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Abstract of thesis entitled: 

Energy-efficient Reliable Wireless Sensor Networks 

Submitted by ZHOU Yangfan 

for the degree of Master of Philosophy 

at The Chinese University of Hong Kong in August 2006 

In the recent decade, advances in Micro Electro Mechanical 

Systems (MEMS) have made in-situ sensing with wireless sensor 

networks (WSNs) a promising technique. As wireless integrated 

network sensors are powered with a small battery and they usu-

ally work in an unattended manner, the main constraint of a 

sensor node is tliat its energy resource is limited. To enable 

in-situ sensing, sensor nodes and WSNs should function in an 

energy-efficient maimer. Energy optimization techniques must 

be performed in every level of the design of a sensor network 

system. The work described in this thesis investigates various 

aspects of power saving approaches to achieve energy-efficient 

and reliable WSNs. 

We first study routing issues and data transportation issues. 

Based on the features of WSNs, we discard the common layer-

ing network-protocol principle by coupling data transport proto-

col and applications: let the applications solve an optimization 

problem and feed back required reporting rates of sources. Based 

oil this consideration, we propose PORT, a Price-Oriented Reli-

able Transport protocol for wireless sensor networks to reliably 

and energy-efficiently convey sensor information to the sink. 

Ill our second work, we examine the problem of transmit-

ter power control for energy-efficient sensor-to-sink cornrniuii-
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cations. We model this problem based on the network and 

application features of WSNs. An intuitive iiiiplemeritatiori to 

solve this problem, namely BOU (Broadcast-On-Update), is pre-

sented. We identify the broadcast explosion problem in BOU, 

and then improve BOU by allowing a waiting period before each 

broadcasting. We show that the waiting time should be propor-

tional to the probability tha.t a node would find a more energy-

efficient path to the sink, and present an efficient approximation 

algorithm to calculate the probability. 

Ill the last work presented in this thesis, we propose i” a novel 

index for evaluation of point-distrilnition. t is the minimum dis-

tance between each pair of points iioriiialized by the average 

distance between each pair of points. We find that a set of 

points that achieve a. inaxiiniuii value of /. result in a honeycomb 

structure. We propose that l can serve as a good index to eval-

uate tlie distribution of the points, which can be employed in 

coverage-related problems in WSNs. We set out to validate this 

idea, by employing i to a sensor-grouping problem. We formu-

late a general sensor-grouping problem for WSNs and provide a, 

general sensing model. With an algorithm called Maximizing-/. 

Node-Deduction (MIND), we sliow that maximizing l at sensor 

nodes is a good approach to solve this problem. 

Ill coiiclnsioii, this thesis studies various energy-efficient a|> 

proaclies to achieve reliable and energy-efficient wireless sensor 

networks. Simulation studies demonstrate the effectiveness of 

these approaches. 
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學位論文摘要 

舉位論文题目：高效節能的可靠無線傳感器網絡 

提交人：周揚帆 

學位：哲學碩士， 

香港巾文大學’ 二零零六年八月 

近十年來，微型電子機械系統的飛速發展使得應用無線傳感器網絡的現場監測成爲一種很有 

發展前景的技術。微型傳感器節點用•塊小電池做電源，而這些節點•般而目‘需要無人値守 

工作：這使得電源成爲微型傳感器節點的要瓶頸所在。爲使這種現場陆測技術有可行的應 

用，微型傳感器節點乃至整個無線傳感器網絡都必須很節能地工作。整個無線傳感系統設計 

的各個層面，都必須應用各種優化能耗的技術。本學位論文研究無線傳感器網絡各方各面的 

節能方法’以寅現高效節能的可靠無線傅感器網絡。 

首先，我們研究路由和數據傅輸層面的問題。根據無線傳感器網絡的特點，我們撫棄了傳統 

網絡協議嚴格的分層設针，而瑰數據傳輸層和應用層鍋合在一起；我們識應用層解決一個優 

化問題’並把結果反餓給傅輸層，通過傳輸層來控制源節點的發包率。基於這樣的思路，我 

們設計了一個名爲PORT (Price-Oriented Reliable Transport)的協議。此協議可讓無線傳感 

器網絡可靠節能地將傳感器節點的現埸監測數據傳送給數據收集點。 

十:我們的第二個工作中•我們研究了微邪.傅感器節點無線電發射器的發送功率?^制問題來寊 

現節能的傅感器節點到數據收集點的數據通訳。我們根據無線傳感器網絡極其應用的特點來 

爲這個問題建模。接著’我們提出名爲BOU的這個問題解法的一種直接寅現》我們指出這 

個實現含導致廣播風骚問題’而改進方法是在每侗傳感器節點每次廣播之前，等待一段時間 

再進行廣播。這個等待時間應與該傳感器節點能在以後找到•條比其已知的最節能的到數據 

收集點的路徑更加節能的路徑的槪率成正比。我們進而提出了一種近似方法來計算這個槪 

率。 

在本學位論文述及的第二.個研究工作中’我們提出了一個新的點分佈情況的評價參數（命名 

爲I)。此參數是這些點的兩兩距離的最小値比上它們兩兩距離的平均値。我們發现’ 二維空 

間中的點’要達到上述參數最大’它們的位置構成的Vonoroi結構是蜂寓結構。我們據此認 

爲，這個參數叫•作爲•侗很好的點分佈情況的評價參數，並n丨應用於解決和無線傳感器網絡 

的覆蓋相關的問題。爲驗證這個想法’我們研究此參數如何應用於解決無線傳感器節點的分 

組問題。我們提出了一個触線傳感器節點的分組問題的普適模型和一個傳感器節點的感應監 

測摸型。我們設計了一個名爲mind (Maximizing-i Node-Deduction)的算法’通過對這個 

算法的性能研究’我們指出優化無線倚感器節點的這個參數’是無線傅感器網絡分組問題一 

個很好的解決方法。 

私;^上所述、此學位論文研究了各種節能技術’以资現髙效節能的可雜無線傳感器網絡。仿真 

'爽驗結艰表明這些方法是有效的。 
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Chapter 1 

Introduction and Background 

Study 

1.1 Wireless Sensor Networks 

In recent years, advances in Micro Electro-Mechanical Systems 

(MEMS) have made it possible to integrate signal processing en-

vironmental data sensing, and wireless communication modules 

ill one single small circuit board. Such technological develop-

ments make small, low-cost, low-power devices capable of sens-

ing the environmental/physical data, collecting and processing 

such data, and communicating with wireless technology, a reality 

20, 21, 41, 42]. Such devices are referred as wireless integrated 

network sensors (WINS) [5，48], or in short, sensor nodes. 

1.1.1 Wireless Integrated Network Sensors 

Typical implementations of sensor nodes include the /iAMPS 

sensor nodes developed by Massachusetts Institute of Technol-

ogy (MIT) [44], the WINS sensor nodes developed by the Uni-

versity of California at Los Angeles (UCLA) [5, 48], and the 

MICA2 Mote sensor nodes developed by the University of Cali-

fornia. at Berkeley (Berkeley) [29 . 

Figure 1.1 demonstrates the architectural overview of the 

1 



CHAPTER 1. INTRODUCTION AND BACKGROUND STUDY 2 

MIT ,iAMPS sensor node. It can be viewed as a typical ar-

chitecture of a sensor node. 

Î̂ HÎ pBBBi quality varianous 

v a r i a r i o m 

• Pouvr • Control 

S t a n d b y c u i i e u t L e a k a g e c u r r « D t B i n s c u r r e n t 

Loir dutj' cycle Woi-lJoiicl v;>riatiou St.irt-up time 

Figure 1.1: A typical architecture of a sensor node, the MIT ",AMPS sensor 

node. (Fig. 1 of [44]) 

A typical sensor node consists of the following units [5, 29， 

44’ 48]. 

• A power supply unit, which consists of a small battery with 

DC-DC conversion to the appropriate voltages required by 

the electronic system of a sensor node. 

• One or more physical sensors. Examples of sensors include 

thermoelectrical sensors to measure environmental temper-

ature, acoustic sensors to monitor the sounds of interest, 

infrared sensors to capture the existence of the objects of 

interest, and seismic sensors to measure earth vibrations. 

The types of sensors employed are determined by the ap-

plications of the in-situ sensing tasks. 

• An A/D converter to convert the analog signals captured 

by a sensor to digital signals. 
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• A RF radio communication unit. Usually the transmitter 

power of the radio unit can be shifted to different levels. 

• One or more microchip computer systems to process the 

digital signals from the A/D converter, to control and mon-

itor the behaviors of the sensor node, and to run other re-

quired software such as communication protocols. 

1.1.2 Main Challenge of In-situ Sensing with Sensor 

Nodes: Limited Energy Resource 

Sensor nodes are physically deployed in an area to collect 

data about some physical phenomena of interest. Such in-situ 

sensing approach facilitate monitoring and controlling of phys-

ical environments with better accuracy [21]. And also, sensor 

nodes are cheap. In-situ sensing is more economic, compar-

ing to remote sensing approaches with devices such as radars, 

sonars, and satellites. These merits arouse great research inter-

ests among academic people [2, 3, 33，37, 52，67, 77 . 

A sensor node is typically powered by a small battery. It 

suffers from limited energy resource. Wha,t makes the situation 

worse is that recharging the sensor nodes manually is usually 

not facile, and hence costs highly, because sensor nodes usually 

operate in an unattended manner. Even in some application case 

that sensor nodes may work in a hostile environment, recharging 

them is impractical. 

To prolong the entire lifetime of an in-situ sensing system to 

typical requirements which are on the order of months to years, 

energy efficiency becomes a vital hardware and software design 

consideration of sensor nodes [5, 29, 44, 45, 48]. It is a major 

challenge to enable environmental sensing with in-situ sensor 

nodes [22, 32]. 
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1.1.3 Networking the Sensor Nodes 

Among the great research efforts people have put in to enable 

environmental sensing with in-situ sensor nodes, a very impor-

tant issue is how to network such sensor nodes. As individual 

sensor nodes are with low sensing and processing capabilities 

due to their commonly low-cost implementation, networking of 

a large number of sensor nodes can enhance the amount, as well 

as the accuracy, of the information obtained by the sensor nodes 

21’ 22 • 

In proposed implementations of environmental sensing with 

in-situ sensor nodes, a number of in-situ sensor nodes are de-

ployed to collect data, about some physical phenomena of in-

terest. The sensor nodes form an ad hoc multi-hops wireless 

network through which the collected data are conveyed to col-

lectors, e.g., hand-held devices such as PDAs and laptop com-

puters. Such data, collectors are called sink nodes. Sinks are 

usually with higher computational capabilities and power. They 

might also be able to communicate with other computers, e.g., 

they are connected to the Internet. Sinks are where the out-

side world obtain the data from the sensor nodes and where the 

outside world control the behaviors of the sensor nodes. Such 

networks are referred as wireless sensor networks (WSNs). 

1.2 Applications of Wireless Sensor Networks 

The self-organized nature of WSNs facilitates their deploy-

ment, and also increases their fault-tolerance and hence robust-

ness. In addition, the low-cost implementation of sensor nodes 

make it possible for high-density and large-scale deployment, 

which not only enhances the robustness of WSNs, but also in-

creases the possible scale of the sensing area. These features 

make WSNs attractive in military applications, such as battle-
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field surveillance and enemy tracking. That's what the research 

on WSNs is initially driven by. 

Besides military applications, which are outside the interests 

of us, there are a great variety of proposed civil applications of 

WSNs such as environmental surveillance, habitat monitoring, 

motor-traffic tracking, surveillance, etc. [2, 3 . 

In the work by A. Mainwaring et al [40], a specific habitat 

monitoring application with WSNs is studied. This application 

case is a good representative of the civil application domain of 

WSNs. 

In this experimental application, a sensor network composed 

by MICA Mote [29] sensor nodes are deployed on Great Duck 

Island, Maine, to monitor the behavior of storm petrels. Tem-

perature, photosensitive, barometrical, humidity and thermopile 

sensors are employed in this project. Sensor nodes are placed 

at the habitat of storm petrels {e.g. inside a burrows). These 

sensor nodes are grouped into sensor patches, and transmit sen-

sor reading to a sink that is responsible for forwarding the data, 

from the sensor patch to a remote base station through a local 

transmit network. The base station then copies the data every 

15 minutes to a database server in Berkeley over satellite link. 

Users can can access the data from the database server and can 

also control the behaviors of the network such as adjusting the 

sampling rates. 

In environmental surveillance, Automated Local Evaluation 

ill Real-Time (ALERT) [4] is a project that provides real-time 

rainfall and water level information to evaluate the possibility of 

potential flooding. WSNs are also proposed to perform Struc-

ture health monitoring to detect possible damage and predict 

the residual life of structures [47, 74]. A biomedical application 

of WSNs is studied in [59] aiming to turn artificial retina into 

reality. Also, work in [62] presents a "Smart Kindergarten" to 

introduce WSNs into childhood education. 
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Although most of the proposed applications of WSNs are 

only in experimental phase and they just serve as test-bed to 

help researchers find out challenges and verify existing ideas, 

real-world applications of WSNs are expected to have a great 

impact in our life in a. foreseeable future. It is very promising to 

study the WSNs so as to turn this prevision into reality. 

1.3 Characteristics of Wireless Sensor Net-

works: A Summary 

Wireless Sensor networks are similar to Mobile Ad Hoc Net-

works (MANETs) as they are both wireless networks and they 

are both involved in multi-hops wireless communications. How-

ever, as one can see from the above discussion, WSNs are very 

different from traditional data networks including MANETs. 

The characteristics of WSNs are summarized in this section, 

together with some comparisons with MANETs. 

• WSNs are application-driven networks. Different WSNs 

have different task-specific requirements. It is quite differ-

ent to traditional general-purpose networks. This means 

that the protocols for WSNs can be totally new. It is 

not required to tailor the protocol design for WSNs in or-

der to achieve compatibility to existing protocols of tra-

ditional general-purpose networks. For example, unlike in 

MANETs, it is not required to build up an IP address mech-

anism over WSNs. Also, the design of protocol stack do not 

have to confine to traditional layering thought. 

• WSNs are self-organized networks. They are usually with 

large scale and high node density. The number of sensor 

nodes in a network might be several hundred or even reach 

over a thousand. Such a large number of sensor nodes are 

usually left unattended after they are deployed. This means 
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that a WSN should function in a completely autonomous 

manner. 

• WSNs suffer from limited energy supply. Protocols for 

WSNs should be energy-efficient. Sensor node is battery-

powered. Recharging a sensor node is expensive, if not 

impossible, which means that it is impractical to revive a 

sensor node after its battery energy is drained. Energy-

efficiency must be a main consideration of protocol design 

for WSNs. 

• WSNs are instable. First, low-cost implementation of a 

sensor node make it easy to fail. Also, due to limited en-

ergy resource, the power of a sensor node is easily drained, 

which results in permanent disfunction of the sensor node. 

Second, WSNs are usually working in bad or even hostile 

environments. The wireless links between sensor nodes are 

fragile and subject to failures. These two situations make 

a given wireless communication path between two sensor 

nodes instable and even easy to be permanently damaged. 

Therefore, protocols for WSNs should adapt to such net-

work instability. 

• The mobility feature of WSNs is different to MANETs. 

In MANETs, nodes are laptop computers, PDAs carried 

by people. Nodes are mobile. However, in WSNs, nodes 

are sensor devices. Usually they are not mobile after de-

ployment. But the locations of the interesting phenomena 

might be mobile, e.g., when the network is tracking a mo-

tor vehicle. Also, the sink of a WSN may be mobile. A 

sink may be a hand-held device such as a PDA or a laptop 

computer. It may be carried to the network area to collect 

the sensor data hourly, and each time its location may be 

different. 
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• The network traffic feature ofWSNs is different to MANETs. 

In MANETs, network traffic is like the traditional wired 

networks. It might usually be imicasting. Every node may 

require to communicate with all the others ones: traffic is 

usually in a peer-to-peer manner. Broadcasting traffic and 

multicasting traffic are also possible in MANETs. However, 

in WSNs, usually network traffic is in a many-toone man-

ner. Many nodes send data packets to a single node, i . e . , 

the sink. 

• A global-identity-based addressing mechanism which is re-

quired by traditional data networks including MANETs 

may be unnecessary for WSNs. The application of WSNs 

is mainly on collecting data of some phenomena, of interest. 

Depending on specific task requirement, it may care where a 

particular phenomenon takes place or whether a particular 

phenomenon happens, rather than which particular node is 

CAirrently report data. 

• In-net work data processing may be required in WSNs. WSNs 

are deployed to collect data of some phenomena of interest. 

Usually, there would be many sensor nodes that collect the 

data, of a particular phenomenon and report the data to 

the sink. Naturally, these data packets reported by each 

source sensor nodes could have some redundancy. This 

redundancy can be further exploited by in-network data 

processing approaches such as da,ta aggregation or data, fu-

sion. 

• Finally, WSNs suffer more computational constraints than 

MANETs. Comparing to a node of a MANET, a sensor 

node has by far lower memory capacity and its computa-

tional speed is much slower due to its low-cost design, small 

size and low power. One cannot expect to save large vol-

luiie of data in a sensor node or program it to do complex 
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computations. 

These features are the reasons that many network protocols 

for traditional data, networks including MANETs are not suit-

able for WSNs. We have to employ another family of network 

protocols for data communication and network organization in 

WSNs which take account of the above network characteristics. 

1.4 Energy-Efficient and Reliable Wireless Sen-

sor Networks 

As discussed above, the main constraint of sensor node is that 

its energy resource is limited. To enable in-situ sensing, sensor 

nodes and WSNs should function in an energy-efficient manner. 

Besides conventional low-power design techniques in electronic 

level [14], energy optimization techniques must also be per-

fonned in every level of the design of a sensor node system. Con-

siderations include energy efficient computing and data process-

ing, power-controlled wireless communication, and energy effi-

ciency protocols (ie.，[28, 49]), which can be classified into the 

following categories (Cardei et al have similar classification. See 

10, 12]). 

• Route data packets via energy-efficient path, i . e . , route 

data packets so that the energy required for the data trans-

port is minimized. 

• Exploit the redundancy of data packets through some tech-

niques such as in-network data aggregation or data fusion, 

and source reporting rate control. 

• Adjust the transmitter power level of a sensor node to let 

it communicate with its intended receivers in an energy-

efficient way. 
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• Avoid useless packets, i . e . , minimize protocol overheads. 

• Schedule the in-network sensor nodes so that they can work 

ill sleep mode to save energy when they are not required to 

perform sensing tasks or communication tasks. 

The work described in this thesis studies various aspects of 

power saving approaches to achieve energy-efficient and reliable 

WSNs 1. 

Chapter 2 studies how to minimize energy consumption of 

the communications for sensor reporting traffic, which falls into 

class 1 and 2 in the above classification. Chapter 3 studies the 

transmitter power control problem and propose an low-overhead 

approach to set up energy-efficient communication paths, which 

falls into class 1 and 3 of the above classification. Both studies 

also take "minimizing protocol overheads" (class 4) as an im-

portant design considerations. Chapter 4 studies how to sched-

ule sensor nodes to divide the nodes into as many as possible 

disjoint groups. Each of group can maintain the sensing-task 

requirements. It falls into class 5 of the above classification. 

iFoi, a complete list of the work conducted during the postgraduate stud}', please refer 

to the publication list in Appendix A 
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• End of chapter. 
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Chapter 2 

PORT: A Price-Oriented 

Reliable Transport Protocol 

Summary 

In wireless sensor networks, to obtain reliability and 

minimize energy consumption, a dynamic rate-control 

and congestion-avoidance transport scheme is very im-

portant. We notice that reporting packets may con-

tribute to the sink's fidelity of its knowledge on the 

phenomenon of interest to different extents. Thus, 

reliability cannot simply be measured by the sink's 

total incoming packet rate as considered in current 

schemes. Also, communication costs between sources 

and the sink may be different and may change dynami-

cally. Based on these considerations, we propose PORT 

(Price-Oriented Reliable Transport protocol) to facili-

tate the sink to achieve reliability. Under the constraint 

that the sink must obtain enough fidelity for reliability 

purpose, PORT minimizes energy consumption with two 

schemes. One is based on the sink's application-based 

optimization approach that feeds back the optimal re-

porting rates. The other is a locally optimal routing 

scheme according to the feedback of downstream com-

niuiiication conditions. PORT can adapt well to the 

communication conditions for energy saving while main-

taining the necessary level of reliability. Simulation re-

sults in an application case study demonstrate the ef-

fectiveness of PORT. This chapter is based on the work 

presented in [79]. 
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2.1 Reliable Sensor-to-Sink Data Communi-

cations in Wireless Sensor Networks 

Although different WSNs have different task-specific reqiiire-

iiieiits, they all require a sensor-to-sink data transport scheme^ 

to take account of two important issues. The first is reliability 

assurance, which means we must guarantee that the sink can ob-

tain enough information about the phenomenon of interest. The 

second is energy-efficiency, as recharging the sensor nodes is usu-

ally impractical [22]. Therefore, a sensor-tosiiik data transport 

scheme should aim to minimize energy consumption under the 

constraint that the sink can collect enough information on the 

phenoiiieiioii of interest. 

The notion of reliability on sensor-tosink communication was 

first introduced in [54], where the authors notice that, unlike 

existing WSN transport schemes {e.g., PSFQ [68] and RMST 

63]) that focus on end-to-end reliable data, transferring, ab-

solute end-to-end reliable data, transport is usually not needed 

when transmitting sensor reporting packets. Packet loss within 

a certain limit can usually be well tolerated in most application 

scenarios. This notion is important to the design of a reliable 

sensor-tosink data, transport protocol; however, there are still 

several unconsidered problems in current approaches. 

First, we notice that the packets from different sources may 

make a different contribution to improve the sink's information 

on the phenomenon of interest. We regard the contribution of a, 

source node as being how much it reduces the sink's uncertainty 

on the data, about the phenomenon. Thus reliability cannot sim-

ply be measured by the total incoming packet rate, as consid-

^The sensor-to-sink data transport scheme refers to the data transport scheme that 

transfer the desired information collected by the in-situ sensors to the sink. 
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ered in current approaches, e.g.、ESRT (Event-to-Sink Reliable 

Transport) [54]. Instead, it should be assured with the coop-

eration of a reliable sensor-to-sink data transport scheme and 

network applications. 

Second, to achieve reliability, ESRT adjusts the report rates 

of sources in an undifferentiated manner. But, as the commu-

nication cost from different sources to the sink may be different 

and may change dynamically, and also the contributions of pack-

ets from different sources are also different, adjusting the report 

rates of the sensor nodes in an undifferentiated manner is not 

the most energy-efficient way to increase the knowledge of the 

phenomenon. It is therefore necessary to bias the reporting rates 

of the sources. 

Third, to minimize energy consumption, we must avoid links 

with high communication costs. Congestion always results in 

an increase in communication cost, and so congestion control 

is vital to minimize energy consumption. ESRT proposes to 

avoid congestion in an end-toend manner by reducing report-

ing rates. CODA [69] also proposes to avoid congestion by 

slowing down sending rates. However, slowing down sending 

rates may cause the sink to receive fewer packets, which may 

yield in insufficient information on the phenomenon of interest. 

In this case, the sink will ask for higher reporting rates and 

that may cause congestion again if a reliability control mecha-

nism like what ESRT proposes is employed. Therefore, besides 

an end-to-end congestion-avoidance mechanism, an in-network 

congestion-avoidance mechanism is also necessary. 

In this chapter, we aim to address these problems by pro-

viding a Price-Oriented Reliable Transport protocol (PORT). 

PORT is based on the following assumptions. 

• The sensor reporting traffic lasts for a considerable dura-

tion. 
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• The sink is aware of the sources of the data packets; i . e . , 

the sink can identify where a packet originates. 

• The sink is aware of the information a packet carries. 

The first assumption means source sensor nodes would keep 

reporting data on the phenomenon of interest for a long period of 

time. It is generally valid because in most application scenarios 

such as environmental monitoring, object tracking, surveillance, 

etc., WSNs are employed to provide continuous data streaming 

about the phenomenon of interest. 

The second assumption is also reasonable in most application 

scenarios. This is because of two reasons. First, it is usually 

necessary for the sink to know the physical location of the phe-

nomenon. Where a packet originates provides information on 

where the phenomenon of interest is taking place. Second, the 

sink should usually fuse the data packets it has received. Each 

source node should be identified in order to provide information 

oil how to fuse the packets. Note that PORT does not require 

a heavy-weighted address-based approach. It only requires the 

sink can identify different sources which are reporting data on 

the same phenomenon. This can be achieved, for example, by 

randomly generating an identifier and embedding it in reporting 

packets when a node is sensing and reporting the phenomenon 

of interest. 

The third assumption means that the sink knows how a packet 

can improve its knowledge on the phenomenon of interest. It is 

true as the sink is where data packets are interpreted. 

PORT employs node p r i c e , which is defined as the total num-

ber of transmission attempts across the network needed to achieve 

successful packet delivery from a node to the sink, to measure 

the coinmunication cost from a node to the sink. 

^Successful packet delivery from a node means that the packet from the node arrives 
at the sink successfully. 
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Under the constraint that the sink must obtain enough in-

formation, PORT dynamically feeds back the optimal reporting 

rate to each source according to the current contribution of the 

packets from each source and the node price of each source. 

Based on the neighboring nodes' feedback of their node prices 

and the loss rates of the links between the neighbors and the 

node, an in-network node dynamically allocates its outgoing 

traffic to avoid high loss rate paths (which are probably caused 

by congestion). PORT, in this way, alleviate congestion in an 

in-network manner. Also, congestion will increase the node price 

of the sources. The source reporting rate control mechanism of 

PORT is aware of node prices of the sources, and can decide 

to adjust the source reporting rates (it might slow down one 

with a high node price and speed up one with a low node price) 

with a guarantee that the sink can still obtain enough informa-

tion. Hence, with this in-network congestion-avoidance media-

nisin and this end-to-end reporting-rate adjustment mechanism, 

PORT provides a good congestion-avoidance mechanism. 

The rest of this chapter is organized as follows. Section 2.2 

briefly surveys the related work. Section 2.3 discusses the re-

qiiireinents that a reliable sensor-tosink data transport scheme 

should fulfill. In Section 2.4, we provide the design considera-

tions of PORT. In Section 2.5’ we elaborate the implementation 

of PORT. Section 2.6 evaluates our mechanism with NS-2 [23: 

in an application case. We conclude the chapter in Section 2.7. 

2.2 Related Work 

In traditional TCP/IP networks, data transport mechanism is 

iinpleinented with an address-based end-to-end data corn muni-

cat ion concept. But, this is not appropriate for WSNs not only 

because of the need to simplify the implementation, but also to 

save energy [30 . 
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As a WSN is mainly employed to convoy information on some 

particular phenomena of interest, one should emphasize more on 

the iiiforinatioii obtained rather than who provides the informa-

tion. For example, one might be interested in where a particular 

phenomenon takes place or whether a particular phenomenon 

happens rather than which particular node is currently report 

data. Hence, the addressing mechanism in WSNs is not of inter-

est. Rirthermore, iii-network data, processing is desirable. Usu-

ally, there would be many sensor nodes that collects the data, 

of a particular phenomenon and report the data to the sink. 

The information reported by each of the sensor nodes contains 

redundancy. This redundancy should be further exploited by 

ill-network data processing approaches such as data, aggregation 

0 1 . data fusion in order to reduce the amount of data reported 

to the sink and thus save energy. 

This consideration has led to the development of a new con-

cept: data-centric communication [1, 30]. Data-centric concept 

is proposed in early work on WSNs [27, 30]. It has got well 

accepted in the literature and become important design notions 

when people design sensor-to-sink communication protocols. 

Data-centric schemes deliver sensor data, throughout the net-

work with an application specific naming scheme for the data. 

Routing paths are constructed on-demand based on the specific 

task and the data pa.ckets are routed according to the data they 

carry. A representative example of data-centric routing is di-

rected diffusion [30]. In directed diffusion, the sink requests its 

data of interest by broadcasting its i n t e r e s t s . The interest pack-

ets are flooded throughout the network and the nodes set up 

g r a d i e n t s to save the data-centric routing information. Using 

the gradient filter, directed diffusion conveys sensor reporting 

data, to the sink. The reporting packets might be delivered to 

the sink along multiple paths. The sink determines the best 

path and increases the desired reporting rate along this path. 
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This process is called path r e i n f o r c e m e n t Directed diffusion 

can periodically reinitiate the reinforcement process to find the 

new best path. Many other schemes { e . g . , [8, 17, 24, 58, 60]) 

have been proposed based on directed diffusion or similar con-

cepts (work in [1] provides a good survey on routing protocols 

for WSNs). But, most of the work does not consider the notion 

of 7、eliability of sensor-to-sink communication within the design 

of the protocols. 

PSFQ [68] and RMST [63] are concerned with reliable data 

transport protocol over WSNs. However, they aim at providing 

100% reliable data, transport for WSNs. In [54], the authors 

argue that absolute end-to-end reliable data, transport is usu-

ally not needed for transmitting the sensor reporting packets. 

They propose ESRT (Event-to-Sink Reliable Transport) to ad-

dress the reliable sensor-to-sink communication problem. They 

measure the reliability of the event features achieved in terms of 

total packet receiving rate. The communication is considered to 

be reliable if the number of the received packets is not less than 

the desired number of packets per unit time. ESRT ensures that 

the total incoming packet rate of the sink stays within the de-

sired range by providing a mechanism to feed back the required 

reporting rate directly to the source nodes. But the reporting 

rate of each source is adjusted in an unbiased manner. 

Congestion control for WSNs is studied in [54] and [69]. In 

69], congestion is detected by sampling wireless channel uti-

lization. In [54], congestion is detected according to the buffer 

utilization of the in-network nodes. These studies avoid conges-

tion by slowing down the sending rate, regardless of what the 

node is reporting. 

There are also other kinds of communications required in 

WSNs. For example, one may need to repi.ogramme sensor 

nodes [18, 36，46，64] or adjust the behaviors of sensor nodes 

such as data, sampling rate [30 . 
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2.3 Protocol Requirements 

Because WSNs are employed to sense and convey infor-

mation of some physical phenomenon of interest, the reliability 

of sensor-tosink data transport should be considered as the fi-

delity^ of the knowledge obtained by the sink on the physical 

phenomenon. Based on this notion, we define that a sensor-to-

sink da,ta transport is r e l i a b l e when the transport mechanism 

can assure that the sink is able to collect enough information; 

i.e., the sink can obtain enough f i d e l i t y of the knowledge on the 
phenomenon of interest 

Specifically, we consider the sensor-to-sink data transport is 

reliable when the following inequation holds. 

u = /(力 1,力2,...，力m) > (2.1) 

where r n denotes the number of the sources, u' denotes the re-

quired ininiinum fidelity on the phenomenon of interest and u 

denotes the current fidelity obtained, which is a function of the 

incoming packet rate U ( i = 1,2,…,m) from each of the sources. 

Note that we adopt incoming packet rates of the sink rather 

than the reporting rates of the sources, as packet loss along the 

sensor-tosink paths would cause that the reporting rates do not 

well indicate the fidelity obtained by the sink [54 . 

As each data packet sent by the source sensor node obviously 

contains some information of the phenomenon of interest and 

therefore contributes to the sink's fidelity on the phenomenon 

of interest, u is an increasing function of the incoming packet 

rate t.i {i = 1 , 2 , m ) , i . e . , 

/ (-广 1，...，力i + 1 ’ ...，t..m ) 〉 / (力 1,...，力i, ..., t.in ) 

Wi = l，2,".m. (2.2) 

^Fidelity means how certain the phenomenon value obtained by the sink is. We also 

use the word ‘uncertainty’ as its opposite. 
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III case that the incoming packet rate from each source is t j 

(J 二 1, 2,..., rn), if we increase the reporting of the ith source by 

one, the additional fidelity obtained, denoted by 5“ is computed 

as follows: 

— /(力 1，••.，力i + 1’ ••.，t,m)——/(力 1，...，力i’ .••，力m) 

= l，2,...m. (2.3) 

III existing work (e.g., [54])，reliability ( i . e . , the fidelity on 

the phenomenon of interest) is often measured in terms of the 

ratio of the achieved total incoming packet rate to the desired 

incoming packet rate regardless of the sources of the incoming 

packets, which can be modeled in terms of /(/a，力2，力m) as 

follows: 
m 

/(/,i,/:2, . . . ,。= 7 X ^ ” （2.4) 

where 7 is a constant. 

But this consideration is not adequate. Total incoming packet 

rate is not a good indicator of how reliable the sensor-to-sink 

data, transport is. Take the scenario in Figure 2.1 as an exam-

ple. The sink is interested in the physical phenomenon P . The 

sensor nodes A , B and C , which can detect are instructed to 

collect information about P and report data on P to the sink. 

In this scenario, node A is nearer to the physical phenomenon 

than node B and node C . In most application cases, ineasure-

iiient error is a inonotonically increasing function of the distance 

between the sensor and the phenomenon. Node A may thereby 

measure the phenomenon data, with less error and provide higher 

certainty of the phenomenon value than node B and node C . In 

this scenario, if the sink receives a given number of packets, its 

fidelity on the phenomenon is related to the proportions of the 

packets sent by different sources. 

Moreover, according to Equation (2.3) and Equation (2.4), 

Si is considered constant, which is not true in most application 
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Figure 2.1: A scenario of the WSN. 

cases, hi is usually a decreasing function of ti. The reporting 

packets from source i in one time unit contain redundant in-

formation oil the measuring phenomenon. The higher ti is, the 

higher the source reporting rate is required, and as a result, the 

more the redundant information packets from source i contain, 

which consequently causes Si to decrease. 

According to the above considerations, obviously, to save en-

ergy, it is better for WSNs to bias packet reporting rates of 

source sensor nodes according to their current contributions to 

improve the sink's fidelity on the phenomenon of interest. There-

fore, a reliable sensor-to-sink data transport scheme should pro-

vide the sink with a mechanism to adjust the reporting rate of 

each data source dynamically in a discriminative manner. 

But, is the contribution of each source node the only fac-

tor that influences the decision about source reporting rates? 

Again, consider the example scenario in Figure 2.1. If the cur-

rent fidelity u of the phenomenon is lower than the acceptable 

fidelity u ' , we should increase the source reporting rates so that 
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the sink can obtain higher fidelity. 

Assume increasing the pa.cket reporting rate of node A by ri 

or increasing the packet reporting rate of node C by r] (72 >『i) 

can make the fidelity higher than the acceptable fidelity. Al-

though the sink needs to increase the packet rate from node A 

by less than that from node C to make the fidelity acceptable 

(because, say, packets from A have higher contribution to de-

crease uncertainty), increasing node A's reporting rate to reduce 

uncertainty may not be a better solution in terms of minimizing 

energy consumption. This is because increasing the reporting 

rate of node A may counter-intuitively require more energy con-

sum pt ion than increasing the reporting rate of node C if the 

coiiiiiiunicatiori cost from node A to the sink is much higher 

than that from node C to the sink. Especially when the path 

from node A to the sink suffers from high packet loss rate, e.g., 

due to congestion, much energy will be consumed to convey 

packets along this path. 

We propose that source-reporting rates should be decided 

based on an optimization approach. This sink should determine 

the reporting rates of sources so that the energy consumption of 

the WSN is miiiiiiiized, subject to the constraint that the fidelity 

of the phenoinenon knowledge cannot exceed a given tolerable 

mini mum value. Formally, 

m 

minimize ^ ^ {U x pi) 

subject to u = / ( 力 1 , 力 2 ’ … ， 力 m ) > ‘u! (2.5) 

where pi is the communication cost (z.e., the energy consumed 

to successfully deliver a packet) for each source i to the sink. 

As /( . ) is application-related, how to determine it and how to 

solve the optimization problem are beyond the scope of our pro-

tocol design. Note tha,t only the sink {i.e., where the application 

runs) is required to solve this optimization problem. It would 
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not cause any energy overhead at in-network sensor nodes. 

Although solving the above optimization problem is the task 

of applications, it is vital for a reliable sensor-to-sink data trans-

port protocol to provide information about the communication 

cost Pi from each source to the sink, so that the sink can properly 

decide the reporting rates. 

Another important merit of providing end-toend communi-

cation cost is that it can offer a congestion control mechanism. 

As congestion causes high coinmunication costs, it can be alle-

viated with a discriminative source-rate control mechanism pro-

vided by a reliable sensor-to-sink data transport scheme. The 

sink can slow down sources that cause congestion and speed 

up sources with lower coinmunication costs. In the meanwhile, 

enough fidelity can still be obtained based on the optimization 

approach discussed above. 

Ill summary, to assure that the sink can obtain enough fidelity 

of the knowledge on the phenomenon of interest and achieve 

energy-efficiency, it is necessary for a reliable sensor-to-sink data 

transport protocol to provide two mechanisms which is listed as 

follows: 

• A dynamic and discriminative source reporting rate feed-

back mechanism, allowing the sink to adjust the reporting 

rate of each data, source. 

• A inechanism to provide the sink with the current end-to-

end coiiiinuriication cost from each source to the sink. 

Note that we intend to violate the common l a y e r i n g network-

protocol principle by somewhat coupling data transport proto-

col and applications [ i . e . , let applications solve an optimization 

problem arid feed back required reporting rates of sources). This 

is based on the features of WSNs. A WSN is usually employed 

to conduct one or a few specific tasks; i . e . , only one or a few spe-

cific applications are running at the sink. Traditional layering 
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concept aims at general purpose protocol design. In transport 

layer design, it aims to provide data transport service for various 

applications. However, strict layering is not necessary in WSN 

because applications of a network are always deterministic be-

fore a network is set up (whereas, they are not deterministic in 

traditional networks). Moreover, it is even worse as it would 

cause much protocol overhead. Violating layering principle and 

utilizing application information in data transport protocol de-

sign can let the application facilitate the data transport protocol 

to save energy, which is an important merit of this work. 

2.4 Design Considerations 

2.4.1 The concept of node price 

As wireless communication consumes most of the energy in 

WSNs, the energy consumption of local computation at each 

node can be ignored [22]. Also, even though the packet size of 

each packet may be dynamic, the inevitable large overhead of 

the physical layer implementation of traditional wireless commu-

nication schemes makes the energy consumption of each packet 

transmission attempt nearly constant. So, we consider the total 

iiuinber of transmission attempts of the nodes required to suc-

cessfully deliver a packet as the metric to evaluate the energy 

cost of the communication. The formal definition is as follows. 

The price of a node n is, the total number of transmission 
attempts all in-network nodes have made to successfully delive’、 
a packet f r o m , node n. 

We denote the node price of node n as NF{n). Obviously, 

node price is determined by the price of its downstream neigh-

bors, the link-loss rate between the node and its downstream 

neighbors, the end-toend packet loss rate from its downstream 

neighbors to the sink, and the proportion of the outgoing traffic 
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allocated to each downstream neighbor. Table 2.1 describes the 

symbols employed during our following discussions. 

7ii The ith downstream neighbor of node n 

NP{ni) The node price of node Ui 

uj{n, Hi) The proportion of node n,s outgoing traffic 

that is routed to its downstream node Ui 

p{n) End-to-end packet loss rate from node n to the sink 

p{ni) End-to-end packet loss rate from node Ui to the sink 

h{ni^ 7i) Link packet loss rate from node n 

to its downstream node rii 

Table 2.1: The descriptions of the symbols 

Now we derive the node price of each in-network node in a 

recursive way. Consider node n sends out M packets via its 

downstream neighbors to the sink. The number of packets that 

can successful reach neighbor rii is: 

Af . . (1 — h ( j i i , n ) ) , (2.6) 

in which the number of packets that can successfully reach the 

sink, denoted by Ni, is: 

Mi = N • u[n ,n i ) . (1 - / i ( n i , n ) ) . (1 -p ( n i ) ) . (2.7) 

Therefore, according to the definition of the node price, the 

total iiiiinber of transmission attempts that all in-network nodes 

have made to successfully deliver M i pa.ckets from node n via. the 

path along node rii is： 

M . NP(jii) + AT. • m). (2.8) 

The total number of packets that can successfully reach the 

sink is: 

Y ^ K = • (1 - h [ n , , n ) ) • (l-p(nO)}. (2.9) 
Vi Vz 
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The total number of transmission attempts that all in-network 

nodes have made to successfully deliver Y ^ M packets is: 
‘ Vi 

幻TV；.明ni) +Af-u;{n,r^)]. (2.10) 
Vi 

According to Equations (2.6) —(2.10), we can calculate NP{n) 

as follows: 

N P { n ) = ^ ^ (2.11) 

Vi 

- h{n,,n))NP{ni) + 1]} 

：̂ ^ . (2.12) 

Vi 

The end-to-eiid loss rate from node n to the sink p{n) is: 

= 1 — E {—i,r“) X [ ( l-p (nO) . (1 — h{n,,n))]} (2.13) 

Vi 

As the traffic ends at a sink, the sink always has NP、sink、= 0 

and p{sink) = 0. 

If the link packet loss rates along all the paths of the sensor-

to-siiik traffic can be obtained with a hop-by-hop feedback rnech-

aiiivSin along the reverse direction of the sensor-tosink traffic, 

any node n along the path can calculate its NP{n) and p{n) ac-

cording to Equation (2.12) and Equation (2.13) based on NP{ni) 

and p{ni) fed back by its downstream nodes Ui and its outgoing 

traffic allocation scheme u)[n^ni). 

Because of the dynamic nature of the WSN traffic, the link-

loss rate is a. dynamic variable. Accurate and up-to-date hop-by-

hop loss rate estimation is necessary to ensure that the price of a 
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node represents the real downstream communication conditions. 

We will discuss how to obtain the link-loss rate in Subsection 

2.4.2 and the routing scheme that determines a;(n, Ui) in Sub-

section 2.4.3. 

2.4.2 Link-loss rate estimation 

There are three situations in which the communication load 

may change. The first one is that a new task is assigned and the 

responsible sensor nodes begin to report packets. The second 

one is that the sink requests the source nodes to change their 

reporting rates. The last one is that some in-network nodes 

decide to change their routing scheme, e.g., a node may begin to 

send more packets to a downstream neighbor when it finds that 

the price of the neighbor has become smaller. It is reasonable 

to estimate link-loss rate based on an EWMA (Exponentially 

Weighted Moving Average) approach. 

We base our link-loss rate measurements upon the sequence 

of the arrival packets' serial numbers (SN). Every node n sends 

packets to each downstream neighbor Ui with consecutively in-

creasing SN. The receiver, i . e . , node rii can measure the link-loss 

rate according to the missing SN. Then we can calculate the 

link-loss rate with an EWMA approach. Formally, 

h [ i i i , n ) = a x h — i { j i i , n ) + (1 — a) x h ! { n i , n ) (2.14) 

where h-\ (n^, n) is the previous estimate of link-loss rate; h'(ni^n) 

is the link-loss rate according to current sampling result; and a is 

a weighting factor, whose value is selected empirically according 

to the traffic features of WSNs. Generally speaking, a should be 

set close to 1 when we have a 'priori knowledge that the traffic 

of the WSN is stable. 

As congestion will increase packet loss rate, the link-loss rate 

gives a good indication of the congestion condition. The commu-

nication cost metric, i . e . , node price, calculated from the packet 
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loss rates, is therefore also influenced by congestion. As a re-

sult, reporting rate control and routing based on node price can 

provide a good congestion avoidance mechanism. 

2.4.3 Routing scheme 

As the price of a node determines the energy efficiency of the 

coinrimiiication between the node and the sink, the nodes can 

make a local optimal decision on where to route packets to min-

imize their prices. If the in-network node finds that its outgoing 

traffic is not fully allocated to the current best downstream path 

{ i . e . , the traffic is not 100% sent to the preferred downstream 

neighbor to achieve the smallest local NP), the node will shift 

the outgoing traffic that is currently allocated to the other down-

stream neighbors to the best downstream neighbor. Obviously, 

such an optimization approach always allocates all the traffic to 

one best path. 

—Sink g Sink ^ Sink 

/ \ / \ / \ 

/ \ Congestion / \ / \ Congestion 

I \ \ l \ I J / 
/ \ OO \ / 

/ \ / \ / \ 

/ \ / \ / \ 

/ \ / \ / \ 

l i ^ 4 ^ © ^ 
^̂ ^ 

1. X routes 100% traffic to 2. NP of Y increases as 3. However, congestion 

Y to minimize local NP congestions occurs, X occurs along to path via Z. 

decides to shift all the traffic X decides to shift all traffic 

to Z to minimize local NP back to Y to minimize local 

NP 

Figure 2.2: An example showing oscillation 

However, the price of a node's downstream neighbors might 

vary with the change of the node's outgoing traffic allocation. 
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111 the worst case, the dynamics of the downstream neighbors' 

price caused by the node's outgoing traffic allocation change will 

result ill fast routing oscillation. An example is shown in Figure 

2.2. When node X routes all traffic via its neighbor V (scenario 

1 in the figure), the path to the sink via V may get congested. 

The packet loss rate along the path will increase and so the 

price of V will increase (scenario 2 in the figure). Node X, to 

minimize its own price, will then shift all the outgoing traffic to 

Node Z. As a result, the path via Z will get congested and the 

price of Z will increase (scenario 3 in the figure). Node X has 

to shift all the traffic back to node Y to achieve minimal price. 

Oscillation is inevitable in this example scenario. 

Such oscillation caused by interaction of traffic loads and path 

cost (ill our protocol, it is node price) is a notorious routing 

problem in data networks [7]. Fortunately, since we can have 

more than one outgoing path at a time, we can avoid such a 

fast oscillation by shifting the traffic to the new detected best 

(lowiistreain path in a gradual manner. Let us denote the current 

proportion of outgoing traffic allocated to the bad downstream 

node (a ‘bad，downstream neighbor means that routing through 

it causes high node price comparing to routing through a ‘good， 

one) with a higher price NPhigh as a;(n, h i g h ) , and denote the 

price of the good downstream node as NPiow The proportion of 

traffic that will be shifted from the bad node to the good node 

in each decision interval is: 

(2 . 15 ) 
IN 1 high 

This scheme assures that the more the difference between 

the prices of the downstream nodes, the more traffic would be 

shifted each time. The network can thus adapt to the communi-

cation condition changes and avoid fast oscillation with a proper 

decision period. 

If congestion of one selected path occurs, the node price of the 
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neighbor in that path will increase. The node will gradually shift 

outgoing traffic to a new best path. This scheme could result in 

an increase of the node's price. If the new best path never gets 

congested because of the traffic shift, the node will locally avoid 

congestion by eventually allocating all traffic to the new best 

path. Otherwise, because the price of the node will eventually 

influence the node price of the source that sends packets via. this 

node, the sink can decide to slow down the source that keeps 

sending packets to the congested path and speed up another 

source, using the rate control scheme provided by PORT. 

2.5 Protocol Description 

Wlien a new task is assigned, PORT employs a similar routing 

inforination establishment inechanism to directed diffusion [30 

by flooding the task description packet (called i n t e r e s t in [30]) to 

achieve the in-network nodes' neighborhood information. After 

the task assignment phase, the nodes in the WSN begin to report 

data packets to the sink if the physical phenomenon of interest 

can be sensed. The outgoing traffic allocation of a node can 

be dynaniically adjusted during the reporting period according 

to the feedback about downstream communication conditions 

sent by its downstream neighbors. The sink also feeds back new 

reporting rate requirements to source nodes. We elaborate our 

detailed protocol implementation as follows. 

2.5.1 Task initialization 

We employ a reactive routing approach: the sink initiates 

a task by flooding its interest on some physical phenomenon. 

The nodes' neighborhood information is initialized as the inter-

est packet travels throughout the network. A node's price is 

initially set to be the hop number between the node and the 
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sink, and all the loss rates are considered to be zero. The nodes 

that are responsible for reporting data begin to report at the 

desired rate described in the interest packet. In order to en-

sure that the traffic pattern is changed in a gradual manner, the 

initial desired reporting rate is cautiously set to a very small 

value in the interest packet. After initialization, further adjust-

iiient will be conducted by the sink as described in the following 

subsection. 

2.5.2 Feedback of newly desired source reporting rates 

A source node encapsulates its node price in its reporting 

(lata packets. In this way PORT provides the node price of a 

data, source to the application. If the application at the sink 

finds that the packets received per unit time provide more or 

less information on the physical phenomenon of interest than it 

desires, it will adjust the reporting rates based on an optimiza.-

tiori approach. The new desired reporting rate of each source 

node is fed back to PORT by applications. 

The feedback information is sent to the sources by PORT 

along the reverse path of the sensor-tosink traffic. The rate 

control packets ai.e inserted at the head of the sender nodes' 

queues and sent out with the highest priority. Such rate control 

packets can also be sent back directly to individual source nodes 

as implemented in ESRT [54] if the wireless interface of the sink 

is powerful enough. 

2.5.3 Feedback of wireless communication condition 

The sink, and the in-iietwork nodes that are conveying the 

sensor-tosink packets, estimate the link-loss rate from each of 

their upstream neighbors to themselves. The link-loss rate and 

their prices, as well as their end-to-end path loss rates (from 

them to the sink), are checked in a given time interval. If they 
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find that these values have changed, the new values are fed back 

to tlieir upstream neighbors. These feedback packets are in-

serted to the head of the nodes' queues and sent out with the 

highest priority. 

Upon receiving a communication condition feedback packet 

from a downstream neighbor, a node will re-allocate its outgoing 

traffic as discussed in Subsection 2.4.3 if it finds that the current 

traffic allocation cannot achieve the local lowest price. The new 

price and path loss rate are calculated according to Equation 

(2.12) and Equation (2.13). 

2.5.4 Fault tolerance and scalability considerations 

III the case that a node dies (silently quitting the task), its 

upstream neighbor should shift the traffic routed via this node 

to other nodes immediately. We employ a timer on each node 

to detect the quitting of its downstream nodes. For each time-

out occuiTence, if a node fails to receive any feedback informa-

tion from a downstream neighbor, it considers the downstream 

neighbor has failed and set the price of the neighbor as infinite 

to avoid routing packets to it. 

If a new node (which could be a. newly awakened node, a 

newly deployed node, or a node that recovered from a previous 

failure) detects an ongoing task, it might decide to join the rout-

ing task. In this case, the node will broadcast to its neighbor 

nodes to inform them that it is up. Neighboring nodes will send 

it their prices. The node selects some nodes with the lowest 

prices as its downstream neighbors and sends its own calculated 

price and the path loss rate to those neighboring nodes with 

larger prices. Upon receiving this information, those neighbors 

with larger prices will consider the node as a possible dowii-

streain neighbor. In this way, the new node joins the routing 

task. 
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2.6 Protocol Evaluation: A Case Study 

To verity PORT, we code it over NS-2 [23]. As discussed 

above, PORT is employed to facilitate the sink to achieve re-

liability. To perform simulations, an application model should 

be specified. Although we verity PORT in a given application 

case, note that more sophisticated models could be employed 

ill real world applications. The performance of PORT is surely 

influenced by the application, as it is the application that de-

termines the reporting rates of the sources. The aim of our 

simulations is to show that with a proper decision on source re-

porting rates, PORT can effectively facilitate the sink to achieve 

energy-efficiency and maintain reliability. 

Without loss of generality, PORT can be applied in many 

application scenarios for energy saving. The prerequisite is that 

the application should determine reporting rates of sources dy-

namically according to the data reported by the sources and the 

coiiiiniinication cost reported by PORT. 

2.6.1 Simulation model 

In our application scenario when conducting simulations, the 

sink is interested in a phenomenon with physical position (.t, y). 

rn nodes that are close to the phenomenon measure the physical 

value of til at phenomenon aiid report each measurement value 

with a packet sent to the sink. For simplicity, assume that the 

j t h measurement value of node i { i = 1,2, denoted by Sij, 

is one-dimensional. The measurement model is 

= X + e^j (2.16) 

where X is the true value of the phenomenon parameter; eij 

is the error of the j t h measurement of node i . Assume e i j 

{ j — 1,2,…）are Gaussian-distributed with zero mean and with 

standard deviation Vi. Vi is related to the physical distance d 
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between node i and { x , y ) . For simplicity, we set it as follows, 

which means that the uncertainty of each measurement is di-

rectly proportional to the square of the distance d . 

Vi = 0.0001 X (f (2.17) 

The sink fuses the data received from node i in one second by 

calculating the mean of them (we denote the incoming packet 

rate from node i as t i ) . The sink then calculates the average of 

the fused result of each node as the value of the phenomenon. 

1 爪. 1 U 

口1 
Thus, the sink's uncertainty v on the value of the phenom-

enon is calculated a,s the standard deviation of the error: 

1 .爪 n2 

(2 測 

、 t=l 

where 6i is the standard deviation of U measurements ( i . e . , S i , j , 

••/ = 1,2, . . . ^ t i ) of source i , obtained statistically. 

In our simulations, we compare two sensor-to-sink data com-

iiiunication protocols: one is a directed-diffusion-based shortest 

path routing scheme with an ESRT-like unbiased report rate 

control approach (denoted as scheme 1); the other is PORT 

(denoted as scheme 2). 

The original locations of the sensor nodes are in a grid-like 

way shown in Figure 2.3. For each simulation (ie.，for each lo-

cation of the phenomenon point), we change the location of each 

sensor node (except the source nodes and the sink) r a n d o m l y i n 

a u n i f o r m m x i n n e r in a 100 x 100m square which centers on its 

original location shown in Figure 2.3 for 20 times. We average 

the simulation results for each settings of node locations. 
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Figure 2.3: The simulation network. 

The sink is in the top-right corner of the network. The wire-

less parameter settings are the same as the study of directed 

diffusion [30]. Detailed settings of the siinula.tion network are 

shown in Table 2.2. 

2.6.2 Energy consumption comparison 

To study the total energy consumptions, we set the phenom-

enon a.t six different positions marked by PI — in Figure 2.3. 

For each setting, a set of different uncertainty values are required 

by the sink. For each uncertainty requirement, the four near-

est nodes report their measurements to the sink in 500 seconds. 

Figure 2.4 shows the total energy consumptions of the whole 

network under these two protocols given different uncertainty 

requirements when the phenomenon points are at different po-
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Area of sensor field 1350m* 1350m 

Number of sensor nodes 100 

MAC IEEE 802.11 

without CTS/RTS and ACK 

Radio power 0.2818 W 

Packet length 36 bytes 

Transmit power 0.660 W 

Receive power 0.395 W 

IFQ length 50 packets 

Simulation time at each setting 500 seconds 

Feedback / decision period 1 second 

Table 2.2: Simulation network settings. 

sitioiis. 

The results show that PORT can save 10% to 30% of the 

energy consumption, compared to an existing scheme which em-

ploys unbiased source reporting rate control. This is not surpris-

ing, as PORT biases the reporting rates of the sources according 

to their contributions to reduce the uncertainty of the phenom-

enon value and their prices, which is a more energy-efficient 

approach. 

PORT saves more energy when a smaller uncertainty is re-

quired. This is because, when a. small uncertainty is required, 

large source reporting rates are needed. As a result, traffic load 

is high. Packet loss rate along the sensor-to-sink path is then 

also high. PORT can allocate traffic to alleviate congestion. 

In this case, PORT saves much more energy than the existing 

scheme. 

Moreover, the results show that PORT can satisfy a smaller 

uncertainty requirement (uncertainty requirements less than 0.12 

in Figure 2.4(a) and Figure 2.4(b), 0.11 in Figure 2.4(c), 0.10 

in Figure 2.4(d) and Figure 2.4(e), and 0.09 in Figure 2.4(f)). 

In the very small uncertainty requirement cases, large source 
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Figure 2.4: Energy consumption comparisons. 

reporting rates of the sources overload the network capacity. 

The network severely congests and thus cannot provide the sink 

with enough packets. The uncertainty requirement cannot then 

be fulfilled. As PORT can alleviate congestion by routing via 

different paths, it allows higher reporting rates than existing 

schemes and hence it can fulfill a smaller uncertainty require-

ments. It shows that PORT provides a better congestion avoid-

ance scheme. 
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2.6.3 The impact of reporting sensors' uncertainty dis-

tribution 

To study the impact of the reporting sensors' uncertainty 

distribution, we set the phenomenon point at three different 

places in the network grid marked by P7 — P9 in Figure 2.3. 

Also, four nodes in the corners of the grid are reporting their 

iiieasiireinerits. Note that the closer the phenomenon point to 

the center of the grid, the more similar are the contributions of 

the four sources. Figure 2.5 shows the total energy consumptions 

of the whole network under these two protocols given different 

uncertainty requirements and different phenomenon positions. 

50001 1 , 1 1 1 -1 1 
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Figure 2.5: Energy consumption comparisons: different phenoinenon posi-

tions in a grid 

These results show that PORT can save more energy if the 

contributions of the sources are more different. PORT achieves 
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little improvement when the sources have the same contribu-

tions. This is not surprising, as PORT biases the reporting rates 

of sources according to the sources' contributions to reduce the 

sink's uncertain of the phenomenon value. When the sources' 

contributions are almost the same, PORT will adjust the report-

ing in an almost unbiased manner, like existing schemes. Their 

energy consumptions, as a result, are almost the same. 

2.7 Conclusion 

This chapter proposes PORT, a price-oriented sensor-to-sink 

data, transport protocol for wireless sensor networks. Under the 

constraint that the sink must obtain reliable information on the 

phenomenon of interest, PORT minimizes the energy consump-

tions using two schemes. One is based on the sink's application-

based optimization approach that feeds back the optimal re-

porting rate of each source according to the contribution of the 

sources and the energy coiisiiniption of the sensor-to-sink corn-

iniinication from each source to the sink. The other is a lo-

cally optimal routing scheme for in-network nodes according to 

feedback of downstream communication conditions. The coin-

nuuiication conditions estimation is based on an estimation of 

link-loss rate along the sensor-to-sink traffic path. PORT can 

obtain the sensor-tosink cominunication condition such as con-

gestion and weak link which cause packet loss, and thus it adapts 

well to network dynamics caused by these factors. 

We code PORT on the NS-2 network simulation tool. Simula.-

tiori results in an application case study demonstrate that PORT 

is an effective transport protocol for reducing energy consump-

tion comparing to existing schemes. Thus, it can prolong the 

life time and reliability of wireless sensor networks. 

• End of chapter. 
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Chapter 3 

Setting Up Energy-Efficient 
Paths 

Summary 

Energy-efficiency is an important design consideration 

of cominimicatioii schemes for wireless sensor networks 

(WSNs). In this chapter, we investigate the problem of 

energy-ininiiiiized sensor-tosink communications with 

adaptive transmitter power settings. We devise a novel 

network- and application-aware model for this problem, 

and present a Broadcast-On-Update (BOU) solution. 

However, BOU suffers from the high overhead due to 

explosive broadcasting in path setup. We then show 

a waiting scheme, BOU-WA, that effectively mitigates 

the broadcast explosion. In BOU-WA, the waiting time 

before each broadcast is proportional to the probabil-

ity that a node could find a more energy-efficient path 

to the sink. We provide an efficient approximation al-

gorithm to calculate this probability. The performance 

of BOU-WA is evaluated under diverse network config-

urations, and the results demonstrate its superiority in 

conserving energy. This chapter is based on the work 

presented in [78]. 



CHAPTER 3. SETTING UP ENERGY-EFFICIENT PATHS 43 



CHAPTER 3. SETTING UP ENERGY-EFFICIENT PATHS 44 

Although WSNs have diverse task-specific requirements, many 

of them rely on a sensor-tosink communication scheme to trans-

fer the information that is collected by the sensors to a sink 

node. 

In general, the battery in a sensor node is limited and not 

rechargeable [22]. Since wireless communications consume most 

of the energy in typical WSN applications [19], an energy-efficient 

data communication scheme is greatly desired. To be energy-

efficient, the data communication scheme to convey the desired 

information on the event of interest through the established 

sensor-to-sink paths should cost as low energy as possible. 

One important approach to save communication energy con-

sumption is to perform transmitter power control (which is also 

called topology control). Obviously, setting the wireless trans-

mitter power of each sensor node in different levels will result 

ill different network topologies, as the neighboring nodes that a 

node can directly reach are determined by the node's transmitter 

power setting. 

A topology control scheme enables each node to set its power 

level to a iniiiimurn value under the constraint that the packet 

sent by this node could just reach its intended neighboring node. 

The energy consiiinption of data communication can thus be 

reduced. Transmitter power control is an important technique 

to save the energy consumptions of sensor nodes and prolong 

the lifetime of a network. 

The prerequisite of transmitter power setting scheme is that 

each sensor node can set its own wireless transmitter power level. 

This is true in typical sensor node implementations. For exam-

ple, the Berkeley Mica Mote [29] provides such program inter-

faces. 

The notion of transmitter power control (topology control) 

lias been extensively studied in wireless mobile ad hoc networks 

(MANETs). [55] is a good bibliography in the field. Although 
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much work is done (e.^., [15, 50，53，56, 57, 71]) on transmitter 

power control in MANETs and WSNs, researchers mostly focus 

on network connectivity analysis, network lifetime (a network 

is alive if it is 'somehow' connected) analysis. They usually 

propose transmitter power setting schemes for energy-efficient 

conimuiiications between an arbitrary node pair and for energy-

efficient broadcasting and multicasting. 

Our objective of transmitter power setting is to achieve energy-

efficient sensor-to-sink data, communications. We model the 

transmitter power setting problem based on this consideration 

arid the network and application features of WSNs. With this 

analysis and modeling work, we investigate implementation is-

sues and analyze the proposed schemes to solve the transmitter 

power setting problem. 

The contributions of our work are twofold. First, transmitter 

power setting problem is studied in this chapter for achieving 

energy-efficient sensor-to-sink data communications. We do not 

emphasize to construct an energy-efficient communication path 

between an arbitrary node pair. This is the main considera-

tion of the transmitter power setting problem in MANETs, as 

the MANET traffic is mainly unicasting peer-to-peer traffic. In-

stead, we aim at finding an energy-efficient communication path 

between an arbitrary node and a given node, i.e., the sink. This 

can greatly simplify the complexity of the problem. We show 

that this problem is tractable . 

Second, we tailor the solution of the problem to adapt to 

the features of WSNs. We investigate the implementation is-

sues for setting up the energy-efficient paths for sensor-to-sink 

traffic. Although high node density and large network scale 

of WSNs are major challenges for algorithms that set up each 

node's transmitter power level, we provide a low-overhead algo-

rithm to address the transmitter power setting problem. 

The rest of this chapter is organized as follows. In Section 
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3.1, we model our transmitter power setting problem accord-

ing to the network and application features of WSNs. Section 

3.2 investigates the implementation issues and analyzes the al-

gorithm that solve the transmitter power setting problem. In 

Section 3.3，we present our simulation results. Section 3.4 dis-

cusses the related work of this research. Section 3.5 provides 

conclusion remarks and our future directions. 

3.1 Transmitter Power Setting for Energy-

Efficient Sensor-to-Sink Data Communi-

cations 

3.1.1 Network, communication, and energy consump-

tion models 

The wireless signal fading models investigated in the lit-

erature [51] give the condition that packets transmitted from 

node u can be successfully received by the destination node v 

if the transmitter power setting of node u satisfies the following 

inequation: 

Pri'u) >C'{D{u,v)T (3.1) 

Here c is a constant whose value is related to the system parame-

ters such as the wavelength of the wireless signal, the antenna, 

gains, and the threshold that a signal can be successfully de-

tected in the destination node, n is the signal fading factor 

whose value is typically in the interval (2,5) in an application 

environment. D[u,v) is defined as the physical (Euclidian) dis-

tance between node u and node v, 

D[u,v) = \\X{v)-X{u)l (3.2) 

where X{-) denotes the physical location of a node. 
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Our work is based on this model: If node u knows the loca-

tions of itself and its one-hop destination node v, the optimal 

transmitter power setting for node u to send a pa,cket, to node v 

is computed as: 

Pr{u) = c . {D{u,v)y' = c . \\X{v) — X{u)\\'' (3.3) 

We assume that each sensor node can know its approximate 

physical location with which we can calculate the transmitter 

power setting. The approximate location information is achiev-

able if each sensor node carries a GPS receiver or if some local-

ization algorithms are employed [e.g., [9]). 

We model the network as a. graph. Let G{V, E) be the graph 

constructed by the sensor nodes in a d-dimensional space where 

V is the set of vertices which are the sensor nodes^ and E is the 

set of edges that are the wireless links connected by the pairs of 

the sensor nodes which can communicate with each other at the 

niaxiinuin power setting Prma工.Denote s {s e V) as the sink 

node which is the final destination of the sensor-tosink traffic. 

Let = [Pr{；u): for each u e V} be the transmitter 

power setting scheme for the sensor-to-sink communications. 

P{V) should assure that each node can send pa,ckets (possibly, 

in a limiti-hop manner) to the sink s. 

Denote edge set E' as the set of the wireless links under the 

transmitter power setting scheme P{V). Obviously, each Pr'[u) 

in P[V) is not larger than 薦,Therefore, the graph G'{V, E') 

is the subgraph of G[V, E). 

Note that G'(y, E') is a directed graph. With the transmitter 

power setting scheme P{V), node u can send packets to node 

V if Pr{u) satisfies Equation (3.1) and thus V [ u , v ) is formed. 

But P'r(v) may not necessarily satisfy similar requirements and 

thus (V, u) may not be formed. This consideration is because 

^The terms 'vertex' and 'node' both refer to a sensor device. In the rest of this chapter, 

they are used interchangeably. 
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the power level of a node's downstream neighbor is not necessar-

ily larger than that of the node to let the downstream neighbor 

respond acknowledgement (ACK) packets to the node, as hop-

by-liop packet ACK mechanism (ie.，the packet ACK mecha-

nism in MAC layer) is usually not employed for energy saving. 

Note that if a hop-by-hop packet ACK mechanism has to be 

employed, we can simply adjust a node's transmitter power to 

different levels: One for sending sensor-to-sink packets to its ‘ 

downstream neiglibor; the other for sending ACK packets to 

the upstream neighbor. The technique is trivial and we do not 

discuss it in the rest of this chapter. 

Let £ {ui^s) (where ui is the source node and s is the des-

tination node) be the path in E') along U\, uo, Ui“s 

{ui.uo, e V). Consider the sensor-to-sink traffic path i . 

We assume all seiisor-to-sink packets are of the same size. The 

energy consumption of a sensor-to-sink packet delivery along 

this path is modeled as: 

i i 
Y^hPr{Un)) + Y,hRr{Un) + Ps{Un)) 
71=1 n=2 

+7Hr(5) + P5(5), (3.4) 

where 7 is a constant related to the packet size, Rr(.) denotes 

the receiver power of a node, and Ps{') denotes the energy con-

sumption to process this packet. We assume that the energy 

consumed to receive and process a pa.cket of each node is the 

same. Equation (3.4) can then be written as: 

i 
(3.5) 

71=1 

where /3 is a constant related to the power consumed to receive 

and process a packet. 

We define Equation (3.5) the path cost of the path £ , de-

noted by uj{ i ). cj( i ) reflects the energy consumption of the 
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communication along the path ~t. We define the node cost of a 

node u {u e V) as the minimum value of the path costs of the 

known possible paths from node u to the sink s. We denote r]{u) 
as the node cost of node u. 7]{u) reflects the known minimum 

energy required to transfer a packet from node u to the sink. 

3.1.2 Transmitter power setting problem for energy-

efficient sensor-to-sink data communications 

Since WSNs are employed to sense and convey the phenomenal 

data, of interest, sensor-tosink traffic dominates the traffic of the 

networks. In typical WSN applications, usually traffic sources 

are a set of sensor nodes responsible for reporting the data of 

some nearby phenomena, of interest and the traffic destination 

is a given sink. 

If no data, fusion/aggregation approaches are employed, the 

sensor-to-sink traffic of the network is simply many-to-one traf-

fic. The transmitter power setting scheme for the network, in 

this case, should aim to minimize the energy consumption of the 

cominimicatioii between an arbitrary node and a given sink. 

If some data, fusion/aggregation approaches are employed, 

without loss of generality, the transmitter power setting scheme 

for the network should still aim to minimize the energy con-

sumption of the cominunication between an arbitrary node and 

the given sink. The reasons are as follows. 

First, in most application scenarios, we could simply consider 

the data, fusion/aggregation center as the single data source that 

is reporting data packet to the sink in the transmitter power 

setting problem. Usually, the data fusion/aggregation center 

should be a. sensor node located near the set of the source sensor 

nodes sensing and reporting the data, on the physical phenom-

enon of interest. We can simply leave the consideration of how 

to report the data to the data fusion/aggregation center. Also, 
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as data fusion/aggregation center consumes more energy than 
the other source sensor nodes, in practical applications, to avoid 
quickly draining the data fusion/aggregation center node, data 
fusion/aggregation center node should be selected in a rotational 
basis. (Details on how to select a data fusion/aggregation center 
and how to report data, to the center are beyond the scope of 
this work.) This means that in a long term point of view, each 
sensor node could be voted as the center node. Therefore, min-
imizing the energy consumption of the communication between 
an arbitrary node to a given sink is desired in this case. 

Second, if we cannot consider the data fusion/aggregation 
center as the single data, source, then for a given set of the source 
nodes, the optimal transmitter power setting problem (i.e., how 
to minimize the total energy consumptions of the sensor-to-sink 
coininuiiications) is very hard to solve. It is a minimum Steiner 
tree problem [26] which is NP-Hai.d. An approximation algo-
r i thm is to minimize the energy consumption of the communi-
cation between each source node to the sink. The packets are 
fused/aggregated only at the nodes in which the paths from the 
source sensor nodes to the sink intersect [35]. In this case, the 
transmitter power setting scheme should still minimize the en-
ergy coiisuinption of the cominunication between an arbitrary 
node to a given sink. 

Based on the above discussion, to save energy consumption 
of the wireless coininuiiications, we do not have to consider how 
to minimize the sum of the energy consumed for the commu-
nication along a path between any arbitrary node pair. What 
we should consider, instead, is how to minimize the energy con-
sumption of the communication between an arbitrary node to 
the sink. This consideration can greatly simplify the transmitter 
power setting problem. We model the transmitter power setting 
problem for energy-efficient sensor-to-sink data, communications 
as follows. 
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Prob l em 1 Given graph G(V, E) and a sink s (s ^V), com-

pute such that in the resulting subgraph G'{V, E'), there 

exists at least one path i [u, s) from each node u (u e V) to the 

sink s and 7]{'ii) is minimized. • 

Denote cost{e) and cost{~^) as the cost functions of edge 
e{u,v) and (e e E, e' e E', and u,v e V), respectively. 
cost{e) and cost{~^) are defined as follows. 

cost{e) = cost[-t) = 7 ( c . (D(u,…广 + p) (3.6) 

W i t h the cost function, the shortest pa.th from each node u 

{u e V) to a given node s in the graph G{V,E) can be found. 
The solution of Problem 1 is simply setting each node's trans-
mit ter power to the value wi th which it can just send packets to 
the downstream node along the shortest path. 

W i t h the information of the physical location of each node, 
D{u,v) in Equation (3.6) can be calculated and thus cost{e) 

can be obtained. Theoretically, the shortest paths can easily be 
found, for example, w i th the Dijkstra, algorithm [25 . 

3.2 Setting Up the Transmitter Power Levels 

for Sensor-to-Sink Traffic 

Al though a theoretical algorithm to set up the transmitter 
power levels for energy-efficient sensor-tosink data, communica-
tions is simply based on the modeling work in Section 3.1, there 
are many practical implementation issues in WSNs that should 
be carefully considered. 

Usually, the scale of WSNs is very large containing hundreds 
to thousands of sensor nodes. In order to obtain high reliability, 
the networks are usually w i th high density, i.e., the number 
of each node's neighbors is large. Moreover, sensor nodes are 
usually deployed in a non-deterministic manner, which means 
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the location of each node is not known a priori I t is therefore 
not feasible for each sensor node to achieve a global picture of 
the network {i.e., graph G(V, E) and the location X(u) of each 
node u in set V )̂ because exchanging the location information 
of every node is very expensive. 

As each of the nodes does not have a global picture of the 
whole network, the shortest paths should be constructed wi th 
only localized information. We have to implement a solution to 
the problem in a completely distributed way, i.e., each node u 

should determine who its downstream neighbor in the shortest 
path is w i t h only localized information. Here a node's localized 
information means the information that can be obtained by a 
node from its one-hop neighbors {i.e., its adjacent nodes in graph 

How to find out the downstream neighbor in the shortest 
path in an energy-efficient way ( ie . , exchange as small number 
of packets as possible) is a challenging implementation issue. We 
analyze and solve this problem in this section. 

3.2.1 BOU: the basic algorithm 

A direct way to set up the transmitter power level is broad-
casting. Broadcasting is performed by setting the power level to 
the maximal value in order to reach all possible one-hop neigh-
bors. We call the broadcast packets which carry the information 
to set up in-network nodes' transmitter power level the config-

uration packets. A configuration packet describes the location, 
the identity, and the node cost ?/ of the node that sends the 
configuration packet. 

The sink first broadcasts a configuration packet. The node 
cost of the sink is obviously set to zero. Upon receiving a con-
f iguration packet, an in-network node may update the node cost 
of itself and broadcast another configuration packet w i th the 
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updated node cost. 
Each node that receives a configuration packet computes its 

own wireless transmitter power setting wi th which i t can reach 
the node where i t receives the configuration packet according 
to Equation (3.3). Then the cost of the edge (the wireless l ink) 
f rom this node to the neighbor is calculated wi th Equation (3.6). 
The sum of the edge cost and the node cost of this neighbor is 
the path cost of the path from the node via this neighbor to 
the sink. I f the node has not received any configuration packet 
before, this path cost is saved as its node cost. Otherwise, this 
path cost is compared w i th the current node cost. I f the current 
node cost is smaller, the packet is simply dropped. Otherwise, 
the node cost is replaced w i th this path cost and this updated 
node cost is encapsulated in a configuration packet together w i th 
the node's location. The node then broadcasts the configuration 
packet. 

I t is straightforward to show that this process wi l l finally 
converge and each node can know the location of its downstream 
neighbor through which the path to the sink is the shortest path. 
This process builds up a spanning tree rooted at the sink that 
in i t ia l ly sends out a configuration packet w i th node cost equal to 
zero. The path from each node to the sink in the spanning tree 
is the shortest path in graph G{V,E) given the cost function 
of each edge e (e e E) described in Equation (3.6). We call 
this approach broadcast on update (BOU) and formulate i t in 
A lgor i thm 1 in Appendix B. 

3.2.2 Packet implosion of BOU: the challenge 

However, as mentioned before, a typical WSN is w i th high 
node density and w i th large number of nodes. In addition, the 
power level needed to cominunicate wi th a neighboring node is 
l inearly related to the n t h power of the physical distance to the 
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neighboring node according to Equation (3.3). The BOU ap-
proach is surely not efficient. A major challenge encountered 
in this distr ibuted implementation is that i t might cause explo-
sive broadcasting in the network. Let us take Figure 3.1 as an 
example. Note that to simplify our discussion, we adopt the 
ideal free space transmission model [51] {i.e., n = 2 in Equation 
(3.6)), and we ignore the energy consumptions of receiving and 
processing a packet at the node inside area (/>, where area is a 
circular area, w i th diameter AC {AC is the segment from node 
A to node C). 

Area (j) 

W ^ / Z S ink S 

Figure 3.1: A scenario of a network 

Suppose node A in Figure 3.1 broadcasts a configuration 
packet. Node B and node C wi l l approximately receive the 
packet at the same time. Normally, the processing time of the 
packet in node B and node C is almost the same. If node B 

and node C both find out that the paths along node A to the 
sink are the current shortest path to the sink, node B and node 
C w i l l broadcast their configuration packets almost at the same 
t ime w i th their node costs. 

In the next step, node C wi l l receive the configuration packet 
f rom node B and notice that the path cost of the path through 
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node B to the sink is lower than that of the path directly through 
A to the sink (because \\ABf + \\BCf < Node C 

thus has to update its node cost computed wi th the node cost 
received from node B. Therefore, node C has to broadcast again 
a configuration packet. 

I f the network is w i th high node density and large scale, sim-
ilar scenarios would cause severe problems. An in-network node 
might have to update its node cost for many times. Broadcast-
ing has to be performed upon each update of the node cost. 
This wi l l cause explosive broadcasting of the network because 
the updated information is propagated in a tree-like manner to 
all upstream nodes of the nodes which have updated their node 
costs and broadcasted their configure packets. 

Such kind of packet explosion should by all means be avoided 
to save the energy spent in configuring the transmitter power 
settings of the in-network nodes. Moreover, work in [38] enlight-
ens us and strengthens our motivation to address this problem. 
In [38], the authors show that an energy hole aroimd the sink is 
very likely to happen if the sink is fixed. We believe one easy 
way to avoid such energy hole is that we change the location of 
a sink frequently in the network area. In this case or in other 
application scenarios, when the location of the sink is not fixed 
dur ing the network lifetime, the process to configure the opti-
mal power setting of each node needs to be started each time 
the location of the sink changes. The efficiency of the implemen-
tat ion of the process therefore becomes a more critical issue. I t 
is very desirable to address the aforementioned packet explosion 
problem. 

One way to avoid the broadcast packet explosion problem is 
for each node to wait for a given period of t ime between the 
update of its node cost and the broadcasting of a configuration 
packet. A n important research issue is therefore to determine 
this wai t ing t ime, which is investigated in the following subsec-
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t ion. 

3.2.3 Determining the waiting time before broadcast-
ing 

The case that a node broadcasts a configure packet for more 
than one times happens only when the node needs to update 
its node cost after the first time it broadcasts a configuration 
packet. The reason of the update is that the node receives an-
other configuration packet from a neighbor, which causes the 
change of its node cost. Therefore, if the waiting time before 
eacli in-network node broadcasts a configuration packet can be 
long enough, the node could have collected the configuration 
packet which indicates the actual shortest path from the node 
to the sink. I t could avoid broadcasting for another time. 

A l l intuit ive solution is that each in-network node waits for 
the same period of time. But unfortunately, this idea does not 
work and the explosion situation stil l exists. For example, in 
the scenario described in Figure 1，node B and node C waits 
for the same t ime after they receive the packet from A. Node 
C w i l l st i l l receive the configuration packet from node B after it 
broadcasts the configuration packet w i th a. node cost based on 
the node cost of node A. Then node C wi l l update its node cost 
and i t has to broadcast another configuration packet wi th the 
updated node cost. 

We propose that the sophisticated waiting time should be 
proport ional to the probability that a node wi l l update the node 
cost in the future. Suppose that a node receives a configuration 
packet announcing a path f, to the sink. I t calculates the path 
cost uj{ E ) of this path. I f uj{ i ) is smaller than the current 
node cost (if the node has not received any configuration packet 
before, the node cost is set to + 0 0 ) ， t h e current node cost is 
updated to uj{ i ). The node should derive the probability that 
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there exists another path to the sink whose path cost 
is lower than uj[ i ), and waits for a period of t ime that is pro-
port ional to this probability. Now the problem left is how to 
calculate this probability. 

A l though a node cannot have a global picture of the net-
work, if the node deployment scheme of the network is known， 

the probabil i ty distr ibut ion of a node's location can be mod-
eled. For example, we can model this distribution as a uniform 
distr ibut ion i f the sensor nodes are deployed randomly in a uni-
fon i i way. Rirthermore, the location X[u) of each node u can 
be regarded as independent and identically distributed random 
variable i f the deployment scheme of each in-network node is 
identical and independent of the others. In our following discus-
sions, we regard X{u) as independent and identically distributed 
random variable w i th probability density function P工[X). 

The problem of computing the probability that a node wi l l 
update the node cost in the future is formulated as follows. 

Prob l em 2 Given 

• A graph G(V, E), a sink s (s e V), and the cost function 

of an edge of the graph described in Equation (S. 6); 

• The probability density function Px{X) of the location of 

each node u (u e V) where X is the possible physical loca-

tion; 

• The deterministic location x of a node m (m eV,m^s) 

and the deterministic location y of the sink s; 

• The cost uj{T) of a path ~t from node m to the sink s; 

Compute the prvbability p that there exists a path 1 from the 

node rn to the sink s other than ~t such that the cost of , 

oj{/), satisfies uj{7) < 
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W i t h the solution of Problem 2, an improvement of BOU is 
to update line 16 of Algor i thm 1 to Algori thm 2. We call this 
improved approach BOU-W {wait before broadcast, on update). 

Here a is a constant whose value can be determined empiri-
cally. 

Now we discuss the solution to Problem 2. Obviously, this 
problem is equivalent to computing the probability that the 
known path £ is not the shortest path from the node rn to 
the sink 6'. Therefore, in order to solve the problem, we should 
know the probabil i ty distr ibution of the node cost of a given 

node. However, i t is very difficult to derive this probability dis-
t r ibu t ion mathematically. But , we can perform Monte Carlo 
method to f ind this probabil ity distribution. We discuss this 
approach in the following example. 

Consider a network that contains 30 sensor nodes and a sink. 
The sensor nodes are deployed uniformly in a 30m x 30m square 
and the sink is at the center of the square. 

We fix the physical distance between one sensor node (de-
noted by node rn) and the sink. This distance is denoted by d. 

Then we randomly generate the locations of the other 29 sensor 
nodes in a. uniform way for h times and thus we get h graphs. For 
each graph, we perform the Di jkstra algorithm to find the short-
est path from node rn to the sink given the edge cost described 
in Equat ion (3.6) and record the node cost ？/(m). Thus we get 
h results of 7/(m). Let each number of series Ni{i = 1, 2,...) be 
the number of results which is in interval (0, i . r ] , where r is a 
constant. Obviously, if h is large enough and r is small enough, 
Ni/h reflects the probabil i ty distr ibution of 77(772). 

We gradually change the distance d w i th a step size equal 
to 6 and perform the above process. In this way, we can get 
the probabil i ty distributions of ？/(m) wi th different distances 
between node rn and the sink. Figure 3.2 shows part of the 
results of the statistical data, in which 5 is 3, h is 10^, and r is 
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5. The probabilities is calculated with Ni/h. 
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Figure 3.2: The estimated probability distribution of node cost 

W i t h the statistical data achieved in the above approach, 
Problem 2 can be solved approximately. For example, when 
uj{ E ) = 105 and the distance \\x - 'y\\ is 13, the probability 
p is 0.82, which is approximately estimated wi th simple linear 
interpolation technique according to the data shown in Figure 
3.2. 

Note that the above approach to achieve the solution of Prob-
lem 2 requires only localized information. The cost (jj{ i ) can 
be calculated as the sum of the node cost of the neighbor from 
which the node receives a configuration packet and the cost of 
edge between the node and the neighbor according to Equation 
(3.6). The location of the sink can be found in the configuration 
packet and the statistical data, can be achieved wi th emulations 
before the sensor nodes are deployed and saved in the memory of 
each sensor node. The complexity to calculate the waiting time 
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is negligible if we employ the statistical estimation approach 
discussed above to solve Problem 2. 

3.2.4 BOU-WA: an approximation approach 

In subsection 3.2.3, we discuss how to determine the wait-
ing t ime before a node broadcasts a configuration packet on the 
update of its node cost. However, the mathematical solution 
of Problem 2 is not easy to be derived. Although Monte Carlo 
method helps to find approximation solutions, when the node 
deployment scheme cannot be well modeled, the statistical data, 
cannot be achieved wi th emulations. Moreover, to obtain high 
accuracy, the above niiinerical solution of the Problem 2 requires 
that T and 6 are small. This means that huge volume of sta-
t ist ical data, should be saved in a sensor node, which might not 
be practical due to the hardware constraint of the sensor node 
implementation [29]. In this subsection, we provide an approxi-
mat ion solution to determine the waiting time. 

Let's st i l l take Figure 3.1 as an example. For simplicity, we 
consider the space is 2-dimensional and we adopt the ideal free 
space transmission model [51] [i.e., n=2 in Equation (3.6)). We 
ignore the energy consumed to receive and process a. packet. 
Note that in actual application case, we can employ a more 
sophisticated model and without loss of generality, the approach 
proposed in our following discussions is stil l applicable. 

We denote {C, as the path from node C via node A 

and some other nodes to the sink S, I f there exists a node B in 
the area, surely the path {C, B, A,S} is shorter than the 
path {C, A,S} because 

{\\X{A) - X{C)\\)' > {\\X{A) - X{B)\\)' 

H\\X{B)-X{C)\\)\ (3.7) 

as node B is w i th in the circular area, wi th diameter AC 
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Note that there may exist another node D outside the area 小 

such that {C, D , S } is shorter than the path {C, 
But we can simply consider the probability that node B exists 
as the probabil i ty that a better pa.th than the path {C, A, 

exists as an approximation, although this probability is smaller 
than the actual probabil ity that a better path than the path 
{C , A, . . . ,5 } exists. 

I f we determine the wait ing time according to this approx-
imat ion probabil i ty {i.e., the probability that node B exists), 
then we are wait ing a. shorter period of time than the BOU-
W scheme. Therefore, the risk that the node wi l l update its 
rout ing inform at ion and broadcast again is larger. In our simu-
lat ion study, we wi l l show that this risk is manageable and the 
approximation works well. 

We name the scheme that adopts the waiting time based on 
this approximation the BOU-WA {BOU-W with approximation) 

scheme. BOU-WA is an improvement of BOU by updating line 
16 of the B O U mechanism described in Algori thm 1 to Algo-
r i thm 3. 

Suppose the deployed node number is k and the deployment 
area, is if. Assume the nodes are deployed uniformly in area. (p. 
The probabil i ty p' that there exists at least one node in area. 0 
is as follow. 

— ( 1 」 ) ( " ， （3.8) 

The complexity to calculate the wait ing time in this scheme 
is negligible as a node only has to solve p' in Equation (3.8). 
Also, this scheme requires no message exchange among sensor 
nodes. As k and (f are known before node deployment, they can 
be prograinii ied into the node beforehand. 0 can be calculated 
according to X [A ) ^ X ( C ) and the cost function described in 
Equat ion (3.6). In this example that adopts the ideal free space 
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transmission model, i t is as follows. 

,|剛—顺||、2 0 = 7r.( ) (3.9) 

Our simulation work in Section 3.3 wi l l compare this approx-
imat ion probabil i ty, i.e., p', and the probability that a better 
path exists, i.e., p, which is obtained wi th the Monte Carlo 
method. How BOU-WA performs wi th different network scales 
wi l l also be investigated. 

3.3 Simulation Results 

We program the BOU scheme and the BOU-WA scheme 
w i t h NS-2 [23] and study the performance of these schemes wi th 
simulations. 

Table 3.1: The setting of the simulation network 

Area of sensor field 100m* 100m 

MAC IEEE 802.11 without 

Protocol CTS/RTS and ACK 

Transmitter Power 0.660W 

Receiver Power 0.395W 

Wireless Communication Model Free Space 

Packet length 36 bytes 

III our simulation work, we first investigate the improvement 

of BOU-WA w i th different values of a (a is used to calculate the 
wai t ing t ime described in Algor i thm 3 in the BOU-WA scheme) 
comparing w i th the BOU scheme in terms of energy consumi> 
t ion overhead to set up the transmitter power level of each in-
network sensor node. The converging times of these schemes 
are also compared. Different network scales (i.e., different node 
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numbers of a network) are adopted in the simulations to show 
the scalability of these schemes. 

To study how the BOU-WA scheme could approach the BOU-
W scheme, we also investigate the differences between the prob-
abi l i ty f / calculated wi th Equation (3.8) and the actual proba-
bi l i ty p estimated w i th the Monte Carlo method. 

Detailed settings of the simulation network are shown in Ta-
ble 4.1. 

3.3.1 The comparisons of BOU and BOU-WA 

In the network described in Table 4.1, we randomly deploy A;+ 
1 nodes in a uni foni i inanner. We randomly select a node as the 
sink node and the other k nodes as the in-network sensor nodes. 
Let the sink node init iate the algoritlinis (i.e., i t broadcasts the 
first configuration packet w i th a node cost equal to zero). We set 
k as 10, 20，30，40，50, 60, 80, 100 and 150. For each setting of A:, 
we set the constant a as 0.05, 0.1, 0.2, 0.4, 0.8 (the waiting time 
before broadcasting is a • p' seconds in the BOU-WA scheme). 
For each setting of k, we run the simulations of the BOU scheme 
for 1000 times and for each setting of k and a, we also run the 
simulations of the BOU-WA scheme for 1000 times. We average 
the results of all the simulation runs in each setting. 

The total number of broadcasts in setting up the transmitter 
power levels and the energy consiiinption overhead of BOU and 
BOU-WA are shown in Figure 3.3 and Figure 3.4. I t can be 
found that BOU-WA greatly improves the BOU scheme, espe-
cially when the number of nodes is large. Moreover, the greater 
a is, the better the BOU-WA scheme performs. But when a is 
large (i.e., a = 0.2, 0.4 or 0.8), different values of a do not have 
much different effects on the energy consumption overhead of 
BOU-WA. 

The counter-effect of BOU-WA comparing to BOU is that 
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Figure 3.3: Total number of broadcasts 

BOU-WA might require larger converging time. The converging 
times of the BOU and BOU-WA are shown in Figure 3.5. These 
simulation results show that the greater a is, the longer the 
converging time of BOU-WA scheme is. Note that when a is less 
than 0.2, BOU-WA has a smaller converging time than BOU. 
This is because the niiinber of broadcasts in BOU-WA is much 
smaller than that that in BOU. As a result, the load of the 
wireless channel is lighter in case that BOU-WA is employed. 
Therefore, if a node wants to send a packet, it waits for less time 
unt i l the channel is free in case that BOU-WA is employed. 

These results show that BOU-WA, with a good parameter a, 
can perform iiiiich better than BOU. 
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3.3.2 The approximation of BOU-WA 

To study the estimation error of in BOU-WA, we employ 
the Monte Carlo method to calculate p. 

In the network described in Table 4.1, we randomly deploy 
k nodes in a uniform manner and we place the sink at the cor-
ner of the square. We then randomly select two nodes in the 
network. One is a node t l iat sends out a configuration packet, 
denoted by node S] and the other is a node that receives the con-
figuration packet, denoted by r. W i th the BOU-WA scheme, p' 

is calculated. We change the locations of the other nodes, ex-
cept the sink, randomly for 10000 times and count the number 
of instances t in which node s is not the adjacent neighbor of 
node r along tlie shortest path from node r to the sink when 
the algorithm converges. /；/10000 is regarded as the probability 
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Figure 3.5: The converging time 

p t l ia t a better path exists than the path { r , ...,sink}. 

We perforin the above process for 10000 times and the dif-
ferences between p' and p are averaged. The average error can 
be regarded as the probabil i ty estimation error of the BOU-WA 
scheme. 

We set k as 10, 20，30, 40, 50, 80 and 100. We achieve the 
estimation error w i th the above method. The results are shown 
in Figure 3.6. 

I t can be seen that, the estimation error is small. Moreover, 
the higher t l ie node number is, the better accuracy the estima-
t io i i achieves. I t is worth to mention that finding a more ac-
curate estimation is not necessary, because the average packet 
i iui i iber that an in-network node should broadcast in the BOU-
W A scheme is already close to the lower bound 1. Figure 3.7 
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shows the average broadcast number of a node when we set 
a = 0.8 in the BOU-WA scheme. The lower bound is 1 be-
cause each node obviously has to broadcast at lease once. This 
means that the room to further improve BOU-WA is already 
very small. 

3.4 Related Work 

Research on many aspects of energy-efficient sensor-to-sink 
data, coininiuiication has been conducted in the literature. In the 
work on data, routing, directed diffusion [30] introduces the data-
centric notion. I t proposes that sensor-to-sink packets could be 
pre-processed at in-network nodes with data, fusion and data 
aggregation techniques in order to reduce the total number of 
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Figure 3.7: The average number of broadcasts by each node 

packets needed to convey the event information. Many other 
data cominunication schemes for WSNs have been proposed 
8，17, 24, 58, 60], all of which are striving to achieve energy 

efficiency, while inaintaining other properties of the comrnimi-
catioii such as reliability or information fidelity. [1] is a good 
survey of these research issues. 

I l l addition, traffic congestion wil l cause high packet loss 
rates, which result in low energy efficiency. To this end, mech-
anisms for detecting and even avoiding congestion have been 
studied [54, 69]. In our recent work [79]，we propose that the 
source reporting rates should be determined by the communi-
cation cost (which could be implemented to reflect the wireless 
coiniimiiication conditions) and the importance of each source 
node (the metric that reflects how much information the source 
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could provide on the event of interest) so that the communica-
t ion scheme can effectively avoid congestion and provide reliable 
data, transport. 

The problem of broadcast storm has been extensively studied 
in mult i -hop wireless networks. A series of solutions {e.g., [66]) 
have been proposed to mitigate the storm. However, their focus 
is on how to efficiently send a packet to every node in a network 
wi thout much duplication. In our work, we reduce the number 
of broadcasts which is performed by each node to report its 
node cost to its one-hop neighbors for setting up energy-efficient 
pat lis. 

3.5 Conclusion Remarks and Future Work 

This chapter has examined the problem of transmitter power 
control for energy-efficient sensor-to-sink communications. We 
have modeled this problem based on the network and applica.-
t ion features of WSNs. An intuit ive implementation to solve this 
problem, namely BOU, has been presented. We have identified 
the broadcast explosion problem in BOU, and then improved 
B O U by allowing a wait ing period before each broadcasting. 
We have shown that the waiting time should be proportional to 
the probabil i ty tlia.t a node would find a more energy-efficient 
path to the sink, and presented an efficient approximation al-
gor i t l i in to calculate the probability. Simulations have been de-
signed to evaluate B O U and BOU-WA. The results have vali-
dated the effectiveness of BOU-WA; specifically, it can set up 
energy-efficient paths for sensor-tosink traffic wi th low overhead 
in a reasonable converging time. 

There are many possible future directions for this work. We 
are part icular interested in integrating our algorithm wi th ex-
ist ing (lata, fusion/aggregation schemes. We also interested in 
practical implementations, and we expect more issues can be 
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identified in this process. 

• End of chapter. 
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Chapter 4 

Solving the Sensor-Grouping 
Problem 

Summary 

We propose l, a novel index for evaluation of point-
distr ibution. L is the minimum distance between each 
pair of points normalized by the average distance be-
tween each pair of points. We find that a set of points 
that achieve a maximum value of l result in a hon-
eycomb structure. We propose that l can serve as a 
good index to evaluate the distribution of the points, 
which can be employed in coverage-related problems 
i l l wireless sensor networks (WSNs). To validate this 
idea, we formulate a general sensor-grouping problem for 
WSNs and provide a general sensing model. We show 
that； locally maximizing l at sensor nodes is a good ap-
proach to solve this problem wi th an algorithm called 
Maximizing-f. Node-Deduction (MIND). Simulation re-
sults verify that M I N D outperforms a greedy algorithm 
that exploits sensor-redundancy we design. This demon-
strates a good application of employing l in coverage-
related problems for WSNs. This chapter is based on 
tl ie work presented in [80]. 
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4.1 Introduction 

I n many application scenarios, WSNs are employed to conduct 
surveillance tasks in adverse, or even worse, in hostile working 
environments. One major problem caused is that sensor nodes 
are subjected to failures. Therefore, fault tolerance of a WSN is 
crit ical. 

One way to achieve fault tolerance is that a WSN should con-
ta in a large number of redundant nodes in order to tolerate node 
failures. I t is v i ta l to provide a mechanism that redundant nodes 
can be working in sleeping mode ( ie . ’ major power-consuming 
units such as the transceiver of a redundant sensor node can 
be shut off) to save energy, and thus to prolong the network 
lifetime. Redundancy should be exploited as much as possible 
for the set of sensors that are currently taking charge in the 
surveillance work of the network area. [13:. 

We find that the minimum distance between each pair of 
points nonnalized by the average distance between each pair of 
points serves as a good index to evaluate the distribution of the 
points. We call this index, denoted by l, the normalized mini-

mum distance. I f points are moveable, we find that maximizing 
L results i l l a honeycomb structure. The honeycomb structure 
poses that the coverage efficiency is the best if each point repre-
sents a sensor node that is providing surveillance work. Employ-
ing L i l l coverage-related problems is thus deemed promising. 

This enlightens us that maximizing l is a good approach to 
select a set of sensors that are currently taking charge in the 
surveillance work of the network area. To explore the effective-
ness of employing i in coverage-related problems, we formulate a 
sensor-grouping problem for high-redundancy WSNs. An algo-
r i t hm called Maximizing-i Node-Deduction (MIND) is proposed 
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in which redundant sensor nodes are removed to obtain a large l 

for each set of sensors that are currently taking charge in the sur-
veillance work of the network area. We also introduce another 
greedy solution called Incremental Cover^age Quality Algorithm 

( ICQA) for this problem, which serves as a benchmark to eval-
uate M IND. 

The main contr ibution of this work is twofold. First, we in-
troduce a novel index l for evaluation of point-distribution. We 
show that maximizing l of a WSN results in low redundancy of 
the network. Second, we formulate a general sensor-grouping 
problem for WSNs and provide a general sensing model. W i t h 
the M I N D algorithm we show that locally maximizing l among 
each sensor node and its neighbors is a good approach to solve 
this problem. This demonstrates a good application of employ-
ing i in coverage-related problems. 

The rest of this chapter is organized as follows. In Section 4.2, 
we introduce our point-distr ibution index l. We survey related 
work and formulate a sensor-grouping problem together w i th a 
general sensing model in Section 4.3. Section 4.4 investigates the 
application of l in this grouping problem. We propose M IND for 
this problem and introduce ICQA as a benchmark. In Section 
4.5, we present our simulation results in which MIND and ICQA 
are compared. Section 4.6 provides conclusion remarks. 

4.2 The Normalized Minimum Distance i： A 

Point-Distribution Index 

Suppose there are n points in a Euclidean space Q. The 
coordinates of these points are denoted by Xi (i = 1,…，n). 

I t may be necessary to evaluate how the distribution of these 
points is. There are many metrics to achieve this goal. For 
example, the Mean Square Error from these points to their mean 
value can be employed to calculate how these points deviate from 
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their mean (i.e., their central). In resource-sharing evaluation, 
the Global Fairness Index (GFI) is often employed to measure 
how even the resource distributes among these points [31], when 
Xi represents the amount of resource that belong to point i. In 
WSNs, G F I is usually used to calculate how even the remaining 
energy of sensor nodes is. 

When n is larger than 2 and the points do not all overlap 
(That points all overlap means = :rj, V i, j 二 …,n). We 
propose a novel index called the normalized minimum distance, 

namely i , to evaluate the distribution of the points, l is the 
in in i inum distance between each pair of points normalized by 
the average distance between each pair of points. I t is calculated 
by: 

, = = 口 , , , 几 肌 財 j ) ( 4 . 1 ) 
/ i 

where - Xj\\ denotes the Euclidean distance between point 
i and point j in Vt, the min(-) function calculates the minimum 
distance between each pair of points, and / i is the average dis-
tance between each pair of points, which is: 

” = 卢 丨 丨 工 广 工 川 ) (4.2) 

n(n — 1) 

L measures how well the points separate from one another. 
Obviously, i is in interval [0，1]. l is equal to 1 if and only if n is 
equal to 3 and these three points forms an equilateral triangle, l 

is equal to zero i f any two points overlap. is a very interesting 
value of a set of points. I f we consider each Xi (Vz 二 1,."，?2) 
is a variable in Q, how these n points would look like if i is 
maximized? 

A n algori thm is implemented to generate the topology in 
which i is locally maximized (The algorithm is presented in Al-
gor i thm 4 in Appendix B). We consider a 2-dimensioiial space. 
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We select n 二 10, 20，30,…，100 and perform this algorithm. In 
order to avoid that the algorithm converge to local optimum, 
we select different random seeds to generate the init ial points 
for 1000 time and obtain the best one that results in the largest 
L when the algorithm converges. Figure 4.1 demonstrates what 
the resulting topology looks like when n = 20 as an example. 
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Figure 4.1: Node Number = 20, l = 0.435376 

Suppose each point represents a sensor node. If the sensor 
coverage model is the Boolean coverage model [65, 73, 75, 76 
and tlie coverage radius of each node is the same. I t is exciting to 
see that this topology results in lowest redundancy because the 
Vonoroi diagram [6] formed by these nodes (A Vonoroi diagram 
formed by a set of nodes partitions a space into a set of convex 
polygons such that points inside a polygon are closest to only 
one particular node) is a honeycomb-like structure [34] ̂ . 

^This is how base stations of a wireless cellular network are deployed and why such a 

network is called a cellular one. 



CHAPTER 4. SOLVING THE SENSOR-GROUPING PROBLEM 77 

This enlightens us that l may be employed to solve problems 
related to sensor-coverage of an area. In WSNs, it is desirable 
that the active sensor nodes that are performing surveillance 
task should separate from one another. Under the constraint 
that the sensing area should be covered, the more each node 
separates from the others, the less the redundancy of the cover-
age is. L indicates the quality of such separation. It should be 
useful for approaches on sensor-coverage related problems. 

I l l our following discussions, we wil l show the effectiveness of 
employing l in sensor-grouping problem. 

4.3 The Sensor-Grouping Problem 

In many application scenarios, to achieve fault tolerance, a 
WSN contains a large number of redundant nodes in order to 
tolerate node failures. A node sleeping-working schedule scheme 
is therefore highly desired to exploit the redundancy of working 
sensors and let as many nodes as possible sleep. 

Much work in the literature is on this issue [13]. Yan et al in-
troduced a differentiated service in which a sensor node finds out 
its responsible working duration with cooperation of its neigh-
bors to ensure the coverage of sampled points [75]. Ye et al 

developed PEAS in which sensor nodes wake up randomly over 
t ime, probe their neighboring nodes, and decide whether they 
should begin to take charge of surveillance work [76]. Xing et 

al exploited a probabilistic distributed detection model with a 
protocol called Coordinating Grid (Co-Grid) [72]. Wang et al 

designed an approach called Coverage Configuration Protocol 
(CCP) which introduced the notion that the coverage degree of 
intersection-points of the neighboring nodes' sensing-perimeters 
indicates the coverage of a convex region [70, 73]. In the recent 
work of our groiip[16], Chen et al also provided a sleeping con-
figuration protocol, namely SSCP, in which sleeping eligibility of 
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a sensor node is determined by a local Voronoi diagram. SSCP 
can provide different levels of redundancy to maintain different 
requirements of fault tolerance. 

The major feature of the aforementioned protocols is that 
they employ online distributed and localized algorithms in which 
a sensor node determines its sleeping eligibility and/or sleeping 
t ime based on the coverage requirement of its sensing area, wi th 
some information provided by its neighbors. 

Another major approach for sensor node sleeping-working 
scheduling issue is to group sensor nodes. Sensor nodes in a 
network are divided into several disjoint sets. Each set of sensor 
nodes are able to maintain the required area surveillance work. 
The sensor nodes are scheduled according to which set they be-
long to. These sets work successively. Only one set of sensor 
nodes work at any time. We call the issue sens or-grouping prob-

lem. 

The major advantage of this approach is that i t avoids the 
overhead caused by the processes of coordination of sensor nodes 
to make decision on whether a sensor node is a candidate to sleep 
or work and how long i t should sleep or work. Such processes 
should be performed from time to time during the lifetime of 
a network in many online distributed and localized algorithms. 
The large overhead caused by such processes is the main draw-
back of the online distributed and localized algorithms. On the 
contrary, roughly speaking, this approach groups sensor nodes 
in one t ime and schedules when each set of sensor nodes should 
be on duty. I t does not require frequent decision-making on 
working/sleeping eligibil i ty 

In [61] by Slijepcevic et al, the sensing area is divided into 
regions. Sensor nodes are grouped wi th the most-constrained 
least-constraining algorithm. I t is a greedy algorithm in which 

"Note that if some nodes die, a re-grouping process might also be performed to exploit 

the remaining nodes in a set of sensor nodes. How to provide this mechanism is beyond 

the scope of this work and yet to be explored. 
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the pr ior i ty of selecting a given sensor is determined by how 
many uncovered regions this sensor covers and the redundancy 
caused by this sensor. In [11] by Cardei et al, disjoint sensor 
sets are modeled as disjoint dominating sets. Although maxi-
mum doininat ing sets computation is NP-complete, the authors 
proposed a. graph-coloring based algorithm. Cardei et al also 
studied similar problem in the domain of covering target points 
in [10]. The NP-completeness of the problem is proved and a 
heuristic that computes the sets are proposed. These algorithms 
are centralized solutions of sensor-grouping problem. 

However, global information {e.g., the location of each in-
network sensor node) of a large scale WSN is also very expen-
sive to obtained online. Also it is usually infeasible to obtain 
such information before sensor nodes are deployed. For exam-
ple, sensor nodes are usually deployed in a random manner and 
the location of each in-network sensor node is determined only 
after a node is deployed. 

The solution of sensor-grouping problem should only base 
on locally obtainable information of a sensor node. That is to 
say, nodes should determine which group they should join in a 
ful ly distr ibuted way. Here locally obtainable information refers 
to a node's local information and the information that can be 
directly obtained from its adjacent nodes, i.e., nodes wi th in its 
coinnii inication range. 

In Subsection 4.3.1, we provide a general problem formulation 
of the sensor-grouping problem. Distributed-solution require-
ment is formulated in this problem. I t is followed by discussion 
in Subsection 4.3.2 on a general sensing model, which serves as 
a given condit ion of the sensor-grouping problem formulation. 

To facil i tate our discussions, the notations in our following 
discussions are described as follows. 

• n\ The number in-network sensor nodes. 

• S[j) [j = 1, 2, .. . ,m): The j t h set of sensor nodes where m 
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is the imniber of sets. 

• jC⑷{i 二 1,2,…’ n): The physical location of node i. 

• (jr. The area monitored by the network: i.e., the sensing 
area, of the network. 

• R: The sensing radius of a sensor node. We assume that a 
sensor node can only be responsible to monitor a circular 
area centered at the node wi th a radius equal to R. This is 
a usual assumption in work that addresses sensor-coverage 
related problems. We call this circular area the sensing area 

of a node. 

4.3.1 Problem Formulation 

We assume that each sensor node can know its approximate 
physical location. The approximate location information is ob-
tainable if each sensor node carries a GPS receiver or if some 
localization algorithms are employed (e.g., [9]). 

P r o b l e m 3 Given: 

• The set of each sensor node i，s sensing neighbors J\f{i) and 

the location of each member in J\f{i); 

• A sensing model which quantitatively describes how a point 

P in area cj) is covered by sensor nodes that are responsible 

to monitor this point. We call this quantity the coverage 
quali ty of 1). 

• The coverage quality requii^ement in cj), denoted by s. When 

the coverage of a point is larger than this threshold, we say 

this point is covered. 

For each sensor node i, make a decision on which group S{j) it 

should join so that: 

• Ai'ea (j) can be covered by sensor nodes in each set S{j) 
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• m, the number' of sets S{j) is maximized. • 

In this formulation, we call sensor nodes within a circular 
area centered at a sensor node i w i th a radius equal to 2 • R the 
sensing neighbors of node i. This is because sensors nodes in 
this area, together w i th node z, may be cooperative to ensure 
the coverage of a point inside node i,s sensing area. 

We assume t l ia t the communication range of a sensor node is 
larger than 2- /?., which is also a general assumption in work that 
addresses sensor-coverage related problems. That is to say, the 
first given condit ion in Problem 3 is the information that can be 
obtained directly from a node's adjacent nodes. I t is therefore 
locally obtainable information. The last two given conditions in 
this problem fonnnlat ion can be programmed into a node before 
i t is deployed or by a. node-programming protocol {e.g., [36, 46]) 
dur ing network runtime. Therefore, the given conditions can 
all be easily obtained by a sensor-grouping scheme wi th fully 
distr ibuted implementation. 

We reify this problem wi th a realistic sensing model in next 
subsection. 

4.3.2 A General Sensing Model 

As WSNs are usually employed to monitor possible events in 
a given area, i t is therefore a design requirement that an event 
occurring in the network area must/may be successfully detected 
by sensors. 

This issue is usually formulated as how to ensure that an 
event signal omitted in an arbitrary point in the network area 
can be detected by sensor nodes. Obviously, a sensing model 

is required to address this problem so that how a point in the 
network area is covered can be modeled and quantified. Thus 
the coverage quali ty of a WSN can be evaluated. 
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Different applications of WSNs employ different types of sen-
sors, which surely have widely different theoretical and physical 
characteristics. Therefore, to fulf i l l different application require-
ments, different sensing models should be constructed based on 
the characteristics of the sensors employed. 

A simple theoretical sensing model is the Boolean sensing 

model [65, 73, 75, 76]. Boolean sensing model assumes that a 
sensor node can always detect an event occurring in its respon-
sible sensing area. But most sensors detect events according to 
the signal strength sensed. Event signals usually fade in relation 
to the physical distance between an event and the sensor. The 
larger the distance, the weaker the event signals that can be 
sensed by the sensor, which results in a reduction of the proba-
b i l i ty that the event can be successfully detected by the sensor. 

As i l l WSNs, event signals are usually electromagnetic, acoustic, 
or photic signals, they fade exponentially w i th the increasing of 
their t ransmit distance. Specifically, the signal strength 8{d) of 
ail event that is received by a sensor node satisfies: 

m = J (4.3) 

where d is the physical distance from the event to the sensor 
node; Q is related to the signal strength omitted by the event; 
and p is signal fading factor which is typically a positive number 
larger than or equal to 2. Usually, a and (3 are considered as 
constants. 

Based on this notion, to be more reasonable, researchers pro-
pose collaborative sensing model to capture application require-
ments: Area, coverage can be maintained by a set of collaborative 

sensor nodes: For a point w i th physical location L, the point is 
considered covered by the collaboration of i sensors (denoted 
by A；!,…，ki) i f and only if the following two equations holds 
16, 39，43]. 
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y； = l,...,z； \\C{kj)-L\\ < R. (4.4) 
i 

C{L) = J2i^{\\C{kj)-L\\)>s. (4.5) 

C{L) is regarded as the coverage quality of location L in the 
network area [16，39, 43 . 

However, we notice that defining the sensibility as the sum of 
the sensed signal strength by each collaborative sensor implies 
a very special application: Applications must employ the sum 
of t l ie signal strength to achieve decision-making. To capture 
generally realistic application requirement, we modify the defi-
n i t ion described in Equation (4,5). The model we adopt in this 
work is described in details as follows. 

We consider the probability k.j) that an event located at 
L can be detected by sensor k.j is related to the signal strength 
sensed by k.j. Formally, 

哪 = 侧 = （4.6) 

where 7 is a constant and 8 — 70； is a constant too. e normalizes 
the distance to a proper scale and the “+1” item is to avoid 
inf inite value of kj). 

The probabil i ty that an event located at L can be detected 
by any collaborative sensors that satisfied Equation (4.4) is: 

i 

r\L) = 1-1[{1-V{L,kj)). (4.7) 
•7=1 

As the detection probability V^{L) reasonably determines 
how an event occurring at location L can be detected by the 
networks, i t is a good measure of the coverage quality of loca.-
t ion L i l l a, WSN. Specifically, Equation (4.5) is modified to: 

C[L) = V\L) 



CHAPTER 4. SOLVING THE SENSOR-GROUPING PROBLEM 84 

= — ( 剛 二 I I A + i ) 一 _ 

To sum it up, we consider a point at location L is covered if 
Equat ion (4.4) and (4.8) hold. 

4.4 Maximizing-/. Node-Deduction Algorithm 

for Sensor-Grouping Problem 

Before we process to introduce algorithms to solve the sensor 
grouping problem, let us define the margin (denoted by 0) of an 
area. 0 monitored by the network as the band-like marginal area 
of (j) and all the points on the outer perimeter of <9 is p distance 
away from all the points on the inner perimeter of 0. p is called 
the margin length. 

In a practical network, sensor nodes are usually evenly de-
ployed i l l the network area. Obviously, the number of sensor 
nodes that can sense an event occurring in the margin of the 
network is smaller than the number of sensor nodes that can 
sense an event occurring in other area of the network. Based 
on this consideration, in our algorithm design, we ensure the 
coverage qual i ty of the network area, except the margin. The in-
format ion on (j) and p is network-based. Each in-network sensor 
node can be pre-programmed or on-line informed about 小 and 
p, and thus calculate whether a point in its sensing area is in 
the margin or not. 

4.4.1 Maximizing-^ Node-Deduction Algorithm 

The node-deduction process of our Maximizing-/. Node-
Deduct ion Algor i thm (MIND) is simple. A node i greedily max-
imizes L of the sub-network composed by itself, its urigrouped 
sensing neighbors, and the neighbors that are in the same group 
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of itself. Under the constraint that the coverage quality of its 
sensing area, should be ensured, node i deletes nodes in this sub-
network one by one. The candidate to be pruned satisfies that: 

• I t is an ungrouped node. 

• The deletion of the node wil l not result in uncovered-points 
inside the sensing area of i. 

A candidate is deleted if the deletion of the candidate results 
i l l largest i of the sub-network compared to the deletion of other 
candidates. This node-deduction process continues unti l no can-
didate can be found. Then all the ungrouped sensing neighbors 
that are not deleted are grouped into the same group of node i. 

We call the sensing neighbors that are in the same group of node 
i the group sensing neighbors of node i. We then call node i a 
finished node, meaning that i t has finished the above procedure 
and the sensing area of the node is covered. Those nodes that 
have not yet finished this procedure are called unfinished nodes. 

The above procedure initiates at a random-selected node that 
is not i l l the margin. The node is grouped to the first group. I t 
calculates the resulting group sensing neighbors of it based on 
the above procedure. I t informs these group sensing neighbors 
that they are selected in the group. Then it hands over the 
above procedure to an unfinished group sensing neighbors that 
is the farthest from itself. This group sensing neighbor continues 
this procedure unt i l no unfinished neighbor can be found. Then 
the first group is formed. 

Af ter a group is formed, another random-selected ungrouped 
node begins to group itself to the second group and initiates the 
above procedure. In this way, groups are formed one by one. 
When a node that involves in this algorithm found out that the 
coverage qual i ty i f its sensing area, except what overlaps the 
network margin, cannot be ensured even if all its ungrouped 
sensing neighbors are grouped into the same group as itself, the 
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algori thm stops. M I N D is based on locally obtainable informa-
t ion of sensor nodes. I t is a distributed algorithm that serves as 
an approximation solution of Problem 3. 

4.4.2 Incremental Coverage Quality Algorithm: A Bench-

mark for M IND 

To evaluate the effectiveness of introducing l in the sensor-
group problem, another algorithm for sensor-group problem called 
Incremental Coverage Quality Algorithm (ICQA) is designed. 
Our aim is to evaluate how an idea, i.e., MIND, based on lo-
cally maximize u performs. 

In ICQA, a node-selecting process is as follows. A node 
i greedily selects an imgrouped sensing neighbor in the same 
group as itself one by one, and informs the neighbor it is se-
lected in the group. The criterion is: 

• The selected neighbor is responsible to provide surveillance 
work for some uncovered parts of node i's sensing area, (j.e., 

the coverage quality requirement of the parts is not fulfilled 
i f this neighbor is not selected.) 

• The selected neighbor results in highest improvement of the 
coverage quality of the neighbor's sensing area. 

The improvement of the coverage quality, mathematically, 
should be the integral of the the improvements of all points 
inside the neighbor's sensing area. A numerical approximation 
is employed to calculate this improvement. Details are presented 
in our simulation study. 

This node-selecting process continues unti l the sensing area 
of node i is entirely covered. In this way, node Vs group sens-

ing neighbors are found. The above procedure is handed over 
as what M I N D does and new groups are thus formed one by 
one. And the condit ion that ICQA stops is the same as MIND. 



CHAPTER 4. SOLVING THE SENSOR-GROUPING PROBLEM 87 

ICQA is also based on locally obtainable information of sensor 
nodes. ICQA is also a. distributed algorithm that serves as an 
approximation solution of Problem 3. 

4.5 Simulation Results 

Table 4.1: The settings of the simulation networks 

Area of sensor field 400m*400m 

p 20m 

R 80m 

g, (3、7 and t 1.0, 2.0’ 1.0 and 100.0 

s ^ 

To evaluate the effectiveness of employing l in sensor-
grouping problem, we build simulation surveillance networks. 
We employ M I N D and ICQA to group the in-network sensor 
nodes. We compare the grouping results with respect to how 
111 any groups both algorithms find and how the performance of 
the resulting groups are. 

Detailed settings of the simulation networks are shown in 
Table 4.1. In simulation networks, sensor nodes are randomly 
deployed in a imiform manner in the network area. 

For evaluating the coverage quality of the sensing area of a 
node, we divide the sensing area of a node into several regions 
and regard the coverage quality of the central point in each re-
gion as a representative of the coverage quality of the region. 
This is a iiiunerical approximation. Larger number of such re-
gions results in better approximation. As sensor nodes are with 
low computational capacity, there is a tradeoff between the num-
ber of such regions and the precision of the resulting coverage 
quali ty of the sensing area, of a node. In our simulation study, 
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we set this number 12. For evaluating the improvement of cov-
erage quality in ICQA, we sum up all the improvements at each 
region-center as the total improvement. 

50「 

45- Z 牵 
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O 25-

1 0 -

ICQA 
5 - -*- MMNP 
0 ' L- I 1 
500 1000 1500 2000 

Total in-network node number 

Figure 4.2: The number of groups found by MIND and ICQA 

4.5.1 Number of Groups Formed by MIND and ICQA 

We set the total in-network node number to different values 
and let the networks perform MIND and ICQA. For each n, 

simulations run wi th several random seeds to generate different 
networks. Results are averaged. Figure 4.2 shows the group 
numbers found in networks wi th different n,s. 

We can see that M IND always outperforms ICQA in terms of 
the number of groups formed. Obviously, the larger the number 
of groups can be formed, the more the redundancy of each group 
is exploited. This output shows that an approach like MIND 
that aim to maximize t of the resulting topology can exploits 
redundancy well. 
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Table 4.2: The grouping results of five networks with n = 1500 

Net MIND ICQA MIND ICQA 

Group Number Group Number Average i Average l 

1 M 31 0.1455140.031702 

2 33 30 0.145036 0.036649 

3 33 31 0.156483 0.033578 

4 32 31 0.152671 0.029030 

5 33 32 0.146560 0.033109 

As an example, in case that n = 1500, the results of five 
networks are listed in Table 4.2. 

The difference between the average l of the groups in each 
network shows that groups formed by MIND result in topolo-
gies w i t h larger l's. I t demonstrates that l is good indicator of 
redundancy in different networks. 

4.5.2 The Performance of the Resulting Groups 

Al though M I N D forms more groups than ICQA does, which 
implies longer l ifetime of the networks, another importance con-
sideration is how these groups formed by MIND and ICQA per-
form. We let 10000 events randomly occur in the network area 
except the margin. We compare liow many events happen at the 
locations where the quality is less than the requirement s = 0.6 
when each resulting group is conducting surveillance work (We 
call the number of such events the failure number of group). 
Figure 4.3 shows the average failure numbers of the resulting 
groups when different node numbers are set. 

We can see that the groups formed by M IND outperform 
those formed by ICQA because the groups formed by MIND 
result in lower failure numbers. This further demonstrates that 
M I N D is a good approach for sensor-grouping problem. 



CHAPTER 4. SOLVING THE SENSOR-GROUPING PROBLEM 90 

6 0 � 

5。-

4 0 -

1 \ . 、 . 、 

3 3 0 - 、.来 

8) . 、 • 、 一 • 一 一 . * . 、 z*".、. 
2 * - 一 \ Z 、、 
CD 20 - 、. , z * 
> V 
CD * 

1 0 -

- e - ICQA “ 
M M N P 

〇! 1 1 I 
5 0 0 1000 1500 2 0 0 0 

Total in-network node number 

Figure 4.3: The failure numbers of MIND and ICQA 

4.6 Conclusion 

This chapter proposes l, a novel index for evaluation of point-
distribution. i is the minimum distance between each pair of 
points normalized by the average distance between each pair of 
points. We find that a set of points that achieve a maximum 
value of i result in a honeycomb structure. We propose tha.t 
L can serve as a good index to evaluate the distribution of the 
points, which can be employed in cover age-related problems in 
wireless sensor networks (WSNs). We set out to validate this 
idea by employing “ o a sensor-grouping problem. We formu-
late a general sensor-grouping problem for WSNs and provide a 
general sensing model. W i t h an algorithm called Maximizing-/. 
Node-Deduction (MIND), we show that maximizing l at sen-
sor nodes is a good approach to solve this problem. Simulation 
results verify that MIND outperforms a greedy algorithm that 
exploits sensor-redundancy we design in terms of the number 
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and the performance of the groups formed. This demonstrates 
a good application of employing t in coverage-related problems. 

• End of chapter. 



Chapter 5 

Conclusion 

In the recent decade, advances in Micro Electro-Mechanical 
Systems (MEMS) have made in-situ sensing with wireless sensor 
networks (WSNs) a promising technique. As wireless integrated 
network sensors are powered with a small battery and they usu-
ally work i l l an unattended manner, the main constraint of a 
sensor node is that its energy resource is limited. 

To enable in-situ sensing, sensor nodes and WSNs should 
function in an energy-efficient manner. Energy optimization 
techniques must be performed in every level of the design of 
a sensor network system. The work described in this thesis in-
vestigates various aspects of power saving approaches to achieve 
energy-efficient and reliable WSNs. Energy optimization tech-
niques on networking issues in the literatures are classified into 
the following five categories. 

• Route data, packets via energy-efficient path, i.e., route 
data packets so that the energy required for the data trans-
port is minimized. 

• Exploit the redundancy of data packets through some tech-
niques such as in-network data, aggregation or data fusion, 
and source reporting rate control. 

• Adjust the transmitter power level of a sensor node to let 

92 
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i t communicate with its intended receivers in an energy-
efficient way. 

• Avoid useless packets, i.e., minimize protocol overheads. 

• Schedule the in-network sensor nodes so that they can work 
in sleep mode to save energy when they are not required to 
perform sensing tasks or communication tasks. 

We first study routing issues and data transportation issues. 
A WSN is usually employed to conduct one or a few specific 
tasks; i.e., only one or a few specific applications are running at 
sensor nodes. Strict layering is not necessary in WSN because 
applications of a network are always deterministic before the net-
work is set up. Based on the features of WSNs, we discard the 
common layering network-protocol principle by coupling data 
transport protocol and applications: let the applications solve 
an optimization problem and feed back required reporting rates 
of sources. Based on this consideration, we propose PORT, a 
Price-Oriented Reliable Transport protocol for wireless sensor 
networks to reliably and energy-efficiently convey sensor infor-
mation to the sink. Under the constraint that the sink must ob-
tain reliable information on the phenomenon of interest, PORT 
minimizes the energy consumptions using two schemes. One 
is based on the sink's application-based optimization approach 
that feeds back the optimal reporting rate of each source ac-
cording to the contribution of the sources and the energy con-
sumption of the sensor-to-sink communication from each source 
to the sink. The other is a locally optimal routing scheme for 
in-network nodes according to feedback of downstream commu-
nication conditions. The communication-condition estimation is 
based on an estimation of link-loss rate along the sensor-to-sink 
traffic path. PORT can obtain the sensor-to-sink communica-
t ion condition such as congestion and weak links which cause 
packet loss, and thus it adapts well to network dynamics caused 
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by these factors. We code PORT on the NS-2 network sim-
ulation tool. Simulation results in an application case study 
demonstrate that PORT is an effective transport protocol for 
reducing energy consumption comparing to existing schemes. 
Thus, i t can prolong the life time and reliability of wireless sen-
sor networks. This work falls into class 1，2，4 in the above 
classification. 

I l l our second work, we examine the problem of transmit-
ter power control for energy-efficient sensor-to-sink communica-
tions. We model this problem based on the network and applica-
t ion features of WSNs. An intuitive implementation to solve this 
problem, namely BOU, is presented. We identify the broadcast 
explosion problem in BOU, and then improve BOU by allowing a 
wait ing period before each broadcasting. We show that the wait-
ing time should be proportional to the probability that a node 
would find a more energy-efficient path to the sink, and present 
an efficient approximation algorithm to calculate the probabil-
ity. Simulations are designed to evaluate BOU and BOU-WA. 
The results validate the effectiveness of BOU-WA; specifically, 
i t can set up energy-efficient paths for sensor-to-sink traffic wi th 
low overhead in a reasonable converging time. This work falls 
into class 2，3 and 4 of the above classification. 

In the last work presented in this thesis, we propose l, a novel 
index for evaluation of point-distribution, i is the minimum dis-
tance between each pair of points normalized by the average dis-
tance between each pair of points. We find that a set of points 
that achieve a maximum value of l result in a honeycomb struc-
ture. We propose that l can serve as a good index to evaluate the 
distr ibution of the points, which can be employed in coverage-
related problems in wireless sensor networks (WSNs). We set 
out to validate this idea by employing l to a sensor-grouping 
problem. We formulate a general sensor-grouping problem for 
WSNs and provide a general sensing model. W i th an algo-
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i.ithm called Maximizing-Node-Deduction (MIND), we show 
that maximizing l at sensor nodes is a good approach to solve 
this problem. Simulation results verify that MIND outperforms 
a greedy algorithm that exploits sensor-redundancy we design in 
terms of the number and the performance of the groups formed. 
This demonstrates a good application of employing l in coverage-
related problems. This work falls into class 5 of the above clas-
sification. 

In conclusion, this thesis studies various energy-efficient ap-
proaches to achieve reliable and energy-efficient wireless sensor 
networks. Simulation studies demonstrate the effectiveness of 
these approaches. In future work, we are particularly interested 
in approaches which fall into the first of the above classification. 

• End of chapter. 
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Algo r i t hm 1 BOU: The basic algorithm 

1： input X 

/ * X is this node's physical location.*/ 

2: J] <= +00 
/*77 is the node cost of this node.*/ 

3� downstream-neighbor NULL 

downstream,-neighbor is the neighboring node to which this node sends 

sensor-to-sink data packets.*/ 

4: Pr <=0 

/ *P r is the power level setting with which the node sends sensor-to-sink 

data packets.*/ 

5： loop 

6： Wait until receiving a configuration packet 

7： Y <= The location information obtained from the configuration packet 

8： n̂eighbor <= The iiode cost information obtained from the configuration 

packet 

9� Pr' <= The power level calculated with Equation (3.3) 

10: U <= •}]neighbor + COSt(e) 

/*cost(e) is the cost of the edge from this node to the neighbor calcu-

lated with Equation (3.6).*/ 

11： if cj < 7/ then 

12: U 

1 3 � Pr Pr' 

14： downstream-neighbor 4= the neighbor that has sent the configura-

tion packet 

15� Create a configuration packet with the node cost the location X 

and the identity of this node 

16： Broadcast this configuration packet 

17： end if 

18： end loop 

A l go r i t hm 2 The broadcast scheme in BOU-W 

1： If there is another configuration packet which is scheduled to be broad-

casted, cancel it. 

2: Calculate the probability p that there exists another path to the sink of 

which the path cost is smaller than u 

3 � T = a- p 
4: Schedule that the configuration packet will be broadcasted in T seconds. 
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A l g o r i t h m 3 The broadcast scheme in BOU-WA 

1： If there is another configuration packet which is scheduled to be broad-

casted, cancel it. 

2: Calculate the probability p' that there exists a node u such that the path 

cost of the path from this node to the sink, immediately via the node u 

and then immediately via the one that sends this node the configuration 

packet, is smaller than u 

3 � T = a- p' 
4: Schedule that the configuration packet will be broadcasted in T seconds. 
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A l g o r i t h m 4 An algorithm to find out optimal point-distribution so that \ 

is maximized 

1： input 71, 6 and 丁 

/ * e is a small value which indicates the threshold of the improvement 

of each step of this greedy algorithm. If the improvement is less than e, 

this algorithm stops, r is a small value which is the step size by which 

the points move towards a better x'. £ is a small 2-D random vector. */ 

2: for i = 1 to n do 

3： :ri a random variable (2-D vector) 

4: end for 

5: X = 0 

6： repea t 

7: Xo = X 

8： Calculate the distance between each node-pair 

9： /i the average of the distances 

10： Find m and 7i, the distance between them is the shortest one among 

all the distances 

11： ！乂 <= this shortest distance 

12: X = t 
13: '^trnp — ^m 

r — r 4- 工 . r 丄4. - Xrn 十 丁 

15� Update II 

16： Update /乂 

17: XI-；； 

18: 7̂/1 二 ̂ 'tmp 
19: '-Xirnp — ^n 

20: Xn = Xn + “:-二| • T 
21： Update fi 

22: Update V 

23： X2 = fi 

24： if ,\；2 < X\ t h en 

25： Xn — ^trnp 

26: Xrn = Xm + 二-二丨• 丁 

27： end if 

28： un t i l X - Xo < e 
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