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Abstract 

This thesis contains three parts. The first part studies the small gain theorem for inter-

connected nonlinear systems. The second part addresses the robust stabilization problem 

for nonlinear systems in feedforwad form. The third part further solves the output regu-

lation problem for nonlinear systems in feedforwad form. 

In the nonlinear control literature, a great deal of efforts have been put into the problem 

of finding the appropriate conditions to verify the stability of inter-connected systems. The 

small gain theorem is one of the effective tools, which was first introduced in the input-to-

state stability (ISS, for short) framework by Jiang et al [26]. In [61], Teel introduced the 

concept of ISS with restrictions on the initial states and inputs and established a small 

gain theorem with restrictions for time invariant nonlinear systems. The first part of this 

thesis focuses on the small gain theorem for time-varying nonlinear systems. The major 

results are summarized as follows. 

(1) The existing small gain theorem with restrictions is only available for the time invari-

ant nonlinear system. We establish the following four types of small gain theorem 

with restrictions for uncertain time-varying nonlinear systems, thus closing the gap 

between the small gain theorem with restrictions for time-varying systems and that 

for time invariant systems: 

(i) ISS small gain theorem with restrictions for uncertain nonlinear time-varying 

systems; 

(ii) Semi-uniform ISS small gain theorem with restrictions for uncertain nonlinear 

time-varying systems; 

(Hi) Asymptotic small gain theorem with restrictions for uncertain nonlinear time-

varying systems; 

(iv) ISS small gain theorem with restrictions for uncertain time-varying systems of 

functional differential equations. 

(2) In the past ten years, the proof of the ISS small gain theorem is based on two 

methods: the input-to-output formulation [8, 9, 22, 25, 61] and Lyapunov function 

argument [24，26’ 59]. The first part also explores the relation between these two 

methods and further gives a remark on various small gain conditions. 
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Since the mid-1990s, various control problems of feedforward systems have been stud-

ied by a number of people [1, 2，3, 29, 33, 44，45，61]. Nevertheless, the case where the 

nonlinear system in feedforward form is subject to both static time-varying uncertainty 

and dynamic uncertainty has not been investigated. Relying upon the small gain theo-

rem with restrictions for uncertain time-varying nonlinear systems established in the first 

part, the second part addresses robust semi-global and global stabilization problems for 

feedforward systems subject to both static and dynamic uncertainties. The stabilization 

solution of feedforward systems shed light on the solution of the robust output regulation 

problem of nonlinear systems in feedforward form. 

Global robust output regulation is another challenge for feedforward systems. So far, 

the input disturbance suppression problem for a class of nonlinear system in feedforward 

form has been handled in [44]. The third part addresses the global robust output regulation 

problem for the same class of nonlinear systems in feedforward form as that in [44]. Our 

result contains the result in [44] as a special case. 
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摘要 

本文硏究關於聯結非線性系統的小增益定理以及非線性前饋系統的鎭定問題和輸出 

調節問題。 

在非線性控制領域，大量硏究集中在如何驗證聯結系統穩定性的問題上。輸入到狀 

態穩定框架下的小增益定理最早是Jiang等人提出的，並且成爲有效的工具之一。 

Teel提出了帶約束的輸入到狀態穩定性的槪念以及非線性時不變系統的帶約束的小 

增益定理。本文第一部分致力於硏究非線性時變系統的小增益定理，其主要結果槪 

述如下。 

(1)現有的帶約束的小增益定理只適用于非線性時不變系統。我們提出了如下四種 

不確定非線性時變系統的帶約束的小增益定理，統一了時不變系統和時變系統的帶 

約束的小增益定理。 

(1)不確定非線性時變系統的帶約束的輸入到狀態穩定小增益定理； 

(ii)不確定非線性時變系統的帶約束的半一致輸入到狀態穩定小增益定理； 

(iii)不確定非線性時變系統的帶約束的漸近小增益定理； 

(iv)不確定時滯系統的帶約束的輸入到狀態穩定小增益定理。 

(2)在過去的十年中，輸入到狀態穩定的小增益定理的證明主要是利用輸入到輸出 

框架和李亞普諾夫函數。本文第一部分探索了這兩種方法之間的關係，並且給出了 

一個關於多個小增益條件的注解。 

從九十年代中期，許多學者開始硏究各種前饋系統的控制問題。然而，至今還沒有 

學者硏究過同時含有靜態、動態不確定性的前饋系統。利用不確定非線性時變系統 

的帶約束的輸入到狀態穩定小增益定理，本文第二部分解決了這類前饋系統的魯棒 

半全局和全局鎮定問題。前饋系統的鎭定問題的解決爲前饋系統的魯棒輸出調節問 

題的解決提供了前提。 

全局魯棒輸出調節是前饋系統的另外一個挑戰。至今爲止，只有一類前讀系統的輸 

入干擾抑制問題在文[43]中得到了解決。本文第三部分解決了同一類前饋系統的全 

局魯棒輸出調節問題。輸入干擾抑制的結果是我們的全局魯棒輸出調節的結果特 

例。 
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Chapter 1 

Introduction 

1.1 Small Gain Theorem 

In the nonlinear control literature, a great deal of efforts have been put into the problem of 

finding the appropriate conditions to verify the stability of inter-connected systems. The 

small gain theorem is one of the effective tools, which was originally introduced in mono-

tone stability formulation by Hill [13]. The first small gain theorem in the ISS framework 

was established by Jiang et al [26]. Relying upon the input-to-output formulation, Jiang 

et al established a generalized small gain theorem for the following time-varying systems 

whose small gain condition involved two somewhat complicated inequalities [25, 26], 

i = f�x,u，t), t>to>0 (1.1) 

viewing x G as the plant state, u G as the input, to as the initial time, the function 

f{x,u,t) : X W^ X [̂ 0, oo) R^ is piecewise continuous in t and locally Lipschitz in 

col(a;, u). In [8], Chen and Huang introduced the concept of robust input to state stability 

(RISS, for short) with respect to the external disturbance and/or the internal uncertainty 

and further extended the small gain theorem to uncertain system in the following form 

x = fix,u,d,t), t>to>0 (1.2) 

where d{t) : [to, oo) i-^ I R � i s a family of piecewise continuous function of t, representing the 

external disturbance and/or the internal uncertainty. Moreover, the small gain condition 

was simplified into one contract mapping, leading to a more clear-cut version of the small 

gain theorem. 

In [61], Teel introduced the concept of ISS with restrictions on the initial states and 

inputs and established a small gain theorem with restrictions for time invariant systems. In 
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Appendix B of [23], relying upon the separation principle for ISS with restrictions, Isidori 

et al established a more general small gain theorem with restrictions for time invariant 

systems which will be rephrased in Theorem 3.1. Nevertheless, Isidori，s proof cannot be 

carried over to the case of time-varying systems, because the separation principle for ISS 

with restrictions does not hold for time-varying systems [8]. 

In Chapter 3, we first establish the four types of small gain theorem with restrictions for 

uncertain time-varying nonlinear systems, closing the gap between the small gain theorem 

with restrictions for time-varying systems and that for time invariant systems. 

The proof of the ISS small gain theorem is usually based on two methods: the input-to-

output formulation and Lyapunov function argument. These studies in [8, 9, 22, 25, 28, 61] 

are based on the concept of the gain function and the input-to-output formulation. On 

the other hand, it is well-known that Lyapunov functions play an important role in the 

nonlinear system and control, so it is natural to derive the small gain theorem using 

Lyapunov functions. The ISS — Lyapunov function (dissipation) characterization of the 

small gain theorem was given in [24’ 26, 60], whose small gain condition was based on the 

contract mapping of ISS-Lyapunov functions. These functions have been applied in ISS 

analysis of open-loop systems and cascade inter-connected systems [22, 53, 55]. 

It is interesting to find out the relation between these two versions of the small gain 

theorems. Chapter 4 will show that the contract mapping of gain functions and that 

of ISS — Lyapunov functions does not imply each other, i.e., if there exists two ISS — 

Lyapunov functions for two subsystems respectively, we cannot guarantee the existence of 

two gain functions for two subsystems respectively which satisfy the contract mapping; on 

the converse, if two subsystems are both ISS and their gain functions satisfy the contract 

mapping, we also cannot guarantee the existence of the ISS — Lyapunov functions for two 

subsystems which satisfy the contract mapping. 

1.2 Stabilization for Feedforward Systems 

In the literature of recursive control designs for nonlinear systems, two basic classes of sys-

tems are the most easily recognizable : the systems in the lower-triangular form (alterna-

tively, strictly-feedback form) and the systems in the upper triangular form (alternatively, 

feedforward form). The lower-triangular systems, which occupied the attention of the non-

linear control community in the first half of the 1990s, are controlled using back stepping, 

a method that employs dominated controls necessary to suppress finite escape instabilities 

2 



inherent (in open loop) to lower-triangular systems. 

Since the mid-1990s, various control problems of feedforward systems have been studied 

by a number of people [1, 2, 3, 12, 29, 33, 44, 45, 46, 61]. Since feedforward systems do 

not admit any feedback path, the limitation of back stepping which is suitable for pure 

feedback systems (such as lower-triangular systems) stimulated the development of new 

recursive approaches for feedforward systems, such as nested saturation procedure or 

the Lyapunov forwarding procedure. At the absence of the dynamic uncertainty, Teel 

studied the disturbance attenuation with stability and gave a constructive solution for 

the problem based on a recursive design that utilizes the saturation function [61]. Along 

the same line, Arcak et al further considered the same problem allowing the system to 

contain the input unmodeled dynamics [2]. The stabilization of feedforward systems is also 

studied in [12, 29, 33, 44, 46]. Perhaps, a more far-reaching contribution of Teel in [61] is 

the tool he developed for analyzing systems containing or utilizing saturation functions. 

In particular, in the context of ISS with restrictions on the initial states and inputs, Teel 

established an asymptotic small gain theorem with restrictions for time invariant systems. 

This theorem is the foundation of a recursive approach that yields a closed-loop system 

whose state satisfies the asymptotic bound property without restriction on the initial 

state. This property together with the Hurwitzness of the Jacobian matrix of the closed-

loop system at the origin guarantees the global asymptotic stability of the closed-loop 

system. 

In Chapter 5 and Chapter 6, we focus on the robust stabilization problem for the 

feedforward systems (1.3) where, for i = 1，..，n, Xi eR, d e R, fi and Qi 

are globally defined C^ functions satisfying /i(0’ •.. , 0, d) = 0 and gi(0, • ‘ • , 0, d) = 0 for 

d e R叫，ci,... , Cn-i, A, B, C, D are (unknown) constants or matrices, and d : [to, oo) F 

is a piecewise continuous function with its range T a compact subset of . 
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in = "“6，礼.",<̂打-1，〜-1乂几，则） 

6 = "2(6，工 1 乂2,柳 

XI = C^i + Bu-i-fi(^i,u,d(t)) 

6 二 + (1-3) 

In Chapter 5，relying upon semi-uniform ISS small gain theorem with restrictions for 

uncertain time-varying nonlinear systems established in Chapter 3, we first study the prob-

lem of semi-global robust stabilization for (1.3) under the assumption that the linearization 

of each dynamic uncertainty is critically stable. In Chapter 6, appealing to asymptotic 

small gain theorem with restrictions for uncertain time-varying nonlinear systems pro-

posed in Chapter 3, we further consider the problem of global robust stabilization for 

(1.3) under the assumption that the linearization of each dynamic uncertainty is Hurwitz. 

1.3 Output Regulation for Feedforward Systems 

The output regulation problem, or alternatively, servomechanism problem aims to solve 

the problem of designing a feedback controller to achieve asymptotic tacking for a class 

of reference input and disturbance rejection for a class of disturbances in an uncertain 

system while maintaining closed-loop stability. And the reference inputs and disturbances 

do not have to be known exactly so long as they are generated by a known, autonomous 

differential equation called exosystem. 

The output regulation problem for feedforward systems has been studied in [3] and 

[45]. A special case of output regulation problem, input disturbance suppression problem, 

namely asymptotically rejecting bounded disturbances affecting the input channel, of a 

feedforward uncertain nonlinear system was considered in [45]. However, the paper can 

only handle the case when the steady-state is equal to zero. Recently, the problem of 
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approximate and restricted tracking for a class of feedforward systems was addressed in 

[3]. "The term restricted refers to the fact that the disturbances to be rejected and/or the 

references to be tracked have to be sufficiently small. The term approximate refers to the 

fact that the regulated output will not vanish asymptotically, but only certain harmonic 

components will be canceled." [3] The output regulation problem under consideration in 

this thesis is more general and complicated than those studied in [3，45] and includes the 

result in [45] as a special case. 

A general framework for tackling the robust output regulation problem was proposed 

by J. Huang and Z. Chen in [18]. Under this framework, the robust output regulation for 

a given plant can be systematically converted into a robust stabilization problem for an 

appropriately defined augmented system. This general framework has been successfully 

applied to solve the global robust output regulation problem for lower-triangular nonlinear 

systems [18] and the semi-global robust output regulation problem for a class of nonlinear 

affine systems in normal form [35]. In Chapter 7, we will further utilize this framework 

to study the global robust output regulation problem for a class of feedforward systems. 

As in [18], our approach consists of two steps. First, the global robust output regulation 

problem of the given plant is converted into a global robust stabilization problem for an 

appropriately defined augmented system. Second, the global robust stabilization problem 

for the augmented system is solved on the basis of the combination of the asymptotic 

small gain theorem with restrictions and nested saturation technique. 

1.4 Organization and Contributions 

The reminder of this thesis is organized as follows. 

Chapter 2: For the purpose of self-containment, the thesis starts from an introduction 

of various concepts concerning ISS and input-to-output stability. 

Chapter 3: We establish four versions of small gain theorem with restrictions on the 

inputs and the initial states for uncertain time-varying nonlinear systems. 

Chapter 4-' A remark on various small gain conditions is given in this chapter. 

Chapter 5: Relying upon semi-uniform ISS small gain theorem with restrictions es-

tablished in Chapter 3, we solve semi-global robust stabilization for a class of feedforward 

systems subject to both static uncertainties and dynamic uncertainties. 

Chapter 6: Relying upon asymptotic small gain theorem with restrictions established 

in Chapter 3，we address global robust stabilization for a class of feedforward systems in 
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the presence of both static uncertainties and dynamic uncertainties. 

Chapter 1: By appealing to the general framework for tackling the robust output reg-

ulation problem proposed in [18], we investigate global robust output regulation problem 

for a class of feedforward systems. 

Chapter 8: Some concluding remarks and future prospects are given in this chapter. 

The thesis was typeset using All numerical simulations were done using MAT-

LAB. 
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Chapter 2 

Input-to-State Stability for 

Nonlinear Systems 

The notion of input-to-state stability (ISS, for short), first introduced in [53], provides a 

theoretical framework in which to formulate questions of robustness with respect to inputs 

acting on a system. Roughly speaking, an ISS system is one which has a finite nonlinear 

gain with respect to inputs and whose transient behavior can be bounded in terms of 

the size of the initial state and inputs. The theory of ISS systems now forms an integral 

part of several texts (see e.g. [23, 31]) as well as expository and research articles (see e.g. 

[2, 25，44, 61]). In this chapter, we introduce some definitions and properties of ISS which 

will be referred to in the subsequent chapters. 

Throughout the thesis, let L ^ be the set of all piecewise continuous bounded functions 

u : [to, oo) W^ with a finite supremum norm |…[,o’oo)|| = sup位化 I … � II. Denote the 

supremum norm of the truncation of u{t) in [ 仏 亡 2 ] by ||^%,亡2]11 = ^^Pti<t<t2 II収⑴II- And 

denote \\u\\a = limsup^^oo \\u\\. The inequalities will involve the following functions: a 

function 7 : R>q R > O is of class K if it is continuous, strictly increasing and 7 ( 0 ) = 0; 

and a function t) : R>o x R>o M>o is of class KL if it is continuous, for each fixed 

t > 0, the function /3(s,t) belongs to class K with respect to s and, for each fixed 5, the 

function /3(s, t) is decreasing with respect to t and j3(s, t) 0 as t — 00. X is a compact 

set containing the origin. 

Consider the following time invariant nonlinear system 

X = f(x,u), 

y = h{x,u) t > 0 (2.1) 
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viewing x gW the plant state, ueW^ a^s the input, y eW 3,s the output, the functions 

f{x, u):W xW^^ W and h{x, u):W xW^^ Rp are locally Lipschitz in col(a;, u). 

Definition 2.1 [23] System (2.1) is said to be ISS with restrictions X and A on the 

initial state x(0) and the input u respectively if there exist class KL function j3 and class 

K function 7 such that, for any initial state x(0) G X and any input function u{t) G U^ 

satisfying ||ii[o,oo)ll < A, the solution exists and satisfies, for all ^ > 0, 

||a:(t)||<max{/?(||a;(0)m),7(||t^[0,oo)ll)}. (2.2) 

I 

From a practical point of view, it turns out that the property of ISS with restrictions 

can be checked in terms of the existence of an local ISS — Lyapunov function. 

Definition 2.2 [23] A C^ function : IR" — IR is called a local ISS-Lyapunov function 

for system (2.1) if there exists class K^o functions ai( . ) , a2(.)，a(.), a class K function 

X(.) and positive numbers 5x and 5u such that, for all x and u such that 

ai{x)<V{x)<a2(x) 

x ( M ) < I N < ‘ M < - 秦 " ) • 

I 

Remark 2.1 In Lemma 3.3 [61], it was shown that if system (2.1) admits a local ISS — 

Lyapunov function, then system (2.1) is ISS with restrictions, i.e., there exist class KL 

function (3, class K function 7 , compact set X and positive real number A, such that, for 

any initial state a;(0) G X and any input function u(t) G U^ satisfying ||zi[o,oo)ll < A, the 

solution of (2.1) exists and satisfies, for all t > 0, 

| | x W | | < m a x { / ? ( | | x ( 0 ) | U ) , 7 ( | | ^ [ 0 , o o ) l l ) } , 

where, 

7 ( s ) = a � i o a2 o X � and, 

X = {x: a � i o a2{x) < 5x}, 

A 仏 ， 

s e [0, A) a � i o Q!2 o x{s) < 知 . • 
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The notion of input-output stability (lOS, for short) formalizes the idea that outputs 

depend in an "asymptotically stable" manner on inputs, while internal signals remain 

bounded. When the output equals the complete state, one recovers the property of ISS. 

When there are no inputs, one has a generalization of the classical concept of partial 

stability. We source the notion of lOS in [26] to the following. 

Definition 2.3 System (2.1) is said to be lOS with restrictions X and A on the initial 

state a;(0) and the input u respectively if there exist class KL function {3 and class K 

function 7 such that, for any initial state a:(0) G X and any input function u{t) G L ^ 

satisfying ||ii[o’�）|| < A , the output y{t) exists and satisfies, for all ^ > 0, 

| | 2 / W | | < m a x { / 3 ( | | x ( 0 ) | M ) , 7 ( h [ 0 , o o ) l l ) } . ( 2 . 3 ) 

I 

Remark 2.2 By causality, the same definitions can be obtained if one would replace 

lho’oo)ll by \\uio,t]\\ in (2.2) and (2.3). • 

Next, consider the following time-varying uncertain nonlinear system 

X = f(oc,u,d,t), 

y = h{x,u,d,t) t>to>0 (2.4) 

viewing x G as the plant state, u e E"^ as the input, to as the initial time, the function 

f{x,u,d,t) : W^ X W^ X ] R � X [to, 0 0 ) M" is piecewise continuous in c o 1 ( g ? , t) and locally 

Lipschitz in col(a;, u). And d(t) : [to, 00) ^ I R � i s a family of piecewise continuous 

function of t, representing the external disturbance and/or the internal uncertainty. 

Definition 2.4 System (2.4) is said to be robust input-state stable (RISS, for short) with 

restrictions X and A on the initial state x{to) and the input u respectively if there exist 

class KL function /? and class K function 7 , independent of d{t), such that, for any initial 

state xito) G X and any input function u{t) G L二 satisfying |卜[fo’oo)ll < A, the solution 

of (2.4) exists and satisfies, for all t > to, 

||x(t)|| < m a x { / ? ( M ^ o ) I U - ^ o ) , 7 ( I I ^ M l l ) } • 

l 

9 



Remark 2.3 The concept of RISS with restrictions is generalized from the RISS concept 

introduced in [8]. The concept of RISS was originally introduced in [38] for a special case 

of system (2.4) where d{t) is an unknown constant /i. In [38], it was proposed that the 

stability of a family of parameterized systems could be studied by verifying the stability 

of the following auxiliary system 

X = /(a;,/x), fi = 0 

in which both x and fi were treated as states. If d{t)三 0 in (2.4), the stability of (2.4) 

can be studied through the stability of the following auxiliary system 

X = f{x, A, u), A = 1 

in which both x and A are treated as states. I 

Definition 2.5 System (2.4) is said to be robust input-output stable (RIOS, for short) 

with restrictions X and A on the initial state x{tQ) and the input u respectively if there 

exist class KL function jS and class K function 7 , independent of d{t), such that, for any 

initial state x{to) G X, any input function u{t) G L二 satisfying ||w[to’oo)ll < A, the output 

of (2.4) exists and satisfies, for all t > to, 

l b � 1 1 S m a x { / 3 ( 丨 力 o ) , 7 ( l h M l l ) } . 

I 

Definition 2.6 System (2.4) is said to have the robust unbounded observability (RUO, 

for short) property with restrictions X and A on the initial state x{to) and the input u 

respectively if there exist class K functions ax, olu and a", independent of d[i), such that 

for any initial state x{tQ) G X and any input function u{t) G U^ satisfying ||w[,o’oo)|| < A, 

the solution of (2.4) exists and satisfies, for all t > to, 

l lo;�II < 

I 

Remark 2.4 The concepts of RIOS with restrictions and RUO with restrictions follow 

straightforwardly from the RIOS and RUO concepts given in [8]. I 

The following definitions of robust asymptotic gain (RAG, for short) property with 

restrictions and robust uniform stability (RUS, for short) with restrictions generalize 

the concept of asymptotic gain (AG, for short) property and uniform stability (US, for 

short) in [57] respectively. 
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Definition 2.7 System (2.4) is said to satisfy RAG property with restrictions X and A 

on the initial state x(to) and the input u respectively if there exists class K function 

independent of d, such that for any initial state x{to) e X and input u G L二 satisfying 

II以IIa < A, the solution exists and satisfies, for all t > to, 

N l a < 7 " ( I H | a ) . (2.5) 

I 

Definition 2.8 System (2.4) is said to be RUS with restrictions X and A on the initial 

state x{tQ) and the input u respectively if there exist class K functions and in-

dependent of d, such that for any initial state ^ X and input u G L ^ satisfying 

l|u[to，oo)ll < A, the solution exists and satisfies, for all t > to, 

� I I < max{7M|x(to)||),7"(||^[to,oo)ll)}- (2.6) 

I 

Remark 2.5 Time invariant systems (2.1) can be viewed as a special case of system (2.4) 

where the functions f and h are independent of the time t and the time-varying disturbance 

d. It is known that, system (2.1) is ISS if and only if it is US and has AG property [57]. 

This property is called the separation principle of ISS systems, and it greatly facilitates the 

establishment of many results such as the small gain theorem for time invariant systems 

to be described in Chapter 3. Unfortunately, a time-varying nonlinear system does not 

possess the separation principle [8]. Nevertheless, recently, a concept of semi-uniform ISS 

was introduced for time-varying nonlinear systems in [40] and it was shown that a time-

varying system is semi-uniformly ISS if and only if it is US and has AG property [40]. 

I 

We extend the concepts of semi-uniform ISS in [40] and output asymptotic bound, 

asymptotic Lq© stability in [61] to the following ones. 

Definition 2.9 System (2.4) is said to be robust semi-uniformly ISS with restrictions 

X and A on the initial state x(to) and the input u respectively if there exist class KL 

function (3 and class K function 7 and p, independent of d{t), such that, for any initial 

state x{to) e X and any input function u{t) G satisfying ||w[to，oo)|| < A, the solution 

of (2.4) exists and satisfies, for all t > to? 

M0||Smax{^|Wh)||，^^^)，7(|K。，,]||)}. 

I 
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Definition 2.10 System(2.4) is said to satisfy output robust asymptotic bound (o-RAG, 

for short) with restrictions X and A on the initial state x{to) and the input u respectively if 

there exist class K function independent of d, such that for any initial state x{to) e X 

and input u G L ^ satisfying ||w||a < A, the solution exists and satisfies, for all t > to, 

N|aS7以(IMIa). (2.7) 

I 

Definition 2.11 The output function of (2.4) is said to satisfy robust asymptotic Lqo 

stability (RALS, for short) with restrictions X and A on the initial state x{to) and the 

input u respectively if there exists class K functions 70 and 7, independent of d{t), such 

that for any initial state x{to) G X and input u G U^ satisfying ||it[to’oo)|| < A, the output 

exists and satisfies, for all t > to? 

\\ym < max{70(|| 冲 0)11),7(lht�,00)11)} 

IblU < 7(IMW. (2.8) 

I 

Remark 2.6 It follows from Theorem 2 in [39] that system (2.4) is robust semi-uniformly 

ISS with restriction if and only if it is RUS with restrictions and RAG with restrictions. 

Such separation principle will play an important role in the proof of Theorem 1. I 
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Chapter 3 

Small Gain Theorem with 

Restrictions for Uncertain 

Time-varying Nonlinear Systems 

This chapter is to establish the following four types of small gain theorem with restrictions 

for uncertain time-varying nonlinear systems, thus filling the gap between the small gain 

theorem with restrictions for time-varying systems and that for time invariant systems: 

(i) ISS small gain theorem with restrictions for uncertain nonlinear time-varying sys-

tems; 

(ii) Semi-uniform ISS small gain theorem with restrictions for uncertain nonlinear 

time-varying systems; 

(in) Asymptotic small gain theorem with restrictions for uncertain nonlinear time-

varying systems; 

(iv) ISS small gain theorem with restrictions for time-varying systems of functional 

differential equations. 

These small gain theorems will be further applied in handling the semi-global/global 

robust stabilization/output regulation problems in the subsequent chapters. 
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3.1 Input-to-State Stability Small Gain Theorem with Re-

strictions for Uncertain Nonlinear Time-varying Sys-

tems 

3.1 .1 Nonlinear T i m e Invariant Systems Case 

Consider the feedback interconnection as depicted in Figure 3.1， 

= fi{xi,vi,ui), yi = hi{xi,vi,ui) (3.1) 

X2 = f2{X2,y2,U2), 2/2 =、(工2，^^2,以2) (3.2) 

subject to the interconnection constraints: 

vi = 2 / 2 , = yi (3.3) 

M " ±1 = fi{xi,vi,ui) yi 

；̂! ^ yi = hi(Xi,Vi,Ui) 

仍 ” X2 = f2(X2, V2, U2) 

U2 ^ y2 = h2{X2,V2,U2) 2/2 

Figure 3.1: Inter-connection of (3.1) and (3.2) 

where, for i = 1,2, xi e M^S m G yi G E^S vi G 股…with pi = P2 = Qi, the 

function fi(xi,Vi,Ui) is locally Lipschitz in co\{xi,Vi, Ui), and /^(O, 0,0) = 0, hi{0, 0,0) = 0. 

And suppose the following assumption holds. 

A 3.1 There exists a C^ function h such that 

col {yi,y2) = h{xi,x2,ui,u2) 

14 



is the unique solution of the equations 

2/1 = hi{xi ,y2,ui) , 2/2 = h2{x2,yi,U2). 

The following small gain theorem with restrictions for time invariant systems was 

established in [23]. 

Theorem 3.1 Assume that subsystem (3.1) is ISS with restrictions X i , Ai and A j on 

xi(0), vi and ui respectively and subsystem (3.2) is ISS with restrictions X2, A2 and A^ 

on X2(0), V2 and U2 respectively, i.e., there exist class KL functions ft and class K 

functions 71，72, 7]^ 72 such that, for any xi(0) G X i , vi{t) G L ^ satisfying |卜i[o’oo)|| < 

Ai , u\[t) G L巧 satisfying ||wi[o,oo)ll < the solution of (3.1) exists and satisfies, for all 

t>0, 

H:ci(OHSmax{A(||:ci(0)||，t),7i(||”iio’oo)ll),7r(hi[o’oo)ll)} 

and for any ^2(0) G X2, V2(t) € L g satisfying ||巧[o’oo)|| S A2, U2(t) G U ^ satisfying 

11̂ 2(0,00)II ^ A2, the solution of (3.2) exists and satisfies, for all t > 0, 

11̂ 2(011 < max{/?2(|k2(0)|M),72(||^2[0,oo)ll),72"(lk2[0,oo)ll)}-

Suppose the following estimates hold for the outputs yi and 2/2 

||yi[0,oo)ll < m a x { 7 ? ( | | x i ( 0 ) | | ) , 7 i ( l b i [ 0 , o o ) l l ) , 7 ? ( l l ^ ^ i [ 0 , o o ) l l ) } 

limsupl丨奶⑴ 11 < max{7i(limsup {t)||), 7?(limsup {t)||)} 
t—>oo t—•oo t 一 00 

||2/2[0,OO)|| < max{72Mk2(0)||),72(ll^2[0,oo)ll),7^(ll^2[0,oo)ll)} 

lim sup 112/2(011 < max{%(limsup||7;2 � ||)，7扣 imsup 11 /̂2(011)} 
t->oo t—00 t 一 00 

for some class K functions 7°, 72, Tî  72̂  7i and 

Then if 

7i 0 72(r) < r , Vr > 0 

the system composed of (3.1) and (3.2) is ISS with restrictions Xi x X2, Ai and A2 on 

a;(0), ui and U2 respectively, viewing x = col(xi,a;2) as state and u 二 col(wi，W2) as input, 

i.e., there exist class KL function (3 and class K function 7, such that, for any initial 

state x(0) e Xi X X2, and any input functions ui(t) E LJJi satisfying ||wi[o’�）|| < Ai and 
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U2{t) e satisfying ||w2[o,oo)ll < 么2，the solutions of (3.1) and (3.2) exist and satisfy, 

for all t > 0, 

l l o ; � II < max{/?(|WO)M),7(lho，oo)||)} (3.4) 

where, 

文 1 = G : 7?(lki||) < A2,72 07?(|| î||) < A i } 

and 

文2 = {X2 G X2 ：喊(II仍II) < Ai , 7l O 72°(lk2||) < A2}. 

Ai < Ay, A2 < A这 

s e [0, Ai) Ai,7¥(5) < A2 
and 

s € [ 0 , A 2 ) = ^ 7 1 0 ^ ( 5 ) <A2,72(5) < A i . • 

Remark 3.1 Theorem 3.1 is slightly different from Theorem B.3.1 [23] where for z = 1, 2, 

li{s) = li{s) and = 7^(s). • 

3.1.2 Uncertain Time-varying Nonlinear Systems Case 

Let us introduce a technical lemma which was established in [8]. 

Lemma 3.1 Let be a class KL function, 7 a class K function such that 7 (r) < r 

(Vr > 0), and ji E (0，1] a real number. For any nonnegative real numbers s and M, and 

any nonnegative real function z{t) G L ^ satisfying 

z{t) < max{/?(s,t),7(||2：[城t]||),M}, Vt > 0, 

there exists a class Koo function such that 

^(t) <max{ /3 (5 ,0 ,M} , V̂  > 0 . 

Proof: The proof is given in the Appendix. 

I 

Consider the interconnection of the following two systems as depicted in Figure 3.2, 

XI = f i {x i ,v i ,u i ,d , t ) , yi = hi(xi ,vi ,ui ,d,t ) (3.5) 

X2 = h[X2,”2,U2,d,t), y2 = h2(x2,V2,U2,d,t) (3.6) 

subject to the interconnection constraints: 

vi = 2/2, y2 = yi (3.7) 
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where, for i = 1,2, ooi G ui G E^S yi G Vi G E î with pi = q2, P2 = Qi, the 

functions fi{xi,vi,ui,d, t) and f2{x2,V2,U2,d, t) are piecewise continuous in col(d, t) and 

locally Lipschitz in co\{xi,vi,ui) and co l (x2 , '^2 ,respect ive ly , and d : [to, 0 0 ) h 

piecewise continuous. 

d 

1 ^ 
vi ^ yi = hi{xi,vi,ui,d,t) 

I 

^^ = f2(工 2,V2,U2,d,t) 

U2 ^ 2/2 = h2{x2,V2,U2,d,t) ?/2 

Figure 3.2: Inter-connection of (3.5) and (3.6) 

The system composed of (3.5) and (3.6) is interpreted as feedback interconnection of 

two subsystems, the upper one with state xi , input col(t;i, zii) and output 2/1 and the lower 

one with state X2, input col(i;2,U2) and output 2/2. And suppose the following assumption 

holds. 

A 3.2 There exists a C^ function h such that 

col (2/1,7/2) 二 /i0ri,:r2’wi’w2,c/,0 

is the unique solution of the equations 

yi 二 h 八 

2/2 = h2{x2,y\,U2,d,t). 

Theorem 3.2 Assume that subsystem (3.5) is RISS with restrictions Xi , Ai and A^ on 

xi(^o),外 and ui respectively and subsystem (3.6) is RISS with restrictions X2, A2 and 
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on and U2 respectively, i.e., there exist class KL functions ft and class 

K functions 71, 7", 72’ 72' independent of d{t), such that, for any xi{to) G Xi, vi{t) G 

satisfying ||t;i[f�,oo)|| < A j , ui{t) G L^i satisfying [化’00)II < 吟、the solution of (3.5) 

exists and satisfies, for all i > to, 

⑴II 力o)H，t 一�o),7i(l卜 1[�t]||)，7r(l卜i[t。，t]ll)} (3.8) 

and for any ^2(^0) ^ X2, V2{t) G L g satisfying [切’00) 11 < As, U2{t) G L二 satisfying 

I|u2[to，oo)ll < Ag, the solution of (3.6) exists and satisfies, for all t > to, 

II 工2 ⑴ ||Smax{ft(||a;2(to)||’t — to)，72(lh[to’dl),72u(ll�[b，t]ll)}. (3.9) 

Further assume that subsystem (3.5) is RIOS with restrictions Xi , Ai and on 

xi{to), vi and ui respectively and subsystem (3.6) is RIOS with restrictions X2, A2 and 

A^ on 0；2(亡0), and U2 respectively, i.e., there exist class KL functions (3^ and /?2, class K 

functions 72, 72, independent of d(t), such that, for any xi(^o) ^ 叉1，vi{t) e 

satisfying |卜i[t�’oo)|| < Aj , ui{t) G L^i satisfying ||wi[�oo)|| < the output of (3.5) 

exists and satisfies, for all t > to, 

I b i � I I Smax{^i(||a;i(M)||’t — ,o)，％(||”i[b’t]||)，7?(l|ui[,�’t]ll)} (3.10) 

and for any ^2(^0) e X2, ” 2 � ^ L g satisfying ||i;2[fo,oo) II < 五2’ U2(t) G U^ satisfying 

11 [to,00) II < 实，the output of (3.6) exists and satisfies, for all t > to, 

II2/2�II 丨工2(力0)丨I,卜 to),72(ll”2[t。，dl)，7^�M]ll)}. (3.11) 

Suppose that the small gain condition 

7i 0 72(r) < r , r > 0 (3.12) 

holds, then the system composed of (3.5) and (3.6) is RISS and RIOS with restrictions 

Xi X X2, Al and A2 on x(to), ui and U2 respectively, viewing x = col(xi,^2) as state, y 

=col(2/1,2/2) as output and u = col(ui,U2) as input, i.e., there exist class KL functions 

(5 and 瓦 class K functions 7 and 7, independent of d{t), such that, for any initial state 

x{to) e Xi X X2, and any input functions ui{t) G U^ satisfying ||wi[to,oo)II < and 

U2{t) G U ^ satisfying ||w2[to,oo)II < 么2，the solution and output of (3.5) and (3.6) exist 

and satisfy, for all t > to, 

M m < max{/?(||x(to)|U-^o),7(h[to,t]ll)} 

||y � II < max{̂ ||r(to)||，t —亡 o),7(lhto’t]ll)} 
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where, 

7(s) = max{47i o 7^(5)，471。究⑷，471 。究⑷,471 o7^(s)，27?W, 4 7 2 � 7 i ° 

7^(5),472 0 7!(外472 0 72。7?(5)’472 0芳(外272"(5)}, 

7(s) = max{27i�另⑷,2^(s),2j2�究⑷,2究⑷} 
and, 

(i) If Ai , A2, Ai , A2 are finite, 

= {0:1 e X i n X i <min{A2,A2},72�瓦(丨丨町丨1,0) < m i n { A i ’ A i } } 

and 

= {X2 G X2 n X2 : A i l M l O ) < min{Ai ,Ai } , �；52(11仍丨1,0) < min{A2,A2}}. 

Ai < A2 < min{A^,A^} 

s G [0,Ai) = ^ 7 2 � 究 ⑷ < min{Ai ,Ai } ,7? (s ) < min{A2,A2} 

and 

s € [0, A2) 71072(5) < min{A2,A2},72(5) < min{Ai ,Ai } . 

(zz) If Ai , A2, Ai , A2 are infinite, 

Xi = X\ r\ X2 = X2 X2 

and 

Ai < A2 < 

Proof: First it is noted that the inequality o 72(r) < r, (r > 0) and the following 

one, 

72 071W < > 0 

imply each other [22]. 

Stepl: In this step, we will show that if xi(^o) € Xi n Xi , 0；2(力0) e 义2 门叉2, 

ui{t) e L - i satisfying 化，�)"< and “ 2 � € L^' satisfying II < 

the solution of the inter-connected system exists and is bounded for all 

t > to. For this purpose, we will consider the following two cases. 

(i) Ai , A2, Ai and A2 are finite. 

Toward this end, we will first prove that the outputs 2/1 and 2/2 exist for all ^ > ô and 

are bounded in a way which is similar to the proof of Theorem 10.6.1 [22]. Suppose this is 

not the case, for every number R> 0, there exists a time T > to such that the solutions 

are defined on [0,T] and either ||yi(r)|| > R or \\y2{T)\\ > R. 

Without loss of generality, we only consider the case where \\yi{T)\\ > R. Choose R 
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such that 

where, n = {x i G n X i : sup(||a;i||)}, T2 = {x2 € X2 fl X2 : sup(||a;2||)}. 

It follows from (3.10) and (3.11) that 

ll2/i[to,T]ll < max{^i(||xi(^o)||,0),7i(||2/2[to,T]ll),75^(ll^^i[to,T]ll)} (3.13) 

\\y2[to,T]\\ < max{^2(lk2(^o)||,0),72(ll2/i[to,T]||),72(ll^2[to,T]ll)}- (3.14) 

Substituting (3.14) into (3.13) gives that 

�72(lbi[切’T]II)，7I 扣丨…[t�’T]ll)，7?(ll叫t。，T]ll)}. (3.15) 

Since 

7l°72(ll2/l[to,T]||) < \\yi[to,T]l 

it holds that 

lbi[to,T]ll < max{;3i(||xi(to)||,0),7io;52(||x2(to)||,0), 

7l07^(ll^^2[to,T]ll),7l(hl[to,T]||)} < R (3.16) 

which contradicts \\yi{T)\\ > R. Therefore the outputs are bounded for all t > to. 

Since the subsystems (3.5) and (3.6) are RISS with restrictions, the solution of the 

inter-connected system is bounded for all t > to. 

(ii) At least one of A i , A2, Ai and A2 are finite. 

Toward this end, we will first prove that the outputs yi and 2/2 exist for all t > to and 

are bounded in a way which is similar to the proof of Theorem 1 [61]. 

For any given x{to) G Xi x X2, let p{x{to), A) be a continuous path in Xi x X2 from 

the origin to x{to) with the property that 0) is the origin and p{x{to), 1) = x(to), 

and let y^ and y^ be the outputs starting at x^{to) = p{x(to), A) with inputs Xui and Xu2. 

When A = 0, the solutions and outputs are defined on [如，00) and identically zero. Note 

that the solutions are continuous functions of A. Hence, for any given T > to (arbitrarily 

large), ei > 0 and 62 > 0, there exists A* such that the solution exists on [̂ o, T] and 

I I 2 / W ] " � ’ ll̂ 2[to,T]ll < (3.17) 

for all A e [0,A*]. 
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Denote that 

Al = max{^i( max ||x^(to)||,0),7i0^2(max 0),7i o 7 ^ ( ^ 2 ( ^ 0 , 0 0 ) I I ) , I I ) } , 

Ae[(j’ij ag[O,IJ 

= max{^(=�||:r2A(t。)||’())，72�A(\m^||a;((M|，0)’72�7nil_。，oo)ll),7^hb，oo)l|)}. 
入印’丄J AG[0,1J 

Since p{x(to),X) belongs to Xi x X2 and ||̂ /i[,o’oo)|| < Ai , || [to,00)II < it holds 

that Al < min{A2, A2} and A2 < min{Ai, A i } . Let T > to be arbitrarily large and 

ei, €2 satisfy Ai < ei < min{A2, A2}, A2 < 62 < min{Ai, A i } , and let A* G (0,1] 

be the largest value such that (3.86) holds for all A G [0, A*]. Suppose A* < 1. Since 

\\yi[to,T]\\ < min{A2, A2} and ||y�[,o，了]|| < min{Ai, A i } , following the same lines as (z) 

when Al , A2, Ai and A2 are infinite, we have that 
||24�/r]|| S Al <ei， II2/2��’了]||sA2<e2. 

By continuity of solutions, there exists A' > A* such that (3.86) holds, contradicting that 

A* < 1. Hence A* = 1. Since T can be arbitrarily large, ||帅。，―丨！ < min{A2, A2} and 

\\y2[to,oo)\\ < min{Ai, A l } . 

In both cases, the solution of the inter-connected system exist and is bounded for all 

t > to. Moreover, ||2/i[t�’oo)|| < mm{A2, A2} and ||2/2[t�’oo)ll < min{Ai, A i } . Hence, if the 

initial state x(to) E Xi x X2, and ui(t) G L二1 satisfies ||wi[io’oo) II < and W 2 � G U^ 

satisfies || [to,00)II < A2, (3.8) —(3.11) hold for t > to. 

StepWe will show the system composed of (3.5) and (3.6) is RIOS with restrictions 

Xi X X2, Al and A2 on x{to), ui and U2 respectively, viewing x = col(xi,^2) as state, y 

=col(^1,^2) as output and u = col(wi, W2) as input. 

By symmetry of yi and 2/2, it follows from (3.16) that 

lbl[t。，oo)l丨 < max{A(|丨Xi(to)|丨，0),7l�万2(lk2(力。)ll，0)，7l�7^|u2[�oo)||)，^(hl[t。，oo)||)} 

< max{5i(||x(to)||),Mi} (3.18) 

lh/2[t�,00)11 < max{̂ 2(ll工2(力0)1 丨，0)々2。召 1(11 工1(力O)||,0)，72�7?(||�i�,oo)||),̂ (||u2[,。，oo)||)} 

< max{(52(||x(to)||),M2} (3.19) 

where, 

= max{;^i(s,0)，7i�;^2G5，0)}，（52(s) = 0 ) ， ％ � 0 ) } , 

Ml = max{7io7^|w2[t�’oo)||),7?(l|wi[t。，oo)||)}， 

M2 = max{72�75XI|WI[切’ocolD'̂ ygdlWlto.ocolDl-



Hence, 

b � II < Il2/l[to,oo)ll + lb2[^o,oo)ll 

< max{25i(||x(to)||),2fe(||x(to)||),2Mi,2M2} 

< max{(53(||x(to)||),M3} (3.20) 

where, = max{2(5i(s), 2(^2(5)} and M3 = 7(||̂ x[b，oo)||) for any K^o function 7 satis-

fying 

7(5) > m a x { 2 7 ? � 7 补 ) ， 巧 ？ ⑷ ， 。側 , 仏 ) } . 

Relying upon (3.18) and (3.19), the restrictions Xi x X2 on the initial state x{to) and 

Al , A2 on the inputs lii, U2 respectively can be computed as follows: 

(z) If Al , A2, Al , A2 are finite, 

二 G X i H X i : M M I O ) < �;5i(||:ri||,0) < min{A^,Ai } } 

and 

文 2 = {X2 eX2nX2-；52(11 工 2||，0) < min {Ai ,A i } , � 工 2 I I , 0) < min{A2,A2}}. 

Al < min{Ay,：^}, A2 < 

5 e [0，Al) � < min{Ai,Ai},75^(s) < min{A2,A2} 

and 

sG 劳 ⑷ <min{A2，A2},7!(s) <min{Ai，Si} . 

(ii) If Al , A2, Al ,八2 are infinite, 

and 
Al < A2 < min{A这,实}. 

Prom (3.8) and (3.9), we could obtain that 

Mt)\\ < \\xi{t)\\ + \\x2m 

< max{a;E(||4化)||),au(||w[t�,oo)||)，aj/("oo)} 工00 

where, 

a 工(s) = max{2/?i(s,0)’2/?2(s,0)}’au(s) =max{27;^(s),27S(s)},ads) = max{27i(s),272(s)}. 
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As a result, (3.25) gives 

(ii) (̂ 3(1 丨工(to)ll) < Ms： We have y^o = M3, then || 2/1 [to,00) II < Voc ^ M3. 

In both case, we have obtained the following inequality: 

II2/1WII <max{A( (54(N^o)||) , t -^o) ,M3} . (3.27) 

By symmetry of yi and 2/2, we could obtain the following inequality: 

II2/2WII <max{A(^4( lk ( to )||) , t - to ) ,M3} . (3.28) 

Next, we will show that the system composed of (3.5) and (3.6) is RIOS with suitable 

defined restrictions and gain function 7. Combing (3.25) and (3.26) gives that 

um < � 11+ 11^/2� II 

< max{2/3i(xoo, t-to), 2^2{xoo,t -to), 2Afi, 2M2} 

< max{ /33(^oo,t -to) ,M3} (3.29) 

for (3认s, t) = m a x { 2 A (5, t), 2爲 ( s , t)}. 

Toward this end, consider the following two cases of yoo in (3.20). 

(i) 如)||) > Ms： We have Xoo < As a result, (3.29) gives that 

\\y{t)\\<m^x{Ps{S4{\\x{to)\\),t-to),Ms}. (3.30) 

{ii) 53(lk(to)||) < Ms： We have y �=Mg, then \\y{t)\\ < M 3 . 

In both case, we have obtained the following inequality: 

Mm < max{/33((54(||a;(^o)||),t-to),M3} 

=max{^(||x(^o)IM-^o),7(lk[io,oo)ll)} (3.31) 

where, 

= max{2A((54(5),t), 2/32(^4(5), i)}-

Since the solution y{t) depends only U{T) ontQ <T <t, the supremum on the right hand 

side of (3.31) can be taken over [to,力],which yields 
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Hence, the system composed of (3.5) and (3.6) is RIOS with restrictions X i x X2, Ai and 

A2 on x{to), ui and U2 respectively, viewing x = col(xi, ^2) as state, y = col(?/i, 7/2) as 

output and u = co\{ui,U2) as input. 

Step3: We will show that the system composed of (3.5) and (3.6) is RISS with restric-

tions Xi X X2, A i and A2 on x{to), ui and U2 respectively, viewing x = col(xi,0:2) as 

state, y = col(奶，2/2) as output and u = col(ixi,-^2) as input. 

Substituting (3.16) into (3.9) gives that 

\\x2{t)\\ < max{/32(||a;2(to)||,f-⑶，72�;5i(||;ri(to)||,0)，72�7i�ft(l|z2(fo)||，0), 

7 2 � 7 i 0 ^ ( l h M l l ) , 7 2 0 7 ? ( l h M l l ) , 7 2 " ( l h M l l ) } . (3.32) 

By symmetry of xi and X2, it holds that 

\\xi{t)\\ < max{A(||a;i(to)M —力0),71。；52(11 町(力o)||,0)，7i。％。;5i(||ti (力0)11,0), 

7 i � 7 2 ° f ( l h M l l ) , 7 i ° ^ ( l l ^ � , t ] l l ) , 7 r ( h i M l l ) } . (3.33) 

Combing (3.32) and (3.33) gives that 

M m < llxiWII + \\x2m < max{(55(||x(to)||),7(ll^[to,oo)ll)} '̂00 (3.34) 

where, 

S5{s,t) = max{2/3i(s,0),27io;g2(s,0),27io%o;gi(s,0), 

2/32(5,0), 272 o 似s, 0 )，2 7 2。。M s , 0)} 

lis) = max{27i�亏2 ° 节 ⑷ ’ 2 7 1 � 究 ⑷ , 2 7 ? � , 2 ) 2 � ° 究(s), 2 7 2 � ( 外 272^(5)}. 

From (3.8), for any time ti > 0, we could obtain 

\\Mto + h)\\ < max{A(||xi(to + |)||,|),7i("2/2[^^,_】")，7i�lh[^4，W“]ll)} 

< max{A(:r；^’ 警），7i(||?/冲。+导’切丨）’7r(lht�’oo)ll)}. (3.35) 

From (3.28)，for r G it holds that 

M t o + T)|| < max{/^2(^(Mto + |)||),T-|)，7(||��+4,。+T]ll)} 

< |)’7(lh一II)}. (3.36) 

Substituting (3.36) into (3.35) gives 

lki(to + ti)|| < m a ^ { / M ‘ | ) , 7 i � / ^ 2 0 5 4 0 0 , | ) , 7 i � 7 ( " ’ ’ o o ) l l ) , 7 r ( l l � ’ o o ) l l ) } 

< 力 i),7r(lh 切’ 00)11)} (3.37) 
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where，/3l{s,t) = m a x { " i ( s，| ) , 7 i � � ’ 7i*�=max{7f o 7(5), 7 (̂5)}. 
By symmetry of xi and X2, it holds that there exist class KL function jd; and class K 

function 7J such that 

|_|| - to)，72*(IHo’oo)")} (3-38) 

where, /3^{s,t) = m a x { / ? 2 ( s , 臺 ) ， 7 2 � ⑷ ， 7 2 * � = m a x { 7 2 o 〒⑷， 

Combing (3.37) and (3.38) gives 

ikwii < \\xi{t)\\ + \\x2m 

< max{/r(a4,t —to)，7*(lht�’oo)ll)} (3.39) 

where, f3*{s,t) = max{2/?i*(s，力)，2/?2*(s，0}, 

7*(s) = max{27i*(s),27j(s)} = max{47i o 〒！ o 究(s),47i。究(s)，47i o，)。究(s),47i o 
75(S),27;̂ (S)，472 O7i�7?(S),472 O7!(4472O72�^(4472O7^(S),27?(S)}. 

Toward this end, consider the following two cases of x'^ in (3.34). 

(i) > 7(ll̂ [to,oo)ll) : We have =知(亡o)||). 
As a result, ||x(t)|| < max{/?*((55(||x(to)||), ^ - ^o),7*(h[to,oo)ll)}-

(ii)(55(||x(̂ o)||) < 亏(lhto’oo)ll) : We have = 7(h[to,oo)ID-

As a result, \\x{t)\\ < x'^ = 7(|| [̂to,oo)ID-

Since 7(5) < 7*(s) for all s > 0, in both cases, we have obtained the following inequality 

\\x{t)\\ <max{/?(||x(̂ o)|M-to),7(Ho,oo)ll)} (3.40) 

where, = 认s),t), 7(5) - 7*W-

Since the solution x{t) depends only u{t) oiito<r<t, the supremum on the right hand 

side of (3.40) can be taken over [to, t], which yields 
M m < m a x { / ? ( | | x ( t o ) | | , t - M , 7 ( l l ^ [ M l l ) } -

Hence, the system composed of (3.5) and (3.6) is RISS with restrictions Xi x 叉2，Ai and 

A2 on x{to), ui and U2 respectively, viewing x = col(xi, X2) as state, y = col(7/1,2/2) as 

output and u = col(wi,W2) as input. This completes the proof. I 

Remark 3.2 In Appendix B of [23], it was showed that, for the class of time-invariant 

systems, a system is ISS with restrictions X and A on the initial state a:(0) and the input 
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U respectively if and only if there exist class K functions 70 and 7，such that, for any 

initial state x(0) G X , any input function u{t) € U^ satisfying ||w�(o’oo)ll < A, the solution 

x{t) exists and satisfies, 

ll̂ [0,oo)ll < max{7�(|W0)||)’7(lh�,oc)||)} 

IkWIla < 7(MOI|a). 

Such equivalence is called separation principle. In Theorem B.3.2 [23], using the 

separation principle for time invariant systems, Isidori et al have proven the corresponding 

nonlinear small gain theorem with restrictions. Nevertheless, Isidori's proof cannot be 

carried over to the case of time-varying systems, because the separation principle for ISS 

with restrictions cannot be generalized to the time-varying case [8]. I 

Lemma 3.2 If system (2.4) is RIOS with restrictions X and A on the initial state x[t{)) 

and the input u respectively, i.e. there exist class KL function (3 and class K function 

7，independent of d{t), such that, for any initial state x{to) G X, any input function 

u{t) G L二 satisfying ||î [fo’oo)ll < 八，the output of (2.4) exists and satisfies, for all t > to, 

then there exists class K function 70, independent of d{t), such that, for any initial state 

xito) G X, any input function u(t) G U^ satisfying ||ii[to’oo)ll < A, the output of (2.4) 

exists and satisfies, for all t > to, 

lb[to,oo)ll < max{7�(|Wt。)||)，7(|| 外。’ 00)11)}, (3.41) 

NIa < 7 ( M « ) . (3.42) 

Proof: The proof is conducted in a way similar to the proof of Lemma II. 1 [57]. In 

the following proof, we assume that the initial state x[tQ) belongs to the compact set X 

and the input function u{t) G L二 satisfies ||w[to，oo)ll < A. 

It is clear that (3.41) holds if we define 70 (s) = 0). For any e > 0, pick 5 > 0 such 

that 

Pick Ti such that 

lhTi’oo)l|S 丨Mla + J. 
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Clearly, there exists T2 > Ti such that 

Hence, for any t > T2, 

imW < max{^(||a;(Ti)||,t-ri),7(||^[T„t]||)} 

< max{/?(||x(ri)||,r2-ri),7(||^[T,,oo)ll)} 

< max{/?(||a:(ri)||,r2-Ti),7(||^||a + 5)} 

< 7(IMIa)+己. 

Letting e 0 gives (3.42). I 

Remark 3.3 It is natural to ask whether the separation principle for ISS with restrictions 

can be generalized to the case for lOS with restrictions. By now, the answer is not clear 

to the author. I 

3.1.3 Remarks and Corollaries 

In 9, 23, 25, 26, 61], many versions of small gain theorem were proposed in order to 

deal with different cases relevant in control applications. In this section, we will elucidate 

the relations between Theorem 3.2 and previous versions of the small gain theorem. 

Since the time invariant system is a special case of time varying system, Theorem 

3.2 also holds for time invariant case. Combining the separation principle for ISS with 

restrictions, we can formalize it in the following corollary. 

Corollary 3.1 Assume that subsystem (3.1) is ISS with restrictions X i , Ai and A " on 

工 1(0)，vi and ui respectively and subsystem (3.2) is ISS with restrictions X2, A2 and A这 

on X2(0), V2 and U2 respectively, i.e., there exist class K functions 7?’ 71, 7]̂，）§，72 and 

such that, for any xi(0) G Xi，vi{t) G LVO satisfying 丨丨！；取⑴)|| < Ai , m � ^ L^' 

satisfying ||wi[o,oo)ll < 八 t h e solution of (3.1) exists and satisfies, for all t > 0, 

lki[0,oo ) l l < m a x { 7 ? ( | k i ( 0 ) | | ) , 7 i ( | k i [ 0 , o o ) l l ) , 7 r ( l l ^ i [ 0 , o o ) l l ) } ( 3 . 4 3 ) 

IkilU < max{7i (W|a) ,7r (IMIa) } , (3.44) 

and for any X2(0) G X2，V2�t) e L g satisfying ||i;2[0’oo)ll S W 2 � G U ^ satisfying 

||w2[o,oo)ll < A2, the solution of (3.2) exists and satisfies, for all t > 0, 

lk2[0,oo)ll < max{72Mk2(0)||),72(||^^2[0,oo)ll),72"(h2[0,oo)ll)} (3.45) 

Ik2||a < max{72(|k2|U),72"(ll^2||a)}. (3.46) 
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Further assume that subsystem (3.1) is lOS with restrictions Xi, A i and A^ on xi{0), 

vi and ui respectively and subsystem (3.2) is lOS with restrictions X2, A2 and A^ on ^2(0), 

V2 and U2 respectively, i.e., there exist class KL functions 艮，爲 and class K functions 

7i , 7 i , 72. 72' such that, for any xi(0) G Xi，vi{t) G satisfying |卜i[o’oo)|| < A i , 

ui{t) e LJJi satisfying ||wi[o,oo)ll < the output of (3.1) exists and satisfies, for all 

t > 0 , 

II2/1 � I I < m a x { 3 i ( | | a ; i ( 0 ) | | , 0 ， W l h [ o ’ o o ) | | ) }， 7 5 ^ ( l h o ， o o ) l l ) } ( 3 . 4 7 ) 

and for any 0:2(0) € X2, V2{t) € L g satisfying |卜2[0’oo)ll < 五2，购⑴ e L^^ satisfying 

||ii2[o,oo)ll ^ the output of (3.2) exists and satisfies, for all t > 0, 

II2/2WII < m a x { ^ 2 ( l k 2 ( 0 ) | M ) , 7 2 ( l b 2 [ 0 , o o ) l l ) } , 7 ^ ( h 2 [ 0 , o o ) l l ) } . (3 .48 ) 

Suppose that the small gain condition 

7i o 72(r) < r, r > 0 

holds, then the system composed of (3.1) and (3.2) is ISS and lOS with restrictions X i x X2, 

A l and A2 on x(0), ui and U2 respectively, viewing x = col(xi, 2；2) as state, y == col(仍,2/2) 

as output and u = col(?xi, 1x2) as input, i.e., there exist class KL functions (5 and class K 

functions 7 and 7, such that, for any initial state x(0) G 文1 x 文2, and any input functions 

uiit) G L � i satisfying 丨丨以取�)丨| < Ai and U2(t) e L ^ ' satisfying |jî 2[0，oo)ll < A2, the 

solution and output of (3.1) and (3.2) exist and satisfy, for all t > 0, 

I k W I I < m a x { / ? ( | | x ( 0 ) | M ) , 7 ( h [ 0 , o o ) l l ) } ( 3 . 4 9 ) 

h m < m a x { ^ ( | | a : ( 0 ) | | , t ) , 7 ( l k [ o , o o ) l l ) } ( 3 . 5 0 ) 

where, the gain functions 7(5), 7(5) and the restrictions X：,文2, A i , A2 are the same as 

those in Theorem 2. I 

Remark 3.4 Observe that the restrictions are the same as those in Theorem 3.1 if we 

denote 瓦 (s ,0) = 7^(5) for i = 1,2 and set Xi, X2, A i , A2, and ^ be infinite. It is 

easy to check that Corollary 3.1 provides a more general result than Theorem 3.1 does, 

since the restrictions are imposed on the output channels and the explicit expressions of 

the gain functions are given in Corollary 3.1. I 

It is clear that RIOS with restrictions is RISS with restrictions when the state is seen 

as an output. The following corollary is the local version of Theorem 2.1 in [8]. 
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Corollary 3.2 Consider the interconnection of the following two systems 

= fi{xi,vi,ui,d,t), yi =xi (3.51) 

= f2{x2,V2:U2,d, t), y2 = X2 (3.52) 

subject to the interconnection constraints: 

” 1 = 2/2, V2 = 2 / 1 

where, the notations are the same as those in Theorem 3.1. 

Assume that subsystem (3.51) is RISS with restrictions X i , Ai and A^ on xi(to), 

vi and ui respectively and subsystem (3.52) is RISS with restrictions X2, A2 and A这 

on 0：2(亡0), V2 and u^ respectively. In particular, (3.8), (3.9) coincide with (3.10), (3.11) 

respectively. 

Further suppose that 

7 i � 7 2 ( r ) < r , r > 0 (3.53) 

then the system composed of (3.51) and (3.52) is RISS with restrictions X\ x 文2, A： and 

A2 on x{to), ui and U2 respectively, viewing x = col(xi,0:2) as state and u = col(wi,7/2) 

as input, i.e., there exist class KL function /3 and class K function 7, independent of d[t), 

such that, for any ；r(力0) G X i x I 2 , � e L二1 satisfying ||?/i[t�’oo)|| < Ai , U2(t) e L二2 

satisfying ||w2[to’oo)|| < A2, the solutions of (3.51) and (3.52) exist and satisfy, for all t > to, 

where, 

= {xi G X i : /?i(||a;i||,0) < A2，72�ft(ll町 11,0) < A l } 

and 

I 2 = {X2 e X2 ： /Ml丨仍丨1,0) < Al , 7io/?2(lk2||,0) < A2}. 

Al < Ay, A2 < A这， 

s e [ 0 , A i ) = ^ 7 2 � 7 r ( s ) < Ai，7r(^ <八 2 

and 

s G [0, A2) 7 1 。 ⑷ < 么2，72(5) < Al , 

and, 7(5) = max{27i ° 侧,272 o 7l^(s)’ 272 (̂5) }• 

I 

Remark 3.5 If the restrictions X i , X2, Ai , A^, A2 and A这 are infinite，Corollary 3.2 

reduces to Theorem 2.1 in [8]. Note that the approach of the small gain theorem with 
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restrictions is partially different from that of the global version, since we have to keep 

track of the domains of attraction for the subsystems in order to utilize the inequalities 

characterizing the properties of RISS with restrictions and RIOS with restrictions. I 

Corollary 3.2 can reduce to the case for time invariant systems. 

Corollary 3.3 Consider the interconnection of the following two systems 

XI = fi{xi,vi,ui), yi = Xi (3.54) 

X2 = f2{x2:V2:U2), "2 = 仍 (3.55) 

subject to the interconnection constraints: 

Vl = 2/2’ V2 = yi 

where, the notations are the same as those in Theorem 3.1. Assume that subsystem (3.54) 

is ISS with restrictions X i , A i and A^ on xi(0), vi and ui respectively and subsystem 

(3.55) is ISS with restrictions X2,八2 and A这 on ^2(0), V2 and U2 respectively, i.e., there 

exist class K functions 7°, 71，7]^，7°, 72 and 72, such that, for any a;i(0) G X i , vi{t) G LS) 

satisfying |h[o’oo)|| < A i , ui{t) e L^ ' satisfying ||iii[o,oo)II < the solution of (3.54) 

exists and satisfies, for all t > 0, 

lki[0,oo)ll < m a x { 7 ? ( | | x i ( 0 ) | | ) , 7 i ( l k i [ 0 , o o ) l l ) , 7 r ( l l ^ i [ 0 , o o ) l l ) } 

< max{7i(W|a)，7r(IMW}， 

and for any ^2(0) G X2，Mt) ^ ^ S satisfying ||i;2[0’oo)ll S U2(t) G L二 satisfying 

||u2[o,oo)ll ^ A2, the solution of (3.55) exists and satisfies, for all t > 0, 

I I 工 2 [ 0， o o )丨 I < max{72Mk2(0)||),72(||^2[0,oo)ll),72"(ll^2[0,oo)ll)} 

I k 2 | | a < m a x { 7 2 ( | M l a ) , 7 2 U ( I M | J } . 

Further suppose that 

7i 0 72(r)<r， r >0 (3.56) 

then the system composed of (3.54) and (3.55) is ISS with restrictions Xi x X2, Ai and 

A2 on x(0), ui and U2 respectively, viewing x = col(xi, 0:2) as state and u = col(wi, W2) 

as input, i.e., there exist class KL function (3 and class K function 7, such that for 
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any a;(0) E x 文2，Ui{t) e L^^ satisfying ||i/i[�’oo)II < A i , 购⑴ G L^' satisfying 

ll̂ 2[0,oo)ll < A2, the solutions of (3.54) and (3.55) exist and satisfy, for all t > 0, 

| | a ; ( t ) | | < m a x { ^ ( | | x ( 0 ) m ) , 7 ( l k [ 0 , o o ) l l ) } 

where, the restrictions Xi ,文2, Ai and A2 and gain function 7 are the same as those in 

Corollary 3.2. I 

Corollary 3.2 can be further specialized into the following three corollaries. 

Corollary 3.4 Consider the interconnection of the following two systems 

= yi = XI (3.57) 

i2 = f2(X2,”2,u,d,t), y2 = X2 (3.58) 

subject to the interconnection constraints: 

vi = y2, ” 2 = yi 

where, the notations are the same as those in Theorem 3.2. 

Assume that subsystem (3.57) is RISS with restrictions Xi and Ai on x\(tQ) and v\ 

respectively and subsystem (3.58) is RISS with restrictions X2, A2 and A这 on X2(to), ”2 

and u respectively. In particular, (3.8), (3.9) coincide with (3.10), (3.11) respectively. 

Further suppose that 

7i 072 ( r )<r , r > 0 (3.59) 

then the system composed of (3.57) and (3.58) is RISS with restrictions Xi x X2 and A 

on x{to) and u respectively, viewing x = col(xi,a;2) as state and u as input, i.e., there 

exist class KL function (3 and class K function 7, independent of d{t), such that, for any 

x{to) eXiX X2, u{t) e satisfying ||w[,o’oo)|| < A, the solutions of (3.57) and (3.58) 

exist and satisfy, for all t > to, 

where, 

Xi = {xi e Xi ： A(||a:i||,o) < A2 ,72�A( lk i l l , o ) < A i } 

and 

X2 = {X2 e X2 ： P2{\\X210) < Ai, 7 1 � 仍 11,0) < As}. 

A < A^, 

s e [0, A ) 7 1 0 7 2 ( 5 ) < A 2 , 7 2 ( ^ ) < A i ， 

and, 7(5) = m a x { 2 7 i � 7 2 " � , • 
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The following corollary is the time invariant case for Corollary 3.4. 

Corollary 3.5 Consider the interconnection of the following two systems 

fiixi^vi), y i = x i (3.60) 

^2 = f2{x2,V2,u), y2=X2 (3.61) 

subject to the interconnection constraints: 

= 2/2, V2 = yi 

where, the notations are the same as those in Theorem 3.1. 

Assume that subsystem (3.60) is ISS with restrictions Xi and Ai on a;i(0) and vi 

respectively and subsystem (3.61) is ISS with restrictions 义2,么2 and Ag on 0:2(0), V2 

and u respectively, i.e., there exist class K functions 7J, 71, 72 and such that, for 

any xi(0) G Xi , vi{t) G L監 satisfying |卜i[o’oo)ll < Ai, the solution of (3.60) exists and 

satisfies, for all t > 0, 

lk i [0 , o o ) l l < m a x { 7 ? ( | | x i ( 0 ) | | ) , 7 i ( | | ^ i [ o , o o ) l l ) } 

I k l l l a < 7 l ( I M | a )， 

and for any ^2(0) G X2, V2{t) G LS satisfying |…2[0’oo)ll $ ^2, u{t) G L二2 satisfying 

||u[o,oo)ll < A^, the solution of (3.61) exists and satisfies, for all ^ > 0, 

II 工 2[0’oo)l 丨 < max{72'(|k2(0)||),72(||^2[0,oo)ll),72(11^00)11)} 

Ik2||a < max{72(|k2||a),72"(hlla)}. 

Further suppose that 

7i 0 7 2 ( r )<r , r > 0 (3.62) 

then the system composed of (3.60) and (3.61) is ISS with restrictions Xi x X2 and A on 

x{0) and u respectively, viewing x = col(a;i,;r2) as state and u as input, i.e., there exist 

class KL function /? and class K function 7, such that for any x(0) G Xi x X2, u{t) G L二2 

satisfying ||w[o’oo)ll < A, the solutions of (3.60) and (3.61) exist and satisfy, for all t > 0, 

IkWII < max{/?(||x(0)|M),7(||w[o,oo)ll)} 

where, the restrictions Xi, X2, A and gain function 7 are the same as those in Corollary 

3.4. I 
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Remark 3.6 It is easy to check that if we set A(5,0) - 701 (s) and 02(8,0) = 702(5), 

Corollary 3.1 coincides with Theorem 12.2.1 [22]. 1 

Corollary 3.6 Consider the interconnection of the following two systems 

XI = fi{xi,ui,d,t), yi =xi (3.63) 

X2 = f2{x2,V2,U2,d,t), y2 = X2 (3.64) 

subject to the interconnection constraint: 

外=yi 

where, the notations are the same as those in Theorem 3.2. 

Assume that subsystem (3.63) is RISS with restrictions X i and A^ on (艺•) and ui 

respectively and subsystem (3.64) is RISS with restrictions X2, A2 and Ag on X2{to), V2 

and U2 respectively. In particular, (3.8), (3.9) coincide with (3.10), (3.11) respectively. 

Then the system composed of (3.63) and (3.64) is RISS with restrictions X i x X2, A i , 

A2 on U2 respectively, viewing x = col(xi,X2) as state and u = co\(u\,U2) as 

input, i.e., there exist class KL function (3 and class K function 7, independent of d{t), 

such that, for any G X i x 文2, ui{t) € L^' satisfying ||iXi[,。，oo)|| < A i , W 2 � G 

satisfying ||̂ i2[to’oo)ll < A2, the solutions of (3.63) and (3.64) exist and satisfy, for all t > to, 

I k W I I < m a x { / ? ( | | a ; ( t o ) | | , t - t o ) , 7 ( l h b ’ t ] | | ) } 

where, 

= {x, € X i : A(||xi||,0) < A 2 , 7 ! � / M i l町 j l , 0 ) < A l } 

and 

X2 = {x2eX2:P2{\\x2lO)<Ai}. 

Al < A ^ A2 < A^, 

s G [0, A l ) 7 2 � l f { s ) < Ai ,7r (5 ) < A2 

and 

5 G [ 0 , A 2 ) ^ 7 2 ( s ) < A i 

and, 7(5) = m a x { 2 7 r � , 2 7 2 ⑷，272权(力}. • 

Remark 3.7 If the restrictions are infinite, Corollary 3.4 and 3.6 reduce to Corollary 2.1 

and 2.2 [8] respectively. I 

If we only care about RIOS with restrictions of the system composed of (3.5) and 

(3.6), the assumption RISS with r e s t r i c t i o n s in Theorem 3.2 can be weakened to RUO 

with restrictions. The following corollary is the local version of Theorem 2 in [9j. 
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Corollary 3.7 Under the assumptions of Theorem 3.2 except that class KL function ft 

is replaced by class K function ai in (3.8) and (3.9) for i = 1,2, if the small gain condition 

(3.12) holds, the system composed of (3.5) and (3.6) is RIOS with restrictions X i x 文2, A i 

and A2 on x{tQ), ui and U2 respectively, viewing x = co\{xi,X2) as state, y = col(2/i,2/2) 

as output and u = co\{ui,U2) as input, where the gain function 7 and the restrictions 

Xi X X2, A i and A2 on x{to), ui and U2 respectively are the same as those in Theorem 

3.2. I 

It is worthy to mention another three special cases of Theorem 3.2, namely, the case 

where hi does not depend on 1/2 explicitly, i.e., 

yi = hi{xi,ui,d, t), 

the case where hi does not depend on ui explicitly, i.e., 

yi = hi{xi,y2,d,t) 

and the case of cascade interconnected systems. The previous two cases can be specialized 

into the following two corollaries. 

Corollary 3.8 Consider the interconnection of the following two systems 

= f i { x i , v i , u i , d , t), yi = h i {x i ,u i ,d , t ) (3.65) 

X2 = f2{x2,V2,U2,d, t), 7/2 = h2[X2, V2, U2, d, t) (3.66) 

subject to the interconnection constraints: 

Vl = 2/2, V2 = yi 

where the notations are the same as those in Theorem 3.2. 

Assume that subsystem (3.65) is RISS with restrictions Xi，Ai and 城 on t i (力•)，vi 

and ui respectively and subsystem (3.66) is RISS with restrictions 义 2 ， a n d A^ on 

工2(亡0)，and ui respectively. 

Further assume that subsystem (3.65) is RIOS with restrictions X i and ^ on a;i(亡•) 

and u\ respectively and subsystem (3.66) is RIOS with restrictions 叉2, and A2 on 

X2{to), ”2 and U2 respectively, in particular, (3.10) and (3.12) hold with 71 三 0. 

Then the system composed of (3.65) and (3.66) is RISS and RIOS with restrictions 

Xi X X2, A i , A2 on x{to), ui, U2 respectively, viewing x = co\{x\,X2)朋 state，y = 

col(2/1,2/2) as output and u = col{ui,U2) as input, where, 
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^ (s^ 4^2 o 
• ) = m a x { 4 7 � 7 ? ( 4 4 7 i � 7 2 � 7 n 4 4 7 i � 7 ^ ( s ) , 2 7 r W ， 4 7 2 � ^ ( 4 4 7 2 。％。 7 i , 

272^(5)}, 

7 � = m a x 例 ⑷ , 2 7 2 ° T Y⑷，2柳 ) } 
and, 

文 1 = G X i H X i ： ̂ 1(11x111,0) < min{A2’S2}，〜o石i(||a;i||，0) < m i n { A i , S i } } 

叉 2 = {X2 eX2nX2： ；52(1^211,0) < m i n { A i , A i } } . 

Ai < min{A5^5^}’ A2 < min{A^,A^} 

s G [ 0，A i ) = ^ 7 2 � T K 4 < min{Ai ,Ai 1,75^(5) < min{A2,A2} 

5G [0 ,A2 )=^72 (5 ) < m i n { A i , A i } . • 

Corollary 3.9 Consider the interconnection of the following two systems 

XI = y^ = hi{xi,vi,d,t) (3.67) 
/Q 

= f2{x2,V2,U2,d,t), y2 = h2�X2，V2,U2,d,t� ‘ 

subject to the interconnection constraints： 

= 2/2, V2 = 2/1 

where the notations are the same as those in Theorem 3.2. 

Assume that subsystem (3.67) is RISS with restrictions Xi , Ai and A^ on a;i(to), ” 1 

and ui respectively, and subsystem (3.68) is RISS with restrictions X2, A2 and on 

(亡0), and U2 respectively. 

And assume that subsystem (3.67) is RIOS with restrictions Xi and Ai on xi{to) and 

vi respectively and subsystem (3.68) is RIOS with restrictions X2, A2 and A^ on 0:2(亡0), 

V2 and U2 respectively, in particular, (3.10) holds with 三 0. 

Further assume the small gain condition (3.12) be satisfied. Then the system composed 

of (3.67) and (3.68) is RISS and RIOS with restrictions Xi x 叉 2 ， a n d A2 on x{to), ui 

and U2 respectively, viewing x = col(xi,X2) as state, y = col(?/i,?/2) as output and u = 

col(wi, W2) as input, where, 

7(5) = m a x { 4 7 i � � 劳 ⑷ ， 4 7 i � ^ ^ ⑷ ， � 7 i � � , 4 7 2 o 劳⑷,272^(5)}. 

7 � = m a x { 2 7 i � 究⑷ , 2 7 ^ (力 } 

and the restriction Xi x X2 is the same as that in Theorem 3.2 and 

Ai < A2 < 
s e [0’ A2) T i O ^ W < min{A2,A2},72W < min{Ai ,Ai } . 1 
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To conclude this section, the small gain theorem with restrictions is further specialized 

to the following cascade inter-connection as depicted in Figure 3.3’ 

i i = fi{xi,ui,d, t), 2/1 = hi{xi,uud, t) (3.69) 

= f2{x2,V2,U2,d, t) (3.70) 

subject to the interconnection constraint: 

” 2 = yi 

d 
d 

^ 士1 = fi(工i,ui,d,t) V2 

1 • 

Figure 3.3: Inter-connection of (3.69) and (3.70) 

It is noted that the cascade inter-connection (3.69) and (3.70) can be interpreted as 

feedback inter-connection (3.5) and (3.6) in which the output of lower subsystem 2/2 = 

h2(x2,yi,U2,d,t) is equal to zero. In this case, the bound estimate in Theorem 3.2 holds 

for 72(-)三 0 and = 0. Hence the small gain condition is fulfilled. This implies that 

the cascade inter-connection is RISS with appropriate restrictions on the initial state and 

the input. It can be formalized in the next corollary. 

Corollary 3.10 Consider the cascade inter-connection (3.69) and (3.70), where the no-

tations are the same as those in Theorem 3.2. 

Assume that subsystem (3.69) is RISS with restrictions X i and A^ on xi(^o) and ui 

respectively, in particular, (3.8) holds with 71 = 0，and subsystem (3.70) is RISS with 

restrictions X2, A： and A "̂ on 0:2(^0), V2 and U2 respectively. 

And assume that (3.69) subsystem is RIOS with restrictions Xi and ^ on xi(^o) and 

u\ respectively, in particular, (3.10) holds with 三 0. 

Then the system composed of (3.69) and (3.70) is RISS and RIOS with restrictions 

Xi X X2 and Ai , A2 on x{to) and ui, U2, viewing x 二 col(;ri’:r2) as state, yi as output 
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and u = col(wi，ii2) as input, where, 

7(s) = max{472 o ⑷， 4 ) 2 � 力 � � , 2 7 ? ( < s ) }， 

荆 = m a x 例 ⑷ ’ 

and, 

义1 = {xi G X i n X i : P,{\\xilO) < min{A2,A2}} 
and 

文2 = {X2 e X2 ： ；52(11 巧ll，0) < min{Ai ,Ai } } . 

A i < m i n { A ¥ , ^ } , A 2 < A -

s G [ 0 , A i ) = > 7 Y ( 5 ) < m i n { A 2 , A 2 } . • 

3.2 Semi-Uniform Input-to-State Stability Small Gain The-

orem with Restrictions for Uncertain Nonlinear Time-

varying Systems 

Theorem 3.3 Under Assumption 3.2, assume that subsystem (3.5) is robust semi-uniformly 

ISS and RALS with restrictions Xi , Ai and A" on xi(to), vi and ui respectively, i.e., 

there exist class K functions 7?, 71，7}^, 7°, 71 and , independent of d[t), such that, 

for any xi{to) G Xi , vi{t) G L ô satisfying |卜i[t�’oo)|| < Ai, ui{t) G L � s a t i s f y i n g 

l|ui[to’oo)ll < the solution and output of (3.5) exist and satisfy, for all t > to, 

ll^iWII < max{7?(||xi(MII),7i(l|^i[.0,oo)ll),7r(ll^i[.0,oo)ll)} (3.71) 

ll^illa < max{7i(|M|a)’7r(hi||a)} (3.72) 

\\yim < max{7?(||xi(to)||),7i(ll^i[to,oc)ll),7?(ll^i[to,oo)ll)} (3.73) 

WviWa < max{7i(|ki||a),7?(lki||a)}. (3.74) 

And assume that subsystem (3.6) is robust semi-uniformly ISS and RALS with restric-

tions X2, A2 and A2 on ^2(^0), V2 and U2 respectively, i.e., there exist class K functions 

72' 7 2 , 72' 72' 72 and independent of d[t), such that, for any ^2(^0) ^ 入2’ ” 2 � ^ 

satisfying ||̂ 2[to,oo)ll < 八2，U2(t) G L二2 satisfying ||w2[io,oo)II < the solution and output 
of (3.6) exist and satisfy, for all t > to, 

II 仍⑴ II < max{72M|x2(to)||),72(||^2[to,oo)ll),72"(lk2[to,oo)ll)} (3.75) 

Ik2||a < niax{72(|M|a)，72U(| 丨以 llla)} (3.76) 
\ \ y 2 m < max{7^(||x2(to)||),72(lb2[^o,oo)ll),7^(11^^2(^0,00)11)} (3-77) 

\\y2\\a < max{72(||^2||a),7^(||l^2||a)}. (3.78) 
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Suppose that the small gain c o n d i t i o n 

。 • ) < ” ， … （3.79) 

, r (o 5 � a n d (3.6) is robust semi-uniformly ISS and 
holds, then the system composed of ana v 乂 

- ^ A. and A2 on x{to), ui and U2 respectively, viewing x 
RALS with restrictions X i x X2, A i ana 

仏，7/o) as output and u 二 co l ( in ,询)as input, i.e., there 
=col(a;i,a;2) as state, y 二 col(2/i,2/2； , _ 

^ „ 一0 onH 辛 i n d e p e n d e n t of d{i), such that, for any initial 
exist class K functions 7 • ， 7 and 7 ， p ~ 

state . X and any input functions � . � satisfying | | � ’ � ) | | < A： and 

, II / Ao the solution and output of (3.5) and (3.6) exist 
U2(t) e US} satisfying ||n2[to,oo)ll < 

and satisfy, for all t > to, 

< _{70(丨丨咖)丨丨)，7"(丨丨’’�)l丨)}’丨丨到la - 7 “(丨丨 4 ) (3.80) 

II州)丨| < 冲0)丨丨),列丨"[‘-)丨丨)},丨丨"lla ^ 刊 丨 ( • ) 

where, 

7 (s) = max{27i0(s)，27i�72(^"71 

2 7 2。 7 1。 7制 , 2 7 2。究 (办 2 7 2制 } ,一 

7 。 ⑷ = m a x { 2 式 ⑷ , 2 7 1 。 7 於 ) ， 2 动 ( 办 2 7 2 。 劝 以 ( 》 } 

r ( ^ ) = m a x { 2 力。 7 扑讯 4 2 力。谓办巧制 } 

and, 

(z) If A l , A2 are finite, 

文 1 = { X I G X i ： 7 ? ( l k l | | ) < A 2 , 7 2 � 对 ( j l 们 丨 丨 ） < "^1)， 

and 

义2 = 柳 M ) < A i , % � •仍 I I ) 〈站 

Al < A ^ A2 < A^ 
s e [0’ Al) 72 o < A l , 柳 < 

and 

s G [0，A2) 7i 07^(5) < < 

{ii) If A l , A2 are infinite, 

Xi = Xi, X2 = X2 

and 

Al < Ay, A2 < A^. 
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Proof: First it is noted that the inequality o^^ir) < r, (r > 0) and the following 

one, 

72 < r, r > 0 

imply each other [23]. 

Stepl: In this step, we will show that if the initial state G X i x X2, and ui{t) G 

L ' ^ satisfies || îi[to’oo)ll < and U2[t) G U ^ satisfies || [to,00)II < A2, the solution of 

the inter-connected system exists and is bounded for all t > Iq. For this purpose, we will 

consider the following two cases. 

(z) A i and A2 are infinite. 

Toward this end, we will first prove that the outputs y\ and 7/2 exist for all t > to and are 

bounded in a way which is similar to the proof of Theorem 10.6.1 [22]. Suppose this is 

not the case, for every number R > 0, there exists a time T > to such that the solutions 

are defined on [0，r] and either \\yi{T)\\ > R or \\y2{T)\\ > R. Without loss of generality, 

we only consider the case where ||yi(T)|| > R. Choose R such that 

R > m a x { ^ ( n ) , 7 i o 究 ( r2) ,究 (Ai ) ,亏 1 o7^(A2)} , 

where, n = {x i G X i : sup(||xi||)}, r2 = {x2 G X2 • sup(||x2||)}. 

It follows from (3.73) and (3.77) that 

\\yi[to,T]\\ < max{7?(|ki(to)||),7i(||2/2[to,T]ll),7^(lki[to,T]ll)} (3.82) 

lb2[to,T]|| < m a x { 7 ^ ( | | x 2 ( ^ o ) | | ) , 7 2 ( b i [ t o , T ] l l ) , 7 ^ ( l k 2 [ t o , T ] l l ) } . ( 3 . 8 3 ) 

Substituting (3.83) into (3.82) gives that 

\\yi[to,T]\\ < 力 o ) | | ) , 7 i � 7 § ( | | 釣(力0)11)， 

7 i � 7 2 ( l b i [ t � ’ T ] l l ) , % ° 7 ^ l ^ i 2 [ � T ] l l ) , 7 ? ( h i [ t � , T ] l l ) } . ( 3 . 8 4 ) 

Since 

�72(bl[hT]ll) < \\yi[to,T]l 

it holds that 

\\yi[to,T]\\ < max{7?(||xi(to)||),7iO 7^(11x2(^0)11), 

< R (3.85) 

which contradicts \\yi(r)|| > R. Therefore the outputs are bounded for all t > to. 
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Since the subsystems (3.5) and (3.6) are semi-uniformly ISS with restrictions, the so-

lution of the inter-connected system is bounded for all t > to. 

{ii) At least one of A i , A2 is finite. 

Toward this end, we will first prove that the outputs yi and 2/2 exist for all t > to and 

are bounded in a way which is similar to the proof of Theorem 1 [61]. 

For any given x{to) e Xi x X2, let p{x{to), A) be a continuous path in Xi x X2 from 

the origin to x{to) with the property that p{x{to),0) is the origin and p{x{to), 1) = x{to), 

and let y^ and y^ be the outputs starting at x^{to) = p{x{to), A) with inputs Xui and Xu2. 

When 入=0，the solutions and outputs are defined on [to, 00) and identically zero. Note 

that the solutions are continuous functions of A. Hence, for any given T > to (arbitrarily 

large), ei > 0 and €2 > 0, there exists A* such that the solution exists on [̂ o, T] and 

\\yi[to,T]\\ < \\ynto,T]\\ ^ (3.86) 

for all A G [0,A*]. 

Denote that 

A i = m a x { ^ ( m a x J : r ^ � ) H )， 7 i � 7 K m a x | | ; r ^ � ) H ) ’ 7 i � 7 M � [ ‘ o o ) " ) , ^ ( h i [ ‘ o o ) l l ) } , 

A2 = max{7Kmax Jo;)(力 0)||),72。嚼(\瓜思巧丨|：1：((力0)丨|)，72。究(1卜1[如，00)11)，究(11〜[力�’00)11)}-
AE[0,1J AG[0,1J 

Sincep(x(to),A) belongs to Xi x X2 and ||wi[to,oo)ll < 么1，ll̂ 2[to,oo)ll < ^2, it holds that 

A i < A2 and A2 < Ai . Let T > to he arbitrarily large and ei, 62 satisfy Ai < ei < A2, 

A2 < 62 < A i , and let A* G (0,1] be the largest value such that (3.86) holds for all 

入 G [0，A*]. Suppose A* < 1. Since ||2/J"[,o’t]II < 么2 and ||y�[切’了]11 < Ai , following the same 

lines as (i) when Ai and A2 are infinite, we have that 

< Al <ei, \\y^lto,T]\\ <^2< 62. 

By continuity of solutions, there exists A' > A* such that (3.86) holds, contradicting 

that A* < 1. Hence A* = 1. Since T can be arbitrarily large, ||2/i[to，oo) II < 么2 and 

112/2[如，00)II < A i -

In both cases, the solution of the inter-connected system exist and is bounded for 

all t > to. Moreover, ||2/i[to’oo) || < A2 and ||y2[to,oo)II < 八i- Hence, if the initial state 

x{to) e Xi X X2, and ui{t) G L二1 satisfies ||wi[io，—|| < Ai and U2(t) G satisfies 

||w2[to,oo)ll < A2, (3.71)-(3.78) hold for t > to. 
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Step 2: Substituting (3.77) into (3.73) gives that 

112/1 � 1 1 < max{7?(||xi(to)||),7i(||^i[to,oo)ll),7?(lki[to,oo)ll)} 

< max{7?(|ki(^o)||),7i�7扣丨灼(力o)||)，7i�72(ll_。，—11)， 

7i07^(h2[to,oo)ll),7?(ll^^i[to,oo)ll)} (3.87) 

Since the composite of and 72 is a simple contraction, it follows that 

\\yim < max{7?(| |x i( to) | | ) ,7i�7^|n(to) | | ) ,7i�^(lht� ,oo)l l)，^( lh&oo)l l )} .(3.88) 

By symmetry of yi and 於， i t follows that 

fe � ||Smax{7§(||:c2(t�)||),72�7?(l|A(f�)ll)，72�7M�t。，〜)ll),^lht。，—ll)}.(3.^^^ 

Substituting (3.89) into (3.71) gives that 

II 工 1 ⑴丨 I < max{7?(||x:(to)||),7i(||^i[to,oo)ll),7r(ll^^i[to,oo)ll)} 

< m a x { 7 ? ( | | T i ( t o ) | | )，7 i � 7 ^ Z 2 ( f o ) | | ) , 7 i � � � ^ ( l | T i ( W H ) , 7 i � 7 2 � 7 ? ( " � b ’ o o ) l l ) , 

71° 究(I 卜 2[如，oo)ll),7r(ll 叫 t。，oo)ll)}. (3.90) 

By symmetry of xi and X2, it follows that 

||：̂；2(力)丨| < max{72。(|| 工2(力 0)|丨）,72�7?(丨|工1(力。)|丨）,72。71�7训工2(力0)|丨）,72。71�7如|"2[化，00)||)， 

72 巧?(|丨叫力。，00)丨丨），72"(11 购[t。，oc)ll)}. (3.91) 

Substituting (3.78) into (3.74) gives that 

llyilU < max{7i 072(lbi||a),7i 07^(h2||a),7?(ll^i||a)}. (3.92) 

Since the composite of and 72 is a simple contraction, it follows that 

IMIa < max{7i07^(||^2||a),7¥(||^i||a)}. (3.93) 

By symmetry of yi and 2/2, it follows that 

M a < max{72 °节 (|MW，7如Mia) } . (3.94) 

Substituting (3.94) into (3.72) gives that 

Ikilla < max{7i(|M|a),7r(IMIa)} 

< max{7i 巧节 ( I M I a ) ’ 7 i ° 7 ^ M l a )， 7 r ( I M I a ) } . (3.95) 
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By symmetry of xi and X2, it follows that 

究(II 购 ||a)’72°75Xhl||a)’72"(h2||a)}. (3.96) 

Hence, the system composed of (3.5) and (3.6) is robust semi-uniformly ISS and RALS 

with restrictions Xi x X2, Ai and A2 on x(to), ui and U2 respectively, viewing x = 

col(:ri’a:2) as state, y = col(2/1,2/2) as output and u = col(ixi,U2) as input. This completes 

the proof. I 

Corollary 3.11 Consider the interconnection of the following two systems 

i i = h {x i ,u i ,d , t ) , yi = x i (3.97) 

= f2{x2,V2,U2,d,t), y2 = X2 (3.98) 

subject to the interconnection constraint: 

V2 = yi 

where, the notations are the same as those in Theorem 3.3. 

Assume that subsystem (3.97) is robust semi-uniformly ISS with restrictions Xi , Ai 

and Al on xi{to), vi and ui respectively, i.e., there exist class K functions , 71 三 0 and 

independent of d{t), such that, for any xi{to) G Xi, vi{t) G Lg, satisfying ||巧[t�’oo)ll < 

Al , ui(t) e L�satisfying ||wi[to’oo)II < the solution and output of (3.97) exist and 

satisfy, for all t > to, (3.71) and (3.72) holds. 

And assume that subsystem (3.98) is robust semi-uniformly ISS with restrictions X2, 

A2 and A2 on X2(to), V2 and U2 respectively, i.e., there exist class K functions 7°, 72 and 72 , 

independent of d{t), such that, for any X2(to) e X2, V2{t) G L g satisfying |…2[t�’oo)ll < 

U2(t) e satisfying 丨|权2[切’00)|丨 < A这，the solution and output of (3.98) exist and satisfy, 

for all t > to, (3.75) and (3.76) hold. 

Then the system composed of (3.97) and (3.98) is robust semi-uniformly ISS with 

restrictions Xi x X2, Ai and A2 on x{to), ui and U2 respectively, viewing x = col(a;i,a:2) 

as state, y 二 col(2/i,2/2) as output and u = col(wi,W2) as input, i.e., there exist class K 

functions 7°, and f , independent of d(t), such that, for any initial state x{to) e 

Xi X X2, and any input functions ui{t) € L�satisfying ||̂ î[to’oo)II < Ai and 112� e U^ 

satisfying ||ii2[to’oo)|| < A2, the solution and output of (3.97) and (3.98) exist and satisfy, 

for all t > to, 

IkWII < 丨丨)}, ||x|U < 7�IMIa) 
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where, 

7O �= m a x { 2 7 ? ( 5 ) , 2 7 2 ° ( 5 ) , 2 7 2 0 7?(5)} 

and, 

；二 {0：1 € Xi ： 7?(lkill) < A2,72 0 7?(lki||) < Ai } , 

Ai < A5S A2 < 
s G [0，Ai) 7 2 � 究 ⑷ < A i ,究⑷ < A2 

3 3 Asymptotic Small Gain Theorem with Restrictions for 

Uncertain Nonlinear Time-varying Systems 

Theorem 3.4 Under Assumption 3.2, assume that both subsystems (3.5) and (3.6) are 

RAG and o-RAG with restrictions Xi, Ai and Af on Xi{to), Vi and Ui, z = 1,2, respectively, 

i.e., fori = 1,2, there exist class K functions 7 “ 7]", and 梵，independent of d, such that, 

for any Xi{to) G Xi, Vi{t) € L% satisfying 丨卜』„ < A ,̂ mit) G US^ satisfying 丨丨̂̂』„ < AĴ , 

the solutions of (3.5) and (3.6) exist and satisfy, for all t > to, 

IWIa < max{7i(|H|a)，7r(Ma)} (3.99) 

hiWa < max{7i(|ki||a),7r(lkz||a)}. (3.100) 

Suppose 

A 3.3 For all initial state in Xi x X2 and all piecewise continuous ui, U2, d which are 

bounded on [力0,00)，the solution of (3.5) and (3.6) with connection (3.7) is defined for all 

A 3.4 Ai = 00; 

A 3.5 7i(oo) < 00 and 71(00) < A2; 

A 3.6 the small gain condition 

7i 072W < r > 0 (3.101) 

holds. 
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Then, under connection (3.7), the system composed of (3.5) and (3.6) is RAG and 

o-RAG with restrictions Xi x X2, Ai and A2 on x{to), ui and U2 respectively, viewing 

X = col(a;i,a;2) as state, y = col(7/1,2/2) as output and u = co\{ui,U2) as input, i.e., 

there exist class K functions and independent of d, such that, for any initial 

state x{to) € Xi X X2, and any input functions ui{t) G LJJi satisfying < A： and 

U2{t) G US^ satisfying \\u2\\a < 么2’ the solution of (3.5) and (3.6) with connection (3.7) 

exists and satisfies, for all t > to, 

Iklla < 7"(Ma)， （3.102) 

IMIa < r ( M a ) . (3.103) 

where, 

7^(5) = m a x { 2 7 i � ° 劳⑷,27i�72(«5) ’ 27^(5), 2 7 2 � ° 272 o (s), 272^(5)}, 

and A2 is such that A2 < A^, 

and Ai is such that Ai < AJ, and ^ ( A i ) < A2. 

Proof: Theorem 3.4 is a slight extension of Theorem 2 [61] and the proof of Theorem 

3.4 is similar to that of Theorem 2 [61]. 

Since Ai = 0 0 and A： < A^, the following estimates hold 

Ibilla < max{7i(||^i||a),7r(ll^illa)} 
< o72(IMIa),7l�^(j|^dla),7?(||"i||a)}. (3.104) 

Since the small gain condition holds, 

IbilU < max{7i 07川Mla)，7niMla)} . (3.105) 

Since 7 i ( A i ) < 7i(oo) < A2 and 

IMIa < max{72(|MW，究(IMIa)} 

< ma^{72°7i( lhl|a)，72°7?(IMI«) ,7M—W}. (3.106) 

Since the small gain condition holds, 

\\y2\\a < °7?(IMIa)，7MHIa)}. (3.107) 

Combining (3.105) and (3.107) gives that 

I M I a < Il2/l||a + ||2/2||a 

< max{2% o 7 川 M U , ||a),272 ° …||a)，27如 M I J } . (3.108) 
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Therefore, 

I M a < m a x { 7 i ( | M „ ) , 调 u i l lJ } 

^ m a x { 7 i o 7 2 ° ^ ( | | i ^ i | | a ) ， 7 i ° 7 ^ ^ | | a ) ， 7 j ^ ( I M | a ) } . ( 3 . 1 0 9 ) 

Similarly, 

||a:2||aSmax{72 07i°^(h2L),72°75^(IMIa)，72"(h2||a)} . (3.110) 

Therefore, 

ll^lla < 

2 7 2 ° 7 l ° 7 ^ M | a ) ， 2 7 2 ° 7 ? ( I M | a ) , 2 7 2 � | u 2 | | a ) } . ( 3 . 1 1 1 ) 

I 

A special version of Theorem 3.4 which will be used in next section is the case when 

the first subsystem does not rely on ui and the second subsystem does not rely on vi. In 

this case, conditions Assumptions 3.4，3.5 and 3.6 always hold. Therefore, we have the 

following 

Corollary 3.12 Consider the interconnection V2 二 yi of the following two systems 

Xi= yi=xi (3.112) 

X2 = f2{x2,V2^U2,d,t), y2 =工2 (3.113) 

where, the notations are the same as those in Theorem 3.4. Suppose: 

A 3.7 For all initial state in X\ x X^ and all piecewise continuous U2, d which are 

bounded on [to, oo), the solution of (3.112) and (3.113) with connection V2 == m is defined 

for all t > to； 

A 3.8 Subsystem (3.112) is RAG with restrictions X i and A]; on xi{to) and ui respec-

tively; 

A 3.9 Subsystem (3.113) is RAG with restrictions X2 and A^ on 0:2(亡0) and U2 respec-

tively. 

Then system (3.112) and (3.113) with connection V2 = yi is RAG with restrictions 

Xi X X2, A5^’ A这 on ixi{to),X2{to)) and u^ respectively, i.e., t h e r e e x i s t class K 
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function independent of d, such that, for any initial state G X i x X2, and any 

input functions ui(t) G L ^ ' satisfying ||ui||a < AĴ  and U 2 � G L二2 satisfying \\u2\\a < A^, 

the solution of (3.112) and (3.113) with connection V2 = y\ exists and satisfies, for all 

t>to, 

\\x\\a<j''{\\u\\a) 

where = max{272 o 75^(5), 275^(5), 27^(5)} and all the gain functions are defined the 

same way as those in Theorem 3.4. I 

We introduce the following corollary which can be directly applied in the next section. 

Corollary 3.13 Consider the interconnections 

V21 = ？/II, V22 = 2/12, VI = ？/2 ( 3 . 1 1 4 ) 

of the following two systems 

El : 二/i(a:i’^;i，oJ") 

yii = hn{xi,vi,d,t), yu = hi2{xi,vi,d,t) 

E2 ： 士2 = /2(冗2,仍1，仍2, W2，<̂,亡)， 

2/2 = h2{x2,V2l,y22,U2,d, t). 

Suppose: 

A 3.10 For all initial state in Xi x X2 and all piecewise continuous U2, d which are 

bounded on [to, 00), the solution of Si and 1；2 with connection (3.114) is defined for all 

t>to； 

A 3.11 Subsystem E2 is RAG and o-RAG with restriction A22 on the input V22, i.e., 

there exist class K functions 721，722，72' 721 ̂  I22 and independent of d, such that for 

any initial state 0:2(^0) e Re"^ and any input V22{t) satisfying ||i;22||a < A22, the solution 

X2{t) exists and satisfies, for all t > to, 

||x2||a < m a x { 7 2 1 (11^21 l la) , 722(||^22||a), 7 2 ( h 2 | | a ) } ( 3 . 1 1 5 ) 

M a < m a x { 7 2 l ( l l ^ 2 l | | a ) , 7 2 2 ( l l ^ 2 2 | | a ) , 7 2 ( l l ^ 2 | | a ) } . ( 3 . 1 1 6 ) 
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A 3.12 Subsystem Ei is RAG and o-RAG without restriction, i.e., there exist class K 

functions 71, 7^2, 7ii and 究2, independent of d, such that for any initial state 

xi{to) e and any input vi{t), the solution 0:2(t) exists and satisfies, for all t > to, 

ll^rilla < 7 i ( l h l l a )， ( 3 - 1 1 7 ) 

I b l l l l a < T l l d l ^ l l l a ) , ( 3 - 1 1 8 ) 

Il2/12||a < 7 l 2 ( I M I a ) . ( 3 . 1 1 9 ) 

A 3.13 7ii(oo) < oo, 712(00) < 00 and 712(00) < A22 

A 3.14 The small gain conditions 

711O721W 7 l 2 � 7 2 2 ( r ) < r � 0 

hold. 

Then under the interconnection (3.114), systems Si and E2 are RAG. 

Proof: Since Assumption 3.13 holds, substituting (3.118) and (3.119) into (3.116) gives 

that 

IMIa < max{72l(lk2l||a),722(lb22||a),7^(||^2||a)} 

< m a x { % i � 7 l l ( I M | a ) , % 2 。 ％ 2 ( I M | a ) 々 扣 I H I a ) } (3.120) 

Since the small gain condition (B5) holds, it holds that 

||2/2||a<72(lk2||a). (3.121) 

Therefore, 

||x2||a < m a x { 7 2 l ( | k 2 l | | a ) , 7 2 2 ( l k 2 2 | | a ) , 7 2 ( l k 2 | | a ) } 

< max{72l 0^^11(|h||a),722 07l2(lh||a),7WI|w2||a)} 

< n i a x { 7 2 1 � ° ^ ( l l ^ d l a ) ’ 7 2 2 � ° 7S(||^i2||a)’ 7 S ( h 2 | | a ) } ( 3 . 1 2 2 ) 

Substituting (3.121) into (3.117)-(3.119) gives that 

Ikllla < 7 l ( IM|a)S7 l °^ (h2||a ) (3.123) 

ll̂ /illa < l|yii||« + ll2/i2||aSmax{27ii(|| 化 灼 L ) } 

< m a x { 2 知 。 究 ( 丨 究 ( 3 . 1 2 4 ) 

I 

Remark 3.8 Corollary 3.13 is similar to Proposition 1 [2]. i 
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3.4 Input-to-State Stability Small Gain Theorem with Re-

strictions for Uncertain Time-varying Systems of Func-

tional Differential Equations 

Consider the interconnection of the following two systems as, 

�=h{xid{t),vu{t),uu{t),d,t), yi{t) = hi{xid{t),vu{t),uu{t),d,t) (3.125) 

X2(t) 二 f2{x2d{t),V2d(t),U2d{t),d,t), y2{t) 二 "2(Md(,) ’ ”2dW，^̂ 2d(《)，^M) (3.126) 

subject to the interconnection constraints: 

VI = 2/2, V2 - yi (3.127) 

where, for i = 1,2, Xi e E^S m G yi € Vi e Ê ^ with pi = 92, P2 = qi, the 

functions fi(xi,vi,ui,d,t) and f2(X2,V2,U2,d,t) are piecewise continuous in co\{d, t) and 

locally Lipschitz in co\{xi,vi,ui) and col(x2, f2, respectively, and d : [̂ o, 0 0 ) I R � i s 

piecewise continuous. The notation \\xid{t)\\ = sup,_�<s<t ||x(s)|| will be used throughout 

this part, and |卜id�II are defined in the similar way. 

The system composed of (3.125) and (3.126) is interpreted as feedback interconnection 

of two subsystems, the upper one with state xi , input col(t'i,wi) and output yi and 

the lower one with state X2, input col(仍，W2) and output y2. And suppose the following 

assumption holds. 

A 3.15 There exists a C^ function h such that 

col 0/1,2/2) = h { x i d , X 2 d , U i d , U 2 d , d , t ) 

is the unique solution of the equations 

yi = hi{xid,y2d,uid,d,t) 

2/2 = h2�X2d,yid,U2d,d,t�. 

Theorem 3.5 Assume that subsystem (3.125) is RISS with restrictions X i , Ai and A^ 

on xi{to), vi and ui respectively and subsystem (3.126) is RISS with restrictions X2, 

A2 and A2 on X2(to), and U2 respectively, i.e., there exist class KL functions /?i and 

伪，class K functions 7 1 ， 7 2 , 72, independent of d{t), such that, for any xi(to) e X i , 
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M t ) G satisfying ||叫t。，oo)ll < A i , ui{t) G L ^ ' satisfying h i[化’� ) "< A^, the solution 

of (3.125) exists and satisfies, for all t > to, 

� I I — 力 0 )， 7 i ( l l ” i d [ M l l )， 7 r ( l l M d [ M l l ) } (3-128) 

and for any ^2(^0) ^ 仍⑴ e L g satisfying ||̂ 2[to,cx>)ll < 八2’ U2{t) G L二' satisfying 

||t̂ 2[io,oo)ll < A这’ the solution of (3.126) exists and satisfies, for all t > to, 

II 工2 � ||Smax{/?2(||a:2cKto)M-to),72(||�[Mll)，72u(ll"MMll)}. (3-129) 

Further assume that subsystem (3.125) is RIOS with restrictions X i , A i and A^ on 

xi{to), vi and ui respectively and subsystem (3.126) is RIOS with restrictions 叉2, A2 and 

^ on ： 2̂(力0), ”2 and U2 respectively, i.e., there exist class KL functions /？丄 and /?2, class 

K functions 究，72,另，independent of d{t), such that, for any xi{to) G Xi, vi{t) € L監 

satisfying |h[t�,oo)|| < A i , ui[t) G LJJi satisfying |卜i[i�,oo)|| < 巧，the output of (3.125) 

exists and satisfies, for all t > to, 

II2/1 � I I —to)，7i(ll�[mII)，节(IIm•’幻II)} (3-130) 

and for any X2{to) e 又2�^ L g satisfying |…2[Zo，oo)" ^ ^̂ 2(亡）̂  satisfying 

||ii2[to,oo)ll < the output of (3.126) exists and satisfies, for all t > to, 

11^/2�II Smax{;g2(ll工2d(to)||’, —,o),72(I…2d[W]ll)’究（I卜坤�’…I)}. (3.131) 

Suppose that the small gain condition 

7i 0 7 2 W < r- > 0 (3.132) 

holds, then the system composed of (3.125) and (3.126) is RISS and RIOS with restrictions 

Xi X X2, A l and A2 on x{to), u\ and U2 respectively, viewing x = col(xi,X2) as state, y 

=co l (y i , y2 ) as output and u = col(wi,^2) as input, i.e., there exist class KL functions 

P and j3, class K functions 7 and 7, independent of d{t), such that, for any initial state 

a;(to) e Xi X X2, and any input functions ui{t) G U^ satisfying ||wi[化’⑷）!！ < Ai and 

U2{t) G L二2 satisfying ||u2[to,oo)II < 么2, the solution and output of (3.125) and (3.126) 

exist and satisfy, for all t > to, 

IkWII < max{/3(||x(^o)|U-to),7(ll^[to,t]ll)} 

lb � II < max{;5(||x(to)|M-to),7(l|w[to,^]ll)} 

where, 

7(s) = max{47i o ？丄 o 7^(s),47i o7T(s)，47i o，2�7Y(s)，47i o 労(s), 27j^(s)’ 4 7 2 � � 
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75(S)，472 0 究 ⑷ ， 听 ⑷ ， 4 7 2 � 劳 ⑷ , 2 7 2 l « 5 ) } ， 

7(5) = m a ^ { 2 7 i � 劳⑷’ 2究⑷,272�7？⑷，？^！⑷} 

and, 

(z) If Ai , A2, Ai , A2 are finite, 

文 1 = {xi e n X i : Ml^ilO) < min{A2,A2},72o^i( lkil l ,0) < m i n { A i , A i } } 

and 

义2 = {X2 eX2nX2： M\\^2l0) < min{Ai ,Ai } , � 巧 I I , 0 ) < miii{A2, As} } . 

Ai < m i n { A y , ^ } , A2 < min{A- ,A^} 

s e [ 0 , A i ) = ^ % � 7 ¥ ( s ) < m i n { A i，A i }，7 y ( s ) < m i n { A 2 , S 2 } 

and 

sG [ 0 , A 2 ) 4 7 i � T ^ ( s ) < m i n { A 2 , A 2}，7 ? � < m i n { A i , S i } . 

(ii) If Ai , A2，Ai, A2 are infinite, 

J î =义1 n Â i，义2 =义2门义2 

and 

Ai < min{A5S动，As < 

Proof: The proof is similar to that of Theorem 3.2. 1 

Remark 3.9 Theorem 3.5 extends the lOS small gain theorem with restrictions for time 

invariant systems of functional differential equations in [47] to the time-varying case. I 

51 



Chapter 4 

A Remark on Various Small Gain 

Conditions 

4.1 Introduction 

ISS small gain theorem is one of the powerful tools to verify the stability of the inter-

connected systems. The proof of the ISS small gain theorem is usually based on two 

methods: the input-to-output formulation [8, 9, 22, 25, 26, 61] and Lyapunov function 

argument [24，26, 59]. Relying upon the the input-to-output formulation, Jiang et al 

established a generalized small gain theorem for time-varying systems whose small gain 

condition involved two somewhat complicated inequalities [25, 26]. In [8], Chen and Huang 

introduced the concept of RISS and further simplified the small gain condition into one 

contract mapping, giving a more clear-cut version of the small gain theorem. These 

studies are based on the concept of the gain function. On the other hand, it is well-known 

that Lyapunov functions play an important role in the nonlinear system and control, so 

it is natural to derive the small gain theorem using Lyapunov functions. The ISS — 

Lyapunov function (dissipation) characterization of the small gain theorem was given in 

[24, 26, 59], whose small gain condition was based on the contract mapping of ISS — 

Lyapunov functions. These functions have been applied in ISS analysis of op en-loop 

systems and cascade interconnected systems [22, 53，55]. 

It is interesting to find the connection between these two versions of the small gain 

theorems. This chapter will show that the contract mapping of gain functions and that 

of ISS - Lyapunov functions does not imply each other, i.e., if there exists two ISS — 

Lyapunov functions for two subsystems respectively, we cannot guarantee the existence 
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of two gain functions for two subsystems respectively which satisfy the contract mapping; 

on the converse, if two subsystems are ISS respectively and their gain functions satisfy 

the contract mapping, w e also cannot guarantee the existence of the ISS — Lyapunov 

functions for two subsystems that satisfy the contract mapping. 

4.2 Preliminary 

Consider the following time-varying system: 

X = f{t,x,u) t>to>0 (4.1) 

viewing x eW^ 3,s the plant state, u e as the input, to as the initial time, the function 

f{t,x,u) : [to, oo) X X E"^ H R" is piecewise continuous in t and locally Lipschitz in 

col(x, u) for all t > to. A n d suppose f{t, 0,0) = 0 for all t > to. 

Definition 4.1 System (4.1) is said to be weakly robustly stable if there exists a smooth 

function (/?, satisfying < (f{x) for some Koo function 也 such that the following 

system 

x{t) = f{t,x{t),d{tMxm (4.2) 

is uniform global asymptotic stability ( U G A S , for short) for any d{t) G Mp = the set of 

all measurable functions IR i"̂  Z) 二 [—1,1广.• 

Definition 4.2 Consider the following system 

X = fix, u) y = h{x) (4.3) 

where, / ： R ^ x W^ h W^ and ： R ^ E ^ are both locally Lipschitz continuous, 

/(0,0) = 0 and /i(0) = 0. System (4.3) is state — independent uniformly output stable 

with respect to input in MQ, where Q is a compact subset of R"^, if there exists KL 

function /3 and K function 7 such that 

M m < ma^{/?(||/i(x(0))|M),7(II^Mll)} (4.4) 

for all u e Mq. I 

T h e following small gain theorem based on gain functions was given in [8]. 
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Theorem 4.1 Consider the inter-connection of the following two systems 

= fi{t,xi,vuu) (4.5) 

= f2(t,X2,V2,U) (4.6) 

subject to the interconnection constraints: 

yi 二 办 =工 1 

where, for z = 1,2, G Vi e u e with n： = q2 and n�=qi, the functions 

fi(t,Xi,Vi,u) is piecewise continuous in t and locally Lipschitz in col(xi, Vi,u). 

A s s u m e that subsystem (4.5) is ISS viewing xi as state and as input and 

subsystem (4.6) is ISS viewing X2 as state and 001(|；2,u) as input, i.e., there exists class 

KL functions and class K functions 7i, 72, Ti, I2 such that, for any 2:1(̂ 0) ̂  股几丄， 

col('Ui, w) € the solution of (4.5) exists and satisfies, for all t >to>0, 

IkiWII < max{/?i(||a;i(to)IM-to),7f(ll^i[to,t]ll),7r(ll^[Mll)} (4.7) 

and for any ^2(^0) ^ 脱几2, col…2’ … G the solution of (4.6) exists and satisfies, for 

all t>to>0, 

||:C2 ⑴丨 |Smax{/?2(||:c2(to)||,f — to)，72、ll”2[b’dl)，72u(lhto’t]ll)}. (4.8) 

Further assume 

7 f o 7 f ( r ) < r , Vr > 0 (4.9) 

then the system composed of (4.5) and (4.6) is ISS viewing x = col(a:i，:r2) as state and u 

as input, in particular, 

\\x{t)\\ < m a x { / 3 ( H t o ) M —to)，7(lhw]l|)} Vt > to (4.10) 

for some class KL class function (3 and any class K function satisfying 

7(r) > max{27f。72" W，27^(0,蛇。7^(0，272(0} Vr > 0. (4.11) 

I 

Remark 4.1 T h e inequality (4.9), which is equivalent to 7f o7f (r) < r (Vr > 0), is called 

the contract mapping of gain functions. I 
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Consider the following inter-connected system, 

= fi{t,xi,vuui) (4.12) 

X2 = h{t,X2,V2,U2) (4.13) 

subject to the inter-connection constraints: 

Vi = V2 = Xi, (4.14) 

where, for z = 1,2, e and Vi G with pi = m and P2 = m，the functions 

fi{t,xi,vi,ui) and /2(t，0̂ 2,灼，1̂ 2) are piecewise continuous in t and locally Lipschitz in 

and {X2,V2,U2) respectively and f认t, 0,0,0) = fait, 0’ 0,0) = 0 for all t>to. 

Assume that xi subsystem admits an ISS - Lyapunov function Vi{t,xi) such that 

there exists K^o functions a^，ai such that 

for any xi € R^^ and for some K^o functions xi，7i and ai， 

々 • + ( 力 ， 〜 巧 , M < - 叫 力，町)） （4-16) 

for any X2 € � 2 and any ui G L^i . 

A n d X2 subsystem admits an ISS-Lyapunov function (力，仍)such that there exists 

Koo functions 卧 such that 

a2(|k2||)<K2(^,X2)<a2(||x2||) (4.17) 

for any X2 G IR叱 and for some Koo functions X2，72 and a2, 

V2{t,X2) > max{x2(Fl(^,Xl)),72(||^^2||)} 

• 5 + 力 ， : < - a 2 (秘 , 0 : 2 ) ) (4-18) 

for any xi E 『 1 and any U2 e U ^ . 

With this, we have the following theorem relying upon the ISS 一 Lyapunov functions 

which was introduced in [10]. 

Theorem 4.2 Assume that, for z = 1,2, the Xi subsystem admits an ISS - Lyapunov 

function Vi satisfying (4.15)-(4.16) and (4.17)-(4.18) respectively. If the following small 

gain condition holds 

Xi 0 X 2 W < r, Vr > 0 
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then the inter-connected system composed of (4.12) and (4.13) is ISS with x =col(xi,X2) 

as state, u =col(ui, 1̂ 2) as input. I 

Remark 4.2 T h e inequality Xi。X2(?^) < r, which is equivalent to X2。Xi(r) < r (Vr > 0), 

is called the contract mapping of ISS — Lyapunov functions. I 

T h e following theorem was proven using ISS — Lyapunov functions in [24]. 

Theorem 4.3 Suppose that there exists C^ functions Vi : IR>o x W^' ]R>o, i = 1,2 

such that for all Xi G and t G ]R>o, 

^idkill) < m ,工 i ) (4.19) 

+ (力，A，仍，W) < —⑷(Hull) +7f(l| 巧 II) + 7r(l|ui||) (4.20) 

^ + 力 , A ,巧 , 化 ） < -C.2(||x2||)+7f(||xi||) + 72"(||̂ 2||) (4.21) 

are satisfied with some a^ G Koo and 7f, G K. If there exists q > 1 (z = 1, 2) 

such that 

这「1 o 汪1 o a「i o ci • o 这f 1 o 石2。Qffi。02 . (s) < s, Vs G (0, 00) (4.22) 

(ci - 1)(C2 - 1) > 1 (4.23) 

are satisfied, the interconnected system (4.12) and (4.13) is ISS with respect to the state 

X = col(xi,0:2) and the input u = col(iii,^2)- • 

4.3 The Sufficient and Necessary Condition for Input-to-

State Stability of Time-varying Systems 

4.3.1 ISS-Lyapunov functions for Time-varying Systems 

T h e following is a fundamental result on ISS theory for time-varying systems, that was 

proposed by H. Edwards et al [10]. However, the authors did not provide the proof in [10]. 

Here we give the detail of the proof, laying the fundamentals for the subsequent sections. 

Theorem 4.4 Assume that the origin is the equilibrium point for zero-input system of 

system (4.1), then system (4.1) is ISS if and only if it admits an ISS - Lyapunov function. 

Proof: 

Sufficiency : Assume that V{t, x) : [to, 00) xM'^ ̂  E>o is an IS S - Lyapunov function 

of system (4.1), i.e., there exists Koo functions a, a such that, for all G (4.2) 

and (4.3) hold. 
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Let M = ||it[t。’oo)||, rj = aox{M) and p = a{r). Choose p and r such that r] < p < a{r) 

and a(||a:(to)||) < P- Define the following time-dependent sets for t > to, 

= {xeBr\V{t,x)<r]} 

� p = {xeBr\V{t,x)<p}. 

T h e n it holds that 

C nt,p C Br. 

Observe that 

a{\\x{to)\\)<p^x(to)ent,,p. (4.24) 

Since 

aox{M) = r}<p = V{t,x) < a{\\x\\) 

^\\x\\>x{M) 
dV dV 

w e can conclude that if < then x(t) G flt^p, hence x(t) e Br for all t > to-

Next, w e will claim the two facts below: 

(z) A solution starting inside flto,” will stay inside Qt,” for all t > to； 

(a) A solution starting inside {^to,p 一 ^to,^} will enter fit,” in finite time T > to. 

Claim (i) follows from the fact that on the boundary of fltojj, 

^ l k l l > x ( I H I ) 

dV dV 

To prove claim {ii), assume that T be the first time w h e n the solution enters If 

the solution never enters fit’”, then T = oo. For t e [亡o，T)’ 

互 o X ( M ) = "<T/(力，oOS 树||:r||) 

Ikll > X(IHI) 

力 + S [ t , x ) f ( t , x , u ) < -a(IMI) < -aoa-\V{t,x)) = -aiV{t,x)). 

where a = a o . Let y{t) satisfy the autonomous first-order differential equation 

y = -o^iy), y{to) = v{to,x{to))>o. 
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B y L e m m a 3.4 (Comparison L e m m a ) in [31], 

B y L e m m a 4.4 in [31], there exists a class KL function 百(r, s) such that 

V(t, x(t)) < P{V{to, x{to)),t — to), \/t > to. 

Therefore, the solution satisfies the equality 

< 这 - i a ^ ( t， a O ) S 这 - 1 。 凤 工(力0))’力-力0) 

< o ^{a{\\x{to)\\),t - to) = /3{\\x{to)lt - to) ^t > to 

where is a class KL function, which has been proven in L e m m a 4.2 [31]. According to the 

property of KL functions, there exists a finite time T, such that P{\\x{to)\\,t-to) < a-'^{rj) 

for t > implying that ||a:(t)|| < 石—H"). Hence, V(t,cc) < rj, implying that the solution 

stays inside for all t > T'. Since T is the first time w h e n the solution enters fit,”, w e 

have T < T'. Since T is finite, this completes claim {ii). 

Claim {ii) implies that x{t) G Qt,” for all t > T. That is 

II工⑴II < Qr\V(t,x)) < cr\v) = 。石。X(M) = 7(M), W > T. (4.25) 

A n d claim (z) implies that 

\\x{t)\\ < f3iMto)lt — to) yto<t< T, (4.26) 

A s a result, 

||x(t)|| <max{/?(||x(to)IM-^o),7(lk[io,oo)ll)} V^ > h . 

Since the solution x{t) only depends on U{T) for to < r < t, taking the supremum 

over [to, t] yields 

llxWII <max{/?(||a;(to)IM-^o),7(lk[Mll)} > to. 

Necessity : T h e proof of this part will be conducted in a similar way as that of Theorem 

1 in [59]. A n d the proof will be based on the following implications: 

(4.1) is ISS 玲(4.1) is weakly robustly stable (4.1) admits an ISS — Lyapunov 

function. 
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A s s u m e that system (4.1) is ISS, i.e.，there exists a KL class function and a 

function 7 such that 

II工⑴II < max{/?(||x(to)||,t-to),7(ll^[Mll)}俄 > 切 (4.27) 

for any initial state x(to) G and any input function u(t) G L二. 

Let p(s) = /?(s,0) implying that p be a X-function. O n e can always assume that 

p(s) > s for all s > 0, p and 7 be Koo. It follows that is Koo and p — < s for all 

5 > 0. N o w let a be a Koo function satisfying a{s) < J'^dp'^is)) for all s > 0, where 

6〉 1 . A n d one can simply set cr(s) = for all s〉 0， w h e r e 1 < c < b. 

L e m m a 2.11 in [59] shows that there exists a smooth function ip and a Koo function ijj 

such that VKII到I) < < cr(||x||) for all x G W^. For the fixed function (p, one can shows 

that 

x(t) = f{t,x(t),d{tMx{t))) (4.28) 

is U G A S . 

Toward this end, w e first show that 

y t > t o (4.29) 
c 

for any x{to) G W^ and any d{t) G MD- It is sufficient to show that 

* 剛 ) < M M w > to, (4.30) 

since 7 is Koo and \\d{t)\\ < 1. For any x{to) e and d{t) e MD, since 

< 7WIWto)||)) < < (4.31) 

< 去II工(⑷II for all t small enough. 

Let ti = M{t > to : -r((p(x(t))) > i||a;(to)||}. Assume that ti < 00. T h e n (4.29) holds 

for t e implying that j{\\d{tMx{t))\\) < lp{\\x{to)\\) for t G (4.27) gives 

that ||x(t)|| < P{\\x{to)lO) = p{\\x{tQ)\\) for to<t< ti, which implies that 7((p(x(ti))) < 

^{a{\\x{ti)\\)) < lp-HMti)\\) < lMto)\\ < l\\x{to)l which contradicts the definition of 

ti. Hence ti = 00, and then (4.29) holds. 

From (4.27) and (4.29), it follows that \\x{t)\\ < max{/?(||x(to)IM - ^o), for 

x{to) e M几.Since (3 G KL, for each r > 0, there exists T{r) > 0, independent of 亡0, such 

that (3{r,t- to) < ^r, Vt > to + T(r). It holds that for each r > 0’ there exists some 

T(r) > 0，independent of to, such that 

+ \\x{to)\\<T. (4.32) 
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Choose r〉 0 , independent of to. For any £ > 0, let A; be a positive number such that 

c'^r < Let ri =r and n = Denote r = r ( n ) + T(r2) + ... + T(rfc), which is 

independent of to. For any t >to-j-T, it follows that < c—〜< e. This shows the 

global uniform convergence of the origin. 

To show that the origin is uniformly stable, (4.27) and (4.29) give that 

||xW||</3(||x(to)||,0) = p(||x(to)||), :c(to)eir， W(t) G MD. 

For each e > 0, there exists S < independent of to, such that 

T h e n the system (4.28) is U G A S , implying that system (4.1) is weakly robustly stable. 

Consider the auxiliary system: 

i ⑴ = f { x { t ) , x { t ) , d { t M x m 

m = 1 

y = "Or，A) = X. (4.33) 

Since system (4.28) is U G A S , system (4.33) is state - independent uniformly output 

stable (as a matter of fact, the converse also holds). Applying theorem 3.2 in [59], there 

exists a smooth Lyapunov function V for system (4.33), that is, a smooth function V so 

that, for some positive definite K^o functions a, a and a, it holds that 

and, 

l + ditMx)) < -a{V) (4.34) 

for any initial state x{TO) G d{t) e MD. Note that from (4.34), it follows that 

^ + ^ f { t , x , u ) < - a i V ) (4.35) 

where x{to) e W and < (f{x). Let xir) = then V{t,x) is an ISS - Lyapunov 

function for system (4.1). This completes the proof. I 

Remark 4.3 Inequalities (4.27) and (4.29) show that x[t) is uniformly bound for all t > to 

• and uniformly ultimately bounded with the ultimate bound a—i o a o x ( M ) = 7(M). Since 

7 is a class K function, as Af — 0, the ultimate bound approaches zero. I 
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4.3 .2 A Remark on Input-to-State Stability for Time-varying Systems 

First, w e will introduce a property on ISS. 

Definition 4.3 A locally Lipschitz K^o function p is called a Koo - stability margin for 

the system (4.1) if the system 

x{t) = f{t,x(t),d{t)p{\\x{t)\\)) (4.36) 

is U G A S for all d[t) G MD, that is, for some P e KL, it holds that 

\\x{t)\\<mx{to)\it-to) t>to 

for all trajectories of system (4.36). i 

R e m a r k 4.4 T h e concept of K^o — stability margin for time-varying systems with respect 

to a closed subset A G was introduced in [10]. I 

Next, w e will extend two lemmas on ISS properties for time invariant systems intro-

duced in [59] to the case of time-varying systems. 

L e m m a 4.1 If system (4.1) admits a K^o — stability margin, then it is weakly robustly 

stable. 

Proof: Arguing as Theorem 4.4, for any Koo function cr, there exists a smooth function 

ip E > o and a K① function 冲 such that i/;(||x||) < ip{x) < cr(||x||) (Vx G R”. Under 

the particular feedback control law d(t)ip[x) which is bounded by a, the following system 

xit) = f(t,x(t),d(tMxm 

is U G A S . Arguing as the necessity part of Theorem 4.4, there exists an ISS — Lyapunov 

function for system (4.1), then (4.1) is weakly robustly stable. I 

L e m m a 4.2 If system (4.1) admits an ISS — Lyapunov function, the it also admits a 

Koo - stability margin. 

Proof: Assume that V{t,x) be an ISS — Lyapunov function. Without loss of generality, 

we assume that x ^ ^oo- Let p{r) = then p G K^o, and 

芸(力，工)+ 力,柳’工，…^ -Q^(NI) < -oto-a-\V{t,x)) 

when ||u|| < p(||x||). 

61 



It follows that 

f (t，:̂ ) + 力 ， : r ) / M ， M ⑶ ） S - 到 吨 动 

, A - a o 『 i . L e t y ⑷ satisfy 

for any state feedback control law k{t, x) bounded by p, where a 一 

the autonomous first-order differential equation 

B y L e m m a 3.4 (Comparison L e m m a ) in [31], 

B y L e m m a 4.4 in [31], there exists a class KL function /5(r, s) such that 

for every solution x{t) and feedback control law k{t,x) bounded by f>. Therefore，the 

solution satisfies the equality 

II工⑷II < X)) < ^(^o)), ^ - ^o)) 

< a-\p{a{\\x{to)\\),t- to)) = P{\\x{to)lt - to) ^t > to 

where is a class KL function, which has been proven in 

L e m m a 4.2 [31]. 

Thus, system (4.1) admits a Koo 一 stability margin p. • 

According to L e m m a 4.1, L e m m a 4.2 and Theorem 4.2, the following properties are 

equivalent for any time-varying system: 

1. It is ISS. 

2. It admits an ISS — Lyapunov function. 

3. It admits a Koo — stability margin. 

4. It is weakly robustly stable. 

Proof: 

See Necessity part of Theorem 4.2. 

4.=>2. See Necessity part of Theorem 4.2. 

2.=4>1. See Sufficient part of Theorem 4.2. 

2.=^3. See L e m m a 4.2. 

3.々4. See L e m m a 4.1. 
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4.4 Comparison of Various Small Gain Theorems 

4.4 .1 Comparison of Theorem 4.1 and Theorem 4.2 

In this part, w e will show that if the conditions of Theorem 4.2 hold, it is not guaranteed 

that there exist two gain functions that satisfy the contract mapping of gain functions, 

7i 0 72(r) < r (Vr >0). 

Assume that in systems (4.12) and (4.13), for i = 1,2，the xi subsystem admits an 

ISS - Lyapunov function Vi{t,Xi) satisfying (4.15)-(4.16) and (4.17)-(4.18) respectively. 

From the estimate of Vi{t,Xi), w e obtain that 

Ikill > 。X1。石2(||:r2||) ai(lkill) > XI。石2(11:̂ 211) Vi{t,Xi) > Xl{V2{t,X2)) 

Ikill > 。7i(l|ui||) ai(lkill) > 71(11^11) Viit.x,) > 7i(K||) 

According to the sufficiency part of Theorem 4.4, it follows that 

ll̂ ri ⑴ 11 Smax{A(|丨:Ti(力 o)||“ —力 o),7f(ll巧[mI丨),7r(j丨叫 Mil)} 

for all t > to, where, 

7f = 。 石 1 。 。 X I 。 ^ 2 } , = oaio 这i)_i o 71}. 

Similarly, w e could obtain that 

||工2|丨 > a 2 ' o x 2 o a i ( | | x i | | )这 2 ( 1 1 灼II) > X 2 � 石今 V^it^xi) > ^i)) 

||0；2丨丨2这2-1°72(|丨购丨|)今这2(||工2|丨）2 72(丨 力，:^2)2 72(11 权2||) 

According to the sufficiency part of Theorem 4.4, it follows that 

||0：2⑴II Smax{/?2(丨|0：2(力o)M —to)，72"(ll工i[t。’t]丨丨),72"(1丨％"11)} 

for all t > to, where, 

72 = o 0x20^1}, 72 。石2。。72}. 

Then 

o7f(r) = o ^ i o Q - l o x i 0^2} o o o a^^ 0x2 oai}(r) (4.37) 

Under the assumption xi。X2M < r (Vr > 0), we cannot guarantee that 7f o 7f(r) < r 

(Vr > 0). 
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• 

In this part, w e will show that if the conditions of Theorem 4.1 hold, it is not guaranteed 

that there exists two ISS - Lyapunov functions that satisfy the contract mapping of 

ISS — Lyapunov functions xi。X2(r) < r (Vr > 0). 

Assume the conditions of Theorem 4.1 hold. Let pi{r) = Arguing as the 

necessity part of Theorem 4.4, one can always assume that pi{r) > r for all r > 0 and pi, 

7 f be Koo. It follows that is Koo and < r for all r > 0. N o w let crf)(r) and 

(7《” (r) be Koo functions such that 

< ( 7 f ) - i ( &「 V ) ) 4\r) < W )—i ( ^ P「 V ) ) 

for all r〉 0 , where bi > 1 and ii > 1. 

There exists smooth functions 〜.）and Koo functions 〜.）such that 

功P(IMI) < 暴)< 4'\\\r\\) < < ali)(||r||) 

^f^dkll) < ⑷ < ap)(||r") < 乂‘)⑷ < af(||r||). 

T h e n there exists a smooth Lyapunov function Viit.xi) for xi subsystem, that is, a 

smooth function Vi{t,Xi) so that, for some positive definite Koo functions 这，ai and 

it holds that a^dlxill) < Vi{t,Xi) < 石i(||:ri||) and 

柴 + 工 1,邓)rf)(工iM⑴必)(Ti)) < -ai(Fi) (4.38) 
at ox I 

尝 + < -a2{V2) (4.39) 
at 0x2 

for Vxi € d{t) e MD- Note that from (4.38) and (4.39), it follows that 

^ + l ^ / i⑷工 1，工2’ui) < -ai(Fi) (4.40) 

5 + < -a2{V2) (4.41) 

where | M I < rf)(工i), II购" < 必)(工i) ̂ d ||xi|| < | M | < 

Since, 

V2{t, X2) < ° ° (t^ ^l)) 

^这2(11工2|丨）5这2。於）。石「1(巧(力，工1)) 

^ I M I < < < rf)(工 1)， 
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W41)。可i)-i(IMI) < 灿’zi) I M I < 4 1 )。可 驰 0 : 1 ) ) < 4 I ) ( | m ) 

and 

( 由 。 於 ) 。 石 2 - i ” 0 4 “ ， 力 ， 

叫 力 , 町 这 1 。 评 ) 。 石 力 ’ : C 2 ) ) 

^由(丨丨町丨丨）5由。功P)。在2-l(V2(。:r2)) 

^ "工 1" ^ 0 石 工 2 ) ) < 功P)(||工2丨丨）< 巧)， 

(42)。石 2-1) —l(IMI) < I M I < O 石 2-10^2 ⑷工 2)) < 4^^(11X211) 

let，XI(r) = ai o ( V ^ ) ) ] o 这？—V) X2(r) = o (V^P))] o 这「1(厂） 

and 71 =石1 o 72 = o 

Hence, ifVi(t,xi) > max{xi0^2(《，^^2))，||)}’ (4.4O) holds, implying that Vi(t,xi) 

is an ISS — Lyapunov function for xi subsystem. 

Similarly, if \̂ 2(t，X2) > max{x2(巧 { t , a^i))’ 72(|丨|̂ 2丨|)}, (4.41) holds, implying that V2{t, X2) 

is an ISS - Lyapunov function for X2 subsystem. 

I f 7 f o 7 f ( r ) < r (Vr>0),then 

XI。X2(r) = {ai o (V^i”)-1。均-1} o 。 ( ^ f o a-i}(r) (4.42) 

Under the assumption 7f。7f 0 ) < r (Vr > 0), w e cannot guarantee that Xi。X2(r) < r 

(Vr > 0). 
• 

Example 4.1 Consider the following system 

XI = -XI + g(t)x2 + u (4-43) 

. . (4.44) 
X2 = Xi - X2 + U � ‘ 

where g(t) is continuously differentiable and satisfies 0 < g{t) < k and 柳 < "⑴，•力 ^。. 

Taking 二 ixf as an ISS-Lyapunov function c a n d i d a t e for xi subsystem, it 

can be seen that 

Q 
||a:i||>max{-/c||x2||,4||n||}=^Vi = x^xi 

二 一 工 ⑷ 仍 以 工 1 

< -x\ + kx2Xi + 

< + + 

二 
12 1 
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Vi{t,xi) > max{^/cV2(t,:^^2),8u2} = max{xi0^2h:^^2))，7i(IMI)} 

今 bill > me.x{^k\\x2\\A\\u\\} —xj = -ai(llxill) 

Taking xj < V2{t,X2) = [1 + g{t)]xl < (1 + k)xl as an ISS - Lyapunov function 

candidate for X2 subsystem, it can be seen that 

||x2||>max{(2 + fc)||a;i||,2|H|}^T/2 = 2[\ + g{t)]x2X2mA 

=2[l+g[t)]x2[xi-x2^u) + g{t)xl 

= - [ — � � + 9{t) + + [2 + + UX2 

< - 2 x 1 + (2 + k)xix2 + UX2 

1 2 

V2{t^X2) > max{2(2 + kf(\ + A:)Vi(t, xi), 4(1 + k)u^} = max{x2(V^2(t, ̂ 2)), 72(||^||)} 

• ||X2|| > max{(2 + /c)||a:i||,2||z.||} F2 < - ^ x l = 

Then, if k = 0.26， 

XI 0 x 2 W = Ik'^ • 2(2 4- kf{l + /c) . r = 0.9789r < r 
8 

。7f(r) = {(这1) —1。互1。a「l。Xl。石2}。{(这2)一 1 OX2 o^lK?^) 

= 1 . 0 9 8 7 r > r (4.45) 

However, in the case when k = 0.25, xi。X2O) = 0.8899r < r and 7f o ( r ) = 

0.9831r < r. I 

Example 4.2 Consider the following inter-connected system, 

±1 = - x i + i sint • X2 + ^ sini • w (4.46) 
o o 

±2 = - sint • xi - X2 + - siiit' u (4.47) 
3 3 

T h e solution of subsystem (4.46) can be obtained as follow, 

rt 1 
Xi{t) = exp(—(〜化)）a;i(to)+ / - • X2{r) + u{r))dr 

J to 

< exp(-("。)) XI(to) + 义‘一 ( + ” ) ( "巧 [一 ) " + Ho,oo]\\)dr 

= e x p ( - (⑷ ) x , { t o ) + •(llo；冲。’00)11 + ll’，oo]ll) j : e x p ( +”) sinr . d丁 

=exp(-("o))工1 ⑷ + i(||x2[,„oo)ll + ll，o，oo]ll)(l — e x p ” 

< e x p ( - ( , - ⑷ + •|一0’00)|| + IHo,oo)\\ (4.48) 
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Similarly, 

⑴ S exp(—(一）X2{to) + 臺||a;i[,o，oo)|| + IHO,OO)\\ (4.49) 

(4.48) and (4.49) give that (4.46) and (4.47) are ISS respectively, i.e., 

||:ri(t)||5ma^{A(||zi(to)||,t-to)，7f(l|r2[t。,oo)||)，7?(lh(。’oo)ll)} (4.50) 

11^2(011 < max{/52(||:c2(to)||,“站〜—1|)，72"(||^^[〜—II)} (4.51) 

where, /?i(s,r) = "2(s，r) = 2 . e乂 s and 例=7?(r) = 7 ^ ( 0 = 7^(r) = fr. 

Let pi(s) = max{2ft(5,0), 2s} = max{2e—〜2s} implying that pi is Koo and pi(s) > s 

for all s > 0. It follows that /0「i(s) = min{0.5e〜0.5<s} is Koo and pi{s) < s for all s > 0. 

Let cri(s) = 0.5(7f)-i0.25pJ"i(s) = 0.1875min{0.5e〜0.5s}. Hence there exists a smooth 

function v?i(s) = 0.1 min{0.5e"s",0.5||s||} and a Koo function 仇(s) = 0.1 min{0.5eS,0.5s} 

such that 

^i(lki||)<^i(xi)<ai(||a;i||) (4.52) 

for all xi G R. 

B y appealing to Theorem 4.4, there exists a smooth Lyapunov function Vi{t,xi) for 

system (4.46) such that, for some positive definite K^Q functions Q j, ai and ai, it holds 

that 

and, 

^ + < - a i m ) (4.53) 

for any initial state xi{to) e R, d{t) e Mp. 

Note that from (4.53), it follows that 

where xi{to) e E and ||w|| < ipi{xi). Let xi{s) = = 10max{2e-、2s}, then 

Vi{t, xi) is an ISS — Lyapunov function for system (4.46). 

B y symmetry of subsystems xi and X2, it follows that there exists there exists a 

smooth Lyapunov function V2{t,X2) for system (4.47) such that, for some positive definite 

Koo functions 石2 and 0:2, it holds that 

这2(11巧丨巧(力，巧）S兩（II工2II) 
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and 

I M 2 X2(IM) 尝 + 地 s 

where X2(s) = 10max{2e~^, 2s}. 

Observe that although jf o 7f(s) = 45/9 < s for all s > 0 ， x i 。 > s for all 5 > 0. 

I 

4.4.2 Comparison of Theorem 4.1 and Theorem 4.3, Theorem 4.2 and 

Theorem 4.3 

Consider the following interconnected system, 

= fi{t,xi,vi,ui) (4.54) 

= f2{t,X2,V2,U2) (4.55) 

subject to the inter-connection constraints: 

vi = X2, V2 = xi. (4.56) 

Suppose that there exists C^ functions Vi : R>o x R^^ M>o, z = 1,2 such that for 

all Xi e R…a n d t € R>o, 

^idkill) < Viit^Xi) 

< -ai(lki||) + 7f(lk2||) + 7r(lkill) (4.57) 
ox I 

< -a2(lk2||)+7l(||a;i||) +72^(1^211) (4.58) 

0X2 

are satisfied with some a ^ ai , 7f and H G Koo. Following the similar steps as L e m m a 

10.4.2 [22], it holds that 

Ikil l > m a x { x i ( l k 2 | | ) , 7 i ( l l ^ i | | ) } 

• g/i(t，:ri，X2,^^i) S -(1 — • - (4.59) 

||0；2|| > max{x2(lkill)，72(h2||)} 

^ < - { 1 - ^ - (4.60) 

where, 

XI(r) = a r V f . 7f W ) , 71 (r) = W • 7i>)) 

X2(r) = . = ‘ 
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with T f〉 1 and 〉1. T h e n (4.7) and (4.8) are satisfied with 

究(r) 。石1。X1(0 芳(r)=这2一1。面。X2(r). (4.61) 

If the small gain condition (4.22) holds, i.e., there exists rf > 1, z = 1,2 such that 

这「1。而。ari。Tf .7?。这2*1。石2。afi。Tf .7!⑷ < 5, V 5 G (0,oo) (4.62) 

(rf - 1)(T| - 1) > 1, (4.63) 

the contract mapping of gain functions jf o 7|(r) < r also holds, which means that The-

orem 4.3 implies Theorem 4.1. However, the converse is not always true. 

• 

Consider the systems (4.54) and (4.55). Suppose that there exists C^ functions Vi ： 

M > o X M^^ H E>o, I = 1,2 such that (4.57) and (4.58) hold with some 迅，两，(M，7f and 

e Koo. Denote that 

Xi(r) = ai o a「i o rf o o a ^ H O . 7 i W 二 — o r o 

X2(r) = a2 0 a工 1 o r^ o 7 f o a^^r), 72 (r) 二 6 2 � � r ^ � 7 2 (^) 

with rf > 1 and T^ > 1 for z = 1,2. 

It follows that 

V i M > max{xi(VH巧))，71(丨|以ill)} 

々 ̂ i(lkill) > max{xioa2(||x2||),7i(ll^i||)} 

今 Iki II > max{ari。rf o 7?(II工2II)，Q̂ i o r ^ 。 I D ) 

> max{x2(Vi(:ri)),72(丨丨以2II)} 

> m a x { x 2 0Qi(||a;i||),72(^211)} 

々 ||X2|| > max{a2-i。rf o (丨||), 。丁S ° 72"(丨1̂ 1̂)} 

巧，町，购）<-(1-^- 仍 II). 

If the small gain condition (4.22) holds, i.e., there exists rf > 1, z = 1,2 such that 

Qj-i o a i o a「i o rf . 7? o 这f 工。石2。。丁安.72 (^) < Vs G (0，00) (4.64) 

W - - 1) > 1 (4.65) 

the contract mapping of ISS-Lyapunov functions x i � X 2 { r ) < r also holds, which means 

that Theorem 4.3 implies Theorem 4.2. However, the converse is not always true. 

n 
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叙 . 5  T w o  S m a l l  G a i n  T h e o r e m s  f o r  T i m e — V a r y i n g  S y s l ; e m s  

I n 【 5 9 】 ， t i h e  d e f i n i t i o n s  o f  l O S ,  O L - I O S  a n d  S I I O S  f o r  t i m e  i n v a r i a n t ,  s y s t e m s  w e r e  p r o I D O S e d .  

A n d  l O S  a n d  O L — I O S  s m a l l  w a i n  t i h e o r e m  t i m e  i n v a r i a n t ;  s y s t e m s  w e r e  g i v e n  r e s p e c t i v e l y  

i n 【 2 8 j  a n d 【 4 0 二  F o l l o w i n g  t h e  s a m e  l i n e s  a s  T h e o r e m  2 . 1 【 8 二  w e  c a n  o b t a i n  t h e  f o l l o w i n g  

s m a l l  w a i n  l ^ h e o r e m  r e l a t e d  ̂ o  S I I O S  f o r  t i m e - v a r y i n g ;  s y s t e m s .  

F i r s t ； ,  w e  e x t e n d  t , h e  c o n c e p > t ,  o 叫  S I I O S  t ; o  r o b u s t  s t a t e  —  i n d e j } e n d e n t  i n p u t  —  t o  —  o u t p u t  

s t a b i l i t y  ( R S I I O S ) .  

D e f i n i t i o n  私 . 俗  C o n s i d e r  t i h e  f o l l o w i n g  s y s t e m  

i  =  f ( t , x , u , d )  y  =  h ( t , x , u , d y  ( 4 , 6 6 )  

S y s t e m ( 4 6 6 )  i s  H S I I O S ,  i f  ? e r e  e x i s t s  K L  f u n c t i o n  a n d  K  f u n c t i o n  7  s u c h  t ; h a t ,  

I I  务  H m a x { / ? f  ( i , T t o ) ， 7 f £ l l ) } .  ( 4 . 6 7 )  

-
C o n s i d e r  t i h e  i n t e r - c o n n e c t i o n  o f  t ^ h e  f o l l o w i n g  t w o  s y s t ^ e m s  

， H  M t , x l , v l , u l , d ) ， y i  m m / i l ( ， H l , ^ ; l , w l , c o  ( 4 . 6 8 )  

& 2  H  f 2 ( t , x 2 , v 2 , u 2 , d ) ，  y 2
 M M  h 2 广 t , x 2 , v 2 , u 2 h  ( 4 . 6 9 )  

s u b j e c t  ̂ o  t ^ h e  i n t e r c o n n e c t i o n  c o n s t r a i n t s :  

s  =  2 / 2 ,  V 2  =  m  

w h e r e ,  f o r  i  =  1 ,  2 ,  a : -  G  V i  G  M 。 ：  U i  m I R ! ,  y i  e  R p -  w i t h  p i  =  q 》 a n d  P 2 H  q l .  

T l i e o r e m 办 . 5  A s s u m e  t h a t ;  s u b s y s t e m  ( 4 6 8 )  i s  F I S I I O S  v i e w i n g  H I  a s  s t a t e  a n d  c o l ( ？ ； l ,  w )  

a s  i n p m t i  a n d  s u b s y s t : e m  ( 4 6 9 )  i s  H S I I O S  v i e w i n 卯  X 2  a s  s t i a t ^ e  a n d  c o l ( t * 2 , s )  a s  i n p u t ,  i . e . ,  

t , h e r e  e x i s t s  c l a s s  K L  f u n c t i o n s  z ^ l  a n d  c l a s s  K  f u n c t i o n s  7 『 ， 7 》 s u c h  t ^ h £ L t ,  

f o r  a n y  H I  ( t o )  m  R " - l 》 c o l ( z ; l , w )  G  t h e  o u t p u t  o f  ( 4 . 6 8 )  e x i s t s  a n d  s a t i s f i e s ,  f o r  a l l  

t  w  t o  二 ，  
l l y l s = w m a x { A f l ? ) I M —  £ , 7 s s l l ) ， 7 r ( T 【 £ l l ) }  ( 4 . 7 0 )  

a n d  f o r  a n y  : r 2 ( t o )  m R 3 2 )  c o l ( t ; 2 , s )  m t h e  o u t j m t  o f  ( 4 . 6 9 )  e x i s t s  a n d  s a t i s f i e s ,  f o r  

&  二  t o  二 ，  
= y 2 s l l w m a x { / ? 2 ( F ( t 。 )  =  , 7 t 。 ) ， 7 2 n l l l l D , 7 2 d i £ l l ) } .  ( 4 . 7 1 )  
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F u r t h e r  a s s u m e  

7 了  7 I ( 0 < 『 ，  v r v o  ( 4 . 7 2 )  

t h e n  t h e  s y s t e m  c o m p o s e d  o f  ( 4 . 6 8 )  a n d  ( 4 . 6 9 )  i s  R S I I O S  v i e w i n g  H  =  C 0 1 ( H 1 ,  ; r 2 )  a s  s t a t e ,  

u  H  C 0 1 ( l i l , u 2 )  a s  i n j n i t  a n d  y  =  8 1 ( 2 / 1 , 2 / 2 )  a s  o u t p u t ,  i n  p > a r t i c u l a r ,  

I b s l l  ^  W  ^  0  ( 4 . 7 3 )  

f o r  s o m e  c l a s s  K L  c l a s s  f u n c t i o n  a n d  a n y  c l a s s  K  f u n c t i o n  s a t i s f y i n g  

7 ( r )  ^  m a x { 2 7 f 。 7 2 > ) ， 2 7 r 3 , 2 7 l 。 7 1 > ) ， 2 7 2 > ) }  W  ^  0 .  ( 4 7 4 )  

-
R e m a r k  仁 . 5  S i n c e  S I I O S  i s  i n d e p e n d e n t  o 叫  t : h e  i n i t i a l  s t a t e  H ( t o ) ， i l ^  i s  t - o  

l ^ h a t i  s u b s y s t e m s  ( 4 6 8 )  a n d  ( 4 6 9 )  a r e  U O  r e s p > e c t i v e l y ,  w h i c h  i s  e s s e n t i a l  ̂ o  l O S  

s m a l l  g a i n  t h e o r e m 【 9 ,  6 0 一 .  •  

B e f o r e  g i v i n g  T h e o r e m 4 . 6 ,  w e  e x t e n d  t ^ h e  c o n c e p t ;  o f  O L - I O S  ̂ o  r o b u s t  o u t p u t  L a 『 a n g e  

i n p u t  —  t o  —  o u t p u t  s t a b i l i t y  ( R O L - I O S ) .  

D e f i n i t i o n  叙 . 5  S y s t e m  ( 4 6 6 )  i s  H O L - I O S ,  i f  t ; h e r e  e x i s t s  K L  f u n c t i o n  P  a n d  K  f u n c t i o n s  

7 ,  c T i  a n d  q 2  s u c h  t h a t ;  

^  m a x { / 3 ( ¥ ( t o ) l l , t  —  t o ) ， 7 ( l l j t i l l ) } ,  ( 4 . 7 5 )  

l l y s l l  ^  m a x { a l ( l b ( t o ) l l ) ， q 2 ( l k 【 € l l l ) } .  ( 4 . 7 6 )  

•  

4 b  S y s t e m  ( 4 . 6 6 )  i s  R I O S  i f  ( 4 . 7 5 )  h o l d s .  S y s t e m  ( 4 . 6 6 )  i s  r o b u s t  o u t p u t  

L a g r a n g e  s t a b l e  ( R O L )  i f  ( 4 7 6 )  h o l d s .  H e n c e ,  R O L - I O S  i s  e q u i v a l e n t :  ̂ o  t ; h e  c o n j u n c -

U o n  o f  R I O S  a n d  R O L . -

T h e o r e m  叙 . 6  A s s u m e  t h a t :  s u b s y s t e m  ( 4 6 8 )  i s  R O L - I O S  v i e w i n g  H I  a s  s t a t e  a n d  c o l ( - u l ,  s )  

a s  i n p m t ;  a n d  s u b s y s t e m  ( 4 6 9 )  i s  R O L - I O S  v i e w i n g  a s  s t a t e  a n d  c o l ( t ; 2 ,  w )  a s  i n p u t ,  i . e . .  

I n h e r e  e x i s t s  c l a s s  K L  f u n c t i o n s  a n d  f h ,  c l a s s  K  f u n c t i o n s  7 f ,  7 ， 7 5 ^ ,  7 》 s u c h  t , h a t ,  

f o r  a n y  : I : l ( t o )  m  I r ^ s  c o l ( ^ ; l , s )  m  t ^ h e  o u t p m t  o f  ( 4 . 6 8 )  e x i s t s  a n d  s a t : i s f i e s ,  a l l  

t 么 二 ，  
I M t ) 一  I ^  m a x { / ? l ( I I H l ( t o ) I M  —  t o ) ， 7 1 s k l F t j l l ) ， 7 r ( l l s 【 t M I I ) } ,  ( 4 . 7 7 )  

l l y l ( t ) 一  I  ^  m a x { c 7 ? ( l l s ( t o ) l l ) ， 7 ? ( l h 【 , i l l ) ， 7 r ( l l - l F t ^ l ) } ,  ( 4 . 7 8 )  
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Chapter 5 

Semi-global Robust Stabilization 

for A Class of Feedforward 

Systems 

5.1 Introduction 

In this chapter, we will study the robust stabilization of nonlinear systems of the form: 

in = Cn-lXn-1 + / n 5 ^^n-l, ^n^U, d) 

in = 5^1(6,工1, •"，“-l,;-l,Cn，^^,cO， 

士i = Ci-iXi-i 4-

？1 = t > to >0 (5.1) 

where, for i = 1 , n , cci G 股，d G IR〜，（̂i G RP、iz G 股，/i and gi are globally defined C^ 

functions satisfying /i(0,... , 0, d) = 0 and 讲(0, •.. , 0, d) = 0 for d G R几J, ci,…，c^-i, 

A, B, C, D are (unknown) constants or matrices, and d :[亡0,00) —̂  T is a piecewise con-

tinuous function with its range F a compact subset of 脱”".It is noted that system (5.1) 
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contains two classes of well known nonlinear systems as special cases. First, when pi 二 0 

for i 二 1, • • • , n, system (5.1) becomes a subclass of the standard feedforward system 

studied in [61], and second, w h e n pi = 0 for i = 2, • •. , n and pi + 0, system (5.1) becomes 

the feedforward system subject to input unmodeled dynamics as studied in [2]. Thus we 

can view system (5.1) as nonlinear systems in feedforward form subject to dynamic uncer-

tainty 《2, • • •，an d static uncertainty d. System (5.1) is interesting on its own, on one 

hand, because dynamic uncertainty is ubiquitously present in real systems. O n the other 

hand, it is k n o w n that the robust output regulation problem for a nonlinear system can be 

converted into a robust stabilization problem of an appropriately augmented system which 

can be viewed as the original system subject to dynamic and static uncertainties where 

the dynamic uncertainty models the internal model [18] and [19]. Thus the stabilization 

solution of system (5.1) also shed light on the solution of the robust output regulation 

problem of nonlinear systems in the standard feedforward form. 

T h e objective of this chapter is to design a static partial state feedback control law to 

semi-globally stabilize the equilibrium of the system. More precisely, given any compact 

subsets 0 G X C and 0 G S C R^ with p = + P2 • • • + Pn, design a control law of the 

form u = k{x) with x = co\{xi,X2,Xn) and k{0) = 0, such that, for all d, the equilibrium 

of the closed-loop system is asymptotically stable with X x S contained in the basin of 

attraction. 

In addition to the fact that system (5.1) contains dynamic uncertainty, there is another 

difference between the above problem formulation and the one studied in [2] and [61] in 

that our formulation implies asymptotic disturbance rejection of time-varying exogenous 

signal d in contrast with the disturbance attenuation in [61]. 

In comparison with the papers [2] and [61], a special difficulty of our problem arises 

from the fact that we will not assume that the Jacobian matrix of the closed-loop system 

at the origin can be m a d e exponentially stable. A s a result, we cannot employ the tech-

nique of the asymptotic small gain theorem. To overcome this difficulty, we will employ 

the technique of a small gain theorem with restrictions for uncertain time-varying nonlin-

ear systems. This theorem can guarantee both the uniform stability and asymptotic gain 

properties with restrictions of two interconnected systems. A n advantage of our problem 

formulation and technique is that we can handle a larger class of systems than those in 

[2]. In particular, as a bonus of our problem formulation, we can obtain some non-local 

stabilization result on nonlinear systems whose linearization at the origin has uncontrol-

lable modes in the imaginary axis. Nevertheless, unlike asymptotic small gain theorem 
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e m p l o y e d  i n 【 2 一  o r 【 6 1  二  o u r  s m a l l  w a i n  t ; h e o r e m  d o e s  n o t .  g u a r a n t i e e  t i h e  i n t i e r o o n n e c t e d  

s y s t e m i s  I S S  w i t h o u t ,  r e s t r i c t i o n  o n  1 : h e  i n i t i a l  s t i a t ^ e  e v e n  t , h o u g h  t ^ h e  t w o  s u b s y s t ^ e m s  a r e  

a s s u m e d  t o  b e  I S S  w i t h o u t  r e s t r i c t i o n s  o n  t i h e  i n i t i a l  s t a t e s  ( b u t ;  w i t h  r e s t r i c t i o n  o n  t - h e  

i n p m t s ) .  T h e r e f o r e ,  o u r  m e t h o d  d o e s  n o t  h a v e  t h e  c a p a b i l i t y  o f  g l o b a l  a s y m p > t o t i c  s t a b i -

l i z a U o n .  T h e  b e s t  w e  c a n  d o  i s  s e m i - g l o b a l  s t a b i l i z a U o n  a n d  w e  h a v e  i n d e e d  p o ^ ^ ^ s a  t ; h i s  

g o a l .  

5 . 2  M a i n  r e s u l t ;  

L i k e 【 2 一  a n d 【 6 1  一 ,  o u r  a p p > r o a c h  w i l l  u t i l i z e  s a t u r a t i o n  f u n c t i o n s  c h a r a c t e r i z e d  a s  f o l l o w s .  

D e f i n i t i o n  5 . 1  A  l o c a l l y  L i p s c h i t z  f u n c t i o n  c r ( . )  ：  R  丄 【 — A ,  A 一  i s  s a i d  t o  b e  a  s a t u r a t i o n  

f u n c t i o n  w i t h  s a t ; u r a t i o n  l e v e l  A  V  0  i f :  

1 )  C 7 0 r )  =  x  w h e n  二 旦 一  ^  

2 )  I  A  I s ^ s  ^  m i n { | | a ; | | , A }  w h e n  | | 旦 一  ^  -

T o  s t a t e  o u r  a s s u m p > t i o n s ,  w e  r e w r i t e ,  f o r  i  =  2 ,  :  .  ,  n ,  

w h e r e  H r  … , " ? i ) i s  l i n e a r  i n  ̂r  M ^ r  w ^ t r  

A  5 . 1  F o r  a l l  d  e  r ,  t h e  f o l l o w i n g  e q u a t i o n s  h o l d  

r  - l 、 ； g j ; ) l r p  l i  曰  =  

l l ( 《 l , 妄  T o  1 1 ( 6 ,  w )  二  = ( 6 , & i o  I K $ 1 , W ) I I  

a n d  f o r  i  =  2 ,  n ,  

曰  - - 、 、  ̂ — — r n ~  m m m  0 ,  l i m  — ^  ^  ̂—  M n  c .  

= u l , H l , . i e i , s ) 一  T o  l l ( c l , x l ,  . : , 《 i , t o l  一  l l ( e l , H l , : . , , e i , e ) I T O  I K C l , H l , : . , 《 i , s ) l l  

A  功 . 2  F o r  i  =  1 ,  —  1 ,  c ’  <  C i  <  c f  f o r  s o m e  p o s i t i v e  n u m b e r s  C I .  A n d  t h e  d c  

w a i n  d 广 〈 d  =  D  — 。 A — - B  A  %  f o r  s o m e  p > o s i t i v e  n u m b e r s  ’  w h e r e  >  i s  i n v e r t i b l e .  

A  W . 3  A I  s u b s y s t e m  i s  R U S  a n d  s a t i s f i e s  R A G  w i t h  a  l i n e a r  卯 a i n  f u n c t i o n  v i e w i n g  作 i  a s  

s t a t e  a n d  u  a s  i n p m t .  F o r  i  H  2 ,  《 i  s u b s y s t e m  i s  R U S  a n d  s a t i s f i e s  R A G  v i e w i n 的  f  

a s  s t a t e  a n d  c o l ( $ l ,  a ^ l , . : , 《 T I ,  H T r  w )  a s  i n p m t .  
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Proposition 5.1 Let / : x ST? x R p M be smooth function satisfying 

lim = 0 (5.3) 

for all xi G X i with X i being a compact subset of R叫，X2 € X 2 with X 2 being a compact 

subset of and d{t) G D with D being a compact subset of W. Then there exists a 

nondecreasing, continuous function 7o(s) such that 

||/(町,工2，^̂ (0)|| < max{7o(||xi||),7o(|k2||)} 

where 

l i m ^ f = 0 . 
H — 0 ||s|| 

Proof: B y L e m m a 7.8 of [5], there exist smooth functions Fi(xi) such that 

Moreover, due to (5.3)，we can assume l i m | |工� "冗丨)) "= 0 a n d F 2 ( : r 2 ) with limn^^lHo 丨丨盟广丨 = 

0. B y Taylor Theorem, there exist smooth positive definite function Mi{x) and M2[x) 

such that 

Similarly, 

\\F2{x2)\\<M2{x2)\\x2f. 

It completes the proof. I 

L e m m a 5.1 Consider the following system 

X 二 + + 

i = (5.4) 

where, x and, for z = 1,2, 

lim = (5.5) 

Assume the dc gain < d = D - CA'^B < 必只 for positive numbers , . A n d the 

^ subsystem is R U S and satisfies R A G with restrictions H, A ^ o n 《 力 0 ) , u respectively 

and has a linear gain function, i.e., for all d, there exist class K function and positive 
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numbers iV^, A^, such that for any ^(to) G S and any u{t) e L ^ satisfying ||̂ [̂切’沉）|| < A^, 

the solution ^(t) exists and satisfies, for all t > to, 

11^)11 < max{7?(||你0)11), A l̂l外。，oo)||}, ||̂||a < ATIMI�. （5.6) 

T h e n for any compact set X C R, there exists a control law u = -a{kx - w), where a is 

a saturation function with level A, such that the system 

. i 1 「CC + Diz + G2(€’ …cO 
I = . = (5.7) 

L � L J u=-a{kx-u) 

is R U S and satisfies R A G with restrictions X xE, Au on ^ respectively and a linear 

gain function, i.e., for all d, there exist class K function and positive numbers TV", A ^ 

such that for any x{to) ^ X xE and any u{t) G L ^ satisfying ||&[fo，oo)ll < 八。，the solution 

x{t) exists and satisfies，for all t > to 

II辦Oil < max{7°(||x(to)||),7V"||^/[.o,oo)||}, I间la < iV^ll^lla. 

Further, let {Ai^Bi) be the Jacobian linearization of system (5.7), Ci = [ci with 

cf < ci < cf for some positive numbers cf, cf, and D i = 0. Then, < = 

D i - < T^f for some positive numbers , . 

R e m a r k 5.1 L e m m a 5.1 is an extension of L e m m a 1 of [2] in that it concerns both U S 

and asymptotic gain property. Also, d of L e m m a 1 of [2] is treated as a disturbance to be 

attenuated while d here is treated as a disturbance to be rejected. I 

Proof: T h e spirit of the proof is similar to that of the proof of L e m m a 1 in [2]. That is, 

we need to employ the small gain theorem. For this purpose, introduce the same coordinate 

transformation z = x - as in [2] to change system (5.7) into the following: 

. i ] 「 Pu + G(€，u,d) 
X = - (5.8) 

L J L 」u= — a(kz — u) 

where G ( C u , d ) 二 G2(Gix’cO — u, d). Clearly, 

lim (5.9) 

Define X = lU and “ i9k. Then 

i9u = -i9a(k(x —兰))=-a(k(x —兰))=-a(k(z + CA'^^ —兰)） (5.10) 
rC K RC 
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where a(«5) = is a saturation function with level A. 

With (5.10), system (5.8) can be viewed as the interconnection 

V21 
n = 2/2, V2 = yi (5.11) 

_仍2 _ 

of the following two subsystems 

5 1 : i = + y , = 如 = ^^ . , 

_ 2/12 J [ G{^,-a{kvi),d)/k _ 

U " u 
52 ： i = -d{k(z + V21 - -)) + kV22, y2 = Z + V21-

d 

• 

仍 m 

U 

y2 

Figure 5.1: Inter-connection of Ei and S2 

W e will now apply Theorem 3.2 to show that system (5.7) is R U S and satisfies R A G 

with appropriate restrictions in four steps. 

Step 1. Show subsystem S2 is ISS and satisfies A L S with no restrictions on z{to) and 

u and with restriction A 2 = X/{2k) on ”2, Let V{z) = 2^/2. Then its derivative along the 

trajectory of S2 satisfies 

V = -{a{k{z + V21 -芸))-kv22)z. 

Under the restriction |…22[fo’oo) II < 又/(2石)=A/(2A:), consider the following three cases: 

(1) + - III < V 2 . W e have 

V = -{k{z + V21 - _ kV22)z 
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Thus, 

IHI > m a x { 3 | M | , 3 | |計,3 | M | } > |hi|| + + |…22" ̂  V < —a|H|2 

for some positive numbers a. 

(2) k\\z - III > A/2 and ^ > 0 : W e have 

A/2 < s g n C K z + ”21 — f))到系(之 + - f)) < min{||石(之 + 1；21 - f)||,A}. 

Noting I卜22II < X/{2k) = X/{2k) gives 

IHI > max{2||^2i||,211^11} > |hi|| + ^ F < - kv22)z < -b\\z\\ 

for some positive numbers b. 

(3) k\\{z + V21 — f )||〉A/2 and ^ < 0 : W e have 

A/2 < sgn(k(z + 1；21 — DMH^ + ”21 - f)) < mm{\\k{z + 7̂ 21 - f)||,A}. 

Since |卜22|| < ~X/{2k) = X/(2k), it follows that 

||.||>max{2|KI|,2|||||}>|hi|| + ||||| 

�一mm{-k(z + V21 — A} < a{k{z + V21 - < -X/2 

^V<-{-^-kV22)z<-c\\z\\ 

for some positive numbers c. 

Therefore there exists a class Koo function a(.) such that if |…22[to’oo)ll < A/(2^)= 

A/(2/c), 

Ikll > max{3||i;2i||, 311̂ 11, 311̂ 2211} < 

Hence, by L e m m a 3.3 [61], V{z) = z”2 is a local ISS Lyapunov function for subsystem 

S2. Therefore, for all d, there exists class K function 72 such that for any z{tQ) G Re, and 

any V22{t) e L ^ satisfying |卜22[切’oo)ll < ^/(2k)=入/(2A;)，V2i(t) G and u(t) G L^ , 

the solution z(t) exists for all t > to and satisfies 

||^|U<max{3|KI|a,3||^22||a,|||iZ||a}. (5.12) 

It follows from (5.12) and y2 二 ： +巧i — f that for any z{to) G Re, and any i>22(t) ̂  L^ 

satisfying || 1̂ 22[to,00)II < = A/(2/c), V2i{t) € L ^ and u{t) e the output 2/2⑴ 
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exists for all t > to and satisfies 

II2/2 ⑴ II S max{̂ (||z(to)||),9||”2i[《。,oo)ll,9||”22[t。’oo)ll,̂ ll〜。’oo)ll} 

< m a x { 7扣 卜 2[t。’oo)ll),7川 I 邮。’ 00)11)}, 

||2/2||a < max{9||仍i||a，9| 卜 22||a，》问 la} 

< max{72(lk2||a),7^(||^||a}), (5.13) 

where 72(5) = 872(5) and 72(5) = 9s. Obviously, is ISS and A L S with restriction 

A 2 = X/{2k) on V2. 

Step 2. Show subsystem Hi is R U S and satisfies R A G and R A L S with restriction 

三 on ^{to) and without restriction on vi. Choose A such that A < A^^ to guarantee 

h[to,oo)\\ < Noting 

(5.14) 

and substituting (5.14) into (5.6) gives that for any ((to) ^ 三 and any vi{t) G the 

solution f {t) exists for all t>to and satisfies 

II纷)|| < < max{7?(||€(to)||),卜i[&oo)||}， 

Iklla < A W M I a . (5.15) 

Let I be a positive number such that < I. Then, for any 纷•) G H and any 

vi{t) e L ^ , the solution ^{t) exists for all t > to and satisfies 

II2/11WII 二 \ \ c A - ' m \ 

=max{7?i(||«to)||),7ii(ll^i[to,oo)ll)} 

Iblllla = \\CA-'aa<lNrk\Ma=7u{\\yi\\a) (5.16) 

where 拟 s ) = 咖 ) . 

Next consider yu- It follows from (5.9) that there exists a nondecreasing, continuous 

function 70(s) such that 

||GKW,—a(fc”i(t),d)||Smax{7。(||«^),7。(lk(^W)ll)}. 

where 

lim (5.17) 
IM 卜 0 ||s|| 
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Using (5.6) and (5.14) gives that for any ^{to) G H and any vi{t) e L ^ , the following 

estimates hold 

112/12 ⑷ II < max{7o07?(l|€(力 0)||)/、7o(A^rik(於 [切，oo))||)/石，[化’ oo))||)/S} 

< max{7?2(||^(to)||),7o(lk(^^i[to,oo))ll)A} 

< max{7?2(l| 彻)||),7i2(lh[to，。o)ll)}, 

< 7o(lk(^^l)lla)A<7l2(lkl||a) (5.18) 

w h e r e 7 ? 2 � = 7 o � 7 ? ( s ) A , = max{7o(7Vf s), 7o(s)}, and 712(5) = %(min{A;s, A } ) /L 

T h e gain function 7i2⑷ can be written as follows: 

I 警 ， 

D u e to (6.13), for any e〉0, there exists (5 > 0 such that 

%(s) <es,0<s<S, (5.19) 

Thus, letting A = S gives 

712(5) < s > 0. (5.20) 

Combining (5.16), (5.18) and (5.20) gives that for any ^(to) e S and any vi(t) e L ^ , 

the following estimates hold 

Ibi⑴丨丨 < max{7?(||$(^o)||),7i(ll^i[to,oo)ll)}, Il2/i||a < 7i(IKIIa), (5.21) 

where ⑷ = ( 琴 + f)s，〒?⑷ 二 节i⑷ +7?2⑷. 

Step 3. Choose k and e to satisfy the small gain condition. For this purpose, note that 

It suffices to choose k and e sufficiently small such that 

Note that A is determined by e and is independent of k. Therefore, it is possible to choose 

k and 入 such that the small gain condition is satisfied while 全 is sufficiently large. 

B y Theorem 3.2, system (5.8) is R U S and satisfies R A G with restrictions X xE, Au on 

x(to), u respectively, viewing x = col(z,4) as state and u as input, i.e., for all d, there exist 
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class K function 7° and positive numbers iV^ and A召，such that, for any x{to) e X x E, 

and u{t) e 1 4 satisfying ||Ci[to’oo)|| < A^^，the solution of Si and 1；2 with connection (5.11) 

exists and satisfies, for all t > to, 

\ m \ \ < max{7M|x(to)||),iV-||li[to,oo)l|}, l|5||a < ^^II^IU (5.22) 

where, 

= 18N-kii{s), 272^^), 6 7 ? ( ^ ) ,啊 k + 赤)7§(力}, 

iV^ = max{18Ari^, 54(/Arf/c + 6/A;}, and 

S = e 三：7?(||?||) < V(2於)}，X = {z e R e ： {IN^k + 赤 ) 嚼 ( | M | ) < X/{2k)}, and 

A。 =入 / ( 1 8 (琴 + 赤)). 

Step 4- Since = x - z, for any ^ X x E, and u{t) G L ^ satisfying 

ll&[to’oo)ll < the solution of system (5.7) exists and satisfies, for all t > to, 

\ m \ \ < max{2|| 你)||,2||a;⑴ ||} = max{2|| 纷)||,2||(z + C A - i O ⑴ 11} 

< 4(l4-0max{||zW||,||^(t)||}<4(l + 0PWII 

< max{4(l + l)^\\\x{to)\\)A{l + 

< max{4(l + /)7°(4(1 + l)\\x{to)\\)A{l + 0々1邮。’ oo)ll} 

=max{70(||5(to)| 丨),Ani 邮。,oc)ll} (5.23) 

where 7^(5) = 4(1 + (4(1 + l)s) a n d 『 = 4 ( 1 + 

Similarly, it holds that 

IÎ IU < AHI训a. 

Since ^ can be arbitrarily large so that ！E =三 and X C X, system (5.7) is R U S and 

satisfies R A G with restrictions X x S, A ^ on x{to), u and has a linear gain function N^s, 

viewing u as input, x = col(a:,€) as state. 

Finally, note that the Jacobian linearization of (5.7) at the origin is 

_ -kD C 1 _ 「 
Al = , Bi = . (5.24) 

—kB A J [ B 

Using Ci = [ci O(ixi)], D i = 0 gives that = ^ < di = Di - A有丄应1 = = 

• 
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Note that 

lht。，oo)ll < \\(kx - u\to,oo)\\ < 

IMIa < ||A:a:-^||a<max{2/c||:r||a,2||u||4. (5.30) 

Substituting (5.30) into (5.29) gives that 

lie ⑷ II < max{70(||C(to)l|)’Agi 外。’ oo)||’iVe|| 如。’ oo)||,2A:Ag|:c【切’⑷)||，27VJ 邮。11 } 

licila < (5.31) 

Hence, C subsystem is R U S and satisfies R A G with a linear gain function viewing ( as state 

and co\{x,^,u) as input. W e invoke Corollary 3.6 to conclude that for any compact set 

Z C Re^, C system is R U S and satisfies R A G with a linear gain function and restrictions 

Z X X xE and A ^ on ({to) and u respectively. 

T h e Jacobian linearization of system (5.27) at the origin is in the form: 

* * 1 「0 
A l = , B i = (5.32) 

0 A l 」 L 爲 

with Al, B i being given by (5.24). Therefore, 

L H 

k k k 

I 

Using L e m m a s 5.1 and 5.2, it is possible to establish the following result. 

T h e o r e m 5.1 Consider system (5.1), under Assumptions 5.1-5.3, there exists a control 

law of the form u = -(Ti{kiXi + (T2(k2X2 H h (Jn{Kxn))) that solves the semi-global 

robust stabilization problem for system (5.1). 

Proof: First note that the subsystem consisting of the last three equations of (5.1) is 

in the form (5.25) and, under Assumptions 5.1-5.3, this subsystem satisfies all conditions 

of Lemma 5.2. Therefore, for any compact sets Xi C R, Hi C M仍 and 三2 C there 

exists a saturation control law u = -(Ti{kixi — ui) such that C2 = [^2 subsystem 

is R U S and satisfies R A G with restrictions H2 x X i x Hi, A^^ on (2(亡0), ui respectively 

and has a linear gain function. 

Now, consider the system 

X2 Cixi + 

6 _ h (6 + (5 33) 

C ^ i + L > u + /i(€i,u，d) 
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which can be put in the form (5.4) as follows 

r n 「 _ 

_ 6 J AiC2 + Biui+F2{(:2,uud) \ 

where Ci = [0ixp2 Oixpi], D i = 0, and A i and B i are given by (5.32) with Ai, B i 

being given by (5.24) with k = k[ 

D u e to Assumption 5.1, 

lim rTT- ^ = 0， lim — ： - . = 0. 

It can be verified, under Assumption 5.2, that 

^ < = - C i A ^ ' B i = D i - C i A - ^ B i = ^ < (5.35) 

Thus, applying L e m m a 5.1 to subsystem (5.34) shows that, for any compact set X 2 C 

R, there exists a saturation control law ui = —0*2(&2一 such that subsystem (5.34) 

is R U S and satisfies R A G with restrictions X 2 x H2 x X i x Si, Au2 on (2:2(̂ 0), (2(力0))，以2 

respectively and has a linear gain function. 

Repeating the above procedure (n - 1) times leads to the following system 

. Xn Cn-lCn + Z^n-l^^n-l + Gn((n, Un-1, d) 
Xn = . = (5.36) 

_ Ci 」 L ^n-lCn + Bn-lUn-1 + Fn((n, Un-1, d) _ 

where, Cn = Kl, ̂ n-i乂二1 •..,町，<??1了， 

lim \\Gn{(n,Un-l,d)\\ = 。 "F“Cn, 1,州丨—。 

ll(Cn,Un-i)|HO ||(Cn,?^n-l)|| —， ||(Cn’"u 二 )|卜0 11 (Cn, ̂ ^n-1) || — ’ 

C^-l = [Olxpn Cn-1 2)] = [Olxpn ^n-l], ^ n - 1 = 0 

where subsystem is R U S and satisfies R A G with restrictions 三n xX n - i x H ^ - i • • - xXiX 

Hi C I R P 1 + … a n d on “(to) and Un-i respectively and linear gain function, 

viewing Cn as state, Un-i as input. A n d the dc gain = ^ ^ < 'dn-i = Dn-i — 

Cn-iA-^^Bn-i 二 < = ^ n - v System (5.36) is in the form (5.4) and satisfies all 

conditions of L e m m a 5.1. Thus, applying L e m m a 5.1 to system (5.36) shows that, for any 

compact set Xn C Re, there exists a saturation control law Un-i = —an(knXn — Un) such 

that Xn subsystem is R U S and satisfies R A G with restrictions X几 x x X ^ - i x E^-i ... x 

X 二1，Au^ on Xn{to), Un respectively and has a linear gain function viewing Xn as state 

and Un as input. Setting Un = 0 gives the result of semi-global robust stabilizaiton for 

system (5.1). This completes the proof. I 
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Example 5.1 Consider the following system 

±2 = O.lxi -f X d 

6 = + Xi 

士 1 = 6 

6 = - 1 0 6 + (5.37) 

where the external disturbance d(t) = 0.001 x sin{t). It is not difficult to verify that this 

system satisfies Assumptions 5.1-5.3. In fact, given a compact set, X 2 x S2 x X i x S：= 

[-0.01,0.01] X [-0.01,0.01] X [-0.01,0.01] X [-0.01,0.01], using the procedure detailed 

in Theorem 5.1, it is possible to show that the following nested saturation controller 

u = —(Ji{kixi +cr2(/c2A))with parameters 入丄=50, ki = 5, A2 = 0.04, k�=0.172 robustly 

stabilize the equilibrium of the system at the origin with X 2 x H2 x X i x 三 1 contained in 

the basin of attraction. 

Step 1: Consider the lower subsystem of (5.37) 

—- 6 

Ci = - m i + u (5.38) 

where 〜 = 0 . 1 > 0. 

subsystem is ISS with linear gain function Nj^s = 0.2s. 

T h e coordinate transformation = xi - gives 

ii = O.lw + GiUi,d(t)) = O.lu. (5.39) 

Since Gi(^i,d(t)) = 0，ei = 0. Choose ki = 5 such that the small gain condition 

9 X Nl" X X ki < 1 hold. A n d choose Ai = 50. 

Hence, u = -(Ji(5xi — ui) with level Ai = 50. 

Note that X[ = { 6 G [-0.01,0.01] : ||6|| < 100} = [-0.01.0.01] and 2:1(̂ 0) e {||̂ i|| < 33}. 

It follows from zi = xi - O.l^i that xi{to) G [-0.01，0.01] is contained in the domain of 

attraction. 

Step 2. Putting u = -ai(5xi — ui) into system (5.37) gives that 

X2 = 0.1x1 + + 

6 = - 6 + 

XI — 

= - 1 0 6 - ^ 1 ( 5 x 1 - ^ 1 ) . (5.40) 
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T h e linearization of subsystem (2= col(^2, â i, ̂ i) is in the following form 

- 1 1 0 [0 

C2 = 0 0 1 C2 + 0 U 

0 - 5 - 1 0 1 

= 成 + (5.41) 

Using C i = [0, 0.1，0] and Di = 0 gives 1̂ 2 = - C^iA「i历=0.02 > 0，\\CiA];̂ \\ = 0.2， 

C i A - ^ = [0,-0.2,-0.02]. 

Put subsystem (2 into the following structure 

(2 = A1C2 + Biui Gi{C2,ui,d{t)) 

where, 

0 

6I(C2’収1’C?⑷）= 0 . (5.42) 

_ -c^ii^xi - Ui) + (5X1 - Ui) _ 

A n d C2 subsystem is RISS with linear gain function N g = 3.2s. 

T h e coordinate transformation Z2 = - gives 

i2 = 0.02ui-hG2((2,ui,d(t)) (5.43) 

where, 

- 0 . 0 2 X ((71 (5X1 - Ui) — (5X1 - Ui)) (5.44) 

Clearly, 

lim " 气 f 广 y ) " = 0 . (5.45) 

A n d the following estimate holds 

G2((:2,ui,d(t)) < 0.001 X + + 这）+ 0.02x 击(5a:i+wi)2 

< m a x { 0 . 0 1 1 | | C 2 | P , 0 . 0 0 2 5 | | w i f } 

< max{/?2(C2(力•)’ 力—to)，7。2(丨卜 ill)} (5.46) 

where, 702(5) = 0.011 x {N^fs'^ = O.lls^. Choose 入2 = 0.01 and k2 二 0.086. Hence, 

62 = 0.056. Thus, the small gain condition 耶《x WCiA'^W x/ca + es) < 1 holds. Note that 
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{C2(to) ： I I C 2 I I < 0.048} and 2:2(̂ 0) G {\\z2\\ < 0 . 0 5 1 } . It follows from 幻=：1：2 - 0.2(2 that 

X2{to) X ^2{to) X xi{to) X ̂ i{to) C [-0.01,0.01] X [-0.01,0.01] x 卜0.01,0.011 x [-0.01,0.01] 

is contained in the domain of attraction. 

Hence, w e can obtain the following nested saturation controller 

u = + (72{k2X2)) (5.47) 

with parameters Ai = 50, ki = 5，入2 = 0.01, k》-—0.086. I 

Example 5.2 Consider the following system, 

X2 = Xi + f2{xi + (^2 ^ 

= U + / 1 K ’ … ( 约 + 这 
_ • " ! 「 -I p p 「 -

ii - 1 0 0 0.25 0 

4 = = 0 0 1 & + & 

& 0 - 1 0 fo -综 

L J L J L J L 」 L 以 J 
= ( 5 . 4 8 ) 

Note that the linearization of (5.48) at the origin has a pair of uncontrollable modes 

in the imaginary axis. Hence, the approach in [2] cannot solve the stabilization problem 

for (5.48). However, (5.48) satisfies the solvability conditions in Theorem ??. Thus, given 

any compact subsets X2,Xi C R e and Si C Re^ which contain the origin, it is possible to 

design a controller of the following form u 二 -(Ti{kiXi -{-a2{k2X2)) such that X 2 x X i x Hi 

is contained in the basin of attraction. 

Choose = (Cl + $3)72 as Lyapunov function candidate for subsystems and 

$3. Its derivative along the trajectories of subsystems and satisfies 

V = (5.49) 

Thus, the system composed of and $3 is globally asymptotically stable. It is not 

hard to check that subsystem is ISS with linear gain function 0.5s. Hence subsys-

tem $=col(&,(j2，&) is ISS with linear gain function N]'s = s. 

Step 1: 

Consider the lower subsystem of (5.48) 

XI = w — 

t = A i ^ B u ^ h i ^ i . u ) . (5.50) 
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It is not difficult to check that system (5.50) is in the same form as system (5.8) with 

'di = I, C = 0. Hence, no coordinate transformation is needed. 

A n d 

II 靴 幼 | = 7 i o ( _ 

with 7io(s) 二 s2. Thus 

710(5) 
= sup — = Ai. 

5G[0,Ai] ^IS 

Choose 入 1 =0.111 such that the small gain condition 9 x < 1 hold. 

Choosing ki = 1 gives that u = -<7i{xi — ui) with level Ai =0.111. 

Step 2. 

Putting u = -cri(10xi - ui) into system (5.48) gives that 

= 工 i + (e? + 紹 + 

1 — 1 0 0 6 -0.25cri(xi - U i ) 0 

= 0 0 1 6 + 0 + - e l • (5.51) 

6 0 - 1 0 6 0 -弱 
J L J L J L J L J 

T h e linearization of subsystem (2= col(xi,.J) is in the following form 

- 1 0 0 0 ] [ 1 

. -0.25 - 1 0 0 0.25 
C 2 = C 2 + u i 

0 0 0 1 0 

0 0 - 1 0 j [_ 0 

= A i C 2 - h B i U i . (5.52) 

Using Ci = [l，0，0, 0] and 二 0 gives 1^2 = Bi - CiA^^Bi = 1 > 0, = 1, 

C i 4 i = [-1’ 0,0,0]. 

Put subsystem C2 into the following structure 

<2 = AI(2 -h Biui -h GI((2,ui) 

where, 

— — cri(10xi — Ui) + (xi — Ui) 

GI(C2,ui)= ** . (5.53) 

氺氺 
* 
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A n d xi subsystem is ISS with linear gain function N 2 = s. 

T h e coordinate transformation Z2 = X 2 - gives 

勿 = ui+(52(C2，附） （5.54) 

where, 

= ( 5 . 5 5 ) 

Clearly, 

lim " 秘 2 ， ⑩ 二 0. (5.56) 
( | | ( C 2 , t x i ) | | ) - 0 丨 丨 ( C 2 , m ) | | 

A n d the following estimate holds 

62(C2,ni) < -^{Xi+Uif 
1 2 

< max{2.25||a;if,2.25||m|| } 

< max{/MC2(M，卜力0)，7o2(IMI)} (5.57) 

where, 720(5) = 2.25 x [N^fs'^ = 2.25s2. 

Hence, 

^ 二 sup ^ ^ = 2.25A2. 

5 G [ 0 , A 2 ] 

Choose A2 = 0.05 and k] = 0.125 such that the small gain conditions 9 x < 1 and 

SxN^x X k2 < 1 hold. 

Hence, we can obtain the following nested saturation controller 

二 — + (5.58) 

with parameters Ai = 0.111, ki = 1, A2 = 0.05, /c2 = 0.125. 

I 

5.3 Conclusion 

So far, we have solved semi-global robust stabilization problem for system (5.1). Compared 

with the results obtained in [2], our results are more general in the following aspects: 

fij System (5.1) is subject to dynamic uncertainties, thus is more complicated than the 

system considered in [2]. 

{ii) T h e restriction on Hurwitzness of the Jacobian linearization of the input unmodeled 

dynamics is weakened to critical stability. 

(in) Disturbance rejection instead of disturbance attenuation is achieved. 
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Figure 5.2: Profile of the states of the closed-loop system for Example 5.1 
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Figure 5.3: Profile of the states of the closed-loop system for Example 5.2 
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Chapter 6 

Global Robust Stabilization for A 

Class of Feedforward Systems 

Systems of the form (5.1) are studied in last chapter in which the semi-global robust 

stabilization for (5.1) is considered assuming each dynamic uncertainty in (5.1) satisfies 

some ISS assumption. In this chapter, w e further apply Theorem 3.4 to solve the global 

robust stabilization for (5.1) assuming each (unforced) dynamic uncertainty in (5.1) is 

locally exponentially stable. 

6.1 Main Result 

T o state our assumptions, w e rewrite system (5.1), for z = 2, • • • , n, 

where is linear in â i, 

A 6.1 

lim lim M M . o , 

and for i = 2 , n , 

lim ~ — — ~ = U, lim [77- r-f：~ = U. 

A 6.2 For i = 1, - 1, cf < a < cf for some positive numbers cf，cf • A n d the dc 

gain dL < d = D — CA'^B < for some positive numbers , . 
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A 6.3 subsystem is R A G with restriction A ^ on u and has a linear gain function viewing 

6 as state and u as input. Moreover, A is Hurwitz. For i = 2, ...,n, subsystem is R A G 

viewing & as state and col(^i, x i , a s input. Moreover, M i =彻(為’。)is 

Hurwitz. 

Remark 6.1 T h e major difference between Assumption 6.3 and Assumption 5.3 is that 

the uniform stability assumption in Assumption 5.3 is strengthened by requiring M i be 

Hurwitz. I 

Lemma 6.1 Consider the following system 

i = (6.1) 

where, x € M, $ G and, 

lim lim " ， , - 、 f ) " = 0 . 

Assume the dc gain < d = D - CA'^^B < for positive numbers , . A n d 

the ̂  subsystem is R A G with restriction A^^ on u and has a linear gain function, i.e., there 

exist positive numbers iVf，A^ such that for any initial state ^(to) ^ R^ and any input 

u{t) G L ^ satisfying ||w||a < A-^, the solution f (亡)exists and satisfies, for all t > to, 

llella < A^riMla. (6.2) 

Then there exists a control law u = -a^kx — u), where a is a saturation function with 

level A, such that the system 

X = = (6.3) 

J j L 炎 + 召 权 ( 仏 句 」 ， 二 -

is R A G with restriction A公 on u and a linear gain function, i.e., there exist positive 

numbers A。such that for any initial state x{to) G M x and any input u{t) e 

satisfying ||w||a < A^i, the solution x{t) exists and satisfies, for all t > to 

II到la < An丨训a. 

Further, let {Ai,Bi) be the Jacobian linearization of system (6.3) at the origin, Ci = 

[ci O(ixz)] with cf < ci < cf for positive numbers cf, cf，and Di = 0. Then, Ai is 

Hurwitz and 对 < =乃i — Ci A ^ ^ B i < for positive numbers f. 
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Remark 6.2 L e m m a 6.1 is an extension of L e m m a 1 of [2] in that d of L e m m a 1 of [2] is 

treated as a disturbance to be attenuated while d here is treated as a disturbance to be 

rejected. I 

Proof: T h e spirit of the proof is similar to that of the proof of L e m m a 1 in [2]. That 

is, w e need to employ the asymptotic small gain theorem. For this purpose, introduce the 

same coordinate transformation z = x - as in [2] to change system (6.3) into the 

following: 

^ J M J 婦 ( “ " ） 1 (6.4) 

L，」 L 、 ^ '」w二-cr(fc;r-u) 

where d = D — CA'^B and u, d) = G 2 K , u, d) - u, d). Clearly, 

lim E M ^ o . (6.5) 
IK⑶丨丨 

Define X = and k = dk, then 

du = -MH^ - i)) =-^CH^ -1)) 

= - a C H z + C A - ' ^ - " ^ ) ) (6.6) 

where o-(s) = 'da{s/'d) is a saturation function with level A. 

With (6.6), system (6.4) can be viewed as the interconnection 

^21 (a 7、 
vi = y2, V2 = = yi 10. 

of the following two subsystems 

El : i = Ba{kvi) + Giit -a{kvi),d), 

=「m 1 = [ C 八 ， 

1 y u G{i,-cTikvi).d)/~k J 

1；2 ： i = -a{k{z + V21 - + kv22, 
fC 

u 
1/2 = Z-\-V21- T' k 

Following the similar steps of L e m m a 1 in [2], we will now apply Corollay 3.13 to show 

that system (6.3) is R A G with appropriate restrictions. For this purpose, we divide the 

rest of the proof into five steps. 
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Step 1. Show under the assumption that Ei and 1；2 are both R A G , there is no finite 

escape time for the inter-connected system. 

Toward this end, suppose the trajectories are defined on [to,T). T h e n yi{t) is bounded 

on [to,T). Define the input V2 for subsystem E2： V2{t) = yi{t) for t G [to,T), V2{t) = 0 

otherwise. Let z{t) be the response from the initial state z{to). Since E2 is R A G , ||i;2||a = 0 

and u is bounded, z{t) is defined for all t > to and hence bounded on [亡〇，T). B y casuality, 

z{t) = z{t) for all t G [to,T) and thus z{t) is bounded on [to,T). 

N o w consider subsystem Ei. Since 2/2(t) is bounded on [to,T), an identical argument 

shows that ^{t) is bounded on [̂ o, T). Therefore, there is no finite escape time for Ei and 

S2. 

Step 2. Show subsystem E2 is R A G and o - R A G with no restrictions on z{to) and 

u and with restriction A22 = X/{2k) = X/{2k) on V22' Choose the Lyapunov candidate 

V{z) = for subsystem 1；2，then its derivative along the trajectory of 1；2 satisfies 

V = + V21 - 芸 ) ) - k V 2 2 ) z . 

It can be shown that under the restriction |卜22[to’oo)ll < 义/(2石）=A/(2A:), the following 

implication holds 

Ikll > max{3||^2i||,311^11,311^2211} ^ < 0. 

Therefore for any initial state z{to) G M, and any input V22(t) e satisfying ||”22||a < 

X/(2k)=入/(2A;), V2iit) e L ^ and u(t) G the solution z(t) exists for all t > to and 

satisfies 

||^|U<max{3||i;2i||a,3||^;22||a,^||^||a}. (6.8) 

It follows from (6.8) and 2/2 = : + 吻一爱 that for any initial state z(to) e M, and any 

input V22(t) e 1 4 satisfying |卜22||a < =入/(2A:), V2i(t) G and u(t) G Z^，the 

output 2/2 W exists for all t > to and satisfies 

9 _ 

IMla < max{9||7;2l||a,9|l^22||a,;^||^||a} 

< max{72l(ll^2l||a),722(ll^22||a),7^(||^||a}), (6.9) 

where 721(5) = 722(5) = 9s. Obviously, E2 is R A G and o - R A G with restriction A22 = 

X/{2~k) = \/{2k) o n V22' 
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Step 3. S h o w subsystem Si is R A G and o - R A G without restriction. 

Choose X such that A < A ^ to guarantee ||…|a S 〜 . 

Noting 

Mkvi)\\a < min{fc|h||a，A} < ^ll^iiu (6.10) 

and substituting (6.10) into (6.2) gives that for any initial state ̂ {to) G R^ and any input 

vi{t) e the solution ^(t) exists for all t > to and satisfies 

llella < Nna{kvi)\\a < Ni'mMkWviWa,^} < N^klMa- (6.11) 

Let I be a positive number such that \\CA-^\\ < I, Then, for any initial state ̂ (^o) ̂  Re' 

and any input vi{t) e I^，the solution ^(t) exists for all t > to and satisfies 

I b l l l l a = < / 7 V r m i n { ^ | | ^ i | | a , A } = T i i d l ^ i l l a ) . ( 6 . 1 2 ) 

Next consider yu. It follows from (6.5) that there exists a nondecreasing, continuous 

function 7o(s) such that 

⑵ ⑴,d)|jSmax{7o(||e ⑴ ll),7o(lk(/̂ ”i ⑴)||)}. 

where 

(6.13) 

Using (6.2) and (6.10) gives that for any initial state 纷•) e R丨 and any input v,{t) G 

L ^ , the following estimates hold 

=知(丨卜‘） (6.14) 

where = m a x { 7 o W ^ ) , % ( . ) } , � = 哪 

T h e gain function 7i2(s) can be written a^ follows: 

1 響 ， 

D u e to (6.13), for any e > 0, there exists 5 > 0 such that 

7o(s) < es, 0 < 5 < 
- (6.15) 
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Thus, letting 入 = 5 gives 

712(5) < � s , s> 0. (6.16) 

Combining (6.12), (6.14) and (6.19) gives that for any initial state ̂ {IQ) G and any 

input vi{t) G L J q , the following estimates hold 

||2/l||a<7l(lkl||a), (6.17) 

where 7i(s) = 

T h e gain function 712(5) can be written as follows: 

1 躲 

For any e〉0，there exists (5 > 0 such that 

% ( s ) <es, 0<s<5. (6.18) 

Thus, letting X = 5 gives 

712(5) < � s , s> 0. (6.19) 

Note that A is determined by e and is independent of k. Choose k and e to satisfy the 

small gain condition and the restriction A22. For this purpose, note that 

7110721(5) < 9lN]'ks, 712^722(5) < (6.20) 

It suffices to choose k and e sufficiently small such that 

dlN^'k < 1 , < 1. 

Note that 712(00) = ^^ < 0 0 where 

l i m f e M ^ O . 

Thus, A can be chosen sufficiently small such that the restriction A22 can be satisfied 

B y Corollary 3.13, system (6.4) is R A G with linear gain function, viewing x = col{z, 

as state and u as input, i.e., there exist positive numbers TV" and A^, independent of 
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d, such that, for any 5(to) G R x and u{t) E L ^ , the solution of Si and E2 with 

connection () exists and satisfies, for all t > to, 

||5||a < N ^ u W a . (6.21) 

Since = x - z, for any x{to) G M x and u{t) e L ^ , the solution of system 

(6.3) exist and satisfy, for all t > to, 

ll̂ lla < max{2||e|U,2||x||a} 

=max{2||$，2||(z + a4-iOlla} 

= N ^ u W a (6.22) 

Therefore, system (6.3) is R A G and has a linear gain function N'^s, viewing u as input, 

X = col(x, f) as state. 

Note that the Jacobian linearization of (6.3) at the origin is 

- -kD C ] _ 「 , 
A l = , B i = . (6.23) 

-kB A J [ B 

Using Ci = [ci 0(ix/)l,乃1 = 0 gives that 对 = 字 < = — C i A ^ ^ B i = = 

T^f. Like L e m m a 1 in [2], the small analysis for Si and E2 also holds with G 三 0, &三 0 

and G i 三 0, 

El ： i = + Bu, 

“2/11 1 [ C 八 _ 

yi = = , 
_ yi2」 L 0 _ 

S2 : i = -k{z + V21) + kv22, 

"2 = 2； + V21 (6.24) 

under the interconnection 

V21 
Vi = 2/2, V2 = =2/1. (6.25) 

y22 

and input u 二 —k{z + which is x = Aix in the x coordinate. It follows from 

L e m m a 2 in [2] that the asymptotic gain oi i = A^ Bu is the same as that of ^ = 

Bu + u, d). Since the small gain condition (6.20) holds, the origin of x = A\x 

is globally attractive, namely, A i is Hurwitz. This completes the proof. I 
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T h e following l e m m a can be directly derived from L e m m a 5.2. 

Lemma 6.2 Consider the following system 

i = (6.26) 

where, M^, H 3 is linear in C,̂ ；,̂ , and for i=l,2, 

lim M i l ^ = 0， 

ii(e�-0 IK � II ’ 
lim ll<^3(C’ 工乂,…州I = 0. 

Assume that there exists a control law u = -a{kx-u), where cr is a saturation function 

with level A, such that the system 

. 士 1 「 + + ] 
X = = (6.27) 

L � � L � J u=-(T{kx—u) 

is R A G and has a linear gain function『.s. A n d = D i - (?i^「i^i = 警 with 

c{ < c i < cf for positive numbers cf，cf, where {Ai,Bi) is the Jacobian linearization of 

system (6.27) and Ci = [ci O(ixz)]，乃1 = 0 with A i is Hurwitz. Moreover, subsystem ( 

is R A G with a linear gain function and M = _•》。’。)is Hurwitz. Then the system 

C 1 r i^3(C,a:,f) + G3(C’Af,〜tO 

C = X = + (6.28) 

L 」 L 」以二一cr(fc:c—ii) 

is R A G and has a linear gain function. Moreover, A i is Hurwitz and < = — 

< for positive numbers 对，Wf, where (Ai，^i) is the Jacobian linearization 

of system (6.28) and Ci = [O(ixp) Ci], Di = 0. • 

Remark 6.3 Note that the Jacobian linearization of system (6.28) at the origin is in the 

form: 

M * 「 0 
Ai = , B i = _ (6.29) 

0 A i J [ Bi 

In L e m m a 5.1, M is not assumed to be Hurwitz. In the case that M is Hurwitz, we can 

further obtain that A i is also Hurwitz. I 
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Using L e m m a s 6.1 and 6.2, it is possible to establish the following result. 

Theorem 6.1 Consider system (5.1), under assumptions 6.1-6.3, there exists a control 

law of the form 

u = -(7i{kiXi + (T2{k2X2 H h (Tn{knXn))) 

that solves the global robust stabilization problem for system (5.1). 

Proof: Similar to Theorem 5.1, the proof is constructed from repeated applications 

of L e m m a 6.1 and L e m m a 6.2. I 

Example 6.1 Consider the following system 

X2 = CiÔ i + {xj + e? + 这）X d 

6 一 - ( 2 + Xi 

Xl = 6 + 约 X 

6 = - 5 6 + (6.30) 

where the uncertain parameter 1 < ci < 2 and the external disturbance d{t) = 0.01 x 

sin{t). It is not difficult to verify that this system satisfies Assumptions 6.1-6.3. Using 

the procedure detailed in Theorem 6.1，it is possible to show that the following nested 

saturation controller u = -(Ji{kiXi + (72(^23:2))with parameters Ai = 2.22，ki = 1.35, 

入2 = 0 . 0 0 2 , /c2 = 0 . 0 8 6 robustly globally stabilize the equilibrium of the system at the 

origin. 

Step 1: Consider the lower subsystem of (6.30) 

Xl = + X rf 

6 = (6.31) 

where î i : 0.2 > 0. 

subsystem is ISS with linear gain function NJ^s = 0.4s. 

T h e coordinate transformation zi = xi — gives 

ii = O.lu + Gi(0,d(t)) = O.lu + 约 X 丄 (6.32) 

Following the same step in L e m m a 6.1，we choose ki = 1.35 and Ai = 0.022. 

Hence, u = -o-i(1.35xi — ui) with level Ai = 0.022. 
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Step 2. Putting u = -cri(1.35xi - ui) into system (6.30) gives that 

= cixi + (x^ + 约 + X rf 

6 = + 
= 

6 = -5^1 -(71 (1.35x1 -lii). (6.33) 

T h e linearization of subsystem (2=⑶临，町，⑴ is in the following form 

- 1 1 0 0 

C 2 = 0 0 1 C2+ 0 U 

0 -1.35 - 5 J 1 

= A i ( 2 - i - B i U i . (6.34) 

Using Ci = [0, ci, 0] and Di = 0 gives 1^2 = Di - CiA^^Bi = 0.74ci > 0, \\CiA];^\\ = 

3.77C1, Ci4「i = [0,-3.7,-0.74]ci. 

Put subsystem C2 into the following structure 

C2 = A1C2 + Biui + Gi{C2.uud{t)) 

where, 

0 

Gi{C2,ui,d{t))= 0 . (6.35) 

-C7i(1.35a:i 一 ui) + (1.35x1 - ui) 

A n d C2 subsystem is RISS with linear gain function N g = 3.2s. 

T h e coordinate transformation Z2 = X2 - gives 

h = 0.74C1ZZ1 + 62 ( C 2 , m，⑴） （6.36) 

where, 

- 0 . 7 4 X (ai(1.35xi - m ) — (1.35xi — m ) ) (6.37) 

Clearly, 

lim " 气 ； 广 ， = 0 . (6.38) 
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A n d the following estimate holds 

G2{(:2,ui,d{t)) < 0.001 X {xl + + + 0.74 X + mf 
4 A i 

< max{8.5||C2||2，8.5||ui||2} 

< max{/?2(C2(to),卜力 0)，7o2(hi||)} (6.39) 

where, 702(s) = 8.5 x = STs^. Choose A2 = 0.002 and k) = 0.086 such that the 

small gain conditions hold. 

Following the same step in L e m m a 6.1, w e choose k] = 0.086 and A2 = 0.002 

Hence, w e can obtain the following nested saturation controller 

u = -cri(kixi + a2{k2X2)) (6.40) 

with parameters Ai = 50, ki = 5, A2 = 0.01, k] 二 0.086. i 

1 1 1 1 1 1 1 1 1 1 
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Figure 6.1: Profile of the states of the closed-loop system for Example 6.1 
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6.2 Conclusion 

In this chapter, we have studied the global robust stabilization problem for a class of 

feedforward systems subject to both static time-varying disturbances and dynamic uncer-

tainties. Compared with the results obtained in [2], our results are more general in the 

following aspects： 

(i) System (5.1) is subject to dynamic uncertainties, thus is more complicated than the 

system considered in [2], 

(ii) Disturbance rejection instead of disturbance attenuation is achieved. This objective 

is relevant to our work on the robust output regulation of feedforward systems in the 

subsequent chapters. 
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Chapter 7 

Global Robust Stabilization and 

Output Regulation for A Class of 

Feedforward Systems 

7.1 Introduction 

In [45], the problem of global robust stabilization for the following class of feedforward sys-

tems is solved where x subsystem can be viewed as input unmodeled dynamics unavailable 

for feedback control. 

Xl = 1^1X2 + 9i{X2, 

Xi = iJ'iXi+i + gi{xi+i, A^) 

in-l = + 9n-l{Xn,X,f^) 

Xn = l^nU 

X Mx + Nu. (7.1) 

In this chapter, we will first address global robust stabilization problem for the following 
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feedforward system 

无 1 = + ...，5n,Xl,…，义几，/̂，”） 

Xl = M l XI +々l(52,...,5n,X2，...,Xn,"’iO 

Xi = fiiXi+i 4- gi{Xi+i, 

Xi = MiXi + gi{Xi+l, 

Xn-1 = /Xn-l^n + 9n-l{Xn, Xn-1, Xn, v) 

Xn-1 二 Mn-lXn-1 + ^n-1 (^n, Xn, 

Xn = ^J'nU + 9n{Xn) 

Xn = MnXn (7.2) 

where, for i = 1,…,n,, Xi G R is the state of the system (7.2), Xi ^ 灼 is dynamic 

uncertainty which is unavailable for feedback control. ...,/in) is uncertain pa-

rameter (possibly time-varying). And the external disturbance v : [̂ o, oo) T is a family 

of piecewise continuous function of t with its range T a compact subset of I R � • And for 

i = 1, . . . , n - 1, gi are locally Lipschitz in col(xi+i, .••,Xn) and piecewise continu-

ous in {fi,v). And for i = 1, gi are locally Lipschitz in c o l ( ; ^ i + i ， X i + i , ...,Xn) 

and piecewise continuous in {fi^v). Qn is locally Lipschitz in Xn. 

It is noted that system (7.2) is more general than the system studied in [45] in that 

system (7.2) contains the dynamic uncertainties as apposed to the existing case where 

only the input unmodeled dynamics is present. W e can also address the global robust 

stabilization problem for system (7.2) w h e n the last subsystem in system (7.2) is in the 

form 

Xn = MnXn + ^nU-

Therefore our global robust stabilization result includes the stabilization result in [45] as 

a special case. 

A general framework for tackling the robust output regulation problem was proposed 

by H u a n g and Chen in [18]. Under this framework, the robust output regulation for a 

given plant can be systematically converted into a robust stabilization problem for an 

appropriately defined augmented system. This general framework has been successfully 

applied to solve the global robust output regulation problem for lower triangular nonlinear 
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systems [6] and the semi-global robust output regulation problem for a class of nonlinear 

affine systems in normal form [35]. In this paper, we will further utilize this framework 

to study the global robust output regulation problem for a class of feedforward systems. 

A s in [18], our approach consists of two steps. First, the global robust output regulation 

problem of the given plant is converted into a global robust stabilization problem for an 

appropriately defined augmented system. Second, the global robust stabilization problem 

for the augmented system is solved on the basis of the combination of the small gain 

theorem with restrictions and nested saturation technique. 

7.2 Preliminary 

Consider the feedback interconnection, 

= fi(xi,vi,ui,d,t), yi = hi{xi,vi,ui,d,t) (7.3) 

= f2(002,V2,U2,d,t), 2/2 = "20̂ 2，灼,购,Ĉ ，亡） （7.4) 

subject to the interconnection constraints: 

Vi = 2/2, V2 = yi (7-5) 

where, for i = 1,2, Xi e R ^ S Ui e R ^ S yi G RP\ ih G 股仏 with pi = 92, P2 = Qu the 

functions fi{xi, Vi, ui, d, t) and hi{xi,Vi,Ui, d,t) are locally Lipschitz in co\{xi,Vi,Ui) and 

piecewise continuous in co\{d,t). A n d /^(0,0,0, d, t) = 0, hi{0,0,0,d,t) = 0. A n d suppose 

the assumption, Lipschitz well posed, holds. 

A 7.1 The equations 

yi = hi{xi, h2{x2,y\,U2, d, t) 

2/2 = h2{x2, hi{xi, 2/2, t),U2, d, t) 

have unique solutions yi G and 於 G so that (7.3) and (7.4) can be written in the 

following form 

X = /(x, u, d, t), y 二 u, d, t) 

where x=col(xi, 0:2), y=col(2/i, 2/2)，w=col(ui, U2), and the resulting f and h are locally 

Lipschtz. 

The following is rephrased from Theorem B.3.2 of [23]. 

107 



Theorem 7.1 A s s u m e that subsystem (7.3) is R A G and R o A L S with restrictions A i and 

A j on vi and u\ respectively, i.e., there exist class K functions 71，7]̂ , 71,究，such that, 

for any initial state xi(to) ^ v\{t) G satisfying |卜i||a < Ai, u八t) e U^ satisfying 

||iti||a < Aj, the solution of (7.3) exists and satisfies, for all t > to, 

Ikilla < max{7i(|hL),7r(||ui||a)}， （7.6) 

llmlla < max{7i(||z;i||a),7?(hi||a)}. (7.7) 

A s s u m e that subsystem (7.4) is R A G and R o A L S with restrictions A 2 and A g on 

V2 and U2 respectively, i.e., there exist class K functions 72, 72, 7 2 ,呢 such that, for 

any initial state 0:2(^0) ^ R""'’ ^̂ 2(亡）̂  L g satisfying l^slla < A2, � € L^^ satisfying 

||w2||a < A^, the solution of (7.4) exists and satisfies, for all t > to, 

Ik2||a < max{72(|M|a),72U(|| 购 lla)}， (7.8) 

\\y2\\a < max{72(IMIa),劳(||"2||a)}. (7.9) 

Suppose also that: 

(1) for all xi(to) and ^2(^0) and all wi, U2 which are bounded on [to, 00), xi{t) and X2{t) 

are defined for all t > to\ 

(2) the small gain condition 

7i 0 7 2 ( 0 < r, r > 0 

holds; 

(3) there exists a finite time T* > to such that 

l|yi[T*，oo)|| < A2, ||2/2[T*,oo)II < Al. 

T h e n the system composed of (7.3) and (7.4) is R A G with restrictions A^" and A《on 

ui and U2 respectively, viewing x = col(xi, X2) as state, y = col(yi, 2/2) as output and u = 

col(wi, W2) as input. I 

7.3 Global Robust Stabilization via Partial State Feedback 

Like [23’ 44, 45], the control applications will involve saturation functions, which satisfy 

the following properties: 

(1) a : M ^ E; 

(2) = 
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(3) sa{s) > 0 for all s^O, cr(0) = 0; 

(4) a{s) = sgn{s) for ||s|| > 1; 

(5) IMI < Ik⑷II < 1 for ||s|| < 1. 

A 7.2 For i = 1 , n , Mi is Hurwitz. 

A 7.3 /if < iM < [jb^, i = 1, for some positive (or, equivalently negative) numbers 

,必. 

Similar to [45], w e first consider the following system 

Xi = ljiiX2 -f vi 

Xl = M l X l + 歹1(无2,无n,X2, ...，Xn,/̂ ，U) 

Xi = fJ^iXi+1 + Vi 
Xi = MiXi + gi{Xi+i, Xi+1, ...，Xn, M, y) 

Xn-1 = Mn-l^n + ^n-1 

Xn-1 二 Mn—lXn-l+5n-l(5n’；i:n,",”) 

Xn = fJmU + Vn 

Xn 二 MnXn (7.10) 

Under the change of coordinate introduced in [45] 

Xl ^ Zl = Xl, 

Xi-> Zi = Xi + Xi-ia{Ki^iZi-i/Xi-i), i = 2, ...,n (7.11) 

and the control law 

、 (T, In + 入 之 n — l / 入 n - 1 ) 、 
U = -XnCr[Kn ： ) 

An 

= - A n ^ ( K n ^ ) , (7.12) 
An 
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system (7.10) is converted into the following form (for convenience w e have left gi and Xi 

in the original coordinates) 

ii = + ij,iZ2 + VI 
Ai 

Xl = MiXl + gi{x2, ...,Xn,X2, 

Zi = -fiiXicri^^) + fiiZi+i + + Vi 
入 i 

Xi = ^iXi + 9i{Xi+l, 

• \ /^n^n \ , r, / / ^n—l^n—1 \ • , Zn = - / i n A n O - (— ) + Kn-lO" ( )Zn-l + Vn 

Xn = MnXn. (7.13) 

7.3.1 R A G with restrictions 

Zi subsystem 

Like Aappendix C of [45], define 

y = 24/if, 7；, = 2 4 ^ , i = l，〜，n-l 

7；. = i = j = 1. 

T h e n w e can give the following l e m m a which is established in [45] as L e m m a C.2.1. 

Lemma 7.1 Consider the following system 

IL = + FLLZ2 + VI 

. ,KiZi , Ki-iZi-i . 
Zi = -/iiAicr(——) + fMZi+i + Ki-ia ( )Zi-i + Vi 

入 i ^i-l 

Zn = —"nAnfK^^^^) + K n - l C j ' ) Z n - \ + Vn- (7.14) 
入 n ^n-1 

Suppose that, for some positive numbers ”i,M, « = the design parameters Xi 

and Ki {i = 1, ...,n) can be chosen so that the following inequalities hold: 

入 i+l ^ • 1 ml 
^ < 丁， 2 = 1, - 1 

Ki+i 4 

L入1 
< " I I , 

< /if 令，i = 2,...,n (7.15) 
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and 

< 1, i = …,n, (7.16) 

T h e n system (7.14) is R A G with restriction Vj^M on the inputs Vj, j = 1, and has 

linear gain functions. In particular, an asymptotic bound on the state variable Zi is given 

as 

lkdla<max{7ijKI|a,.. . ,7;j|^n||a}, (7.17) 

where 

~ i 2 ~ 1 27巧 

、：丽,、=百，J = 2，...，n—1， 

. f j = i,…,1-1, 

= i 3 0 - z + i ) . . 几 - 1 (7.18) 

for i = 2, ",n and 

� n 二 j = l’…’n—1. (7.19) 

I 

R e m a r k 7.1 Consider the sets f^i C C • • • C Q n defined as 

ni = Ue ： Ik,11 < J > i}. (7.20) 
Kj 

T h e following two facts are given in the proof of L e m m a C.2.1 [23]: 

(z) All the Qi，i = 1, .",71 are positively invariant; 

{ii) Every trajectory starting in enters in finite time the set Qn and every trajectory 

starting in for i = 2, ...,n, enters in finite time the set Qi—i. i 

T h e following proposition is also established in [45]. 

Proposition 7.1 Suppose the sets {(A*,Kf) : i = l , . . . , n } ， : i = l,...，n} are such 

that (7.15) and (7.16) hold. Then, for any e > 0, the choice 

(XuKi) = {s'XleK*), i = 1，".,n (7.21) 

fulfills (7.15) and (7.16), with Vi^M given by 

”i,M = � = l，."，n. (7.22) 

I 
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Xi subsystem 

Proposition 7.2 Consider the following nonlinear system 

x = Mx^g{u,d{t)) (7.23) 

where M is Hurwitz. T h e function g{u,d{t)) is C^ satisfying g{0,d{t)) = 0 and d{t) 

belongs to a compact set. Then system (7.23) is R A G with restriction A on the input u 

and without restriction on the initial state x{to) and has a linear gain function. 

Proof: Since M is Hurwitz, there exists a symmetric positive definite matrix P such 

that 

PM + MTp = —I. 

Let V(x) = ^x^Px. T h e derivative of V{x) along system (7.23) satisfies 

< - l \ \ x f + 2\\Pg{u,d{t))f. (7.24) 

Since the function g{u,d{t)) is C^ satisfying g{0,d{t)) = 0 and d{t) belongs to a 

compact set it holds that 

\\Pg{u,dm\<\\u\\p{u) 

for some smooth function p{u). 

If [切’⑷）|| < A, there exists a positive number a such that "(||w[t。’oo)||) < a. 

Therefore, we obtain the following implication 

Ikll > X(IMI) 二 2a|M| ^ ^ { M x + g(u, d(t))} < 0. 

Note that pmm\\x\\^ = a(||a;||) < V { x ) = 去 < == Pmaxikf, where 

P m i n ( P m a x ) is the minimal (maximal) eigenvalue of P. Therefore, system (7.23) is RISS 

with restriction A on w and has a linear gain function 

a-'oaox(r) = 2,/^ar. 
V Pmin 

N o w it follows from ||w||a < A that p(||w||a) < a. Therefore, system (7.23) is R A G with 

restriction A on the input u and has a linear gain function I 

L e m m a 7.2 Suppose the sets : i 二 l,.",n}’ {<’m : « = l,...，n} are such 

that (7.15) and (7.16) hold. Then for i = 1, ...,n- 1’ Xi subsystem is R A G with respect 
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to c o l ( 5 i + i ， . . . ， X n ) and has linear gain functions, i.e., there exists positive 

numbers Lij and L-^ for = i + 1 , n such that 

n n 

llxdia < Y ^ Y I ^^J\\Xj\\a (7.25) 

j=i+l j^i+1 

for i = 1,…，n — 1. 

Proof: A s far as the gains between Vj and Xi are concerned, note that 

= + (7.26) 
入i 

and thus, the following estimate holds: 

II 去 ills + "!；』. (7.27) 

For j = 1, ...,n - 1, i = j + 1, ...,n, the following inequalities are established in [45] 

Iki+llla < %-^'\\Vj\\a<e'-^hij\\vj\\a 

INIa < %\\Vj\\a<e'-^-'h[Jvj\\a 

for some positive numbers hij, h'- j. Thus, it follows that for j = 1, i = j + 1 , n , 

there exists positive number Tij such that 

\\ii\\a<ri,je'-^\\vj\\a. (7.28) 

Since M n is Hurwitz, the following asymptotic estimate 

||Xn||a=||Xn||a = 0 

holds. 

Assume that there exists positive numbers L^j, L'-j and A i for i = i, ...,n - 1, j = 

i + 1, ...,n such that 
n n 

llXilla < E 、 躺 丨 E ^ i J X j W a (7.29) 

j=i+l j^i+1 

and llxilla < Ai. It follows from (7.28) that 

^^•idl^dla, ..., II去nlla, Hx^U, ..., ||Xn||a, "’ v) < hi 

for positive number 屯.It follows from Proposition 7.2 that there exists positive numbers 

i，j and • for j = ...,n such that 

llX.-llla < 1’躺."a + f ^ A - l J 义 J a . (7.30) 
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Moreover, ||x̂ _i||a < for some positive number B y induction, it completes 

the proof. 

I 

7.3.2 Fulfillment of the restrictions 

Lemma 7.3 Suppose the sets : i = l’."，n}’ {v^j^ ： i = l , . . . ,n} are such 

that (7.15) and (7.16) hold. Choosing e sufficiently small such that 

(1) T h e following estimate holds for j = 1, ".,n - 1 and i 二 j, ...,n — 1 

\\Xi\\a<e'^'-^hij\\vj\\a (7.31) 

for some positive number hij ； 

(2) T h e restrictions Vi,M on Vi, i = 1 , n are satisfied in finite time, namely there 

exists a time T and positive number e such that for all t>T 

l l X i W I I < 队一 1’ （7.32) 

\\9i{^i+l ⑴，… ,⑷ ,义 i⑴，…，义 n⑴ , < Vi,M (7.33) 

for some positive number 'di (i = 1, ...,n). 

Proof: i = n: Since M ^ is Hurwitz, there exists positive number Tn such that 

ll"n(Xn ⑴)|| < m i n K , M , M n A n } 

llXnWII < (7.34) 

for all t > Tn. Therefore (7.32) and (7.33) are true for i = n. 

i = n-l: Since Xn = fJ^u + QniXn) and \\u\\ < An, it holds that 

II去n ⑴ II < MnAn + "J；" A。= 2必K^S^ (7.35) 

for all t > Tn. 

Since Xn-i subsystem is R A G with linear gain functions, the following estimate 

||Xn-l||a<Ln-i,n||^n||a (7.36) 

holds for some positive number I/n-i’n. Hence, there exists a time T^-i > Tn such that 

llXn-iWII < 2Ln-、nf4iK^en (7-37) 
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for all t > Tn-i. Since 々n-i(5n，Xn,M,is locally Lipschitz in col(5n,Xn), for sufficiently 

small £ in (7.34) and (7.35), there exists positive number 'dn-i such that 

(7.38) 

for all t > Tn-i. T h u s (7.32) is true fo“ = n — 1. 

Since 

llXn-llla < Ln-l,n\\in\\a, 

it follows from (7.28) that for j = 1, ...,n — 1, 

\\Xn-l\\a<Ln-l,nrnje--'\\Vj\\a. (7.39) 

Since 々n-i(无n, Xn, "，u) is locally Lipschitz in co\(xn, Xn), for sufficiently small e in 

(7.34) and (7.35), there exists positive number hn-ij for j = 1 ， — 1 such that 

\\Xn-l\\a<e^-^hn-l,j\\Vj\\a- (7.40) 

T h u s (7.31) is true for i 二 n - 1. 

Since (去n,Xn,M，…is locally Lipschitz in col(云n，in)，for sufficiently small e in 

(7.34) and (7.35), there exists positive numbers Gn—i’n and ！’几 such that 

\\9n-l{Xn{t).Xn{t),fl,v)\\ < J ‘ � || + G “，J^^n � || 

for all t > Tn-i. Hence, (7.33) is true for j = n - 1 if 

2G“’乂A；；? + G;-i’n巧 < ( 1 ’ M ? - 1 (7.41) 

which can be satisfied taking e sufficiently small. 

i 二 t. N o w suppose that (7.31), (7.32) and (7.33) is true for z = £ + 1, ...,n, that is 

< 'f̂ i.M, i = <+l , . "，n, (7.42) 

llXiWII < ；二^+工’…，几’ t > TM (7.43) 

\\Xi\\a<e'+^-'hiJvj\\a, j = l,.",n—1, z = (7.44) 

To show that (7.32) holds for i = £, recall that 

Xi 二 - + ...,Xn’/̂’”）. （7.45) 
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If is sufficiently large, G W e obtain the following extimate 

i N i < 
4 

= + = Sie' (7.46) 

for al i i = € + l ， . . . , n - l . 

Since xe subsystem is R A G with linear gain function, the following asymptotic estimate 

llxdia < E L d l 去 E ^ h W X j W a (7.47) 

j=M j^M 

holds for some positive numbers L^j and L。for j = £+1, Thus, there exists a time 

Ti > Te+i such that 

Wxem < f^ LejSjS] + 仏 斤 (7.48) 

j=M j=e+i 

for all t > 

Since ge{xi+i,..., Xn, ia,..., Xn, "，v) is locally Lipschitz in col(x^+i, ...,Xn,Xe： for 

sufficiently small e, it follows from (7.44) that z e fie implies 

\\gi{xi+i{t),..., ⑴，⑴， ." ,Xn(t) ,/2, 

< E Gej^m+j^^yium 
j=e+i j=e 

< E Ge。5]ej + … e j + i (7.49) 

j=i+i j=i 
for all t > T ^ Hence (7.33) holds fori = £ if 

E GeAe] + £ G'.JiS^^' < 如 ？ (7.50) 
j=M j=e 

which can be satisfied taking e sufficiently small. 

It follows from (7.47) and the expression of xe subsystem that there exist positive 

numbers L^j and L'^ - for j = ^ + 1, ...,n such that 
n n 

llxdU < ^ U^iW^iWa-^ E (7.51) 

Substituting (7.43) and (7.46) into (7.51) gives that (7.32) holds for i = £. 

Substituting (7.44) and (7.28) into (7.51) gives that there exists positive number h£j 

{ j = 1,..., n — 1) such that 

\\xe\\a<e'^'-^hejvj\\a. (7.52) 

Hence (7.31) holds for i = £ 

B y induction, it completes the proof. I 
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7.3.3 Small gain conditions 

System (7.2) can be viewed as the feedback interconnection of system (7.10) viewing Vi as 

input and Xi, Xi as outputs and static mapping gi{xi+i,...，无几，Xi，.••，Xn，”）viewing Xi, Xi 

as inputs and gi{xi+i, ...,Xn, Xi,..•，Xn,/̂ ，u) as output. These two systems are subject to 

the interconnection 

Vi = 9i{Xi+l, i = 1, .",n - 1, 

yn = 9n(Xn) =9n{M-^Xn)- (7.53) 

Vn 
Xn-1 

Xi System (7.10) . 

去n 

： _ 
X2 

去2 J 
: "1 
: 9lix2, •••,Xn, 

^n , XI, ...,Xn,/̂ ,v) 

XI : 
I _ • 

: gn(M-'Xn) ‘ 
Xn-1 9n 
Xn ̂  

Figure 7.1: Inter-connection of system 7.2 

Recall that 

n n 

i=j+l k=j 
Pdia < llXfclla < "fc’广科丄―、”』…||Xn||a = ||Xn||a = 0 (7.54) 

where j = 1 , n — 1, z = j H- 1,..., n and k = j , n — 1. 

A s pointed out in [45], the goal that system (7.2) is globally attractive can be achieved 

if the gain between gi and Vj can be rendered arbitrarily small. Therefore, the overall 
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system is globally attractive if the small gain condition 

i ： Gj,知e^i + E 严 - j < 1 (7.55) 

i=j+l k=j 

is satisfied for j = 1, ...,n - 1. Clearly, (7.55) can be satisfied taking e sufficiently small. 

7.3.4 Uniform Global Asymptotic Stability of Closed Loop System 

Note that the Jacobian linearization of each subsystem in (7.13) is Hurwitz. Appealing to 

L e m m a 4.7 [31] in combination of the triangular structure of (7.13), w e can obtain that the 

linearization of (7.13) is U G A S . Therefore, the system (7.13) under the controller (7.12) 

is G A S by using Theorem 7.1. 

7.4 Global Robust Output Regulation 

Consider the following feedforward system, 

Xl = CiiXi + C2X2 + /l(i2, •'•,Xn,V,w) 

Xi = aiXi + Q+iXi+1 + fi{Xi+l, ...,Xn,V,w) 

Xn-1 = an-lXn-1 + CnXn + fn-l{Xn,V,w) 

XN = ANXN + bu-\- FN{v,w) (7 53) 

e = Xn -

心 = ( 7 . 5 7 ) 

where, x = colOri,…,a^n) with Xi e R {i = l , . . . ,n) are the plant states, w G E is the 

control input, e G E is the tracking error, v e R^ is the exogenous signal representing 

the disturbance and/or the reference input, and w eR^ is the uncertain parameter. T h e 

coefficients ai = 0 {i = 1, ...,n— 1), 6〉 0 and Q ^ 0 (z = 2, ...,n). All the functions are 

sufficiently smooth with 力(0, ...,0,0,'U；) for i = 1, ".,n and qd{0,w) = 0 for all w G 

T h e exosystem is neutrally stable, i.e., the eigenvalues of S are simple and have zero real 

parts. 

Remark 7.2 Since w e will also consider the case when â  < 0 (i = 1, ...,n - 1), we will 

keep ai in system (7.56). Moreover, it is noted that system (7.56) is not so special as it 
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looks like. For example, the following systems can be converted into the form of (7.56). 

= <^2X2 + fl{x3, ...,Xn,U,V,w) 

in—2 二 Cn-lXn-l + fn-2{Xn, U, V, w) 

士 n - 1 = CnXn + fn-l{u,V,w) 

Xn = bu-\- fn{v,w) 

e = Xn - qd{v,w) 

V = S-v. (7.58) 

I 

T h e objective of this section is to present the solvability conditions of the state feedback 

global robust servomechanism problem or alternatively the global robust output regulation 

problem for system (7.56). T h e problem can be precisely described as follows. 

T h e class of dynamic state feedback control law considered here can be described by 

u = k{x,ZC,e) 

Zc = fz{x,Zc^e) (7.59) 

where Zc is the compensator state vector of dimension n。to be specified later. 

Global robust output regulation problem: Design a control law of the form (7.59) 

such that 

(i) For any a;(0) and Zc(0), the trajectories of the closed-loop system exist and are bounded 

for all t > 0. 

(ii) T h e tracking error e(t) of the trajectories described in (z) approaches zero asymptot-

ically, i.e., limt-,ooe(t) = 0. 

Conditions under which the robust servomechanism problem for general nonlinear sys-

tems can be converted into the above robust regulation problem are given in [18]. For the 

class of feedforward systems (7.56), these conditions can be given as follows: 

A 7.4 There exist sufficiently smooth functions x(v, w) 二 col(xi(t;, w), - - •，Xn(v, w)) and 
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with x(0,0) = 0 and u(0，0) = 0’ such that, for i = l,...,n- 1 

= qd(v,w) 

w) = any^niv, w) + bu{v, w) + fn{v, w) 

义i…=aiyii{v,w) + Ci+iyii+i{v,w) + fi{xi+i{v,w), ...,Xn{v,w),v,w). 

R e m a r k 7.3 If the solution for the regulator equation is x(t»,it;) = 0 and w)= 

fn{v,w), the output regulation problem for (7.56) reduces to the input suppression 

problem studied in [45]. I 

However, the solvability of the above regulator equations is insufficiently for solving the 

robust output regulation, some additional conditions have to be imposed on the solution 

of the regulator equations. 

A 7.5 Let TTn = u{v, w) and tTj = :xii(v,w) for i = 1，.., n— 1. There exists positive number 

Ti and real numbers A^i’i,ni^n such that 

~ y / - Ki,i7J:i{v{t),w) - l^i,27Ti{v{t),w) ——浙二 = 0 

for all trajectories v{t) e V of the exosystem and all w eW. 

R e m a r k 7.4 It is shown in Corollary 6.13 [19] that under assumption 7.5, system (7.56) 

has a steady-state generator with output col(a;i, ...,Xn-i,u) described as follows. 

For 2 = 1, j = 1，.",Ii, let 

ei{v,w) = Ticol ( 0 } 乂 ” , w)), 

ei(v,w) = col ( 咖 1 愁 — ) , 
CLZ I 

and 6{v,w) = co\{Oi{v,w), ...,9n{v,w)), where Ti is any nonsingular matrix of dimension 

Ti. Then, it is ready to verify that 9 satisfies 

e = a{d), col = W ) (7.60) 

where a(6>) = with T = block diag(ri，•••，Tn),少=block d i a g ( $ i , w i t h 

屯i 二 block diag($h...，$f)，and 剛=col(/?i(0i), with A(氏）=免 
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0 1 0 . - 0 ' 

0 0 1 … 0 

‘： ‘： ； . . . ： , 少 i = 0 … 0 ] . 

0 0 0 … 1 
_ • . . _ 

T h e triple {6, a, (5) is called the steady-state generator of system (7.56) with output 

col(xi, It can be seen that the steady-state generator is a dynamic system 

that can reproduce the partial solution of the regulator equations. With the steady-state 

generator ready, w e can further define the internal model as follows. 

For i = l,...，n, let (Mj, Ni) be any controllable pair with Mi a Hurwitz matrix of 

dimension r̂  and N i a column vector. T h e n there exists a nonsingular matrix 7\ satisfying 

the Sylvester equation T]屯i — MiTi = Ni屯i. Define, for i = 1，...，n — 2 

Vi = MiTH + NiXi + Li(Xi —屯iT�ir}i) + -屯i+iT�+\rH+i) 

Vn-l = Mn-ir]n-l + Nn-lXn-1 + Ln~l{Xn-l 一 + ^n-lC 

in = MnTJn + NnU + Ln(U —屯 + Hne. (7.61) 

where rji G R''̂  and Li, H i (i = l,...’n) can be any matrixes with appropriate di-

mensions. T h e collection of (7.61) is called the internal model of (7.56) with output 

COl(xi, I 

Remark 7.5 H Li = Hi = 0 for i = l,..，n, the internal model (7.61) reduces to the 

internal model candidate introduced in [18]. T h e purpose of involving Li and H i in (7.61) 

is to m a k e the augmented system in the standard feedforward form with the property that 

the linearization of each dynamic uncertainty is Hurwitz. I 

Here w e m a k e an extra assumption as follows: 

A 7.6 For i = 1，...,n - 1,屯i is invertible. 

Remark 7.6 W h e n the steady state x(i>, w) = 0, Assumption 7.6 can be relaxed. Assume 

7r(f, w) be a degree k polynomial in v. A s pointed out in Remark 6.15 [19], if P ( A ) = 
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y - t̂ i — K2\ - • • • - z^rA^"^ is the minimal polynomial of the matrix Skf where 

0 … 0 

0 . . . 0 

知 = : : : : , 

0 0 ... 阅 

P(入)is a zeroing polynomial of 7r(v,w). If v^^ = 0 (z is even) in w), = 0 (z is 

even) in Skf. It follows from Theorem 5.16 [19] that 屯i is invertible. I 

For convenience, the remainder of design procedure will be split into three steps. 

Step 1. 

N o w attaching the internal model (7.61) to system (7.56) yields the augmented sys-

tem with the state variables (xi, 771, ...,Xn,rjn). Performing on the augmented system the 

coordinate and input transformation: 

XN = XN -

Xi = Xi - "^iTr^rji, i = 1, ...,n - 1 

n 二 U - ^nT-^n 

fj = V'O 

defines the augmented system in new coordinates and inputs as follows, for i = 1, ...,n-2 

= K - ^iTr^Li — ^iTr^Ni)xi + ( q + i — 叫 厂 询 无 i + i 

+ "^iT-'iail -Mi- Ni<luT;�fH + c计 1 少终 巧⑷ 

= {Mi -f Ni<l!iTr^)f}i + {Li -f Ni)xi + HiXi+i 

知-1 = (fln—l -少n-lT二li、-l —少n—打—1)无几—1 

+ - Mn-1 - A ^ n - 1 屯n-lT；"」!)巧 

+ (Cn - + fn-1(全n,V,W) 

巧n-1 = + + {Ln-1 + iVn-l)Xn-l + ^n-l^n 

^^ == ^nX^ + bu + b^nTn'f/n 

〜 = ( K + Nn^nTn')Vn + (Ln + Nn)u + H n X ^ (7.62) 
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where, for z = 1,..., n — 2， 

fn-l{Xn,V,w) = fn-l{Xn + Xn{v,w),V,w) 

M圭i+1, •..,去n，疗i+i, 

=fi(Xn-hXn(v,w),^n-l + 少n-l^ T - V ^ - l + L-l)，…，去i+1 + 少终 + 永+1)， 

It is easy to check that fi(0, ...,0,v,w) = 0 for z = (l,...，n - 1)，that is, the origin 

col(x, fj) = 0 is the equilibrium point of the unforced augmented system (7.62) for all v(t) 

of the exosystem and any w € M ^ . 

Step 2. 

B y Corollary 7.4 [19], the global robust output regulation problem for system (7.56) will 

be solved if the equilibrium point of (7.62) can be rendered to be globally asymptotically 

stable for all trajectories v{t) G V of the exosystem and all w G W. However, since 

M i + Ni"^iT「i = T「y龟iTi and all eigenvalues of the matrix have zero real part, fji 

subsystem in (7.62) does not satisfy Assumption 7.2. Therefore, the design procedure in 

Section 3 can not be directly applied to system (7.62). To circumvent this difficulty, we 

further performance on (7.62) another coordinate transformation 

Zi = fji - PiXi, i = 1, - 1, 
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which yields, for i = 1, - 2, 

ii = {Mi + Ni免iT�i - Pi免iT�i(^aiI - Mi — Ni句 

+ {{Mi + + Li + Ni- Pi{ai — ̂ iT'^Li - ^^Tr'Ni) 

- P i ^ i T - \ a i I - M i - Ni^iTr^)Pi}xi 

+ {Hi - P加i+i - ^iT-^Hi) - c ⑷ P 洗 二 i V i } 右 + 1 — 

={Mi + Ni^iTr^ - miTr\aiI —风- N i ^ i T r ^ ) } z i 

+ (/ + + + { - a j + 风 + Ni 町「、版 

+ {Hi - Piia+i — ^iTr^Hi) — 一 c i + i i ^ i 少 终 知 1 

—P i M全 i + l , ...’Xn,力i+l, ...,fin-l,V,w) 

Zn-1 = {Mn-1 + Nn-1 免n—lT么—尸n-1 少n—lT；"—\ (fln-l/ — M ^ - l 一 

4- (/ + + Nn-1 + (一 Cln-ll + M^-l + Nn-l^n~lT-^i)Pn-l}Xn-l 

+ {(I + - CnPn-lj^n — Bn-1 fn-1(全 n, V, W). (7.63) 

In R e m a r k 7.7, w e will prove that the pair ( - ^ i T r \ a i I - M i - M i + 

Ni'^iTr'^) is observable. Therefore, w e choose Pi to render M i = M i Ni^iT'^ — 

Pi'^iTr^iaJ - M i — Hurwitz. In standard feedforward system, there is no Xi 

in subsystem Zi. Thus, choose U = -Ni - ( - a j + 风 + Ni义iT;�Pi for i = 1, ".,n — 1. 

R e m a r k 7.7 Denote A = MiNi^iT'^ = T广电iTi and C =免iT�\ It is easy to show 

that (C, A) is observable since (屯i,少i) is observable. Letting C2 = CHC - CA gives that 

C2Aj = aiCA^ — for j = 0, - 2. It follows from A = T � � i T i that A is similar 

to 屯i. It holds that 

C2A''-' = aiCA'^-' — CA'^ = a i C f - 1 - C(Ki’iI + + … + ) . 
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Therefore, 

C2 [ ai —1 0 … 0 ] [ C： 

C2A 0 ai -1 0 CA 

0 0 ... ai - 1 C f - 2 

_ -1 [ -K、2 . • . di - J L -1 _ 

- 0 1 0 … 0 ] [ -

0 0 1 … 0 CA 

= { a j - ： ： ： ： ： ) ； 

0 0 … 0 1 0 4 5 - 2 

.〜1 〜’2 ... /̂ i’n-i f^hvi J L CA'i-'^ _ 

“ c -

C M 

= { a j - ^ i ) I 

04『广2 

_ CM”广 1 _ 

Since all eigenvalues of 中i have zero real part, ail - is nonsingular for all ai < 0. 

Therefore, the pair (C2, A) is observable. 

I 

Performing on (7.62) the coordinate transformation 

Zn = fjn- h'^NnXn 

yields 

in = MnZn + (6—1 ( M ^ — + + LnU. 

Let 

Hn 二 -b-\Mn — anPjNn + h'^Ln{an + 句nT:�. (7.64) 

Letting u = u b ~ ^ { a n + makes the last two equations in (7.62) in the 

form 

Xn = bu + b^nT-^Zn 

Zn = MnZn + LnU. 
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Let L n = 0. 

Therefore, in terms of coordinate c o l ( z i , x i , X n ) , system (7.62) is in the fol-

lowing feedforward form: 

= ai 无 i + 免 iT「\aiI - M i - Ni%T；、Zi + { - ^ i T - ' H i + q+i(1 + 

+ Ci+i^i+iTr^\zi+i + fi{Xi+i,…，知，Zi+i, Zn-uv, w) 

ii = + + 屯 i T；—广 ci+i尸办 + 少 糾 无 i + i —Ci+iPi屯汗 1 巧 知 1 

-Pifi[元 i+l,…’ Xn, Zi+i,…，Zn-l,V, w), i = 1,…，n — 2 

Xn—1 = an-lXn-1 + ^n-lT^l^ (a^-l/ - M ^ - l - iV^-l 

+ (Cn - + fn-l(^n,V,w) 

^n-1 = Mn-lZn-1 + {(/ + " CnPn-lj^n " Pn-lfn-l(^n,V,w) 

Xn = bu + b^nT-'zn 

in = M n Z n (7.65) 

where, for i = 1 , n — 2, 

...,Zn-l,V,w) = /i(击i+1,…，全n,in-l + 尸n-1 去n—l ’ ...， î+l + J^i+l^i+1, V, w), 

fn-l(Xn,V,w) = 

R e m a r k 7.8 If a^ < 0 (z = l,,..，n - 1)，due to the triangular structure of (7.65), the 

controller u = - X n solves the global robust stabilization problem for system (7.65). i 

Step 3. 

Note that (7.65) is not in the familiar feedforward form (7.2) yet. Therefore, w e need to 

perform extra transformation. Since I-^Pi^iT^^ is nonsingular, it follows from A.12 in [30] 

that 1 +免iT「iPi + 0. Similarly, we can obtain that 1 - ^iT'^{Mi + N i ^ i T ' ^ W；^ P i + 0 

since 1 - Pi免iT��Mi + N i 屯 两 ! = ( / + Pi^iT；"^)"^ is nonsingular. 

S i n c e 少 iT「i is nonsingular, choose H i {i = 1, ...,n-l) such that fori = 1, 

(/ + Pi^iTr')Hi — Q + i i ^ l + = 0 

and 

(I + - Cn^n-l = 0. 

It follows from Zn-i subsystem that 

Zn-l =M~\{Zn-l + Pn-lfn-l(^n,V,w)}- (7.66) 
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Substituting (7.66) into Xn-\ subsystem gives that (a^-i = 0) 

+ (Cn - + fn-1[全n,V,W) 

=Cn{l - + A^n-1 K + ^n-1 fe, ^n-l, 

二 fln-lXn + 9n-l{Xn, i^n-1, V,— 

where 

It follows from /i^-i • 0 that 

Xn = -^—{^n-l 一 Zn-l,V,w)). (7.67) 
Mn-1 

Substituting (7.66) into Zn-2 subsystem of (7.65) gives that 

in-2 = Mn-2Zn-2 — Cn-lPn-2'^n-lT~}iZn-l — Pn-2fn-2 (^n-1, ̂ n, ̂ n-l 

=Mn-2Zn-2 + fn—2(全 n_l, ^n, Zn_l, V, W). (7.68) 

Substituting 

Zn-2 = " ^n, ^n-l, V, w) 

and (7.66) into Xn-2 subsystem of (7.65) gives that (an-2 = 0) 

Xn-2 =-少 n-2T;:l2(Mn-2 + A^n-2 少 n—2『；"」2):几—2 

+ + /n-2(^n-l, ̂ n, ̂ n-l, V, w) 

+ {-^n-2T-l2Hn-2 + + n-lT-\Pn-l)]Xn-l 

+ Cn-1 少 n-lT；——Ijl̂  二 llin-1 + ^n-l^n-l/n-1 (圭 n, V, U；)} + /n-2 (^n-1, ̂ n, in-1, W) 

= / i n - 2 ^ n - l + gn-2{Xn-l, ̂ n, ̂ n-l, in-2, w) (7.69) 
where 

/in-2 二 C,-l{l -屯n-2T7」2(Mn-2 + iVn-2^n-2T-_'2)^n-2^n-2}(1 + ^n-lT'l.Pn-l) + 0. 
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D u e to the triangular structure of system (7.65), w e rewrite it in the form: 

乏i = i = l,...，n - 2 

全n—1 = ptn-l^n + 9n-l{Xn, Zn-1, V, w) 

in—1 = M n - l Z n - l + gn-l{Xn,V,w) 

全 n = J^nU-hgn(Zn) 

in = M n Z n (7.70) 

where 〜二 b and gn{zn) = b'^nT'^Zn-

T h e global robust stabilization result for (7.2) gives the solvability conditions of the 

robust global output regulation problem for system (7.56) as follows. 

T h e o r e m 7.2 Suppose system (7.56) satisfies a^ = 0 for z = 2, ...,r and ĉ  ^ 0 for 

i = l，... ,r-l. T h e n the global robust output regulation problem can be solved by a 

dynamic state feedback controller of the form, 

u = ^iTim - b-\ai + 

-Xna{Kn/Xn{Xn + ^ n T ' ^ n + ( 知 + + … 

+ X2 + + A2C7(irie/Ai))/An_i))), 2 

二 Mim + — 屯 J[—irn) + N i 屯 + Hi(JH+i — 屯i+iTf+Vn+i), z - ’ …， ， 

rp一 1 77 一1 + Hn-le 

力,一 1 二 M n — i r M - l + L n - l O r n - l — ^n- i:?;—」 i rM- l) + A ^ n - l ^ n - l 7 n - l , — (了 了工） 

fjn = Mnr7n + Ln … - 少 + 少 + 丑 n e . 

I 

Example 7.1 Consider the following feedforward system 

XI = 3X2 + {X2 - + 

X2 = 2u 4- vl 

“ = 巧 （7.72) 

e 二 y — vfv2 

with the exosystem 

心 1 = 仍 (7.73) 

V2 = 一〜 
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These equations formulate the control problem of design a state feedback regulator to 

m a k e the output y asymptotically track a sinusoidal signal of frequency 1 with arbitrarily 

large amplitude. It can be verified that this system satisfies Assumption 7.4, 7.5 and 7.6. 

In particular, the regulator equations associated with this system admit a globally defined 

solution as follows 

X2(i', w) — v\v2 

Xi(i;，7/；) = vl 

u(v,w) = vfv2. (7.74) 

Let GO{X, u) =co\{u, xi), 7TI{V, W) = vjv2 and W) = Then, the minimal zeroing 

polynomial of 7rJ(i', w) and w) is 入4 + lOA^ + 9. 

T h e gradients and companion matrices are 

0 1 0 0 ' 

0 0 1 0 
= = [1 0 0 0], = = 

0 0 0 1 

_ - 9 0 —10 0 

For each i 二 1,2, the steady-state generator with output Xi is given by 

Oi(y,w) = TiCol{'K]{v,w),'k]{v,w)) 
c^m = T 崎 ％ 

= 屯 iT�i0i (7.75) 

where Ti s any nonsingular matrix. 

To design an internal model, let 

- 8 0 0 0 1 [ 8 _ 

0 - 4 0 0 4 
M l = 二 , N i = N 2 = . (7.76) 

0 0 - 2 0 2 

0 0 0 - 1 1 
匕 J L 

Solving the related Sylvester equation gives 

0.9981 -0.1248 0.0135 -0.0017 “ 

0.9788 -0.2447 0.0376 -0.0094 
T i = T 2 = . (7.77) 

0.8615 -0.4308 0.0615 —0.0308 

0.5500 -0.5500 0.0500 -0.0500 
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Thus, for 2 = 1,2 

ft(久）== [3.5305 — 4.4271 2.7083 - 0.9524]6>i (7.78) 

where, 

02{y,w) = =T2 

.024 J L 兀 21(3)… 

0.59317；? - 0.0102i;| — + O.OSlviv^ 

O.S66vl - 0.0564^;f — 0.53677； 1̂；2 + 0.2256?;i?;| 

O.mvf — 0.18484 - 0MQ5vjv2 + 0M9viv^ 

OAvl — 0.3vl - 0.6vfv2 + O.Svivl 

6>ii 7rl(v,iu) 

a , 、 ^12 T 介 识 ) 

= =Ti 

_ 014 J !_ TTil⑶…，—_ 

0.1129^;f + 0.027v^ + 0.9036vIv2 — 0.25567；11；| 

0.1789^? + 0.0752?;| + 仍-0 . 3 0 U v i v ^ 

0.21527；? + 0.123i;| + 0.4317；&2 _ 0.24bGviv^ 

0.2vf + O.lv^ + 0.2vIv2 — O.lviv^ 

T h e n the internal model is as follows 

m = Mim + Li{xi - ^ i T f Si) + Nixi + Hie 

772 = M2772 + L 2 { U - + N 2 U + H^e. (7.79) 

Note that (7.72) can be converted into following form 

±1 = ZX2 + 0.5(x2 - '^Vivl + vl){x2 - vl) 

±2 = 2u + vf 

y = X2 

e = y - vlv2. (7.80) 
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Using the canonical coordinate and input transformation 

X2 = X2 - X2(̂ ,lt；) 

U = U -

无 1 = Xl -^irf^r/i, 

Vi = i = l,2 (7.81) 

put the augmented system (7.80) and (7.79) into the following 

Xl = -[3.5305 - 4.4271 2.7083 - 0.9524]LiXi 

+ (3 - [3.5305 - 4.4271 2.7083 - 0.9524]//j) 

+ [-24.7135 48.6979 — 35.2083 13.3333]fh 

+ ^vivj - 2vf) 

20.2440 -35.4167 21.6667 -7.6190 

. 14.1220 -21.7083 10.8333 -3.8095 

7.0610 -8.8542 3.4167 -1.9048 

3.5305 -4.4271 2.7083 -1.9524 

二 2w + 2[3.5305 - 4.4271 2.7083 - 0.9524] 

20.2440 -35.4167 21.6667 -7.6190 

14.1220 -21.7083 10.8333 -3.8095 , 、 ， 、 
772 = 772 + {L2 + N2)u + H2X2. (7.82) 

7.0610 -8.8542 3.4167 -1.9048 

3.5305 -4.4271 2.7083 -1.9524 • -

1 

Choose Pi = such that 
1 

1 

M l = M l + ATi^iTf 1 + P i ^ i T f i(Mi + A^i^iTf 

44.9576 —84.1146 56.8750 -20.9524 

38.8356 -70.4062 46.0417 -17.1429 

31.7746 -57.5521 38.6250 -15.2381 

28.2440 -53.1250 37.9167 -15.2857 _ 

which is Hurwitz. 
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Performing the coordinate transformation 

zi = f)i- Pixi 

Z2 = m - 0.bN2X2 

which yields 

Xl = (2.1094- [3.5305 - 4.4271 2.7083 -0.9524]Li)而 

+ (3 - [3.5305 - 4.4271 2.7083 - 0.9524] 

+ [-24.7135 48.6979 - 35.2083 13.3333)^1 + + '^vivl - 2vf) 

44.9575 —84.1146 56.8750 -20.9523 

38.8355 -70.4062 46.0416 -17.1428 
ii = 之 1 

31.7745 -57.5521 38.6250 -15.2381 

28.2440 -53.1250 37.9166 -15.2857 • -

4.5305 -4.4271 2.7083 -0.9524 3.2344 

3.5305 -3.4271 2.7083 -0.9524 , 、 2.6719 、 
+ ( (Li+TVi)-

3.5305 -4.4271 3.7083 -0.9524 2.3907 

3.5305 -4.4271 2.7083 0.0476 2.2501 
• J -

4.5305 -4.4271 2.7083 -0.9524 3 

3.5305 -3.4271 2.7083 -0.9524 3 、 
+ ( 丑 1 一 ）无2 

3.5305 -4.4271 3.7083 -0.9524 3 

3.5305 -4.4271 2.7083 0.0476 3 

- J L -

1 

- 1 0.5:^2(^2 + 2vivl - 2vf) 
1 
1 

= 2w + 2[3.5305 — 4.4271 2.7083 — 0.9524]2；2 + 15 无 2 

- 8 0 0 0 8 

0 - 4 0 0 4 , 、 
i2 = + L2U + (II2 - 7.5 )X3. (7.83) 

0 0 - 2 0 2 

0 0 0 - 1 1 
- J L -
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Letting 

L2 = 0, 

4.5305 -4.4271 2.7083 -0.9524 1 [ 3.2344 [ 6.875 

3.5305 -3.4271 2.7083 -0.9524 2.6719 3.4375 
Li = -Ni = - , 

3.5305 -4.4271 3.7083 -0.9524 2.3907 1.7187 

3.5305 -4.4271 2.7083 0.0476 2.2501 0.8593 

• 」 L 」 L • 

60 

^ 30 

15 

7.5 

4.5305 -4.4271 2.7083 —0.9524 1 ^ I " 3 1 「1.6135 

3.5305 -3.4271 2.7083 -0.9524 3 1.6135 
Hi= = 

3.5305 -4.4271 3.7083 —0.9524 3 1.6135 

3.5305 -4.4271 2.7083 0.0476 J 3 J 1.6135 

u = u + 7.5x2 

gives 

= 2.1514x2 + [-24.7135 48.6979 - 35.2083 13.3333]zi + 0M2{x2 + 2vivl - 2vf) 

44.9575 -84.1146 56.8750 -20.9523 1 

38.8355 -70.4062 46.0416 -17.1428 1 . . . . 
11 = - 0.bx2{x2 + 2viv^-2vf) 

31.7745 - 57.5521 38.6250 -15.2381 1 

28.2440 -53.1250 37.9166 -15.2857 J 1 

去2 = 2{t+ 2(3.5305 - 4.4271 2.7083 — 0.9524]幻 

- 8 0 0 0 

0 - 4 0 0 , 、 
12 = (7.84) 0 0 - 2 0 

0 0 0 - 1 

Following the steps established in Theorem 7.2, we obtain the following nested satu-

ration controller to globally stabilizing system (7.84) 

u = + Aior(^xi))) (7.85) 
A2 Al 
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where the saturation function is in form 

a{s) = sgn{s){\s\ + s'-\s\') 

and Ai = 0.099, A2 = 1.103, Ki = 0.099 and K2 = 44.551. 

Therefore, the controller 

u = —A2a(孕(e + A i a ( 孕 + 少 i T i - V ) ) ) ) - 7 . 5 e +少 

A2 Ai 

m = Mmi + Li{xi - ^iTf Si) + Nixi + Hie 
7)2 = M 2 r ] 2 + L 2 { U - + N 2 U 2 + H 2 e 

solves the global robust output regulation for system (7.72). The simulation result is 

shown in Fig. 7.2 and 7.3 for the case x(0) = col(l, 1) and = col(l, 1). I 

7.5 Conclusion 

In this chapter, we address the global robust output regulation problem for a class of 

feedforward systems, including the input disturbance suppression problem in [45] as a 

special case. 
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Chapter 8 

Conclusion 

In this thesis, we have addressed two important problems in nonlinear control theory 

including robust stabilization and output regulation for feedforward systems. Some con-

cluding remarks are given as follows. 

In the first part of this thesis, we have established the four types of small gain theorem 

with restrictions for uncertain time-varying nonlinear systems, thus filling the gap be-

tween the small gain theorem with restrictions for time-varying systems and that for time 

invariant systems. Moreover, we have explored the connection between input-to-output 

formulation and Lyapunov function argument and known that each approach has its own 

advantage in dealing with nonlinear control problem. W e have further gave a remark on 

various small gain conditions at the end of the first part. 

In the second part of this thesis, we have solved the semi-global and global robust 

stabilization problem for feedforward systems. In [2], the authors studied the disturbance 

attenuation problem for a class of feedforward systems subject to input unmodeled dy-

namics. W e have addressed the semi-global robust stabilization problem for this class of 

feedforward systems subject to both static uncertainties and dynamic uncertainties, and 

at the same time relax Hurwitzness of the linearization of the unmodeled dynamics to crit-

ical stability. W e have further studied the global robust stabilization for the same class of 

feedforward systems in the presence of both static uncertainties and dynamic uncertainties 

assuming each (unforced) dynamic uncertainty is locally exponentially stable. 

In the third part of this thesis, by appealing to the general framework for tackling the 

robust output regulation problem in [18], we have addressed the global robust output reg-

ulation problem for feedforward systems. In [45], the problem of asymptotically rejecting 

bounded disturbances which affect the input channel of a feedforward uncertain nonlinear 
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system was solved. T h e robust output regulation problem under consideration in this 

thesis is more general and complicated than that studied in [45]. W h e n the steady-state 

is equal to zero, the robust output regulation problem reduces to the input disturbance 

suppression problem studied in [45]. 

To conclude this thesis, we will give some future research perspectives. Currently, 

we have developed some tools to solve the robust stabilization and output regulation 

problems for feedfroward systems. However, all these results are applied to the robust 

perspective. It is interesting and necessary in practice to study the adaptive stabilization 

and output regulation problem for feedforward systems. The connection between input-

to-output formulation and Lyapunov function argument established in the first part will 

benefit for us to solve these problems. A n d our tools of stabilization and output regulation 

for feedforward systems are based on state feedback. It is also interesting to explore the 

solvability conditions of stabilization and output regulation for feedforward systems using 

output feedback. M a n y practical nonlinear systems, such as the inverted pendulum on a 

cart, the vertical take-off and landing aircraft and translational oscillator with a rotational 

actuator, can be modeled in the feedforward form. Therefore it is interesting to explore 

the application of the theoretical results in this thesis to the practical nonlinear systems. 
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Appendix A 

Appendix 

A. 1 Lemma Let be a class JCC function, 7 a class /C function such that 7(r) < 

r, Mr > 0, and [i G (0’ 1] a real number. For any nonnegative real numbers s and d, and 

any nonnegative real function z{t) G L ^ satisfying 

zit) < max{/?(s,t),7(lkKt]ll)'^} ^ Vt > 0, (A.l) 

there exists a class /Coo function p such that 

2⑴ S m a x |/3(s, , V^ > 0. (A.2) 

Proof: First, w e choose a function z(t) as follows 

f z{t) if z{t) > d 

I 0 otherwise 

clearly, which is real nonnegative function and belongs to L ^ . Then we will show that 

乏⑴ 亡),7(||乏[；̂t，t]ll)}, (A.3) 

To this end, we will consider the following two cases, 

(i) z{t) > d: O n one hand, from (A.l), 

Smax{"(s,t)，7(|k[W’,]||)}. 

O n the other hand, ||乏[琳t]ll 二 I I 之 I n fact, at the instant h G [fit, t] when z(ti) > 

z(T)，Vr G [mM]，we have Hz[成亡]|| = z{H) > z{t) > d. Thus,乏(亡 1) = z(ti) > Z(T) > 

Z(T), VT E [mM]. That is, p[琳,]|| = z(ti) = z(ti) = \\Z[^t,t]\\-

A s a result, 

冲）=2：⑴ S m a x { " ( M )，7( l l乏 [；• 
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That is, (A.3) holds. 

(ii) z{t) < d: T h e inequality (A.3) holds since z{t) = 0. 

N o w , from (A.3), w e have the following claim. 

Claim: For any r，e〉0，there exists a nonnegative number Tr{e) such that, if z{t) 

satisfies (A.3) with s < r, then z{t) < e, Wt > Tr{e). 

Proof: Since z{t) e L ^ , denote R = ||乏[o’oo)||, which is a finite nonnegative number. If 

R = 0, the proof is trivial. So, w e suppose R > 0. A n d let Si = R - j(R) > 0. For any 

S2 e (0, Si), there exists a finite ti > 0 such z(ti) > R- 82. F r o m (A.3), w e have 

hence 

R < m a x {/?(s, 0) + S 2 n { R ) + <^2}. 

A n d R > j{R) + 52 gives R < (3�s, 0) + (̂2 < /3(r, 0) + (52. Since 62 can be arbitrarily small, 

w e have R < /3(r,0). A s a result, z{t) < (3{r, 0), t > 0. 

Next, there exist a real number 0 < < 1 satisfying 

j{x)<S3xyxe[e,P{r,0)i 

and a nonnegative integer n satisfying S^ < C l e a r l y ， Q ) ) < e. Denote U > 0, 

z = 1,..., n be the first time instant such that 

A n d define tj, z = 0,..., n as 

k = ti = m a x 卜 ^ti-ij ’ i = 1，•..,凡 

N o w , it can be proved by induction that, for i = 0’ •..，n, 

m<'y'iP{r.O)),yt>ti. (A.4) 

Indeed, w e have shown that (A.4) holds for i = 0. Suppose it holds for n > z > 0, then 

for t > ii+i, w e have 

< m a x { " ( M i + i ) , 7 _ ( r , 0 ) ) ) } 

= 7 ' + i ( " M ) ) . 
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That is, (A.4) holds for z = 0,..., n. N o w , (A.4) with i = n is 

m < 7"(/?(r’0)) < e,Vt > Trie) (A.5) 

by choosing Tr{e) > in- T h e proof of the claim is completed. 

Using the above claim, w e can find a class K C function such that 

v^ > 0 . 

B y the definition of z{t), w e note that (A.2) is satisfied. 

T h e existence of is given below, which is derived from the result in the proof of 

L e m m a A.l of [25], and the references within, such as L e m m a 2.1.4 and Proposition 2.1.5 

of [36], and Proofs of L e m m a 3.1 and Proposition 2.5 of [37]. 

Step 1: From the proof of the claim, it is known that 

z(t) < 咖 (A.6) 

with ip{s) = /3(s,0). 

Step 2: From the proof of the claim, it is clear that Tr{e) always exists satisfying the 

claim and the following properties additionally. 

(i) For each fixed r〉0, 7； ma p s (0, oo) ̂ ^ [0, oo) satisfying Tr{e) < oo for any e > 0. 

(ii) T,(ei)>T,(62),if 6i < €2. 

So we can define for any r, e〉0， 

Trie) = - r Tr{s)ds. 
e Je/2 

Since Tr is decreasing, fr is well defined and is locally absolutely continuous. Also 

Trie) > -Trie) f ds = Tr{e). 
e Je/2 

Furthermore, 

de e2 人/2 e [ 2 J 

=-T,(e)-4 r Tris)ds +^[Tr{e)-Tr{e/2)] 

e [ 7e/2 e 

= i [Trie) - Trie)] + J 剛 - T “ e / 2 ) ] 

< 0. 
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Hence, Tr decreases (not necessarily strictly). Finally, define 

fr{e)=fr{e) + -^. 

T h e n it follows that 

for any fixed r, fr is continuous, m a p s (0, oo) ̂ ^ (0, oo), and strictly decreasing. 

N o w , for each r G (0’ oo), denote 如=f'^- T h e n 

A : (0, oo) (0，oo) 

is continuous and strictly decreasing. W e also write ipriO) = +oo, which is consistent with 

the fact that 

lim V v ⑴ = + 0 0 . 

亡—ooO+ 

It follows from the claim and the fact fr{e) > Tr(e) that, for any r, e > 0, 

z{t) < e,\ft > fr{e). 

A s t = fr{ipr{^)) if t > 0, w e have 

m < Mt). vt > 0. 

Furthermore, since = oo, w e obtain 

m < Ait), W > 0. (A.7) 

Step 3: N o w for any s > 0 and t > 0, let 

^^{s.t) = m i n i inf V v ⑴ ， 卜 
Ue(s,oo) j 

F r o m the above two steps, w e have 

z(t)<^{s,t), Vt > 0 . 

B y its definition, for any fixed t, is an increasing function (not necessarily 

strictly).Also because for any fixed r G (0,oo), decreases to 0 (this follows from the 

fact that ipr : (0, oo) —> (0, oo) is continuous and strictly decreasing), it follows that 

for any fixed s, 1/̂ (5, decreases to 0 as t 00. 

Pick any function 

^ ： [0，00) X [0,00) [0，a) 

for some a > 0 {a can be +00) with the following properties. 
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(i) For any fixed t > 0 ， ， i s continuous and strictly increasing. 

(ii) For any fixed s > 0,, 'ip{s, t) decreases to 0 as 力一 oo. 

(iii) Hs,t)>^{s,t). 

Such a function ij) always exists; for instance, it can be constructed as follows. Define 

first 
rs+l 一 

Then 杯,t) is an absolutely continuous function on every compact subset of [0,oo), and 

it satisfies 
_ rs+l — 

> iP{s,t) J dq = iP{s,t). 

It follows that A 

+ a.e.， 

and hence 杯 ’ t) is increasing. Also since for any fixed s,ijj{s, •) decreases, so does 识s, •). 

Note that 

<^(s,0) = m i n { inf ( ^ ⑷ } = 淋 
Ue(s’oo) j 

(recall that (/>r(0) = oo), so by Lebesgue dominated convergence theorem, for any fixed 

s > 0, 
rs+l _ 

lim iP(s, t) = / lim ^(s, t)dq = 0. 
t 一 oo 7 s t^oo 

N o w we see that the function ip{s,t) satisfies all of the requirements for ip{s,t) except 

possibly for the strictly increasing property. W e define 功 as follows: 

偏=偏+(…)Wl). 
Clearly it satisfies all the desired properties. 

Finally, define 

Then it follows that /3{s,t) is a KC function, and 

m < < t), yt > 0, 

which concludes the proof of the L e m m a . 
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