4.3.11). Thus (4.3.10) holds for all a; G X 

and IO G I. • 

4.3.3 Relative Interior Point Conditions 

The following theorem is the first part of [28，Theorem 4.1]. The proof of it reveals 

the main underlying idea of that paper. The authors tried to define continuous convex 

functions with lower level sets equal to some given closed convex sets. If the B C Q also 

holds (see Definition 3.4.1)，proving the strong CHIP would be transformed into a prob-

lem of proving a subdifferential rule. Then it is possible to make use of L e m m a 4.3.1, 

which was developed in their earlier paper [25，Theorem 2.1]. 

In the rest of this chapter, I will always be a compact metric space. W e shall write 

I{x) := {z € / : a: is a relative boundary point of Ci in aff D}. 

Theorem 4.3.1 ([28，Theorem 4.1]). Let {D,Ci : i e 1} be a family of closed convex 

sets, I be a compact metric space. Write C := PliG/ Let XQ G JD A (7. Then 

{D’Ci : i E 1} has the strong CHIP at XQ if the following conditions are satisfied. 

(i) The system {D,Ci : i E 1} has the strong D—relative interior point condition 

(See Section 1.5); 

(ii) The set valued mapping i i-̂  (aff D) D Q is lower semicontinuous on I; 

(iii) The pair {aff D, Ci] has the strong CHIP at XQ for each i G I{xo); 

(iv) D is finite dimensional. 

Proof. B y translation, we m a y assume 0 G D fl rint£)C. According to the relative 

interior point assumption and the lower-semicontinuity assumption, by L e m m a 4.3.3 

and L e m m a 4.3.4, we see that for each i, there exists an extended Minkowski func-

tional of Ci such that for any x G spanD, pc^ {x) < 1 if and only ii x e nntoCi and 
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PCi{X) < 1 if and only if a: G CI. Define GI{-) := pCi{-) - 1 and G{-) := sup這 

Then by L e m m a 4.3.4，G is continuous and i gi is upper semicontinuous at each 

X e X. Moreover, for each a: 6 D n ( 7〔 spanD, we have I{x) := {i e I : 

X is a relative boundary point of Ci in spanD} = {i e I ： pci{x) = 1} = {z € / : 

9i{x) = G{x) = 0} 

Applying L e m m a 4.3.1 to {gi : i G /} and the set D, we get, for each a: e D 门(7， 

that 

ND{x)-\-dG{x) C ND{X) + Y^ cone(%(x)) . (4.3.12) 
iei{x) 

N o w since gi{0) < 0 for alH G / and G(0) < 0，we have from [11，Theorem 2.4.7’ Corol-

lary 1] that for each x e D n C , 

= cone {dG{x)) 

/V “ � J c o n e ( % � ) ’ Vz € I{x) 
〜 i ( R - )⑷ = < (4.3.13) 

' I 0, otherwise 

O n the other hand, 

NONCIX) = = ND{X) + 

where the first equality is by definition of G, while the second one follows from The-

orem 4.2.1 and the fact that 0 e i：) n int(G一i(R-)) (note that G(0) = -1). Thus we 

get 

NONCI^) = ND{X) + iVG-i(K-)W 

= ND{X) + DGIX) 

C ND{X) + Y, cone {dgi{x)) 
i£l{x) 

=^D{X) + Y^ � , _ ) � 

i&I{x)‘ 

= N D { X ) + YI 叱n s p a n D � ’ 

where the inclusion is due to (4.3.12), the third equality is due to (4.3.13), while the last 

equality is due to (7inspanZ) C and Proposition 2.3.1 (iii). Finally, invoking 
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assumption (iii), we have at the point x = XQ that, 7Vc.nspanD(^o) = "^cj^^o) + 

Nspa^nnM- This gives 

NONCIXO) C ND{XO) + J ] {NC,{XO) + C N D { X O ) + ^ NC,{XO), 

iei{xQ) ie/(xo) 

where the last inclusion follows from D C spanD and Proposition 2.3.1 (iii). This 

completes the proof. • 

The next theorem concerns the weak-strong interior point condition (see Section 1.5). 

Before proving it, we need the following lemma. 

Lemma 4.3.5. Let {jD,Ci,C2, • • •，CVJ be a collection of closed convex sets in a 

normed linear space X with dimD < +oo and Ci being subspaces for all I < i < n. 

Suppose 0 e ri jD 门门二 i Q. Then {L>，C7i，(̂ 2’...，C^n} has the strong CHIP. 

Proof. First observe that D n 门『=1 Ci = Z) n 门 spanD) and that the interior 

point assumption is equivalent to 0 G riD n 门『=：1(0{门 spanD). Since Ci 门 spanD are 

finite dimensional subspaces for all 1 < z < n, by Theorem 4.2.3, {D, Ci flspanZ), C2 A 

span D,…，CViAspan D}, as subsets of span D, has the strong CHIP. Hence, by Propo-

sition 3.2.1，{D, Ci n span D�C2 门 span D,…,Cn Pi span D] has the strong CHIP. T o 

finish the proof, it suffices to show that (Ci, span D } has the strong C H I P for each 

1 <i < n. For each 1 < z < n, consider Zi := Ci + spanD. By finite dimensionality of 

spanZ), Ci are finite co-dimensional subspaces in Zi, and thus are polyhedrons. Since 

0 e r i Z )门 f o r 1 S i S n, we have 0 G ri (spanD) n Q for 1 < i < n. By The-

orem 4.2.3，{Ci,spanD} has the strong C H I P as a subset in Zi, and thus the strong 

C H I P by Proposition 3.2.1. This completes the proof. • 

Theorem 4.3.2 ([28，Theorem 4.3]). Let {D,Ci : i £ 1} be a family of closed convex 

sets, I be a compact metric space. Write C := Hie/ C'i- Let XQ G D A (7. Then 

{D, Ci : i £ 1} has the strong CHIP at XQ if the following conditions are satisfied. 

(i) The system {D, Ci : i e 1} has the weak-strong D—relative interior point condi-

tion; 

(ii) The set valued mapping i i-> Ci fl (aff D) is lower semicontinuous on I; 
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(iii) The pair {aff D, Q} has the strong CHIP at XQ for each i G I\{Ii U I2); 

(iv) D is finite dimensional. 

Proof. Let P denote the closure of the set I\{Ii U /2). By assumption (i) and transla-

tion, we m a y assume without loss of generality that 

( \ / \ 
O e r i D p i rintD p| Q n 门 riCi n Q Q . (4.3.14) 

\ i€/\(/iU/2) / \iG/i / i€h 

For each z G /i, by L e m m a 4.3.3 as applied to Ci in place of C and A, there exists a 

closed convex set Ci having 0 as interior such that 

Ci n s p a n Q 二 Ci. (4.3.15) 

Write J = / \ (/i U h). For io G P, define 

八 lim infj—io’ie/! ( Q 门 span D), i i i e I ^ \ J 

CiQ := (4.3.16) 

CiQ 门 span D, otherwise. 
v 

Then by definition of lower limits and assumption (ii), we have 

Ci 门 spanD C Ci, Vi G (4.3.17) 

To proceed, we need to establish the following claims: 

i j Ĉ  n D = D n 门ier di n rke /�Ci n f i i e / i � 门 HiG/i ^panQ 
ii) 0 G ri(D 门 Aier Ci n flie/, ̂ P ^ ) 门 Aie/a 〇《； 

iii) 0 G n{D n f^e/ ' 门 Ciieh spanQ 

iv) r is a compact metric space, i Q (= Ci fl span D) is lower semicontinuous for 

i e and {D, Ci : i e I^} satisfies the strong D—relative interior condition. 

z) is obvious on invoking (4.3.15) and (4.3.17). W e go on to prove ii). To see this, 

we first show that 

0 G riD n rintD f] Ci. (4.3.18) 
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Note that by (4.3.14), we have 

OenDf] rintD 门 Ci. 
i£j 

Thus in particular, there exists <5 > 0 such that for all i G J, 

(5BnspanD g C i A s p a n D . (4.3.19) 

Passing to lower limits and invoking assumption (ii), (4.3.16) and (4.3.17), we see that 

(5B n s p a n D C di for all i G 1�This proves (4.3.18). Combining this with (4.3.14), we 

obtain 

( \ 
0 G riD n rintD Q Q n 门 ri Ci n Q Q (4.3.20) 

\iG/l / ie/2 

c ri(L> n P i Ci n P i spanCi)门门 Q . 
ie/‘ I&H I&H 

This proves Claim ii). Claim iii) follows from (4.3.20) and the fact that riDnrinto flieJ' Ci -

ri (Z) n flie/' C � . Finally, we turn to Claim iv). P, being a closed subset of the com-

pact metric space I, is compact. Note that i h (spanD) n Ci is lower semicontinuous 

on I. Thus, for io € J, we have from the definition of lower limits and (4.3.17) that, 

Cio = CiQ 门 span D C lim inf (Ci H span D) C lim inf [Ci n span D) C lim inf A. 

For io G \ J, we have 

Cin = lim inf (CinspanD) C lim inf Ci. 

Thus Ci{Q spanD) is lower 

semicontinuous. Finally, the fact that {D, Ci : 

i G I^} satisfies the strong D-relative interior condition follows from (4.3.18). The four 

claims are proved. 

N o w we have 
^CnDixo)=�nn旧丨C州,叫叫(卯) 

[ 〜 r r W , 帥 i e / 2 c m e / i ^ ^ ⑷ + E 似工 0 ) 
ieii 

^ 〜 n r v , 5 州 i ^ ( ^ o ) + E 〜 ⑷ + E 〜⑷，（ 4 - 3 - 2 1 ) 
I€L2 IG/I 
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where the first inclusion is due to 0 G intCi for i e h and Theorem 4.2.3, the second 

inclusion follows from Theorem 4.2.3，Claim ii) and the fact that Ci are polyhedrons 

for i £ l2-

Applying L e m m a 4.3.5 and Claim iii), we deduce from (4.3.21) that, 

Ncnnixo) C iV加门…,a.(^o) + E (吻)+ E 阶办 o ) + E 
' i€/i i&h i€h 

(4.3.22) 

Invoking (4.3.15) and Theorem 4.2.3, we have, 

E Nc人工o) = ^ i ^ ( ^ o ) + E (4.3.23) 
i£h ieh ieh 

Combining (4.3.22)，(4.3.23) and applying Theorem 4.3.1 to the system {D, Ci： ie /'}， 

we see that 

Ncr^oixo) C NdW) + E %NSPAND(^o) + Nc办0) + Nc八工0). (4.3.24) 
iG/‘ ie/2 i£h 

To finish the proof, it suffices to show that 

%nspanD(^o) [ Nc,{xo) + ND{xo), Vi G 八 （4.3.25) 

For z G J, (4.3.25) follows from assumption (iii). Suppose first that i G /之门丄 Then 

it follows from (4.3.17) that (spanD) D Q C CI. Thus we have 

仏nspanD(工0) ^ iVQnspanD(a^o) = 工0) + Nd{xo), 

where the last equality follows from Theorem 4.2.3, thanks to the fact that Ci is a 

polyhedron and that 0 G riD D C^. 

N o w we turn to show that (4.3.25) holds also for i G /i 门 J, which in turns finishes 

the proof. Let j € /之门/、We have from (4.3.15), Theorem 4.2.3 and L e m m a 4.3.5 that 

%nspanD ( ^ o ) ^ NC,nsp3.nD{XO) 

~ ^CIDSPAN Ciflspan D (工0) 

g % ( x o ) + + iVspanDOro) 

= + 〜 a n D ⑷ 

C ND{XO) + Nc,{xo). 

This completes the proof. • 
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4.3.4 Bounded Linear Regularity 

The relationship between the strong CHIP and bounded linear regularity when the 

index set is infinite was not sufficiently addressed in the literature. The case when X 

is a general normed linear space would be addressed in the next chapter. W e discuss 

the case when X is finite dimensional and / is a compact metric space. The proof is 

just similar to that of Theorem 4.2.4. 

Theorem 4.3.3. Let {Ci : i G / } be a family of closed convsx sets in a finite diuien-

sional space X, I be a compact metric space. Suppose that i Ci is lower semicon-

tinuous and that {Ci : i £ 1} is boundedly linearly regular. Then the system has the 

strong CHIP. 

Proof. First recall that from [34，Corollary 4.7], The fact that i i-> Q is lower semicon-

tinuous implies that i dci {x) is upper semicontinuous for each x e X. 

Fix a c G C := P k e / S i n c e {Ci : i G /} is boundedly linearly regular, for 

r == I丨c|| + 1, there exists KR > 0 such that 

d{x,C) < kr supd(a;,Ci), \fx G rB, (4.3.26) 
iei 

that is 

d{x, C) < kr sup d{x, Ci) + Vx. (4.3.27) 
iel 

Let y* e Nc{c), that is, there exist A > 0 and u* G dd{c,C) such that y* — Xu*, 

thanks to (iv) of Proposition 2.3.1. Now since d{c^C) = d{c, Ci) = 0 for all z G / 

and ⑷ = 0 for all rr in a neighborhood of c, it follows from (4.3.27) and [16， 

VI Theorem 4.4.2] (thanks to the continuity of the distance functions) that 

y* = Aw* € A(9fcrSupd(.’Ci)(c) + 
iel 

=入Slipd(.’C^)(C) 
i&I 

C 入Avco |Jad(.,Q)(c) 

i€l 

i£l 

This completes the proof. • 



Chapter 5 

The SECQ, Linear Regularity 

and the Strong CHIP for Infinite 

System of Closed Convex Sets in 

Normed Linear Spaces 

5.1 Introduction 

This chapter states some of the main results in the recent joint work by Professor Chong 

Li from Zhejiang University, m y thesis supervisor Professor Kung Fu N g and me. For 

details of the proofs, readers are referred to [29]. 

One of our fundamental lemmas is the following, which is a result similar to 

L e m m a 2.7.2. It was stated without proof in [22’ P.902]. (Note that the condition 

that "supig/ Qi is proper" is needed). 

Lemma 5.1.1 ([29, L e m m a 2.2]). Let {gi : i e 1} be a system of proper convex lower 

semicontinuous functions on a normed linear space X with sup^^j gi{xo) < +oo for 

some XQ £ X. Then 
本 ~— w* 

epi (sup Qi)* = CO [ J epi o； . (5.1.1) 
对 ？/ 

69 
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The following example shows that the above proposition is not true without the 

properness assumption. 

Example 5.1.1. Consider CI = [0,1] x R and C2 = [—2，—1] x R. Then CID €2 = 0, 

thus maxj^Ci (^), (^)} = ^CinC2(^)三十⑴ is not proper. By definition of conjuga-

tion and epigraph, we obtain epi(Jc"inC*2 = O n the other hand, we obtain by direct 

computation that 

0， if XI — 0,2；1 < 0， 

(^Ci{xi,X2) = xi, iix2 = 0,xi> 0, 

+00, otherwise. 
\ 
/ 

—2xi, if X2 = 0,XI < 0， 

crc2{xu^2) = S - X i , if 0；2 = 0,a;i > 0, 

+00， otherwise. 

Thus epitrci + epitrca C E x {0} x R. This implies 

CO (epi o-ci U epi (7(72 广=epi(7Ci +epi(7c2"' ^ epiac,nC2 

B y putting Qi = 5ci and using the fact that 6Q. = crCi, we obtain the following 

analogue of Proposition 2.7.1. 

Proposition 5.1.1 ([29, Proposition 2.1]). Let {Q : i e 1} be a collection of closed 

convex sets in X with C := Hie/ Ci 0. Then 

W* 

epi (7c = ^ epi ctq . (5.1.2) 

i£l 

L e m m a 5,1.1 motivates the following definition, in which we isolate the weakly* 

closedness of sum of epigraphs as a property to be studied. 

Definition 5.1.1 ([29，Definition 2.1 c)]). Let {Ci : i e 1} be a collection of convex 

subsets of X. The collection is said to have the SECQ if epi o'fiigj Ci = Y^iei ^Ct • 

The following result is direct from definition and L e m m a 5.1.1. 
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Corollary 5.1.1 ([29, Corollary 2.1]). Let {Q : i e 1} be a collection of closed convex 

sets in X with C := Hie/ Ci ^ 0. Then the following equivalences are true: 

[Ci : i £ 1} satisfies the SECQ XlieJepi o-q is w* —closed epi ac C [ e p i crQ. 

i£l 
(5.1.3) 

The intention of studying the S E C Q is clear. It is expected that the S E C Q should 

be a sufficient condition for the strong CHIP of the corresponding family of closed 

convex sets, since this is true in the particular case when the index set is finite. See 

Theorem 4.2.5. That this is really the case is the content of Theorem 5.2.1. 

To close this beginning section, we give some notes on the following notion of 

semicontinuity of set-valued maps, which are to be used in sections 4.4 and 4.5. Readers 

m a y refer to standard texts such as [1]. 

Definition 5.1.2. Let Q be a compact metric space. Let X be a normed linear space 

and let to G Q. A set-valued function F : Q \ {0} is said to be 

(i) lower semicontinuous at to, if, for any yo G F{to) and any e > 0； there exists a 

neighborhood U{to) of to such that B(j/o,e) n F(t) + 0 for each t G U{to); 

(ii) lower semicontinuous on Q if it is lower semicontinuous at each t G Q. 

The following characterization regarding the lower semicontinuity is a reformulation 

of the equivalence of (i) and (ii) in [28, Proposition 3.1]. Let limmit-*to F{t) denote 

the lower limit of the set-valued function F AT TO E Q which is defined by 

liminf F{t) := {z e X : 3{zt}t£Q with zt G F{t) such that zt z as t to}-
T—^TO 

5.2 The strong CHIP and the SECQ 

Recall that I is an arbitrary index set and {CI : z G 7} is a collection of nonempty closed 

convex subsets of X. We denote Hie/ Ci by C and assume that 0 G C throughout the 

remaining parts of the chapter. The following theorem describes a relationship between 

the strong C H I P and the S E C Q for the system {Ci : i G /}, which is an infinite index 

analogue of Theorem 4.2.5. 
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Theorem 5.2.1 ([29, Theorem 3.1]). If {Ci : i e 1} satisfies the SECQ, then it has 

the strong CHIP; the converse conclusion holds if d o m ac C Ini^(5c, that is if 

domac C |J Nc{x). (5.2.1) 
xeC 

That means the S E C Q is a sufficient condition for the strong CHIP. The converse is 

true if the set of intersection satisfies some property, namely (5.2.1). It is then natural 

to think of sufficient conditions for (5.2.1) to hold. This is the context of the next 

proposition. 

Let / be a proper extended real valued function on X and x ^ dom/. Recall 

that the continuity of / at ̂  means that there exists a neighborhood V" of x such that 

/(•) = +00 on V. 

Proposition 5.2.1 ([29, Proposition 3.1]). Let C be a nonempty closed convex set in 

X. Then the condition (5.2.1) holds in each of the following cases. 

(i) There exists a weakly compact convex set D and a closed convex cone K such 

that C = D + K. 

(ii) d i m C < oo, Im dSc is convex and the restriction crckspanC)* of ac to the dual 

of the linear hull of C is continuous. 

Remark 5.2.1. (i) By [2, Theorem 2.4.1], for a closed convex set C with d i m C < 

oo， the last condition in (ii) of Proposition 5.2.1 is satisfied if and only if 

there does not exist a half-line p such that p Q hdC nor exist a half-line p 

in (spanC)\C such that inf{||a: — y\\ : x e p,y £ C} = 0. 

(ii) Since lmd6c Q d o m ac holds automatically, (5.2.1) is equivalent to ImdSc = 

domcrc. Thus, by the convexity of d o m ac, the convexity assumption of Im d 5c 

in (ii) of Proposition 2.1 is necessary for (5.2.1). 

Combining Theorem 5.2.1 and Proposition 5.2.1’ we immediately have the following 

corollary, stating the situations under which the S E C Q and the strong CHIP become 

equivalent. Part (i) was known in some special cases; see [9, Proposition 4.2] for the 

case when / is a two point set and D = {0}, and [21] for the case when / is a finite set 

and D = {0}. 
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Corollary 5.2.1 ([29’ Corollary 3.1]). Let {Q : i G 1} be a family of closed convex 

sets in X. Then the strong CHIP and the SECQ are equivalent for {Ci : i G / } in 

each of the following cases. 

(i) There exists a weakly compact convex set D and a closed convex cone K such 

that C = D-{-K. 

(ii) dim (7 < oo, lmd6c is convex and the restriction ac\ (span C)* of crc io the dual 

of the linear hull of span C is continuous.. 

5.3 Linear regularity and the SECQ 

Let I be an arbitrary index set and let {CI : z G /} be a CCS-system with 0 G C, 

where C = Hie/ Ci as before. Throughout this section, we shall use S* to denote the 

set B* X R+，where B* is the closed unit ball of X* while 1R+ consists of all nonnegative 

real numbers. This section is devoted to a study of the relationship between the linear 

regularity and the S E C Q . For a closed convex set 5 in a normed linear space X, let 

ds{-) denote the distance function of S defined by ds{x) 二 inf{||a; - y\\ : y e S] for 

each X E X. 

The following definition is just a duplication of Definition 4.2.2. W e restate here 

for convenience. 

Definition 5.3.1. The system {Q : i G / } is said to be 

(i) linearly regular if there exists a constant 7 > 0 such that 

d{x, C) < 7 sup d(rr, Q) for all x G X. (5.3.1) 

(ii) boundedly linearly regular if, for each r > 0, there exists a constant 7r > 0 such 

that 

d{x, C) < 7r sup d{x, Ci) for all x G rB. (5.3.2) 
iei 

W e intend to use epigraphs to study the linear regularity. Similar techniques have 

been used by Jeyakumar et al. in their study of the Farkas Lemmas and Constraint 
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Qualifications concerning epi-graphs. See [9，19, 20, 21，23], etc. To do this, we need 

to take conjugation on both sides of (5.3.1) and consider the corresponding epigraphs. 

W e thus need L e m m a 5.1.1 together with the following lemma. The formula (5.3.3) is 

obtained by direct computation. 

Lemma 5.3.1 ([29, L e m m a 4.2]). Let ^ > 0 and let f^ :=�ds. IfOeS, then 

epi f* = epi crs D ( ^ B * x 1R+) . (5.3.3) 

In the next theorem, we shall use the graph gph / of a function f which is defined 

by 
gph / {{x,f{x)) eX xR: X G dom/}. 

Clearly, gph / C epi / for a function / on X. 

The following theorem gives new characterizations of the linear regularity for fam-

ilies of closed convex sets in normed linear spaces. 

Theorem 5.3.1 ([29, Theorem 4.1]). Let 7 > 0. Then the following conditions are 

equivalent. 

(i) For all x e X, d{x,C) < jsup^^j d{x,Ci). 

(ii) e p i 门 g coUie7(epi(7Qn7S*)"'*. 

(iii) g p h n S* C . 

One immediate application of our new characterizations of the linear regularity is 

to give yet another proof for the important characterization of the linear regularity of 

finitely many closed convex sets in a Banach space, given in [32，Theorem 4.2]. For 

details, readers are referred to [29，Theorem 4.2]. 

Since linear regularity and S E C Q are both sufficient conditions for the strong CHIP, 

it is interesting to see when linear regularity would become a sufficient condition for 

the S E C Q . This is the context of the next theorem. 

Theorem 5.3.2 ([29, Theorem 4.3]). Suppose that 
10* 

co|J(epicrCinS*) C^epicrCi , (5.3.4) 
iel i£l 

and that {Ci : i e 1} is linearly regular. Then it satisfies the SECQ. 
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The following example shows that (5.3.4) in Theorem 5.3.2 cannot be dropped. 

Example 5.3.1 ([29, Example 4.1]). Let X = R"^ and I = N. Define Q := {x e X : 

Ikll < i } for each i £ I. Then C = flig/Ci = {0} and d{x,Ci) = max{0, ||a;|| — for 

each X £ X. It follows that 

sup d{x, Ci) = ||a:|| = d(x, 0) = d(x, H Q). 
這 J iei 

Hence the system [Ci : z € /} is linearly regular. O n the other hand, since C = {0} and 

Nci (0) = {0} for each i G I, this system does not have the strong CHIP. Consequently, 

it does not satisfy the S E C Q . 

Since (5.3.4) is a condition that cannot be removed in Theorem 5.3.2，in the next 

theorem, we shall study some sufficient conditions for it. The first one is a technical 

lemma concerning convergence of elements from epigraphs. Recall that {Ci : i e i } 

is a CCS-system with 0 G C. We assume in the remainder of this section that / is a 

compact metric space. 

Lemma 5.3.2 ([29, Lemma 4.3]). Suppose that i B Ci is lower semicontinuous. Con-

sider elements io £ I, {xQ.ao) e X* xR and nets {ik} C I，{{xl.ak)} C X * x R with 

each {xl, a^) G epicrCi^. Suppose further that ik io, c^k —^ Q;o> and that x^ —XQ. 

If {XJ^} is bounded, then {xQ,ao) € epi CTQ^ . 

Theorem 5.3.3 ([29, Theorem 4.4]). Suppose that i ^ Ci is lower semicontinuous on 

I and that either I is finite or there exists an index io £ I such that dimC^o < +oo. 

Then ( 5 . 3 . 4 ) holds. Consequently, if {Ci : i G / } is, in addition, linearly regular, then 

it satisfies the SECQ. 

A similar relationship holds between the boundedly linear regularity and the strong 

CHIP. For details of the derivation, we refer the readers to our paper. 

Corollary 5.3.1 ([29, Corollary 4.1]). Suppose that i H Ci is lower semicontinuous 

on I and that either I is finite or there exists an index io £ I such that dim Ci^ < +oo. 

If {Ci : i e 1} is boundedly linearly regular, then it has the strong CHIP. 
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5.4 Interior-point conditions and the SECQ 

Recall that I is an index-set and C =门‘召,Ci C X. As in [28], the family {D, Ci : i € 

/} is called a closed convex set system with base-set D (CCS-system with base-set D) if 

D and each Ci are closed convex subsets of X. Furthermore, throughout the remainder 

of this section, we always assume that 7 is a compact metric space and 0 e DOC. Let 

I J| denote the cardinality of the set J C I. The following definition is a generalization 

of the interior point conditions given in section 5 of Chapter 1. 

Definition 5.4.1 ([29, Definition 5.1]). Let {D,Ci : i e 1} be a CCS-system with 

base-set D. Let m be a positive integer. Then the CCS-system {D,Ci : i e 1} is said 

to satisfy: 

(i) the m-D-interior-point condition if, for any subset J of I with | J| < min{m, |/|}， 

/ \ 
Z)门 P i lintDCi (5.4.1) 

\ieJ ) 

(ii) the m-interior-point condition if, for any subset J of I with \J\ < min{m, |/|}， 

d P I (p| intQ) (5.4.2) 

Our main theorem in this section is on some sufficient conditions for the S E C Q 

of a family of infinitely many closed convex sets. Since the S E C Q implies the strong 

CHIP (see Theorem 5.2.1)，we simultaneously obtain sufficient conditions for the strong 

CHIP. 

Theorem 5.4.1 ([29, Theorem 5.1]). Let m e N and let {D’Ci : i E 1} be a CCS-

system with the base-set D. We consider the following conditions. 

(a) D is of finite dimension m. 

(b) The set-valued mapping i i-> (span D)门 Ci is lower semicontinuous on I. 

(c) The system {D,Ci : i e 1} satisfies (m+ 1)-D-interior-point condition. 
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(d) For each i e I, the pair {D,Ci} has the property: 

epi o-(span D)nCi C epi ao + epi ac^ (5.4.3) 

(e.g. {D, Ci} satisfies the SECQ), 

(c*) The system {D’Ci : i e 1} satisfies m-D-interior-point condition. 

(d*) For each finite subset J of I with \ J\ = min{m + 1，|/|}，the subsystem {D,Cj : 

j £ J} satisfies the SECQ. 

Then the following assertions hold. 

(i) If (a), (b), (c) are satisfied, then {D，（spanD) : i e 1} satisfies the SECQ. 

(ii) If (a), (b), (c), (d) are satisfied, then {D,Ci : i e 1} satisfies the SECQ. 

(iii) If D is bounded and (a), (b), (c*), (d*) are satisfied, then {D,Ci : i E 1} 

satisfies the SECQ. 

Replacing the D-interior conditions by interior point conditions, we obtain the 

following corollary. 

Corollary 5.4.1. Let m G N and let {D, Ci : i e 1} be a CCS-system with the base-set 

D satisfying the following conditions. 

(a) D is of finite dimension m. 

(b) The set-valued mapping i (spanD) n Ci is lower semicontinuous on I. 

(c+) The system {D, Ci : i G /} satisfies (m + 1)-interior-point condition. 

Then {D,Ci : i £ 1} satisfies the SECQ. 

The last two corollaries explain our original intention for completing this work: we 

intended to generalize the main results of [28]. The following corollary, which is a direct 

consequence of Theorem 5.4.1 (i), is an improvement of [28，Theorem 4.1]. 

Corollary 5.4.2 ([29，Corollary 5.1]). Let {D^Q : i e 1} be a CCS-system with the 

base-set D. Lei m G N and let ;ro G D 门 C. Suppose that the following conditions are 

satisfied. 
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(a) D is of finite dimension m. 

(b) The set-valued mapping i h (span D) n Ci is lower semicontinuous on I. 

(c) The system {D,Ci : i e 1} satisfies (m + I)-D-interior-point condition. 

(d) For each i e I，the pair {D,Ci] has the property: 

N(spanD)nCiM Q Nnixo) + Nc,{xo). (5.4.4) 

Then the system Ci : i G / } has the strong CHIP at XQ. 

The following corollary is an important improvement of [28，Proposition 5.1]. Our 

main improvement lies in the fact that we need not require the upper semicontinuity of 

the set valued map i (span D) D Ci and that (d) can be weakened to required only 

the subsystems {D, Cj : j G J) with | J| = Z + 1 have the strong CHIP. 

Corollary 5.4.3 ([29, Corollary 5.2]). Let m G N and let {D,Ci : i G 1} be a CCS-

system with the base-set D satisfying the following conditions. 

(a) D is of finite dimension m. 

(b) The set-valued mapping i H-> (span D)门 Ci is lower semicontinuous on I. 

(c*) The system {D,Ci : i £ 1} satisfies m-D-interior-point condition. 

(d) For each finite subset J of I with |J| = min{m + 1，|/|}, the subsystem {D, Cj : 

j G J} has the strong CHIP. 

Then the system {D, Ci : i G / } has the strong CHIP. 
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