
Convergent Surrogate-constraint
Dynamic Programming

WANG Qing

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Philosophy

in

Systems Engineering and Engineering Management

© T h e Chinese University of Hong Kong

August 2006

The Chinese University of Hong Kong holds the copyright of this thesis. Any

person (s) intending to use a part or whole of the materials in the thesis in a

proposed publication must seek copyright release from the dean of the Graduate

School.

Thesis/Assessment Committee

Professor Z H O U Xunyu (Chair)
Professor L I Duan (Thesis Supervisor)

Professor FENG Youy i (Committee Member)
Professor Liao L izh i (External Examiner)

Acknowledgement

I would like to express my sincere thanks to my supervisor, Professor Duan

Li, for his precious advice and patient guidance throughout my studies and in

wri t ing this thesis.

I am also thankful to Professor Lizhi Liao for serving as the External Ex-

aminer of my thesis and to Professor XunYu Zhou and Professor Youyi Feng for

serving as members of my thesis committee.

I am grateful to all my fellow students, specially to Jianjun Gao and Chiinli

Liu, for valuable discussion and sharing.

Finally, I would like to thank my parents for their constant love and sup-

port. I am presenting this thesis wi th my thanks to the department of Systems En-

gineering and Engineering Management, The Chinese University of Hong Kong,

where I've spent six years learn, live, and grow.

Abstract

Dynamic programming, one of the powerful solution methodologies for

separable optimization problems, suffers heavily from the notorious "curse of

dimensionality", which prevents a direct application of dynamic programming

when a large number of constraints are present. This thesis studies mult iply

constrained nonlinear separable integer programming problems and develops two

convergent dual search algorithms for the surrogate constraint formulation of the

primal problem in the sense that an exact solution of the primal problem is iden-

tified. Combined wi th these two convergent dual search algorithms wi th dynamic

programming, two novel solution schemes termed convergent surrogate constraint

dynamic programming are proposed. Numerical testing problems demonstrate

some promising computational results of the two new schemes.

K e y w o r d s : separable integer programming, dynamic programming, surrogate

constraint method, objective level cut, domain cut, convergent dual search.

i

摘要

动态规划，作为解可分离优化问题的有用解法之一，受到所谓“维数祸

害”的强烈限制，使其无法直接求解约束式数量多的问题。本论文研究了多维

可分离非线性整数规划问题，并提出了基于原问题迭代约束式上的两种对偶搜

寻总法。综合此两种对偶搜寻算法所提出的动态规划方法被称作收敛性迭代约

束动态规划。仿真测试给出了一些证实这两种新算法效用的数据。

ii

Contents

1 Introduction 1
1.1 Literature survey 2

1.2 Research carried out in this thesis 4

2 Conventional Dynamic Programming 7
2.1 Principle of optimality and decomposition 7

2.2 Backward dynamic programming 12

2.3 Forward dynamic programming 15

2.4 Curse of dimensionality 19

2.5 Singly constrained case 21

3 Surrogate Constraint Formulation 24
3.1 Conventional surrogate constraint formulation 24

3.2 Surrogate dual search 26

3.3 Nonlinear surrogate constraint formulation 30

4 Convergent Surrogate Constraint Dynamic Programming: Ob-
jective Level Cut 38

5 Convergent Surrogate Constraint Dynamic Programming: Do-

iii

main Cut 44

6 Computational Results and Analysis 60
6.1 Sample problems 61

7 Conclusions 卯

iv

List of Tables
2.1 Solution process for Example 2.1 using backward dynamic pro-

gramming 17

2.2 Solution process for Example 2.1 using forward dynamic program-

ming 18

2.3 Dynamic programming table for Example 2.2 23

6.1 Comparison of the number of state iterations 67

ix

List of Figures
2.1 Shortest path example 8

2.2 Cost-to-go at the last stage 10

2.3 Cost-to-go at the stage next to the last 10

2.4 Cost-to-go at A 11

2.5 Recursive solution procedure for problem (P) using dynamic pro-

gramming 13

3.1 Surrogate constraints in the constraint space of Example 5.1. . . . 32

3.2 p-norm surrogate constraints in the constraint space wi th j j , =

(0.4,0.6)^ and 6 = (3 , 2) ^ 34

3.3 p-norm surrogate constraints in the constraint space of Example

5.1 w i th / i = (0.6316,0.3684)^ 37

5.1 Feasible region in the x-space 46

5.2 Feasible region in the ； -̂space 47

5.3 Feasible half-space resulted from the surrogate constraint method

wi th ii' ' = (0,1)^ 48

5.4 Domain cut in the 1st iteration 49

5.5 Domain cut when f is concave 50

5.6 Domain cut when f is convex and quadratic 51

vi

5.7 Domain cut when f is concave and quadratic 52

5.8 Domain cut when f is monotone 53

5.9 Domain cut when a convex 贝 is violated 54

5.10 Domain cut when gi is convex and quadratic 55

5.11 Domain cut when 识 is concave and quadratic 56

5.12 Domain cut when gi is monotone 57

5.13 Part i t ion o i A \ B 59

11
Vl l

Chapter 1

Introduction
This thesis studies the following general class of multiply constrained separable

integer programming problems:

n

(P) min f i x) = J 2 f j M

n

s.t. gi{x) = y ^ g i j j x j) < hi, z = 1 , . . .
j= i

a; e X 二 X ；(：2 X … X A：们

where f j and gi/s are defined on R, and all X/s are finite integer sets in R.

Let g(x) = (gi(x),g2(x),...,g,n(x)f and b = (61,62, • • •, ^m)^- Problem (P)

covers very general situations of nonlinear integer programming problems as no

additional property such as convexity, concavity, monotonicity or differentiability

is assumed in (P).

Without doubt, dynamic programming pioneered by Richard Bellman in

1950's is definitely one of the powerful solution methodologies for separable op-

timization problems by invoking the decomposition scheme based on the funda-

mental principle of optimality. Dynamic programming, however, suffers heavily

1

from the notorious "curse of dimensionality", which prevents a direct application

of dynamic programming when a large number of constraints are present.

1.1 Literature survey
The past four decades have witnessed tremendous efforts in the literature in alle-

viating the "curse of dimensionality" in dynamic programming. We first review

some promising research results reported in the previous years before we propose

ours.

Reference [14] deals wi th a discrete-time deterministic optimal control

problem. Under the conventional dynamic programming, each state variable

Xi, i = 1,2, ...,n, is quantized to Ni levels. At each stage /c, for each given

quantized value of state vector x , the optimal control u is identified and the

corresponding minimum cost-to-go is obtained. Therefore, the computational

time or storage requirements at each stage is a function of the total number of

quantized states, which is Ylf^iNi, an exponential function of n. The "curse of

dimensionality" exhibits and prevents a direct application of dynamic program-

ming to large-scale problems. A successive computational procedure is proposed

in [14]. A nominal trajectory of state x and control u is specified first. One of

the n state variables is selected while the others are held fixed. The optimization

is performed and a new trajectory is obtained. Then, a different state variable is

selected and the procedure repeats so that each of the state variables is selected

at least once. Therefore, the original n-dimensional problem is transformed into

a sequence of one dimensional problems, making the computational requirements

increase linearly rather than exponentially as wi th the standard computation

method. The "curse of dimensionality" is mitigated. However, this method may

2

be trapped in a local minimum.

Reference [15] studies finite dynamic programming. Based on Bellman's

principle of optimality, the following recursive relationship is established,

j^in {r((n’;j/)’cOo/(n — l,T((n，y)’GO)}, n = l’2’...’7V，
deD{{n,y))

with boundary condition

f { 0 , y) = K{0,y).

Before establishing the dynamic programming equations, the state space is parti-

tioned into /V + 1 state spaces, n (0)，...，However , when the dimensionality

M of the state space Q.{n) is high, the computational requirements in solving the

dynamic programming equations would become excessive such that the "curse of

dimensionality" exhibits. The first equation in the above recursive relationship

becomes a minimum convolution by assuming that all maxima are attained:

f{jhy、= mm Wniz) o f { n - I,y - z)}.
zeZ{n,y)

By studying the properties of this maximum convolution equation, [15] derives

the following recurrence relation:

Fn C {Rn u Fn-i U [Rn 田 F^i-i)}，n = 1，2’...’ iV,

where F^, and Rn are sets of points of discontinuity of the functions / (n , •),

/ (n — 1, •) and rn(-) respectively. Note that these functions are all step functions.

W i th the help of the above recurrence equation, there is no longer a need to solve

the M-dimensional (state space) dynamic programming problem. Instead, we

only need to focus on the imbedded state space F^, which can be constructed

recursively from Rn and and whose elements in RnLiFn- i or R n ® F n - i can

3

be eliminated. The solution procedure corresponds to a one-dimensional (state

space) problem. Therefore, the "curse of dimensionality" is mitigated.

Reference [16] studies an optimal stochastic control problem for a class

of discrete event systems based on a preventive replacement model. This system

may be modelled as a Markovian decision process wi th a state-dependent discount

factor. This problem may be tackled by discretizing the time, state, and action

space, and then be solved using the standard solution procedure of a discrete

Markovian decision process. However, the "curse of dimensionality" would occur

wi th the discretization. Therefore, a different approach is adopted in [16]. Un-

der certain assumptions, a value iteration method is adopted and approximation

techniques are used to compute the value function at each iteration. A seven-step

algorithm is proposed for the approximate computation of the optimal cost-to-go

function.

Reference [13] develops the so-called differential dynamic programming

(DDP) to overcome the curse of dimensionality. DDP is essentially a second-order

method that successively improves the control sequence based on the principle of

optimality. The advantage of DDP over traditional dynamic programming is that

i t does not require discretization of the state space, thus avoiding the curse of

dimensionality. However, convergence issues may arise and paper [17] addresses

the convergence issues of differential dynamic programming (DDP).

1.2 Research carried out in this thesis
The state-of-the-art in alleviating the curse of dimensionality is far below satis-

faction. We suggest in this thesis a new way to tackle the curse of dimensionality

in dynamic programming. Especially, we integrate the surrogate constraint for-

4

mulation wi th dynamic programming and propose two convergent dual search

methods to guarantee identification of an optimal solution of the primal problem.

The surrogate constraint method aggregates multiple constraints into one

surrogate constraint, thus forming a relaxation of the primal problem. The singly-

constrained relaxation problem resulted from applying the surrogate constraint

method can be efficiently solved by dynamic programming. Solving the surrogate

formulation does not always yield an optimal solution of the primal problem. In

other words, there is no guarantee of the nonexistence of a duality gap between

the primal and the dual formulations.

This thesis develops two convergent dual search algorithms for the surro-

gate constraint formulation which offer an optimal solution of the primal problem.

Combined wi th these two convergent dual search algorithms, the proposed dy-

namic programming method is termed convergent surrogate constraint dynamic

programming.

The first convergent surrogate constraint dynamic programming method

incorporates a second constraint into the surrogate constraint formulation to force

a lower bounding for the objective function. By raising the lower bound succes-

sively each time after the resulting bi-constraint relaxation problem is solved by

dynamic programming, this solution process iterates and is guaranteed to con-

verge to an optimal solution of the primal problem.

The second convergent surrogate constraint dynamic programming method

integrates a domain cut procedure to remove certain unpromising sub-boxes out

from further consideration. By reducing successively the enlarged portion in the

feasible region of the surrogate constraint formulation wi th respect to the feasible

region of the primal problem, the duality gap is forced to shrink. Dynamic pro-

5

gramming is used to solve the singly-constrained surrogate formulation in each

remaining sub-domain after the domain cut within a branch-aiid-bound frame-

work.

The efficiency of the two proposed algorithms have been tested in sev-

eral numerical testing problems and promising computation results have been

observed.

6

Chapter 2
Conventional Dynamic
Programming
Dynamic programming has been widely used in solving separable integer pro-

gramming problems. The separability of both the objective function f and con-

straint functions 识，s makes dynamic programming method an ideal technique

to solve (P). A key assumption for an efficient implementation of the dynamic

programming method for (P) is the integrality of 巩/s.

Assumption 2.1 Function gtj is integer-valued, for all j = 1 , . . . , n and i 二 1,
. . .m.

2.1 Principle of optimality and decomposition
The cornerstone behind dynamic programming is the so-called principle of op-

t imal i ty which is invented by Richard Bellman in 1950’s. To understand the

principle of optimality, let us first examine an example of seeking the shortest

path. Refer to Figure 2.1 in which A is the starting position. The number next

7

A « ？ 參 5 • ？ p G

Figure 2.1: Shortest path example

to each arrow represents the distance in miles between two locations. Our goal is

to reach destination G as soon as possible by finding out the shortest path from

A to G. To achieve this goal, we might compare all the possible paths and then

select the shortest one. In this small-size example, there are only six possible

paths and this enumeration scheme is workable. But i t becomes infeasible when

we face a large-scale problem.

For this example problem, the shortest path from A to G passes through

C and E. We claim that the path from C to G through E is the shortest distance

to G start ing from C. Otherwise, we may find another shorter path from C to

G and combining i t w i th the path from A to C generates an improvement of the

path A-C-E-G. This is a contradiction.

The principle of opt imal i ty rests on this observation and is stated in the

words of Richard Bellman, its inventor, as follows:

A n opt imal policy has the property that whatever the in i t ia l state and

8

in i t ia l decision are, the remaining decisions must constitute an optimal

policy w i th regard to the state resulting from the first decision.

I f the remaining decisions at an intermediate state didn't constitute an optimal

policy w i th respect to the given state, the entire policy cannot be optimal.

The principle of optimality embeds a problem to find the shortest path

from A to G to a family of problems to find the shortest path to G from every

intermediate point, including the starting point. Although i t seems on the surface

that the workload of the calculation could increase tremendously, the essence of

the principle of optimali ty essentially leads to a powerful decomposition w i th a

significant reduction in computation.

Let's come back to our shortest path problem and discuss a backward

version of dynamic programming. We start from the last stage before reaching

destination G (Stage 3). See Figure 2.2. A t both E and F, there is no choice of

decision. Thus the minimum distance to G from E and F (termed cost-to-go) are

2 and 3，respectively, and are recorded next to E and F, respectively.

Next we move back to the stage next to the last (Stage 2) to calculate the

min imum distance to G from B, C and D. See Figure 2.3. In carrying out the

calculation, only the immediate distance between stages 2 and 3 and the cost-to-

go information at stage 3 are needed. The cost-to-go (minimum distance to G)

is recorded in a small circle next to B, C and D, respectively, and the optimal

paths going out from B, C and D are colored wi th yellow.

Finally, we move back to the starting point A. See Figure 2.4. In finding

out the minimum distance from A to G, we only need to require knowledge

of the immediate distance between A and points in stage 2 and the cost-to-

go information at stage 2，since cost-to-go at stage 2 aggregates all essential

9

3 6 ' 0 2 i A拳——t——•——-_U«——f mG I

Wl
Figure 2.2: Cost-to-go at the last stage

w
Figure 2.3: Cost-to-go at the stage next to the last

10

IF
Figure 2.4: Cost-to-go at A

in format ion related to the shortest paths f rom stage 2 to the destination. The

opt imal pa th going out f rom A is colored w i th red.

To apply dynamic programming to (P) , we first introduce a stage variable

k, 0 < k < n, and a state vector at stage k, Sk G satisfying the fol lowing

recursive equation:

Sk+i = Sk + gk(Xk), /c == 1 ’ . . •，n - 1, (2.1)

w i t h an in i t ia l condit ion Si = 0，where

= tofc(a^fc),... ’ 9mk(xk)V.

Since the constraints are integer-valued, we only need to consider integer points

in the state space. Furthermore, the feasible region of the state vector at stage k

w i t h 2 < /c < n + 1 can be confined as follows:

Sk< Sk< Sk,

11

where

H t l min^e^ft QuM

S k = '： , (2.2)

_ mina^^gx,, 9mt{xt) _

and

maXx,6Xt guM^bi - miUxtGXt 9 i t (x t) }

h = \ . (2.3)

_ max,;,6Xt 9mt{xt)^ bm - Ylt=k min^^ex,. g m t { x t) } _

The shortest path problem has a one-to-one correspondence to problem

(P) studied in this thesis. The locations in the shortest path problem corre-

spond to the possible values of the state variable and the paths at given locations

correspond to the decisions for given states, the distance between the locations

corresponds to the immediate cost, and the shortest distance to the destination

corresponds to the optimal cost-to-go. Therefore, problem (P) can be interpreted

as finding the optimal path with the minimum total cost starting from the init ial

state. More specifically, recursive relationship can be developed based on the

principle of optimality to decompose problem (P) into a family of single-stage

optimization problems. Figure 2.5 gives a visualization of this view.

Dynamic programming can be applied to solve problem (P) either by a

backward recursion or by a forward recursion.

2.2 Backward dynamic programming
For a. given state s at stage k, 1 < k <n, define the cost-to-go function as follows,

n

his) = m m J 2 f j { x j) ,
j=k

12

Calculating the
optimal cost-to-go
at stage k

r — — — — — — — — 1
I Sk Sk+\ I

Calculating the
optimal cost-to-go
at stage k -1

r 1
I Sk-l Sk I

1%
I I

Figure 2.5: Recursive solution procedure for problem (P) using dynamic pro-

gramming

13

n

s.t. < b,
j=k

Xj € X j , j 二 k,... ,n.

I t is obvious that

v{P) = h{0).

Based on Bellman's principle of optimality, the cost-to-go function satisfies the

following backward recursive relation for /c = n - 1, n — 2, . . 1，

ik{s) = m m {fk{xk) + 4+1(5 +

wi th boundary condition

in{s) = m i n {fn{xn) I + < b}.

Define

= arg m i n {fn{xn) | s + < b},

o^lis) = arg min { fk{xk) + 1(5 + g'^ixk))}, A； 二 n - 1’...，1.
ifcSAfc

The backward dynamic programming starts at A; = n and moves backwards, k =

n — 1, . . .，1. I t calculates the cost-to-go recursively for every s at stage k between

Sf, and Sk and finally stops at si = 0. The tracing process is then carried out

in a forward way to identify the optimal solution of (P). Starting from a;*(0),

the opt imal state at stage 2 is obtained as 二 g^{xl{0)). The algorithm then

identifies the optimal solution at stage 2, 办 认 which yields the optimal state

at stage 3, sg 二 + g^{x2{s2))- The process terminates when i t reaches s* and

finds out

14

2.3 Forward dynamic programming
For a given state s at stage /c, 2 < /c < n + 1, define the cost-to-accumiilate

function as follows,

fc-i
tk{s) = m m ^ f j { x j) ,

j=i
fc-i

s.t. Ylg^Xj) <5,

Xj E Xj, j — — 1.

I t is obvious that

v{P) = m i n { t „ + i (5) I s S 6}.

Based on Bellman's principle of optimality, the cost-to-acciimulate function sat-

isfies the following forward recursive relation for /c 二 3, . . . n + 1,

ik{s) = mill {fk-\(xk-\) + 4-1 (5 - {xk-i))],

wi th boundary condition

2̂(5) = mill {/i(a:i) I < s).
xiGXi

Define

x*i{s) 二 arg min {/i(:ci)丨夕工⑷ < s} ’ rcieXi
4-1(5) = arg min { f k - i { x k - i) + h-i{s 一 /"Hâ fc-i))},

hj —— 2, . , . ’ 77/ 1.

The forward dynamic programming starts at /c 二 2 and moves forward, /c 二 3,

• •.’ n + 1. I t calculates the cost-to-accumulate recursively for every s at stage k

between 5；. and Sk and finally stops at stage n + 1. Let

Sn+l = 8iigmm{in+i{s) I <5 S

15

The tracing process is then carried out in a backward way to identify the optimal

solution of (P). Starting from the optimal state at stage n is obtained

as = — The algorithm then identifies the optimal solution

at stage n, which yields the optimal state at stage n — 1, = s* —

The process terminates when it reaches and finds out 0:1(52).

Example 2.1

m i n f { x) = —3xi + 5x2 + 82:3

s.t. gi{x) = —2x\ — 0：2 + ^ —3,

g2{x) = a：! + 0：2 + < 2,

a: € { - 1 , 0 , 1 } , z = 1,2,3.

The optimal solution is x* = (1,0, -1)了 wi th f{x*) = - 6 .

Using the formulas in (2.2) and (2.3), the feasible regions of the state

vector can be found as follows for fc = 2, 3, and 4,

- 2 1 r m i n { 0 , - l }
< S2 < ,

—1 m in { l , 3}

- 3] r m i n { l , - 2 }
< 53 < ,

- 2 min{2,2}

- 4 1 \ min{2, - 3 }
< S4 < •

- 2 min{3,2}

Table 2.1 gives the solution processes using backward dynamic program-

ming.

The solution process using backward dynamic programming starts from

stage 3. For each possible 53, the optimal decision 0:3(53) is found and the corre-

sponding optimal cost-to-go £3(53) is recorded. For example, at S3 = (—2, —1)^,

16

Table 2.1: Solution process for Example 2.1 using backward dynamic program-

ming.

Si x l { s i) / i i { s i) S2 X l { s 2) / i 2 { s 2) S3 o o l j s s) / h j s s)

(0 ’ 0 r 1 / - 6 (- 2 , - 1) ^ 0 / - 3 (- 3 , - 2 f - 1 / - 3

(- 2 ’ O f 0 / - 3 (- 3 , - 1) 7 _ i / _ 3

(- 2 , I f 0 / - 3 (- 3 , O f - 1 / - 3

(- 1 , - 1 广 1/2 (—3’ I f - 1 / - 3

(- l , O f 1/2 (- 3 , 2) ^ 0/0

(_1 ’1)T infeasible/00 (_ 2 , - 2 f - 1 / - 3

(- 2 , - I f - 1 / - 3

(- 2 , O f - 1 / - 3

(- 2 , I f - 1 / - 3

(- 2 ’ 2广 infeasible/oo

both = 0 and 0:3 = 1 are infeasible. The optimal decision —2’一1广）is

found to be - 1 and the corresponding 一1广)is - 3 . I f there does not exist

a feasible solution at S3’ 0:3(53) is set as 00. Then, we move back to stage 2. A t

each possible S2, we compare /2(0；2) + #3(52 + ^^(2:2)) for X2 二 一1, 0 and 1 and

find out and the corresponding optimal cost-to-go £2(52)- For example, at

52 = (- 2 , O f , comparison of 5 (- l) 2 + 4 ((- l , - i f) 二 oo, 5(0)2+f3((-2’ 0) 了）=

- 3 ’ and 5 (l) 2+£3 ((—3 ’ i r) = 2 yields a;拟-2，0)了）= 0 and (〜((一之’。)了）= - 3 .

Finally, we move back to stage 1. Checking f i (x i) + fe((0’ 0广 + 分 1(3:1)) for Xi =

- 1 , 0 and 1 gives a:;[(si = (0’0)了）= 1 and t i (s i = (0,0)了）= —6. Tracing back,

we find the optimal solution for the example problem:工1 = 1，：C2 二 0 and 0:3 =

- 1 .

17

Next we examine how the forward dynamic programming is used to solve

Example 2.1. Table 2.2 summarizes the solution process.

Table 2.2: Solution process for Example 2.1 using forward dynamic programming.

52 x\{s2)/i2{S2) g3 /kls^) S4 Xl{s4)/U(s^)

{ - 2 , - I f - 1 / 3 (- 3 ’ - 2 广 infeasible/oo (—4 ’ -2广 infeasible/oo

(- 2 , 0) ^ - 1 / 3 (- 3 , - 1) ^ infeasible/oo (- 4 , - 1) ^ infeasible/oo

(一 2 ’1 广 1 / - 3 (- 3 , 0广 1/8 (- 4 , O f infeasible/oo

(- 1 , - i r - 1 / 3 (- 3 , 1 广 1/8 (- 4 , I f - 1 / 5

(- 1 , 0) ^ 一 1/3 (- 3 , 2 f 1/2 (—4’ 2广 - 1 / 5

(- l ’ l) r 1 / - 3 (—2，—2广 infeasible/oo (- 3 , - 2) ^ infeasible/oo

(- 2 , - 1) ^ 0/3 (_3 ’—1 广 infeasible/oo

(- 2 ’ 0) r 0/3 (- 3 , O f 0/3

(- 2 ’ I f 0 / - 3 (—3’ I f - 1 / 0

(-2,2)^ 1/2 (-3’2产 - 1 / - 6

The solution process using forward dynamic programming starts from

stage 2 and ends at stage 4. Minimizing U wi th respect to S4 < (-3’2)了 finds

out the opt imal value of the example problem &((—3’ 2)7’）二 —6. Tracing back

identifies opt imal solution: x'^ = —1, 0：2 = 0 and a:* = 1.

Determining the feasible region could become a tedious task in applying

dynamic programming. This difficulty can be alleviated to certain degree when

the following assumption is satisfied.

Assumption 2.2 For all j = 1 , . . . ,n and i = ... m, function gij is integer-

valued and is nonnegative for all Xj e X j .

When Assumption 2.2 is satisfied, the range of Sk at stage k, for k = 2, 3，

. . n , n + 1, can be simply determined by [(0,.,.，0)^, (61, . . . , bm)'^]-

18

If the nonnegativity assumption does not hold for some 恥，then we can

subtract mmx^eXj g i j (x j) from both Qij and bi at the same time. Repeating

this equivalent transformation for all 恥，s that do not possess the nonnegativ-

i ty property such that Assumption 2.2 holds for the transformed problem. The

range of {sk)i at stage k for /c = 2, 3, . . n , n + 1 can be then given by

- 9 i j] , where h = { j = l ’ . . . ’ n | min^^-ex,- Qij < 0}. The

price to perform such a transformation is an enlargement of the feasible region

of the state space which affects an efficient implementation of dynamic program-

ming.

2.4 Curse of dimensionality
I t is evident that the number of the possible states increases exponentially wi th

respect to the number of constraints. Thus, although dynamic programming is

conceptually an ideal solution scheme for separable integer programming, the

“curse of dimensionality" prevents its direct application to mult iply constrained

cases of (P) when m is large.

Consider another problem wi th 3 variables and 5 constraints:

min f { x) = 2x1 + 3x2 一 2x1

s.t. gi{x) = xl - X2 - X3 <0,

92{X) 二 3xi +X2 + X3 < - 1 ,

gs{x) = - x l - 2 x 2 + 2 x l < 0 ,

94{X) = - x l - x l - x l < - 1 ,

gb{oc) = x l - 2x2 - 3x3 < 3,

X iG { - 1 , 0 , 1 } , i = l ,2 ,3 ,4 ,5 .

19

Using the formulas in (2.2) and (2.3), the feasible regions of the state

vector can be found as follows for /c = 2 and 3，

0 m i n { l , 2 }

—3 min{3 ,1}

- 1 < 52 < m m { 0 , 4 } ,

- 1 m i n { 0 ’ l }

- 1 min{l，8}

- 1 m i n { 2 ’ l }

- 4 mil l {4 ,0}

一3 < S3 < m i n { 2 , 2 } .

- 2 min{0,0}

—3 min{3,6}

I f backward dynamic programming is applied, there are total ly 2 x 5 x

2 X 2 x3 = 120 S2 states and 3 x 5 x 6 x 3 x 7 = 1890 53 states. Prom this

calculation, we see that the number of possible states increases exponentially w i th

respect to the number of constraints. Therefore, when m is large, the computa-

t ional efforts for x l {sk) and ik{sk) as well as the storage requirements for these

calculated amounts become excessive. Generally, when we are solving a problem,

our objective is to obtain the solution or the approximate solution, and to obtain

i t in reasonable amount of t ime and wi th reasonable uti l ization of computer re-

source. However, w i th dynamic programming being the solution technique, as the

number, or otherwise the dimension, of the state variables increase, the compu-

tat ional and storage requirements grow rapidly beyond the handling of the most

up-to-date computer device. This prohibits the direct application of the dynamic

programming technique to problems when the dimension of the state variables

is relatively high or the number of the state variables is relatively large. This

20

phenomenon is known in literature as the "curse of dimensionality".

Dynamic programming, however, remains as an efficient solution scheme

for separable integer programming problems when m is small, especially for singly

constrained cases.

2.5 Singly constrained case
Consider the singly constrained case of (P):

n

{Pi) mil l f { x) : = Y ^ M x j)

n

s.t. g(x) = ^ ^
j = i

X e X = Xi X X2 X • • • X Xn,

where X j = { x j £ X \ I j < Xj < Uj} wi th I j and Uj being integers. We assume

g j {x j) > 0 on X j for all j = 1 ’ . . . ’ n.

For adopting backward dynamic programming, the cost-to-go function is

defined first as follows,

n

4(s) = mil l / j f e) '
j=k

n

S . t . S + y ^ P j (^ j) < 6 ,

j=k
Xj e X j , j 二

for A; = 1 , . . . , n — 1, 5 = 0 , . . . , 6. The backward recursive equation is

ik{s) = min{ fk{xk) + 4+1(5 + gk{xk))}

s.t. s + gk{xk) < b,

21

for A; = n — 1 , . . . , 1, 5 = 0 , . . . , 6, wi th boundary conditions

ik(s) = +00， for s < 0, A; = 1 , . . .

in{s) = min{/n(2;„) | S + gn(Xn) < b, = + •^n}，

s = 0,... ,b.

For adopting forward dynamic programming, we define the following cost-

to-accumulate function,

fc-i
h i s) =

j=i fc-i
s - t . ^ Q j i X j) < 5 ,

Xj € X j , j 二 1，... ’ A; — 1.

The forward recursive equation is

ik{s) 二 min{/fc(:cfc) + 4-1(5 - gk{xk))}

s.t. gk{xk) < s,

工k = k , k + 1，. • •, Wfc,

for A; = 3 , . . . , n, 5 = 0 , . . . , 6, w i th boundary conditions

i j { s) = + 0 0 , for s < 0, J = 1 , . . . , n,

？2(5) = m i n { / i (; r i) I " i (: r i) “ rci = Z i “ i + 1’...，wi}，

s = 0,... ,b.

The dynamic programming table has a size of n x (6 + 1).

22

Example 2.2

mil l f { x) = - 2 ^ - 2x2 - x l - (ll2)xl

s.t. g{x) = 3a;i — x\ + X2 x1 + x^ < 5,

a; e

The opt imal solution is = (0,2，1，2广 w i th f (x *) 二 —9.

Table 2.3 shows the process of the forward dynamic programming for this

example, where Wk(s) = s - gk{xl{s)).

Table 2.3: Dynamic programming table for Example 2.2.

s Us)/x\{s) U{s)/xl{s)/w2{s) U(s)/xl{s)/w;{s) k{s)/xl{s)/w,{s)

0 0/0 0/0/0 0/0/0 0/0/0

1 0/0 -2/1/0 -2/0/1 -2/0/1

2 -2 .8284/2 - 4 / 2 / 0 - 4 / 0 / 2 - 4 / 2 / 0

3 -2 .8284/2 一 4 . 8 2 8 4 / 1 / 2 - 5 / 1 / 2 - 6 / 2 / 1

4 -2 .8284/2 -6 .8284/2 /2 -6 .8284/0 /4 - 8 / 2 / 2

5 -2 .8284/2 -6 .8284/1 /2 —7.8284/1/4 —9/2/3

Thus ^5(5) is the optimal value and the optimal solution can be obtained

by backtracking out through the table:

= 2,X*2 = 2 = ^ s l - 仍 O r ;) 二 0

=0,3：； =0.

Therefore the opt imal solution is x* = (0,2’ 1,2)^.

23

Chapter 3

Surrogate Constraint
Formulation

3.1 Conventional surrogate constraint formula-
tion

The surrogate constraint formulation has been widely used in solving integer

programming problems. More specifically, the surrogate constraint formulation

is formed by aggregating multiple constraints into a single surrogate constraint,

(P,) mi l l f i x)

s.t. "了("(‘T) - 6) < 0,

a; € X ,

where f j , = (/ j , i , . . . , f i rnV ^ is a vector of surrogate multipliers, g(x)=

(f f i (x) , . . . , gm⑷)T and b = (61,... Define S(/j,) to be the feasible region

of decision vectors in (P^),

S V) = { X G X I (3.1)

24

Clearly, compared to the feasible region of decision vectors in the primal problem,

二 {o: e 9{x) - 6 < 0 } ,

the following relationship holds for any / i G IR̂ Ĵ

S C S i f i) .

Denote by v{Q) the optimal value of an optimization problem (Q). Since, for any

G 1R+, S{n) is an enlargement of the feasible set of the primal problem, the

following weak surrogate duality is evident,

v{P^) < v{P). V / i e R!^

Surrogate constraint formulation (P^) wi th a parameter j i is called a relaxation

of the primal problem (F) since 'u(P^) < v{P) holds for all possible values of /i.

In other words, solving a relaxation problem offers a lower bound of the optimal

value of the primal problem. The dual problem is formulated to search for an

optimal parameter, fi*, such that the duality gap of v{P) — v{P^) is minimized at

= fi*. The quality of a relaxation should be thus judged by two measures. The

first measure is how easier the relaxation problem can be solved when compared

wi th the primal problem. The second measure is how tight the lower bound can

be, in other words, how small the duality gap can be reduced to.

Note that surrogate constraint formulation (P^) is a singly constrained

separable integer programming problem which can be efficiently solved by dy-

namic programming.

The surrogate dual is an optimization problem in /i,

{Ds) max v(P^)

s.t. II 6 R+.

25

Consequently, based on the weak surrogate duality, the surrogate dual provides

a best lower bound for v{P) from solving (P^),

v{Ds)<v{P).

When a solution in the surrogate constraint formulation achieves an op-

t imal i ty in the primal, we say that strong surrogate duality holds. The strong-

surrogate duality rests on the feasibility of the solution to (P^*).

Theorem 3.1 (Strong Surrogate Duality) [9] If an x* solves {P^*) for a fi*

€ and x* is feasible in (P) , then x* solves (P) and v{Ds) = v{P).

I t is dear that = v{P0^) for any 0 > 0. Thus, the surrogate dual

problem {Ds) can be normalized to an equivalent problem with a compact feasible

region:

{D^) max v(P^)

S.t. yU 6 A,

where A = e 已了“ 2 1} and e = (1 , . . . ’ 1)了.

3.2 Surrogate dual search
How to update the surrogate multipliers in order to maximize the surrogate dual

is a key to success in applying the surrogate dual method. The discussion in this

section is based on [9].

For a € R, let X{a) denote the level set of f { x) , X{a) = e | f { x) <

a}. For given / i 6 A and o： € M, v{P^) < ck if and only if

(3.2)

26

where S i j j) is defined by (3.1). Consider the following problem

(吵 ’ ")） mi l l iF{g{x) - b)

s.t. a: e

We notice that (3.2) holds if and only iiv{P{a,")) < 0. Since v(jy^s) = |

/ i e A } ’ i t follows that v{Df) < a if and only if v[P{a, /j,)) < 0 for all ^ € A. We

define now the following dual problem:

{D{a)) max v{P{a,ii))

s . t . " 八 .

The above discussion leads to the following theorem.

Theorem 3.2 [9j For given a € R； v{D^) < a if and only if v{D{a)) < 0.

Al l immediate corollary of Theorem 3.2 is as follows.

Corollary 3.2.1 [9] The optimal surrogate dual value v{Ds) is the minimum

aeR such that v{D{a)) < 0.

The cut t ing plane method can be used to solve {D{a)). Notice that {D{a))

is equivalent to the following linear program:

max 3
09’"）

S.t. yx e X{a),

//. e A.

For each a: € Xia), the first constraint forms a, cutting plane. Since X{a) is
unknown, we construct T'' c X{a) step by step in the solution process, thus

27

approximating v{D{a)) successively by solving the following linear program:

(LPfc) max (3

s.t. l5<ylF{g{x)-h), V r c e T ^

f i e A.

The above discussion leads to the following algorithm to solve {Dg).

Procedure 3.1 (Cutting Plane Procedure for {Dg))

Step 0 (Init ial ization). Set a。二 一⑴,T^ = 0. Choose any /j} € A. Set k = 1.

Step 1 (Surrogate relaxation). Solve the surrogate relaxation problem (P^fc)

and obtain an optimal solution x^. I f g{x^) < 6, stop and x^ is an optimal

solution to (P) and ‘u(D呈)=

Step 2 (Updating lower bound). I f f{x^) > then set a知=/(工”.Other-

wise, set a'' = a知一 1.

Step 3 (Updating mult ipl ier). Set T^ 二 U {工知}. Solve the linear program

(LPfc) and obtain an optimal solution 知’ M ” . I f < 0’ stop and a^ =

v{Dg). Otherwise, set 糾 = f j / ^ and A: := /c + 1, go to Step 1.

Theorem 3.3 [9] Algorithm 3.1 finds an optimal value of (D^) within a finite

number of iterations.

To il lustrate Procedure 3.1, consider the following example:

28

Example 3.1

min f { x) = 3x1 + 2x1 (3.3)

s.t. (re) = 10 — 5a: 1 — 2x2 < 7,

仍Or) = 1 5 - 2xi - 5x2 < 12,
(、

integer
x e X = I 0 <3：1 < 1 , 0<0：2<2 >.

8a:i + 8X2>1 \ /

The optimal solution is x* = (1,1)^ wi th f{x*) = 5.

The iteration process of Procedure 3.1 for this example is described as

follows:

Step 0. Set = - o o , T。= 0. Choose fj} = (0.5，0.5): Set k = 1.

Iteration 1
Step 1. Solve the surrogate problem

(P^i) min ？>x\ + 2x1

s.t. 0.5 X (10 - 5x1 - 2x2) + 0.5 X (15 - 2x1 一 < 9.5,

X € X .

We obtain = (0,1)^ wi th g(x') = (8,10广 ^ (7’ 1 2 f .

Step 2. Since /(工丄）=2 > a®, set = 2.

Step 3. Set T^ = {x^} . Solve the linear program:

(LP i) max (3

s.t. P < 111 - 2/i2,

Ml + < 1，

IM > 0, 112 > 0.

29

We obtain 伊 = 1 〉 0 and “丄= (1 ’ 0)了. Set k = 2 and = /nK

Iteration 2
Step 1. Solve the surrogate problem

mi l l ?>x\ + 2x1

s . t . 1 X (1 0 - 5 ‘ t i - 2x2) + 0 X (15 - 2x1 _ 5:C2) < 7,

X e X.

We obtain = (1’ O f w i th g{x'') = (5,13广玄 (7,12广.

Step 2. Since / (r c ” = 3 > o ^ set = 3.

Step 3. Set T^ = Solve the linear program:

(LPs) max (5

s.t. (5 < i i i - 2"2 ’

P < + "2,

Âi + < 1,
Ml > 0, 112 > 0.

We obtain = 0 and ji^ = (0，0)了. Stop and the optimal surrogate dual value

is L'(Dg) = a'2 = 3. Note that the surrogate dual value, 3, is better than the

Lagrangian dual value,

3.3 Nonlinear surrogate constraint formulation
The surrogate constraint method does not always solve the primal problem, i.e.,

the surrogate dual does not guarantee generation of an optimal solution of the

pr imal problem. When v{Ds) is str ict ly less than v{P), a duality gap exists

between {Ds) and (P) .

30

As stated in [9): The surrogate relaxation, (P^), differs from the primal

problem, (P) , only in the feasible region. In general, the feasible region of the

surrogate relaxation enlarges the feasible region of the primal problem. If this

enlarged feasible region contains a point that is infeasible w i th respect to the

major constraints of the primal problem and has a smaller objective value than

i!(P), then the surrogate relaxation, (P^), wi l l fail to identify an optimal solution

of the pr imal problem, (P), while searching for the minimum in this enlarged

feasible region.

To i l lustrate this argument further, we consider Example 5.1 again. Ap-

plying the conventional surrogate constraint method to solve (3.3) yields,

min 3x1 + (3.4)

s.t. "1(10 - 5xi 一 2x2) + /U2(15 - 2xi - 6x2) < 7/m + 12/̂ 2,
， �

integer

a： € X == 0 < x i < 1, 0 < 0：2 < 2

8工1 + 80：2 > 1
\ /

I t can be seen from Figure 3.1 that the surrogate constraint defines a closed half

space in the {91,92} space. For whatever value of chosen, the resulting closed

half space always includes an infeasible solution of the primal problem. Both

infeasible solutions, (0,1)^ and (1’0)了，in this example have objective values

smaller than v(P). As a result, the conventional surrogate constraint method

fails to generate the opt imal solution of the primal problem in this example. The

resulting maximum dual value is v{P^) = 3 w i th f i 二（1’0广 as been computed

in Example 5.1, and a duality gap exists.

I t becomes clear now that a sufficient requirement to eliminate the duality

gap in the surrogate constraint method is to make the feasible region in the

31

2S| 1 1 1 1 1 1

“ \

15 • Surrogate Constraint

02 I

5 讀 ！ \ .

。 . ‘ ’ 悉 働 一 _ _ , 0 2 4 e e 10 12 g.
Figure 3.1: Surrogate constraints in the constraint space of Example 5.1.

constraint space, defined by a single surrogate constraint, the same as the feasible

region in the primal problem. This goal can be achieved by some nonlinear

surrogate constraint methods discussed in [9].

Wi thout loss of generality, gi(x), i = 1,2，...，m, are assumed to be strict ly

positive for all x e X.

Let M = diag(jii,...，/Xm). We define the following weighted p-norms, for

a real number p w i th 1 < p < 00, as:

i=l m
II 攝 II 厂 { E [M n " p，

and the weighted 00-norm as

||M^(a;)||oo = max {̂ 1^1(0：), W , . . . , f l m 9 m { x) } ,

\\Mb\\oc = max { f l l h , Il2b2, ...，Mm^m}-

32

The following are well known,

l im \\Mg{x)\\, = \\Mg{x)\U V x 6 R " ,
p—•OO

l im | | M 6 | | , = | |M6|U.
p—*oo

The p-norm surrogate constraint formulation of (P) is now formed as fol-

lows for 1 < p < 00：

(PP min f i x)

s.t. \\Mg{x)\\p<\\Mb\\p,

X e X,

where j i satisfies the following,

" l 6 l = — 2 = … 二 f ^ m b m . (3 . 5)

Let B be a positive real number that is defined as follows for a i i that satisfies

(3.5),

B = fiibi, i = 1 , 2 , . . . ,771.

Define to be the feasible region of decision vectors in (P p ,

= {x e X \ \\Mg{x)\l < ||M6||,}.

When 0； satisfies g i [x) g i = 1,2’ … ’ m ’ a: also satisfies < ||M6||p

for 1 < < OO. Thus, S c when 1 < p < oo. Thus, when 1 < p < oo,

problem [P p is a relaxation of problem (P) and we have

V I < p < o o .

Whi le (PP) st i l l constitutes a relaxation of problem (P) even when / i does

not satisfy (3.5), the p-norm surrogate constraint method confines itself to use

33

only those /i,s that satisfy (3.5), due to several important properties associated

w i th I I satisfying (3.5), as indicated in [9].

For / i G R+ satisfying (3.5), let Gp(jj) denote the feasible region formed

by the p-norm surrogate constraint in the g space,

G 、) = {没 e R!? I 丨陶 |p < | |M6||,}.

Figure 3.2 graphically demonstrates the feasible regions in the {^^i’没2} space de-

fined by the p-norm surrogate constraint for different values of p. A nice property

of inclusion can be seen for from Figure 3.2 and this property of inclusion

is mathematical ly proven in the following theorem.

4.S| 1 1 1 1 1 1

< l|M fl||„=-||M blip •

3 P"2

2 5 •
g： P-1Q

qK ^ …•丨,“_r.“nA J _ _ L J . ^ _
0 1 2 3 4 5 6

9.

Figure 3.2: p-norm surrogate constraints in the constraint space w i th / i 二

(0.4’ 0.6广 and b = (3,2)^.

Theorem 3.4 [9] For 00 > p > q,

C G V) ，

where fi satisfies (3.5).

34

The following theorem further establishes an equivalence between { P p

and (P) w i th respect to the feasible region of decision vectors.

Theorem 3.5 [9j If (i satisfies (3.5), then there exists a finite q such that

S = SP{ji)

for all p > q.

In general, obtaining q could be at least as difficult as solving (P) itself.

For an important general class of integer programming problems, however, a lower

bound of p can be easily calculated.

Corollary 3.3.1 [9j Suppose that all Qi, i = 1, 2, . . m , are integer-valued func-

tions, e.g., polynomial functions with integer coefficients. Then for fi satisfying

(3.5),

S = S^iii).

when p > ln(m)/ln[mini<i<,„(6i + l) / b i] .

Theorem 3.5 and Corollary 3.3.1 provide interesting results in separation.

By selecting a sufficiently large p, all infeasible solutions of the primal problem

wi l l be excluded from S^{fi). In other words, the feasible set defined by the p-

norm surrogate constraint, Sp(ji)、will exactly match the feasible set of the primal

problem, S, when p > q. In summary, an appropriately selected nonlinear single

surrogate constraint can be constructed by aggregating multiple major constraints

of the pr imal problem such that a surrogate relaxation and the primal problem

are exactly equivalent. This result offers a basis in achieving zero duality gap in

integer programming when adopting the p-norm surrogate constraint method.

35

Theorem 3.6 [O] Suppose that all gi, i = 1, 2, m, are integer-valued func-

tions. If fi satisfies (3.5), then

v { P P = v{P) (3.6)

for p > q, where q = l n (m) / l n [m i n i < i <； + l) /6d.

A point to be emphasized is that the p-norm surrogate constraint method

does not require a search for an optimal / i vector. The value of the “ vector can

be simply assigned by solving (3.5).

Now we come back to Example 5.1 which the conventional surrogate con-

straint method fails to solve as we discussed before. Applying the p-norm surro-

gate constraint method yields the following formulation,

min 3a;? + 2x1

s.t. - 5a;i - 2x2Y + - 2a:i -

< x7p + f 4 x

X e X.

One normalized solution for 的 x 7 = x 12 is (Ai, A2) = (0.6316，0.3684). The

value of B is equal to / i i x 7 = /i2 x 12 = 4.4211. Figure 3.3 shows Sp(Jl) for

p 二 1,2,6,9. I t can be clearly observed that when p 二 9, S'P{ji) = S and the

p-nonn surrogate method successfully identifies the optimal solution x* = (0,2广

wi th zero duali ty gap.

Whi le the p-norm surrogate constraint method greatly simplifies the dual

search at the upper level, i.e., there is no need to search for the optimal multiplier

vector, the resulting surrogate relaxation problem at the lower level, in general,

becomes intractable, when comparing w i th the conventional surrogate constraint

36

251 1 , 1 , 1

p 1 l_l,Pb||p

p=2

0 2 4 S 8 to t2 9,

Figure 3.3: p-norm surrogate constraints in the constraint space of Example 5.1

w i th = (0.6316，0.3684广

method. Concerning our separable primal problem (P), the p-norm surrogate

constraint formulation { P p is highly nonseparable which dynamic programming

is not applicable to solve.

The surrogate dual was first investigated in [3] and [11] for continuous

opt imizat ion problems. The surrogate dual was then applied to linear integer

programming in [2] [4] [5]. Several surrogate dual search methods were developed

for linear integer programming in [lj[4] [5] [12].

The development of nonlinear surrogate constraint methods started w i th

the p-norm surrogate method presented in [6j. Nonlinear surrogate constraint

methods were also discussed in [7] and [10].

37

Chapter 4
Convergent Surrogate Constraint
Dynamic Programming:
Objective Level Cut
The most challenging task to achieve the strong duality in the surrogate constraint

formulation is to modify the formulation of (P^) such that the optimal solution

of (尸"）is feasible in the primal (P) at the same time.

The feasible region of (P^), S(/2), enlarges the feasible region of (F), S.

When an infeasible solution of (P) that has an objective value smaller than v{P)

is included in (P^), the optimal solution of [P^) cannot be feasible. The solution

concept presented in this chapter is to remove such an infeasible point which

attains the opt imal i ty of (P") from further consideration.

We require the integrality of f in this chapter in order to efficiently im-

plement dynamic programming.

Assumption 4.1 Function f { x) is integer-valued, for all x € X.

Let us now consider the following surrogate constraint formulation wi th a

38

lower bound constraint for the objective function,

(i y c)) mil l f i x)

s.t. f / i g { x) - 6) < 0,

/ ⑷ > c,

x e x ,

where c € M. We assume that the value of n is fixed. Note that problem

is equivalent to the conventional surrogate constraint formulation (P^) when c <

Let the feasible region of (P^(c)) be 5(/i；c).

The following theorem provides the basis for development of the conver-

gent surrogate constraint dynamic programming using the concept of objective

cut.

Theorem 4.1 (i) When v{P^) <c< v{P),

S c S { f i - c) c S { f i } .

(a) Let

6 = min{v(P) - f (x) | a: e X and f { x) < v{P)}.

Problem (P^(c)) is equivalent to the primal problem (P) when — 5 < c <

v { P) -

Proof, (i) The following is clear: If c is larger than some points in S i j i)

={a; G X I iF{g{x) - b) < 0} could become infeasible in S{fi]c) = {a: G X |

- 6) < 0, f { x) > c}; I f c is smaller than v{P), some infeasible points of

(P) could become feasible in S[ii\ c).

39

(i i) When v{P) — 5 <c< no infeasible point of (P) w i th its objective

value less than v{P) can be feasible in c). A t the same time all feasible points

of (P) are st i l l feasible in 5'(/i； c). •

Problem is a separable integer programming problem wi th 2 con-

straints which can be solved by dynamic programming in a relatively easy way

compared to (P) when the number of constraints is large.

Note from (i) of Theorem 4.1，for any c satisfying v{P^) < c < v{P),

(P"(c)) is a relaxation of (P). Thus, the optimal value of (P^(c)) is a lower

bound of v{P). The remaining task is how to adjust the value of c such that the

iterative solution process of solving (P^(c)) wi l l eventually identify an optimal

solution of (P) .

In the proposed algorithm, the surrogate constraint problem (P^) is first

solved for a selected /i. Dynamic programming is used to identify all the optimal

solutions to (P^). I f there is a feasible solution of (P) in the solution set of (P^J,

this solution is opt imal to the pr imal problem (P). Otherwise, let vq = v { P i i) - By

the weak duality, v[P) > VQ. Since f { x) is integer-valued, v{P) must be greater

than or equal to t̂ o + l - Therefore, we form problem (P^(c)) by incorporating the

constraint of f { x) 2 î o + 1 .

I f there is a feasible solution of (P) in the solution set of {P^{vq + 1))，

this solution is opt imal to the primal problem (P). Otherwise, let Let Vi =

v(P^(vo + 1)). By the weak duality, v(P) > vi. We solve then (P^(c)) w i th c =

vi + 1.
This process repeats and there must be a feasible solution of (P) that is

opt imal to (P^i(c)) when c = v(P) — 5 + 1.

We formally describe the algorithm as follows.

40

Procedure 4.1 [Convergent Surrogate Constraint Dynamic Programming:

Objective Level Cut]

Step 0 Select a ^ € Z!j： and solve (P^). If there is a feasible solution of (P) in

the solution set of (P^), this solution is optimal to the primal problem (_P)

and stop. Otherwise, let vq 二 and k = 1.

Step 1 Using dynamic programming to solve the following problem (P 々 k - i +

1)),
n

mill f{x) = Y^fj{xj) j=i
m n rn

s.t. g^(x) = Y ^ l l i i ' ^ g i j i x j)] <
i=l i=l i=l

n

j=i
= Xn.

step 2 I f there is a feasible solution of (P) in the solution set of {P^.(vk-i + 1)),

this solution is optimal to the primal problem (P) and stop. Otherwise, let

Vk = v{P^{vk-i + 1)). Set k = k + 1 and go back to Step 1.

The solution concept of using objective level cut was first adopted in La-

grangian dual search [9] for nonlinear separable integer programming problems.

We illustrate the above solution procedure in the following example.

Example 4.1

min f { x) = 3x1 +

s.t. = -3a; i + 2x2 < - 4 ,

41

仍(re) = x i + 0；2 < 3,

"3(rc) = 2x1 + < 5,

仍（;r) 二 — 2x2 < 0,

95(3：) = +5x2 < - 5 ,

xeX = {xel?\Q<Xi<?>, i = 1 , 2 } .

The opt imal solution is x* = (2,1)^ wi th f{x*) = 14.

The iteration process of Procedure 4.1 for this example is described as

follows:

Step 0, Select /zi 二的=1，solve the following surrogate problem (P^)

using dynamic programming,

min f { x) = 3a;? + 2x1

s.t. = -5a; i + 7x2 < - 1 ,

x e X = { x e Z ^ \ 0 < X i < 3 , i = 1’ 2 } .

We obtain x^ = (1,0)了 and /(a:。）= 3. Solution is not feasible to the primal

problem (P). Let Vq = = 3 and k = 1.

Iteration 1
Step 1. Using dynamic programming to solve the problem (P々q + 1)),

min f { x) = 3a;? + 2x1

s.t. g^ ix) = —5x1 + 7x2 < —1,

- f { x) = - S x l - 2x1 < -4,
x e x = { x e z ' ^ \ 0 < x i < 3 , z = l , 2 } ,

yields solution = (2,0广 w i th f { x ^) = 12.

42

Step 2. Solution x^ is not feasible to the primal problem (P). Let vi —

f{x^) 二 12 and k = 2.

Iteration 2
Step 1. Using dynamic programming to solve the problem + 1))，

min f { x) = 3x1 + 2x1

s.t. g{x) = —bx\ + 1x2 < —1’

- f { x) = -3x1 - 2x1 < -13,

X e X = {x eZ'^ \ 0 < X i < 3 , i = 1 , 2 } ,

generates solution x^ = (2’ 1 广 wi th / (x^) = 14.

Step 2. Solution x"^ is feasible to the problem (P). Stop and the optimal

solution to the primal problem is x* = x"^ = (2,1)^ with f{x*) = 14.

43

Chapter 5

Convergent Surrogate Constraint
Dynamic Programming: Domain
Cut
As we did in the previous chapter, the central solution concept of the proposed

convergent surrogate constraint dynamic programming is to gradually remove

some "active" infeasible solutions that attain optimal positions in the surrogate

constraint formulation. Instead of imposing a lower bound on the objective func-

tion as we proposed in the last chapter, we propose a domain cut approach to

cut off sub-domains that contain "active" infeasible solutions from further con-

sideration.

Note that in the development of the current chapter, we do not require

the integrality of the objective function / .

Let a, € Z" , where Z " denotes the set of integer points in M". Denote

by [a, jS] the box (hyper-rectangle) formed by a and = {x | a). < Xj <

44

(3j, j = 1 , . . . , n } . Let {a,/3) denote the set of integer points in [a,/?],

= = (a i , A > x …乂〈c^nM,

The set (a, P) is called an integer box. For convenience, we define [a, (5] = (a, [5)=

0 if a ^

Let [t] denote the maximum integer less than or equal to t and「i] the

min imum integer greater than or equal to t.

To il lustrate the solution concept behind the proposed convergent sur-

rogate constraint dynamic programming using domain cut, let us consider the

following example.

Example 5.1

min f { x) = 3x1 + 2x1

s.t. gi{x) = 2xi + 3x2 < 7,

X e X = {x ez^ \ 0 < X i <3, i = 1 , 2 } .

Figures 5.1 and 5.2 illustrate the feasible regions in both the ；r-space and the g-

space. Note there are only two feasible points in this example, (3’ 0)^ and (2，1)^.

Apply ing the conventional surrogate constraint method to solve the above

example problem yields,

min f { x) = Sa：! + 2x1

s.t. g乂cc) = /J'i(2xi + 30；2) + M2(15 - 2xi 一 2x2) < 7/Ui + 10/i2,

a; € X = {a: e Z2 I 0 化 S 3’ i = 1 , 2 } .

45

. • . • . •

X
2 丨• ^v • • •

- ： ^ . ：
= 10 \

0,5 • \ Feasible -
region

ol * ‘ •——^ ® ^
0 0.5 1 1.5 2 2.5 3 3.5

XI

Figure 5.1: Feasible region in the a:-space

Setting (1* = (0’ 1 广 gives a feasible half-space in x and yields a solution x^ =

(1’2)T w i th /(a;。）= 11. See Figure 5.3. Solution ? = (1,2)^ is infeasible wi th

gi(xO) = 8 and 夕2(a：。）= 9. Note that x^ violates gi{x) < 7 and gi{x) is an increas-

ing linear function of both Xi and X2. Thus, integer box〈(1’ 2)了, (3，3)̂ > does not

contain any feasible point and can be removed from X for further consideration.

Let

； =义 0 \�(1，2广，(3,3)�= XI U ；二 ((0, o r , (0，3广〉U�(1’ Of，(3，1广〉.

See Figure 5.4. Solving (P^*) w i th /i* = (0,1)了 on X} and X] , respectively, yields

a solution on X}, re} = (0,3)了，and a solution on X] , xl = (2’ 1)了. Note that

(2 ， i s feasible w i th f { x l) = 14. Set (2,1)^ as the incumbent and remove X^

from further consideration. Solution (0,3)^ violates the first constraint and we

cut〈(0,3)了，（0，3)。from X}, resulting

X? 二 X i i \〈(0，3广,(0，3 广〉=〈(0，Of, (0，2f)

Problem (P^.) w i th ju* = (0,1)^ is infeasible on Xf and Xf is removed from

46

15f 1 ,

• •

參眷*
10 -

® • •
o-i

Feasible • • •
region

5 • • •

。0 5 7 10 15
91

Figure 5.2: Feasible region in the g-spa.ce

further consideration. No more integer box is left and the solution process for

the example terminates wi th the incumbent (2,1)^ as the optimal solution wi th

v{P) = 14.

The above example demonstrates that, when the duality gap is nonzero,

domain cut can be implemented to cut off some infeasible integer subbox whose

objective value dominates the feasible region in the surrogate constraint formu-

lation. Carrying out such a procedure repeatedly gradually reduces the duality

gap and eventually eliminates the duality. The solution of this iterative process

converges to the solution of the original problem.

The following theorem gives conditions under which the above domain cut

procedure can be applied.

Theorem 5.1 Let x be a solution to (P^) on {a,/3). If x is infeasible to {P),

more specifically, giix) > hi for some i € {1,..., m}, then the following hold.

(i) If f is concave, then the following integer subbox (7,6) contains no feasible

solution of (P), where for i = 1, ..., n, ji = Xi and 6i = (3i if ^ ^ < 0, ji

47

3» 1 • . • 1

Feasible
2 s . region

V in(P(o,l)r)

2.. ” . .丨

la 1-5. \ 9i(x) = 10 . x
0.5 • -

0 0.5 1 1.5 2 2.5 3

Figure 5.3: Feasible half-space resulted f rom the surrogate constraint method

w i t h fjT = (0’ 1 广

=ai and 6{ = xt if ^^^ > 0，and ji = ai and 6i = pi if ^^^ — 0. Thus,

� 7 , (5 �c a n be removed from {a, (3). See Figure 5.5.
(i i) If f is a convex quadratic function taking the following form:

n 1

/ ⑷ 巧 工 5 + 柄 ）

with all Cj > 0, j = 1, . . n , then the following integer subhox (7, 6), with

7 二 （ 「 — 么 — + 生 l l ’. . .，「—~ - | i n + 〜 i r ， (5.1)
C i C i CN CN

5 二 + + + + (5.2)
CI C\ CJI CJI

contains no feasible solution of (P) and can be removed from (a, p). See

Figure 5.6.

(H i) If f is a concave quadratic function taking the following form:

n 1

/ ⑷ = + 他 ）

48

, 午 l , 「 … … - - 、 … … - - - 「

I I ‘
(I ‘
12.5、丨 I Integer box to be cut - ‘

i ^ V x ^ - - - - - - - - - ' - — — ^
I 丨 Remaining
i 1 5 . I integer box x 、 、 .

丨 I Remaining I
0.5 • I , integer \ . i
* I , subbox Xi I

\ o U _ _ . _ _ L _ _ 1 • \ 1!
0.5 l J L.5一 _ 2 _ 2.5_ 3 1 y a：!

F igu re 5.4: D o m a i n cu t i n the 1st i t e ra t i on

with all Cj < 0，j == 1,…，n，then the optimal solution (a；,/?) can only be

in the following integer region (j)、a) \〈7，S) with

n

P = (M i / c i - . +
\ j=i

\-dn/Cn - \ 2 { f (x) + i f , \ J = 1
n

O = (L - ^ / c i + 〜 2 (/ (x) + ^ d 2 / (2 c ,)) / c i J , . . . ,
\ j=i

n

[-dn/Cn + . 2 (f { x) + [dy{2Cj))/Cn」广’

\ j=l

and，for i = 1, n, - Xi and 6i = Pi if ^ ^ < 0,飞=ai and 6i = Xi

if 柴 > 0, and ji = at and 6i = (3i if 柴 = 0 . See Figure 5.7.

(i v) If f is a monotone function of x, i.e., for all i , i = 1, . . n , f is either

increasing or decreasing with respect to Xi, the following integer subbox〈7,5、

contains no feasible solution of (P)； where for i = 1, . . n , = Xi and 5i

49

5| 1 . 1 1 . 1 , 1

4 . m<m .

3 • -

o A j(x) > m \ -

_ _ _ ：
Domain to be cut

' - 3 -2 -1 0 1 2 3 4 5
a：!

Figure 5.5: Domain cut when f is concave

= i f 樂 < 0’ and5i=ii if ^ > 0, and 飞=c^ and = Pi

if ^ ^ = 0. Thus, (7,6) can be removed from {a, (3). See Figure 5.8.

(v) If Qi is convex, then the following integer subbox (7, contains no feasible

solution of (P) , where fori = 1, . . n , ji = Xi and 5i == fii if > 0,

=Qi and 6i = Xi if 赞 < 0, and 飞 = a n d 6i = A if 赞 = 0 . Thus,

〈7,5〉can be removed from {a,p). See Figure 5.9.

(v i) If Qi is a convex quadratic function of x taking the following form:

n 1

with all Cij > 0’ j = 1’ …’ n, then the optimal solution〈a,"〉can only be

in the following integer region (p, a) \〈7’ 5) with

n

P = (M i l / Q i - . +
\ j=i

n

\ - d i n / C i n - \ 2(g,(x) + [i r ,
\ j = l

50

3 I 1 1 ,

m > m
2.5 • -

, 广

1。， [Domain j

1. ^
0.5 • .

0。 0.5 1 1.5 2 2.5 3

Figure 5.6: Doma in cut when f is convex and quadrat ic

n
\ j = i

n
V-dinlCin + . 2(^ , (5) + J f ,

and, for i = 1, . n , ji = Xi and 5i = pi if ^^^ > 0, ji = a^ and 6i =

Xi if < 0, and 7i = a^ and 5i = A if 赞 = 0 . See Figure 5.10.

(v i i) If Qi is a concave quadratic function of x taking the following form:

n 1

= X^loCy^J + d i j X j)

with all Cij < 0’ j = 1’ …，n，then the following integer subbox (7,6) with

7 = 1:̂ 1 + # 1 1 ， . . . ， 「 - # + (5.3)

Ql Qn Qn
s = a - # + l ^ i + ， l 」 ’ . . . ’ L - ， + l^n + ， | j r ’ (5.4)

Cil 。in Qn

contains no feasible solution of {P). See Figure 5.11.

51

3| 1 1 1 1 1

m < fix)

2.5 • Domain to be cut •

2 • -

1.5 •

V / � >m j y
1 • ^ _J)omaln

to be cut

0.5 • •

°0 0.5 1 1.5 2 2.5 3

XI

Figure 5.7: Domain cut when f is concave and quadratic

(v i a) If Qi is a monotone function of x, then the following integer subbox (7,5)

contains no feasible solution of {P), where for i = 1, . . n , ji = Xi and 6i

=Pi if ^ > 0,ji = ai and 6i = Xi if 赞 < 0, and 飞=and 6i =

Pi if ^^^ = 0. Thus, (7,6) can be removed from {a,j3). See Figure 5.12.

Proof. We wi l l give separate proofs for all of the above eight cases. The proofs

are based on results from [8] and [9].

(i) When f is concave, the set { x €〈a，/?〉| f { x) > f { x) } is a convex set as

shown i l l Figure 5.5，outside of which all points have an objective value

str ict ly less than f (x) . Note that f (x) is a lower bound of v{P) on (a.jS)

and, by the weaker duality, no point outside of {x € {a,P) | f { x) > f { x) }

can be optimal. Based on the sign of the normal vector of f at x, the box

〈7’(̂ 〉，with, for i = 1, n, ji = Xi and 5i = A if ^ ^ < 0, = 0：̂

and Si = Xi if 帶 > 0, and 飞 = a n d = A if 雙=0，is outside of

{a; € (ck, /3) I f (x) > f (x) } and can be removed.

52

/ - " " / (x) = /(x) /(x) > m

0.5 • /

。0 0.5 1 1.5 2 2.5 3
Xj

Figure 5.8: Domain cut when f is monotone

(i i) Consider the following ellipse contour of / :
n

fix) = + d^x^] = fix). (5.5)

Clearly, the center of ellipse (5.5) is

0 = 、 — (k l c i 、 … 「 d j c n f . (5.6)

See Figure 5.6. Let E[x) be the ellipsoid formed by the above ellipse con-

tour. Since f is convex, all points inside E{x) possess an objective value

smaller than f { x) . By the weaker duality, no point inside E(x) can be

feasible. By the symmetry of E (i) , the integer box (7 , 6) , wi th

7 = { \oi - 1̂ 1 - O i l l , . . . , K - - O n l i r , (5.7)

S = (Loi + — O i l J ’ ^ . ’ LOn+ |;^n-On|J)T， (5.8)

is inside E{x) and can be removed.

(H i) Consider the following ellipse contour of f :
n

/ ⑷ = + djXj] = m . (5.9)
j=i

53

6 -

4 •
= 9iix) > fa,

0 . \ 9i{x)<9i{x) \

\ / 9i{x) > 9i{i) > bi

‘ Domain to be cut

-4 -2 0 2 4 6

Figure 5.9: Domain cut when a convex gi is violated

Clearly, the center of ellipse (5.9) is

O = { - d i / c u . . •, -dn/cnf (5.10)

and the length of the z-th axis of ellipse (5.9) is

n
2n = 2 2 U (x) + . (5.11) \ j=i

See Figure 5.7. Let E{x) be the ellipsoid formed by the above ellipse con-

tour. Since f is concave, all points outside E{x) possess an objective value

smaller than f { x) . The minimum rectangle that encloses the ellipsoid E{x)

is [p’cr] wi th

P = (oi - r i , . . . , O n - r n r ,

cr = (oi +ri,...,On + rn)^,

and the optimal solution cannot be outside of this minimum rectangle. We

can further cut off integer subbox (7,5) from (/o, cr) based on the argument

given in Item (i).

54

3| 1

ff.(a^) > 9i{i) >
2.5 • Domain to be cut •

2 • 吟)=ffiii) > I'i

� K , . � 一 ^
1.5. V j y

1 • J)omaln
to be cut

0.5

°0 0.5 1 1.5 2 2.5 3

Figure 5.10: Domain cut when Qi is convex and quadratic

(i v) I f / is monotone, then any point in the subbox (7,6) with, for z = 1,..

n, 7i = i i and (̂ i = if 赞 < 0 , 卞 = a i and - if ^ > 0，and、

= a i and 8i = pi if ^ ^ = 0, has an objective level not greater than f { x) .

Since f { x) is a lower bound of problem (P) on〈a, /?), no point inside〈7，5)

can be optimal. See Figure 5.8.

(v) When 仍 is convex, the set {a; € {a,P) | gi{x) < gi(x)} is a convex set as

shown in Figure 5.9, outside of which all points have a ĝ value strictly larger

than gi{x). In other words, no point outside of {a; e (oi,(5) | gi{x) < g i {x) }

can be feasible. Based on the sign of the normal vector of ĝ at i , the box

〈7’ 5), with, for i = 1，.. .，n, ji 二 and Si = A if 〉0, % = a^ and

(̂ i = Xi if 赞 < 0，and j i = a i and Si = A if 赞 = 0 , is outside of

{ x e (a,/d) I gi(x) < g i (x) } and can be removed.

(v i) Consider the following ellipse contour of gf

n

Y ^ [{ l / 2) c i j x j + dijXj] = gi(x). (5.12)

55

3| i 1 1 1 i 1

< ！/.(i)
2.5 •

• L Pemaiw to bo out j

1. ^ ^

0.5 • •

0。 0.5 1 1.5 2 2.5 3

Figure 5.11: Domain cut when gi is concave and quadratic

Clearly, the center of ellipse (5.12) is

0 = (一dijcii,…，一dinlcinf (5.13)

and the length of the j-th axis of ellipse (5.12) is

n

= 2 2{gi ix) + 二 d i / {2c ik)) /c i j . (5.14)
\| fc=l

See Figure 5.10. Let E(x) be the ellipsoid formed by the above ellipse

contour. Since gi is convex, all points outside E(x) possess a g^ value larger

than gi{x). The minimum rectangle that encloses the ellipsoid E{x) is [/?, a]

wi th

p 二（oi _ n,…，o„ - Tn,’

o- = (Oi + r i ’ . . .，On + r „) r ’

and the optimal solution cannot be outside of this minimum rectangle. We

can further cut off integer subbox (7,6) from { p , a) based on the argument

given in I tem (v).

56

J I / 1
9i{x) > 9i{x) >bi /

2 Domain to be cut

、 . ： ^ ^ :

0.5 • y/^ < fl'(^)
% 0.5 1 1.5 2 2.5 3

Figure 5.12: Domain cut when Qi is monotone

(v i i) Consider the following ellipse contour of gi：

n

Y, [{ l /2)c i j x ' ' j + dijXj] = gi{x). (5.15)

Clearly, the center of ellipse (5.15) is

0 = (一C^i l /Ci i , . • . , - d i n / C i n Y . (5.16)

See Figure 5.11. Let E(x) be the ellipsoid formed by the above ellipse

contour. Since gi is concave, all points inside E{x) possess a gi value larger

than gi{x)^ thus all infeasible. By the symmetry of E{vx)^ the integer box

〈7’(̂ 〉’ w i th

7 = (「Oil — 丨-OiiH，...，「Oin— 丁’ (5.17)

S = (bil + 1̂ 1 - OalJ,. . ., [Oin + \Xn - OinIJ)'̂ , (5.18)
is inside E{x) and can be removed.

(viii) I f Qi is monotone, then any point in the subbox (7,6) with, for i = 1 , . . . ，

n, 7 i = Xi a n d 5i = Pi i f ^ > 0，7i 二 o；̂ a n d 6i = Xi i f 赞 < 0, and

57

= c î and Si = pi if ^ ^ ^ = 0, has a gi level not less than 识 (i) , thus

infeasible. See Figure 5.12.

•
Note that the above theorem can be extended to situations that do not

fall into the above mentioned eight situations, such as a 4-dimensional situation

where f is only concave with respect to Xi and X2 and monotone with respect to

x-i and X4.

A key issue in the proposed convergent surrogate constraint dynamic pro-

gramming method is how to partition a non-rectangular domain into a union of

integer boxes such that the surrogate constraint dynamic programming can be

applied to every newly generated integer subbox after a cutting process. We have

the following result.

Lemma 5.1 [9j Let A — {a,/3) and B =〈7,5〉，where a, (5,^,5^ IT- and

a < ^ < 6 < p. Then A\B can be partitioned into at most 2n integer boxes.

A\B = {uy=i { U i z l i a i J i) X〈〜.+ I J j) X n二州〈0；“A〉）} (5.19)
U (ntii〈7i，幼 X { a j . ' y j 一 1〉x 11 二州〈a“幼}.

Now we formally describe the algorithm.

Procedure 5.1 [Convergent Surrogate Constraint Dynamic Programming:

Domain Cut]

Step 0 (Initialization). Select a surrogate multiplier fi and use dynamic pro-

gramming to solve (•P"). Let be the solution to (P^). If is feasible,

then x^ is the optimal solution, stop. Otherwise, calculate f{x^). Let

X^ = X, k = 0, and fopt = -00.

58

. . .1'

广 . 一 .

齡 � J
• 、、争 ‘ •

Y
I
I
I

• t t i •
1
I
I
寒 • . 4 .

Figure 5.13: Partition oi A\B.

Step 1 (Sub-Domain Selection) Select an integer subbox X幻'from X^ wi th the

smallest objective value of (P^), /(a;幻.）• Let X^ = X ' ' \ X妨.

Step 2 (Cut and Partition) Cut out from X'^^ certain integer boxes of infeasible

solutions that include 工幻 using one of the formulae in Theorem 5.1 and

partit ion the remaining domain, Z^, into a union of integer sub-boxes.

Step 3 (Evaluation) Solve (P^) on every integer subbox in Z^. Remove all the

integer subboxes from Z^ whose solution is feasible in (P). Update Xo t̂ and

fopt if a feasible solution found possesses an objective function value smaller

than f叩t. Let X^'+i = X^ u Z''.

Step 4 (Fathoming) Remove all the integer subboxes in whose objective

function value is larger than fopt.

Step 5 (Optimality Check and Termination) If is empty, stop and Xopt is

optimal to {P) wi th fopt as the objective function value. Otherwise, set k

=A; + 1, go back to Step 1.

59

Chapter 6
Computational Results and
Analysis
We have proposed in the previous chapters two convergent surrogate constraint

dynamic programming algorithms using objective level cut and domain cut, re-

spectively, and we are now in a position to check whether they work or not

for various testing problems and how each of them helps to mitigate the "curse

of dimensionality". This chapter serves for the purpose of reporting computa-

tional results. Several testing problems are constructed and they are solved by

the conventional dynamic programming and two convergent surrogate constraint

dynamic programming algorithms proposed in this thesis. Various useful data

are collected in the computational process. Specially, the statistics on the total

number of state iterations for each problem while applying the three algorithms

are analyzed. The ranges of states Sk, A; = 1, ... ’n — 1 are calculated using (2.2)

and (2.3). During the solution process, each Sk iterates from Sf, to s/；. The total

number of state iterations for a problem while applying a particular algorithm

can be obtained by summing up the number of states Sk for all k each time dy-

60

namic programming is applied and then summing up further all the subtotals.

As the computational and storage requirements are almost linear functions of the

number of state iterations, the comparison of the total number of state iterations

w i th respect to the three algorithms wi l l give us some insight on the effectiveness

of the convergent surrogate constraint dynamic programming methods in mit i -

gating the "curse of dimensionality". Computer codes are wri t ten in M A T L A B

and can be obtained from the CD-Rom submitted.

6.1 Sample problems
Below we wi l l list some sample problems solved in our computational experiments.

Note that we have set the surrogate multipliers /i j, z = 1,2, . . . ,m all equal to 1

in the surrogate constraint formulation for all the test problems.

Example 6.1 IVe consider Example 4-i again.

When adopting the conventional dynamic programming, we have s^ = (- 9 , 0 , 0 , 0 ,

一 18)了’ S2 = (- 4 , 3 , 5 , 3 , - 5) ^ , 5i 二（0，0,0’ 0,0)厂 Thus, we need total ly 6 x 4 x

6 X 4 X 14 + 1 = 8065 state iterations.

When adopting the convergent surrogate constraint dynamic programming

w i th objective level cut, we apply dynamic programming once to solve the sur-

rogate constraint problem and then apply dynamic programming twice to solve

successively two doubly-constrained problems {P^{vo + 1)) and {P^i{vi + 1)) w i th

an objective level cut. For the surrogate constraint problem, S2 = —15, S2 = —1,

51 = 0. For the two problems w i th an objective level c u t , 紅 = (— 1 5 , —27)^,

52 二 (- 1 , a n d Si = (0’ 0)厂 Thus, each has 15 x 28 + 1 = 421 state iterations.

There are (16 + 421 x 2) 二 858 state iterations in total.

61

When adopting the convergent surrogate constraint dynamic programming

w i th domain cut, we apply dynamic programming 3 times to solve the singly con-

strained surrogate constrained problem on integer boxes ((0,0)^, (3,3)^>, ((2,0)^,

(3,3)r〉and〈(2’ 1)了’（3’ 3)了〉，respectively. For the first integer box, 53 二 - 1 5 ’

52 = - 1 . For the second or the th i rd integer box, Sj = - 1 5 , 52 = -10 . Thus,

we, in total, require (15 + 1) + (6 + 1) + (6 + 1) = 30 state iterations.

Example 6.2

min f { x) = 3工5 + 2x2 + 5a：含 + + Ax^

s.t. gi (x) = xl + xl-\-xl-\-xl + xl< 20’

g2{x) = x \ + x l - lOa：! x l x l + x l - I2xs < - 2 0 ,

gsix) = x l - 6a: 1 + 2x1 + xl + x l - 4x4 + x l < 0 ,

x e X = [x e l P \ i 二 1，2’ 3’ 4，5}.

The solution is a:* = (1,2,0,2,1)^ and / (o f) = 19. W i th conventional dynamic

programming, ^ = (0 , - 2 1 , - 1 3) ^ , S5 = (20,7,0)^, ^ = (0 , -21 ’ -9)了’ 知 =

(20,7’4严’ 53 = (0’-21，-9广，53 = (1 8 , 7 , 4) : s—、二（0,0’—9广’ S) = (9,9, O f

and Si = (0,0’ 0)了. Therefore, we need in total 21 x 29 x 14 + 21 x 29 x 14 + 1 9 x

29 X 14 + 10 X 10 X 10 + 1 = 25,767 state iterations.

The surrogate constraint formulation of this problem is

min f [x) = 3x1 + 2x1 + 5工含 + x] + Ax]

s.t. g{x) = 3x1 一 + 4x1 一 衞 2 + Sxl + 3x1 一 + 3x1 - Ux^ < 0,

xeX = XixX2XX-iX X4 X Xs.
When adopting the convergent surrogate constraint dynamic programming

w i th objective level cut, we apply dynamic programming once to the surrogate

62

constraint problem and then to nineteen 2-constraint problems {P^{vk + 1)), k =
0’ 1,..., 18. For the surrogate problem, s^ = —10, S5 = 12, 54 = —9, 54 = 13, S3 =

- 9 ’ 53 = 13, 52 = 一3 ’ S2 = 9, Si = 0, thus leading to 23+23+23+13+1 = 83 state

iterations. For each of the 2-constraint problems {P^{vk + 1))，办=(-10, - 9 9) ^ ,

55 = (12, o r , ̂ = (-9,-90f, 54 = (13, Of, 53 = (-9,-45^, 53 - (13, O f ,

S2 = (-3,-27)^, 52 = (9’0广’ Si = (0,0)了’ thus leading to 23 x 100 + 23 x

91 + 23 X 46 + 13 X 28 + 1 二 5,816 state iterations each. There are totally

83 + 5816 X 19 = 110,587 state iterations.

When adopting the convergent surrogate constraint dynamic programming

wi th domain cut, we apply dynamic programming to the singly constrained sur-

rogate constraint problem on 23 integer boxes involved in the solution process.

Among them, 10 requires state iterations between 0 and 50’ and the other 13 re-

quires state iterations between 50 and 100. The total number of state iterations

is 1,263.

Example 6.3

min f { x) = 3x1 + +

s.t. gi(x) = a：! - 0；2 + xa < 2,

仍(T) 二 —2;ri -X2-X3< -8,
gsix) = -5x1 + 2x2 + X3< -1,
g4{x) = 3a;i - 2x2 - X3 < -3，

gsix) = xl + xl- 6x2 + xl- < -8,

ge(x) = 4x1 - 20x1 - 4x2 + - 282:3 < -75 ,

grix) = 9a:? - 33a;i + xl < -20,
gsix) = x l - 2xi + x l - 7x3 < - 1 0 ,

63

X e X = {xez^ \ 0<Xi<3, i 二 1，2,3}.

The solution is x* = (2,3,3)^ and f(x*) = 75. W i th conventional dynamic pro-

gramming, 办 二 (- 3 , - 9 ’ - 1 5 ’ - 6 ’ 一9’ —28’ 一 30’ - i f , S3 = (2, 一5 ’ -1 ,0 , - 4 , - 2 7 ,

- 2 0 ’ 2广’ 52 = (0’ - 6 ’ - 1 5 ’ 0’ 0’ —24, - 3 0 ’ -1)了’ Sj = (3，-2，-1,6,5, - 2 3 , - 2 0 , 2 f

and Si = (0’ 0’ 0’ 0’ 0’ 0’ 0’ 0)了. We need 2,772,001 state iterations in total.

The surrogate constraint formulation of this problem is

min f (x) = 3xi + 2x1 + 5x1

s.t. g{x) = Ibxl - bSxi + 3x1 - 12x2 + 60:3 - 39x3 < -123,

X e X = Xi X X2 X X3.

When adopting the convergent surrogate constraint dynamic program-

ming w i th objective level cut, we apply dynamic programming to the singly-

constrained surrogate constraint problem first and two doubly constrained prob-

lems, {P^{vkO + 1)) and + 1)) successively. For the surrogate constraint

problem, S3 = - 6 8 , 53 = - 6 0 , 勤 = - 5 6 , h = —48, Si == 0’ thus leading

to 19 state iterations. For {P^{vo + 1))’ ^ = (—68，—45广’ 53 = (-60,-15)了，

52 = (- 5 6 , - 2 7) ^ , S3 = (- 48 ,0) ^ , Si = (0,0)了’ leading to 532 state itera-

tions. For {P^iv i + 1))’ 53 = (- 6 8 , -45)了’ 知 二（-60’ - 2 l f , 動 二 (- 5 6 , -27)了，

53 = (—48’ 一3)了, Si = (0’ 0)T’ leading to 451 state iterations. Summing up, there

are 1,002 state iterations.

When adopting the convergent surrogate constraint dynamic programming

w i th domain cut, not taken into account the integer boxes being cut, there are 7

integer boxes involved in the solution process. Among them, 4 does not contain

any feasible solution for the surrogate constraint problem and dynamic program-

ming is applied to the remaining 3 integer boxes. We require 19, 19 and 13 state

64

iterations on these three integer boxes, respectively. In total, 51 state iterations

are required.

Example 6.4

min f { x) = -3x5 — — Sxg - 4x4

s.t. gi (re) = Xi + 0：2 + Xa + < 8,

g2{x) = xl-\-X2̂ xl + xl < 12,
&3(工)=3xi +X2- 2X3 <0,
ff4(^) = - X2 + 3X3 +0̂ 4 < 6,
gsix) = 5a:? — + 3x1 + 0:4 < 1,

a: e X = e I 0 化 S 3’ i = 1 ,2 ,3 ,4 } .

The solution is x* = (1,3’ 2，2)了 and f{x*) = - 57 . W i th conventional dynamic

programming, ^ = (0,0, - 6 , - 3 , - 1 8) ^ , 5 4 = (8,12,3,6, i f , S3 = (0’ 0’ 0,-3，-18)了，

S3 = (6’ 12,9’ 6, i r , 52 = (0’ 0,0，0’ O f , S2 = (3’ 9’ 9’ 9’ 19 广 and si = (0’ 0’ 0’ 0, O f .

There are total ly 496,001 state iterations.

The surrogate constraint formulation of this problem is

mill f(x) = -3xi - 2x2 - 5x3 - Axl

s.t. g{x) = 7x1 + 4x i - 2x1 + 2x2 + + 2x3 + xl + 2x4 < 27,

X e X = Xi X X2 X X3 X X4.

When adopting the convergent surrogate constraint dynamic program-

ming w i th objective level cut, we apply dynamic programming first to the surro-

gate constraint problem and then to three two-constraint problems, {P^{vo + 1))，

{P^,{vl + 1)) and {Pf,{v2 + 1)) successively. For the surrogate constraint problem,

65

S4 = -12, 54 = 27, ̂ = -12, S3 = 27, S2 = 0, S3 二 39, si = 0, thus leading to 121

state iterations. For {P^{vo + 1))，^ = (一 12’ 0)了，S4 = (27’ 73)了’ 53 二（_12’0)了’

S3 = (27,45)^, S2 = (0,0)T’ 53 = (3 9 , 2 7 f , 5i = (0’0)了’ leading to 5921 state

iterations. For + 1))’ ^ = (- 1 2 , O f , S4 = (27,61)^, ^ = (-12,0)了，

S3 = (27’ 45广，52 = (0’0)T, S3 = (39’ 27广’ 5i = (0’0广’ leading to 5441 state

iterations. For {P^{v2 + 1))’ ^ = (- 1 2 , O f , 54 = (27’ 58广’ ^ = (- 1 2 , 0) ^ ,

S3 = (27,45)^, 52 = (0,0广’ 53 = (39,27)^, 5： = (0 , 0 f , leading to 5321 state

iterations. Summing up, there are in total 16,804 state iterations.

When adopting the convergent surrogate constraint dynamic programming

w i th domain cut, not taken into account the integer boxes being cut, there are 10

integer boxes involved in the solution process. Dynamic programming is applied

10 times to the surrogate constraint problem wi th different feasible region. Among

the 10 times, 3 requires less than 10 state iterations, 2 requires more than 100

state iterations, and 5 requires between 50 and 100 state iterations. In total, 664

state iterations are required.

Prom our more computational experiences, we conclude that w i th con-

ventional dynamic programming, as the number of constraints, the number of

variables or the range of variables increases, the amount of state iterations wi l l

increase correspondingly. Among them, the increment of the number of con-

straints inserts the major impact, interacting actively w i th the increment of the

range of states, makes the number of state iterations soon become excessive wi th

exponential increase, leading to the previously discussed "curse of dimensional-

i t y " .

The following table compares the number of state iterations required in

solving the above examples using the conventional dynamic programming and

66

the convergent surrogate constraint dynamic programming with objective level

cut and wi th domain cut, respectively.

Table 6.1: Comparison of the number of state iterations

Conventional

dynamic programming Objective level cut Domain cut

Example 4.1 8,065 858 30

Example 6.2 25,767 110,587 1,263

Example 6.3 2,772,001 1,002 51

Example 6.4 496,001 16,804 664

Prom Table 6.1, we can see that the convergent surrogate constraint dy-

namic programming wi th domain cut requires the least state iterations. Also,

the convergent surrogate constraint dynamic programming wi th objective level

cut generally requires fewer state iterations than the conventional dynamic pro-

gramming. One obvious reason is that the objective level cut reduces the number

of constraints to 2 in all subproblems following the surrogate constraint prob-

lem during the solution process. Similarly, for the convergent surrogate con-

straint dynamic programming with domain cut, the surrogate constraint for-

mulation reduces the number of constraints to 1. To evaluate how the reduc-

t ion in the number of constraints helps in mitigating the "curse of dimensional-

ity" ’ we observe from the calculations in the above examples that the number of

state iterations each time dynamic programming is applied can be calculated as

J2k=2 二 1 (互 -圣 f c ⑴ +1) +1 ’ where n is the number of variables, m is the num-

ber of constraints, and i is the index denoting the position in the m-dimensional

array of the range of states. The reduction in the number of constraints m reduces

the number of multiplying terms and thus alleviates the effect of exponential in-

67

crease in the number of state iterations, mitigating the "curse of dimensionality".

However, in Example 6.2, the convergent surrogate constraint dynamic

programming wi th objective level cut requires more state iterations than the

conventional dynamic programming. This is because the convergence of objec-

tive level cut can be very slow. In the extreme case, each time the increment of

objective value is only 1 for a sequence of problems {P^{vk + l)) before the optimal

solution is obtained. The problems {P^{vk + l)) are two-constraint problems, and

dynamic programming is applied to solve these problems. If the number of prob-

lems is large, the total number of state iterations may exceed what when applying

conventional dynamic programming. On the other hand, the convergence of the

convergent surrogate constraint dynamic programming wi th domain cut can also

be slow. There may be lots of integer boxes generated in the solution process,

and dynamic programming is applied on each of the boxes. However, the prob-

lems to be solved with respect to these integer boxes are one-constrained ones.

Since dynamic programming is applied to solve a sequence of problems wi th only

one constraint, even though the number of problems involved is large, the total

number of state iterations is stil l acceptable. Therefore, the convergent surrogate

constraint dynamic programming wi th domain cut generally performs better than

the convergent surrogate constraint dynamic programming with objective level

cut and the conventional dynamic programming.

Before we close this chapter, we examine another example to compare

effectiveness of the two convergent surrogate constraint dynamic programming

algorithms.

Example 6.5

m i n f { x) = 2x1 + + + + Qxj + 2x1 + 4；^ + 十工• + 7xIQ

68

s.t. "1(0：) = x\ + xl + xl + xl^- + xl + x'', + xl + xl + xlo < 75’

.<72⑷=Xi + X2 + X3 + X4 + Xs + 0；6 + + Xg + X^ + .TlQ < 25,

= -3X1 + X 2 - 5X3 + 2X4 + + 3X6 + 5X7 - 2xs 一 7X9 + .T]„ < - 5 0 ,

g4{x) = xl - 6a:i -^xl + xl- 80:3 + xl + x] + xl + 0:7 + a^ + X9 - 6x9 + xIq < -5,

g5 ⑷=92；^ - 42X3 + 62:9 < 一50’

x e x = { x e 1 ^ ^ \ 0 < x i < b , i = l ,2 ,…’ 10} .

The optimal solution of this example is x* = (1,0,2’ 0’ 0’ 0’ 0,1,5,0产 and f{x*)=
46. If conventional dynamic programming is applied to solve the problems,

110,037,271 state iterations are required to get the optimal solution. Otherwise,

if the convergent surrogate constraint dynamic programming wi th objective cut

is applied, the surrogate problem is solved first, which requires 764 state itera-

tions. Then, the problem {P^{vo + 1)) is solved, and it requires 376,539 state

iterations. The first two iterations already require 377,303 state iterations, and

the corresponding function value is stil l far from the optimal one, and more prob-

lems {P^i(vk + 1)) are required to be solved before the optimal solution can be

obtained. Compared wi th the conventional dynamic programming, the "curse of

dimensionality" is only mitigated to a limited extent. However, solution can be

obtained efficiently wi th the convergent surrogate constraint dynamic program-

ming wi th domain cut. Not taken into account the integer boxes cut, there are

299 integer boxes involved in the solution process. Among them, 2 does not con-

tain any feasible solution for the surrogate problem and dynamic programming

is applied to the remaining 297 integer boxes. Among the 297 times dynamic

programming is applied, 171 requires between 500 and 1000 state iterations, 112

requires between 100 and 500 state iterations, and 14 requires less than 100 state

iterations. In total, 135542 state iterations are required.

69

Chapter 7

Conclusions
In this thesis, we have focused our efforts on devising efficient ways to mitigate

the "curse of dimensionality". Two convergent surrogate constraint dynamic

programming algorithms with objective level cut and domain cut have been pro-

posed.

The motivation behind the novel convergent surrogate constraint dynamic

programming algorithms is to alleviate the "curse of dimensionality" by working

successively on singly or doubly constrained problems. The original curse of di-

mensionality exhibits when the number of constraints is high. However, dynamic

programming, when it is applicatable, needs to be applied only once to obtain the

solution. I l l the newly proposed approaches, we convert the curse of dimension-

ality in the state space to the number of siibproblems to be solved in an iterative

solution process. In the convergent surrogate constraint dynamic programming

algorithm wi th objective level cut, the doubly constrained problem resulted from

combining the surrogate constraint formulation wi th an objective level constraint

has to be solved successively for a sequence of updated lower bound of the ob-

jective level, while in the convergent surrogate constraint dynamic programming

70

algorithm wi th domain cut, the domain of decision variables is decomposed into

sub-domains and dynamic programming needs to be applied on each sub-domain

to a singly constrained (surrogate constraint) formulation. The migration of di-

mensionality in the above two schemes seems workable as evidenced from our

numerical experiments.

I l l the proposed convergent surrogate constraint dynamic programming

algorithm wi th objective level cut, one constraint is to enforce the objective func-

t ion to exceed an increasing threshold, thus making the duality gap shrink. There

are two research issues which are worth further efforts to investigate. First, we

don't need to solve the dynamic programming problem starting from a scratch

after the lower bound of the objective level is updated. We may devise an algo-

r i thm to use the information from the previous iterations in order to reduce the

computational efforts. Second, i t is even possible to design a singly-constrained

dynamic programming algorithm to realize the solution for this special doubly

constrained dynamic programming problem.

71

Bibliography
[1] M . E. Dyer, Calculating surrogate constraints, Mathematical Programming,

vol 19，1980，255-278.

[2] B. Gavish, F. Glover, and H. Pirkul, Surrogate constraints in integer pro-

gramming, Journal of Information and Optimization Sciences, vol 12，1991，

219-228.

[3] H. J. Greenberg and W . P. Pierskalla, Surrogate mathematical programming,

Operations Research, vol 18, 1970, 924-939.

[4] M . H. Ka rwan and R. L . Rard in, Searchability of the composite and multiple

surrogate dual functions. Operations Research, vol 28, 1980, 1251-1257.

[5] M . H. Ka rwan and R. L. Rard in, Surrogate dual multiplier search procedures

in integer programming, Operations Research, vol 32, 1984，52-69.

[6] D. L i , Zero duality gap in integer programming: p-norm Surrogate Constraint

Method, Operations Research Letters, vol 25，1999, 89-96.

[7] D. L i and X . L. Sun, Success guarantee of dual search in integer programming:

p-th power Lagrangian method, Journal of Global Optimizat ion, vol 18, 2000,

235-254.

72

[8] D. L i , X . L. Sun, and F. L. Wang, Convergent lagrangian and contour cut

method for nonlinear integer programming with a quadratic objective func-

tion, S IAM Journal on Optimization, vol 17，2006, 372-400.

[9] D. L i and X . L . Sun, Nonlinear Integer Programming, Springer, 2006.

[10] D. L i and D. J, Wh i te , p-th power lagrangian method for integer program-

ming, Annals of Operations Research, vol 98, 2000, 151-170.

[11] D. G. Luenberger. Quasi-convex programming, S IAM Journal on Appl ied

Mathematics, vol. 16, 1968, 1090-1095.

[12] S. Sarin, M. H. Karwan, and R. L. Rardin, A new surrogate dual multiplier

search procedure, Naval Research Logistics, vol 34, 1987, 431-450.

[13] D. Mayne, A second-order gradient method for determining optimal trajec-

tories of non-linear discrete-time systems, In ternat ional Journal of Control ,

vol. 3，1966, 85-95.

[14] R. E. Larson and A . J. Korsak, A dynamic programming successive approxi-

mations technique with convergence proofs, Automat ica , vol 6, 1970, 245-252.

[15] T . L. M o r i n and A. M . 〇 . E s o g b u e , The imbedded state space approach to

reducing dimensionality in dynamic programs of higher dimensions, Journal

of Mathematical Analysis and Applications, vol 48’ 1974, 801-810.

[16] A . Haur ie and P. L 'Ecuyer , Approxiation and bounds in discrete event dy-

namic programming, IEEE Transactions on Automat ic Control, vol 31, 1986,

227-235.

73

[17] L . Z. L iao and C. A . Shoemaker, Convergence in unconstained discrete-time

differential dynamic programming, I E E E Transactions on Automat ic Con-

t ro l , vol 36, 1991，692-706.

«

74

‘ ‘ . • .

• • , , ,

；： I •

• _ : . . ,

. ‘ •

.'»、：••、

： . 、 - • : . . , . ,./、•

• ：、- ./ >‘ • .

, - • . 〜 , ： • ‘ - . - . .. 、- • . ： .. .

., .厂丨.….... ：A . 、 . 、 - . ..- , •,

.• •"• “ ： • •‘,； “- ‘‘,

C U H K L i b r a r i e s

mmiiiii
0 0 4 3 5 9 1 0 1

