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Abstract 
In multiagent environments, the environments may be dynamic and uncertain. 
Each agent needs to choose its action and adapt to the dynamic environments. 
To achieve this, this thesis introduces strategies for agents to choose their 
actions to adapt to the dynamic environments and then maximise their util-
ities in some multiagent environments, such as minority games and resource 
allocation. 

In the traditional minority game, each agent chooses the highest-score pre-
dictor at every time step from its initial predictors which are allocated ran-
domly. In this thesis, we study a version of the minority game in which one 
individual privileged agent is allowed to join the game with different memory 
size from the other agents and free to choose any predictor, while each of the 
other agents owns small number of predictors. We investigate the privileged 
agent's wealth in different dynamic environments. Simulations show that the 
privileged agent using the proposed intelligent strategy can outperform the 
other agents in the same model and other models proposed in previous work 
in terms of individual wealth. We also discuss the impacts of the parameters 
on the privileged agent's wealth, such as the number of predictors the privi-
leged agent owns and its memory size. Moreover, we discuss the impact of the 
number of predictors the other agents possess and their memory sizes on the 
privileged agent's wealth. 

As an application of minority games, we can model a class of multiagent 



resource allocation systems into minority games. The system consists of com-
petitive agents that have to choose among several resources to complete their 
tasks. The capacities of resources may change gradually or abruptly. The 
objective of the resource allocation is that agents can adapt to the dynamic 
environment autonomously and make good utilisation of resources. We pro-
pose an adaptive strategy for agents to use so that agents are able to adapt to 
the environment with gradually or abruptly changing capacities and make good 
utilisation of resources. This strategy is based on individual agent's experience 
and prediction. Simulations show that agents using the adaptive strategy can 
adapt effectively to the changing capacity levels and the system as a whole 
results in better utilisation of resources than previous work. Finally, we also 
investigate how the parameters affect the performance of the strategy. 



摘要 

在多代理人的環境下，環境可能是變化的和不確定的。每個代理人需要選擇 

它們的行為並且適應動態的環境。本論文介紹了在某些多代理人環境下，例如在 

少數者博弈和資源分配問題的多代理人環境下，代理人使用策略選擇自己的行 

為，使其能夠適應動態環境從而最大化自己的利益。 

在傳統的少數者博弃中，每個代理人最初時隨機分配到一些預測表，每個代 

理人每次選擇最高分的預測表作決策。在本論文中，我們研究一類少數者博弃， 

在這類博弈中，有一個擁有特權的代理人，這個代理人允許有跟其他代理人不同 

的記憶大小，並且可以任意選用預測表。我們研究這個特殊代理人在不同動態環 

境下的利益。實驗表明，採取我們所提出的智慧策略的特殊代理人所獲得的利益 

會比其他只擁有一定數量預測表的代理人高，並且也比使用其他策略模型的代理 

人高。另外，我們也討論這個特殊代理人所擁有的預測表的數量和記憶的大小對 

其利益的影響。此外，我們討論其他代理人所擁有的預測表的數量和記憶的大小 

對這個特殊代理人利益的影響。 

作為少數者博弈的一個應用，我們把一類多代理人資源分配系統建模為少數 

者博弈問題。這個系統包含一些競爭的代理人，這些代理人必須在多個資源中選 
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擇其中一種以完成它們的任務。這些資源的容量可漸變也可驟變。研究這些資源 

分配問題的目的是讓代理人能自主地適應動態的環境並且充分的利用資源W針對 

這個問題，我們提出一個適應性的策略供代理人使用，使它們不僅能夠適應漸變 

或驟變的資源容量，而且能夠充分的利用資源。這個策略是基於各個代理人的經 

驗與預測。實驗表明，採用這個策略的代理人能有效地適應變化的環境並且比以 

前的策略能更好的利用資源。最後，我們研究各參數的變化對這個策略性能的影 

響。 • 

IV 



Acknowledgments 
I would like to take this opportunity to express my sincere gratitude to my 
supervisor Prof. Ho-fung Leung, for his generous guidance during my post-
graduate study. Prof. Leung has taught me much not only on research, but 
also on English writing skill, presentation, teaching and so on. His numerous 
supervision and encouragement are extremely valuable in many aspects of my 
development. 

I would also like to thank many other people for their kind help and sup-
port. 



Contents 

1 Introduction 1 
1.1 Scope 2 
1.2 Motivation 5 
1.3 Structure of the Thesis 6 

2 Literature Review 7 
2.1 Intelligent Agents and Multiagent Systems 8 

2.1.1 Intelligent Agents 8 
2.1.2 Multiagent Systems 10 

2.2 Minority Game 13 
2.2.1 Minority Game 13 
2.2.2 Characteristics of Minority Game 14 
2.2.3 Strategies for Agents in Minority Game 18 

2.3 Resource Allocation 22 
2.3.1 Strategies for Agents in Multiagent Resource Allocation . 23 

3 Individual Agent ' s Wealth in Minority Game 26 
3.1 The Model 26 
3.2 Motivation 27 
3.3 Inefficiency Information 28 
3.4 An Intelligent Strategy 31 
3.5 Experiment Analysis 32 

VI 



3.6 Discussions and Analysis 35 
3.6.1 Equivalence to the Experience method 36 
3.6.2 Impact of M' and S' 38 
3.6.3 Impact of M and S 41 
3.6.4 Impact of Larger Number of Privileged Agents 48 
3.6.5 Comparisons with Related Work 48 

4 An Adaptive Strategy for Resource Allocation 53 
4.1 Problem Specification 53 
4.2 An Adaptive Strategy 55 
4.3 Remarks of the Adaptive Strategy 57 
4.4 Experiment Analysis 58 

4.4.1 Simulations 58 
4.4.2 Comparisons with Related Work 62 

5 Conclusions and Future Work 69 
5.1 Conclusions 69 
5.2 Future Work 71 

A List of Publications 73 

Bibliography 74 

Vll 



List of Figures 
2.1 An agent in its environment 8 
2.2 Typical structure of a multiagent system [19] 12 
2.3 Population variance per agent [8] 15 
2.4 A histogram of the conditional probability with k = 

M = 4 16 
2.5 A histogram of the conditional probability P{l\uk) with k = 

M = 6 17 

3.1 A histogram of the conditional probability P{l\hk) with /c = 4 
for the game played with M = 3 29 
A histogram of the conditional probability with k = b 
for the game played with M = 3 29 
The privileged agent's payoff with M' and S' = versus 
the average payoff of the other agents with M and 5 = 2 as a 
function of M. [N = 101) 33 

3.4 The privileged agent's payoff with M' and S' = versus 
the average payoff of the other agents with M and 5 = 2 as a 
function of M. (iV = 1001) 34 

3.5 The privileged agent's payoff with M' and S' 二 versus 
the average payoff of the other agents with M and 5 = 2 as a 
function of M. {N = 101) 39 

3.2 

3.3 

Vlll 



3.6 The privileged agent's payoff with M' = M + 1 and S" = 
and another one with M' = M + 1 and S' = 2 versus the average 
payoff of the other agents with M and S = 2 as & function of 
M. [N = 101) 39 

3.7 The privileged agent's payoff M' = M + 1 = 4 and S' versus 
the average payoff of the other agents with M = 3, and <9 = 2 
as a function of S'. {N = 101) 40 

3.8 The average payoff of the other agents with M and different 
number of predictors as a function of M. (N = 101) 41 

3.9 Time series of the number of agents choosing side 1 when each 
of the other agents has M = 3 and 5 = 3. {N = 101) 42 

3.10 Time series of the number of agents choosing side 1 when each 
of the other agents has M = 3 and S = 50. (N 二 101) 42 

3.11 The privileged agent's payoff with M' = M + l a n d S' = as 
a function of M under different cases of the other agents having 
different number of predictors. (N = 101) 45 

3.12 The privileged agent's payoff with M' = M + 1 and = 2 � ^ ' 
versus the average payoff of the other agents with M and 5 = 3 
as a function of M. {N = 101) 46 

3.13 The privileged agent's payoff with M' = M + 1 and S" = 
versus the average payoff of the other agents with M and 5 = 5 
as a function of M. {N = 101) 46 

3.14 The privileged agent's payoff with M' = M + 1 and S" = 
versus the average payoff of the other agents with M and 5 = 10 
as a function of M. {N = 101) 47 

3.15 The privileged agent's payoff with M' = M -f 1 and = 
versus the average payoff of the other agents with M and 5 = 50 
as a function of M: {N 二 101) 47 

IX 



3.16 The average payoff of different number of the privileged agents 
with M' = M + 1 and S' = versus the average payoff of the 
other agents with M and 5 = 2 as a function of M. [N = 101) . 49 

3.17 The privileged agent's payoff with M' = M + 1 and S" = 
and the adaptive behavioral agent's payoff versus the average 
payoff of the other agents with M and 5 = 2 as a function of 
M. (N = 101) 50 

3.18 The privileged agent's payoff with the intelligent strategy and 
the one with the opposite strategy versus the average payoff of 
the other agents with M and 5 = 2 as a function of M. {N = 101) 51 

4.1 Resource load using the adaptive strategy 60 
4.2 Average deviation vs scaling factor 62 
4.3 Average deviation vs adjusting rate 63 
4.4 Resource load using Lam and Leung's strategy 65 
4.5 Resource load using the strategy of Galstyan et al 66 
4.6 Resource load using the strategy of Schlegel et al 68 



List of Tables 
2.1 An example of a predictor with M = 3 14 
2.2 An example of a predictor with two neighbors K = 2 23 

4.1 Averaged deviation 61 

XI 



Chapter 1 

Introduction 
The field of Multiagent Systems (MAS) is a subfield of Artificial Intelligence. 
It is also interdisciplinary: it takes inspiration from such diverse area as eco-
nomics, philosophy, logic, ecology, and the social science [1，52]. It aims to 
provide both principles for construction of complex systems involving multiple 
agents and mechanisms for coordination of agents' behaviors. Each agent's be-
havior is governed by a set of simple rules. The collective behavior of agents in 
general alters the environment. Agents need to reevaluate or possibly change 
their strategies to compete in the altered environment more effectively. 

Game theory is a mathematical theory that studies interactions among self-
interested agents. The tools and techniques of game theory have found many 
applications in multiagent systems. Von Neumann and Morgenstem [47] found 
game theory to study situations in which multiple agents interact in order to 
each maximise an objective (payoff) function. Each agent's objective function 
is determined not only by its own action but also the actions of other agents. 
The payoffs also depend on information that is private to the individual agents 
if the agent has incomplete information. In recent year, decision theory and 
game theory have had a profound impact on computer science, such as artificial 
intelligence. The decision-theoretic approach provides a definition of what it 
means to build an intelligent" agent. Meanwhile, game theory has been widely 
adopted as the basis for building multiagent systems. 
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The research addressed in this thesis focuses on individual agent's wealth 
(payoff) in minority games, which has attracted a lot of interest in Physics 
[10，8, 13, 29, 30, 36, 51’ 22, 42, 53]. The game models some specific situations 
in multiagent systems. It consists of multiple competing agents. Every agent 
wants to be on the minority side. The environment is dynamic and uncertain. 
The collective behavior of agents alters the environment. Researcher use the 
tools and techniques of game theory to solve the problems arising in minority 
games. In addition, one important application of minority games is to model 
some Multiagent Resource Allocation (MARA) problems into minority games. 

1.1 Scope 
Inspired by inductive reasoning, Arthur [5] introduces the El Parol Bar prob-
lem. The problem has been one of the most widely studied examples of complex 
adaptive systems of interacting agents. The model consists of N persons who 
have to decide independently whether to attend the El Parol bar every week. 
The bar has a limited capacity, and people try to avoid attending it when it 
is overcrowded. There is no explicit communication between people, and the 
only information available to them is the number of people that went to the 
bar (the attendance) in the previous weeks. Every person goes to the bar if 
she expects fewer than the bar's capacity to show up, or stays at home, if this 
is not the case. Arthur suggests that every person should own a number of 
predictors and use the predictor that is currently most accurate to make the 
decision. For example, a predictor may be: to predict next week's attendance 
to be the same as that of the previous week, or an average of those in the last 
four weeks, etc. After all people have made their decisions, those predictors 
that have made correct predictions are awarded one more point. 

Challet and Zhang [10] formalize the El Parol Bar problem as minority 
games. The game consists of an odd number of N agents. At each time step, 
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each of the N agents independently decides to join one of the two sides, labeled 
0 or 1. After all agents have made their decisions, those who are on the minority 
side win, while the other agents belonging to the majority side lose. Instead 
of making decisions based on the attendance in previous time steps, which 
results in a lot of possible predictors, they suggest that each agent records the 
winning sides in the past M time steps and choose their actions based on these 
records. For a record of winning sides in the past M time steps, there will be 

possible histories of winning sides. Each prediction of a predictor maps the 
recent M winning sides to a prediction (side 0 or side 1). So, the total number 
of predictors is . The number of predictors may be too large for agents to 
handle even for a moderate M. Each agent randomly draws S predictors to 
use and keep track of. All agents always use the highest-score predictors to 
make decisions. After the winning side is announced, each of those predictors 
that have made correct predictions are added one point and those agents that 
on the winning side also get one point. 

The minority game represents a fascinating model of a dynamical, complex 
adaptive system where agents of a population repeatedly compete to be on the 
minority side. The minority game offers a simple paradigm for the decision 
dynamics underlying financial markets. Johnsonl et al. [23, 21’ 20, 37] and 
Samanidou et al. [40] study markets of heterogenous agents in the form of the 
minority game. Johnsonl et al. [21] suggest that the fluctuations observed in 
financial time-series reflect the interactions, feedback, frustration and adapta-
tion of the markets' many participants (agents) at some levels. Marsili [35] 
models a market toy model as follows. Agents can buy or sell an asset at each 
time step. After each time step, if there are more buyers than sellers, the 
price is high, and if there are more sellers than buyers the price is low. If the 
price is high, sellers do well; if the price is low, buyers wins. The market as 
an adaptive competitive system is driven by the minority rule. The minority 
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group always wins, irrespectively of whether they were buyers or sellers. How-
ever, the minority game lacks some features in a real market, such as agents 
may have different payoff for their actions. This makes some of the behavioral 
assumptions on which the minority game is based questionable when applied 
to financial markets. 

The minority game incorporates the minority rule and agents' heterogeneity 
in the model as well as an agent-based approach. The minority dynamics plays 
an important role in adaptive competitive systems. Studying the dynamics 
associated with the minority rule is of great interest for understanding the 
fundamental general behavior of adaptive competitive systems. Also, there 
has been a lot of attention in the solution of general problems using multi-
agent models, such as Weiss [48] and Wooldridge [49]. 

The allocation of resources within a system of autonomous agents is an im-
portant problem in the area of computer science. The field is sometimes called 
Multiagent Resource Allocation (MARA). In the resource allocation system, 
each agent is responsible for a task. Different agents compete for limited re-
sources to complete their tasks. An allocation is a particular distribution of 
resources among the agents. There are two objectives of multiagent resource 
allocation. One is to allocate the resources to the agents so that they can 
complete their tasks. The other is that the resources are fully utilised, i.e. the 
resources are not overloaded or underloaded. 

Generally speaking, an approach for solving resource allocation problems 
may be centralised or distributed. For centralised approaches |38, 41], a central 
controlling authority or resource management is responsible for deciding on 
the final allocation of resources among agents. In the simplest case, agents 
just need to ask a central broker or dispatcher for available resources. The 
centrilised allocation mechanism is complex and the problem is generally NP-
complete [14]. For distributed approaches |11, 32, 45], agents may cooperate 
or act independently. They can coordinate implicitly or explicitly with one 
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another to achieve a consensus on the allocation of resources. In this approach, 
a centralised allocation mechanism is not needed. 

1.2 Motivation 
A lot of research have been done on minority games. Some work investigates 
the wealth of special agents in minority games. However, the previous work do 
not take into account the number of predictors agents possess. A special agent 
with the same number of predictors as the other agents but a larger memory 
size can indeed obtain more wealth than all of the other agents for smaller 
memory size, but the special agent receives less wealth than the other agents 
for larger memory size. In this thesis, we investigate a privileged agent's wealth 
in different environments where each of the other agents has the same number 
of predictors and memory size. The privileged agent can have different number 
of predictors and a different memory size from those of the other agents. The 
only available information for the privileged agent is the history information 
and its own predictors. We find that the privileged agent with larger memory 
size than the other agents and all its possible predictors can obtain more wealth 
than the other agents for almost all values of memory sizes. 

Besides, we investigate an application for minority games. We model mul-
tiagent resource allocations into minority games. In the systems, agents choose 
among several resources to complete their tasks. The objective of the system 
aims at globally optimising the resource usage in the system. The goal of each 
agent is to adapt its resource selection behavior to the behavior of the other 
agents as well as to the changing capacities of the resources and to the chang-
ing load, without having to know what they are. Under the circumstances 
with different changing capacities, the resource utilisation of previous work is 
still very large. In this thesis, we design an adaptive strategy for agents to 
use in multiagent resource allocation systems with either gradually changing 
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or abruptly changing capacities. The adaptive strategy is based on individ-
ual experience and prediction. The experience is based on the past allocation 
records. The prediction is based on resource capacities in previous rounds. 
Each agent has an attitude towards each resource. If agents detect that the 
current capacity differs from the previous capacity largely, agents will reset 
their experience and attitudes. The strategy is adaptive in that each agent's 
attitude is updated according to the agent's actions and the previous allocation 
result. Simulations show that agents using the adaptive strategy as a whole 
can adapt very effectively to the changing capacity levels and result in better 
untilisation of resources than previous work. This means that the collective 
behavior of agents is able to adapt to the dynamic environment. 

1.3 Structure of the Thesis 
This thesis is organized as five chapters. The next chapter introduces the 
issues related to minority games and some characteristics, and a survey is pro-
vided on current strategies for agents to use in minority games and resource 
allocation. An intelligent strategy for one agent to use in the minority game is 
described in Chapter 3 and together with the experimental analysis and com-
parisons with other strategies in terms of wealth. In Chapter 4，an adaptive 
strategy for agents to use in the resource allocation and the experimental re-
sults with comparisons in terms of resource utilisation are followed by. Finally, 
conclusions and future work are given in Chapter 5. 



Chapter 2 

Literature Review 
In multiagent environments, each agent needs to choose its action and adapt 
to dynamic environments. Game dynamics offers a rich foundation for study-
ing learning in multiagent systems. In the game theory formalism, each agent 
is characterised by a set of strategies. A strategy is a mapping from state 
history to action. Each agent seeks to maxmise its utility. Game dynamics 
studies the behavior of agents in response to games that are played many times 
successively. Agents in the game may cooperate or act competitively. Game 
dynamics has appealing properties as a control mechanism for multiagent sys-
tems in that it is distributed, flexible and scalable. 

In this chapter, we first take a look at the definition of an agent and the 
properties of intelligent agents. Then we overview the literature of multiagent 
systems. Besides, we also take an overview over the literature of minority 
games, including the characteristics of the game and the strategies for agents 
to use in the game. Moreover, the literature of resource allocation is following 
by. A class of resource allocation is an application of minority games. 



Chapter 2 Literature Review 22 

2.1 Intelligent Agents and Multiagent Systems 
2.1.1 Intelligent Agents 
In dictionaries, agents have a lot of meanings. The definition of the term 
agent presented here is suggested by Wooldrige [49]. That is, an agent is a 
computer system that is situated in some environment, and that is capable of 
autonomous action in this environment in order to meet its design objectives. 
Figure 2.1 gives an abstract view of an agent. An agent takes sensory input 
from the environment, and produces action output that affects the environ-
ment. The interaction is usually non terminating. In the most general case, 
agents will be acting on behalf of users with different goals and motivations. 
To successfully interact, they will require the ability to cooperate, coordinate, 
and negotiate with each other, much as people do. It is believed that agents 
are an appropriate software paradigm through which to exploit the possibilities 
presented by massive open distritbuted systems, such as the Internet. 

Figure 2.1: An agent in its environment 

A complex class of environments can be inaccessible, non-deterministic, 
dynamic and continuous. Most real-world environments are not accessible for 
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agents. There is uncertainty about the state that will result from performing an 
action. Agents have limited information about the environments. A dynamic 
environment is one that has other processes operating on it and changes in 
ways beyond agents' control. A continuous environment is in uncountable 
number of states. The environmental properties play an important role in the 
interaction between agent and environment. 

According to the suggestion by Wooldridge and Jennings [50], an intelligent 
agent possesses four properties: autonomy, social ability, reactivity and pro-
act iveness. 

• Autonomy: agents operate without the direct intervention of humans 
or others, and have some kind of control over their actions and internal 
state [6]. 

• Social ability: agents interact with other agents (and possibly humans) 
via some kind of agent communication language [3]. 

• Reactivity: agents perceive their environment (which may be the physical 
world, a user via a graphical user interface, a collection of other agents, 
the Internet, or perhaps all of these combined), and respond in a timely 
fashion to changes that occur in it. 

• Pro-activeness: agents do not simply act in response to their environ-
ment, they are able to exhibit goal-directed behavior by taking the ini-
tiative. 

In many circumstances, agents are exposed to the environment that changes 
while the procedure is executing. They are populated with more than one agent 
that can change the environment and there is uncertainty in the environment. 
The domains are too complex for an agent to observe completely. In such 
dynamic environments, an agent must be reactive, which is able to perceive the 
environments and adapt to the environments. That is, it must be responsive 
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to events that occur in its environments, where these events affect either the 
agent's goals or assumptions which underpin the procedures that the agent is 
executing in order to achieve its goals. In such environments, a rational agent 
also needs be proactive to maximise its utility. The properties of pro-activeness 
and reactivity requires the agent to be adaptive. Adaptation is essential to cope 
with complex environment with agents of limited computational power. 

2.1.2 Multiagent Systems 
Multiagent systems has become important in both artificial intelligence and 
mainstream computer science. A multiagent system is a system consisting of 
a number of agents, which interact with one another through communication. 
Figure 2.2 gives a typical structure of a multiagent system [19]. In the system, 
different agents have different 'sphere of influence' over the environment. That 
means agents have control over or at least be able to influence different parts of 
the environment. Agents in multiagent environments are autonomous and dis-
tributed, and may be self-interested or cooperative. Multiagent environments 
provide an infrastructure specifying communication and interaction protocols. 
In multiagent environments, there is no centralized designer. Multiagent sys-
tems can differ in the agents themselves, the interactions among the agents, 
and the environments in which the agents act. Multiagent systems offer a 
way to characterize or design distributed computing systems. It is a natural 
metaphor for understanding and building a wide range of what we might call 
artificial social systems [18]. 

As an interacting entity, an agent may be affected by other agents or hu-
mans in pursing their goals and executing their tasks. Interaction can take 
place indirectly through the environment in which they are embedded by ob-
serving one another or by carrying out an action that modifies the environmen-
tal state. Interaction can also take place directly through a shared language by 
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providing information in which other agents are interested or which confuses 
other agents. Distributed Artificial Intelligence focuses on coordination as a 
form of interaction. The interaction is particularly important with respect to 
goal attainment and task completion. The purpose of coordination has two 
aspects, which are to achieve or avoid states of affairs that are considered as 
desirable or undesirable by one or several agents. In order to coordinate their 
goals and tasks, agents have to explicitly take dependencies among their activ-
ities into consideration. Cooperation and competition are two basic patterns 
of coordination. For the case of cooperation, several agents work together and 
draw on the broad collection of their knowledge and capabilities to achieve a 
common goal. For the case of competition, several agents work against each 
other because their goals are conflicting. Cooperating agents try to accomplish 
what the individuals cannot do as a team. Competitive agents try to maximise 
their own benefit at the expense of others. 

Self-interested agents in multiagent systems cannot be coordinated by ex-
ternally imposing the agents's strategies. So the interaction protocol is de-
signed so that each agent is motivated to follow the strategies that the protocol 
designed wants it to follow. A protocol is a negotiation protocol which deter-
mines the possible actions that agents can take at different points of interaction 
[48]. A strategy is a way to use the protocol. For example, the sealed-bid first 
price auction is a typical protocol. In the sealed-bid first price auction, each 
bidder is free to submit one bid for the item. This protocol rewards the highest 
bidder at the price of its bid. Since self-interested agents will choose the best 
strategy for themselves, which cannot be explicitly imposed from outside, the 
protocol need to be designed using a noncooperative, strategic perspective to 
guarantee that each agent's desired strategy is best for it. 

A minority game is a game that models a multiagent system. Each agent 
in the game wants to be on the minority side. The environment is affected 
by the agents' collective behaviors, which is dynamic and uncertain. Besides, 
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〇 agent 

——• interaction sphere of influence 

organizational relationship 

Figure 2.2: Typical structure of a multiagent system [19] 

each agent is bounded rational as it is limited in its computational power and 
knowledge of the environment. Each agent needs to adapt to the dynamic 
environment. Adaptation allows for learning that enables agents to operate in 
uncertain environments. The dynamic for observed adaptive agent behavior 
can be analysed, i.e. how the behavior is changing during a history of (learning) 
experience. For example, the performance of actions depending on a stimulus 
in the present and a certain history can be modeled. We introduce minority 
games in the following section. 
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2.2 Minority Game 
This section overviews previous work on agents' wealth in minority games. We 
first have a look at what is a minority game and the traditional method agents 
use in the game. Then the characteristic of the game is introduced. Besides, 
a lot of strategies proposed in the literature in terms of agents' wealth are 
presented. 

2.2.1 Minority Game 
In minority games, N agents have to choose between two alternatives (side 0 
and side 1) at each time step. N is an odd number. After all agents have 
made their decisions, those who are on the minority side win. This game may 
seem rather simple at first glance, but it is subtle since if all agents analyse 
the situation in the same way, all agents will choose the same alternative 
and lose. Sometimes, it is not possible for an agent to have access to all the 
information in compliance situations and to consider how every other agent 
may behave. Agents may not always think rationally and may use inductive 
reasoning. It is reasonable to build models with agents that select a best 
response in complicated with forecasts and have the forecasts determined by 
a model of adaptive learning. 

Challet and Zhang [10] suggest that each agent should keep track of a num-
ber of predictors and chooses the highest-score predictor to make the decision. 
A record of winning sides in the past time steps is called a memory size. A 
predictor of a memory size M is a lookup table consisting of entries and two 
columns, 'history' and 'prediction' respectively. Each entry prescribes which 
side to join in according to the information gathered from the recent winning 
sides of last M time steps, thus there are entries in each predictor. The 
prediction at each entry-is either 0 or 1, so the total number of predictors is 

An example of a predictor with M = 3 is shown in Table 2.1. At the 
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beginning of the game, each agent is randomly assigned S predictors from the 
possible predictors. Traditionally, after all agents have made their deci-

sions, those who are on the minority group are rewarded one point, while the 
other agents belonging to the majority group get nothing. All predictors which 
have made the correct prediction are also rewarded one point. All agents keep 
updating the history dynamically according to the outcome of winning side at 
every time step. 

History Prediction 
000 1 

001 0 

010 0 

oil 1 

100 0 

101 1 

110 1 

111 0 

Table 2.1： An example of a predictor with M = 3 

2.2.2 Characteristics of Minority Game 
In this section, we discuss two characteristics of minority games. First, there is 
a phase transition occurring in minority games. One phase is called symmetric 
phase and the other is called asymmetric phase. Second, due to the phase 
transition, there is a quasi-periodic structure with a periodicity appearing in 
the symmetric phase of minority games. 

Phase Transition 
Savit et al. [42] show that the fluctuations of the attendance size a depends 
on the ratio p = jN between the number of possible histories and the 
number of agents N. Challet and Marsili [8] show that there exists a phase 
transition of changing direction of cr'̂ IN locating at the point pc where a'^/N 
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attains its minimum. The best utilisation of resources occurs at a critical 
point, when the dimension of the predictor space is on the order of the number 
of agents, as shown in Figure 2.3. For small values of p, the predictor space is 
small, then there is much overlap of predictors among agents, hence a lot of 
agents will behave similarly and decide on the same action. So the population 
variance of agents choosing one side a'^/N is larger when p is smaller. As p 
increases, the predictors space becomes larger and agents will behave relatively 
differently. So a'^/N becomes smaller as p increases. When p is greater than 
a certain value, the predictor space becomes very large and agents will be-
have randomly. So a'^/N is approaching to the value when agents just behave 
randomly. 

10 

I 
0.1 

luL I m i l 

0.01 1.0 
p 

10 100 

Figure 2.3: Population variance per agent [8] 

To study the information content of the minority game, Savit et al. [42] 
consider P{l\uk), the conditional probability to have a 1 immediately following 
some specific history string Uk- The histogram of generated by a game 
with N = 101, k = M = 4 and S = 2 \s shown in Figure 2.4. The histogram is 
quite flat at 0.5. This means that for any predictor with memory size equal to 
4, the history of minority side contains no predictive information about which 
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will be the minority side at the next time step. In this sense, the market is 
efficient and no predictor using a memory size equal to or less than 4 can have 
a success rate better than 50%. The histogram of P{l\uk) generated by a game 
with N = 101, k = M = 6 and S = 2 is shown in Figure 2.5. As we can see 
the histogram is not flat. In this case, there is significant information available 
to the predictors of the agents playing the game with a memory size M and 
the market is not efficient in this sense. 

When p < pc, the phase is called the symmetric phase, in which no pre-
dictive information about the next minority side is available to the agents' 
predictors. The system is in a phase in which all information available to the 
agents' predictors is traded away, and agents' choices are maladaptive, result-
ing in a poor collective utilisation resources. When p > pc, the phase is called 
the asymmetric phase. The system is in a phase in which the agents are able 
to coordinate their actions to achieve a better utilisation of resources. As the 
predictor space increases, the system becomes increasingly inefficient, so that 
there is more information in the game, while at the same time the agents' 
choices becomes increasingly uncoordinated and the system's behavior looks 
increasingly random. 

Figure 2.4: A histogram of the conditional probability P{l\uk) with k = M = 4 
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Figure 2.5: A histogram of the conditional probability with k = M = Q 

Quasi-periodic Structure 
For small values of memory sizes, the predictor space is small and there is 
much overlap of predictors among agents, hence a crowd of agents will behave 
similarly and decide on the same action. Then the crowd of agents will be on 
the majority side and they will lose. This situation is called the crowd effect 
by 131]. Due to the crowd effect, a quasi-periodic structure appears in the 
minority game. The situation is as follows. When a particular history occurs 
for the first time, all agents decide randomly since both of the predictors each 
agent possesses have the same score at the beginning of the game. After the 
first occurrence of the history, agents learn that the winning outcome is a 
better choice. The predictors with the prediction the same as the winning 
outcome will gain one point. In the next occurrence of the same history, since 
a crowd of agents behave similarly, they will make the same decision as the 
winning outcome in the last occurrence. Zheng and Wang [53] point out that 
this leads to the winning outcome in this occurrence is opposite to that in 
the last occurrence of the same history. The predictors with the prediction 
opposite to the winning outcome in the last occurrence will gain one point. 
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So, both predictors of each agent will gain the same point. At the end of 
2 x 2 ^ time steps, [13] assume that every history with the length of M is 
equally likely to occur, then both predictors of each agent will gain the same 
point on average. For the next round of the occurrence of the same history, 
the situation is equivalent to a new start of the game, similar to that of the 
first occurrence. Therefore, Liaw and Liu [29] point out that the quasi-periodic 
structure with a periodicity of length 2 x 2 ^ appears in the symmetric phase 
of the minority game. 

2.2.3 Strategies for Agents in Minority Game 
A lot of research have been done on minority games, such as [7，12, 9, 28, 2’ 
25, 39]. In this section, we focus on the work on agents' wealth in minority 
games. Due to the crowd effect, a lot work have been done to enhance some 
special agents in a population of agents with smaller memory size M and small 
number of predictors S. [51] consider some special agents that participate in 
the minority game with a probability q per turn to enhance its success rate. 
The special agents do not participate in the game every turn, so they can 
successfully escape in over-adapting to the history created by the other agents. 
[30] propose an opposite strategy for a privileged agent which is free to choose 
any possible predictors to maximise its personal gain. It is to use the highest-
score predictor when p is larger than p � a n d use the opposite strategy when p 
is smaller than pc. The opposite strategy is to use the prediction in each entry 
opposite from that of the highest-score predictor. The opposite strategy makes 
good use of the quasi-periodic structure of the minority game. The work of 
[22] and [9] demonstrates the importance of the memory size in the minority 
game. It pays to increase the special agent's memory size M to increase its 
payoff. Details of these strategies are given as follows. 

Manuca et al. [33] investigate the distribution of wealth (the number of 
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points) to the agents under the condition that all agents have the same memory 
size and the same number of predictors. They point out that in the symmetric 
phase, agent wealth is strongly correlated with intra-agent distance. Intra-
agent distance is defined as the Hamming distance between an agent's two 
predictors [9]. In this phase, the more similar an agent's two predictors, the 
wealthier the agent tends to be. Since there is no predictive information avail-
able to the agents' predictors in this phase, agents that ignore the information 
of the collective behavior of the other agents do better. So agents whose predic-
tors are more similar are less adaptive, they will not respond to the misleading 
signals of the collective behavior by choosing to join different minority sides at 
different times. In the asymmetric phase, there is a strong correlation between 
agent wealth and inter-agent distance. Inter-agent distance describes the av-
erage behavioral distance of an agent from all other agents playing the game. 
The further an agent is, on average, from all other agents in behavior space, 
the wealthier it tends to be. In this phase, the agents use the real information 
in the minority game to coordinate their choices. Those agents having pre-
dictors that allow them to behave maximally differently from the other agents 
will more often find themselves in the minority side, and will accumulate more 
points. 

Sometimes it pays to increase the agent's memory size M. Johnson et al. 
[22] study a mixed population of adaptive agents with smaller and larger mem-
ory sizes, but all agents own the same number of predictors and choose the 
highest-score one to make decisions. They find that the average winning per 
agent with larger memory size within a mixed-ability population can be greater 
than 0.5 by uncovering and exploiting hidden information in the system's re-
cent history left by the agents with smaller memory size. The average winning 
per agent is defined as the total number of points awarded divided by the to-
tal number of agents. This demonstrates the importance of the memory size 
in the system. If the system contains a pure population, the agents cannot 
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access any additional correlations. Challet et al. [9] consider the case of a 
pure population with a memory size M and one agent with larger memory size 
M'. They point out that the special agent with larger memory size can obtain 
larger gain than all of the other agents in the symmetric phase since the agent 
can exploit the hidden information, while the gain cannot be increased further 
more if the agent increases its memory size. Furthermore, in the asymmetric 
phase, the special agent receives a lower payoff than the average payoff of the 
other agents. Both of these two pieces of work, Johnson et al. [22] and Chal-
let et al. [9], demonstrate the importance of the memory size in the minority 
game, but they ignore the influence of the number of predictors. 

Yip et al. [51] consider special agents who participate in the game with a 
probability q per turn. That means these agents have a probability q of joining 
the game in each turn and a probability of 1 - gr of staying out of the game in a 
turn. The other agents participate in the game every turn. For all agents, they 
choose the highest-score predictors to make the decisions. Besides joining the 
game only with probability q, the special agents differ from the other agents in 
that they only assess the performance of their strategies in the turns that they 
participate. For the turns that the special agents decide not to play, they do 
not reward or subtract points to their predictors, regardless of the outcome. 
They find that for small values of memory sizes, these special agents achieve 
higher success rate than the average of all other agents when p is small. The 
success rate is the ratio of the number of winning turns to the number of turns 
the agent has actually participated. The special agents do not participate 
in the game every turn, so they successfully escape in over-adapting to the 
history created by action of the other agents. Since for small M, due to the 
small predictor space and substantial overlap of predictors among agents, this 
crowd tends too large to be the minority side. However, this method is a 
passive one because the special agents do not participate in the game for all 
turns. They only enhance their winning probability, but not enhance their 
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overall payoffs. 
Liu and Liaw [30] consider the gain of a privileged agent that is free to 

choose any predictor at every time step. They propose the opposite strategy 
for the privileged agent to maximise its personal gain. It is to use the highest-
score predictor among all possible predictors when p is larger than p � a n d 
use the opposite strategy when p is smaller than p � T h e opposite strategy 
is to use the prediction in each entry opposite from that of the highest-score 
predictor. It is shown that the winning probability of this special agent using 
the opposite strategy can be larger than 0.5 for almost all values of p. The 
reason that the opposite strategy can enhance the winning probability lies in 
that it makes use of the quasi-periodic structure of the game： the winning 
outcome of an even occurrence of any history is most likely opposite to that of 
the odd occurrence of this history in the case of small p. They also point out 
that there is no need for the privileged agent to know pc or N in advance. The 
privileged agent can simply use the highest-score predictor initially and switch 
to the opposite strategy when it finds its gain is smaller than 0.5. For small 
M, there is another option for the privileged agent. The privileged agent can 
simply chooses different side from the winning outcome in the last occurrence 
of the current history. 

Lam and Leung [26] propose an adaptive behavioral strategy for the mi-
nority game according to the winning histories h and the net payoff u for 
choosing side 0 or 1. Each agent has two initial attitudes a^ towards choosing 
side 0 or 1 and two respective adaptive parameters. At each time step, each 
agent calculates the attractiveness (= {I - a^) x h + a^ x u) of side 0 and 1 
to make the prediction. If side O's attractiveness is larger than side I's, it will 
choose side 0，and vice versa. At the end of each round, each agent updates 
its attitudes: if it has chosen side 0 and wins, then its attitude towards side 0 
will be increased by the increasing adaptive parameter; if it has chosen side 0 
and loses, then its attitude towards side 0 will be decreased by the decreasing 
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adaptive parameter. Effectively, these agents do not use explicit predictors. 
Simulations show that agents using the adaptive behavioral strategy perform 
well. However, the performance of the agents with the adaptive behavioral 
strategy relies on each other because of the limitation of the strategy itself. 
The strategy can work well only if there are enough agents using it, because 
the agents update their attitudes according to the winning outcome. The win-
ning outcome need enough agents using the adaptive behaviorial strategy to 
affect itself so that the agents can update their attitudes in the right way. 

2.3 Resource Allocation 
A multiagent resource allocation with one resource can be modeled as a minor-
ity game. Suppose there are N agents, all of them need to use the resource to 
complete their task. At each round, each of N agents decides whether to use 
the resource or not. The resource has a fixed capacity. If the number of agents 
choosing to use the resource exceeds its capacity, the resource is overloaded. 
After all agents have made their decisions, if the resource is not overloaded, 
those agents who has chosen to use the resource get a point. Otherwise, those 
agents who have chosen not to use the resource get a point. At the end of each 
round, the agents are informed whether the resource is overloaded or not. As 
we can see, this is a single-choice model. 

The single-choice model can be extended to a multi-choice model. Suppose 
there are N agents, each of them need to use one of the Q resources to complete 
their tasks. Each resource has a fixed capacity. In each round of a multi-choice 
game, each of N agents decides to use one of the Q resources. If an agent 
chooses to use a resource and the resource is not overloaded, the agent gets a 
payoff. Details of strategies for multiagent resource allocation are given below. 

There have been a lot of work on resource allocation techniques in recent 
years. Centralised [14’ 38，41] and distributed [11，32，45] solutions are the 
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two main approaches. In the following section, we focus on introducing the 
strategies for multiagent resource allocations in the literature. 

2.3.1 Strategies for Agents in Multiagent Resource Al-
location 

Galstyan et al. [17] study the resource allocation games with changing capaci-
ties. They propose that agents use a set of predictors to decide which resource 
to choose. Different from the traditional minority game model [10], a predic-
tor is a lookup table based on the actions of agents' neighbors in the previous 
round and recommends agents to choose which resource in" this round. For 
example, an agent use the actions of its two neighbors to make a choice in the 
next round among three resources. A predictor is shown in Table 2.2. In round 
t, if the actions of the two neighbors are 2 and 0，the the agent will choose 
2，which means that it will choose the third resource. In each round, each 
agent chooses the predictor with the highest score to make the decision. At 
the end of each round, each agent assesses the performance of its predictors, 
adding (subtracting) a point if the predictor has predicted the right (wrong) 
choice. The right (wrong) choice is that the resource the agent chooses is not 
overloaded (overloaded). 

SkM Si(t + i) 
0 0 2 
0 1 0 
0 2 1 
1 0 0 
1 1 1 
1 2 0 
2 0 2 
2 1 1 
2 2 0 

Table 2.2: An example of a predictor with two neighbors K = 2 
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Schlegel et al. [45] propose a self-organising load balancing approach for 
a single server with mobile agents. The server has a resource with constant 
or abruptly changing capacity. Mobile agents can decide to meet at the same 
server or communicate only locally without generating any network traffic 
except of the migration. Each agent uses a set of predictors to predict the 
next resource load based on the history values of resource load. For example, 
a predictor can predict a value to be the same as n'^-last history value, or the 
average of all values in a window of the last n history values, or the interpolated 
value that considers the last n history values. If all agents predict the same 
resource load, than this would invalidate their beliefs. So it is important to 
ensure agents make different decisions in the environment. The probability 
that a predictor is chosen increases with the predictor's accuracy. The accuracy 
of a predictor is based on the number of correct predictions it has made in 
the past. A correct prediction means that a predictor has predicted that the 
resource is not overloaded and the agent decided to migrate to the server. 
Predictors that make a correct prediction receive a positive rating, otherwise 
the responsible active predictors receive a negative rating. 

According to Prospect Theory [24] suggesting that people have their own 
attitudes towards risk, Lam and Leung [27] propose an adaptive strategy for 
resource allocation with constant capacities. The strategy is based on the 
history information h and the net payoff Ux, which is the payoff for choosing 
a not overloaded resource x. The history information h is the ratio of the 
number of times that a resource x is not overloaded to the history size H. 
Each agent has an initial attitude ax towards each resource. In each round, 
each agent calculates the attractiveness ( ( l - a j ) x h + a^ x Ux) of each resource 
and chooses the resource with the largest attractiveness. At the end of each 
round, according to the theory of Conditions of Learning in psychology [15], 
each agent updates its attitudes by adjusting parameters based on the resource 
allocation result. If the agent has chosen a not overloaded resource, then the 
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attitude towards the resource is increased; if the agent has chosen an overloaded 
resource, then the attitude towards the resource is decreased. 



Chapter 3 

Individual Agent's Wealth in 
Minority Game 
In this chapter, we first introduce the model of the minority game we study. 
Then we described our motivation to study such minority games. Inefficiency 
information in the minority game is introduced followed by. Besides, we present 
an intelligent strategy for an agent to use to enhance its wealth. Moreover, we 
implement some simulations to investigate the performance of the intelligent 
strategy. Finally, some comparison with related work are conducted. 

3.1 The Model 
The model we discuss here consists of N agents playing the minority game. In 
this paper, we focus on investigating the wealth of one individual agent which 
is different from the other agents in the game. At the beginning of the game, 
each of the other agents is randomly assigned S (generally equal to two) of the 

possible predictors of memory size M. Each of the other agents has the 
same memory size. One special agent can have larger or smaller memory size 
M' than the other agents (M' > M or M' < M). The number of predictors S' 
the special agent owns can be different. For example, S' = 1 ,5 ' = 2, S' = 
or S' > 2. Such a special agent is called a privileged agent. At each time step, 

26 



Chapter 3 Individual Agent ,s Wealth in Minority Game 27 

each agent chooses from among its predictors the one that has had the best 
performance over the history of the game up to that time, i.e. each agent 
chooses the highest-score predictor to make its decision and makes random 
choice at ties. After each time step, the cumulative performance of each of an 
agent's predictors is updated by comparing each predictor's prediction with 
the current minority side. Also, if an agent is on the minority side, the agent's 
wealth is increased by one. An agent's wealth is the number of points it obtain 
during playing in the game. An agent's wealth is also referred to its payoff. 

The game is adaptive in that agents can choose to play different predictors 
at different time in response to the changes in their environment. That is in 
response to new history entries in the time series of minority sides as the game 
proceeds. The time series of minority sides is created by the collective action of 
the agents themselves. Although the system is adaptive, it is not evolutionary. 
The predictors do not evolve during the game, and the agents play with the 
same set of predictors that are assigned at the beginning of the game. 

3.2 Motivation 
The motivation of the work is that there is a common phenomenon: a crowd 
effect in the minority game when p is small {N » 2^). The problem for agents 
is how to escape from the crowd effect and maximise personal wealth based 
on the history information and their own predictors. What will happen if the 
agent is more intelligent, i.e. having larger memory size or more predictors? 
In previous studies as described in Section 2, [9], [51], [22] and [30] propose dif-
ferent methods to escape from the crowd and enhance the winning probability. 
Based on the previous work of [9] and [22] that an agent has longer memory, we 
anticipate that if a privileged agent has larger memory size M' than the other 
agents and is free to choose any strategy at every time step while the other 
agents are using their highest-score predictors drawn randomly from the 
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possible predictors, then the privileged agent can also escape from the crowd 
and hence enhance the success rate. Intuitively, this mechanism can achieve 
the performance because the privileged agent with longer memory and more 
predictors is more intelligent than the other agents. On the other hand, the 
resource allocation problem can be modeled as minority games, such as the 
work of [16] and [27], which we introduce in the next chapter. 

3.3 Inefficiency Information 
In order to study the information content of the minority game, we consider 
P{l\hk), the conditional probability to have a winning outcome of side 1 im-
mediately following some specific history string hk of k bits introduced by [42] 
and [33]. That means when the history string hk with length of k occurs, the 
probability of the winning outcome to be side 1 is P{l\hk). [51] define the 
inefficiency e as follows: 

1 1 
£ = W I J | P ( 1 | � ) _ � I (3.1) 

where the sum is over all possible winning history strings of M bits. The 
inefficiency e measures the information left in the winning history strings that 
a privileged agent uses to assess its predictors. If P{l\hk) is larger than 0.5, 
then the predictors with the prediction of side 1 at that specific history hk 
are rewarded more points. If P(l\hk) is smaller than 0.5, then the predictors 
with the prediction of side 0 at that specific history hk are rewarded more 
points. The agent decides whether to reward points to its predictors based on 
the winning outcome at the past winning history and chooses the highest-score 
predictor to make the decision. 

The predictive information is about which will be the minority group at the 
next time step. [42] and [33] have shown that in the symmetric phase of the 
minority game, the winning history strings with length less than or equal to the 
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Figure 3.1: A histogram of the conditional probability P{l\hk) with A; = 4 for 
the game played with M = 3 
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Figure 3.2: A histogram of the conditional probability P{l\hk) with /c = 5 for 
the game played with M = 3 
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memory size contain no predictive information. That means 丨 � = 0 . 5 for 
any history and hence e = 0. In Figures 3.1 and 3.2, we plot P{l\hk) generated 
by a game with N = 101. One is the privileged agent with larger memory size 
and all possible predictors and the others have M = 3 and 5 = 2. i{hk) is the 
corresponding integer value of the binary history string hk of length k. Figure 
3.1 shows the histogram of P{l\hk) for the privileged agent having one longer 
memory than the memory other agents have, i.e. /c = M + 1 = 4. Figure 
3.2 shows the histogram of for the privileged agent having two longer 
memory than the memory other agents have, i.e. /c = M + 2 = 5. From the 
histograms, we can see that P{l\hk) for /c = 5 is more closer to 1 than P{l\hk) 
for /c = 4 when P{l\hk) is greater than 0.5. On the other hand, P(l|/ifc) for 
A; = 5 is more closer to 0 than P{l\hk) for /c = 4 when P{l\hk) is smaller than 
0.5. These imply that the distinguished hidden information becomes larger 
when the privileged agent has longer memory, Using the figures in Figures 
3 and 4 and Eq. (1), we can get the numerical results of the inefficiency e: 
£i = 0.154 for Figure 3 and €2 = 0.299 for Figure 4. Obviously, £2 > £1. 

Thus we are led to the intriguing idea that a privileged agent can make good 
use of this information to maximise its own utility by having longer memory 
and owning all possible predictors. At each time step, the side within the 
highest-score strategy at that specific history is selected to make the decision. 
After each time step, if the winning outcome is side 1, then the predictor's 
score with side 1 at that specific history is increased by one. If the winning 
outcome is side 0，then the predictor's score with side 0 at that specific history 
is increased by one. The probability P{l\hk) > 0.5 means that the probability 
of the winning outcome to be side 1 at the history hk is greater than 0.5’ then 
the probability of the winning outcome to be side 0 at the history hk is smaller 
than 0.5. That means the winning outcome of side 1 at the history hk occurs 
more often than side 0. After some learning steps, the predictor's score with 
side 1 at that specific history will be greater than the predictor's' score with 
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side 0 at that specific history and this situation lasts throughout the game. So 
the agent with longer memory and all possible predictors will always choose 
side 1 if P{l\hk) > 0.5. This implies that the probability P^in that the agent 
will win through the game is approximately equal to P(l|/ifc). Conversely, the 
agent will always choose side 0 if P{l\hk) < 0.5, because the winning outcome 
to be side 0 occurs more often than side 1. The probability Pyjin that the agent 
will win is approximately equal to 1 — Concluding the above analysis, 
we can get the following equation: 

{ P{l\hu) P ( 1 | M > 0 . 5 , � Pwin 二 < 3.2 I l-P{l\h) <0 .5 • 
Combining Eqs. (1) and (2), we have 

Pwin (3.3) 

Therefore the probability that the privileged agent wins for all occurrences 
of histories will be greater than 0.5 if £ # 0. The larger inefficiency e is, 
the larger winning probability is. From these two figures, we can conclude 
that the privileged agent can increase the memory size to get more inefficiency 
information. 

3.4 An Intelligent Strategy 
In the traditional minority game, all agents keep the same memory size M 
and the same number of predictors S. As described in Section 1, there is a 
crowd effect in the symmetric phase, all agents behave similarly and obtain 
similar payoff. So it is hard to distinguish one from others. How can one 
individual agent manage to outperform the other agents in terms of individual 
payoff? Intuitively, the agent should be intelligent enough to avoid the crowd 
effect. The only available information it can use is the history information 
and its predictors. So how can the agent make good use of the information to 



Chapter 3 Individual Agent ,s Wealth in Minority Game 32 

maximise its payoff? Does it need to increase its memory size or the number 
of predictors it owns? 

9] suggest that the payoff of the agent with M' = M + 1 and S" = 2 
cannot be increased furthermore if the agent increases its memory size. This 
result is applicable when the agent has the same number of predictors as the 
other agents but longer memory than the others. However, in addition to 
having longer memory than the others, if the agent also has larger number of 
predictors, the situation maybe change. 

Inspired by the inefficiency information described in Section 3.1，we propose 
an intelligent strategy for the privileged agent to maximise its own payoff. 
That is the privileged agent with larger memory size M' than the other agents 
and free to choose any predictor at each time step. In the present model, we 
consider a population of N agents in which there is a privileged agent using the 
intelligent strategy. The other agents have the same memory size M (M' > M) 
and are only assigned S predictors drawn randomly from all the possible 
predictors. For all agents, they choose the highest-score predictors to make 
the decisions. For predictors with the same score, the agents make random 
choice. After each time step, the winning outcome is announced to the public. 
Each agent's payoff is increased by one if it makes the accurate decision. All 
the predictors' score are also updated. If the prediction at the specific history 
in one predictor is the same as the winning outcome, then the predictor is 
rewarded one point. 

3.5 Experiment Analysis 
In Figure 3.3 and Figure 3.4, we plot the payoff of the privileged agent using the 
intelligent strategy versus the average payoff of the other agents as a function 
of different memory sizes "M. The experiment setting is as follows: the number 
of total agents is N = 101 for Figure 3.3 and N = 1001 for Figure 3.4, the 
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number of predictors each traditional agent owns is 5 = 2, the range of the 
memory size M is the integer value between 1 and 15. The memory M' of the 
privileged agent ranges among M + 1, M + 2, M + 3, M + 4, M + 5, M + 7 
and M + 10 independently. Note that the memory the privileged agent has is 
longer than the other agents' memory. All agents are using the highest-score 
predictor in hands. For each value of M, each data point is the average of 10 
independent runs with different initial random distributions of predictors and 
each runs 10® rounds. The purpose for doing so is to cover as many situations 
as possible because the initial predictors are randomly generated. 

Figure 3.3: The privileged agent's payoff with M' and S' = versus the 
average payoff of the other agents with M and 5 = 2 as a function of M. 
{N = 101) 

From Figure 3.3 and Figure 3.4, we can see that the privileged agent with 
longer memory performs significantly better than the average of the other 
agents for almost all values of M, no matter whether it is in the symmetric 
phase {p < pc) or asymmetric phase (p > pc). That means the privileged 
agent can outperform others for almost all values of p (p = 2^/N). The 
phase transition occurs at Mc = 5 and Mc = S respectively. Qualitatively, the 
maximal utility of the privileged agent comes from a successful escape in fully 
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Figure 3.4: The privileged agent's payoff with M' and S' = versus the 
average payoff of the other agents with M and = 2 as a function of M. 
{N = 1001) 

adapting to the history information created by the other agents, and hence 
it does not become part of the crowd. Furthermore, the interesting result 
is that in the symmetric phase, the agent with longer memory obtains more 
payoff. As described in Section 3.1, the inefficiency information e is larger for 
the privileged agent with longer memory. According to Equation (3.3), the 
privileged agent's winning probability P^m is larger, so it is able to obtain 
larger payoff. However, in the asymmetric phase, the privileged agent with 
smaller memory size performs better than the one with larger memory size. In 
this phase, the memory size M is larger, so the predictor space is larger, 
thus the other agents do not behave similarly. So there is no crowd effect in 
this phase. The privileged agent cannot make use of any further information 
by increasing its memory size. 

Therefore, we can conclude that the privileged agent using the intelligent 
strategy can maximise its personal utility with larger memory size M' in the 
symmetric phase and smaller memory size M" in the asymmetric phase. Both 
M' and M" are larger than the others agents'. 
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Also, we investigate the effects that the parameter N have on the dynamic 
phase transition point Mc of such a system with a population with a memory M 
and one privileged agent with longer memory M' and all its possible predictors. 
From Figure 3.3 and Figure 3.4，we can see that the privileged agent's payoff 
drops as M increases and reaches a minimum around Mc = 5 for iV = 101 
and Mc = 8 for N = 1001. Then the privileged agent's payoff increases as 
M increases for M > Mc. This implies that when N increases, Mc increases. 
[42] show that a phase transition of changing direction of a^/N locates at the 
point pc {p == 2M/N) where g'^/N attains its minimum. So when N increases, 
Mc drifts to a larger value. 

3.6 Discussions and Analysis 
The privileged agent works better than the other agent when all agents are 
endogenous. Keeping larger memory size makes the privileged agent have the 
inefficiency information, which the other agents do not have. The inefficiency 
information indicts that the winning side to be side 0 or 1 occurs more often 
at each history. When the inefficiency information is larger than 0.5 at some 
history, it indicts that side 1 occurs more often than side 0. Besides, the 
privileged agent possesses all possible predictors to make decisions based on 
the inefficiency information. The privileged agent will always choose side 1 
when the inefficiency information is larger than 0.5 at each history. This 
makes the privileged agent obtain larger payoff than the other agents. But the 
inefficiency information is dependent on the behaviors of the other agents. If 
the other agents are random agents, namely, randomly choosing side 0 or 1’ 
it is useless for the privileged agent to record larger memory size, because the 
history is created by random agents. 

In this section, an Experience method for the privileged agent is introduced 
when it has all possible predictors. Then we discuss the impact of the memory 
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size and the number of predictors the privileged agent and the other agents 
have on the payoffs of the privileged agent and the other agents. Besides, we 
investigate the impact of the increasing number of such privileged agent on its 
payoff. Moreover, we compare the performance of the privileged agent with 
other agents proposed previously. 

3.6.1 Equivalence to the Experience method 
Obviously, if an agent owns all predictors, the number .of predictors will 
be too large for the agent to handle even when M is moderate. In this section, 
we present a simple Experience method, and show that agents employing Ex-
perience method have the same behavior as agents employing the traditional 
method with all predictors. 

The Experience method is as follows. Instead of using any of the 
predictors, an agent simply records, for each immediate past history of length 
M, the number of times side 0 has won and the number of times side 1 has 
won. The number of times side 0 or 1 has won is said to be the score of the 
respective side. To make a decision given an immediate past history of length 
M, an agent chooses the side with the highest score, and makes random choice 
at ties. 

Let El(Ji) denote the score of side x (0 or 1) at time step i for an immediate 
past history h of length M. Formally, the experience method can be expressed 
as follows: 

0 i = 0 

E i ' ^ h ) i > 0 and 
El(h) = side x loses at time step i (3.4) 

E i - \ h ) + l 2 > 0 and 
- side X wins at time step i 

At time step z, if the immediate past history is h, an agent chooses side 0 if 
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Ei{h) > El{h), or side 1 if E认h) < Ei(h), or a random choice between 0 and 
1 if E认h) = Ei{h). This Experience strategy is intuitively simple and easy 
to implement. However, the following theorem proves that agents employing 
such an Experience method are behaviorally equivalent to agents employing 
the traditional method with all predictors. 

Theorem The behavior of an agent using the Experience method is equiv-
alent to the behavior of an agent using the traditional method with all possible 
predictors. 

Proof: Consider an agent using the traditional method, which has all 
predictors. For any predictor F, let P(Ji) denote the prediction made by 

predictor P with history h. Choose any two predictors f \ and Pq. Suppose at 
time step i with history h, F\ has the highest score Sf and P2 has the score 
S'2 (Si > Si). Then we have > E^^^wW for the following reason. 
Suppose 五ĵi �� < Eiyj^�(Ji). As the agent has all possible predictors, there 
must exist a strategy 尸3 with the same prediction in P2 at the history h 
{Psih) = F2W) and with the same predictions in F\ at all the other histories 
(尸3(/0 二 尸 i f f " ' + h). So Ps's score S^ = Then 
Si > s i , which contradicts to the fact that Si is the highest score. Therefore, 
we have 五 � ( " ) > 五 I n other words, Pi scores weakly better than 
any other predictor P2 for each h. 

If both Pi and 尸2 are the highest-score predictors at time step i {Si = 
Si), then we have 五 � ( " ) > E � � � h ) and � ( / i ) < E��f^�(h), hence 

In summary, > Si if and only if 五j^i�("）> 丑^�(“)，and vice versa. 
Therefore, the agent that uses the Experience method and chooses the side 

with the highest score at each history is actually using the traditional method 
with all possible predictors. So their behaviors are equivalent. 



Chapter 3 Individual Agent ,s Wealth in Minority Game 38 

3.6.2 Impact of M' and S' 
In this section, we discuss the impact of the privileged agent's memory size M' 
and number of predictors S' on its payoff. In Figure 3.5, we plot the privileged 
agent's payoff with all possible predictors and M' ranging among M + 1, 
M, M - 1, M - 2, and M - 3 independently versus the average payoff of the 
other agents with M and 5 = 2 as a function of M for iV = 101. For each 
value of M, the data point is the average of 10 independent runs with different 
initial random distributions of predictors and each runs 10^ rounds. From this 
figure, we can get three results in the symmetric phase. The first one is that 
the privileged agent with M' 二 M performs the worst and even achieves less 
payoff than the average payoff of the other agents. The reason is that the 
privileged agent has a memory of the same length as the other agents but 
owns all the possible predictors. That means the privileged agent will always 
follow the crowd and become a loser most of the time. The second result is 
that the payoff of the privileged agent with shorter length of memory than the 
other agents is smaller than the average payoff. The third result is that the 
privileged agent with shorter length of memory than the other agents, such 
as M' = M - 1, behaves better than the privileged one with M' = M. The 
reason is that the privileged agent has a memory size M' which is smaller than 
that of the other agents. This cause that the privileged agent does not fully 
adapt to the collective history information created by the other agents. So it 
can avoid being in the crowd sometimes. Thus its payoff is a little larger than 
the one with M' = M. In the asymmetric phase, there is no crowd effect. The 
agent with M' < M gets less history information about the game than the 
agent with M' > M. This is not good for predictions, so it gets less payoff. 

Next we investigate how the number of predictors the privileged agent 
owns affects its performance. In Figure 3.6, we plot the payoff of two kinds 
of privileged agents with M' = M + 1 versus the average payoff of the other 
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Figure 3.5: The privileged agent's payoff with M' and S' = versus the 
average payoff of the other agents with M and 5 = 2 as a function of M. 
{N 二 皿 ） 

Figure 3.6: The privileged agent's payoff with M' = M + 1 and 5' = and 
another one with M' = M + I and S' = 2 versus the average payoff of the 
other agents with M and 5 = 2 as a function of M. [N = 101) 
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Figure 3.7: The privileged agent's payoff M' = M + 1 = 4 and S' versus the 
average payoff of the other agents with M = 3, and 5 = 2 as a function of S'. 
(N = 101) 

agents with M and S = 2 hv N = 101: the first privileged agent with all 
the 22似'possible predictors, and the second privileged agent with S' = 2. S' 
ranges from 2 to and samples 16 values by multiplying 2 every time. We 
can see that the first privileged agent always outperforms the second privileged 
one. The only difference between the two privileged agents is the difference 
between the number of predictors they have, which causes the first privileged 
agent achieves higher payoff. We further investigate the impact of S on the 
privileged agent's payoff. In Figure 3.7, we plot the privileged agent's payoff 
with M' = M + 1 and S' versus the average payoff of the other agents with 
M = 3 and 5 = 2 as a function of S' for N = 101. We can see that the larger 
the number of predictors the privileged agent has, the more payoff it obtains. 
The reason is that if an agent has more predictors, it has more opportunities 
to explore in the predictor-space and thus predict more accurately. We can 
also observe that the privileged agent's payoff may decrease as the number 
of predictors increases. -The reason is that the agent behaves based on its 
predictors, so its payoff is strongly related to the initial distribution of the 



Chapter 3 Individual Agent ,s Wealth in Minority Game 41 

predictors. If the initially assigned predictors do not predict well, the agent 
will not perform well. However, this does not affect the principal changing 
trend: the larger the number of predictors the privileged agent has, the more 
payoff it obtains. 

3.6.3 Impact of M and S 
First, we investigate the impact of the other agents' memory size on the priv-
ileged agent's payoff. As we can see in Figure 3.3 and Figure 3.5, if the other 
agents' memory size is smaller than that of the privileged agent, the privileged 
agent with S' = can increase its payoff by increasing its memory size in 
the symmetric phase. If the other agents' memory size is greater than or equal 
to the privileged agent', the privileged agent with S' = obtains lower 
payoff than the average payoff of the other agents in the symmetric phase. In 
the asymmetric phase, no matter the other agents' memory size is smaller or 
greater than the privileged agent', the privileged agent's payoff is higher than 
the average payoff of the other agents. 

Figure 3.8: The average payoff of the other agents with M and different number 
of predictors as a function of M. {N = 101) 
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Figure 3.9: Time series of the number of agents choosing side 1 when each of 
the other agents has M = 3 and 5 - 3 . {N = 101) 

Figure 3.10: Time series of the number of agents choosing side 1 when each of 
the other agents has M 二 3 and S = 50. (N = 101) 
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Next, we investigate the impact of the number of predictors S the other 
agents possess on the privileged agent's payoff and the average payoff of the 
other agents. We plot the payoff of the privileged agent with M' = M + 1 
and S' = and the average payoff of the other agents with M and S in 
a population oi N = 101 agents for different S. M ranges from 1 to 15. In 
Figure 3.8, the five lines represent the average payoff of the other agents, each 
of them having 5 = 3, 5 = 5, 5 = 10, 5 = 20 and 5 = 50 respectively. From 
this figure, we can see that for smaller M, the average payoff of the other 
agents decreases as the number of predictors they possess increases. To find 
out the reason, we plot the time series of the number of agents choosing side 
1 A when each of the other agents has M = 3, 5 = 3 and 5 = 50 in Figure 
3.9 and 3.10 respectively. Comparing these two figures, we can see that the 
more predictors each of the other agents has, the more agents will choose side 
0 and A is more close to 0’ or the more agents will choose side 1 and A is more 
close to the total number of agents. That means the more predictors each of 
the other agents has, the more agents will choose the same side (side 0 or side 
1). So there will be more agents on the majority side and these agents will 
lose. Therefore, if each of the other agents have more predictors, their average 
payoff will lower. 

Why do agents tend to choose the same side when they have more predic-
tors? As described in Section 3.1, if an agent has all possible predictors, it 
simply records, for each immediate past history of length M, the number of 
times side 0 has won and the number of times side 1 has won. At each history 
entry, each agent will choose the side with the higher score and make random 
choice at ties. After all agents have made their decisions, the score of the side 
with the same as the winning outcome will be increased by one. Each agent 
will have the same score of side 0 at each history entry and the same score of 
side 1. Then they will all choose side 0 or side 1. whichever has a higher score, 
with ties broken randomly. So all agents' behaviors will be almost the same. 
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Then this will cause most of them to lose. 
If an agent with all possible predictors uses the traditional method, at each 

history entry, it chooses the highest-score predictors to make the decision. The 
distribution of predictions in the highes-score predictors could be purely side 0 
(100% of side 0) or purely side 1 (100% of side 1) or side 0 and side 1 but with 
the same number (50% of side 0 and 50% of side 1). We analyse it as follow: 
In Section 4.1, we have proven that if both Pi and P2 are the highest-score 
predictors at time step i, then 五^丄�(/i) = where P{h) denote the 
prediction made by predictor P at history entry h and El{h) denote the score 
of side X (0 or 1) at time step i for an immediate past history /l That means in 
the highest-score predictors, at each history entry, the predictions' scores are 
all the same. The predictions could be purely side 0 or purely side 1，and it 
satisfies that all predictions' scores are the same. If the predictions have both 
side 0 and side 1，since the predictions' scores are all the same, i.e. the scores 
of side 0 and side 1 are the same. The number of side 0 and side 1 appearing 
in the highest-score predictors at some history entry are also the same. The 
reason is that the agent has all possible predictors and it can always find 
predictors that have the same predictions at the other history entries and only 
different predictions at some history entry. Therefore, if an agent having all 
possible predictors use the traditional method, the distribution of predictions 
in the highest-score predictors are purely side 0 or purely side 1 or side 0 and 
side 1 with the same number. 

For an agent that does not have all possible predictors, the more predictors 
it has, the greater possibility it has to have similar distribution of predictions 
in the highest-score predictors to the agent with all possible predictors. Then 
its behavior will be more similar to the behavior of the agent with all possible 
predictors. When each of the other agents has more predictors, their behav-
iors will be more similar to the agent with all possible predictors. Since the 
behaviors of agents having all possible predictors are almost the same, each of 
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the other agents will have similar behavior and then it will cause most of them 
to lose, so their average payoff will be lower. 

Figure 3.11： The privileged agent's payoff with M' = M + I and S' = 
as a function of M under different cases of the other agents having different 
number of predictors. {N = 101) 

In Figure 3.11’ the five lines represent the privileged agent's payoff with 
M' 二 Af + 1 and = in the cases that each of the other agents posses 

= 3, 5•二 5’ 二 10，= 20 and = 50 respectively. For smaller M, 
the privileged agent's payoff slightly decreases as the number of the other 
agents' predictors increases. For larger M, the privileged agent's payoff greatly 
decreases as the number of the other agents' predictors increases. Since the 
other agents' behaviors become more similar to the privileged agent's when 
each of them has more predictors, this causes the side the privileged agent 
chooses to be the majority side, so the privileged agent's payoff decreases. 

Next, we investigate the impact of S on the position of phase transition. 
We plot the privileged agent's payoff versus the average payoff of the other 
agents in the cases that each of the other agents possess 5 = 3 in Figure 3.12， 
5 = 5 in Figure 3.13, S' = 10 in Figure 3.14 and 5 = 50 in Figure 3.15. We 
can see that in Figure 12, the phase transition occurs at Mc = 6. The phase 
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Figure 3.12: The privileged agent's payoff with M' = M + 1 and S' = 
versus the average payoff of the other agents with M and 5 = 3 as a function 
of M. {N = 101) 

Figure 3.13: The privileged agent's payoff with M' = M + I and S' = 
versus the average payoff of the other agents with M and 5 = 5 as a function 
of M. {N = 101) * 
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Figure 3.14: The privileged agent's payoff with M' = M + 1 and = 
versus the average payoff of the other agents with M and <9 = 10 as a function 
of M. {N = 101) 

Figure 3.15: The privileged agent's payoff with M' = M + 1 and S" = 
versus the average payoff of the other agents with M and 5 = 50 as a function 
of M. {N = 101) • 
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transition occurs at Mc = 7 in Figure 15. In Figure 16 and 17，the transition 
point occurs nearly Mc = 8 and Mc = 9. We notice that the transition position 
Mc increases as the number of predictors S the other agents possess increases. 

3.6.4 Impact of Larger Number of Privileged Agents 
In the situation that there are larger number of the privileged agents playing 
the minority game, what is the impact on the privileged agents' payoff? Each 
of the privileged agents has M' = M + 1 and S' = . Their behaviors are 
the same after playing for sometime although there are some differences at the 
beginning of the game. Each of the other agents has M and S = 2. M ranges 
from 1 to 15. The total number of agents is N = 101. In Figure 3.16, we plot 
three pairs of payoffs between the average payoffs of the privileged agents and 
the other agents. The first pair is when the number of the privileged agents is 
n = 1. The second one is when the number of the privileged agents is n = 5, 
namely, 5% of the total number of agents. The third one is when the number 
of the privileged agents is n = 10, namely, 10% of the total number of agents. 
We can see that the average payoff of the privileged agents decreases as the 
percentage of such agents increases. These privileged agents behave in the 
same way and they choose the same side at the same time. If the percentage 
of the privileged agents is large enough to affect the minority side, the side the 
privileged agents choose is probable to be the majority side. These privileged 
agents will always be the loser. So the average payoff of these agents will 
decrease and become smaller than the average payoff of the other agents. 

3.6.5 Comparisons with Related Work 
In this section, we discuss some simulation results using different approaches 
which all enhance one individual agent's wealth. These agents all escape from 
the crowd effect. The model proposed by [51] is a passive way to avoid the 
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Figure 3.16: The average payoff of different number of the privileged agents 
with M' = M + 1 and S' = versus the average payoff of the other agents 
with M and 5 = 2 as a function of M. {N = 101) 

over-adaptation to the history produced by the collective behavior of the other 
agents. It assumes that the particular agent decides to whether to participate 
in the game with a probability q < 1 and assesses the performance of its 
predictors only in the turns that it participates. So, the particular agent's 
payoff is at most half of the total turns when q = 0.5, so the success rate for 
q = 0.5 is at most 0.5. In addition, Yip et al. [51] also show that the enhanced 
success rate for g < 1 takes on similar values, so the success rate is at most 
0.5 even if q is close to 1. Thus, the payoff is at most half of the number of 
the total turns for any q. The achievable payoff is not large enough. 

In Figure 3.17, we compare the payoff of the privileged agent using the intel-
ligent strategy with the payoff of another agent using the adaptive behavioral 
strategy proposed by [26]. The experiment setting is as follows： the number of 
total agents is N 二 101，the number of predictors each of the other agents own 
is 5 = 2, the range of the memory size M is the integer values between 1 and 
15. The memory size M' of the agent using the intelligent strategy is M + 1. 
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Figure 3.17: The privileged agent's payoff with M' = M + 1 and S' = and 
the adaptive behavioral agent's payoff versus the average payoff of the other 
agents with M and 5 = 2 as a function of M. {N = 101) 

The agent's initial attitude towards side 0 and 1 and adaptive parameters us-
ing the adaptive behavioral strategy are randomly generated at the beginning 
of the game. The other agents are using the highest-score predictors in hands. 
For each value of M, the data point is the average of 10 independent runs with 
different initial random distributions of predictors and each runs 10® rounds. 
This figure illustrates that the privileged agent using the intelligent strategy 
achieves larger payoff than the agent using the adaptive behavioral strategy 
for all most values of M. As we have discussed in Section 2.3.3，since there is 
only one agent using the adaptive behavioral strategy in the experiment, its 
decision affect little on the winning outcome. Thus the agent may not update 
its attitudes in the right way. So the agent cannot obtain large payoff. 

In Figure 3.18, we compare the payoff of the privileged agent using the 
intelligent strategy with the payoff of another agent using the opposite strategy 
of Liu and Liaw [30]. The experiment setting is the same as the previous one. 
The memory M' of the" agent using the intelligent strategy is M + 10 when 
M < 5 and M + 1 when M > 5. We can see from Figure 3，the agent with 
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Figure 3.18: The privileged agent's payoff with the intelligent strategy and the 
one with the opposite strategy versus the average payoff of the other agents 
with Af and 二 2 as a function of M. {N = 101) 

M + 10 performs better in the symmetric phase and the agent with M + 1 
performs better in the asymmetric phase. For the agent using the opposite 
strategy, it uses the highest-score strategy when M > 5 and uses the opposite 
strategy when M < 5. The opposite strategy is the one with the prediction 
opposite from that of the highest-score strategy at any entry. From this figure, 
we can see that the agent using the intelligent strategy obtains more payoff 
than the one using the opposite strategy in the symmetric phase. In the 
asymmetric phase, the payoff of the agent using the intelligent strategy and 
the payoff of the agent using the opposite strategy are more or less the same. 
In fact, as described in Section 2.3.2, Zheng and Wang [53] point out that the 
winning outcome of an even occurrence of any history is most likely opposite 
to that of the odd occurrence of this history in the symmetric phase. Since 
the agent using the opposite strategy use the prediction opposite from that 
of the highest-score predictor, so it can almost wins for the even occurrence 
of any history. For the odd occurrence of any history, it has a probability of 
0.5 to win. So its winning probability on average will be approximately equal 
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to 0.75. On the other hand, in Section 3.1’ statistical results reveal that the 
inefficiency information contained in M + 2 is £ > 0.25. Since longer memory 
can lead to larger inefficiency information e, so the inefficiency information e 
contained in M + 10 is greater than 0.25. Then according to the relationship 
P^in ~ I + £：, the winning probability will be greater than 0.75. Therefore, 
the agent using the intelligent strategy can obtain more payoff than the agent 
using the opposite strategy. 

From these comparisons, we can conclude that the privileged agent using 
the intelligent strategy is able to make more accurate predictions with larger 
memory size in the symmetric phase. However, if the agent does not know 
when the phase transition will occur, it can just lengthen its memory size by 
one, i.e. keep longer memory than the other agents' by one, no matter in 
the symmetric phase or the asymmetric phase. It is because the agent with 
M + 1 performs well for all most values of M. If the agent knows where the 
phase transition occurs, it can lengthen its memory size more than one in the 
symmetric phase. 



Chapter 4 

An Adaptive Strategy for 
Resource Allocation 
In this chapter, we first introduce the specification of multiagent resource al-
location we study. Then we present an adaptive strategy for agents to use to 
adapt to the changing environments. Besides, we describe the advantage and 
disadvantage of the adaptive strategy. Moreover, we implement some simu-
lations to investigate the performance of the adaptive strategy. Finally, we 
compare the adaptive strategy with some related work. 

4.1 Problem Specification 
The following resource allocation problem we consider is similar to the problem 
studied in [16, 26]. There are Q available resources, each having different 
capacities C = {Ci,...,Cq}. There is a set A = {Ai,. . . ,A^} of N agents, 
each having one task to execute in each round. Each agent only needs one 
unit of resources and gets its task completed in one round. The resources can 
be shared by multiple agents. All agents compete for the resources to execute 
their tasks. The capacities of the provided resources can be constant, but 
they generally vary over time. The total amount of capacities is equal to or 
greater than the number of agents at any time, which means that there are 

53 
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always sufficient resources. This is because if the total amount of capacities is 
less than the number of agents, then at least one resource will be overloaded 
all the time. We are only interested in the case of sufficient resources in this 
paper since this case can make it possible that all agents are able to complete 
their tasks at the end of each round. If the number of agents choosing a 
resource is less than or equal to the capacity of the resource, then the resource 
is not overloaded and agents choosing the resource can complete their task. 
Otherwise, the resource is overloaded and not all agents choosing the resource 
can complete their tasks. 

Similar to [16, 26], there is no central information and no communication 
among agents in the system. The history information from the past resource 
allocation records and the resource capacities during the previous rounds are 
the only information available to all agents for making a resource choice deci-
sion. A past resource allocation record is a record that whether a resource is 
under-utilised or over-utilised in the previous round. Since the system com-
pletes a resource allocation for each round, we can consider the system as a 
sequence of multi-choice games, i.e. each of N agents decides to choose one of 
the Q resources in each round, and a run of the system consists of R rounds. 

To make good utilisation of resources in the dynamic environment is one of 
the objectives in the resource allocation problem. Good utilisation of resources 
means that the number of agents choosing the resource is close to the resource 
capacity, which results in little or no under-utilisation or over-utilisation. Dy-
namics means that the capacities of resources vary over time. They can change 
gradually or abruptly. If agents in the system are able to coordinate themselves 
well, then agents as a whole can adapt effectively to the dynamic environment. 
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4.2 An Adaptive Strategy 
Since there is no communication between agents, agents need to make good 
use of the available information to make correct decisions. A correct decision 
means that agents choose a not overloaded resource. Based on the work by Lam 
and Leung [26] ’ we design an adaptive strategy to tackle the resource allocation 
problem with not only gradually changing capacities but also with abruptly 
changing capacities. The strategy is based on individual agent's experience 
and prediction. Each agent keeps an experience for each resource. Using this 
strategy, each agent records the number of correct decisions in the past for each 
resource statistically. The experience e; for resource x in round r is defined as 
follows: 

< (4.1) 
where n; is the number of times that the agent has chosen resource x and 
resource x is not overloaded. 

Each agent also keeps a prediction for each resource. For simplicity, the pre-
dicted capacity is approximated by a linear function of the resource capacities 
in previous rounds. In round r = 1 and r = 2, we assume that the predicted 
capacity of each resource is equal to its current capacity. The prediction for 
resource x in round r is defined as follows: 

p:= 
r = 1 or r = 2 

(4.2) 
Ejiicr^ r � 2 

where C;, CJ-丄 and C;-"^ is the capacities of resource x in round r, r - 1 and 
r - 2, C[ and denotes the capacity of resource i in round r and r - 1, 
and f is the scaling factor. 

Some agents may rely more on the experience and some may rely more on 
the prediction. According to Prospect Theory |24], each agent has an attitude 
towards a choice. So each agent is associated with an attitude a^ € [0,1] 
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to calculate the weighted value of the experience and the prediction. The 
attitude is used as a weight. If an agent's attitude is close to 0，the agent 
tends to choose the resource which is not overloaded most of the time. If an 
agent's attitude is close to 1, the agent biases the selection towards the resource 
with the largest capacity. The weighted value is called the attractiveness of 
the resource. The resource with the highest value of attractiveness is the most 
attractive to agents. So each agent chooses the resource with the highest value 
of attractiveness in each round. Formally, the attractiveness attr; of resource 
X in round r is calculated as follows: 

attr： = ( 1 - a：) x e： + a： xp： • (4.3) 

where al is the attitude towards resource x in round r. 
According to the theory of Conditions of Learning in psychology [15], atti-

tudes will be changed by favorable or unfavorable experiences. So each agent 
using this strategy adjusts its attitudes at the end of each round. If the agent 
has chosen a not overloaded resource, the attitude towards the resource a; is 
increased by a+. This means that the agent has made a correct decision, and 
it can put more weight on considering the prediction. If the agent has chosen 
an overloaded resource, then a; is decreased by a—. This means that the agent 
has made a wrong decision, then it should put more weight on considering the 
experience. Both a+ and a— are adjusting rates. 

In addition, the current capacities of resources are announced to all agents 
at the end of each round. To deal with the abruptly changing capacities, we 
introduce the threshold 9. If an agent detects that the difference between 
the current capacity and the previous capacity is larger than the threshold 
value 9, i.e. \Cl - > 9, then the agent will consider that it encounters 
abruptly changed capacities. To eliminate the influence of the past resource 
allocation records, the agent will reset its experience value to zero and reset its 
attitudes to initial attitudes. The reason for doing resetting is that the agent 
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accumulates its experience and adjusts its attitudes according to the resource 
allocation result after each round. When the experience is reset, the agent 
relies only on the prediction to make decisions and record the experience 
e; from scratch. Then it will acquire the experience again. Since the capacity 
is considered changing abruptly when - CJ—1| > 0, as long as the slope of 
the gradually changing capacity is within the threshold 9, the agent will not 
wrongly consider gradually changing as abruptly changing. 

4.3 Remarks of the Adaptive Strategy 
The merit of the strategy lies in that the threshold can tackle the abruptly 
changing capacities. However, the limitation of the strategy also lies in the 
threshold, because the value of the threshold is critical. If the threshold is too 
small, agents may wrongly consider gradually changing as abruptly changing. 
Since if the slope of the gradually changing capacity is large, the difference of 
capacities between the two consecutive rounds will be large too. However, if the 
threshold is too large, agents cannot detect the abruptly changing capacities, 
while the capacities change abruptly within a small amount actually. 

Therefore, the value of the threshold depends on different situations. If the 
resource capacities change by a large amount, agents may set the threshold 
larger. In this situation, even though agents wrongly take gradually chang-
ing as abruptly changing, resetting the current experience and attitudes may 
be beneficial since the capacities change largely. On the other hand, if the 
resource capacities change within a small amount, then agents may set the 
threshold smaller. In this situation, even though agents do not detect the 
abruptly changing, the current experience and attitudes may be useful since 
the capacities do not change largely. 

In addition, the appropriate adjusting rate and scaling factor are also im-
portant to agents' adaptation. If the adjusting rate is too small, agents may 
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not adapt fast enough to the dynamic environment; if the adjusting rate is 
too large, agents may over-adapt. For the scaling factor, if it is too large, it 
may cause the value of prediction to dominate the value of experience in the 
calculation of attractiveness; if the scaling factor is too small, it may have little 
effect on the value of the prediction. 

4.4 Experiment Analysis 
4.4.1 Simulations 
In dynamic environments where the resource capacities change either gradually 
or abruptly, we want to investigate the overall performance of the system where 
agents use the proposed adaptive strategy described in Section 3. We define 
the number of agents choosing a resource as the resource load. Similar to 
[16, 26], we consider the situation that the total amount of capacities is equal 
to the number of agents. The good overall performance means that the number 
of agents choosing a particular resource is always close to the capacity of the 
resource even though the capacity varies over time, which indicates that the 
resource load follows the resource capacity very well. 

The experiment setting is as follows. The number of agents is N = 1000. 
The number of resources is Q = 2. The two resources have capacities of C[ 
and C^ respectively, which change gradually or abruptly. The total amount of 
capacities remains constant over the experiment with C = C[ + Q = 1000. 
To account for agents' heterogeneity, the initial attitudes a^ of each agent are 
generated randomly. The adjusting parameters for all agents are a+ = a_ = 
0.01. The scaling factor is / = 2. The threshold is d = 10. The parameters 
may have some impact on the performance of the resource allocation system. 

The first experiment is similar to that in [16] that is conducted in the 
dynamic environment with a constant number of agents and gradually changing 
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capacities. The capacity of the first resource varies over time: C[ = + 
^ sin X C, where R = 1000. The capacity of the second resource is Q = 
C - C[. The slope of the changing function is gradually changing. Figure 
4.1(a) shows the resource load of the first resource in this environment. We 
plot the resource load for the first resource only since the second one is fully 
determined by the first one. It can be seen that the resource load follows the 
resource capacity very well. This means that the number of agents choosing a 
particular resource is almost always close to the capacity of the resource. This 
results in very little under-utilisation or over-utilisation of resources. 

The second experiment is also conducted in the dynamic, environment with 
gradually changing capacities, but the slope of the changing function remains 
constant for some rounds and then changes to another slope. The capacity of 
the first resource is as follows: 

500+ r r <250 
C[ = 750 - (r - 250) 250 < r < 750 

250 + ( r - 750) 750 < r < 1000 
The capacity of the second resource is C卜 C - C[. The resource load of the 
first resource in this environment is shown in Figure 4.1(b). It can be seen that 
the agents are able to adapt to the dynamic environment too. The resource 
load also follows the resource capacity very well. 

The third experiment is conducted in the dynamic environment with abruptly 
changing capacities. The capacity of first resource abruptly changes every 500 
rounds. The capacity C[ is a random number between 0 and 1000 and it 
remains constant within 500 rounds. The capacity of the second resource is 
C2 = C - C[. Figure 4.1(c) shows the resource load of the first resource in 
this environment. We can see that at the beginning of every 500 rounds, the 
agents detect that the available resource capacities change abruptly and re-
set their experience and attitudes, and then after only few rounds, the agents 
self-organise themselves again and find a stable solution for the allocation of 
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the resources. This result also indicates that the adaptive strategy can work 
in static environments. 

Experiment 1 

(b) Experiment 2 (c) Experiment 3 
Figure 4.1: Resource load using the adaptive strategy 

To measure the performance of the system quantitatively, we use Equation 
(4.4) introduced by Galstyan et al. [17] to calculate the average deviation of 
resource utilisation for these three experiments. 

Q 
(4.4) 

where Q is the number of provided resources and of is resource i's cumulative 
deviation of the number of agents choosing the resource from the resource 
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capacity C[ over certain rounds R, which is defined as follows: 
1 ro+R 

r—TQ 
The average deviation for each experiment is averaged over 100 independent 

runs. The results are shown in the Figure 4.1 column of Table 4.1. These 
numbers are very small, which indicates that the system is very close to the 
optimal allocation. 

Experiment Figure 4.1 Figure 4.4 Figure 4.5 •Figure 4.6 
1 53.76 17895.89 23870.19 3233.47 
2 74.49 20344.37 29129.27 3138.79 
3 40.16 21744.78 29912.64 2654.75 

Table 4.1: Averaged deviation 

The simulation results suggest that the adaptive strategy enables agents to 
adapt well to the dynamic environments with changing capacities autonomously 
and adaptively. The system results in very litter under-uitlisation or over-
utilisation. Agents use the threshold 6 to detect whether they encounter 
abruptly changing capacities and reset their experience and attitudes to elim-
inate the influence of the past resource allocation records. The varying capac-
ities can be either gradually changing with the slope less than the threshold 
or abruptly changing with the difference of capacities between two consecutive 
rounds greater than the threshold. 

Next, we investigate how the adjusting rate and scaling factor affect the 
system's performance. In Figure 4.2，we plot the average deviation of resource 
utilisation versus the scaling factor with different adjusting rates for Exper-
iment 1. The scaling factor ranges from 2 to 10. The adjusting rate ranges 
from 0.01 to 0.04. The results are averaged over 100 independent runs of Ex-
periment 1. From this figure, we can see that the minimal average deviation 
occurs when the adjusting rate is equal to 0.01 and the scaling factor is equal 
to 2. Other parameters result in larger average deviation. 
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adjusting rate-0.01 
-0.02 

-adjusting rate 

Figure 4.2: Average deviation vs scaling factor 

The average deviations of resource utilisation versus the adjusting rate with 
different scaling factors are plotted in Figure 4.3. The adjusting rate ranges 
from 0.01 to 0.1. The scaling factor ranges from 2 to 5. It can be seen that 
when the scaling factor is equal to 2 and the adjusting rate is equal to 0.01, 
the system achieves the minimal average deviation. The average deviation 
increases as the adjusting rate increases. Large scaling factor and adjusting 
rate both result in large average deviation. The system is studied numerically 
for different cases with a wide range of parameters. Some parameters can 
lead to the minimal average deviation. However, the relationship between the 
appropriate parameters and the capacities is under investigation. 

4.4.2 Comparisons with Related Work 
In this section, we conduct the simulations using other strategies in the envi-
ronments of the above three experiments. We first implement the simulations 
using Lam and Leung's strategy [26]. The strategy of Galstyan et al. [17] is 
another approach. We then use their strategy to do the simulations. Finally, 
we use the strategy of Schlegel et al. [45] to implement the simulations. We 
compare the simulation results with the results using the proposed adaptive 
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scaling factor=3 
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Adjusting rate 
0 . 1 

Figure 4.3: Average deviation vs adjusting rate 

strategy. We also calculate the average deviation for these strategies. We want 
to investigate whether the system using the adaptive strategy can make better 
utilisation of resources than other strategies. 

Comparison with Lam and Leung's strategy 
In the situation that agents may have preference over the resources, Lam and 
Leung [26) consider the payoff of choosing a not overloaded resource as the 
preference over the resource. They generate the preferences for each agent 
randomly at the beginning. The preference is fixed once it is generated. To 
account for agents' heterogeneity, agents' initial attitudes towards each re-
source are generated randomly. The adjusting parameters for all agents are 
a+ 二 a_ = 0.02. The history size is H = b. 

From Figure 4.4(a) to Figure 4.4(c), we plot the resource load using Lam 
and Leung's strategy in the environments of the three experiments in Section 
4.4.1. We can see that agents using Lam and Leung's strategy do not adapt 
very effectively to the dynamic environment. Although the fluctuation of the 
resource load fluctuating around the resource capacity becomes small after 
some rounds, the fluctuation becomes large again when the capacity changes 
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on the opposite direction or changes abruptly. The average deviations of re-
source utilisation over 100 independent runs are calculated using Equation 
(4.5), which are shown in the Figure 4.4 column of Table 4.1. It can be seen 
that the average deviations are much larger than those using the adaptive 
strategy. 

The adaptive strategy is based on individual experience and prediction. It 
takes the predicted capacities of resources into account. This is important in 
the resource allocation with changing capacities. The prediction reflects the 
changing of capacities to some degree and also changes with time. Agents using 
the adaptive strategy learn whether they have made correct decisions in the 
previous round and adjust their attitudes adaptively. In addition, when agents 
detect that the difference of capacities between two consecutive rounds is larger 
than the threshold, agents will reset their experience and attitudes to eliminate 
the influence of the past resource allocation records. This is important in the 
environment with abruptly changing capacities. Although agents using Lam 
and Leung's strategy also adjust their attitudes, the preference is fixed once 
it is generated at the beginning of the game rather than changing with time. 
This may be the reason that agents cannot adapt to the changing capacity 
level very effectively as the capacity is varying over time. So Lam and Leung's 
strategy may work very well in the static environment, but not very well in 
the dynamic environment. 

Comparison with the strategy of Galstyan et al. 

We conduct the simulations using the strategy of Galstyan et al. [17] in this 
section. At the beginning of the game, each agent randomly chooses two 
neighbors {K = 2) and also randomly generates two strategies (5 = 2), which 
means the actions that recommend agents which resource to choose in the 
next round are also generated randomly. Each agent's neighbors are fixed 
throughout the game, but each agent updates its neighbors' actions at the end 
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(b) Experiment 2 (c) Experiment 3 
Figure 4.4: Resource load using Lam and Leung's strategy 
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of each round. 
Using the strategy of Galstyan et al., we plot the resource load for the three 

experiments from Figure 4.5(a) to Figure 4.5(c). It can be sees that although 
the resource load fluctuates around the resource capacity, the fluctuation is 
much larger compared with the results in Figure 4.5. The average deviations 
for the three experiments are shown in the Figure 4.5 column of Table 4.1. 
From this table, we can see that the average deviations are also much larger 
than those using the adaptive strategy. 

Experiment 1 
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(b) Experiment 2 (c) Experiment 3 
Figure 4.5: Resource load using the strategy of Galstyan et al. 

The reason agents using the strategy of Galstyan et al. can sense the 
changing trend of capacities may be because they assess the performance of 
their strategies after each round and choose the highest-score strategy to make 
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decisions. Agents update their neighbors' actions after each round. This may 
make agents can coordinate their behaviors among themselves. However, the 
strategies are randomly generated, which is not sensible. Also, the strategies 
do not change once they are generated at the beginning. The agents are limited 
to choose the resources appearing in the strategies. This may be the reason 
that the agents cannot adapt effectively enough to the changing capacities. 
The performance could be worse than the results in Figure 5 if the randomly 
generated strategies predict badly. 

Comparison with the strategy of Schlegel et al. 
Schlegel et al. [45] suggest agents use a set of predictors to make decisions. 
The number of predictors for the simulations is 6. They include: same value 
as the last history value, same value as n'^ last history value, average value 
of last n history values, the trend of last n history values, random value in 
the interval between the minimum and maximum of last n history values and 
average value of the minimum and maximum of last n history values, where 
n = 5. The history value is the past resource load. It is useful when the set 
of predictors is not the same for all agents. So each agent randomly chooses 
two of these predictors to use. The resource load information is updated only 
if the agent migrates to the server. If an agent predicts no free resources and 
decides not to go, no new historical information will be updated. This will 
lead to that the agent may always predict resource over-utilisation. To solve 
this problem, each agent uses a random retry after the agent does not go for 
a while [44]. This is different for agents, so that they do not go all together at 
the same time. 

The resource load using the strategy of Schlegel et al. for each of the three 
experiments is shown from Figure 4.6(a) to Figure 4.6(c). It can be seen that 
the resource load fluctuates around the resource capacity largely. Agents using 
the strategy of Schlegel et al. make decisions based on predictors' predictions. 
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Although the predictors are not randomly generated, the average deviations 
shown in the Figure 4.6 column of Table 4.1 are still larger than those using 
the adaptive strategy. Agents in the system coordinate their behaviors among 
themselves so that they can follow the trend of the changing capacities. How-
ever, each agent uses a random retry after the agent does not go for a while, 
this may be the reason that the resource load fluctuates around the resource 
capacity largely. 
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Figure 4.6: Resource load using the strategy of Schlegel et al. 



Chapter 5 

Conclusions and Future Work 
5.1 Conclusions 
This thesis introduces strategies for agents to choose their actions in multiagent 
environments. Agents in minority games need to be reactive to the dynamic 
environment and adapt to it. Some multiagent resource allocation can be 
modeled into minority games. We investigate these two research topics in this 
thesis. We have the following conclusions. 

For minority games, first, we study the performance of one privileged agent 
with larger memory size M' and free to choose any possible predictor in a 
population with a memory M and S = 2. We find some results. The privileged 
agent outperforms the other agents for almost all values of M in terms of 
payoff. In the symmetric phase, the privileged agent with larger memory size 
can obtain more payoff than the one with smaller memory size but still larger 
than the others'. 

In addition, we investigate the impact of the number of predictors S' on the 
payoff of the privileged agent with larger memory size. The larger number of 
predictors the privileged agent possesses, the more payoff it obtains. We also 
investigate the impact of the memory size M' on the payoff of the privileged 
agent with all possible predictors. There are three results in the symmetric 
phase. First, the privileged agent with the same memory size as the other 
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agents achieves less payoff than the average payoff of the other agents. Second, 
the payoff of the privileged agent with smaller memory size than the other 
agents is smaller than the average payoff. Third, the privileged agent with 
smaller memory size than the other agents behaves better than the privileged 
agent with the same memory size as the other agents. We then discuss how the 
number of predictors S the other agents possess affect the privileged agent's 
payoff and the average payoff of the other agents. For smaller M, the average 
payoff of the other agents decreases as S increases. For larger M, as S increases, 
the privileged agent's payoff decreases. We also find that if the number of 
the privileged agents increases, the average payoff of the privileged agents 
decreases. 

Moreover, we compare the payoff the privileged agent using the intelli-
gent strategy with the payoff of another agent using the adaptive behavioral 
strategy proposed by [27]. The result shows that the privileged agent can out-
perform the agent using the adaptive behavioral strategy for all most values 
of M. We also compare the payoff of the agent using the intelligent strategy 
with the payoff of another agent using the opposite strategy proposed by [30]. 
The result also shows that the intelligent agent can outperform the agent using 
the opposite strategy in the symmetric phase. Therefore, the privileged agent 
using the intelligent strategy we propose outperforms the other agents in the 
same model and other models proposed in previous work in terms of individ-
ual payoff. Finally, we present a simple Experience method for agents with 
all possible predictors, and prove that agents employing Experience method 
have the same behavior as agents employing the traditional method with all 
predictors. 

For multiagent resource allocation, we propose an adaptive strategy to 
tackle the resource allocation problem with not only gradually changing ca-
pacities but also with abruptly changing capacities. We investigate the perfor-
mance of the system using the strategy under different situations. The varying 
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capacities can be either gradually changing with the slope less than the thresh-
old or abruptly changing with the difference of capacities between two consec-
utive rounds greater than the threshold. The simulation results demonstrate 
that agents using the adaptive strategy as a whole can adapt very effectively 
to the changing capacity levels and result in very little under-utilisation or 
over-utilisation. 

Moreover, we also compare our results with some related work. The sim-
ulation results show that agents using the adaptive strategy are able to make 
better utilisation of resources, i.e. the average deviation of resource utilisation 
from the optimal allocation is smaller than those of related work. The adap-
tive strategy is parameterised by the adjusting rate and scaling factor. We are 
going to investigate further how to determine the values of these parameters. 
In addition, the value of the threshold depends on the changing amount of the 
capacities. 

5.2 Future Work 
For minority games, there are some aspects for future work. First, we are going 
to investigate further the relationship between the number of predictors the 
agents own and the position of transition. We hope that we can find a function 
that can express the relationship, such that [33] find that the transition occurs 
when the dimension of the predictor space is of the order of the number of 
agents playing the game. Second, there is no communication among agents 
in minority games we study, what will the situation be if we allow additional 
communication among agents? Third, it is also interesting to explore the 
relationship between the individual agent's predictors and its wealth if the 
predictors the agents own are evolutionary, i.e. agents' predictors are not 
fixed at the beginning of the game. There are some research on this aspect 
4，25). Fourth, [16] and [27] have modeled the resource allocation problem 
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as minority games. In the resource allocation problems, there may be not 
only one resource. The resource capacity may vary over time. Agents may 
need bundles of resources. So each agent does not make a binary decision, 
but uses some predictors to predict the resource load to decide which resource 
to choose. In real life, agents may have different kinds of predictors, or the 
agents may have preference over the predictors. We are going to extend the 
model to more complicated multi-agent systems in real-world environments. 
[32] and [34] have done the research on applications in sensor network and grid 
computing. 

For multiagent resource allocation, we have assumptions that each task 
only needs one unit of resources to complete in one round and the resources 
can be shared among agents, which are similar with those in [16, 27]. In real 
resource allocation systems, the situation may be more complicated. Each 
agent may have multi-task and each task may need more than one unit of 
resources to complete in more than one round. The resources may not be 
available if some tasks already occupy them. So another aspect of future work 
is to extend the adaptive strategy in more complicated environments, such as 
resource allocation problems in load balance [43] [46]. 
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