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摘要 
雖然動態資源分配被廣泛應用在無線網路中，以期望在保障用戶服務品質的同 

時滿足某些系統性目標，但是在沒有適當的接入控制機制的條件下，資源分配問 

題無法實現。在一種特定的資源分配方案一動態子載波分配的情況下，我們設 

計了一個在多用戶共存正交頻分複用無線網路中，關注用戶服務品質的適應性接 

入控制策略。 

通過分析動態子載波分配策略的條件，並且根據物理通道及載波分配的統計資 

訊，我們設計的接入控制策略能夠有效地保障系統的服務品質。因爲動態子載波 

分配策略充分利用了多載波網路中用戶的多樣性和衰落通道的時變性，這個接入 

控制策略設計同樣得益於這樣的分配方式。爲了進一步提高系統性能，根據用戶 

帶給系統收益的能力，用戶被有選擇性的接入。這個控制接入方案通過利用已 

有的接入記錄和對未來的預測迅速的適應網路的變化，從而做出接入控制決定。 

在整篇論文中，我們嚴格的分析推導以得到這樣關注用戶服務品質的適應性接 

入控制策略。並且通過大量的仿真證實，我們的接入控制方案可以以較低的複雜 

程度同時實現系統服務品質保障和最大化系統平均收益。 



Abstract 

Though adaptive resource allocation is proposed in wireless networks for obtaining 

both QoS guarantee and some system-wide utility target, the problem may not be 

feasible without an appropriate call admission control (CAC) scheme. With respect to 

a specific adaptive resource allocation schemedynamic sub-carrier allocation 

(DSA), we design a QoS-aware adaptive call admission control strategy for multi-user 

OFDM wireless networks. 

By analyzing the optimal criteria of dynamic sub-carrier allocation, our CAC 

strategy effectively support QoS provisioning in system-wide through incorporating 

the information of physical channel and the dynamic sub-carrier allocation. Since the 

sub-carrier allocation scheme makes use of multi-user diversity in multi-carrier 

system and the time diversity of the fading channel, the CAC strategy can also share 

the benefits through closely following the sub-carrier allocation feature. For better 

system performance, the users are selectively admitted according to their revenue 

contribution potential to the whole system. This call admission control strategy adapts 

to multi-user OFDM wireless networks quickly with learning how to do decision 

based on history decisions and future predictions. 

In the thesis, we demonstrate the way how the QoS-aware adaptive call admission 

control strategy is derived rigorously, and the wide simulation results validate that the 

CAC strategy can achieve QoS provisioning and average system revenue maximum 

simultaneously with low complexity. 
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Chapter 1 

Introduction and Background 

The wireless communication system has been a hot topic in both research and 

commercial applications for several decades. With the advances of wireless 

technology, modem communication systems such as WLAN, WiMax, and so on are 

able to support high data rate for users. For example, WiMax can achieve a highest 

data rate of 75 Mbps per channel as proposed in the standard. Orthogonal Frequency 

Division Multiplexing (OFDM) is adopted in these standards as the physical 

transmission technique, because it can effectively combat multi-path fading to 

improve the achievable service rate. What is more attractive is that multiple users can 

be served simultaneously without interfering with each other in the OFDM system. 

Various adaptive resource allocation schemes are designed in the OFDM context for 

achieving certain system objective and satisfying each user's demand in the 

meanwhile. However, adaptive resource allocation alone is not a strong guarantee to 

obtain the two targets well, for the network may be overloaded from time to time 

without an effective call admission control (CAC) scheme. Being a critical component 

in the wireless network, CAC endeavors to prevent the network from being 

overloaded, and in the meantime maximizes the average system revenue by 

selectively admitting users. In wireless networks, the CAC component is more 

important than its counterpart in wired networks because of the more volatile 

communication environment. 

In this thesis, we focus on the design of an effective CAC strategy in the multi-user 

OFDM wireless network where the dynamic sub-carrier allocation (DSA) is adopted 

in the lower layer. Typically there are a large number of orthogonal sub-carriers 

available in OFDM system. By assigning sub-carriers to users according to the 
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instantaneous channel conditions of the users, DSA can greatly enhance the spectral 

efficiency of wireless networks and support multiple transmission sessions 

simultaneously. Since various users suffer different degrees of fading, the possibility 

that all users go into deep fading over all the sub-carriers is pretty small. It implies 

more users can be accommodated, if the multi-user diversity of the wireless fading 

channel is fully exploited by the DSA component. 

On the other hand, unlike dynamic sub-carrier allocation, CAC predicts the 

influence of admitting a newly arrived user on the performance of the system before 

the user is actually enrolled. Most existing CAC schemes assume that the total amount 

of resource as well as the resource needed by each type of user is constant and known. 

Consequently, only the dynamic arrival and departure process of users need to be 

considered. In contrast, the design of CAC is much more challenging in OFDM 

systems with dynamic sub-carrier allocation. This is because the actual data rate 

achieved by each user is a function of the channel statistics altered by the DSA as well 

as the channel correlation between different users. Therefore, it is hard to quantify the 

amount of resource needed by a newly arrived user through simple calculation as the 

assumption in existing CAC schemes. To predict the performance of the system with a 

tolerable complexity is the major obstacle. 

In this work, we design an adaptive CAC strategy for multiple user OFDM wireless 

networks. The proposed CAC strategy is composed of two stages: at the first stage, 

the strategy aims to decide the admissibility of a newly arrived user. While at the 

second stage, it aims to maximize the average system revenue by only admitting the 

"best" users from those are already considered to be admissible in the first stage. The 

strategy is derived from the analysis of the specific problems, and validated through 

simulations. The strategy effectively protects existing user's QoS provisioning, and 

then it performs very close to the optimal result in terms of revenue collected by the 

network system with low complexity. 

In the rest of this chapter, we briefly review the development of the CAC scheme 

design over the past few decades, then the emerging new challenges when CAC is 

applied in the OFDM wireless network with dynamic sub-carrier allocation, and 
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finally the organization of the thesis. 

1.1 Background 

1.1.1 Brief Review of CAC 
The ultimate goal of CAC is to protect the service quality for existing users from 

being interrupted or degraded too much upon the admission of a new one. It defines 

the capacity of the network in terms of user number, and the system will corrupt if the 

user number exceeds the boundary given by the call admission control. Furthermore, 

besides providing the admission region, CAC plays an important role in obtaining 

some system-wide objective. For example, service providers will charge various users 

at diverse rates according to their different applications. Without violating the 

admission boundary, the CAC scheme can select the "best" users to maximize the 

average revenue for the network system. 

If the resource left in the network is not enough for a new coming user, it will be 

blocked by the network, and then an indicator for each type of user called blocking 

probability can be obtained in the long run. The blocking probability is one of the 

important metrics to evaluate how good the CAC scheme is. In traditional wireless 

cellular networks [1], [2], [3]，the limited number of links is taken as the only resource 

that the CAC schemes should pay attention to. It is because once a mobile terminal 

grasps a transmission link, the service rate on the link is presumed to meet the mobile 

terminal's demand during its entire service session. As a result, the performance of the 

network is tractable by modeling the evolution of user number in the system as a 

time-continuous Markov chain bounded by the number of total links. The best call 

admission control scheme can be found out for any blocking probability target off-line, 

given the link capacity of the network. Usually the target blocking probability for 

each user is determined by their priorities. For example, in the cellular communication 

system, the calls are classified as new calls in the cell and handoff calls from other 

cells. The new call may be rejected even the admission region boundary is not 
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exceeded, because some resource is reserved by the CAC policy for handoff calls that 

have higher priority. 

However, due to the time-varying nature of wireless channel, there is a possibility 

that the service rate on one link may dissatisfy one subscriber from time to time. In 

order to make fully use of the scarce resource in wireless networks, the future 

communication system standards as 802.11, 802.16 intend to replace link-based 

communication with packet-based communication. The wireless channel is modeled 

as a finite state Markov chain [4], [5], [6], so correspondingly the service from 

physical layer is denoted as an aggregate of amount of packets that can be transmitted 

time slot by time slot. With the user dynamic and the channel fluctuation, the point to 

point transmission in wireless channel is like a queueing system with either 

multiple-class service or single-class service. Through controlling some parameters of 

the queueing system, call admission control schemes are designed for constraining 

each type user's blocking probability below a predefined target [7], [8], [9]. 

Interference is another problem of the wireless network, which is caused by the 

broadcasting characteristic of the wireless channel. One user's performance may be 

degraded due to interferences from users in the same network cell or adjacent cells, so 

the signal to interference ratio (SIR) of on-going users is denoted as a QoS metric for 

wireless networks. The wireless channel varies with time as a stochastic process, so 

the SIR of each user fluctuates accordingly. The outage concept is introduced to 

evaluate the performance of the wireless network, which means when the SIR of one 

user drops below the predefined threshold, we can assert one outage event occurs. By 

adjusting threshold according to the distribution of SIR in ergodic channel, the 

threshold based mechanism is applied as connection admission control directly [10], 

[11]. With respect to dynamic behavior of users and the interferences between 

different users in the physical layer, some work [12] gives a Super Markov model to 

track the fluctuation of SIR of each type of user in multiservice wireless networks. 

Though it builds up a rigorous theoretical frame, unfortunately the problem is 

computational prohibitive because of an over large state space of this model 

constructed for the network. Under this condition, QoS can be roughly guaranteed 

4 



through worst case analysis, and the high complexity forbids the method to be 

implemented as a good on-line admission control scheme. Since adaptive resource 

allocation is employed to improve the spectral efficiency，the call admission control 

schemes are improved by incorporating information from adaptive resource allocation 

obviously [13], [14]. 

In addition to making provision for QoS demands of all the users，the CAC 

schemes can differentiate users to maximize the system revenue. Different kinds of 

users bring different amount of revenue or cause different cost to the network. I f the 

network is modeled as a multi-state dynamic system, it is better to develop a CAC 

mechanism to make the network has a higher probability to stay in the high revenue 

states by admitting the "better" user. A good CAC scheme can always lead the system 

to the high revenue states by rejecting an improper coming user and reserving the 

resource for a "better" user coming later. 

For the sake of tractability, the evolution of the network is modeled as a 

Semi-Markov Decision Process (SMDP) in which the state space is determined by the 

type of user that can give rise to various rewards or different costs to the system. This 

kind of mathematical model has been investigated theoretically [15]. [16] 

demonstrates how to apply those methodologies, e.g. policy iteration, value iteration 

and linear programming, to call admission control scheme design in the network. In 

most cases, with these methods an optimal policy can be found out for either 

maximizing the long term revenue or minimizing the long term cost of the network. 

These methods suffer from curse of dimension, which means the computing burden 

increases exponentially with the state space of SMDP; meanwhile the state space is 

usually large in a typical communication system. Instead of solving the SMDP 

problem directly, some threshold-based CAC schemes calculate the thresholds with 

iterative algorithms that are derived from the feature of optimal algorithms for SMDP 

[17], [18], [19]. In fact, to solve the SMDP problem is a procedure of searching 

optimal solution in a specific solution space, so it is very natural to borrow the ideas 

from artificial intelligence that concentrates on how to search optimal solution 

efficiently in a large solution space. Besides genetic algorithm that is applied to 
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optimal admission control design, given a full scope of the system [20], [21], a class 

of algorithms called reinforcement learning is introduced to reduce the complexity 

greatly through searching with adjustments based on previous trials [22], [23], [24], 

[25]. Though the call admission control schemes proposed by these works can achieve 

the maximum average revenue or minimum average cost, these CAC design methods 

either cost too much time to collect enough the information of the system or take too 

long time to converge to optimal CAC schemes. 

1.1.2 Dynamic Sub-carrier Allocation in 

Multi-user OFDM Wireless Network 
Dynamic sub-carrier allocation is employed as the resource allocation component 

in our system. The DSA problem is usually formulated as an optimization problem 

like that in [26], [27], [28], [29], [30], [31]. Since the sub-carrier allocation by DSA 

affects the way to design our CAC strategy, it is worth building up the DSA module 

first. The DSA scheme takes the advantage of multi-user diversity in fading channel to 

improve the system performance. 

A. Multi-user frequency-selective fading channel 

Excluding pilot sub-carriers for various estimation and synchronization and null 

sub-carriers for guard bands, there are N sub-carriers for data transmission with M 

users served in the OFDM network. Taking multi-path fading effect into account, we 

get the impulse response over one sub-carrier for user i 

"(⑶= 隣 1 ) (1) 
I 

where v., is the delay of /th path for user i and yM is the corresponding complex 

amplitude. Then the frequency response can be expressed as 

H人 = = !>,+々>•",, (2) 

-co I 

Each receiver gets different distorted information from the same source in Fig. 1， 
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Fig. 1 Downlink Channel Model 

where the time factor t is omitted in frequency response / / . ( / ) for only 

instantaneous channel conditions are considered. It keeps as a constant during one 

OFDM frame 

SNRX:n = \H人 f、\yN人 n (3) 

Since the sub-carriers are orthogonal to each other perfectly, there is no interference 

between different transmission sessions. The signal to noise ratio (SNR) over each 

sub-carrier is enough to characterize the feature of the wireless fading channel. 

B. Rate adaptation 

In both research and commercial systems, rate adaptation is widely adopted to 

improve the spectral efficiency of wireless network. Whether we can get accurate 

Channel State Information (CSI) has great impact on both rate adaptation and the 

sub-carrier allocation scheme. In the time division duplex (TDD) system, the CSI can 

be estimated by the transmitter through the feedback from the receiver because of the 

reciprocal characteristics of channel. In addition, the base station can obtain channel 

state information directly from receiver over another independent channel in the 

frequency division duplex (FDD) system. Above all, we assume instantaneous 

channel state information can be gotten without any error. The base station changes 

modulation and coding schemes from time to time according to the channel condition, 

e.g. QPSK, 16-QAM and 64-QAM modulations are alternatively used in 802.16 

standard for both fixed and mobile W iMAX implementation. Finite-state Markov 
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channel model is proposed [4]，[5], [6] for guiding how to implement the adaptive 

modulation and coding (AMC) in the wireless fading channel. Especially in a 

multi-carrier wireless network, each sub-carrier may travel through different paths and 

then suffer different degrees of fading. We can make fully use of scarce wireless 

resource by loading varied amount of information bits on different sub-carriers with 

adaptive modulation and coding schemes. 

The rate adaptation can be realized in two ways: fast adaptation and slow 

adaptation. The fast rate adaptation arouses the large overhead problem for it changes 

the modulation and coding scheme once the channel condition changes, while the 

slow one performs too poor in a fast fading channel. In the thesis, we assume channel 

only changes after one frame transmission finishes. Instead of concerning about what 

kind of AMC scheme is used, we care about the achievable data rate over one 

sub-carrier through continuous adaptation theoretically. The achievable data rate is 

determined by the signal to noise ratio and the predefined bit error ratio (BER) [32], 

[33]，[34]: 

C = W\Q%^{\ + PSNR) (4) 

where W is the bandwidth and [5 is the SNR gap in this form 

p = — (5) 
P ln(5 腫 ） 

Since all the sub-carriers have the same bandwidth, Wean be omitted without 

changing the nature of the rate adaptation. The channel state information is assumed 

to be sent by a separate error free control channel, hence we can always obtain the 

instantaneous SNR of user i over Ath sub-carrier, which is denoted as y^ .̂ I f without 

the SNR gap, we can get the data rate for user i on sub-carrier k as 

C/i =log2 0 + r/t) (6) 

where the continuous rate adaptation is perfectly implemented. 

C. Dynamic sub-carrier allocation problem 
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I f there are N users served by M sub-carriers in an OFDM wireless network as in 

Fig. 2: 

Sub-carrier 1 

"ITscr 1, Required"] 厂 S u b - c a r r i c r 2 
rate R, ] CSI 

rUscr 2, K o q i i f f ^ 一 Sub-carrier 3 

I rntc h r ^ 

I Dser 3, Required |_ ^ 
1 rate h 

D S A 

\ ； 

rTKor-NTi?nquired Allocation & 

I rate Rs \ Rate Adaptation Sub-carricr M-1 

Sub-carrier M 

Fig. 2 Transmission from Base Station to Mobile Node 

If each user is associated with a system utility U乂A) ’ the dynamic sub-carrier 

allocation problem in the wireless network is formulated as a utility-based 

optimization problem mathematically. For instance, the utility of the network may be 

proportional to service rate received by users, e.g. the total throughput of the network 

N 
H c i j ^ P i k . The objective function can be a concave function ^ U ^ A ) with 
i k ;=1 

respect to the sub-carrier allocation matrix A 

^ = (7) 

In the matrix, each element should be either 1 or 0’ which means the kth 

sub-carrier is assigned to user i or not. One sub-carrier can only be assigned to one 

user exclusively within a frame. In other words, for sub-carrier k, if = 1, p .̂  = 0 

for all j 本 L 

Therefore the DSA problem can be formulated as follows: 

max XU,(A(p,,)) (8) 
P M 

M 

S.t. Y/^ikPnckRi V/g{1,2,3,...,A^} (9) 
k=i 
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N 

V众 e{l’2，3，...，M} (10) 
/=i 

(11) 

where R^ is the constant data rate demand of the ith user. It is the actual rate in unit 

of b/sec/Hz and denotes the user's QoS more precisely than other indicators. The 

optimization problem (8)-(ll) is an integer programming problem that is too 

complicated to be solved. Moreover, parameters in problem (8)-(ll) change with time 

according to equation (6)，because the channel varies with time. We assume the 

channel is ergodic, and each user can go through all the possible channel states. In 

order to reduce the complexity and implement it online, p汰 is relaxed as a real 

number varying between 0 and 1，which denotes the fraction that one user will occupy 

the sub-carrier in the transmission frame. The sub-carriers of the OFDM symbols are 

assigned to different users proportionally by . Thus the integer programming 

problem is replaced by a lower-costing convex optimization problem: 

nmx f ^ lMA ⑷ ) (12) 
p M 

M 

sx. V/e{l’2，3，."’iV} (13) 

k=i 

VA:£{1,2,3,...,M} (14) 

/=i 

( 1 5 ) 

Every user's QoS can be satisfied by the sub-carrier allocation scheme under some 

channel condition. However, the scheme may not work when there are lots of users in 

the network, and in the meantime most of the sub-carriers drop into deep fading. It 

means that the optimiaztion problem cannot be solved without violating any 

constraints. In fact, if users can get into the network without any control, the violation 

will occur more and more frequently with the increase of users. So it is necessary to 

design a CAC strategy adapting to the time-changing environment to guarantee the 
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feasibility of the DSA problem in multiuser wireless networks. 

1.2 Problem Statement 

When various adaptive resource allocation strategies are adopted in OFDM 

wireless networks, the distribution of service rate received by each user from physical 

layer no longer simply conforms to the fading channel SNR distribution, i.e. 

exponential distribution in Rayleigh fading channel. Traditional CAC modules that 

are decoupled completely from resource allocation cannot adapt to the environment 

well. The CAC strategy can be improved if the information from resource allocation 

module is incorporated. Though the structure of threshold-based call admission 

control scheme is simple, to find a proper threshold requires searching all the possible 

thresholds for the system. It is hard to obtain the optimal threshold efficiently in a 

high dynamic wireless network. We use the achievable data rate for each user as the 

QoS indicator directly, and design the CAC strategy to find out a trade-off between 

the complexity and performance. 

With respect to maximizing the average system revenue, the optimal CAC schemes 

can be derived from the algorithms for SMDP problem. However, a little change of 

the system will cause serious modification of the call admission control scheme, for 

the system model has to be reconstructed. The computing burden of reconstructing the 

system model overwhelms the benefit brought by the derived CAC schemes. 

Sometimes it is impossible to obtain all the information of a wireless network before 

operating of the system, so the CAC scheme should have the ability of adapting to the 

system without any knowledge of the network beforehand. I f the performance of the 

CAC scheme is very close to the optimal scheme like the standard methods in SMDP, 

it can be claimed a good scheme. 
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1.3 The Organization of The Thesis 

The rest of the thesis is organized as follows. Chapter 2 describes the scope of the 

multi-user OFDM wireless network and the function of the CAC module in the 

system in detail. A framework of our CAC strategy that adapts to the multiple user 

OFDM wireless networks is illustrated. 

After decoupling the CAC strategy into two-stage realization, we demonstrate stage 

one - how to guarantee each user's QoS requirement with limited resource in Chapter 

3. Considering the benefit aroused by adaptive resource allocation and time-varying 

channel, we develop an algorithm to measure the throughput achieved by each user in 

the worst condition. Based on the algorithm, the QoS-provisioning CAC scheme is 

proposed to determine the admissibility of users. 

In Chapter 4，the second stage of the CAC strategy is proposed for maximizing 

long term revenue brought by different kinds of users. In a real network nobody can 

predict what kind of application will appear, so traditional algorithms of SMDP are 

hard to be applied to the CAC scheme design directly. With the idea of making use of 

history record and prediction of the network, we derive a low complexity average 

revenue maximization CAC scheme to do admission without setting up the system 

model beforehand. 

Finally, we come to the conclusion and discuss the possible future work in Chapter 

5. 

12 



Chapter: 

System Model and Call Admission 

Control Framework 

Our CAC strategy is expected to find an application in next generation broadband 

wireless communication system like WiMax, where there is a base station 

coordinating all the communication and controlling the admission of users. As 

mentioned in Chapter 1，we propose a CAC strategy that can guarantee the QoS in 

system-wide as well as maximize average system revenue. We show how the two 

stages constitute an integrated CAC component for multiple user OFDM wireless 

networks. 

2.1 System Setup 

In OFDM wireless networks, the number of sub-carriers is very large. For example, 

192 sub-carriers are used for data transmission in the fixed WiMax system. Due to the 

correlation between the channel conditions of adjacent sub-carriers, the sub-carriers 

are usually grouped into some sub-bands for allocation. For simplicity, we assume 

that there are 32 independent sub-carriers for data transmission in the system, and that 

power is uniformly distributed over all the sub-carriers. For a specific user, it has the 

same mean signal to noise ratio (SNR) across all the sub-carriers, but the 

instantaneous SNR on different sub-carriers may be different. The DSA scheme of 

problem (12)-(15) is applied in this OFDM wireless network, which affects the design 

of our CAC strategy. 

The new-coming user is featured by R, r, A, //}, where y is the mean SNR, R 

is a constant data rate demand denoting the minimum QoS requirement of this user, 
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r is the rate at which revenue is generated by serving the user, and A and JLL 

represent the mean arrival rate and average service rate respectively. It is assumed that 

the inter-arrival time and service time of each user follow the exponential distribution. 

Likewise, we assume that the duration of a transmission session is much longer than 

the channel coherence time, so that a user will go through all the possible channel 

states once it is admitted into the network. 

2.2 The CAC Strategy Framework 

Unlike traditional schemes, our CAC module exchanges information with dynamic 

sub-carrier allocation module so as to incorporate the physical channel information. 

Though best performance can be achieved by integrating the two modules together 

completely, the complexity will be forbidden. 

QoS Requirement 

Coming Users ^ CAC 

N 
CAC Desicion 

fi 
Channel QoS 

Statistic Requirement 

Information 

H 
CSI 

Physical Layer〈 D DSA 
DSA 

Instruction 

Fig. 3 Call Admission Control (CAC) Framework with Dynamic Sub-carrier Allocation (DSA) 

The system diagram is illustrated in Fig. 3 above: The DSA component allocates 

bandwidth resource to admitted users according to problem (12)-(15) formulated with 

channel state information (CSI) and QoS requirements of users. According to the 

channel statistic information provided by the DSA module, the CAC module 
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determines the admissibility of a new-coming user. 

There are two dynamics in a multi-user OFDM wireless network that need to be 

considered in the CAC design: the dynamic of wireless channel condition and the 

dynamic arrival and departure of users. Our CAC strategy is composed of two CAC 

stages to handle the dynamics for a balance between performance and complexity. 

With respect to the dynamic of wireless channel, the first stage mainly deals with 

the admissibility of new-coming users. Whether a new user can be admitted to the 

system depends on the wireless channel statistics and QoS requirements of itself as 

well as existing users. This strategy is carried out by checking the feasibility of the 

DSA problem in (12)-(15) with taking the new user into account. 

Among the users that are considered to be admissible by the first stage, the second 

stage selectively admit those that will lead to maximal average system revenue. We 

take two-type user case as an example to illustrate how different kinds of users give 

rise to different revenue contribution to the system: 

1) Case 1: r, » a n d / / / , < . Though the traffic load of type-1 user is 

lower than that of type-2 user, it has a much higher revenue rate. There is a 

possibility that type-1 user can contribute more to the network due to the much 

higher revenue rate, thus the system prefer to accept type 1 user whenever it 

appears in the network. 

2) Case 2: r, > r̂  and \ I j u ^ 《 I j . In this condition, type-2 user compensate 

for the low revenue rate with huge quantity, it is a waste of resource to reject 

type-2 user for the possible coming of type-1 user. 

So the second stage accepts users with different priorities by taking { } into 

consideration under the work of first stage. 
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Any new-coming user needs to go through the two stages of our CAC strategy 

before it is admitted. The two-stage CAC strategy is illustrated as Fig. 4 below: 

The CAC Module 

f V j \ QoS-Provisioning Average Revenue \ 

Coming Use. ) CAC ^ Maximizatioii — \ 

1 Z Guarantee long tcnn throughput for -y / CAC 1 / 
V ) / cachuscrbypim<.lion.heoclu»l 八加 h 嶋 selmivelylo 讀 / 

Z Dn.w .ho AdmWon Region 丨he avije Z 

T F 

Channel Statistical 
Infonnation 

Fig. 4 The Structure of CAC Strategy 

A. The QoS-Provisioning CAC 

The target of this stage is to prevent the QoS of existing users from degrading to an 

unacceptable level on the admission of a new-coming user. Specifically, it is to make 

sure that the DSA problem in (12)-(15) is feasible with high probability. Due to the 

time-varying nature of the wireless channel, it is impossible to predict the exact 

channel conditions during the whole transmission session before the user is admitted. 

In this work, we propose a novel methodology to estimate the average throughput 

achievable by each user under the framework of adaptive OFDM system. Based on 

the estimation, we can decide to admit/ reject a user if the outage (infeasible) 

probability of the system is under/beyond a tolerable small value. The performance is 

validated through simulations later. As a matter of fact, this scheme can work 

independently to ensure the system operates smoothly, which is the prime motivation 

of CAC design. 

B. The Average revenue maximization CAC 
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Once the admission region is determined, various adaptive resource allocation 

schemes with different system utility functions can be applied. However, feasibility 

alone does not imply high system revenue in (12)-(15). In other words, it is possible 

that system resource is occupied by the user with low revenue contribution rate, if a 

"bad" user is admitted. From the system point of view, it is therefore desirable to 

selectively admit "good" users so that the system-wide revenue is maximized. By 

combining both history of the system and prediction together, in the second stage, our 

strategy assigns different priorities to users according to their different revenue 

contribution potentials. The proposed CAC strategy can be applied to the system 

without costing too much time on building up the system model. What is more, 

besides the quick adaptation ability, our strategy performs close to the theoretical 

optimal results in simulations. 
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Chapter 3 

QoS-aware Adaptive Call 

Admission Control—Stage One: 

The QoS-Provisioning CAC 

In this stage, we tailor a QoS-Provisioning CAC scheme for OFDM wireless 

networks with dynamic sub-carrier allocation. Instead of using bandwidth or SNR to 

denote the QoS for each user, we present QoS in terms of outage probability of the 

system by estimating the actual data rates received by the users in the long-run. 

Specifically, our contribution is three-folded: 

1) We formulate a linear programming problem concerning about system outage 

probability in multiuser OFDM wireless networks based on the DSA problem 

(12H15). 

2) An effective estimation algorithm is proposed to calculate the mean data rate for 

each user accurately. This algorithm follows the linear programming problem 

formulated for CAC scheme design to predict the influence on the whole network 

caused by the entry of a new-coming user. 

3) Based on the estimation algorithm developed above, the QoS-provisioning call 

admission control scheme can be applied in two ways. If the system is small, we can 

draw the small outage-based admission region by the CAC scheme. For a large 

system, the call admission control scheme can control users on-line through 

calculation of this algorithm, which exploits the advantage brought by DSA under 

multiuser OFDM wireless network condition. 
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3.1 Problem Formulation 

In each sub-carrier allocation procedure, an outage event occurs once any constraint 

in optimization problem (12)-(15) is violated. The frequency of outages recorded in a 

long enough system time is taken as the outage probability of the network which 

heavily depends on users' conditions and the resource allocation algorithm adopted. 

Mathematically our CAC scheme is to check the feasibility of optimization problem 

(12)-(15), if admitting a new user. 

Let £ be the tolerable outage probability that should be a reasonable small value 

for guaranteeing the system-wide QoS. I f constraint (14) and (15) are always satisfied, 

the outage probability can be expressed mathematically: 

Pif](Ec法Pik {1，2，3，…，iV} (16) 
/=1 k=] 

It can be asserted that an outage event occurs inevitably if the worst user's data 

requirement cannot be met after all the available resource and allocation patterns are 

tried. With respect to the constraints in problem (12)-(15), we formulate an 

optimization problem that balances the distribution of resource so that at least the 

worst user can perform as well as other users with available resource. I f the worst 

user's data rate requirement can be satisfied, all the users' QoS in the network are 

guaranteed. The problem can be formulated as follows: 

f M \ / 

maxmin X^/^At M (17) 

' 6 { 1 . 2 , 3 , . . . ’ j j 

s.t. V/:e{l,2，3”"，M} (18) 
/=i 

0 < A , < 1 (19) 

In fact, such a max-min optimization problem can be reformed as a standard linear 

programming problem without any dual gap: 

maxC (20) 
i 
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M 

s.t. V/e{l’2’3’".，iV} (21) 

； 厂 1 V/:e{0,1,2,...,M} (22) 

(23) 

When the channel state changes with time, the achievable data rate over different 

sub-carriers will change correspondingly by rate adaptation, and then the sub-carrier 

allocation has to be altered accordingly. I f the value of maxC is much smaller than 

i 

1，it implies constraint (13) is violated, for at least the acquired data rate of one user 

cannot meet its demand. Problem (20)-(23) is logically equivalent to problem (12)-(15) 

in terms of outage probability of the network, which is illustrated in a simple 

simulation as shown in Fig. 5. 

1 1 1 1 1 1 1 中-却中 夺 
I I I I 1 I /I I I 

Q g - 〒 - m a x i m i z i n g s y s t e m t h r o u g h p u t I / 」 [ 1 
… A … m a x - m i n o p t i m i z a t i o n 1 / 1 I I 

0.8 1 I 1 -1 T f 1 

0.7——卜—十— — — - 十 — 十 — 

^ 0.6 1 I 1 -1 T 1- - / - - n r 1 

1 i i ; i i ! / i ； i 
e 0 . 5 — — I 一 … ； … ； 一 — — 

^ ； I I I ； 1/ i ； ； 
o 0.4 1 I 1 -1 t \-j----i 1- 1 

0.3 1 I 1 1 J " " ] f ； 

0.2 1 I 丨 "I i j- 1 

0.1 — I — I — — I - w- -'；—"I—I"—I— 

• ； ^ ~ l i s J o 
Number of Users 

Fig. 5 Comparison of Dynamic Sub-carrier Allocation and Linear Programming Problem for CAC in 

terms of Outage Probability 

20 



In the simulation, 32 sub-carriers are assigned to users according to their 

instantaneous channel state information to maximize system throughput by DSA. The 

outage probability of the system is recorded by counting the outage events, if the 

system runs a long enough time. Compared with the outage probability in simulation, 

the probability that the objective of the linear programming problem (20)-(23) drops 

below 1 coincides to the same curve. Our formulation for the outage problem is 

validated through this simulation, so we can study the outage problem by checking the 

probability that the objective value of the linear programming problem (20)-(23) 

drops below 1. Another interesting observation is that the outage probability jumps 

from a very low level to nearly 1 with the increase of user number. The slope of the 

curve is so steep that the call admission control scheme may be simplified by this 

feature in the multi-carrier network. 

3.2 Optimality Condition Analysis 

Since the CAC must do admission decision before the resource allocation 

procedure, we cannot solve the optimization problem (20)-(23) directly to make 

decisions. The optimality conditions of problem (20)-(23) give some hints about the 

estimation of the objective function in long-run. 

Turning to the optimization problem (20)-(23), we exploit the KKT condition first, 

which is sufficient and necessary for a linear programming problem [35]. We write 

down the dual problem for analysis: 

M 

N S Pik^ik 

,=1 ^ (24) 

M N N M 

- I > “ I > , 广 1)+X! A 

M 

S Pik'^ik 

儿 ( C - i ^ J ) = 0 ； l .>0 (25) 
I R. I 

I 
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N 
"众（Z p汝- 1 ) = 0 (26) 

/ = 1 

(27) 

By differentiating Z(C, p,.^) with respect to C and , we get the KKT condition: 

^T N 

^ = 义 , 2 0 ( 2 8 ) 

/ ”k 鴻 Mn：^ (29) 

M 冷-rn=o p ,>0 
I 代 

Specifically, we can lead to the conclusion from condition (29) that for sub-carrier k, 

it will be allocated to the zth user if ^ ^ = iĵ  ； and other users with = lk~ /^jk, 

j 本 i are excluded from this sub-carrier. As a result, sub-carrier k will be allocated to 

Ac ŷ. C t 

the user satisfying > 』 】 f o r optimality. 
Ri Rj 

3.3 Throughput Estimation Algorithm 

With the tolerance of small violation in the real network, the mean throughput over 

a long period may be a quite good indicator for call admission control scheme. I f the 

average service rate of any user is far below its requirement, the system performance 

cannot be guaranteed upon the admission of the new-coming user. Since the 

achievable data rate c,.̂  varies with time by rate adaptation in the wireless channel, it 

is prohibitive to repeat solving problem (20)-(23) to get the mean value. Alternatively, 

we try to estimate the mean service rate received by each user through calculating the 

fraction that each user will occupy under the optimization problem (20)-(23), if the 

newly arrived user is admitted into the system. 

According to above analysis of the optimality conditions, if one user occupies the 
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sub-carrier, ^ ^ > must hold for all j 右 i. In a time-varying channel, the 

Ri Rj 

Lagrangian multiplier A is an unknown dual variable, which varies with channel 

state in each allocation cycle. In order to do the long term estimation without 

repeating allocation procedure many times, another variable w is introduced to 

replace 义 as a weight for each user, which can help measure the mean data rates of 

C. W C L 
users. Let ‘ > •‘ •‘ ) denote the probability that the rth user has a priority to 

Ri Rj 

the yth user on sub-carrier k. The probability that user i can occupy sub-carrier k is 

> •‘ jk)，for all the users are mutually independent. We can derive such 
7=1 代 R j 
j*i 

a probability combing the SNR distribution and the optimality conditions with the 

alternative weight w . 

With an error free control channel, the instantaneous SNR matrix of the whole 

network under Rayleigh fading environment is given by 

SNR = \7丨“…N (30) 

where each row denotes all the SNR values over different sub-carriers for one user, 

and they are independently identically distributed. Each element of this matrix is an 

exponential distributed random variable with different mean SNR depending on user 

in the Rayleigh fading channel. ；k,̂  of the SNR matrix conforms to a probability 

density function (PDF) 

= (31) 

Yi Yi 

By employing rate adaptation, we have the corresponding data rate matrix as 

follows 

她 = 歸 （32) 

Based on (6) and (31), the PDF of data rate on sub-carrier k for user i is 
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/ ⑷ = ^ ( 3 3 ) 

Yi Yi 

Then it is easy to derive that 

“ R , Rj Jk WjR, 

^fiik'h 

=..f{Cj,)dCj, (34) 

0 

< 、印丨kRj. / 、 

= l - e x p 

I 八J 
so the average data rate user i can achieve over sub-carrier k is given by an integral: 

M ^ Rj 

(35) 
rfoo 2'" In 2 -

• J 

Yi 

N 况J. 

p(0= n (36) 

One significant characteristic of the optimization problem (20)-(23) is to balance the 

traffic among all the users proportional to their demands. Upon this nature, we 

propose an iterative algorithm in Fig. 6 to find out the weight for each user as well as 

estimate the mean throughput for each user heuristically. 
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Initialize w,. <- 1/N N-user number for all i 

T<-0 vector of the estimated data rate for all the users 

R vector of required data rate for all users 

E 1 vector whose element is mean(J]i^ / R^) for all i 

mean SNR for each user over one sub-carrier 

While (max|£,-7;,/i?, |)>(j 

for user \ = \\N 

m (予〉宁） 
7=1 代 K j 
J*i 

T i … ！ ： 囊 t l P • 华 

7=1 代 Rj 
J*> 

end; 

Ef <— mean(J]k/-^) for all i 

update w, + step x (JS. for all i 

End 

Fig. 6 Throughput Estimation Algorithm 

We can estimate mean data rate for all users on one sub-carrier, then the mean 

throughput for each user can be calculated T. = MI]k since all the sub-carriers have 

the same statistical characteristics. 

3.4 QoS-Provisioning CAC 

Based on the throughput estimation algorithm developed above, we implement the 

QoS-provisioning call admission control in two ways for different conditions: 

I f there is a finite user set, it is easy to construct an admission region which shows 

that how many users can be supported potentially in a network. With the estimation 

algorithm and given user types, the boundary of admission region can be constructed 

as the maximum number of users, when the estimation value min (MxT.^ /R^) 

i=、’2、".N 

approaches 1. In the simulation, we show the mean data rate based admission region 

can control the outage probability of the network within a tolerable small value, for 

the variance is so small that it does not affect the system performance too much. 
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On the other hand, in a real network, we have little knowledge about what type of 

user will appear in the network before system operation. It is a very time-consuming 

task to draw an admission region before deciding whether to accept the new-coming 

user or not. When a new user comes to request for service, instead of allocating 

resource actually, we take it into the network virtually and calculate the value of the 

indicator through the throughput estimation algorithm. I f min (MxT^^ /i^.) is much 

i=\,2,...N 

smaller than 1，it means that at least one user cannot be satisfied and the outage 

probability of the system will be too high to afford. In this case, for the sake of the 

undergoing users, the system rejects the new coming user rather than degrades other 

users to allow it. On the contrary, if the indicator is equal to or greater than 1, it means 

that the system can perform well after admitting this user, and hence it is admitted 

into the network. Such an admission scheme is much like a complete sharing method, 

except that the admission region may change since the actual capacity of the network 

cannot be simply described by its bandwidth. 

3.5 Performance Evaluation 

In this section, we set up a central controlled OFDM network to illustrate the 

performance of the QoS-provisioning CAC scheme based on the throughput 

estimation algorithm. There are 32 sub-carriers transmitting through multiple paths in 

the network, the sub-carriers are statistically identical to one specific user. The user 

type is defined by both its mean SNR and data rate requirement, which are determined 

by the distance of the user from the base station and the application demand from 

upper layer separately. 

In order to validate that our algorithm can predict the mean throughput for each 

user, we randomly choose four kinds of users in the network, which means four pairs 

of { / , Rate} . Comparing the numerical result of our estimation algorithm with 

simulation result of problem (20)-(23) that changes with channel condition for a long 

enough time, we can see in Fig. 7 our predicted result is very close to the real 
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condition. The small gap is caused by the data rate variance that is too hard to be 

predicted. 

1 1 1 1 I I I , I 
I I I I e— Estimation Result of Estimation Algorithm 

' ' ' ' Simulation Result of E[ma)(C] 

6 、 1 J- I 1 1 丨 1 i-

隱鬧 
tfl:職 

、 2 3 4 5 6 7 8 9 10 
Number of Users 

Fig. 7 Comparison of Numerical Result from Estimation Algorithm with Statistical Mean from 

Problem (20)-(23) in Simulating OFDM Wireless Network 

It is worth noting that the step size in the throughput estimation algorithm should be 

carefully chosen for fast convergence. In our simulation shown in Fig. 8，a small step 

size is selected with a precision parameter a in scale 10''', the speed is acceptable for 

online implementation. In each round of iteration in the throughput estimation 

algorithm, the weight for each user is adjusted. The iteration number decreases due to 

less and less resource difference among users in allocation, when more and more 

users are admitted into the network. This curve can be smoothed given long enough 

system operation time. 
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Fig. 8 Iteration Speed vs. Number of users 

Furthermore, we specify two kinds of users in the network: type 1 with mean SNR 

12 dB, constant data rate demand 18 b/sec/Hz and type 2 with mean SNR 6 dB, 

constant data rate demand 6 b/sec/Hz respectively. Under this situation, the admission 

region with small outage probability is shown in Fig. 9. The outage probability 

counted for the whole network is around 0.1，which is reasonable for a practical 

system. Though we lack the simulation result of non-adaptive condition, the 

admission region of non-adaptive one should be smaller than ours due to each user is 

assumed to consume more resource without making use of multi-user diversity by 

DSA. 

2 8 



20, , . • ^ 
[ ] I i I 1 T 
1 , 1 ; —̂Admission boundary | 
' ' ' 1 “"A…Outage probability on the boundary 

I ! ' ' ^ ‘ r - 0.9 

_ ' ' 1 I 1 I 
I ' ' ' I I I 
I ' ' I I I J 

I I I ！ I I 1 -0.8 

丨丨丨丨了…： 
‘ 丨 丨 丨 丨 丨 念 

^ i X ^ 丨 i ： i 丨 - 。 1 
5 ‘ I 1 i 

° 10 ； ： — — ^ ： ： J, 」 0 .5 I 

^ 丨 丨 ： i i 1 
• 丨 丨 ^ ^ I I I - 0 . 4 W 

： 丨 i i 丨 ‘ 

S 丨 ： 丨 丨 I I -0-3 

： i i i i I -。.2 

t t A i i 
, 丨 I 丨 _ 丨 i i i ： i ： 

ol I 1 1 1 I I I 
0 1 2 3 4 5 6 7 T 

Num. of User 1 

Fig. 9 Admission Region with Outage Probability in Two Types of Users Case 
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Chapter 4 

QoS-aware Adaptive Call 

Admission Control—Stage Two: 

Average Revenue Maximization 

CAC 

Though the QoS-provisioning CAC scheme alone guarantees the smooth operation 

of the system, it does not differentiate users with respect to their contributions to the 

system revenue. It is a simple complete sharing scheme which admits users as long 

as there is enough resource left for the new comers. This scheme can achieve the 

maximum average system revenue, when there is only one type of user or one kind 

of user dominates the traffic in the network. In order to enhance the performance of 

our CAC strategy, the second CAC stage is proposed under the framework for 

maximizing average system revenue. This scheme is model-free, implying that it can 

adapt to the network automatically, and the performance of this scheme is very close 

to optimal result in the simulations. 

4.1 Semi-Markov Decision Process 

From a service provider point of view, it collects revenue from the served users, and 

the charge rate may be different across different types of users. Each type of user is 

associated with its revenue rate, mean arrival rate and mean service rate as . 

For the ease of demonstration, we take the two-type user case as example in the 

following analysis and simulations, and the multiple-user case follows the same 

principle. 
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Given the capacity of network in terms of user number, the evolution of the 

network without any control over the users can be modeled as a time-continuous 

Markov chain. We use a vector s = to denote the state of the Markov chain, 

where n、is the number of type-1 user and n̂  represents the number of type-2 user. 

r W W r V W ^ 

0,0 0,1 0,2 0,3 0,4 

(1.0 ) ( 1,1 ) ( 1,2 ) ( 1,3 ) 

( 2 , 0 ) ( 2,1 j ( 2,2 ) 

© 

Fig. 10 The Time-continuous Markov Chain Model for Uncontrolled Network 

As shown in Fig. 10, the current state of the Markov chain just relies on previous 

state and transition rate. The transition only happens between two adjacent states, 

which means only one arrival or departure event occurs within a small time interval. 

The chain is confined to an area bounded by the capacity region of the network, which 

is drawn by the QoS-provisioning CAC scheme in Chapter 3. 

I f the decision is made when new events occur in the system, the transition in the 
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Markov chain is re-shaped according to our will. The new process is referred as a 

Semi-Markov Decision Process (SMDP), because the decision is made at any time 

instant contrasted with the Markov decision process where the decision is made at 

discrete time slots. The SMDP characterizes a dynamic system that is observed at 

random time points from the beginning and classified into a number of possible states. 

After observing the state of the system and the coming event, the controller makes a 

decision to lead a consequence of some revenue change. The action set A(s) 

depends on the state at which the decision is made. The next state is dependent on 

current state and the action chosen instead of the whole history. Following is some 

key factors: 

---- the expected time until next decision epoch if action a is chosen at present 

state s. 

the revenue rate incurred at state s with action a is chosen. 

p“ {a) = p{s I s, a) the probability that the system will transit from state 5 to 5 

given action a. 

The original transition probability in Markov chain is modified by the decision of 

actions that plays a key role in system control. A SMDP model is built up to analyze 

the behaviors of a communication network, which is featured by following elements: 

1) The state space 

Each state is denoted as a vector s = representing the number of 

different users served in the network. S is used to denote the state space for 

the possible evolution of the network, and it is bounded by the capacity of the 

network. Regardless of the types of users admitted, we assume the system can 

support N users simultaneously at most. It implies n、+ n^^ i N must hold for 

the system. 

2) The action set 

When a new user arrives, we should make a decision to select an action from 

current action set at this time instance. For most states, the action set is 
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A(s) = {(0,0),(1,0),(0,1)}. a = (0,0) is to reject any arrived users, in the 

mean time a = (1,0) means accepting type-1 user and a = (0,1) means 

accepting type-2 user. Within a very small time interval, only one event occurs, 

so that action (1,1) is discarded. However, in some extreme cases, the action 

set is different from the normal states, e.g. in states = {0,N}, the action set 

is 成•Sq) = {(0，0)} for no more users can be admitted on the boundary states. 

3) The expected sojourn time 

When the system is in state s with action a, the expected sojourn time until 

entering a new state is given by: 

= + (37) 
;=i /=i 

We assume that user arrival is a Poisson stochastic process and the 

service time conforms to exponential distribution with different mean 

t i m e . 明 is the average rate at which calls of type-/ user terminate and 

X̂ â  represents the mean rate at which new calls come into the network 

with permission. 

4) The transition probability matrix 

The major difference between the SMDP and the time-continuous Markov 

chain is the transition probability. In our system, all the transition conditions 

are given by: 

p{{n, 一1，《2) I («p«2)，(0，0)) = “ = (0’0)) 本 0 (38) 

P((”i 一 1， ) I («,，)’(1，0)) = = (1，0)) (39) 

-1 , ) I («.，«2 )，(0,1)) = «,/",/、 ’ , ,2) = (0，1)) (40) 

p((«,，《2 -1) I (/ii’《2)，(0，0)) = r h h l T — 如 = ( 0 , 0 ) ) * 0 (41) 

p((«,，《2 - 1 ) I («,，《2)，(1，0)) = ” = ( 1 0 ) ) ( 4 2 ) 
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P(Oh，"2 — 1) I («,，«2 )，(0，1)) = 丨 (以=(0,1)) «2 类 0，+ 〈 “ （43) 

+1,«2) I («,，"2)’ (1，0)) = V = (1，0)) n,+n,<N (44) 

， + 1 ) I («,，)，(0,1)) = V = (0，1)) n , + n , < N (45) 

= 0 else (46) 

5) The revenue rate 

The revenue rate of state s with action a chosen is given by 

广 , ⑷ 饥 (47) 
；=1 

where r̂  is the revenue rate brought by type-/ user. Further, the expected lump 

sum revenue received by the system is 

= (48) 

4.2 Investigation of Algorithms for 

SMDP 

There has been a large amount of interest in finding optimal decision policy to 

achieve maximum average revenue of a SMDP system. Generally, they can be 

categorized into model-based algorithms and model-free algorithms. 

The three standard algorithms for SMDP: policy iteration, value iteration and linear 

programming formulation are model-based algorithm. In most cases, these algorithms 

achieve maximum average revenue, provided all the parameters of a SMDP model. 

Let us take the linear programming formulation as an example to show how to derive 

the optimal policy. This method will be used in simulations later as the benchmark. 

In order to find the optimal policy for maximizing average revenue, the SMDP 

problem can be formulated in this form: 

m a x X Z (49) 
seS aG^(A') 
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Z S 咖 彻 = 1 (50) 

Z 力 ⑷ = 1 ] S p{s\s,d)zM (51) 

a6/l(jr') seS ae^(j) 

SGS,aeA(s) (52) 

In fact, the linear programming formulation is introduced for the sake of easy extra 

constraint adding. The objective (49) is the average revenue of the system in a long 

term, z^(a) is the decision variable that we try to search for optimization. 

T^(a)z^(a) is the long-run fraction of decision epochs, at which the system is in state 

s and action a is chosen. Equation (50) is the normalized condition of system 

operation time, and equation (51) shows the balance between different decision 

epochs from the long-run point of view. It can be applied as a probabilistic call 

admission control scheme, at each state s, the action a is selected with probability 

p,{a) = zXa)/ X ⑷ . 
/ ae/l(.v) 

These algorithms for SMDP problem can be applied to call admission control 

design in the small scale network, but in a real network system which is usually large 

some new challenges emerge: 

1) The three standard methods all need complete information of the system such as 

transition probability matrix. Even a little shift of any parameters, e.g. one type 

user's revenue rate changes from f] to r;，will force us to take the burden to 

rebuild the system model and search the optimal solution again. Unfortunately in a 

real network, especially the wireless network, some parameters, e.g. the system 

capacity, keep varying from time to time due to the channel nature. 

2) There is no guarantee that the policy iteration algorithm and value iteration 

algorithm can converge to optimal solution under any condition. This prevents 

them from being applied to real systems, if the stability of the system is a concern. 

3) I f there are more than two types of users appearing in the system, the SMDP will 

be more than three dimensional and not mention to express all the transition 

probabilities. This is called curse of dimension, which is hard to be solved. 
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Above all, the standard optimal algorithms cannot adapt to any change of 

environment easily, though they are applied to off-line CAC scheme design under 

some condition. On the other hand, another set of algorithms named Reinforcement 

Learning (RL) trains the interaction between agent and dynamic environment through 

learning. A typical model of these algorithms is described as follows: 

^ ^ The network X . 

1 § 
state J L 

action 

J 乂 ^ ^ I 
»- Agent ‘ 

Fig. 11 The Interaction between Agent and Network of RL 

As depicted in Fig. 11，an agent makes an action decision for the network 

considering feedbacks from the network: what state the network stays in now and the 

revenue collected by the network with the history decisions of the agent. After 

repeating the trial-and-error process for a long enough time, the agent learns an 

admission control scheme of choosing actions that can lead to optimal average 

revenue for the system. Some of the RL algorithms are model-based, because the 

agent tries to build the model through past experience first, and then derives an 

optimal admission control scheme for this specific model. Other RL algorithms are 

model-free, for the agent is trained how to react to the network best through long term 

learning without building up the system model. 

The comparative lower computing model-free algorithm is more attractive. A 

representative model-free algorithm called Q-learning [36] is proposed for its easier 

implementation. There is a value Q(s,a) for each state s with action a in the system, 
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R is the actual lump sum revenue the system collects until next decision epoch, if 

action a is chosen. The optimal action set is proved to be achieved by updating these 

Q values recursively: 

Q{s,a)•= Q{s,a) + a{R + rm弘Qis ,a)-Q(s,a)) (53) 
a 

This algorithm runs in this way: 

a) Q{s,a) is randomly initialized as a non-negative value. 

b) When staying in state s, the agent chooses the action a = argmaxg(5,a) as 
a 

the decision. 

c) After receiving the actual revenue R brought by this decision, the 

corresponding Q value is updated as equation (53) that takes future expectation 

m弘 ’ 口）into account. It is because the uncertainty of expectation that one 
a 

discount factor y is added into the equation. 

I f this value updating iteration runs an infinite long time and the learning 

speed a decays appropriately, this procedure will lead to an optimal policy 

n (s) = arg max Q* (s, a) and the revenue contribution of each state to the whole 
a 

system = max|2*(5,a). However, there is an obstacle keeping it from an 

a 

efficient CAC scheme in a large scale network: this algorithm needs a huge space 

for storing the Q value as well as a pretty long time to converge to the optimal 

stationary policy. 

4.3 The Average Revenue Maximum 

CAC 

From above brief introduction of model-based algorithms and the model-free 

counterparts, we find there are some common characters in them: both search the 

optimal policy in a greedy way. Both the revenue contributed by history decision 

and an imprecise discounted prediction of future caused by the decision are 
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recorded as a key factor, and the system becomes more and more stable with the 

value updating procedure after a long enough time. Starting from the same basic 

idea, we propose a greedy algorithm for on-line call admission control scheme 

design in real networks, no matter it is a large one or small one. As described in 

Section 4.1, each type of users can be defined by {〈. . We keep a record of 

the contributed revenue for each type of user as H{i), which denotes the history 

revenue contribution. Whenever there is an arrival event or departure event 

occurring in the system, H{i) needs to be updated: 

//(/):=//(/) + 7̂7,./, (54) 

where is the number of type-/ user served in the network during two events 

interval . There is another parameter D{i) for each type of user, when 

making admission decision. Only type-/ user's D{i) is in following form, if the 

coming user type is i : 

D{i) = H{i) + yr,r, (55) 

Otherwise D{j) = H{j) for all j 本 L The type-/ user will be admitted with 

probability P。= D { i ) / ^ D { i ) . yr̂ T̂  characterizes the expected revenue caused 
i 

by admission of this user, and it is discounted due to the uncertainty of future. 

Our scheme can be described as following flow chart: 
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Fig. 12 Average Revenue Maximum CAC (ARM-CAC) 

The admission region boundary in Fig. 12 is determined by the first stage, the 

average revenue maximum CAC (ARM-CAC) scheme deals with the arrival and 

departure dynamic of users from the service provider point of view. We propose 

this probability control scheme mainly due to two reasons: first, the revenue 

contributed by one user is proportional to the admission chance of this type of 

I users; second, the probabilistic scheme adapts to varied environment better than 

a fixed one in correcting any small violation on the system. 

Compared with Q-learning algorithm that is also model-free, our scheme saves 

a great amount of storage space: generally, the Q-learning algorithm needs a 
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storage space |5|x| where \S\ and \A\ are the cardinality of the SMDP 

state space and action space respectively. However, our scheme only requires N 

units of space for iV types of users. 

I f there are totally 2 types of users in the network, and the capacity of the 

network is 6 in terms of total number of users. We compare the storage space 

needed by Q-learning algorithm and our scheme: 

Storage space 

Q-learning Algorithm 7 X 8 X 3/2-7 X 2-1=69 

ARM-CAC 2 

Table 1 Comparison of storage space of two schemes 

In fact, our scheme is not constrained in wireless networks. Once given the capacity 

of one network, it can work to obtain maximum average revenue in any kind of 

systems. In the next section, we compare the performance of our scheme with linear 

programming solution that is optimal. 

4.4 Performance Evaluation 

In this section, we simulate several discrete event systems controlled by our 

ARM-CAC scheme and compare it with the long-term average system revenue 

obtained by the linear programming CAC method. Assume that the system can 

support 6 users in total, regardless of the user type. 

I f there is just single type of user, complete sharing policy is global optimal. Under 

this condition, our scheme converges to the complete sharing policy naturally. The 

QoS-provisioning CAC scheme is good enough for the whole system. When the 

traffic load increases, the average revenue will converge to a constant due to the 

limited capacity of the network. In fact, this system is a M/M/6 queueing system with 

no buffer, so the incoming user is either served or dropped immediately. 

We have two kinds of users: one type is associated with {r, =3，/̂  =10,//, =10} 

and the revenue rate of the other type is [r̂  = = 10}, where the arrival rate 
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^ varies from 1 to 10. We compare our scheme with the optimal results in the 

multiple user conditions. 

5| , , 1 1 1 1 1 1 I f 

^ 丨 ： ： ； 丨 丨 / 
— - ARM-CAC I I I I I ' / 

-- f- LP ‘ ‘ ‘ ‘ ‘ ‘ / 

V , • • I , I ' / I . 

i 丨 ： ： 丨 ： 0 i 

，.，ILIIĤ—T…「… 
^ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Traffic load of type-2 user 

Fig. 13 Performance Comparison under Multiple User Case 

In Fig. 13，when the traffic load of type-2 user is low, most of the revenue is 

contributed by type-1 user, and the average revenue received keeps a constant. As the 

traffic load of type-2 user increases, the system will collect more and more revenue 

from type-2 user. In the case that one user's arrival rate is changing, the simulation 

results of our scheme can keep close to the optimal results. The gap between results of 

our scheme and the optimal results is very small in this simulation. 

At last, we randomly generate users to validate our scheme by more simulation 

results: 
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Two types of users Theoretical optimal 

Result of ARM-CAC 
result from LP 

{2.0211,3.0673,4.8320} 

10.1074 10.1032 

{5.0134,8.7455,4.2808} 

{3.3025,3.5856,7.0525} 
1.6790 1.6520 

{5.3172,1,6119,5.3327} 

{5.9950,2.5798,17.0372} 
1.2151 1.1450 

{3.3232,5.0385,13.7799} 

{9.7914,5.7906,13.7678} 
4.1181 4.0928 

{6.3437,7.5607,19.4799} 

{3.7423,8.6500,13.2786} 
7.4299 7.3894 

{7.5665,5.1483,5.2405} 

{8.6994,7.4821,8.8156} 
7.3818 7.3569 

{6.9850,3.5817,10.5295} 

{6.7420,1.1386,14.9578} 
0.5132 0.5128 

{0.4180,6.0942,6.7551} 

Table 2 Comparison under multiple user case 

It is clear that no matter how the condition changes, our scheme can always 

guarantee a close to optimal result. Since our scheme is derived for any multiple-user 

case, it is proved to be a good CAC scheme with little storage space and computing 

burden in wide simulations at least. 

Cooperating with previous QoS-provisioning CAC that determines the admission 

region, the average maximization CAC can achieve the maximum long-term average 

revenue for the multiple user OFDM wireless networks. Furthermore, it is not 42 



constrained in the OFDM wireless network. Given the system capacity, it can be 

extended to any network concerning about system revenue maximization. 
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Chapter 5 

Conclusion and Future Work 

We propose a QoS-aware adaptive call admission control strategy in the context of 

multi-user OFDM wireless networks. This strategy realizes call admission control in 

two stages: the first stage aims to protect the service quality of existing users. By 

estimating the average throughput of both existing and in-coming users, the strategy 

admits the new coming user only when the minimum data rate requirements of all 

users, including the new one, can still be satisfied. The second stage aims to maximize 

the average system revenue. This strategy selectively admits the "admissible" users 

according to the revenue the users contribute to the system. 

There are several advantages of our CAC strategy: 

1) We analyze the achievable data rate of each user in the OFDM wireless system 

with a specific resource allocation scheme~dynamic sub-carrier allocation to 

design the CAC strategy, which fully exploits the multi-user diversity and time 

diversity in this environment. The analysis facilitates us to construct an admissible 

region for multi-type users. 

2) Without any knowledge of the network, this strategy can make use of the history 

revenue record and discounted expected revenue of each type of users to make an 

admission decision. Our results show that the scheme achieves close-to-maximum 

average system revenue. 

3) The proposed CAC strategy performs pretty well both in QoS guarantee and 

revenue maximization with low complexity. It is possible to implement it as an 

on-line call admission control strategy in future broadband wireless 

communication system. 

Though it is expected to be applied in the future systems like LTE, WiMax and the 

like, some related problems should be solved before the implementation such as how 

accurate physical channel information we can achieve will affect the performance 
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severely. 

As a future work, the throughput estimation algorithm can be improved by taking 

into considering of the user arrivals and departures, if users do not stay in the network 

for a long enough time so that they do not experience all the possible states of the 

wireless fading channel. On the other hand, though nearly all the current works treat 

the revenue rate of users as a constant related to the user only, many communication 

systems concern about the system utility related to the throughput. How to incorporate 

this kind of utility in the call admission control strategy is another possible direction 

for future work. 
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