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Abstract 

Dynamic programming, one of the powerful solution methodologies for 

separable optimization problems, suffers heavily from the notorious "curse of 

dimensionality", which prevents a direct application of dynamic programming 

when a large number of constraints are present. This thesis studies mult iply 

constrained nonlinear separable integer programming problems and develops two 

convergent dual search algorithms for the surrogate constraint formulation of the 

primal problem in the sense that an exact solution of the primal problem is iden-

tified. Combined wi th these two convergent dual search algorithms wi th dynamic 

programming, two novel solution schemes termed convergent surrogate constraint 

dynamic programming are proposed. Numerical testing problems demonstrate 

some promising computational results of the two new schemes. 

K e y w o r d s : separable integer programming, dynamic programming, surrogate 

constraint method, objective level cut, domain cut, convergent dual search. 
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摘要 

动态规划，作为解可分离优化问题的有用解法之一，受到所谓“维数祸 

害”的强烈限制，使其无法直接求解约束式数量多的问题。本论文研究了多维 

可分离非线性整数规划问题，并提出了基于原问题迭代约束式上的两种对偶搜 

寻总法。综合此两种对偶搜寻算法所提出的动态规划方法被称作收敛性迭代约 

束动态规划。仿真测试给出了一些证实这两种新算法效用的数据。 
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Chapter 1 

Introduction 
This thesis studies the following general class of multiply constrained separable 

integer programming problems: 

n 

(P) min f i x ) = J 2 f j M 

n 

s.t. gi{x) = y ^ g i j j x j ) < hi, z = 1 , . . . 
j= i 

a; e X 二 X ；(：2 X … X A：们 

where f j and gi/s are defined on R, and all X/s are finite integer sets in R. 

Let g(x) = (gi(x),g2(x),...,g,n(x)f and b = (61,62, • • •, ^m)^- Problem (P) 

covers very general situations of nonlinear integer programming problems as no 

additional property such as convexity, concavity, monotonicity or differentiability 

is assumed in (P). 

Without doubt, dynamic programming pioneered by Richard Bellman in 

1950's is definitely one of the powerful solution methodologies for separable op-

timization problems by invoking the decomposition scheme based on the funda-

mental principle of optimality. Dynamic programming, however, suffers heavily 
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from the notorious "curse of dimensionality", which prevents a direct application 

of dynamic programming when a large number of constraints are present. 

1.1 Literature survey 
The past four decades have witnessed tremendous efforts in the literature in alle-

viating the "curse of dimensionality" in dynamic programming. We first review 

some promising research results reported in the previous years before we propose 

ours. 

Reference [14] deals wi th a discrete-time deterministic optimal control 

problem. Under the conventional dynamic programming, each state variable 

Xi, i = 1,2, ...,n, is quantized to Ni levels. At each stage /c, for each given 

quantized value of state vector x , the optimal control u is identified and the 

corresponding minimum cost-to-go is obtained. Therefore, the computational 

time or storage requirements at each stage is a function of the total number of 

quantized states, which is Ylf^iNi, an exponential function of n. The "curse of 

dimensionality" exhibits and prevents a direct application of dynamic program-

ming to large-scale problems. A successive computational procedure is proposed 

in [14]. A nominal trajectory of state x and control u is specified first. One of 

the n state variables is selected while the others are held fixed. The optimization 

is performed and a new trajectory is obtained. Then, a different state variable is 

selected and the procedure repeats so that each of the state variables is selected 

at least once. Therefore, the original n-dimensional problem is transformed into 

a sequence of one dimensional problems, making the computational requirements 

increase linearly rather than exponentially as wi th the standard computation 

method. The "curse of dimensionality" is mitigated. However, this method may 
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be trapped in a local minimum. 

Reference [15] studies finite dynamic programming. Based on Bellman's 

principle of optimality, the following recursive relationship is established, 

j^in {r((n’;j/)’cOo/(n — l,T((n，y)’GO)}, n = l’2’...’7V， 
deD{{n,y)) 

with boundary condition 

f { 0 , y ) = K{0,y). 

Before establishing the dynamic programming equations, the state space is parti-

tioned into /V + 1 state spaces, n (0)，...，However , when the dimensionality 

M of the state space Q.{n) is high, the computational requirements in solving the 

dynamic programming equations would become excessive such that the "curse of 

dimensionality" exhibits. The first equation in the above recursive relationship 

becomes a minimum convolution by assuming that all maxima are attained: 

f{jhy、= mm Wniz) o f { n - I,y - z)}. 
zeZ{n,y) 

By studying the properties of this maximum convolution equation, [15] derives 

the following recurrence relation: 

Fn C {Rn u Fn-i U [Rn 田 F^i-i)}，n = 1，2’...’ iV, 

where F^, and Rn are sets of points of discontinuity of the functions / ( n , •), 

/ ( n — 1, •) and rn(-) respectively. Note that these functions are all step functions. 

W i th the help of the above recurrence equation, there is no longer a need to solve 

the M-dimensional (state space) dynamic programming problem. Instead, we 

only need to focus on the imbedded state space F^, which can be constructed 

recursively from Rn and and whose elements in RnLiFn- i or R n ® F n - i can 
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be eliminated. The solution procedure corresponds to a one-dimensional (state 

space) problem. Therefore, the "curse of dimensionality" is mitigated. 

Reference [16] studies an optimal stochastic control problem for a class 

of discrete event systems based on a preventive replacement model. This system 

may be modelled as a Markovian decision process wi th a state-dependent discount 

factor. This problem may be tackled by discretizing the time, state, and action 

space, and then be solved using the standard solution procedure of a discrete 

Markovian decision process. However, the "curse of dimensionality" would occur 

wi th the discretization. Therefore, a different approach is adopted in [16]. Un-

der certain assumptions, a value iteration method is adopted and approximation 

techniques are used to compute the value function at each iteration. A seven-step 

algorithm is proposed for the approximate computation of the optimal cost-to-go 

function. 

Reference [13] develops the so-called differential dynamic programming 

(DDP) to overcome the curse of dimensionality. DDP is essentially a second-order 

method that successively improves the control sequence based on the principle of 

optimality. The advantage of DDP over traditional dynamic programming is that 

i t does not require discretization of the state space, thus avoiding the curse of 

dimensionality. However, convergence issues may arise and paper [17] addresses 

the convergence issues of differential dynamic programming (DDP). 

1.2 Research carried out in this thesis 
The state-of-the-art in alleviating the curse of dimensionality is far below satis-

faction. We suggest in this thesis a new way to tackle the curse of dimensionality 

in dynamic programming. Especially, we integrate the surrogate constraint for-
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mulation wi th dynamic programming and propose two convergent dual search 

methods to guarantee identification of an optimal solution of the primal problem. 

The surrogate constraint method aggregates multiple constraints into one 

surrogate constraint, thus forming a relaxation of the primal problem. The singly-

constrained relaxation problem resulted from applying the surrogate constraint 

method can be efficiently solved by dynamic programming. Solving the surrogate 

formulation does not always yield an optimal solution of the primal problem. In 

other words, there is no guarantee of the nonexistence of a duality gap between 

the primal and the dual formulations. 

This thesis develops two convergent dual search algorithms for the surro-

gate constraint formulation which offer an optimal solution of the primal problem. 

Combined wi th these two convergent dual search algorithms, the proposed dy-

namic programming method is termed convergent surrogate constraint dynamic 

programming. 

The first convergent surrogate constraint dynamic programming method 

incorporates a second constraint into the surrogate constraint formulation to force 

a lower bounding for the objective function. By raising the lower bound succes-

sively each time after the resulting bi-constraint relaxation problem is solved by 

dynamic programming, this solution process iterates and is guaranteed to con-

verge to an optimal solution of the primal problem. 

The second convergent surrogate constraint dynamic programming method 

integrates a domain cut procedure to remove certain unpromising sub-boxes out 

from further consideration. By reducing successively the enlarged portion in the 

feasible region of the surrogate constraint formulation wi th respect to the feasible 

region of the primal problem, the duality gap is forced to shrink. Dynamic pro-
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gramming is used to solve the singly-constrained surrogate formulation in each 

remaining sub-domain after the domain cut within a branch-aiid-bound frame-

work. 

The efficiency of the two proposed algorithms have been tested in sev-

eral numerical testing problems and promising computation results have been 

observed. 
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Chapter 2 
Conventional Dynamic 
Programming 
Dynamic programming has been widely used in solving separable integer pro-

gramming problems. The separability of both the objective function f and con-

straint functions 识，s makes dynamic programming method an ideal technique 

to solve (P). A key assumption for an efficient implementation of the dynamic 

programming method for (P) is the integrality of 巩/s. 

Assumption 2.1 Function gtj is integer-valued, for all j = 1 , . . . , n and i 二 1, 
. . .m. 

2.1 Principle of optimality and decomposition 
The cornerstone behind dynamic programming is the so-called principle of op-

t imal i ty which is invented by Richard Bellman in 1950’s. To understand the 

principle of optimality, let us first examine an example of seeking the shortest 

path. Refer to Figure 2.1 in which A is the starting position. The number next 
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A « ？ 參 5 • ？ p G 

Figure 2.1: Shortest path example 

to each arrow represents the distance in miles between two locations. Our goal is 

to reach destination G as soon as possible by finding out the shortest path from 

A to G. To achieve this goal, we might compare all the possible paths and then 

select the shortest one. In this small-size example, there are only six possible 

paths and this enumeration scheme is workable. But i t becomes infeasible when 

we face a large-scale problem. 

For this example problem, the shortest path from A to G passes through 

C and E. We claim that the path from C to G through E is the shortest distance 

to G start ing from C. Otherwise, we may find another shorter path from C to 

G and combining i t w i th the path from A to C generates an improvement of the 

path A-C-E-G. This is a contradiction. 

The principle of opt imal i ty rests on this observation and is stated in the 

words of Richard Bellman, its inventor, as follows: 

A n opt imal policy has the property that whatever the in i t ia l state and 
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in i t ia l decision are, the remaining decisions must constitute an optimal 

policy w i th regard to the state resulting from the first decision. 

I f the remaining decisions at an intermediate state didn't constitute an optimal 

policy w i th respect to the given state, the entire policy cannot be optimal. 

The principle of optimality embeds a problem to find the shortest path 

from A to G to a family of problems to find the shortest path to G from every 

intermediate point, including the starting point. Although i t seems on the surface 

that the workload of the calculation could increase tremendously, the essence of 

the principle of optimali ty essentially leads to a powerful decomposition w i th a 

significant reduction in computation. 

Let's come back to our shortest path problem and discuss a backward 

version of dynamic programming. We start from the last stage before reaching 

destination G (Stage 3). See Figure 2.2. A t both E and F, there is no choice of 

decision. Thus the minimum distance to G from E and F (termed cost-to-go) are 

2 and 3，respectively, and are recorded next to E and F, respectively. 

Next we move back to the stage next to the last (Stage 2) to calculate the 

min imum distance to G from B, C and D. See Figure 2.3. In carrying out the 

calculation, only the immediate distance between stages 2 and 3 and the cost-to-

go information at stage 3 are needed. The cost-to-go (minimum distance to G) 

is recorded in a small circle next to B, C and D, respectively, and the optimal 

paths going out from B, C and D are colored wi th yellow. 

Finally, we move back to the starting point A. See Figure 2.4. In finding 

out the minimum distance from A to G, we only need to require knowledge 

of the immediate distance between A and points in stage 2 and the cost-to-

go information at stage 2，since cost-to-go at stage 2 aggregates all essential 
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Wl 
Figure 2.2: Cost-to-go at the last stage 

w 
Figure 2.3: Cost-to-go at the stage next to the last 
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IF 
Figure 2.4: Cost-to-go at A 

in format ion related to the shortest paths f rom stage 2 to the destination. The 

opt imal pa th going out f rom A is colored w i th red. 

To apply dynamic programming to (P) , we first introduce a stage variable 

k, 0 < k < n, and a state vector at stage k, Sk G satisfying the fol lowing 

recursive equation: 

Sk+i = Sk + gk(Xk), /c == 1 ’ . . •，n - 1, (2.1) 

w i t h an in i t ia l condit ion Si = 0，where 

= tofc(a^fc),... ’ 9mk(xk)V. 

Since the constraints are integer-valued, we only need to consider integer points 

in the state space. Furthermore, the feasible region of the state vector at stage k 

w i t h 2 < /c < n + 1 can be confined as follows: 

Sk< Sk< Sk, 
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where 

H t l min^e^ft QuM 

S k = '： , (2.2) 

_ mina^^gx,, 9mt{xt) _ 

and 

maXx,6Xt guM^bi - miUxtGXt 9 i t ( x t ) } 

h = \ . (2.3) 

_ max,;,6Xt 9mt{xt)^ bm - Ylt=k min^^ex,. g m t { x t ) } _ 

The shortest path problem has a one-to-one correspondence to problem 

(P) studied in this thesis. The locations in the shortest path problem corre-

spond to the possible values of the state variable and the paths at given locations 

correspond to the decisions for given states, the distance between the locations 

corresponds to the immediate cost, and the shortest distance to the destination 

corresponds to the optimal cost-to-go. Therefore, problem (P) can be interpreted 

as finding the optimal path with the minimum total cost starting from the init ial 

state. More specifically, recursive relationship can be developed based on the 

principle of optimality to decompose problem (P) into a family of single-stage 

optimization problems. Figure 2.5 gives a visualization of this view. 

Dynamic programming can be applied to solve problem (P) either by a 

backward recursion or by a forward recursion. 

2.2 Backward dynamic programming 
For a. given state s at stage k, 1 < k <n, define the cost-to-go function as follows, 

n 

his) = m m J 2 f j { x j ) , 
j=k 
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Calculating the 
optimal cost-to-go 
at stage k 

r — — — — — — — — 1 
I Sk Sk+\ I 

Calculating the 
optimal cost-to-go 
at stage k -1 

r 1 
I Sk-l Sk I 

1% 
I I 

Figure 2.5: Recursive solution procedure for problem (P) using dynamic pro-

gramming 
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n 

s.t. < b, 
j=k 

Xj € X j , j 二 k,... ,n. 

I t is obvious that 

v{P) = h{0). 

Based on Bellman's principle of optimality, the cost-to-go function satisfies the 

following backward recursive relation for /c = n - 1, n — 2, . . 1， 

ik{s) = m m {fk{xk) + 4+1(5 + 

wi th boundary condition 

in{s) = m i n {fn{xn) I + < b}. 

Define 

= arg m i n {fn{xn) | s + < b}, 

o^lis) = arg min { fk{xk) + 1(5 + g'^ixk))}, A； 二 n - 1’...，1. 
ifcSAfc 

The backward dynamic programming starts at A; = n and moves backwards, k = 

n — 1, . . .，1. I t calculates the cost-to-go recursively for every s at stage k between 

Sf, and Sk and finally stops at si = 0. The tracing process is then carried out 

in a forward way to identify the optimal solution of (P). Starting from a;*(0), 

the opt imal state at stage 2 is obtained as 二 g^{xl{0)). The algorithm then 

identifies the optimal solution at stage 2, 办 认 which yields the optimal state 

at stage 3, sg 二 + g^{x2{s2))- The process terminates when i t reaches s* and 

finds out 
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2.3 Forward dynamic programming 
For a given state s at stage /c, 2 < /c < n + 1, define the cost-to-accumiilate 

function as follows, 

fc-i 
tk{s) = m m ^ f j { x j ) , 

j=i 
fc-i 

s.t. Ylg^Xj) <5, 

Xj E Xj, j — — 1. 

I t is obvious that 

v{P) = m i n { t „ + i ( 5 ) I s S 6}. 

Based on Bellman's principle of optimality, the cost-to-acciimulate function sat-

isfies the following forward recursive relation for /c 二 3, . . . n + 1, 

ik{s) = mill {fk-\(xk-\) + 4-1 (5 - {xk-i))], 

wi th boundary condition 

2̂(5) = mill {/i(a:i) I < s). 
xiGXi 

Define 

x*i{s) 二 arg min {/i(:ci)丨夕工⑷ < s} ’ rcieXi 
4-1(5) = arg min { f k - i { x k - i ) + h-i{s 一 /"Hâ fc-i))}, 

hj —— 2, . , . ’ 77/ 1. 

The forward dynamic programming starts at /c 二 2 and moves forward, /c 二 3, 

• •.’ n + 1. I t calculates the cost-to-accumulate recursively for every s at stage k 

between 5；. and Sk and finally stops at stage n + 1. Let 

Sn+l = 8iigmm{in+i{s) I <5 S 

15 



The tracing process is then carried out in a backward way to identify the optimal 

solution of (P). Starting from the optimal state at stage n is obtained 

as = — The algorithm then identifies the optimal solution 

at stage n, which yields the optimal state at stage n — 1, = s* — 

The process terminates when it reaches and finds out 0:1(52). 

Example 2.1 

m i n f { x ) = —3xi + 5x2 + 82:3 

s.t. gi{x) = —2x\ — 0：2 + ^ —3, 

g2{x) = a：! + 0：2 + < 2, 

a: € { - 1 , 0 , 1 } , z = 1,2,3. 

The optimal solution is x* = (1,0, -1)了 wi th f{x*) = - 6 . 

Using the formulas in (2.2) and (2.3), the feasible regions of the state 

vector can be found as follows for fc = 2, 3, and 4, 

- 2 1 r m i n { 0 , - l } 
< S2 < , 

—1 m in { l , 3} 

- 3 ] r m i n { l , - 2 } 
< 53 < , 

- 2 min{2,2} 

- 4 1 \ min{2, - 3 } 
< S4 < • 

- 2 min{3,2} 

Table 2.1 gives the solution processes using backward dynamic program-

ming. 

The solution process using backward dynamic programming starts from 

stage 3. For each possible 53, the optimal decision 0:3(53) is found and the corre-

sponding optimal cost-to-go £3(53) is recorded. For example, at S3 = (—2, —1)^, 
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Table 2.1: Solution process for Example 2.1 using backward dynamic program-

ming. 

Si x l { s i ) / i i { s i ) S2 X l { s 2 ) / i 2 { s 2 ) S3 o o l j s s ) / h j s s ) 

( 0 ’ 0 r 1 / - 6 ( - 2 , - 1 ) ^ 0 / - 3 ( - 3 , - 2 f - 1 / - 3 

( - 2 ’ O f 0 / - 3 ( - 3 , - 1 ) 7 _ i / _ 3 

( - 2 , I f 0 / - 3 ( - 3 , O f - 1 / - 3 

( - 1 , - 1 广 1/2 (—3’ I f - 1 / - 3 

( - l , O f 1/2 ( - 3 , 2 ) ^ 0/0 

(_1 ’1)T infeasible/00 ( _ 2 , - 2 f - 1 / - 3 

( - 2 , - I f - 1 / - 3 

( - 2 , O f - 1 / - 3 

( - 2 , I f - 1 / - 3 

( - 2 ’ 2广 infeasible/oo 

both = 0 and 0:3 = 1 are infeasible. The optimal decision —2’一1广）is 

found to be - 1 and the corresponding 一1广)is - 3 . I f there does not exist 

a feasible solution at S3’ 0:3(53) is set as 00. Then, we move back to stage 2. A t 

each possible S2, we compare /2(0；2) + #3(52 + ^^(2:2)) for X2 二 一1, 0 and 1 and 

find out and the corresponding optimal cost-to-go £2(52)- For example, at 

52 = ( - 2 , O f , comparison of 5 ( - l ) 2 + 4 ( ( - l , - i f ) 二 oo, 5(0)2+f3((-2’ 0) 了）= 

- 3 ’ and 5 ( l ) 2+£3 ( (—3 ’ i r ) = 2 yields a;拟-2，0)了）= 0 and (〜((一之’。)了）= - 3 . 

Finally, we move back to stage 1. Checking f i ( x i ) + fe((0’ 0广 + 分 1(3:1)) for Xi = 

- 1 , 0 and 1 gives a:;[(si = (0’0)了）= 1 and t i ( s i = (0,0)了）= —6. Tracing back, 

we find the optimal solution for the example problem:工1 = 1，：C2 二 0 and 0:3 = 

- 1 . 
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Next we examine how the forward dynamic programming is used to solve 

Example 2.1. Table 2.2 summarizes the solution process. 

Table 2.2: Solution process for Example 2.1 using forward dynamic programming. 

52 x\{s2)/i2{S2) g3 /kls^) S4 Xl{s4)/U(s^) 

{ - 2 , - I f - 1 / 3 ( - 3 ’ - 2 广 infeasible/oo (—4 ’ -2广 infeasible/oo 

( - 2 , 0 ) ^ - 1 / 3 ( - 3 , - 1 ) ^ infeasible/oo ( - 4 , - 1 ) ^ infeasible/oo 

(一 2 ’1 广 1 / - 3 ( - 3 , 0广 1/8 ( - 4 , O f infeasible/oo 

( - 1 , - i r - 1 / 3 ( - 3 , 1 广 1/8 ( - 4 , I f - 1 / 5 

( - 1 , 0 ) ^ 一 1/3 ( - 3 , 2 f 1/2 (—4’ 2广 - 1 / 5 

( - l ’ l ) r 1 / - 3 (—2，—2广 infeasible/oo ( - 3 , - 2 ) ^ infeasible/oo 

( - 2 , - 1 ) ^ 0/3 (_3 ’—1 广 infeasible/oo 

( - 2 ’ 0 ) r 0/3 ( - 3 , O f 0/3 

( - 2 ’ I f 0 / - 3 (—3’ I f - 1 / 0 

(-2,2)^ 1/2 (-3’2产 - 1 / - 6 

The solution process using forward dynamic programming starts from 

stage 2 and ends at stage 4. Minimizing U wi th respect to S4 < (-3’2)了 finds 

out the opt imal value of the example problem &((—3’ 2)7’）二 —6. Tracing back 

identifies opt imal solution: x'^ = —1, 0：2 = 0 and a:* = 1. 

Determining the feasible region could become a tedious task in applying 

dynamic programming. This difficulty can be alleviated to certain degree when 

the following assumption is satisfied. 

Assumption 2.2 For all j = 1 , . . . ,n and i = ... m, function gij is integer-

valued and is nonnegative for all Xj e X j . 

When Assumption 2.2 is satisfied, the range of Sk at stage k, for k = 2, 3， 

. . n , n + 1, can be simply determined by [(0,.,.，0)^, (61, . . . , bm)'^]-

18 



If the nonnegativity assumption does not hold for some 恥，then we can 

subtract mmx^eXj g i j (x j ) from both Qij and bi at the same time. Repeating 

this equivalent transformation for all 恥，s that do not possess the nonnegativ-

i ty property such that Assumption 2.2 holds for the transformed problem. The 

range of {sk)i at stage k for /c = 2, 3, . . n , n + 1 can be then given by 

- 9 i j ] , where h = { j = l ’ . . . ’ n | min^^-ex,- Qij < 0}. The 

price to perform such a transformation is an enlargement of the feasible region 

of the state space which affects an efficient implementation of dynamic program-

ming. 

2.4 Curse of dimensionality 
I t is evident that the number of the possible states increases exponentially wi th 

respect to the number of constraints. Thus, although dynamic programming is 

conceptually an ideal solution scheme for separable integer programming, the 

“curse of dimensionality" prevents its direct application to mult iply constrained 

cases of (P) when m is large. 

Consider another problem wi th 3 variables and 5 constraints: 

min f { x ) = 2x1 + 3x2 一 2x1 

s.t. gi{x) = xl - X2 - X3 <0, 

92{X) 二 3xi +X2 + X3 < - 1 , 

gs{x) = - x l - 2 x 2 + 2 x l < 0 , 

94{X) = - x l - x l - x l < - 1 , 

gb{oc) = x l - 2x2 - 3x3 < 3, 

X iG { - 1 , 0 , 1 } , i = l ,2 ,3 ,4 ,5 . 
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Using the formulas in (2.2) and (2.3), the feasible regions of the state 

vector can be found as follows for /c = 2 and 3， 

0 m i n { l , 2 } 

—3 min{3 ,1} 

- 1 < 52 < m m { 0 , 4 } , 

- 1 m i n { 0 ’ l } 

- 1 min{l，8} 

- 1 m i n { 2 ’ l } 

- 4 mil l {4 ,0} 

一3 < S3 < m i n { 2 , 2 } . 

- 2 min{0,0} 

—3 min{3,6} 

I f backward dynamic programming is applied, there are total ly 2 x 5 x 

2 X 2 x3 = 120 S2 states and 3 x 5 x 6 x 3 x 7 = 1890 53 states. Prom this 

calculation, we see that the number of possible states increases exponentially w i th 

respect to the number of constraints. Therefore, when m is large, the computa-

t ional efforts for x l {sk) and ik{sk) as well as the storage requirements for these 

calculated amounts become excessive. Generally, when we are solving a problem, 

our objective is to obtain the solution or the approximate solution, and to obtain 

i t in reasonable amount of t ime and wi th reasonable uti l ization of computer re-

source. However, w i th dynamic programming being the solution technique, as the 

number, or otherwise the dimension, of the state variables increase, the compu-

tat ional and storage requirements grow rapidly beyond the handling of the most 

up-to-date computer device. This prohibits the direct application of the dynamic 

programming technique to problems when the dimension of the state variables 

is relatively high or the number of the state variables is relatively large. This 
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phenomenon is known in literature as the "curse of dimensionality". 

Dynamic programming, however, remains as an efficient solution scheme 

for separable integer programming problems when m is small, especially for singly 

constrained cases. 

2.5 Singly constrained case 
Consider the singly constrained case of (P): 

n 

{Pi) mil l f { x ) : = Y ^ M x j ) 

n 

s.t. g(x) = ^ ^ 
j = i 

X e X = Xi X X2 X • • • X Xn, 

where X j = { x j £ X \ I j < Xj < Uj} wi th I j and Uj being integers. We assume 

g j {x j ) > 0 on X j for all j = 1 ’ . . . ’ n. 

For adopting backward dynamic programming, the cost-to-go function is 

defined first as follows, 

n 

4(s) = mil l / j f e ) ' 
j=k 

n 

S . t . S + y ^ P j ( ^ j ) < 6 , 

j=k 
Xj e X j , j 二 

for A; = 1 , . . . , n — 1, 5 = 0 , . . . , 6. The backward recursive equation is 

ik{s) = min{ fk{xk) + 4+1(5 + gk{xk))} 

s.t. s + gk{xk) < b, 
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for A; = n — 1 , . . . , 1, 5 = 0 , . . . , 6, wi th boundary conditions 

ik(s) = +00， for s < 0, A; = 1 , . . . 

in{s) = min{/n(2;„) | S + gn(Xn) < b, = + •^n}， 

s = 0,... ,b. 

For adopting forward dynamic programming, we define the following cost-

to-accumulate function, 

fc-i 
h i s ) = 

j=i fc-i 
s - t . ^ Q j i X j ) < 5 , 

Xj € X j , j 二 1，... ’ A; — 1. 

The forward recursive equation is 

ik{s) 二 min{/fc(:cfc) + 4-1(5 - gk{xk))} 

s.t. gk{xk) < s, 

工k = k , k + 1，. • •, Wfc, 

for A; = 3 , . . . , n, 5 = 0 , . . . , 6, w i th boundary conditions 

i j { s ) = + 0 0 , for s < 0, J = 1 , . . . , n, 

？2(5) = m i n { / i ( ; r i ) I " i ( : r i ) “ rci = Z i “ i + 1’...，wi}， 

s = 0,... ,b. 

The dynamic programming table has a size of n x (6 + 1). 
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Example 2.2 

mil l f { x ) = - 2 ^ - 2x2 - x l - (ll2)xl 

s.t. g{x) = 3a;i — x\ + X2 x1 + x^ < 5, 

a; e 

The opt imal solution is = (0,2，1，2广 w i th f ( x * ) 二 —9. 

Table 2.3 shows the process of the forward dynamic programming for this 

example, where Wk(s) = s - gk{xl{s)). 

Table 2.3: Dynamic programming table for Example 2.2. 

s Us)/x\{s) U{s)/xl{s)/w2{s) U(s)/xl{s)/w;{s) k{s)/xl{s)/w,{s) 

0 0/0 0/0/0 0/0/0 0/0/0 

1 0/0 -2/1/0 -2/0/1 -2/0/1 

2 -2 .8284/2 - 4 / 2 / 0 - 4 / 0 / 2 - 4 / 2 / 0 

3 -2 .8284/2 一 4 . 8 2 8 4 / 1 / 2 - 5 / 1 / 2 - 6 / 2 / 1 

4 -2 .8284/2 -6 .8284/2 /2 -6 .8284/0 /4 - 8 / 2 / 2 

5 -2 .8284/2 -6 .8284/1 /2 —7.8284/1/4 —9/2/3 

Thus ^5(5) is the optimal value and the optimal solution can be obtained 

by backtracking out through the table: 

= 2,X*2 = 2 = ^ s l - 仍 O r ; ) 二 0 

=0,3：； =0. 

Therefore the opt imal solution is x* = (0,2’ 1,2)^. 
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Chapter 3 

Surrogate Constraint 
Formulation 

3.1 Conventional surrogate constraint formula-
tion 

The surrogate constraint formulation has been widely used in solving integer 

programming problems. More specifically, the surrogate constraint formulation 

is formed by aggregating multiple constraints into a single surrogate constraint, 

(P,) mi l l f i x ) 

s.t. "了("(‘T) - 6) < 0, 

a; € X , 

where f j , = ( / j , i , . . . , f i rnV ^ is a vector of surrogate multipliers, g(x)= 

( f f i ( x ) , . . . , gm⑷)T and b = (61,... Define S(/j,) to be the feasible region 

of decision vectors in (P^), 

S V ) = { X G X I (3.1) 
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Clearly, compared to the feasible region of decision vectors in the primal problem, 

二 {o: e 9{x) - 6 < 0 } , 

the following relationship holds for any / i G IR̂ Ĵ  

S C S i f i ) . 

Denote by v{Q) the optimal value of an optimization problem (Q). Since, for any 

G 1R+, S{n) is an enlargement of the feasible set of the primal problem, the 

following weak surrogate duality is evident, 

v{P^) < v{P). V / i e R!^ 

Surrogate constraint formulation (P^) wi th a parameter j i is called a relaxation 

of the primal problem (F) since 'u(P^) < v{P) holds for all possible values of /i. 

In other words, solving a relaxation problem offers a lower bound of the optimal 

value of the primal problem. The dual problem is formulated to search for an 

optimal parameter, fi*, such that the duality gap of v{P) — v{P^) is minimized at 

= fi*. The quality of a relaxation should be thus judged by two measures. The 

first measure is how easier the relaxation problem can be solved when compared 

wi th the primal problem. The second measure is how tight the lower bound can 

be, in other words, how small the duality gap can be reduced to. 

Note that surrogate constraint formulation (P^) is a singly constrained 

separable integer programming problem which can be efficiently solved by dy-

namic programming. 

The surrogate dual is an optimization problem in /i, 

{Ds) max v(P^) 

s.t. II 6 R+. 
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Consequently, based on the weak surrogate duality, the surrogate dual provides 

a best lower bound for v{P) from solving (P^), 

v{Ds)<v{P). 

When a solution in the surrogate constraint formulation achieves an op-

t imal i ty in the primal, we say that strong surrogate duality holds. The strong-

surrogate duality rests on the feasibility of the solution to (P^*). 

Theorem 3.1 (Strong Surrogate Duality) [9] If an x* solves {P^*) for a fi* 

€ and x* is feasible in ( P ) , then x* solves ( P ) and v{Ds) = v{P). 

I t is dear that = v{P0^) for any 0 > 0. Thus, the surrogate dual 

problem {Ds) can be normalized to an equivalent problem with a compact feasible 

region: 

{D^) max v(P^) 

S.t. yU 6 A, 

where A = e 已了“ 2 1} and e = (1 , . . . ’ 1)了. 

3.2 Surrogate dual search 
How to update the surrogate multipliers in order to maximize the surrogate dual 

is a key to success in applying the surrogate dual method. The discussion in this 

section is based on [9]. 

For a € R, let X{a) denote the level set of f { x ) , X{a) = e | f { x ) < 

a}. For given / i 6 A and o： € M, v{P^) < ck if and only if 

(3.2) 
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where S i j j ) is defined by (3.1). Consider the following problem 

( 吵 ’ ")） mi l l iF{g{x) - b) 

s.t. a: e 

We notice that (3.2) holds if and only iiv{P{a,")) < 0. Since v(jy^s) = | 

/ i e A } ’ i t follows that v{Df) < a if and only if v[P{a, /j,)) < 0 for all ^ € A. We 

define now the following dual problem: 

{D{a)) max v{P{a,ii)) 

s . t . " 八 . 

The above discussion leads to the following theorem. 

Theorem 3.2 [9j For given a € R； v{D^) < a if and only if v{D{a)) < 0. 

Al l immediate corollary of Theorem 3.2 is as follows. 

Corollary 3.2.1 [9] The optimal surrogate dual value v{Ds) is the minimum 

aeR such that v{D{a)) < 0. 

The cut t ing plane method can be used to solve {D{a)). Notice that {D{a)) 

is equivalent to the following linear program: 

max 3 
09’"） 

S.t. yx e X{a), 

//. e A. 

For each a: € Xia), the first constraint forms a, cutting plane. Since X{a) is 
unknown, we construct T'' c X{a) step by step in the solution process, thus 
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approximating v{D{a)) successively by solving the following linear program: 

(LPfc) max (3 

s.t. l5<ylF{g{x)-h), V r c e T ^ 

f i e A. 

The above discussion leads to the following algorithm to solve {Dg). 

Procedure 3.1 (Cutting Plane Procedure for {Dg)) 

Step 0 (Init ial ization). Set a。二 一⑴,T^ = 0. Choose any /j} € A. Set k = 1. 

Step 1 (Surrogate relaxation). Solve the surrogate relaxation problem (P^fc) 

and obtain an optimal solution x^. I f g{x^) < 6, stop and x^ is an optimal 

solution to (P) and ‘u(D呈)= 

Step 2 (Updating lower bound). I f f{x^) > then set a知=/(工”.Other-

wise, set a'' = a知一 1. 

Step 3 (Updating mult ipl ier). Set T^ 二 U {工知}. Solve the linear program 

(LPfc) and obtain an optimal solution 知’ M ” . I f < 0’ stop and a^ = 

v{Dg). Otherwise, set 糾 = f j / ^ and A: := /c + 1, go to Step 1. 

Theorem 3.3 [9] Algorithm 3.1 finds an optimal value of (D^) within a finite 

number of iterations. 

To il lustrate Procedure 3.1, consider the following example: 
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Example 3.1 

min f { x ) = 3x1 + 2x1 (3.3) 

s.t. (re) = 10 — 5a: 1 — 2x2 < 7, 

仍Or) = 1 5 - 2xi - 5x2 < 12, 
( 、 

integer 
x e X = I 0 <3：1 < 1 , 0<0：2<2 >. 

8a:i + 8X2>1 \ / 

The optimal solution is x* = (1,1)^ wi th f{x*) = 5. 

The iteration process of Procedure 3.1 for this example is described as 

follows: 

Step 0. Set = - o o , T。= 0. Choose fj} = (0.5，0.5): Set k = 1. 

Iteration 1 
Step 1. Solve the surrogate problem 

(P^i) min ？>x\ + 2x1 

s.t. 0.5 X (10 - 5x1 - 2x2) + 0.5 X (15 - 2x1 一 < 9.5, 

X € X . 

We obtain = (0,1)^ wi th g(x') = (8,10广 ^ (7’ 1 2 f . 

Step 2. Since /(工丄）=2 > a®, set = 2. 

Step 3. Set T^ = {x^} . Solve the linear program: 

(LP i ) max (3 

s.t. P < 111 - 2/i2, 

Ml + < 1， 

IM > 0, 112 > 0. 
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We obtain 伊 = 1 〉 0 and “丄= ( 1 ’ 0)了. Set k = 2 and = /nK 

Iteration 2 
Step 1. Solve the surrogate problem 

mi l l ?>x\ + 2x1 

s . t . 1 X ( 1 0 - 5 ‘ t i - 2x2) + 0 X (15 - 2x1 _ 5:C2) < 7, 

X e X. 

We obtain = (1’ O f w i th g{x'') = (5,13广玄 (7,12广. 

Step 2. Since / ( r c ” = 3 > o ^ set = 3. 

Step 3. Set T^ = Solve the linear program: 

(LPs) max (5 

s.t. (5 < i i i - 2"2 ’ 

P < + "2, 

Âi + < 1, 
Ml > 0, 112 > 0. 

We obtain = 0 and ji^ = (0，0)了. Stop and the optimal surrogate dual value 

is L'(Dg) = a'2 = 3. Note that the surrogate dual value, 3, is better than the 

Lagrangian dual value, 

3.3 Nonlinear surrogate constraint formulation 
The surrogate constraint method does not always solve the primal problem, i.e., 

the surrogate dual does not guarantee generation of an optimal solution of the 

pr imal problem. When v{Ds) is str ict ly less than v{P), a duality gap exists 

between {Ds) and (P) . 
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As stated in [9): The surrogate relaxation, (P^), differs from the primal 

problem, (P) , only in the feasible region. In general, the feasible region of the 

surrogate relaxation enlarges the feasible region of the primal problem. If this 

enlarged feasible region contains a point that is infeasible w i th respect to the 

major constraints of the primal problem and has a smaller objective value than 

i!(P), then the surrogate relaxation, (P^), wi l l fail to identify an optimal solution 

of the pr imal problem, (P), while searching for the minimum in this enlarged 

feasible region. 

To i l lustrate this argument further, we consider Example 5.1 again. Ap-

plying the conventional surrogate constraint method to solve (3.3) yields, 

min 3x1 + (3.4) 

s.t. "1(10 - 5xi 一 2x2) + /U2(15 - 2xi - 6x2) < 7/m + 12/̂ 2, 
， � 

integer 

a： € X == 0 < x i < 1, 0 < 0：2 < 2 

8工1 + 80：2 > 1 
\ / 

I t can be seen from Figure 3.1 that the surrogate constraint defines a closed half 

space in the {91,92} space. For whatever value of chosen, the resulting closed 

half space always includes an infeasible solution of the primal problem. Both 

infeasible solutions, (0,1)^ and (1’0)了，in this example have objective values 

smaller than v(P). As a result, the conventional surrogate constraint method 

fails to generate the opt imal solution of the primal problem in this example. The 

resulting maximum dual value is v{P^) = 3 w i th f i 二（1’0广 as been computed 

in Example 5.1, and a duality gap exists. 

I t becomes clear now that a sufficient requirement to eliminate the duality 

gap in the surrogate constraint method is to make the feasible region in the 
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Figure 3.1: Surrogate constraints in the constraint space of Example 5.1. 

constraint space, defined by a single surrogate constraint, the same as the feasible 

region in the primal problem. This goal can be achieved by some nonlinear 

surrogate constraint methods discussed in [9]. 

Wi thout loss of generality, gi(x), i = 1,2，...，m, are assumed to be strict ly 

positive for all x e X. 

Let M = diag(jii,...，/Xm). We define the following weighted p-norms, for 

a real number p w i th 1 < p < 00, as: 

i=l m 
II 攝 II 厂 { E [ M n " p， 

and the weighted 00-norm as 

||M^(a;)||oo = max {̂ 1^1(0：), W , . . . , f l m 9 m { x ) } , 

\\Mb\\oc = max { f l l h , Il2b2, ...，Mm^m}-
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The following are well known, 

l im \\Mg{x)\\, = \\Mg{x)\U V x 6 R " , 
p—•OO 

l im | | M 6 | | , = | |M6|U. 
p—*oo 

The p-norm surrogate constraint formulation of (P) is now formed as fol-

lows for 1 < p < 00： 

(PP min f i x ) 

s.t. \\Mg{x)\\p<\\Mb\\p, 

X e X, 

where j i satisfies the following, 

" l 6 l = — 2 = … 二 f ^ m b m . ( 3 . 5 ) 

Let B be a positive real number that is defined as follows for a i i that satisfies 

(3.5), 

B = fiibi, i = 1 , 2 , . . . ,771. 

Define to be the feasible region of decision vectors in ( P p , 

= {x e X \ \\Mg{x)\l < ||M6||,}. 

When 0； satisfies g i [x) g i = 1,2’ … ’ m ’ a: also satisfies < ||M6||p 

for 1 < < OO. Thus, S c when 1 < p < oo. Thus, when 1 < p < oo, 

problem [ P p is a relaxation of problem (P) and we have 

V I < p < o o . 

Whi le (PP) st i l l constitutes a relaxation of problem (P) even when / i does 

not satisfy (3.5), the p-norm surrogate constraint method confines itself to use 
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only those /i,s that satisfy (3.5), due to several important properties associated 

w i th I I satisfying (3.5), as indicated in [9]. 

For / i G R+ satisfying (3.5), let Gp(jj) denote the feasible region formed 

by the p-norm surrogate constraint in the g space, 

G 、 ) = {没 e R!? I 丨陶 |p < | |M6||,}. 

Figure 3.2 graphically demonstrates the feasible regions in the {^^i’没2} space de-

fined by the p-norm surrogate constraint for different values of p. A nice property 

of inclusion can be seen for from Figure 3.2 and this property of inclusion 

is mathematical ly proven in the following theorem. 

4.S| 1 1 1 1 1 1 

< l|M fl||„=-||M blip • 

3 P"2 

2 5 • 
g： P-1Q 

qK ^ …•丨,“_r.“nA J _ _ L J . ^ _ 
0 1 2 3 4 5 6 

9. 

Figure 3.2: p-norm surrogate constraints in the constraint space w i th / i 二 

(0.4’ 0.6广 and b = (3,2)^. 

Theorem 3.4 [9] For 00 > p > q, 

C G V ) ， 

where fi satisfies (3.5). 
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The following theorem further establishes an equivalence between { P p 

and (P) w i th respect to the feasible region of decision vectors. 

Theorem 3.5 [9j If (i satisfies (3.5), then there exists a finite q such that 

S = SP{ji) 

for all p > q. 

In general, obtaining q could be at least as difficult as solving (P) itself. 

For an important general class of integer programming problems, however, a lower 

bound of p can be easily calculated. 

Corollary 3.3.1 [9j Suppose that all Qi, i = 1, 2, . . m , are integer-valued func-

tions, e.g., polynomial functions with integer coefficients. Then for fi satisfying 

(3.5), 

S = S^iii). 

when p > ln(m)/ln[mini<i<,„(6i + l ) / b i ] . 

Theorem 3.5 and Corollary 3.3.1 provide interesting results in separation. 

By selecting a sufficiently large p, all infeasible solutions of the primal problem 

wi l l be excluded from S^{fi). In other words, the feasible set defined by the p-

norm surrogate constraint, Sp(ji)、will exactly match the feasible set of the primal 

problem, S, when p > q. In summary, an appropriately selected nonlinear single 

surrogate constraint can be constructed by aggregating multiple major constraints 

of the pr imal problem such that a surrogate relaxation and the primal problem 

are exactly equivalent. This result offers a basis in achieving zero duality gap in 

integer programming when adopting the p-norm surrogate constraint method. 
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Theorem 3.6 [O] Suppose that all gi, i = 1, 2, m, are integer-valued func-

tions. If fi satisfies (3.5), then 

v { P P = v{P) (3.6) 

for p > q, where q = l n ( m ) / l n [ m i n i < i <； + l ) /6d. 

A point to be emphasized is that the p-norm surrogate constraint method 

does not require a search for an optimal / i vector. The value of the “ vector can 

be simply assigned by solving (3.5). 

Now we come back to Example 5.1 which the conventional surrogate con-

straint method fails to solve as we discussed before. Applying the p-norm surro-

gate constraint method yields the following formulation, 

min 3a;? + 2x1 

s.t. - 5a;i - 2x2Y + - 2a:i -

< x7p + f 4 x 

X e X. 

One normalized solution for 的 x 7 = x 12 is (Ai, A2) = (0.6316，0.3684). The 

value of B is equal to / i i x 7 = /i2 x 12 = 4.4211. Figure 3.3 shows Sp(Jl) for 

p 二 1,2,6,9. I t can be clearly observed that when p 二 9, S'P{ji) = S and the 

p-nonn surrogate method successfully identifies the optimal solution x* = (0,2广 

wi th zero duali ty gap. 

Whi le the p-norm surrogate constraint method greatly simplifies the dual 

search at the upper level, i.e., there is no need to search for the optimal multiplier 

vector, the resulting surrogate relaxation problem at the lower level, in general, 

becomes intractable, when comparing w i th the conventional surrogate constraint 
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Figure 3.3: p-norm surrogate constraints in the constraint space of Example 5.1 

w i th = (0.6316，0.3684广 

method. Concerning our separable primal problem (P), the p-norm surrogate 

constraint formulation { P p is highly nonseparable which dynamic programming 

is not applicable to solve. 

The surrogate dual was first investigated in [3] and [11] for continuous 

opt imizat ion problems. The surrogate dual was then applied to linear integer 

programming in [2] [4] [5]. Several surrogate dual search methods were developed 

for linear integer programming in [lj[4] [5] [12]. 

The development of nonlinear surrogate constraint methods started w i th 

the p-norm surrogate method presented in [6j. Nonlinear surrogate constraint 

methods were also discussed in [7] and [10]. 
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Chapter 4 
Convergent Surrogate Constraint 
Dynamic Programming: 
Objective Level Cut 
The most challenging task to achieve the strong duality in the surrogate constraint 

formulation is to modify the formulation of (P^) such that the optimal solution 

of (尸"）is feasible in the primal (P) at the same time. 

The feasible region of (P^), S(/2), enlarges the feasible region of (F), S. 

When an infeasible solution of (P) that has an objective value smaller than v{P) 

is included in (P^), the optimal solution of [P^) cannot be feasible. The solution 

concept presented in this chapter is to remove such an infeasible point which 

attains the opt imal i ty of (P") from further consideration. 

We require the integrality of f in this chapter in order to efficiently im-

plement dynamic programming. 

Assumption 4.1 Function f { x ) is integer-valued, for all x € X. 

Let us now consider the following surrogate constraint formulation wi th a 
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lower bound constraint for the objective function, 

( i y c ) ) mil l f i x ) 

s.t. f / i g { x ) - 6) < 0, 

/ ⑷ > c, 

x e x , 

where c € M. We assume that the value of n is fixed. Note that problem 

is equivalent to the conventional surrogate constraint formulation (P^) when c < 

Let the feasible region of (P^(c)) be 5(/i；c). 

The following theorem provides the basis for development of the conver-

gent surrogate constraint dynamic programming using the concept of objective 

cut. 

Theorem 4.1 ( i ) When v{P^) <c< v{P), 

S c S { f i - c ) c S { f i } . 

(a) Let 

6 = min{v(P) - f ( x ) | a: e X and f { x ) < v{P)}. 

Problem (P^(c) ) is equivalent to the primal problem ( P ) when — 5 < c < 

v { P ) -

Proof, (i) The following is clear: If c is larger than some points in S i j i ) 

={a; G X I iF{g{x) - b) < 0} could become infeasible in S{fi]c) = {a: G X | 

- 6) < 0, f { x ) > c}; I f c is smaller than v{P), some infeasible points of 

(P) could become feasible in S[ii\ c). 
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(i i) When v{P) — 5 <c< no infeasible point of (P) w i th its objective 

value less than v{P) can be feasible in c). A t the same time all feasible points 

of (P) are st i l l feasible in 5'(/i； c). • 

Problem is a separable integer programming problem wi th 2 con-

straints which can be solved by dynamic programming in a relatively easy way 

compared to (P) when the number of constraints is large. 

Note from (i) of Theorem 4.1，for any c satisfying v{P^) < c < v{P), 

(P"(c)) is a relaxation of (P). Thus, the optimal value of (P^(c)) is a lower 

bound of v{P). The remaining task is how to adjust the value of c such that the 

iterative solution process of solving (P^(c)) wi l l eventually identify an optimal 

solution of (P) . 

In the proposed algorithm, the surrogate constraint problem (P^) is first 

solved for a selected /i. Dynamic programming is used to identify all the optimal 

solutions to (P^). I f there is a feasible solution of (P) in the solution set of (P^J, 

this solution is opt imal to the pr imal problem (P). Otherwise, let vq = v { P i i ) - By 

the weak duality, v[P) > VQ. Since f { x ) is integer-valued, v{P) must be greater 

than or equal to t̂ o + l - Therefore, we form problem (P^(c)) by incorporating the 

constraint of f { x ) 2 î o + 1 . 

I f there is a feasible solution of (P) in the solution set of {P^{vq + 1))， 

this solution is opt imal to the primal problem (P). Otherwise, let Let Vi = 

v(P^(vo + 1)). By the weak duality, v(P) > vi. We solve then (P^(c)) w i th c = 

vi + 1. 
This process repeats and there must be a feasible solution of (P) that is 

opt imal to (P^i(c)) when c = v(P) — 5 + 1. 

We formally describe the algorithm as follows. 
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Procedure 4.1 [Convergent Surrogate Constraint Dynamic Programming: 

Objective Level Cut] 

Step 0 Select a ^ € Z!j： and solve (P^). If there is a feasible solution of (P) in 

the solution set of (P^), this solution is optimal to the primal problem (_P) 

and stop. Otherwise, let vq 二 and k = 1. 

Step 1 Using dynamic programming to solve the following problem ( P 々 k - i + 

1)), 
n 

mill f{x) = Y^fj{xj) j=i 
m n rn 

s.t. g^(x) = Y ^ l l i i ' ^ g i j i x j ) ] < 
i=l i=l i=l 

n 

j=i 
= Xn. 

step 2 I f there is a feasible solution of (P) in the solution set of {P^.(vk-i + 1)), 

this solution is optimal to the primal problem (P) and stop. Otherwise, let 

Vk = v{P^{vk-i + 1)). Set k = k + 1 and go back to Step 1. 

The solution concept of using objective level cut was first adopted in La-

grangian dual search [9] for nonlinear separable integer programming problems. 

We illustrate the above solution procedure in the following example. 

Example 4.1 

min f { x ) = 3x1 + 

s.t. = -3a; i + 2x2 < - 4 , 
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仍(re) = x i + 0；2 < 3, 

"3(rc) = 2x1 + < 5, 

仍（;r) 二 — 2x2 < 0, 

95(3：) = +5x2 < - 5 , 

xeX = {xel?\Q<Xi<?>, i = 1 , 2 } . 

The opt imal solution is x* = (2,1)^ wi th f{x*) = 14. 

The iteration process of Procedure 4.1 for this example is described as 

follows: 

Step 0, Select /zi 二的=1，solve the following surrogate problem (P^) 

using dynamic programming, 

min f { x ) = 3a;? + 2x1 

s.t. = -5a; i + 7x2 < - 1 , 

x e X = { x e Z ^ \ 0 < X i < 3 , i = 1’ 2 } . 

We obtain x^ = (1,0)了 and /(a:。）= 3. Solution is not feasible to the primal 

problem (P). Let Vq = = 3 and k = 1. 

Iteration 1 
Step 1. Using dynamic programming to solve the problem (P々q + 1)), 

min f { x ) = 3a;? + 2x1 

s.t. g^ ix) = —5x1 + 7x2 < —1, 

- f { x ) = - S x l - 2x1 < -4, 
x e x = { x e z ' ^ \ 0 < x i < 3 , z = l , 2 } , 

yields solution = (2,0广 w i th f { x ^ ) = 12. 
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Step 2. Solution x^ is not feasible to the primal problem (P). Let vi — 

f{x^) 二 12 and k = 2. 

Iteration 2 
Step 1. Using dynamic programming to solve the problem + 1))， 

min f { x ) = 3x1 + 2x1 

s.t. g{x) = —bx\ + 1x2 < —1’ 

- f { x ) = -3x1 - 2x1 < -13, 

X e X = {x eZ'^ \ 0 < X i < 3 , i = 1 , 2 } , 

generates solution x^ = (2’ 1 广 wi th / (x^ ) = 14. 

Step 2. Solution x"^ is feasible to the problem (P). Stop and the optimal 

solution to the primal problem is x* = x"^ = (2,1)^ with f{x*) = 14. 
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Chapter 5 

Convergent Surrogate Constraint 
Dynamic Programming: Domain 
Cut 
As we did in the previous chapter, the central solution concept of the proposed 

convergent surrogate constraint dynamic programming is to gradually remove 

some "active" infeasible solutions that attain optimal positions in the surrogate 

constraint formulation. Instead of imposing a lower bound on the objective func-

tion as we proposed in the last chapter, we propose a domain cut approach to 

cut off sub-domains that contain "active" infeasible solutions from further con-

sideration. 

Note that in the development of the current chapter, we do not require 

the integrality of the objective function / . 

Let a, € Z" , where Z " denotes the set of integer points in M". Denote 

by [a, jS] the box (hyper-rectangle) formed by a and = {x | a). < Xj < 
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(3j, j = 1 , . . . , n } . Let {a,/3) denote the set of integer points in [a,/?], 

= = ( a i , A > x …乂〈c^nM, 

The set (a, P) is called an integer box. For convenience, we define [a, (5] = (a, [5)= 

0 if a ^ 

Let [t] denote the maximum integer less than or equal to t and「i] the 

min imum integer greater than or equal to t. 

To il lustrate the solution concept behind the proposed convergent sur-

rogate constraint dynamic programming using domain cut, let us consider the 

following example. 

Example 5.1 

min f { x ) = 3x1 + 2x1 

s.t. gi{x) = 2xi + 3x2 < 7, 

X e X = {x ez^ \ 0 < X i <3, i = 1 , 2 } . 

Figures 5.1 and 5.2 illustrate the feasible regions in both the ；r-space and the g-

space. Note there are only two feasible points in this example, (3’ 0)^ and (2，1)^. 

Apply ing the conventional surrogate constraint method to solve the above 

example problem yields, 

min f { x ) = Sa：! + 2x1 

s.t. g乂cc) = /J'i(2xi + 30；2) + M2(15 - 2xi 一 2x2) < 7/Ui + 10/i2, 

a; € X = {a: e Z2 I 0 化 S 3’ i = 1 , 2 } . 
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Figure 5.1: Feasible region in the a:-space 

Setting (1* = (0’ 1 广 gives a feasible half-space in x and yields a solution x^ = 

(1’2)T w i th /(a;。）= 11. See Figure 5.3. Solution ? = (1,2)^ is infeasible wi th 

gi(xO) = 8 and 夕2(a：。）= 9. Note that x^ violates gi{x) < 7 and gi{x) is an increas-

ing linear function of both Xi and X2. Thus, integer box〈(1’ 2)了, (3，3)̂ > does not 

contain any feasible point and can be removed from X for further consideration. 

Let 

； =义 0 \�(1，2广，(3,3)�= XI U ；二 ((0, o r , (0，3广〉U�(1’ Of，(3，1广〉. 

See Figure 5.4. Solving (P^*) w i th /i* = (0,1)了 on X} and X ] , respectively, yields 

a solution on X}, re} = (0,3)了，and a solution on X ] , xl = (2’ 1)了. Note that 

( 2 ， i s feasible w i th f { x l ) = 14. Set (2,1)^ as the incumbent and remove X^ 

from further consideration. Solution (0,3)^ violates the first constraint and we 

cut〈(0,3)了，（0，3)。from X}, resulting 

X? 二 X i i \〈(0，3广,(0，3 广〉=〈(0，Of, (0，2f) 

Problem (P^.) w i th ju* = (0,1)^ is infeasible on Xf and Xf is removed from 
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Figure 5.2: Feasible region in the g-spa.ce 

further consideration. No more integer box is left and the solution process for 

the example terminates wi th the incumbent (2,1)^ as the optimal solution wi th 

v{P) = 14. 

The above example demonstrates that, when the duality gap is nonzero, 

domain cut can be implemented to cut off some infeasible integer subbox whose 

objective value dominates the feasible region in the surrogate constraint formu-

lation. Carrying out such a procedure repeatedly gradually reduces the duality 

gap and eventually eliminates the duality. The solution of this iterative process 

converges to the solution of the original problem. 

The following theorem gives conditions under which the above domain cut 

procedure can be applied. 

Theorem 5.1 Let x be a solution to (P^) on {a,/3). If x is infeasible to {P), 

more specifically, giix) > hi for some i € {1,..., m}, then the following hold. 

( i ) If f is concave, then the following integer subbox (7,6) contains no feasible 

solution of (P), where for i = 1, ..., n, ji = Xi and 6i = (3i if ^ ^ < 0, ji 
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Figure 5.3: Feasible half-space resulted f rom the surrogate constraint method 

w i t h fjT = (0’ 1 广 

=ai and 6{ = xt if ^^^ > 0，and ji = ai and 6i = pi if ^^^ — 0. Thus, 

� 7 , ( 5 �c a n be removed from {a, (3). See Figure 5.5. 
( i i ) If f is a convex quadratic function taking the following form: 

n 1 

/ ⑷ 巧 工 5 + 柄 ） 

with all Cj > 0, j = 1, . . n , then the following integer subhox (7, 6), with 

7 二 （ 「 — 么 — + 生 l l ’. . .，「—~ - | i n + 〜 i r ， (5.1) 
C i C i CN CN 

5 二 + + + + (5.2) 
CI C\ CJI CJI 

contains no feasible solution of ( P ) and can be removed from (a, p). See 

Figure 5.6. 

( H i ) If f is a concave quadratic function taking the following form: 

n 1 

/ ⑷ = + 他 ） 
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F igu re 5.4: D o m a i n cu t i n the 1st i t e ra t i on 

with all Cj < 0，j == 1,…，n，then the optimal solution (a；,/?) can only be 

in the following integer region (j)、a) \〈7，S) with 

n 

P = ( M i / c i - . + 
\ j=i 

\-dn/Cn - \ 2 { f ( x ) + i f , \ J = 1 
n 

O = ( L - ^ / c i + 〜 2 ( / ( x ) + ^ d 2 / ( 2 c , ) ) / c i J , . . . , 
\ j=i 

n 

[-dn/Cn + . 2 ( f { x ) + [ dy{2Cj))/Cn」广’ 

\ j=l 

and，for i = 1, n, - Xi and 6i = Pi if ^ ^ < 0,飞=ai and 6i = Xi 

if 柴 > 0, and ji = at and 6i = (3i if 柴 = 0 . See Figure 5.7. 

( i v ) If f is a monotone function of x, i.e., for all i , i = 1, . . n , f is either 

increasing or decreasing with respect to Xi, the following integer subbox〈7,5、 

contains no feasible solution of (P)； where for i = 1, . . n , = Xi and 5i 
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Figure 5.5: Domain cut when f is concave 

= i f 樂 < 0’ and5i=ii if ^ > 0, and 飞=c^ and = Pi 

if ^ ^ = 0. Thus, (7,6) can be removed from {a, (3). See Figure 5.8. 

(v) If Qi is convex, then the following integer subbox (7, contains no feasible 

solution of ( P ) , where fori = 1, . . n , ji = Xi and 5i == fii if > 0, 

=Qi and 6i = Xi if 赞 < 0, and 飞 = a n d 6i = A if 赞 = 0 . Thus, 

〈7,5〉can be removed from {a,p). See Figure 5.9. 

( v i ) If Qi is a convex quadratic function of x taking the following form: 

n 1 

with all Cij > 0’ j = 1’ …’ n, then the optimal solution〈a,"〉can only be 

in the following integer region (p, a) \〈7’ 5) with 

n 

P = ( M i l / Q i - . + 
\ j=i 

n 

\ - d i n / C i n - \ 2(g,(x) + [ i r , 
\ j = l 
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Figure 5.6: Doma in cut when f is convex and quadrat ic 

n 
\ j = i 

n 
V-dinlCin + . 2(^ , (5) + J f , 

and, for i = 1, . n , ji = Xi and 5i = pi if ^^^ > 0, ji = a^ and 6i = 

Xi if < 0, and 7i = a^ and 5i = A if 赞 = 0 . See Figure 5.10. 

( v i i ) If Qi is a concave quadratic function of x taking the following form: 

n 1 

= X^loCy^J + d i j X j ) 

with all Cij < 0’ j = 1’ …，n，then the following integer subbox (7,6) with 

7 = 1:̂ 1 + # 1 1 ， . . . ， 「 - # + (5.3) 

Ql Qn Qn 
s = a - # + l ^ i + ， l 」 ’ . . . ’ L - ， + l^n + ， | j r ’ (5.4) 

Cil 。in Qn 

contains no feasible solution of {P). See Figure 5.11. 
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Figure 5.7: Domain cut when f is concave and quadratic 

( v i a ) If Qi is a monotone function of x, then the following integer subbox (7,5) 

contains no feasible solution of {P), where for i = 1, . . n , ji = Xi and 6i 

=Pi if ^ > 0,ji = ai and 6i = Xi if 赞 < 0, and 飞=and 6i = 

Pi if ^^^ = 0. Thus, (7,6) can be removed from {a,j3). See Figure 5.12. 

Proof. We wi l l give separate proofs for all of the above eight cases. The proofs 

are based on results from [8] and [9]. 

( i ) When f is concave, the set { x €〈a，/?〉| f { x ) > f { x ) } is a convex set as 

shown i l l Figure 5.5，outside of which all points have an objective value 

str ict ly less than f ( x ) . Note that f ( x ) is a lower bound of v{P) on (a.jS) 

and, by the weaker duality, no point outside of {x € {a,P) | f { x ) > f { x ) } 

can be optimal. Based on the sign of the normal vector of f at x, the box 

〈7’(̂ 〉，with, for i = 1, n, ji = Xi and 5i = A if ^ ^ < 0, = 0：̂  

and Si = Xi if 帶 > 0, and 飞 = a n d = A if 雙=0，is outside of 

{a; € (ck, /3) I f ( x ) > f ( x ) } and can be removed. 
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Figure 5.8: Domain cut when f is monotone 

( i i ) Consider the following ellipse contour of / : 
n 

fix) = + d^x^] = fix). (5.5) 

Clearly, the center of ellipse (5.5) is 

0 = 、 — ( k l c i 、 … 「 d j c n f . (5.6) 

See Figure 5.6. Let E[x) be the ellipsoid formed by the above ellipse con-

tour. Since f is convex, all points inside E{x) possess an objective value 

smaller than f { x ) . By the weaker duality, no point inside E(x) can be 

feasible. By the symmetry of E ( i ) , the integer box ( 7 , 6 ) , wi th 

7 = { \oi - 1̂ 1 - O i l l , . . . , K - - O n l i r , (5.7) 

S = (Loi + — O i l J ’ ^ . ’ LOn+ |;^n-On|J)T， (5.8) 

is inside E{x) and can be removed. 

( H i ) Consider the following ellipse contour of f : 
n 

/ ⑷ = + djXj] = m . (5.9) 
j=i 
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Clearly, the center of ellipse (5.9) is 

O = { - d i / c u . . •, -dn/cnf (5.10) 

and the length of the z-th axis of ellipse (5.9) is 

n 
2n = 2 2 U ( x ) + . (5.11) \ j=i 

See Figure 5.7. Let E{x) be the ellipsoid formed by the above ellipse con-

tour. Since f is concave, all points outside E{x) possess an objective value 

smaller than f { x ) . The minimum rectangle that encloses the ellipsoid E{x) 

is [p’cr] wi th 

P = (oi - r i , . . . , O n - r n r , 

cr = (oi +ri,...,On + rn)^, 

and the optimal solution cannot be outside of this minimum rectangle. We 

can further cut off integer subbox (7,5) from (/o, cr) based on the argument 

given in Item (i). 
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Figure 5.10: Domain cut when Qi is convex and quadratic 

( i v ) I f / is monotone, then any point in the subbox (7,6) with, for z = 1,.. 

n, 7i = i i and (̂ i = if 赞 < 0 , 卞 = a i and - if ^ > 0，and、 

= a i and 8i = pi if ^ ^ = 0, has an objective level not greater than f { x ) . 

Since f { x ) is a lower bound of problem (P) on〈a, /?), no point inside〈7，5) 

can be optimal. See Figure 5.8. 

(v) When 仍 is convex, the set {a; € {a,P) | gi{x) < gi(x)} is a convex set as 

shown in Figure 5.9, outside of which all points have a ĝ  value strictly larger 

than gi{x). In other words, no point outside of {a; e (oi,(5) | gi{x) < g i {x) } 

can be feasible. Based on the sign of the normal vector of ĝ  at i , the box 

〈7’ 5), with, for i = 1，.. .，n, ji 二 and Si = A if 〉0, % = a^ and 

(̂ i = Xi if 赞 < 0，and j i = a i and Si = A if 赞 = 0 , is outside of 

{ x e (a,/d) I gi(x) < g i ( x ) } and can be removed. 

( v i ) Consider the following ellipse contour of gf 

n 

Y ^ [ { l / 2 ) c i j x j + dijXj] = gi(x). (5.12) 
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Figure 5.11: Domain cut when gi is concave and quadratic 

Clearly, the center of ellipse (5.12) is 

0 = (一dijcii,…，一dinlcinf (5.13) 

and the length of the j-th axis of ellipse (5.12) is 

n 

= 2 2{gi ix) + 二 d i / {2c ik ) ) /c i j . (5.14) 
\| fc=l 

See Figure 5.10. Let E(x) be the ellipsoid formed by the above ellipse 

contour. Since gi is convex, all points outside E(x) possess a g^ value larger 

than gi{x). The minimum rectangle that encloses the ellipsoid E{x) is [/?, a] 

wi th 

p 二（oi _ n,…，o„ - Tn,’ 

o- = (Oi + r i ’ . . .，On + r „ ) r ’ 

and the optimal solution cannot be outside of this minimum rectangle. We 

can further cut off integer subbox (7,6) from { p , a ) based on the argument 

given in I tem (v). 
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Figure 5.12: Domain cut when Qi is monotone 

( v i i ) Consider the following ellipse contour of gi： 

n 

Y, [ { l /2 )c i j x ' ' j + dijXj] = gi{x). (5.15) 

Clearly, the center of ellipse (5.15) is 

0 = (一C^i l /Ci i , . • . , - d i n / C i n Y . (5.16) 

See Figure 5.11. Let E(x) be the ellipsoid formed by the above ellipse 

contour. Since gi is concave, all points inside E{x) possess a gi value larger 

than gi{x)^ thus all infeasible. By the symmetry of E{vx)^ the integer box 

〈7’(̂ 〉’ w i th 

7 = (「Oil — 丨-OiiH，...，「Oin— 丁’ (5.17) 

S = (bil + 1̂ 1 - OalJ,. . ., [Oin + \Xn - OinIJ)'̂ , (5.18) 
is inside E{x) and can be removed. 

(viii) I f Qi is monotone, then any point in the subbox (7,6) with, for i = 1 , . . . ， 

n, 7 i = Xi a n d 5i = Pi i f ^ > 0，7i 二 o；̂  a n d 6i = Xi i f 赞 < 0, and 
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= c î and Si = pi if ^ ^ ^ = 0, has a gi level not less than 识 ( i ) , thus 

infeasible. See Figure 5.12. 

• 
Note that the above theorem can be extended to situations that do not 

fall into the above mentioned eight situations, such as a 4-dimensional situation 

where f is only concave with respect to Xi and X2 and monotone with respect to 

x-i and X4. 

A key issue in the proposed convergent surrogate constraint dynamic pro-

gramming method is how to partition a non-rectangular domain into a union of 

integer boxes such that the surrogate constraint dynamic programming can be 

applied to every newly generated integer subbox after a cutting process. We have 

the following result. 

Lemma 5.1 [9j Let A — {a,/3) and B =〈7,5〉，where a, (5,^,5^ IT- and 

a < ^ < 6 < p. Then A\B can be partitioned into at most 2n integer boxes. 

A\B = {uy=i { U i z l i a i J i ) X〈〜.+ I J j ) X n二州〈0；“A〉）} (5.19) 
U (ntii〈7i，幼 X { a j . ' y j 一 1〉x 11 二州〈a“幼}. 

Now we formally describe the algorithm. 

Procedure 5.1 [Convergent Surrogate Constraint Dynamic Programming: 

Domain Cut] 

Step 0 (Initialization). Select a surrogate multiplier fi and use dynamic pro-

gramming to solve (•P"). Let be the solution to (P^). If is feasible, 

then x^ is the optimal solution, stop. Otherwise, calculate f{x^). Let 

X^ = X, k = 0, and fopt = -00. 

58 



. . .1' 

广 . 一 . 

齡 � J 
• 、、争 ‘ • 

Y 
I 
I 
I 

• t t i • 
1 
I 
I 
寒 • . 4 . 

Figure 5.13: Partition oi A\B. 

Step 1 (Sub-Domain Selection) Select an integer subbox X幻'from X^ wi th the 

smallest objective value of (P^), /(a;幻.）• Let X^ = X ' ' \ X妨. 

Step 2 (Cut and Partition) Cut out from X'^^ certain integer boxes of infeasible 

solutions that include 工幻 using one of the formulae in Theorem 5.1 and 

partit ion the remaining domain, Z^, into a union of integer sub-boxes. 

Step 3 (Evaluation) Solve (P^) on every integer subbox in Z^. Remove all the 

integer subboxes from Z^ whose solution is feasible in (P). Update Xo t̂ and 

fopt if a feasible solution found possesses an objective function value smaller 

than f叩t. Let X^'+i = X^ u Z''. 

Step 4 (Fathoming) Remove all the integer subboxes in whose objective 

function value is larger than fopt. 

Step 5 (Optimality Check and Termination) If is empty, stop and Xopt is 

optimal to {P) wi th fopt as the objective function value. Otherwise, set k 

=A; + 1, go back to Step 1. 
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Chapter 6 
Computational Results and 
Analysis 
We have proposed in the previous chapters two convergent surrogate constraint 

dynamic programming algorithms using objective level cut and domain cut, re-

spectively, and we are now in a position to check whether they work or not 

for various testing problems and how each of them helps to mitigate the "curse 

of dimensionality". This chapter serves for the purpose of reporting computa-

tional results. Several testing problems are constructed and they are solved by 

the conventional dynamic programming and two convergent surrogate constraint 

dynamic programming algorithms proposed in this thesis. Various useful data 

are collected in the computational process. Specially, the statistics on the total 

number of state iterations for each problem while applying the three algorithms 

are analyzed. The ranges of states Sk, A; = 1, ... ’n — 1 are calculated using (2.2) 

and (2.3). During the solution process, each Sk iterates from Sf, to s/；. The total 

number of state iterations for a problem while applying a particular algorithm 

can be obtained by summing up the number of states Sk for all k each time dy-
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namic programming is applied and then summing up further all the subtotals. 

As the computational and storage requirements are almost linear functions of the 

number of state iterations, the comparison of the total number of state iterations 

w i th respect to the three algorithms wi l l give us some insight on the effectiveness 

of the convergent surrogate constraint dynamic programming methods in mit i -

gating the "curse of dimensionality". Computer codes are wri t ten in M A T L A B 

and can be obtained from the CD-Rom submitted. 

6.1 Sample problems 
Below we wi l l list some sample problems solved in our computational experiments. 

Note that we have set the surrogate multipliers /i j, z = 1,2, . . . ,m all equal to 1 

in the surrogate constraint formulation for all the test problems. 

Example 6.1 IVe consider Example 4-i again. 

When adopting the conventional dynamic programming, we have s^ = ( - 9 , 0 , 0 , 0 , 

一 18)了’ S2 = ( - 4 , 3 , 5 , 3 , - 5 ) ^ , 5i 二（0，0,0’ 0,0)厂 Thus, we need total ly 6 x 4 x 

6 X 4 X 14 + 1 = 8065 state iterations. 

When adopting the convergent surrogate constraint dynamic programming 

w i th objective level cut, we apply dynamic programming once to solve the sur-

rogate constraint problem and then apply dynamic programming twice to solve 

successively two doubly-constrained problems {P^{vo + 1)) and {P^i{vi + 1)) w i th 

an objective level cut. For the surrogate constraint problem, S2 = —15, S2 = —1, 

51 = 0. For the two problems w i th an objective level c u t , 紅 = ( — 1 5 , —27)^, 

52 二 ( - 1 , a n d Si = (0’ 0)厂 Thus, each has 15 x 28 + 1 = 421 state iterations. 

There are (16 + 421 x 2) 二 858 state iterations in total. 
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When adopting the convergent surrogate constraint dynamic programming 

w i th domain cut, we apply dynamic programming 3 times to solve the singly con-

strained surrogate constrained problem on integer boxes ((0,0)^, (3,3)^>, ((2,0)^, 

(3,3)r〉and〈(2’ 1)了’（3’ 3)了〉，respectively. For the first integer box, 53 二 - 1 5 ’ 

52 = - 1 . For the second or the th i rd integer box, Sj = - 1 5 , 52 = -10 . Thus, 

we, in total, require (15 + 1) + (6 + 1) + (6 + 1) = 30 state iterations. 

Example 6.2 

min f { x ) = 3工5 + 2x2 + 5a：含 + + Ax^ 

s.t. gi (x) = xl + xl-\-xl-\-xl + xl< 20’ 

g2{x) = x \ + x l - lOa：! x l x l + x l - I2xs < - 2 0 , 

gsix) = x l - 6a: 1 + 2x1 + xl + x l - 4x4 + x l < 0 , 

x e X = [ x e l P \ i 二 1，2’ 3’ 4，5}. 

The solution is a:* = (1,2,0,2,1)^ and / ( o f ) = 19. W i th conventional dynamic 

programming, ^ = ( 0 , - 2 1 , - 1 3 ) ^ , S5 = (20,7,0)^, ^ = (0 , -21 ’ -9 )了’ 知 = 

(20,7’4严’ 53 = (0’-21，-9广，53 = ( 1 8 , 7 , 4 ) : s—、二（0,0’—9广’ S) = (9,9, O f 

and Si = (0,0’ 0)了. Therefore, we need in total 21 x 29 x 14 + 21 x 29 x 14 + 1 9 x 

29 X 14 + 10 X 10 X 10 + 1 = 25,767 state iterations. 

The surrogate constraint formulation of this problem is 

min f [ x ) = 3x1 + 2x1 + 5工含 + x] + Ax] 

s.t. g{x) = 3x1 一 + 4x1 一 衞 2 + Sxl + 3x1 一 + 3x1 - Ux^ < 0, 

xeX = XixX2XX-iX X4 X Xs. 
When adopting the convergent surrogate constraint dynamic programming 

w i th objective level cut, we apply dynamic programming once to the surrogate 
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constraint problem and then to nineteen 2-constraint problems {P^{vk + 1)), k = 
0’ 1,..., 18. For the surrogate problem, s^ = —10, S5 = 12, 54 = —9, 54 = 13, S3 = 

- 9 ’ 53 = 13, 52 = 一3 ’ S2 = 9, Si = 0, thus leading to 23+23+23+13+1 = 83 state 

iterations. For each of the 2-constraint problems {P^{vk + 1))，办=(-10, - 9 9 ) ^ , 

55 = (12, o r , ̂  = (-9,-90f, 54 = (13, Of, 53 = (-9,-45^, 53 - (13, O f , 

S2 = (-3,-27)^, 52 = (9’0广’ Si = (0,0)了’ thus leading to 23 x 100 + 23 x 

91 + 23 X 46 + 13 X 28 + 1 二 5,816 state iterations each. There are totally 

83 + 5816 X 19 = 110,587 state iterations. 

When adopting the convergent surrogate constraint dynamic programming 

wi th domain cut, we apply dynamic programming to the singly constrained sur-

rogate constraint problem on 23 integer boxes involved in the solution process. 

Among them, 10 requires state iterations between 0 and 50’ and the other 13 re-

quires state iterations between 50 and 100. The total number of state iterations 

is 1,263. 

Example 6.3 

min f { x ) = 3x1 + + 

s.t. gi(x) = a：! - 0；2 + xa < 2, 

仍(T) 二 —2;ri -X2-X3< -8, 
gsix) = -5x1 + 2x2 + X3< -1, 
g4{x) = 3a;i - 2x2 - X3 < -3， 

gsix) = xl + xl- 6x2 + xl- < -8, 

ge(x) = 4x1 - 20x1 - 4x2 + - 282:3 < -75 , 

grix) = 9a:? - 33a;i + xl < -20, 
gsix) = x l - 2xi + x l - 7x3 < - 1 0 , 
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X e X = {xez^ \ 0<Xi<3, i 二 1，2,3}. 

The solution is x* = (2,3,3)^ and f(x*) = 75. W i th conventional dynamic pro-

gramming, 办 二 ( - 3 , - 9 ’ - 1 5 ’ - 6 ’ 一9’ —28’ 一 30’ - i f , S3 = (2, 一5 ’ -1 ,0 , - 4 , - 2 7 , 

- 2 0 ’ 2广’ 52 = (0’ - 6 ’ - 1 5 ’ 0’ 0’ —24, - 3 0 ’ -1)了’ Sj = (3，-2，-1,6,5, - 2 3 , - 2 0 , 2 f 

and Si = (0’ 0’ 0’ 0’ 0’ 0’ 0’ 0)了. We need 2,772,001 state iterations in total. 

The surrogate constraint formulation of this problem is 

min f ( x ) = 3xi + 2x1 + 5x1 

s.t. g{x) = Ibxl - bSxi + 3x1 - 12x2 + 60:3 - 39x3 < -123, 

X e X = Xi X X2 X X3. 

When adopting the convergent surrogate constraint dynamic program-

ming w i th objective level cut, we apply dynamic programming to the singly-

constrained surrogate constraint problem first and two doubly constrained prob-

lems, {P^{vkO + 1)) and + 1)) successively. For the surrogate constraint 

problem, S3 = - 6 8 , 53 = - 6 0 , 勤 = - 5 6 , h = —48, Si == 0’ thus leading 

to 19 state iterations. For {P^{vo + 1))’ ^ = (—68，—45广’ 53 = (-60,-15)了， 

52 = ( - 5 6 , - 2 7 ) ^ , S3 = ( - 48 ,0 ) ^ , Si = (0,0)了’ leading to 532 state itera-

tions. For {P^iv i + 1))’ 53 = ( - 6 8 , -45)了’ 知 二（-60’ - 2 l f , 動 二 ( - 5 6 , -27)了， 

53 = (—48’ 一3)了, Si = (0’ 0)T’ leading to 451 state iterations. Summing up, there 

are 1,002 state iterations. 

When adopting the convergent surrogate constraint dynamic programming 

w i th domain cut, not taken into account the integer boxes being cut, there are 7 

integer boxes involved in the solution process. Among them, 4 does not contain 

any feasible solution for the surrogate constraint problem and dynamic program-

ming is applied to the remaining 3 integer boxes. We require 19, 19 and 13 state 

64 



iterations on these three integer boxes, respectively. In total, 51 state iterations 

are required. 

Example 6.4 

min f { x ) = -3x5 — — Sxg - 4x4 

s.t. gi (re) = Xi + 0：2 + Xa + < 8, 

g2{x) = xl-\-X2̂ xl + xl < 12, 
&3(工)=3xi +X2- 2X3 <0, 
ff4(^) = - X2 + 3X3 +0̂ 4 < 6, 
gsix) = 5a:? — + 3x1 + 0:4 < 1, 

a: e X = e I 0 化 S 3’ i = 1 ,2 ,3 ,4 } . 

The solution is x* = (1,3’ 2，2)了 and f{x*) = - 57 . W i th conventional dynamic 

programming, ^ = (0,0, - 6 , - 3 , - 1 8 ) ^ , 5 4 = (8,12,3,6, i f , S3 = (0’ 0’ 0,-3，-18)了， 

S3 = (6’ 12,9’ 6, i r , 52 = (0’ 0,0，0’ O f , S2 = (3’ 9’ 9’ 9’ 19 广 and si = (0’ 0’ 0’ 0, O f . 

There are total ly 496,001 state iterations. 

The surrogate constraint formulation of this problem is 

mill f(x) = -3xi - 2x2 - 5x3 - Axl 

s.t. g{x) = 7x1 + 4x i - 2x1 + 2x2 + + 2x3 + xl + 2x4 < 27, 

X e X = Xi X X2 X X3 X X4. 

When adopting the convergent surrogate constraint dynamic program-

ming w i th objective level cut, we apply dynamic programming first to the surro-

gate constraint problem and then to three two-constraint problems, {P^{vo + 1))， 

{P^,{vl + 1)) and {Pf,{v2 + 1)) successively. For the surrogate constraint problem, 
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S4 = -12, 54 = 27, ̂  = -12, S3 = 27, S2 = 0, S3 二 39, si = 0, thus leading to 121 

state iterations. For {P^{vo + 1))，^ = (一 12’ 0)了，S4 = (27’ 73)了’ 53 二（_12’0)了’ 

S3 = (27,45)^, S2 = (0,0)T’ 53 = ( 3 9 , 2 7 f , 5i = (0’0)了’ leading to 5921 state 

iterations. For + 1))’ ^ = ( - 1 2 , O f , S4 = (27,61)^, ^ = (-12,0)了， 

S3 = (27’ 45广，52 = (0’0)T, S3 = (39’ 27广’ 5i = (0’0广’ leading to 5441 state 

iterations. For {P^{v2 + 1))’ ^ = ( - 1 2 , O f , 54 = (27’ 58广’ ^ = ( - 1 2 , 0 ) ^ , 

S3 = (27,45)^, 52 = (0,0广’ 53 = (39,27)^, 5： = ( 0 , 0 f , leading to 5321 state 

iterations. Summing up, there are in total 16,804 state iterations. 

When adopting the convergent surrogate constraint dynamic programming 

w i th domain cut, not taken into account the integer boxes being cut, there are 10 

integer boxes involved in the solution process. Dynamic programming is applied 

10 times to the surrogate constraint problem wi th different feasible region. Among 

the 10 times, 3 requires less than 10 state iterations, 2 requires more than 100 

state iterations, and 5 requires between 50 and 100 state iterations. In total, 664 

state iterations are required. 

Prom our more computational experiences, we conclude that w i th con-

ventional dynamic programming, as the number of constraints, the number of 

variables or the range of variables increases, the amount of state iterations wi l l 

increase correspondingly. Among them, the increment of the number of con-

straints inserts the major impact, interacting actively w i th the increment of the 

range of states, makes the number of state iterations soon become excessive wi th 

exponential increase, leading to the previously discussed "curse of dimensional-

i t y " . 

The following table compares the number of state iterations required in 

solving the above examples using the conventional dynamic programming and 
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the convergent surrogate constraint dynamic programming with objective level 

cut and wi th domain cut, respectively. 

Table 6.1: Comparison of the number of state iterations 

Conventional 

dynamic programming Objective level cut Domain cut 

Example 4.1 8,065 858 30 

Example 6.2 25,767 110,587 1,263 

Example 6.3 2,772,001 1,002 51 

Example 6.4 496,001 16,804 664 

Prom Table 6.1, we can see that the convergent surrogate constraint dy-

namic programming wi th domain cut requires the least state iterations. Also, 

the convergent surrogate constraint dynamic programming wi th objective level 

cut generally requires fewer state iterations than the conventional dynamic pro-

gramming. One obvious reason is that the objective level cut reduces the number 

of constraints to 2 in all subproblems following the surrogate constraint prob-

lem during the solution process. Similarly, for the convergent surrogate con-

straint dynamic programming with domain cut, the surrogate constraint for-

mulation reduces the number of constraints to 1. To evaluate how the reduc-

t ion in the number of constraints helps in mitigating the "curse of dimensional-

ity" ’ we observe from the calculations in the above examples that the number of 

state iterations each time dynamic programming is applied can be calculated as 

J2k=2 二 1 ( 互 -圣 f c ⑴ +1 ) +1 ’ where n is the number of variables, m is the num-

ber of constraints, and i is the index denoting the position in the m-dimensional 

array of the range of states. The reduction in the number of constraints m reduces 

the number of multiplying terms and thus alleviates the effect of exponential in-
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crease in the number of state iterations, mitigating the "curse of dimensionality". 

However, in Example 6.2, the convergent surrogate constraint dynamic 

programming wi th objective level cut requires more state iterations than the 

conventional dynamic programming. This is because the convergence of objec-

tive level cut can be very slow. In the extreme case, each time the increment of 

objective value is only 1 for a sequence of problems {P^{vk + l ) ) before the optimal 

solution is obtained. The problems {P^{vk + l ) ) are two-constraint problems, and 

dynamic programming is applied to solve these problems. If the number of prob-

lems is large, the total number of state iterations may exceed what when applying 

conventional dynamic programming. On the other hand, the convergence of the 

convergent surrogate constraint dynamic programming wi th domain cut can also 

be slow. There may be lots of integer boxes generated in the solution process, 

and dynamic programming is applied on each of the boxes. However, the prob-

lems to be solved with respect to these integer boxes are one-constrained ones. 

Since dynamic programming is applied to solve a sequence of problems wi th only 

one constraint, even though the number of problems involved is large, the total 

number of state iterations is stil l acceptable. Therefore, the convergent surrogate 

constraint dynamic programming wi th domain cut generally performs better than 

the convergent surrogate constraint dynamic programming with objective level 

cut and the conventional dynamic programming. 

Before we close this chapter, we examine another example to compare 

effectiveness of the two convergent surrogate constraint dynamic programming 

algorithms. 

Example 6.5 

m i n f { x ) = 2x1 + + + + Qxj + 2x1 + 4；^ + 十工• + 7xIQ 
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s.t. "1(0：) = x\ + xl + xl + xl^- + xl + x'', + xl + xl + xlo < 75’ 

.<72⑷=Xi + X2 + X3 + X4 + Xs + 0；6 + + Xg + X^ + .TlQ < 25, 

= -3X1 + X 2 - 5X3 + 2X4 + + 3X6 + 5X7 - 2xs 一 7X9 + .T]„ < - 5 0 , 

g4{x) = xl - 6a:i -^xl + xl- 80:3 + xl + x] + xl + 0:7 + a^ + X9 - 6x9 + xIq < -5, 

g5 ⑷=92；^ - 42X3 + 62:9 < 一50’ 

x e x = { x e 1 ^ ^ \ 0 < x i < b , i = l ,2 ,…’ 10} . 

The optimal solution of this example is x* = (1,0,2’ 0’ 0’ 0’ 0,1,5,0产 and f{x*)= 
46. If conventional dynamic programming is applied to solve the problems, 

110,037,271 state iterations are required to get the optimal solution. Otherwise, 

if the convergent surrogate constraint dynamic programming wi th objective cut 

is applied, the surrogate problem is solved first, which requires 764 state itera-

tions. Then, the problem {P^{vo + 1)) is solved, and it requires 376,539 state 

iterations. The first two iterations already require 377,303 state iterations, and 

the corresponding function value is stil l far from the optimal one, and more prob-

lems {P^i(vk + 1)) are required to be solved before the optimal solution can be 

obtained. Compared wi th the conventional dynamic programming, the "curse of 

dimensionality" is only mitigated to a limited extent. However, solution can be 

obtained efficiently wi th the convergent surrogate constraint dynamic program-

ming wi th domain cut. Not taken into account the integer boxes cut, there are 

299 integer boxes involved in the solution process. Among them, 2 does not con-

tain any feasible solution for the surrogate problem and dynamic programming 

is applied to the remaining 297 integer boxes. Among the 297 times dynamic 

programming is applied, 171 requires between 500 and 1000 state iterations, 112 

requires between 100 and 500 state iterations, and 14 requires less than 100 state 

iterations. In total, 135542 state iterations are required. 
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Chapter 7 

Conclusions 
In this thesis, we have focused our efforts on devising efficient ways to mitigate 

the "curse of dimensionality". Two convergent surrogate constraint dynamic 

programming algorithms with objective level cut and domain cut have been pro-

posed. 

The motivation behind the novel convergent surrogate constraint dynamic 

programming algorithms is to alleviate the "curse of dimensionality" by working 

successively on singly or doubly constrained problems. The original curse of di-

mensionality exhibits when the number of constraints is high. However, dynamic 

programming, when it is applicatable, needs to be applied only once to obtain the 

solution. I l l the newly proposed approaches, we convert the curse of dimension-

ality in the state space to the number of siibproblems to be solved in an iterative 

solution process. In the convergent surrogate constraint dynamic programming 

algorithm wi th objective level cut, the doubly constrained problem resulted from 

combining the surrogate constraint formulation wi th an objective level constraint 

has to be solved successively for a sequence of updated lower bound of the ob-

jective level, while in the convergent surrogate constraint dynamic programming 
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algorithm wi th domain cut, the domain of decision variables is decomposed into 

sub-domains and dynamic programming needs to be applied on each sub-domain 

to a singly constrained (surrogate constraint) formulation. The migration of di-

mensionality in the above two schemes seems workable as evidenced from our 

numerical experiments. 

I l l the proposed convergent surrogate constraint dynamic programming 

algorithm wi th objective level cut, one constraint is to enforce the objective func-

t ion to exceed an increasing threshold, thus making the duality gap shrink. There 

are two research issues which are worth further efforts to investigate. First, we 

don't need to solve the dynamic programming problem starting from a scratch 

after the lower bound of the objective level is updated. We may devise an algo-

r i thm to use the information from the previous iterations in order to reduce the 

computational efforts. Second, i t is even possible to design a singly-constrained 

dynamic programming algorithm to realize the solution for this special doubly 

constrained dynamic programming problem. 
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