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Abstract 

Despite the large amount of work on mesh generation, the construction of a mesh 

with partitions matching a set of given curves remains a difficult process. Popular 

techniques used for mesh generation include the Delaunay Triangulation [1-3] and 

the Advancing Front method [4-6]. The Delaunay Triangulation operates by inserting 

a vertex satisfying the Delaunay criterion [7] in space. The determination of the 

location for the insertion of vertex is a complicated process, especially in 3D space. 

The Delaunay Triangulation approach is thus computational expensive. Moreover, 

the size of the mesh is uncontrollable and fairly large. 

The Advancing Front method accepts a boundary mesh as input. The method begins 

by dividing the boundaries of the mesh into edges. Triangular faces are then 

generated one-by-one, starting from the boundary of the mesh, until the center of the 

region is reached. However, the initial division of boundaries and the overlapping 

problem of the mesh polygons are complicated. 

In spite of the substantial amount of work on the generation of mesh, the construction 

of mesh with partitions has not been well addressed. In this thesis, an approach for 

the generation of mesh with partitions is presented. In the proposed method, a mesh 

with partitions is created by fitting a template mesh to a set of curves. The mesh 

created by our technique is free of self-overlapping of the mesh polygons and the 

mesh can be used in computer graphics and computer-aided design applications. 

To fit a template mesh to a set of curves, a global deformation technique is employed. 

The global deformation technique includes a coarse-level and a fine-level 
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deformation. The coarse-level global deformation adopts the Radial Basis Functions 

(RBFs) to adjust the orientation and the shape of the template mesh. Then, the fine-

level global deformation uses the closest point method to determine the 

correspondences between the template meshes and the curves. The RBFs is then 

applied to adjust the mesh to interpolate the set of curves. However, some faces are 

flipped after the deformation. In this thesis, a face flip prevention technique is 

proposed. 

As the topology of the template mesh is not affected in the global deformation, the 

deformed template mesh may not match the partitions as depicted by the set of 

curves. To create partitions of the mesh, the polygon mesh in the vicinity of the 

curves is re-triangulated. Finally, the mesh is smoothed by using the mean-curvature 

and the Laplacian flow methods. A technique to improve the mean-curvature method 

is also presented. The improved mean curvature technique is used to remove the 

possible distortion of the mesh. The Laplacian flow method is applied to create a 

more evenly distributed mesh. Experimental results show that the technique 

generates the required mesh with partitions effectively. 
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摘要 

儘管在網格產生的技術上有大量的研究，要使生成的網格符合一組曲線仍然 

是一個艱難的工作。比較流行的網格生成技術包括三角剖分法和推進陣面法。 

三角剖分法的原理是透過在空間内加入一些符合三角法則的點，以生成新的 

面。但是，用這方法去計算一個新點的位置是很複雜的,特別是在三維空間裡。 

故此，三角剖分法需要大量的電腦計算資源。除此之外,網格内面的數量是不可 

控制。 

在推進陣面法裡，主要的輸入為一個有邊界的網格。推進陣面法的原理是透過 

切開網格的邊界，再由邊界慢慢生成面，最後到網格的中心。但是,邊界切開的 

算法和生成面之間的重叠問題是很複雜的。 

雖然有大量的工作研究網格的生成，但是生成一個有不同區域的網格卻很少被 

討論。這論文建議了一個技術去生成不同區域的網格。在這技術中。網格是由 

一個模板網格和一組曲線組成。生成的模板不但沒有網格内部重叠的問題,而 

且生成的網格能應用於在電腦給圖與自動化電腦設計應用上。 

要使一個模板網格符合一組曲線，需用上範圍的變形技術，這範圍的變形技術 

包含了粗糙及細織的變形。在粗糙的變形中，幅射基底函數應用於調整模板網 

格的形狀及它的位置。當模板網格經過粗糙的變形後，下一步是細缴的變形。 

在細缴的變形中，最近點的搜尋方法用於建立模板網格與曲線之間的對應點。 

當模板網格與曲線之間的對應點建立後，輻射基底函數會再次應於用於模板網 

格上，使模板網格變形符合一組曲線。但是，當模板網格經過變形後，模板網 
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格上的面可能會有不正確的變形效果。在這論文中，我們建議了一種技術去防 

止這種不正確的變形。 

模板網格在變形時，它的結構並不會受影響。故此，變形後的模板網格可能不 

符合一組曲線所描述的分割部份。要生成一個有不同分割部份的模板網格，曲 

線附近的部份網格必須經過三角剖分。最後，平均曲率運算法則及拉普拉斯運 

算法則會應用於模板網格上，使它的外形變得平滑。另外，我們提議了一種改 

善平均曲率運算法則的技術。這修改了的平均曲率運算法則會用於消除模板網 

格上可能存在的扭面，而拉普拉斯運算法則則用於生成一個分佈更平均的模板 

網格。實驗顯示我們提議的技術，能有效地生成一個有不同分割部份的網格。 
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1. Introduction 

Mesh generation is commonly used in computer graphics and computer-aided design 

applications. However, given a set of curves, it is difficult to generate a mesh with 

partitions matching the set of curves. Popular techniques used for mesh generation 

include the Delaunay Triangulation [1-3] and the Advancing Front method [4-6]. 

However, the size of the mesh generated by the Delaunary Triangulation and the 

Advancing Front methods is uncontrollable. The generated mesh is especially 

unsuitable for applications involving the use of the Finite Element (FEM) and 

Boundary Element Method (BEM). This thesis addresses the problems by fitting a 

template mesh to a set of curves 

The proposed method in this thesis accepts a set of curves and a template mesh as 

inputs. Our goal is to create a mesh with partitions defined by the set of curves. By 

associating correspondences between the curves and the template mesh, the template 

mesh is deformed to interpolate the curves. Our method consists of three stages: 1) 

global deformation, 2) mesh partitioning and 3) mesh smoothing. In the first stage, 

correspondences between the curves and the template mesh are established. Then, the 

template mesh is deformed to interpolate the curves by adjusting the orientation and 

the shape of the template mesh (Figure 1.1). To create partitions of the mesh, a 

technique for re-triangulating the mesh is proposed and is applied in the second stage 

(Figure 1.2). In the final stage, the mesh is smoothed by using the mean-curvature 

and the Laplacian flow methods. The mean curvature method is used to remove the 

distortion of the mesh and the Laplacian flow method is applied to create a more 

evenly distributed mesh (Figure 1.3). 
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Since the size of generated mesh by our proposed method is depended on the size of 

inputted mesh, the size of the mesh is controllable and can be used in the Finite 

Element Analysis (FEM) and Boundary Element Analysis (BEM) 

Figure 1.1: The template mesh before (left) and after (right) global 
deformation 

矚嗎 
Figure 1.2: The template mesh before (left) and after (right) mesh 
partitioning 

Figure 1.3: The template mesh before (left) and after (right) mesh 
smoothing 
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1.1 Previous Works 

Related works can be classified into three main categories. They are the deformation 

of template mesh, the partitioning of polygon mesh, and the smoothing of polygon 

mesh, 

1.1.1 Template deformation 

Global Deformation using a set of corresponding vertices has been widely studied [8-

11]. Kahler [8] proposed to deform a template head model by fitting the template 

mesh to a scanned model iteratively. However, the methods proposed in [8，9，10] 

failed to map the template to the scanned head model if there are holes on the surface 

of the scanned model. Kahler et al. [11] solved the problems by fitting a template 

mesh to the scanned model using the Radial Basis Functions (RBFs). 

1.1.2 Mesh partitioning 

Creating partitions on the mesh is particularly important in the application of 3D 

morphing. Kanai [30] proposed to specify regions on a mesh by constructing curves 

on the mesh. The curves are considered as boundaries of the mesh partitions. Given 

two vertices on the model specifying the start and end points of the boundary curve, 

Kanai and Suzuki [12] adopted the DijKsta's algorithm to determine the boundary 

curves by locating the shortest path along the edges of the mesh. However, global 

searching of the edges of the mesh is required and the accuracy of the path relies very 

much on the resolution of the mesh. Mitchel et al. [13] and Kapoor [14] adopted the 
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wavefront propagation method to compute the shortest path. Chen and Han [15] 

proposed an algorithm to find the shortest path by unfolding the faces of the mesh. 

However, the methods in [13, 14, 15] are computational expensive and are not 

suitable for mesh with a high resolution. Li [31] proposed an algorithm similar to that 

of Kanai and Suzuki [12]. Additional vertices are required to partition the mesh. 

Despite the accuracy of the path on the mesh is improved, the mesh size is largely 

increased after the mesh is partitioned. 

1.1.3 Mesh Smoothing 

Mesh smoothing is the process for reducing distortions on an object. A major 

difficultly of mesh smoothing is to remove the distortion while preserving the 

desirable features of the object. A common way for smoothing a polygon mesh is to 

use the Laplacian flow method [16, 17]. Despite the Laplacian flow method can 

create a more evenly distributed mesh, the shape of the mesh is altered and the mesh 

is shrunk after smoothing. Taubin [18] proposed to use two scale factors with 

opposite sign to suppress the shrinkage of the mesh. However, the shape of the mesh 

is altered by the smoothing process. 

Another approach for smoothing a polygon mesh is based on the mean-curvature 

flow method [19，20]. Desbrum [19] smooth a polygon mesh by computing the mean 

curvature of the mesh vertices. Ohtake et al. [21] proposed a technique to improve 

the mean-curvature flow method. Despite the method is good for smoothing polygon 

mesh, irregular polygons on the mesh is not reduced. 
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1.2 Overview of the approach 

Our approach accepts a set of curves and a template mesh as inputs. The goal is to 

create a mesh covering regions partitioned by the set of curves. Based on the inputs, a 

set of corresponding vertex pairs between the curves and the template mesh are 

defined in advance. In order to simplify our investigation, we assume 

1. the curves are connected by linear segments; 

2. the template mesh is composed of triangular elements; and 

3. the corresponding vertex pairs between the curves and the template that used to 

specify the orientation between the template mesh and the curves are available. 

The proposed method consists of three stages: 1) global deformation, 2) mesh 

partitioning and 3) smoothing. In the first stage, the template mesh is deformed using 

the Radial Basis Functions (RBFs). Different from the method proposed by Kahler et 

al [11], our method deforms the template mesh in two steps. The first step is the 

coarse-level deformation. Based on the given corresponding vertex pairs, the 

orientation and the shape of the template mesh are adjusted. The second step is the 

fine-level global deformation which is used to fit the template mesh to the curves. 

Another set of correspondences between the template mesh and the curves are 

determined to fit the template mesh to the curves. In this step, the closest point 

method is adopted. The closest point method computes the distance between the 

vertices that defines the curves and the template mesh. Then, all the vertices that 

define the curves are associated with the closest vertices on the template mesh. The 

vertices on the template mesh are translated to the corresponding vertices on the 
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curve. However, some faces may be flipped after deformation. Thus, a face flip 

prevention technique is proposed to solve this problem. 

In the second stage, the partitions of the mesh are created. Instead of using the 

algorithm proposed by Li [31] and Kanai [12], our method creates the partitions of 

the mesh by re-triangulating the mesh in the vicinity of the curves. During the re-

triangulation process of the mesh, the topology of the mesh is modified locally. The 

re-triangulation process is repeated until the shortest path between two given vertices 

on the mesh is formed. After the re-triangulation process, some distortions are 

usually induced on the mesh. Therefore, a smoothing technique similar to that of 

Ohtake [23] is proposed to remove the distortion and make the mesh more evenly 

distributed. In our technique, the mean curvature and the Laplacian flow methods are 

adopted. A technique to improve the mean-curvature method is also presented. The 

improved mean-curvature technique is used to remove the distortion of the mesh. The 

Laplacian flow method is applied to improve the distribution of the mesh. Different 

from the Laplacian flow method presented in [22], our technique focuses on the 

improving the distribution of the mesh and reducing shrinkage rather than removing 

the distortion on the mesh. 

Our approach not only creates a mesh with partitions in different resolutions, the 

possible self-overlapping of the mesh polygons is eliminated. In addition, there is no 

significant change in the size of the mesh. The mesh with partitions created using our 

approach is particularly useful in computer graphics and computer-aided design 

applications. 
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1.3 Thesis outline 

The structure of the thesis is organized as follows. In this chapter, a review of the 

related works and the overview of our approach are presented. In chapter 2, the 

method of Radial Basis Functions (RBFs) and the problems resulting from the 

deformation are discussed. In chapter 3，the methods to create a mesh in regions 

partitioned by the curves are discussed. The mesh smoothing algorithm is presented 

in the chapter 4. Chapter 5 describes the implementation and the experimental results. 

Conclusions and future developments are given in chapter 6. 
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2. Global Deformation 

This chapter discusses the global deformation technique that is used to fit the 

template mesh to the curve. Given a set of corresponding vertex pairs between the 

curves and the template mesh, the global deformation technique is applied to adjust 

the orientation and the shape of the template mesh such that it interpolates the curves. 

The method deforms the template mesh in two steps. The first step is the coarse-level 

deformation. Based on the given corresponding vertex pairs, the orientation and the 

shape of the template mesh are adjusted using RBFs. The second step is the fine-level 

global deformation which is used to fit the template mesh to the curves. Another set 

of correspondences between the template mesh and the curves are determined. The 

closest point method is adopted to compute the distance between the vertices of the 

curves and the template mesh. Then, the RBFs is applied again to fit the template 

mesh to the curves. Figure 2.1 illustrates the flow chart of the deformation process. 

In this chapter, the closest point method that is used to determine the 

correspondences between the template mesh and the curves is described in Section 

2.1. The Radial Basis Functions (RBFs) and some experimental results using RBFs 

for object deformation are presented in Section 2.2. Finally, a technique that is used 

to prevent the possible reversion of the faces is given in Section 2.3. 
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Figure 2.1: The flow chart of the deformation process 
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2.1 The closet point method 

After the orientation and the shape of the template mesh are adjusted in the coarse-

level deformation, the closest point method is applied to determine the 

correspondences between the template mesh and the curves. In this method, one 

vertex on the curve is associated with a vertex on the mesh. The correspondences 

between the vertices that define the curves and the vertices on the mesh are 

established by considering the shortest distance between the vertices. If there are 

more than one vertex on the curves having the same corresponding vertex on the 

mesh, priority is given to the vertex that is identified as feature points. 

A feature point is a vertex connected by more than two linear segments (Figure 2.2). 

It specifies the point shared by more than two regions of the mesh, and thus has the 

highest priority in forming the correspondences with the template mesh. 

\ 
\ 

\ 

• Feature point 

• Vertex on the cuve 

Linear segment 

Figure 2.2: Feature point 
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I • Feature point 

I • Vertex on the curves 

I 

Figure 2.3: Example of determining the correspondence 

Suppose p, is a vertex on the template mesh and v,, v^, v) are the vertices that 

define the curves. As v: is the intersection point of three linear segments it is 

identified as the feature point. In Figure 2.3, the distance between p, and v: is the 

longest. Since v? is defined as the feature point, the corresponding vertex pair 

between the template mesh and the curve is pj and v:. 

2.1.1 Computational complexity 

Consider a set of curves with n number of vertices, and the template mesh contains m 

number of vertices. Since the closet point method is applied for all vertices on the 

curves, the time complexity is 0{mn). 
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2.2 Deformation Techniques 

Given the correspondences between the template mesh and the curves, the next step 

is to deform the template mesh. In this section, the existing global deformation 

methods and the radial basis functions (RBFs) are presented 

2.2.1 Existing deformation method 

In the following, two existing approaches that used affine transformation for 

deformation are described. 

a) For the first approach, the deformation is determined by evaluating and 

applying the affine transformation to the template iteratively [32]. The affine 

transformation can be found by the least squared method. Given a set of n 

corresponding vertices, which are represented by the matrices A g andB e 

The goal is to minimize the squared error || A X - B | | ' such that the mapping 

function X can be determined. 

The over-determined matrix equation is as follow: 

AX = B (2.1) 

X in (2.1) can be solved by using (2.2) 

X = (A^A)-'A^B (2.2) 

where X is an affine transformation. 
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Overview of the approach 

Input: Corresponding vertices on the template mesh are stored in matrix A 

Corresponding vertices on the curves are stored in matrix B 

Output: Affine transformation matrix X with 16 degrees of freedom. 

Since the maximum degree of freedom is only 16 for an affine transformation, the 

deformation effect is limited. 

(b) In the second approach, the affine transformation is determined by [24] and is 

optimized by evaluating a set of error functions: marker error E^ and smoothness 

error The marker error E^ measures the distance between each corresponding 

vertex pair on the template mesh and the curves. The smoothness error ̂ ^ measures 

the change in deformation of the neighboring vertices over the template surface. The 

goal is to minimize the combined error E = E^->rE^ 

The marker error 

m 

( 2 . 3 ) 

/=i 

where is the affine transformation of a vertex V � o n the template mesh and 

yyif is the corresponding vertex on the curves. 

The smoothness error 

E = y T - T ^ 
s L^ ‘ J (2 4) 

{iJ\{Vi,Vj}eedges{Mr)} 、 • ) 
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where T. is the affine transformation for the vertex v.，Tjis T. ’s neighboring vertex 

and Mt is the template mesh. 

Overview of the approach 

Input: The vertex ^k^ on the template mesh and the vertex on the curves 

Output: Affine transformation ^ 

2.2.2 Radial Basis Functions (RBFs) 

In this thesis, the Radial Basis Functions (RBFs) is adopted for the global 

deformation. Comparing with those methods which use affine transformation, the 

degree of RBFs is dependent on the number of correspondences. Therefore, its 

deformation effect is better than the methods introduced in Section 2.2.1. 

In the RBF global deformation technique, it accepts a set of curves, a template mesh 

with no off surface point and a set of corresponding vertex pairs between the curves 

and the template mesh. Let n be the number of the correspondences between the 

template mesh and the curves, v. g R^ and v； g R^ be the 产 corresponding vertices 

on the template mesh and the curves respectively, where i = 1，2...n. The Radial 

Basis Function (RBFs) determines the mapping function £'(v.) that maps v. to v' 

such that: 

(2.5) 
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The mapping function is used to fit the template mesh to the curves. It is expressed 

with an elastic function which is a weighted linear combination of n basis functions^. 

The mapping function is determined by the correspondences between the template 

mesh and the curves. 

E{v,) = f^otM V,- 一 V； II) + Rv + t (2.6) 
y=i 

where oi. g R^ are weights, R e /？“�is the rotation matrix and t & R^ is the 

translation vector, v, — Vj || is the distance between the corresponding vertices. 

In this thesis, the bi-harmonic basis function </){r) = ris chosen to give the linear and 

global interpolating effect. In Equation (2.6), a " R a n d t are the unknown to be 

determined. The mapping function contains 3(n+4) unknowns to be determined, 

however there are n correspondences which give only 3n constraints. To provide 

enough constraints for the system, the following compatibility constraints are 

included: 

l X = l > � ; = Z « > f = l X v f = � (2.7) 
,=i /=i '.=1 /=i 

'v；' 

where k=\,2,3 and v,. = vf . 

To set up a system of linear equations related to the correspondences between the 

template mesh and the curves, v, — v̂  ||) and R in Equation (2.6) are denoted by 

_及丨] 
p.. and respectively. Thus, Equation (2.5) can be expressed in matrix form: 
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Pn Pn … P i n W v,̂  vf l " | � a , 1 � v ; _ 

Pi\ P22 …Pin vl 1 a: 
• • • • . . • • 
• • • • • • . , J , 

Pn\ Pnl …Pnn ^； 1 «„ 一 V; 
V； V； - V； 0 0 0 0 及1 = 0 (2.8) 

vf v^ … v „ 2 0 0 0 0 灭2 0 

vf v^ … vl 0 0 0 0 0 
1 1 1 0 0 0 0 L d 0 

L 」 I— • 

Or 

KX = Y (2.9) 

The matrix K is symmetric and positive definite unless all v, are coplanar When 

V,- are coplanar, additional corresponding vertices are required. Those vertices can be 

determined by v. and its vertex normal n.. 

Since matrix K is symmetric and positive definite, the solution of X is unique [27] 

The Equation (2.9) can be solved by the LU Decomposition method [28] The 

mapping ftmction can then be applied to the template mesh. Let m be the total 

number of vertices on the template mesh. Denote v; = v'f as the vertex on the 

template mesh before deformation, where y. = l，2”..’m ’ and express a basis 

function^.. V； —v, ||) • We can determine the updated position of the vertex 

f 

v'j on the template mesh by: 
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� ' 1 
W 卜 丨 仏 2 . . . 仏 ” V ( 2 V” 1 1 ： 

V;' = ^21 q!!…qin 1 «« 
： _ 丨 丨 丨 ： ： ‘： I R̂  (2.10) 

/ U,nl qna … q 隱 <3 1 J 
L ^ m � R^ 

t 
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2.2.2.1 Computational complexity 

The RBFs requires evaluating X in Eq (2.9). A typical practice to solve Eq (2.9) is 

by using the LU Decomposition method [28] of which computational complexity 

is(9((« + 4)3). The time complexity for applying the mapping function to vertices on 

the template mesh by Eq (2.10) is 0{3m{n + 4)). Therefore, the total computational 

complexity for RBFs is o(in + 4)(3m + + 4 ” )） 

2.2.3 Result 

This section compares the deformation results by using the bi-harmonic basis 

function </}{r) = r and the tri-harmonic basis function = r^. The bi-harmonic 

basis function is used to give the linear interpolation effect and the tri-harmonic basis 

function gives a smooth interpolation effect by approximating the in-between 

correspondences. Since the tri-harmonic basis function is a spline function, the 

vertices will be non-linearly interpolated which may result in undesirable distortion 

of the mesh. 

Figure 2.4 shows the template mesh and the curves before deformation. The red and 

blue labels are the given corresponding vertex pairs between the template mesh and 

the curves. Figure 2.5 shows the results of using the bi-harmonic and the tri-harmonic 

basis ftinctions. As illustrated in Figure 2.5，the body and the ear part of the cup is 

distorted by using the tri-harmonic basis function. 
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省 
Figure 2.4: The cup template and the curves before deformation. 
The red and blue labels are the corresponding vertex pairs. 

Ww 
Figure 2.5: The cup deformed by using the bi-harmonic basis 
function (left). The cup deformed by using the tri-harmonic basis 
function (right). 
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2.3 Face flip prevention 

The global deformation process may result in some faces being flipped. Figure 2.6 

shows an example of face flip in a template mesh before and after deformation. In 

this example, the vertices on the template mesh is deformed based on the 

corresponding vertices on the curves, and is not affected by the deformation using the 

RBFs. Therefore, the face (blue color) may be flipped after the deformation. In this 

section, a face flip prevention technique is proposed. The technique consists of two 

major processes. The first process is the face flip detection process. In this process, 

the faces which may be flipped after deformation are identified. The second process 

is the local subdivision process. After the faces which may be flipped are identified, 

local subdivision is applied to prevent the flip of faces after deformation. The face 

flip detection and the local subdivision processes iterate until no flipped face is 

detected. In this section, existing methods and our proposed face flip detection 

method are presented in Section 2.3.1. Then, the subdivision process is described in 

Section 2.3.2. 
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舊靠 
/ \ 

\ 

Translation vectors of the _ • 丁ranslajjon vertors of the 
• vertices during deformation vertices during deformation 

• Vertices on the template mesh • Vertices on the template mesh 

� Vertices on the curve � Vertices on the curve 

Linear segments of the curve — — » Linear segments of the curve 

Figure 2.6: The template mesh before deformation (left) and after 
deformation (right) 
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2.3.1 Detection of the flipped face 

In this section, a technique for detecting the flipped faces is proposed. Common 

methods for detecting the flipped faces are described in Section 2.3.1.1. Our 

technique detects the flipped faces by considering the variation of vertices location 

and is presented in Section 2.3.1.2. 

2.3.1.1 Common approach: 

In adjusting polygon vertices to match with the boundary curves, there are two 

possible cases for a face to be flipped. 

Case 1 ； Planar deformation 

Numerous methods can be used to detect the flipped face when the deformed face is 

coplanar with the un-deformed face. A common method is to examine the sign of the 

triangle's area. Denote the vertex of a triangle as v, = (x, the signed area A of a 

planar triangle is defined by: 

J -Vi 1 
-V2 1 

X3 3；3 1 

By determining the possible change in sign of A ’ the flipped face can be detected 

Case 2: Non-planar deformation 

A common technique is to determine the changes in the face's normal before and 

after the deformation. A face is flipped if the angle between the face's normal before 

and after the deformation is greater than a specified tolerance. 
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2.3.1.2 Our Approach 

Let Pi and Pi'be the 产 vertex of the face before and after the deformation respectively. 

The vector between p! and p； is defined ast； and the vector between pjand pj is 

denoted as dj (Figure 2.7). A flip-counter is used to count the number of intersection 

between t; anddi. The flip-counter is incremented by one if an intersection between 

ti anddjis detected. This is repeated for each vertex of the same polygon. The final 

value of the flip-counter is then used for identifying if the triangular face has been 

flipped or not. 

P 2 , 丄 

P 3 

Figure 2.7: The face before deformation (left). The face after 
deformation (right) 
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Case 1 ： Planar deformation 

In a deformation, the first vertex p, moves to p, , d, is a vector defined as 

di =>y(P3-P2) 

where 5 is a constant. Define a vector t, as 

t 

ti =KPI -PI) 

where r is a constant. 

The intersection between t,andd, satisfies the following 

Pi +ti =P2+di 

Hence 

/ 

Pi +KPi -Pl) = P2 +S(P3 -P2) 

As d,andt, lie on the same plane, the intersection between d,andti can be located 

by solving for r and s. If 0 < r < 1, d, intersects with t, and the flip-counter is 

incremented by one. Figure 2.8 illustrates the process of detecting the flipped face. 

The process is applied to all vertices of the triangular face. The face is flipped if the 

final value of the flip-counter is odd. 
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P2 P丨’ 

Pi � � . ‘ 
P3 P2 

t 

‘ ‘ Pi 
P2 P> P2 Pi ：-•-

- • . \ 、 ‘ 

• . 、 - . 

p." . 一 二 . ’ z 夕 广 . . 
P3 P； p3 P2 

(a) (b) (c) 

(a) t, intersects with d! • The flip-counter is incremented by one. 

(b) t j intersects with d^ • The flip-counter is incremented by one. 

(c) t j intersects with d] . The flip-counter is incremented by one. 

Figure 2.8: The face flip detection process 
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Case 2: Non-planar deformation 

In most cases, the vertices before and after the deformation lie on different planes. 

Thus, it may not be possible to detect the intersection between tj andd； directly. 

Instead, the vertices after the deformation are projected onto the plane n where 

possible intersections are detected. The plane 11 is defined by the vertices before the 

deformation as shown in Figure 2.9. 

\ P h , , \ I \ 、 

Pj, P2 and P3 are the vertices of the triangle before deformation 

t I I 
Pi , p2 and P3 are the vertices of the triangle after deformation 

" ft ft t t t 

p,，P2 and P3 are the projection of the vertices pj , p j and p j on the plane II respectively 

Figure 2.9: The general face flip detection process 

Instead of using the vertices p! ,P2 and p / , the projected vertices p, ", pj ' and pj " 

are used in the face flip detection process for planar deformation. 

2.3.1.3 Comparisons of the face flip detection method: 

In the non-planar case, a common technique to detect the flipped face is to determine 

the changes in the face's normal before and after the deformation. A face is flipped if 

the angle between the face's normal before and after the deformation is greater than a 

specified tolerance. In this method, the tolerance has to be carefully adjusted so that 

all flipped face can be detected. The method is inefficient as different tolerance may 

have to be used for different models. In our proposed face flip detection 
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method, tj ,di .and flip counter is adopted to detect the flipped face. Since t； and d! is 

detected automatically, our proposed method is automatically and more efficiency. 

2.3.2 Local Subdivision 

In the previous section, the face flip detection technique is proposed to identify the 

face which may be flipped after deformation. In this section, a face flip prevention 

technique is proposed. 

For the faces which will be flipped in the deformation, local subdivision is applied to 

avoid face flip. The face flip detection and local subdivision processes iterate until no 

flipped face is detected. Figure 2.10 illustrates the result of subdividing a face. The 

closest point method is applied to determine a new set of correspondences between 

the curves and the template mesh. As shown in Figure 2.11 and 2.12, the subdivided 

face is not flipped after the deformation no matter p! or p: is determined as the 

corresponding vertex. Figure 2.11 illustrates the case when pjis determined as the 

corresponding vertex. Figure 2.12 illustrates the case when p^is determined as the 

corresponding vertex 
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.截翁 
z \ \ 

、 V 
‘ Translation vectors of the 

vertices during deformation 

• Vertices on the template mesh 

0 Vertices on the curve 

— L i n e a r segments of the curve 

Figure 2.10: Local face subdivision 

/ \ 
\ 

‘ Translation vectors of the 
vertices during deformation 

• Vertices on the template mesh 

• Vertices on the curve 

— L i n e a r segments of the curve 

Figure 2.11: Deformation of the subdivided face 

'麵藥： 
Z \\ \ 

\ \ 

‘ Translation vectors of the 
vertices during deformation 

• Vertices on the template mesh 

% Vertices on the curve 

I Linear segments of the curve 

Figure 2.12: Deformation of the subdivided face 
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3. Partitioning of the mesh 

After the global deformation, a template mesh is fitted to a set of curves. Then, the 

mesh has to be re-triangulated in regions partitioned by the curves. In this chapter, a 

technique for re-triangulating the mesh is proposed. Two existing methods and our 

approach for creating a mesh in regions partitioned by the curves are described in 

Section 3.1 and Section 3.2 respectively. 

3.1 Existing method 

Creating partitions on a mesh is particularly important in the application of 3D 

morphing. Kanai [30] proposed a technique to specify regions of a mesh by 

constructing a curve on the mesh. The curve is then used as the boundary curve 

between partitions of the mesh. 

(a) To specify a curve on a mesh, a simple approach is to construct the curve along 

the edges of the mesh. It means that vertices on the curves are vertices on the mesh. 

Kanai and Suzuki [12] constructed the curves by linking two vertices of the curve 

with the shortest path over the mesh, and the DijKsta's algorithm is adopted in their 

approach (Figure 3.1). 
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/ M e s h surface 

WW 
The path (red in color) represents the original curve 
The path (green in color) represents the DijKsta's shortest path 

Figure 3.1: Constructing a curve on a mesh using the DijKsta's 
algorithm 

(b) Another approach to create a mesh in regions partitioned by the curves is 

proposed by Li [24]. In their approach, vertices are inserted on the mesh if there are 

intersections between the boundary of the face and the curve. However, this increases 

the mesh size of the object. Figure 3.2 illustrates Li's approach. 

(A) (B) (C) 

A: A curve specified on a mesh; B: Vertices are inserted on the mesh edges; 
C: Vertices on the curves are removed (Final result) 

Figure 3.2: Li's approach 
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3.2 Our approach 

Given the vertices that define the linear segment of the curves, the mesh in the 

vicinity of the linear curve segment (clear-out region) is re-triangulated. The clear-

out region is the region created by the faces which the projected path of the linear 

curve segment lies on. The clear-out region is detected by projecting the linear 

segment of the curve onto the mesh. The direction of projection is determined base 

on the direction of the face's normal. By locating a projected path of the linear 

segment on the mesh, the clear-out region can be detected. The method of 

determining a projected path on the mesh is described in Appendix A. 

To re-triangulate the mesh in the clear-out region, the faces are removed first. Then, 

an edge which is the same as the linear segment of the curve is inserted. The 

remaining faces are inserted according to the size of the angles of the clear-out region. 

In Figure 3.3a, suppose Â  is the smallest angle between the edges in the clear-out 

region. New face is then inserted in the clear-out region as shown in Figure 3.3b. 

Figure 3.3c shows the result after the re-triangulation process. The process of re-

triangulating a mesh is shown in Figure 3.4. Since the same number of faces is 

inserted in the clear-out region, the size of the mesh is not affected in the re-

triangulation process. 
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� W (c) 

Figure 3.3: Face inserted in the clear-out region 
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I A- y \ 

t.—Vtyij 
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(a) Given a mesh and two vertices that define the curve 

(b) New edge is inserted. 
(c) Remove the faces in the clear-out region. 
(d) Insert the faces in the cleared-out region 
(e) Result 

Figure 3.4: Process of re-triangulating the mesh 

Since the clear-out region is located by projecting the inserted edge on the mesh, the 

clear-out region may be undetected for some concave regions, especially on the 

boundary of the mesh (Figure 3.5). In this case, the DijKsta's algorithm is adopted to 
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detect the shortest path between two vertices on the mesh. The vertex on the 

DijKsta's path is then moved to the inserted edge by projection. The process is 

repeated until the shortest path between two vertices on the mesh is obtained (Figure 

3.6). As the topology of the mesh is modified, some distortion may be induced on the 

mesh 
1 I 
« I 

Clear-Out region that cannot be detected 
by using our method 

Figure 3.5: The undetected region on the boundary 

(c) (d) 

(e) 

(a) Initial mesh; 

(b) DijKsta's path is detected on the mesh; 

(c) - (d) The vertices are moved to the inserted edge; 
(e) Result; 

Figure 3.6: Treatment on the mesh boundary 
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3.3 Computational complexity 

Assume the template mesh contains m number of faces and n number of vertices 

respectively. Since a global search for all faces is required in locating the clear-out 

region, the computational complexity is . For the undetected region on the 

mesh, the shortest path between two vertices is detected by using the DijKsta's 

algorithm of which computational complexity is 0{n") . Therefore, the total 

computational complexity 
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4. Mesh smoothing algorithm 

After the template mesh is partitioned by the set of curves, some distortions are 

usually induced on the mesh. The distribution of the mesh may also be affected in the 

deformation. This chapter proposes a technique to remove the distortion on the mesh 

and to produce a mesh with more evenly distributed triangular faces. 

Mesh smoothing is a process to remove distortions from the object. The objective of 

the mesh smoothing process is to remove the distortions while preserving the desired 

features of the object. A popular method to smooth a mesh is to use the Laplacian 

flow [16,17] and the mean-curvature methods [18]. In this chapter, the proposed 

smoothing technique is discussed. The Laplacian flow method is described in Section 

4.1. The mean-curvature method is discussed in Section 4.2. Our approach to smooth 

the mesh is presented in Section 4.3. Finally, experimental results on mesh 

smoothing using our approach and a comparison with the Laplacian flow and mean-

curvature methods are shown in Section 4.4. 
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4.1 The Laplacian flow method 

Let / / b e a vertex on the mesh after the k'h iteration. The new position of / / i n the 

next iteration is defined by 

/ / • +丨= / + ; i A ( / ) (4.1) 

where ； i s the new position of A(p^)is the displacement vector of / / and 

A is a positive constant defined by the user 

The Laplacian flow method computes by determining the displacement vector 

A( ; / ) which is defined by the umbrella-operator [29]: 

= (4.2) 

i=\ 

where 仏.is the i"' neighboring vertex of (one-ring vertex of / / ) , m is the total 

number of neighboring vertices of (See Figure 4.1) and w. is the weighting of 

仏..The mesh is smoothed by computing ； u s i n g Equation (4.1) repeatedly. 

q’n � 

.粉iS: 
Figure 4.1: The Laplacian flow method 

The weight w,. can be chosen in many different ways. The most common choice is to 

set w,. = 1 such that Equation (4.2) becomes: 

1 ‘“ 
= — ( 4 . 3 ) 
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Another choice of w. is to compute the inverse of the distance between and 仏by: 

vv,- = | | p � 1 II ‘ (4.4) 

J. Vollmer [22] proposed to include the previous vertex p'' in the calculation. 

Equation (4.1) becomes: 

(4.5) 
Z � ' = � 
(=0 

where « i s a constant, 0 < a <\ .However, the shrinkage problem cannot be solved. 

Another approach is to include the vertex in the calculation [22]. Equation (4.5) 

becomes: 

广1 (4.6) 
'.=0 

1=0 

Despite the Laplacian flow method can create a more evenly distributed mesh, the 

shape of the mesh is altered and the mesh is shrunk after smoothing. Figure 4.2 and 

Figure 4.4 show the mesh of a sphere and torus before smoothing. Figure 4.3 and 

Figure 4.5 show the results of the meshes after applying the Laplacian flow method 

(Equation 4.3). Figure 4.3 shows that the sphere is shrunk after using the Laplacian 

flow method. As illustrated in Figure 4.5, the torus is also shrunk after using the 

Laplacian flow method. 
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Results 

Figure 4.2: Original sphere 

. K I 

Figure 4.3: Distortions on the sphere (top). Sphere after 20 iterations 

of the Laplacian flow method is applied, where A = l (bottom). 
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Figure 4.4: Original torus 

— ^ — 

Figure 4.5: Distortion on the torus (top). Torus after 20 iterations of 

the Laplacian flow method is applied, where 义 二 1 (bottom). 
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4.2 The mean-curvature method 

In the mean-curvature method, the displacement vector A( / / ) is replaced by the 

mean curvature vector//(/>^). Equation (4.1) becomes: 

(4.7) 

with 

= + c o t A ) (仏 - / / ) (4.8) 
4 力 1=0 

where a. and are the two angle opposite to the edge q^p'' (Figure 4.6)，and A is 

the sum of areas of the triangles surrounding / / . 

Figure 4.6: Angle and p. are used to estimate the mean curvature 

vector 

The mean-curvature method is capable of removing distortion on the mesh. However, 

the distribution of the mesh is not improved. Figure 4.7 and 4.9 show the meshes of a 

sphere and a torus before smoothing. Figure 4.8 and Figure 4.10 show the results of 

the meshes after being smoothed by the mean curvature method. In Figure 4.8，the 

distortion on the sphere is reduced after applying the mean-curvature method. 

However, the distribution of the triangular faces on the sphere is not improved. 

Figure 4.9 shows a similar result when the torus is smoothed by the mean-curvature 

method. 
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Results 

Figure 4.7: Original sphere 

Figure 4.8: Distortion on the sphere (top). Sphere after 60 iterations 

of the mean-curvature method is applied, where A = 10 (bottom). 
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Figure 4.9: Original torus 

Figure 4.10: Distortion on the torus (top). Torus after 60 iterations of 

the mean-curvature method is applied, where /I = 10 (bottom). 
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4.3 Our Approach 

As discussed in the previous sections, the Laplacian flow method can create a more 

evenly distributed mesh and the mean curvature method can remove the distortion on 

the mesh. Nevertheless, the object is shrunk after smoothing. We propose a technique 

to smooth the mesh and create a more evenly distributed mesh without altering the 

size of the object. In our technique, the mean-curvature method is applied iteratively 

to remove the distortion on the mesh. Then, a technique similar to that of the 

Laplacian flow method is applied to create a more evenly distributed mesh. 

Comparing with the Laplacian flow method, our technique reduces the shrinkage of 

the mesh significantly. Our modified mean-curvature and Laplacian flow methods 

are presented in Section 4.3.1 and Section 4.3.2 respectively. In order to preserve 

features on the mesh, a feature constraint is also included in our technique. The 

feature constraint is discussed in Section 4.3.3. 

4.3.1 The modified mean-curvature method 

Different from the standard mean-curvature method, our modified mean-curvature 

method computes the mean curvature vector by projecting the mean curvature vector 

in the direction of the face normal n of the mesh surface. Let / / b e a vertex on the 

mesh after A:"' iteration, n is determined by selecting the face which has the shortest 

distance with p' ' . The new position of the vertex in the next iteration, ， i s defined 

by: 

广1 = / + ( m { p ' ) - i m i p ' y n ) { m { p ' ) ) ) (4.9) 
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where ) - ) * )) is the projection of the mean-curvature 

vector onto the plane of the face defined by p' ' and n, {*} is the dot product between 

two vectors, a n d p “ � i s the intersection between n and the face defined by ； / o n the 

template mesh (Figure 4.11). The new mesh surface defined by ； ( t h e linear 

segments (red color) in Figure 4.11) is used as a reference surface for the projection 

in the next iteration. 

Comparing with the standard mean-curvature method, our approach reduces the 

shrinking effect of the object and removes the distortion on the mesh. However, the 

distribution of the mesh is not improved. As a result, the Laplacian flow method is 

adopted to create a more evenly distributed mesh. 

mpk)-(入H(y) * n){XH{p')) 

^ / \ r ^...---^^^ean-curvature vector w W 
7 I r \ \\ 

n /琴 \ \\ 
z \ \ 

• • Initial mesh surface \ \ 

^ ^ Mesh smoothed by the modified 
mean curvature method 

^ ^ Mesh smoothed by the 
mean curvature method 

Figure 4.11: Our mean-curvature method 
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4.3.2 The modified Laplacian flow method 

In order to produce a more evenly distributed mesh, an approach similar to that of the 

Laplacian flow method is proposed. Different from the standard Laplacian flow 

method, our Laplacian flow method computes the displacement vector 

A ( ; / ) (Section 4.1) by projecting A(p^) in the direction of the face normal n of the 

original mesh surface. Let / / be a vertex on the mesh after A："' iteration, n is 

determined by selecting the face which has the shortest distance with p'' andA(p^ ) 

is determined by the following equation: 

么 ( / ) = 丄 | > , — / (4.10) 
m ,=i 

where q. is the i"' neighboring vertex of / / and m is the total number of neighboring 

vertices of p � 

The position of the vertex in next iteration, , is defined by: 

丨 = / + ( A ( / ) - ( A ( / ) * n ) ( A ( / ) ) (4.11) 

where is the projection of A{p'') onto the plane of the 

face defined by the vertex and n, and ； i s the intersection between n and the 

face defined by p°on the template mesh (Figure 4.12). The original mesh surface 

defined by p^ (the linear segments (black color) in Figure 4.12) is used as a reference 

surface for the projection in each iteration. 
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Since / / is moved along the tangent plane of the original faces, it affects the 

distribution of the mesh rather than the shape of the mesh. Although the modified 

Laplacian flow method reduces the smoothing effect of the traditional Laplacian 

algorithm, a more evenly distributed mesh can be created. As the vertex is moved 

along the tangent plane of the original faces, this largely reduces the shrinking effect. 

0 0 Initial mesh surface 

龜 囊 Mesh smoothed by the 
^ ^ Laplacian flow method 

塵 囊 Mesh smoothed by the modified 
^ ^ Laplacian flow method 

Figure 4.12: Our Laplacian flow method 
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4.3.3 Feature constraints 

In order to keep the features of the original template mesh, some feature constraints 

are included in the calculation. In our approach, the vertices of the curves which are 

used as vertices of corresponding pairs with the mesh are defined as the feature 

points. Let the vertex V̂  be the set of feature points, Equations 4.9 and 4.11 now 

becomes: 

For the modified mean curvature method 

P = { 0 (4.12) 
P if Pe Vf 

For the modified Laplacian flow method 

“ 丨 , / + ( A ( / ) - ( A ( / ) * n ) ( A ( / ) ) if p 芒 Vf 
P = { 0 T/ (4.13) 

P if P^ V f 

4.3.4 Computational complexity 

Let the total number of faces of the template mesh bem 厂，the number of iterations 

involved in our mean-curvature and Laplacian flow method be k � a n d k^ 

respectively. For our mean-curvature method, the computational complexity 

is 0{k^mj ) . For our Laplacian flow method, the computational complexity 

\sO[k^mj-). Therefore, the total computational complexity for our smoothing method 

would be o(m, (A:丨 + /：之)). 
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4.4 Comparison of the mesh smoothing approach 

A comparison between the standard Laplacian flow method, mean-curvature method 

and our approach is presented. In Figure 4.13，the shape of the sphere is changed 

after using the Laplacian flow method. Since the position of the vertex on the mesh is 

determined by averaging the position of its neighbors, the distribution of the mesh is 

improved by using the Laplacian flow method. For the sphere smoothed by the 

mean-curvature method, the shrinking effect is largely reduced. However, the 

distribution of triangular faces on the sphere is not improved by using the mean-

curvature method. In our technique, the modified mean-curvature method is applied 

to remove the distortion on the mesh first. Then, the modified Laplacian flow method 

is applied to create a more evenly distributed mesh. Figure 4.13 shows the result of 

using our approach. Comparing with the standard Laplacian flow method, the 

shrinkage of the object is significantly reduced by using our approach. Meanwhile, 

comparing with the standard mean-curvature method, our technique produces a more 

evenly distributed mesh. Figure 4.14 shows a similar result of using different 

approaches on the smoothing of a torus. 
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Figure 4.13: Smoothing a deformed sphere. 
Original sphere (top). Distortions on the sphere (middle left). Sphere 
after 20 iterations of the Laplacian flow method (middle right), 60 
iterations of the mean-curvature method (bottom left) and 100 
iterations of our approach (bottom right) is applied 
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Figure 4.14: Smoothing a deformed torus 
Original Torus (top). Distortions on the torus (middle left). Torus 
after 20 iterations of the Laplacian flow method (middle right), 60 
iterations of the mean-curvature method (bottom left) and 100 
iterations of our approach (bottom right) is applied 
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5. Implementation and Results 
In this chapter, experimental results on the applications of the proposed technique are 

presented. In each experiment, the template mesh and the set of curves are specified. 

Section 5.1 presents the methods to create the template mesh and the curves in this 

thesis. The importance on the selection of the corresponding vertex pairs is discussed 

in Section 5.2. Finally, some experimental results are given in Section 5.3. 

5.1 Construction of the template mesh and boundary curves 

In this thesis, the template mesh is composed of triangular element, and the curves 

are piecewise linear segments. The template mesh is used to create a mesh by fitting 

it to the boundary curves, and the boundary curves are used to define regions on the 

mesh. 

In the experimental system, an interface is also provided for the user to construct the 

curves. The experimental system is developed using Microsoft Visual C-H- and the 

Open Graphic Library (OpenGL). It accepts the template mesh with various file 

formats such as "ASE" and "OBJ", and exports models in "OBJ" format. The 

template mesh is created by an existing commercial graphics system, Maya. 
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5.2 Selection of the corresponding vertex pairs 

In the global deformation, correspondences are determined automatically by the 

closest point method. However, a set of corresponding vertex pairs are required to be 

defined manually first. The accuracy of the correspondences determined by the 

closest point method relies on the accuracy of the manually defined corresponding 

vertex pairs. In Figure 5.1，the labels marked on the template mesh and the curves 

represent the manually defined corresponding vertices pairs. Figure 5.1b shows a set 

of incorrectly selected corresponding vertex pairs between the template mesh and the 

curves. Figure 5.2 shows the defect if the corresponding vertex pairs are selected 

incorrectly. 
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(a) (b) (c) 

Figure 5.1: The template mesh with a set of corresponding vertices 
(left). The template mesh with incorrectly selected corresponding 
vertices (middle). The curves with the corresponding vertices (right). 

Figure 5.2: The deformed template mesh with a proper set of 
corresponding vertex pairs (left), and the deformed template mesh 
with improper corresponding vertex pairs (right) 
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5.3 Results 

^ I 

Figure 5.3: The shoe template and the curves network (top). 7 
corresponding point pairs are specified (bottom left). The shoe 
template after the coarse-level global deformation is applied (bottom 
right). 
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Figure 5.4: The shoe template before the fine-level global 
deformation is applied (left). The shoe template after the fine-level 
global deformation is applied (right). 

Figure 5.3 shows a shoe template after the coarse-level global deformation. Based on 

the specified corresponding vertex pairs, the orientation and the shape of the template 

mesh are adjusted. Figure 5.4 shows the template mesh being fitted to the curves 

after the fine-level global deformation. Figure 5.5 shows the template mesh 

partitioned into regions by the curves. As illustrated in Figure 5.6, distortion of the 

mesh is removed by using the modified mean curvature method. Figure 5.7 shows 

that the mesh is more evenly distributed after applying the modified smoothing 

techniques. The final result of the mesh with partitions is shown in Figure 5.8. 

售 亀 
Figure 5.5: The shoe template before (top) and after (bottom) 
partitioning. 
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Figure 5.6: The shoe template before smoothing (left). The shoe 
template after applying the modified mean-curvature method (right). 

Figure 5.7: The shoe template before smoothing (left). The shoe 
template after applying the modified Laplacian flow method (right). 

Figure 5.8: Final mesh with partitions 
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Figure 5.9 shows an example of constructing the same cup using a different template 

mesh. The results demonstrated that the proposed method can create the required 

mesh by using different template meshes. Figure 5.10 shows the result with fewer 

feature constraints (Section 4.3.3). 

m 

Figure 5.9: Results of using different template mesh 
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售售 
Figure 5.10: Results of using fewer feature constraints 

Figure 5.11: The effect of feature constraints. Result with more 
feature constraints (left). Result with fewer feature constraints 
(right). 
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Figure 5.12 shows the result of fitting the template mesh to a set of the curves with 

concave and convex regions. The result is satisfactory as the basic characteristics of 

the elephant are captured by the template mesh successfully. Our method is also 

applied to a template mesh with open surface as shown in Figure 5.13. Figure 5.14 

shows the results of fitting different resolutions of the template mesh to the curves. 

Figure 5.12: The elephant template before deformation (top left). 
The elephant template after deformation (top right). Final mesh 
(bottom) 
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%% 
Figure 5.13: Using an open template mesh to fit a set of curves. 

Figure 5.14: Results of using template mesh with different 
resolutions. The template mesh before deformation (left).The 
template mesh after deformation (middle). Final mesh (right). 
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Figure 5.15 shows an example of constructing different shoe models from the same 

template mesh. The results demonstrated that the proposed method can be used to 

create different mesh by using the same template mesh. Figure 5.16 shows similar 

result of fitting the same template mesh to different set of curves. 

(A) ^ ^ 

(B) ^ ^ 

(C) 

(A): Initial template mesh. (B) & (C): Different set of curves 

Figure 5.15: Fitting a template mesh to different set of curves (1). 
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(A): Initial template mesh. (B) & (C): Different set of curves 

Figure 5.16: Fitting a template mesh to different set of curves (2) 
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6. Conclusions 

In this thesis, a technique to create a mesh with partitions by fitting a template mesh 

to a set of curves is proposed. The technique is particularly useful in computer 

graphics and computer-aided design applications. The proposed method consists of 

three main stages 1) global deformation, 2) mesh partitioning and 3) mesh smoothing. 

In the first stage, global deformation technique is employed. The global deformation 

technique includes a coarse-level and a fine-level deformation. Based on a set of user 

specified corresponding vertex pairs, the orientation and the shape of the template 

mesh are adjusted in the coarse-level deformation. Then, another set of 

correspondences between the template mesh and the curves are determined by the 

closest point method, and the fine-level global deformation is applied to fit the 

template mesh to the curves. However, some faces are flipped in the deformation. A 

face flip prevention technique is then presented. In the second stage, the template 

mesh is partitioned by re-triangulating the mesh in the vicinity of the curves. The 

advantage of using the re-triangulation process to partition the mesh is that the mesh 

size is not varied after partitioning. The main drawback of the technique is that the 

topology of the mesh is changed after the re-triangulation process. Thus induces 

some distortion on the template mesh. In the final stage, a mesh smoothing technique 

is adopted. Our smoothing technique is a modified mean-curvature and the Laplacian 

flow method. The modified mean-curvature method is used to remove the distortion 

of the mesh and the modified Laplacian flow method is applied to create a more 

evenly distributed mesh. Experimental results demonstrated that the proposed 

method generates meshes with partitions while capturing the basic characteristics of 

the curves successfully. 
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Despite our proposed method can generate meshes with partitions successfully, 

specific features of the model may not be retained if the feature is not specified as 

corresponding vertex pairs. Some further work can be conducted to improve the 

proposed method. This will be discussed in the Section 6.1. 
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6.1 Future development 
In this research, there are several areas that we can do in the future. They are 

described as follows: 

1. Improvement of the corresponding vertex detection 

In order to fit a template mesh to a set of curves, corresponding vertex pairs between 

the template mesh and the curves are determined. For a template mesh constructed 

with open surface, vertices lying on the boundary of the mesh must be included in the 

set of corresponding vertices. However, in our approach, not all vertices on the 

boundary of the mesh can be determined as corresponding vertices by using the 

closest point method. It is expected that a feature recognition technique can be 

applied to detect feature vertices of the template mesh [33]. The closest point method 

can then be applied to establish correspondence between the feature vertices of the 

mesh and the vertices of the curves. Since the closest point method is only applied to 

the feature vertices of the mesh, correspondence will only be established for feature 

vertices and hence avoids matching boundary curve points to vertices not lying on 

the boundary of the mesh. 

2. Preservation of feature on the template mesh 

In this research, the feature on the template mesh will be removed after smoothing if 

the corresponding feature vertex is not specified on the curves. It is expected the 

feature recognition technique [33] can be applied to detect the feature of the template 

mesh. The recognized feature vertex can then be used as feature constraints (Section 

4.3.3) during smoothing. Thus, the feature of the template mesh can be preserved 

after smoothing. 
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Appendix A 

Determination of the projected path on a mesh: 

In this section, the technique to determine the projected path on a mesh is proposed. 

Our approach accepts a linear segment and a template mesh as inputs. The goal is to 

determine the projected path of the linear segment on the mesh. After the RBFs 

deformation (Chapter 2), the vertices on the linear segment are vertices on the mesh. 

In this case, the projected path can be determined if the direction of the linear 

segment is specified. 

Let the face normal, the direction of the linear segment and the direction of the 

projected path on the mesh be n, dir^ and dir^ respectively (see Figure A.l). By 

determining dir^ using: 

dir^ (A.l) 

where v̂  and v̂  are the starting point and the end point of the linear segment 

respectively, dir^ can be determined by: 

diVp = nx(J/r . xn) (A.2) 

The steps of determining the projected path on the mesh are summarized: 

1. determine the face on the mesh which contains the starting point of the linear 

segment, and check for any intersection between dir^ and the boundaries of 

the face. 

2. if there is intersection between dir^ and the boundaries of the face, the face is 

defined as the starting face. We define the starting point of the linear segment 

66 



as the starting point of the projected path and the intersection point I as the 

second vertex on the projected path. 

3. search the neighboring face of the starting face by checking the intersecting 

edge. 

4. recalculate dir^ by setting v̂  equal to I in Equation (A.l) 

5. update n with the normal of the neighboring face in Step3. The neighboring 

face is then defined as starting face. 

6. recalculate dir^ by using Equation (A.2). 

7. update I as the intersection point between dir^ and the boundaries of the 

starting face, and I is then defined as the vertex on the projected path. 

8. iterate Step 3-7 until I is equal to v ,̂. 

dirp 

• • Mesh Surface # # Mesh Surface 

• • Linear segment # # Linear segment 

• • Projected path • # Projected path 

Step 1-2 Step 3-8 

z lAc 
、 

• • Mesh Surface 

• • Linear segment 

• • Projected path 

Result 

Figure A.l: Determination of the projected path on the mesh. 
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