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Abstract 

Retiming is an opt imizat ion technique for sequential circuits by reposit ioning 
f l ip-f lops across the combinational elements of the circuit. I t has been applied 
to different areas such as logic synthesis, circuit part i t ioning, power reduction 
etc. However, due to the intrinsic difference between fan-in and fan-out 
counts of a retimed component, the number of f l ip-f lops tends to be 
undesirably increased in a conventional ret iming procedure, wh ich can cause 
a significant area/power penalty on the retimed circuit. Moreover, because 
of the higher dominance on interconnect delays, w i thout a mechanism to 
reflect real physical design accurately, the clock period produced by a 
ret iming scheme w i l l be unrealistic. 

To overcome these two major drawbacks of the conventional ret iming 
technique, we propose a novel ret iming f low combined w i t h rewir ing, being 
able to largely cut down fl ip-f lops (FFs) whi le w i t h the original retimed clock 
period uncompromised. For a more accurate delay estimation, all 
interconnect delays are formulated and calculated based on real placements. 

Experimental results show that this novel rewired ret iming scheme can 
br ing a reduction of 18.7% averagely on the number of f l ip-f lops compared to 
the original ret iming wi thout rewir ing. This large FF reduction can be 
considered a free gain as the retimed clock period can sti l l be kept w i thout 
compromise. A n d meanwhile, due to such FF reduction, about 8.26% of the 
total dynamic power can be saved. 



摘 要 

时序重排是一种通过在组合逻辑之间对触发器进行重新定位的针对时序电路的 

优化技术。它已经被广泛应用于不同领域，比如逻辑综合，电路割分，功耗降 

低等等。然而，由于被时序重排的逻辑单元输入和输出的数目不一样，在传统 

的时序重排中触发器的数丨目通常会大量增加，这会引起面积和功耗的巨大增加。 

另外，由于线上的时延占了主导地位，没有一个机制来准确地反映物理层的设 

计，在时序重排中得出的最优化时钟周期会难以实现。 

为了克服现有的时序重排的这两点缺陷，我们提出一种结合了逻辑再接线 

技术的时序重排流程，可以大量地减少触发器的数目，并且维持原本的时序重 

排可得的最优化时钟周期。为了实现更准确的时延估计，所有的线上时延都被 

模型化并在真正的电路布局上计算出来。 

实验结果显示，较之原有的时序重排技术，这种新型的结合逻辑再接线技术 

的吋序重排技术可以平均减少18.7%的触发器。这么显著的触发器数目的下降是 

完全没有代价的获益，因为时钟周期的优化没有任何改变。同时，由于触发器 

数圉的减少，8.26%的总动态功耗可以被节省。 
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Chapter 1 

Introduction 

Fol lowing the Moore's Law, the Very Large Scale Integration (VLSI) 

technology has soared over the last decades, wh ich brings the Electronic 

Design Automat ion (EDA) tools to an even more significant and 

indispensable role in the industry. As the process technology advances, the 

requirements for EDA techniques become more and more sophisticated. EDA 

opt imizat ion techniques mainly include reducing the circuit area, delay and 

power f rom different stages of the VLSI design. As technology advances to 

deep submicron, people's concerns have gradually shifted f rom area to 

t iming and power dissipation. 

Retiming is an EDA opt imizat ion technique which is original ly designed 

for t im ing opt imizat ion [1]. I t minimizes the circuit clock period for 

sequential circuits by repositioning fl ip-flops across the combinational 

elements of the circuit. The later works in ret iming involve opt imiz ing the 

cycle time [1] [2], reducing the area by min imiz ing the number of f l ip-f lops [3] 

4] etc. It has been also applied to different practical applications, such as 

logic synthesis [4] [5], circuit partit ion[6][7], power reduction [8] [9]and 

testability[10；. 

In most of the existing approaches, the problem of f l ip- f lop placement is 

v iewed f rom a purely graph-based perspective, w i t h all logic information 

about the circuit being discarded dur ing retiming. Approaches which 

incorporate ret iming w i t h logic re-synthesis are thus proposed in [4] to try to 

exploit the possibil i ty of improvement by ut i l iz ing the extra freedom. 
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In [4], the authors proposed a circuit optimization approach in wh ich all 

the f l ip-f lops are temporari ly moved to the boundaries of the combinational 

network using retiming. Re-synthesis is then performed on the combinational 

logic between the fl ip-flops. This is one of the first attempts to couple the 

movement of f l ip-f lops by ret iming and combinational re-synthesis 

techniques to achieve circuit optimization goals. However, their technique is 

pr imar i ly targeted at min imiz ing the number of literals of the circuit. No real 

placement information is ut i l ized to handle the interconnect delay factor that 

dominates in circuit design nowadays. Clearly, any logic synthesis f low 

wou ld be more accurate and effective if physical information obtained f rom 

real place and route can be integrated together. 

As the VLSI process technology scales down to a deep submicron era, 

tradit ional ret iming algori thm which ignores the interconnect delay is no 

longer accurate enough, because the interconnect delay can be much 

dominat ing and larger than the logic/gate delay. In [11], the ret iming 

problem is re-formulated to include both gate and interconnect delays, in 

wh ich the interconnect delay is assumed to be proport ional to the wire 

length. 

However, as demonstrated in [12], the optimal clock period gained f rom 

ret iming may not be feasible after the circuit is really placed. As a large 

number of f l ip-f lops are relocated and the f l ip- f lop number w i l l usually 

increase after retiming, a tradit ionally retimed opt imal clock period might not 

be close to reality in a legalized placement. Moreover, a larger amount of 

power consumption can be introduced due to the increased fl ip-flops. 

Therefore, besides delay improvement, it's also important to cut down the 

ret iming-induced f l ip-f lops for both area and power reductions, wh ich is a 
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problem not addressed in [11]. 

In this work, we w i l l integrate an interconnect delay based retiming w i th 

rewir ing to achieve better and more accurate circuit optimizations. Rewiring 

13-16] is an optimization technique in logic re-synthesis, a powerful tool for 

combinational logic transformation and circuit optimization. We demonstrate 

that w i t h the application of logic transformation using rewiring, we can 

further reduce the number of flip-flops on an interconnect delay retiming 

(18.7%). In addition, as a good by-result, due to the reduction on fl ip-flops, 

the power consumption estimated by Power Compiler gives a considerable 

reduction (8.26%) on the total dynamic power of the circuit. 

This thesis is organized as follows. Chapter 2 introduces the rewir ing 

backgrounds and algorithms. Chapter 3 reviews previous work in retiming, 

including Min-clock period retiming, Min-area retiming, ret iming for low 

power, and interconnect retiming. Chapter 4 presents the rewired ret iming 

optimization technique for f l ip-f lop reduction. Chapter 5 analyzes the power 

reduction due to the use of the optimization scheme. Chapter 6 gives the f inal 

conclusion. 

• End of chapter. 



Chapter 2 

Rewiring Background 
Rewiring, originally proposed in [13] and [14], is a powerful technique for 

combinational optimization. Rewiring can be viewed as a procedure of logic 

transformation on the combinational part of the circuit. I t transforms the 

circuit through replacing certain wires by adding some extra wires to the 

circuit, whi le maintaining the logic function of the circuit unchanged. The 

wires being removed are called target wires (TWs), whi le the extra wires 

added are called alternative wires (AWs). Guided by a suitable cost function, 

the appropriate target wires and alternative wires can be selected to achieve 

different optimization objectives, including logic minimization [13] [15], post 

layout t iming optimization [14], technology mapping [16] [17], FPGA rout ing 

[18] [19] and circuit part i t ioning [20]. From all the previous works, we can 

learn that rewir ing algorithms provide flexible and powerfu l logic 

transformation which can be used to optimized circuits' performance for 

different goals. This strongly motivates us to apply rewir ing to improve 

ret iming 

A n example of rewir ing is shown in Fig.2.1. 

T 

Fig.2.1 (a) Original Circuit 
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Fig. 2.1 (b) Rewired Circuit 

The original circuit is shown in Fig.2.1(a). Suppose we want to remove the 

wire g l ->g5( red line, TW), the rewir ing is done as the follows: 

1. add a gate g6 to connect the output of g l and c to the input of g4. (by doing 

this, actually a wire is added f rom g l to g4). 

2. remove the wire g l—g5 

3. the gate g5 has only one input left and becomes removable 

Finally, the rewired circuit is shown in Fig.2.1(b). The funct ion 

y = (a + b)c + ab = ac + be + ab remains the same as Fig.2.1.(a). 

Over the years, a lot of effort has been made in developing rewir ing 

algorithms. There are now existing three main rewir ing algorithms, namely 

the Automated Test Pattern Generation (ATPG)-based, graph-based, and Set 

of Pairs of Functions to be Distinguished (SPFD)-based algorithms. In our 

work the ATPG-based rewir ing is adopted, and thus i t w i l l be described in 

detail in the fo l lowing sections w i t h brief introduct ion of graph-based 

rewi r ing 
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2.1 REWIRE 

The most commonly used rewir ing technique is Automatic Test Pattern 

Generation ( ATPG ) based. It converts the problem of f inding 

target-alternative wire pairs into a problem of seeking undetectable stuck-at 

faults where ATPG technique is applied. The basic idea of the ATPG-based 

rewir ing technique is to add a redundant wire/gate to make other 

wires/gates redundant and removable. Redundancy inside a circuit means 

that the logic value of a connection or a component has no effects on the 

circuit outputs. 

REWIRE is an ATPG-based rewir ing algorithm which utilizes the 

undetectable stuck-at-fault inside the circuit to f ind alternative wires and to 

make the target wire redundant. For a given target wire, the algorithm 

computes the Mandatory Assignments (MA) [13] for the test of the target 

wire. Mandatory Assignment is a set of values that assigned to the inside of 

the circuit such that the fault at the target wire can propagate to the pr imary 

output. If a set of consistent M A of the target wire does not exist, i t means 

that the stuck-at-fault of the target wire is not detectable at the pr imary 

output, which means that the target wire is redundant and removable. If a set 

of M A for the target wire originally exists, we can try to add a redundant 

wire to the circuit, so that the M A becomes inconsistent and the target wire 

becomes undetectable and removable. Such a redundant wire is called 

alternative wire. After adding an alternative wire to the circuit, we have to 

check whether it is redundant as well, we can do this by a similar process, i.e. 

assigning the newly added alternative wire as a target wire and check its M A , 

if a consistent set of M A does not exist, i t is a redundant wire. 

The example in Fig. 2.2 shows how the rewir ing works. g3 g7 is a 
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candidate wire to make g l — g5 redundant and removable. We test the 

stuck-at-1 fault at g l -> g5. First, we set {a = 0, b = 0} to make g l = 0. To 

propagate the fault to the primary output o l , the side inputs to g5, g6, g7, and 

g9 should have non-controll ing values, i.e. {e = 1, g4 = 0, g3 = 1, f = 1, g = 0}. 

g4 = 0 requires {g2 = 0, b = 0}. So g l has to be 1 to make g3 = 1, but we have 

set g l = 0. The conflict means that there is no test vector to detect this fault. 

Hence g l g5 is redundant and removable. 

Fig.2.2 example of ATPG-based rewir ing 

2.2 GBAW 

Graph-based rewiring uses graph pattern matching to find target wires and 

alternative wires. GBAW is a graph based rewir ing algorithm [22]. I t uses a 

set of graph configurations, which are called Patterns. Patterns are 

pre-defined graph representations of sub-circuits which contains alternative 

wires. Figure 2.3 is an example of a pattern. The target wire to the NOR gate 

can be replaced by the alternative wire to the A N D or N A N D gate. Figure 2.4 

shows a circuit containing a pattern local 13 (the pattern is embraced w i t h the 

dashed box). 
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NOR AND /NAND NOR AND/NAND 
Target Wire Alternative Wire/^~\ 

t O CX：；^^^；；；；：^^ 

Alternative Wire Target Wire 

Figure 2.3 Example of GBAW Patterns 

GBAW transforms the problem of f inding target wires and alternative wires 

into matching patterns. It searches for alternative wires by performing 

pattern matching on the circuit f rom the library of patterns. GBAW is time 

efficient in f ind ing alternative wires, on average it is around 150 times faster 

than REWIRE. However, the number of alternative wires found by GBAW is 

much less than that of REWIRE. 

• End of chapter. 



Chapter 3 

Retiming 
The previous chapter has introduced the background of the rewir ing 

technique, w i t h specific details in ATPG-based rewir ing. Next, we are going 

to see how this technique can be incorporated into retiming, and before that, 

this chapter w i l l review the ret iming technique, including its original 

formulat ion, advancement, w i t h particularly its application to power 

opt imizat ion and its drawbacks in today's technology. Retiming involves 

opt imiz ing the cycle time (Min-Clock Period Retiming) [1] [2], reducing the 

area by min imiz ing the number of f l ip-f lops (Min-area Retiming) [3] [4] etc. I t 

has been also applied to different practical applications, such as logic 

synthesis [4] [5], circuit partit ion[6][7], power reduction [8][9]and 

testability[10]. We are going to see why we need rewir ing for the 

improvements of retiming, in terms of delay and placement estimation, 

tradit ional area reduction, as wel l as power reduction, which has captured 

much attention in today's technology. 

3.1 Min-Clock Period Retiming 

The earliest ret iming formulat ion is given by Leiserson and Saxe [1]. I t is a 

graph-based opt imizat ion technique to get the feasible min imal clock cycle by 

reposit ioning the f l ip-f lops in a sequential circuit w i thout violat ing the 

circuit's funct ion and t iming constraints. 

In a classical ret iming formulat ion, A sequential circuit C is represented 

by a directed graph G(V, £, d, zo). Each node v corresponds to a combinational 

gate and each directed edge e(u, v) represents a connection f rom the output of 
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gate u to the input of gate v. For each combinational element v in the circuit, 

there is a propagation delay d(v). The number of flip-flops are modeled as 

weight w(u, v) on the edge e(u, v). If there are n flip-flops on the edge e(u, v), 

e{u,v) has a weight w(u, v) = n. 

A n example is shown in Fig.3.1 (c). Consider a circuit composed of two 

comparators, one adder and two flip-flops. A comparator has a function 

S{x,a) = 1 if X = a, 

else S{x,a) = 0 

an adder has a function: 

adder {x,y) = x + y 

A comparator has a delay of 3ns; an adder has a delay of 7ns. The 

pr imary input and output of the circuit is represented as a "Host" element 

w i th 0 delay. Originally there are two flip-flops at the wire f rom the "Host" to 

the first adder. 

S(x,a) 

X © 
a 

X 

Fig. 3.1 (a) Comparator 
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X X + y 

V 

Fig.3.2 (b) Adder 

Host 

Fig. 3.1 (c) original circuit 

0 

Fig. 3.2 Graph representation of the original circuit 
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r(v) = -1 r(v) = +1 

Fig.3.3 Basic retiming operations 

As shown in Fig.3.2, the circuit of Fig.3.1(c) is represented by a retime 

graph. Each node on the graph represents a combinational element (adder or 

comparator). The numbers on the nodes are the delays of the combinational 

elements d(v). The weight on the edges (zu(u, v) ) are the number of fl ip-flops 

on the edges. 

For a path p, f rom vertex to , w i t h edges e^, ... 

d(p�= jy{v 丨) 

0 

k-\ 

0 

The clock period is defined as: 

c = max{6/(p)}(厂 zv(p)=0) 

As the clock period is the longest delay f rom one f l ip-f lop to another. The 

original circuit has a delay of 13, which is calculated as 3+3+7 = 13, the sum of 

the longest path delay. 

A retime value of integer type r(v) is defined for each node v to represent 

the f l ip-f lop movements across the node, as shown in Fig.3.3. r(v) of a positive 
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value m stands that there w i l l be m fl ip-flops moved f rom every output edges 

of V to every input edges of v. Similarly, a negative r(v) value of - m stands for 

the opposite mov ing direction. The weight w'(u,v) after ret iming is w'(u,v)= 

10(u, v) + r(v) - r(u) 

To represent the ret iming operation of Fig.3.2, each of the nodes in Fig.3.2 

has its retime value r(v), which is shown in Fig, 3.4. 

From Fig.3.4 we can see the two comparators have a -1 value, which 

means that 1 f l ip- f lop is retimed f rom their input to their outputs. As a result, 

the graph after ret iming is shown in Fig. 3.5. In Fig.3.5, the new clock period 

is reduced to 7, as the original critical path of 13 is broken by fl ip-flops. 

0 

Fig.3.4 Retime value r(v) 
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Fig.3.5 Graph representation of the retimed circuit 

Therefore, classical retiming can be viewed as an integer value vertex 

labeling of the retime value on the graph such that by the specified adding 

and removing of flip-flops, the new graph has the minimal achievable clock 

period whi le the structure of the graph is unchanged. 

In [2], the algorithm for minimiz ing the clock period of a circuit is based 

on two quantities defined as: 

W(u, v)= min{w(p)： u— v} 

D(u, v)= max[d(p): u—v and zy(/?)=W(u, v)) 

W(u,v) is the m in imum number of fl ip-flops on any path from vertex u to v, 
D(u, V) is the maximum total propagation delay on any critical path from u to 
V. 

Based on these two quantities, [2] developed the fol lowing lemmas, 

which are the basic tool needed to solve to min-clock-period retiming 

problem. 

For a given clock period c, the retimed circuit has a clock period c' = c if 

and only if: 

(1) r(u) - r(v) ^ zu(u, v) for every edge e(u,v) of G 

(2) r(u) - r(v) ^ W(u, v) -1 for all vertices such that D(u, v) > c 
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The constraints on the unknowns r(v) are linear inequalities involv ing 

only differences of the unknowns, and thus they can be regarded as an 

instance of a linear programming problem. Using the Bellman-Ford 

algori thm to test whether a given clock period c is feasible takes only 0(|V|^) 

for the 0(|V|2) inequalities. The algorithm to solve the m in imum clock 

period is summarized below: 

1. Compute all W(u, v) and D(u, v) for all u, v G V such that u is connected 

to V 

2. Sort the elements in the range of D 

3. Binary search among D(u, v) for the m in imum achievable clock period. 

Use the Bellman-Ford algorithm to test whether the clock period is 

achievable. 

4. For the m i n i m u m clock period found in step 3, use the values for the r(v) 

found as the opt imal ret iming solution. 

Yet, [2] proposed a more efficient algorithm to determine whether a given 

clock period is feasible, by iteratively relaxing the constraints for each 

tentative retiming. This efficient algori thm takes only 0(|V||E|) time, which 

is a significant improvement of the original 0(|V|^). Combined w i t h the 

Binary search, the author gave a 0(|V||E| lg|V|) algori thm which can solve 

the min-clock-period problem. 

The ret iming problem can also be formulated as a Mixed-Integer Linear 

Programming (MILP) problem. 

For a graph G(V, £, d, w), there exist a legal ret iming such that c' = c if the 

fo l lowing constraints are satisfied: 
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For every vertex v, if there exist a real value s(v) and an integer value r(v) 

such that 

-s(v) = - d(v) for every vertex v E V 

s(v) = c for every vertex v 6 V 

r(u) - r(v) ^ w(u, v) for every edge e G E 

s(u) - s(v) ^ - d(v) for every edge wherever r(u) - r(v) = w(u, v) 

Based on the above constraints, we can solve the ret iming problem using 

mathematical programming approach. A n algorithm is derived f rom this 

MILP basis. The basic steps of the algorithm are shown as follows: 

1. Compute all W(u, v) and D(u, v) for all u, v e V such that u is connected 

to V 

2. Sort the elements in the range of D 

3. Binary search among D(u, v) for the m in imum achievable clock period. 

Use the MILP to test whether the clock period is achievable. 

4. For the m i n i m u m clock period found in step 3, use the values for the r(v) 

found as the opt imal ret iming solution. 

Step 1 runs in 0(|V||E| + |V|Mg|V|) if the Fibonacci heap data structure 

by Fredman and Tarjan [23] is used for the all-pairs shortest paths algori thm 

[24]. Step 2 runs at 0(|V|Mg|V|) for the 0(|V|2) elements. Every iteration in 

the binary search of step 3 requires solving a MILP w i t h | V | integer 

variables, | V | real variables, and 2 | V | +21E | inequalities. The total t ime of 

step 3 is thus 0(|V||E| lg|V| + iVl^lg^lVl). Therefore, the total runt ime of the 

algori thm is 0(|V||E| lg|V| + iVl^lg^jVl). 

Though the theoretical formulat ion by Leiserson and Saxe to solve the 

ret iming problems have polynomial complexity, the implementations of the 

algor i thm is not considered and lead to h igh complexity for large circuit w i t h 
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more than 500 combinational cells. Shenoy et al. [25] addresses the 

implementation issues required to exploit the sparsity of circuit graphs to 

al low min-period ret iming as wel l as constrained min-area retiming to be 

applied to circuits w i t h as many as 10,000 combinational cells. Recently, Zhou 

[26] proposed an efficient incremental algorithm for min-period retiming 

which iteratively moves FFs to decrease the clock period whi le guarantees to 

f ind the opt imal solution in a short time. 

3.2 Min-Area Retiming 

There can be more than one solution to reposition the f l ip flops, while 

achieving the same optimal clock period. Min-area retiming is therefore 

targeted at min imiz ing the number of flip-flops, such that the total area of the 

circuit can be minimized. Min-area retiming minimizes the FF area under a 

given clock period, thus could be used to minimize the FF area even under 

the m in imum clock period. 

Based on the classical Min-clock period retiming, Min-area retiming is a 

technique which further solve for a solution w i th min imum total weights. 

The basic formulat ion of the problem is the same, a sequential circuit C is 

represented by a directed graph G(V, E), each combinational element is 

represented by a node v, and each connection is represented by and edge e(u, 

V). The f l ip flops on the edges are denoted by the weight on the edges. r(v) is 

also used to represent the number of flip-flops that are retimed backward 

across the node v. The weight w'(u,v) after retiming is w'(u,v) = w(u, v) + r(v) 

- r ( u ) . The min-area ret iming objective is to minimize the total number of 
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f l ip-flops, i.e., E w ' is min. Using (3), this leads to the fo l lowing opt imizat ion 

problem: 

r(v) . ( I FI(v) I - I F〇(v) I) — min imum 

where FI(v) and F〇(v) represent the set of fanin and fanout gates of gate v. 

The early Min-area ret iming basically fol lows the Min-clock period 

ret iming idea of Leiserson and Saxe. Later, a lot of work has been done to 

study the Min-area ret iming algorithm. Shenoy et al. [25] were among the 

first to consider a practical implementation of the min-area ret iming 

algorithm. They proposed techniques to prune away redundant constraints, 

which lead to higher efficiency in time and space usage to solve the problem. 

Singh et al. [27] also proposed to incrementally move FFs in the circuit to 

overcome the expenses of previous approaches to min-area retiming, 

however, their approach is a heuristic which only looks for better moves and 

may end up w i t h sub-optimal solution. Recently, Jia Wang et.al. [28] 

proposed an efficient algori thm iMinArea wh ich can solve the Min-area 

ret iming problem incrementally and optimally, and the runt ime is proved to 

be much faster than all existing approaches. 

3.3 Retiming for Low Power 

Power dissipation has been receiving more and more concerns today, a lot of 

opt imizat ion techniques have been applied to this area, and ret iming is one of 
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them. As ret iming is a technique which can lead to strong effect on the critical 

path delay, number and posit ion of the flip-flops, etc., which are all 

significant factors of a circuit's power dissipation. 

Previous works in this f ield mainly consider reducing the switching 

activities of the circuit. As switching activities are largely due to the posit ion 

of fl ip-flops. Switching activity is a significant cause of power dissipation in 

combinational and sequential circuits. Logic synthesis has been used to 

improve the power dissipation of a circuit. In [29], a new cost function for 

combinational logic synthesis targeting low power was presented. A method 

to speed up a sequential circuit using ret iming and lowering power 

dissipation (and increasing delay) by scaling down the power supply voltage 

was presented in [30]. There are also methods that lowered power dissipation 

by restructuring the combinational logic. In [31], the authors investigated the 

application of ret iming to modi fy the switching activities on internal wires of 

a circuit and demonstrate the impact of these techniques on average power 

dissipation. 

Fig.3.6 (a) Switching activity and power dissipation 

Fig.3.6 (b) Switching activity and power dissipation after retiming 
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The power dissipation of a gate g is proportional to the output switching 

£ E 

activity 、‘ times the load capacitance of its fanout C, i.e. ^ C. The effect of 

ret iming on switching activity is demonstrated in Fig.3.6. LO, L I and L2 and 

combinational elements of the circuit, the power dissipation of (a) is 

^oC,. the power dissipation of (b) is 五oC, + 五,C" + 五厂C?, ^^^ 

power dissipation of (a) and (b) is different, generally Ef is less than 五i, 

because the output of FF changes at most once every clock period, by the 

same token, is less than E\ Therefore, changing the position of FF can 

have an influence on the total power dissipation. A general idea is to retime 

the FFs to the wires w i th high switching activities. 

In [31], the nodes are selected by a cost function, based on the switching 

activity at their output and the number of fanouts. 

Weight (J) = P{i) * (m(/) + no{i)) , where P(i) is the power estimated by 

switching activity and load capacitance, ni and no are the numbers of fanins 

and fanouts. 

The switching activity is estimated by the probability that a transition 

propagates through its transitive fanout. Retiming is then executed based on 

the cost function, t ry ing to place FFs at the fanouts of high switching gates. 

In [32], the authors conduct an empirical study of power dissipation 

when different levels of pipel ining are added to a circuit. They discovered 

that by adding more levels of pipelining to a sequential circuit, more gates 

are l ikely to have balanced paths and so there is a power reduction. 
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In [33], the authors propose an algorithm for pipeline insertion in a 

sequential circuit. Since this is the only known algorithm for low power 

retiming, i t warrants close inspection. The first step of their algori thm is to 

perform a detailed power estimation of all the gates in the network. Each gate 

is then weighted by three factors: (1) The amount of gl i tching activity at the 

gate (the dierence between the switching activity under a general delay 

model and the zero delay model) (2) The probabil i ty that a transition at a gate 

results in transitions in the gate's transitive fanout (at most two levels ahead) 

(3) The number of fanouts of the gate. Latches are then placed in a greedy 

fashion in f ront of the gates based upon their weights. In an attempt to reduce 

the total latch count, the nal step of their algorithm is to forward retime gates 

which are not on the same paths as the gates that were greedily retimed. The 

approach in [33] has three limitations: (1) Their algorithm requires a costly 

simulat ion for each level of pipel ining that is inserted. (2) Placing a latch in 

front of a gate may prevent the propagation of a glitch at the cost of the 

generation of a new glitch. (3) Their algori thm may introduce large latch 

counts. 

As reported in [34], in reality the power consumed by a single latch is 

considerably greater than the power consumed by a single transition. I t is 

very l ikely that the power dissipation can be cut down further if the number 

of FFs can be reduced. 

So far, the effect of using ret iming to reduce power is not obvious 

applicable, s imulat ing the switching activity and combined into ret iming is a 

tedious task, yet, i t is obvious that reducing the number of FFs is critical for 

reducing the total power dissipation and beneficial for clock tree generation. 
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3.4 Retiming with Interconnect Delay 

As the VLSI process technology scales down to a deep submicron era, a major 

drawback of the traditional retiming approaches (both Min-period retiming 

and Min-area retiming) is that in all the retiming algorithms above, the 

interconnect delay (or wire delay) is not considered into a path delay. 

However, in today's technology, interconnect delay has become a 

predominant factor which can be much more than the delay of a gate. Hence, 

not only gate delay should be considered but more importantly, the 

interconnect delay. The traditional formulation which ignores the 

interconnect delay is therefore not accurate enough regarding delay 

estimation. 

The work of [11] gives us a new ret iming formulation including both gate 

delay and interconnect delay. Based on experiments conducted in [11], the 

interconnect delay is nearly proportional to the interconnect wire length, 

therefore, the formulation assumes that the interconnect delay is proportional 

to the wire length. The wire length can be estimated by the Manhattan 

distance between the connected cells in the given placement. 

Similar to the Min-clock period retiming, a circuit C is represented by a 

corresponding graph G(V, E, w, d). Each node v corresponds to a 

combinational gate and each directed edge e(u, v) represents a connection 

f rom the output of gate u to the input of gate tj. For each combinational 

element v in the circuit, there is a propagation delay d(v). The number of 

f l ip-flops are modeled as weight w(u, v) on the edge e(u, v). Besides, the 

interconnect delay on an edge e(u, v) is represented by d(u, v), wh ich is 

estimated f rom the Manhattan distance between the corresponding cells in 

the given placement. 
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I t is assumed that G is strongly connected. If not, [11] stated that a source 

node s can be added to the circuit and connect it to all pr imary inputs, and a 

target node t can be added as wel l and connect all pr imary outputs to it, and 

connect t to s. Then the resulting graph is strongly connected. The delay of s, t 

and all the added edges are set to zero; the number of registers on the edge 

f rom t to s is set to one and that on the other added edges set to zero. Then a 

ret iming solut ion of the modif ied graph w i l l also be a val id ret iming solution 

of the original graph. 

One method [11] for the problem is extended from the Mixed Integer 

Linear Programming method introduced in 3.1. This method can guarantee 

the opt imal solution. In the original Min-clock period ret iming formulation, 

only gate delay is considered, however, the MILP mathematical 

programming approach can be extended to solve the problem w i t h both gate 

and interconnect delay optimally by modi fy ing some of the constraint 

formulation. 

A variable a(v) is defined for each node v to represent the max imum 

arrival t ime of v. As shown in Fig.3.7, a(v) is the time given for a signal to 

travel f rom a f l ip- f lop fanin to a node v to the output of the node v. If there 

are mult ip le f l ip-f lops, a(v) is given for the one w i th longest path delay to v. 
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Fig.3.7 example of the arrival time [11] 

The MILP is formulated as follows: 

d{v) < a(v) VveV (1) 

a(v) < T VveV (2) 

r(v) + wCu, v) - r(u) > 0 VeeE (3) 

a(u) + d(u, v) + d(v) - T(r(v) + w(u, v) - r ( u ) ) < a(v)�eeE (4) 

Constraints (1) and (2) are obvious. (3) is the number of flip-flops after 

ret iming on the edge e(u, v). For a legal retiming, the weight should never be 

negative. (4) is a new constraint considering the interconnect delay. (4) can be 

interpreted as the arrival time of a signal f rom a f l ip-f lop to a node v must be 

larger than or equal to the delay of the path f rom the fl ip-f lop to the node v. 

If we define a real variable R(v) as R(v) = a(v) /T + r(v), the constraints (1) 

to (4) can be transformed to : 

/?(v)-/-(v) > "^(v) 
T 

R{v)-r{y)<\ 

r{u)-r{v) < w{u,v) 

V v e F (5) 

V v e K (6) 

\/e{ii,v) e E (7) 

• 水 E (8) 

T T 

There are | V | real variables R(v), | V | integer variables r(v), and 

2| V | + 2 | E | constraints. This problem can be solved in 0(|V||E| lg|V| + 
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|V|2lg2|V|)if the Fibonacci heap [23] is used as the data structure. If these set 

of constraints can be solved, which means that the clock period T and the 

variable r(v) is decided, we can determine the exact position of the f l ip-f lops 

on the wire. Besides, [11] also proposed a fast near optimal approach (0.13% 

more than the opt imal clock) for the interconnect delay retiming, by first 

reducing the problem to the single source longest path problem. 

• End of chapter. 



Chapter 4 

Rewired Retiming for Flip-flop 
Reduction 

The last chapter has reviewed the previous works of retiming, f rom the most 

classical Min-period retiming, to new approaches in Min-area retiming, 

interconnect delay retiming and the application to power reduction. 

Throughout the whole picture, we can see retiming is a topic which closely 

follows the step of technology advancement and has attracted much attention 

due to its potential for area, t iming and power optimization. However, there 

is stil l plenty of space to explore in this area as previous optimization related 

to ret iming seldom consider interconnect delay, and there is a need to 

develop optimization tools for area, t iming and power based on this more 

accurate delay model. Considering w i th logic synthesis is a good opportunity 

for us to achieve further improvement on this subject. This chapter is going to 

talk about the rewired retiming technique in detail as proposed by the author. 

4.1 Motivation and Problem Formulation 

As demonstrated in the previous chapter, in today's deep submicron 

technology, tradit ional ret iming algorithm which ignores the interconnect 

delay is no longer accurate enough, because the interconnect delay can be 

much dominating and larger than the logic/gate delay. However, most 

existing ret iming related applications and their optimization don't consider a 

more accurate delay model w i t h interconnect delay, unt i l this problem is 

addressed in [5], where the ret iming problem is re-formulated to include both 

gate and interconnect delays, in which the interconnect delay is assumed to 
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be proportional to the wire length. 

Nevertheless, as demonstrated in [12], the optimal clock period gained 

from ret iming may not be feasible after the circuit is really placed. As a large 

number of f l ip-flops are relocated and the f l ip-f lop number w i l l usually 

increase after retiming, a traditionally retimed optimal clock period might not 

be close to reality in a legalized placement. Moreover, a larger amount of 

power consumption can be introduced due to the increased flip-flops. 

Therefore, besides delay improvement, it's also important to cut down the 

retiming-induced fl ip-flops for both area and power reductions, which is a 

problem not addressed in [11]. 

Therefore, we try to integrate the interconnect based retiming with 

rewir ing to achieve better and more accurate circuit optimizations. Our 

experiment demonstrate that w i th the application of logic transformation 

using rewir ing, we can further reduce the number of flip-flops based on the 

models introduced in [11:. 

The example in Fig. 4.1 shows how the rewir ing helps in reducing the 

number of f l ip-f lops through logic transformation. Assuming that each logic 

gate has a delay of 1 unit, whi le the interconnect delay is proportional to the 

(shortest) Manhattan distance between the placed logic elements. In Fig. 1 (a), 

the init ial circuit has a clock period of 33 w i th two FFs. A conventional 

ret iming wou ld produce a solution (Fig. 1(b)) w i th a reduced clock period of 

22 however w i t h an increased FF count of three. As a new FF is added to the 

wire d — g4, we wou ld try to see if we can remove this wire. Using rewir ing 

technique, we know that d ^ g3 is an alternative wire for the target wire 

d->g4. After a rewir ing transformation, the retiming solution uses only two 
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FFs, w i t h clock period of 21.5. The rewired circuit after ret iming is shown in 

(c). 

(a) The initial circuit: clock period is 33. A FF is going to move across g4 
guided by retiming. By rewiring implication, d^g3 is an alternative wire 
to replace d ^ g 4 

in 

(b) Retiming without rewiring: the clock period is reduced to 22, while FFs are 
increased. 

(c) Retiming after rewiring: after replacing d ^ g 4 by d->g3, the number of FF 
is reduced compared to (b), the retimed clock period is 21.5. 

Fig. 4.1: Fl ip-f lop reduction using ret iming and rewir ing 
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The rewired ret iming problem can be formulated as follows: 

Given a sequential circuit C and its placement P, based on an interconnect 

delay model, we can compute its initial retiming solution: the min imum clock 

period T and the number of FFs n after retiming. 

App ly ing several iterations on rewir ing transformations, we want to f ind 

a functionally equivalent circuit C and its corresponding placement P', such 

that after ret iming for C based on P', the number of FF n' is considerably cut 

down f rom n, whi le the clock period T is not worse than T. 

4.2 Retiming Indication 

In order to achieve better delay estimation and make our technique more 

practical, here we adopt the delay model proposed in [11]' in which the 

interconnect delays are assumed to be proportional to wire lengths, i.e. 

interconnect delays are estimated from the shortest Manhattan distance 

between the connected cells in the given placement. Gate delay is assumed to 

be 1 uni t of the wire delay. Though there can be many other different delay 

models, we assume that a general f low responsive to a reasonable cost 

function can also be effective to others. We implement the Mixed Integer 

Linear Programming approach to solve the interconnect delay retiming 

problem. 

As discussed in chapter 3, a graph G(V, E, w, d), is used to represent the 

sequential circuit. Each node v corresponds to a combinational gate and each 

directed edge e(u, v) represents a connection f rom the output of gate u to the 
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input of gate v. For each v in the circuit, there is a propagation delay d(v). The 

number of f l ip-f lops are modeled as the weight w(u, v) on the edge e(u, v). w(u, 

v) is a non-negative integer. The interconnect delay of edge e(u, v) w i thout 

any FF is represented by d(u, v). 

A retime value of integer type r(v) is defined for each node v to represent 

the f l ip-f lop movements across the node, as shown in Fig.4.2. A n r(v) of a 

positive value m stands that there w i l l be m flip-flops moved f rom every 

output edges of v to every input edges of v. Similarly, a negative r(v) value of 

- m stands for the opposite moving direction. Beware that in some ret iming 

works involv ing placement, mult iple fanouts can share the same FF when the 

circuit is placed, whose results can reduce FFs needed a bit but are highly 

dependent on the actual placement tool applied. In order to see a fairer 

comparison on the FF reductions produced by our f low, in this paper we 

assume that in this case each fanout should take one FF, i.e. we disallow the 

possibility of FF sharing on fanouts. When the circuit is f inally placed, we 

place the same number of FFs as produced by the retiming procedure. 

r(v) = -1 r(v) 二 +1 

Fig.4.2 ret iming fl ip-flops forward and backward 
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Finally, based on the mixed integer linear programming (MILP) approach 

(constraints (5) 一 (8) in chapter 3.4, by introducing a variable R(v) = a(v) /T + 

r(v) for each node v, a set of constraints are formulated as follows: 

R{v)- r(v) > d{v) 
T 

R{v)-r{v)<\ 

r{u)-r{v) < w{u,v) 

T T 

V v g K 

VveV 

Ve(u,v) e E 

Ve(u,v) e E 

(5) 

(6) 

(7) 

(8) 

This problem can be solved in 0(|V||E| lg|V| + |V|2lg2|V|). By solving r(v) 

for each node, the weight of each edge after retiming is decided. Therefore, in 

our iterative optimization process, the variable r(v) is used to predict the 

movement of FFs. Once we f ind a retiming solution, the optimal clock period 

T, r(v) of each node is produced as a side effect, and we make use of this 

value to indicate the movement of FFs. Once this information is obtained, 

some heuristics can be developed to guide the rewir ing optimization process. 

4.3 Target Wire Selection 

Given a target wire, rewir ing is able to f ind a list of alternative wires 

which when added to the circuit, can make the target wire redundant and 

thus removable. For a sequential circuit, the logic implication [13] is done 

only w i th in the combinational sub-network bounded by FFs. Therefore, the 

alternative wires are w i th in the same combinational sub-network of the target 
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wire. A wire w i t h FFs is treated as a primary input or output of the 

sub-network and cannot be a target wire. 

By selecting TWs which have an effect on the movement of the FFs, the 

FFs produced by ret iming could be different. Here, a few heuristics are 

developed based on some typical conditions observed to guide the selection 

of TWs. 

Consider an edge e(u, v) {u is a fanin to v) as shown in Fig.4.3, where r(v) 

denotes the number of FFs moved from v's fanouts to its fan-ins, and r(u) 

denotes the number of FFs moved from u's fanouts to its fanins. There are 

two conditions which are effective in FF reduction: 

Fig.4.3 (a) Condition 1: e(u, v) is selected 

Fig.4.3 (b) Condition 2: e(u, v) is selected 

Condition 1: r(v) - r(u) > 0 {r(v) > 0), there is FF moved from the fanout(s) of v 

to this edge and the other input edge(s) of v. Therefore, by replacing e(u, v) by 

an alternative wire is l ikely to reduce FF after retiming, e(u, v) is selected as a 

target wire. 
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Condition 2: r(v) - r(u) > 0 (r(u) < 0), there is FF moved from the fanin edges 

of u to the fanout(s) of u. If u has more than 1 fanout edges, replacing e(u, v) 

by an alternative wire is likely to reduce FF after retiming, e(u, v) is selected 

as a target wire. 

On the above two conditions, FFs in this edge w i l l have a net increase 

after ret iming as they w i l l be moved in either from the fanout(s) of v and/or 

fanin(s) of u. Therefore, selecting e(u, v) as a target wire and replacing it by its 

alternative wire (before applying retiming) is likely to reduce the number of 

FFs of the ret iming result. 

Consider other conditions, if r(v)-r(u)<0, e(u, v) must already have FF 

before ret iming (because the weight of an edge can never be negative, which 

is guaranteed by the retiming constraints). A wire w i th FFs is treated as a 

primary input or output dur ing logic implication [13] and cannot be a target 

wire. If r(v) - r(u) = 0, e(u, v) is not selected as target wire, since it has no 

change to the number of FF on this edge. 

In this way, retiming gives us a hint to direct the rewir ing 

transformations. Indicated by the retime value r(v), the wires that have a 

direct effect on the number of FFs are identified as target wires. By replacing 

them w i th their alternative wires, the FFs after retiming are very likely to be 

reduced. The TW-AW list should be updated whenever a rewir ing 

transformation is accepted. 
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Fig.4.4 Example of placement estimation for adding new wire 

In Fig. 4.4, g l and g2 are the source and sink of the alternative wire AW. 

fanout l , fanout2 and fanoutS are the fanouts of g2. In order to add AW, a 
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4.4 Incremental Placement Update 

After rewir ing, we must give an updated placement to support the next 

iteration of ret iming evaluation. To avoid the undesirable influence of the 

randomness rooted f rom re-placement for the whole circuit, we estimate the 

position of the new cells and update the placement incrementally after 

rewiring. Our approach is applicable to both 2-input gates and mult iple input 

gates, for simpl ic i ty we use 2-input gates in our experiment. The update is 

done as fol lows: 

When a target wi re is removed f rom the network, a corresponding sink 

cell having only one input left is removable. In this case, we drop the cell 

f rom the placement, and the positions of all other cells remain unchanged. 

When an alternative wire is added to the circuit, a new gate is added between 

the alternative wire's sink node and its fanout(s), as shown in Fig.4.4 
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new cell New is added to the circuit, connecting g l , g2 and the fanouts of g2 

(bold lines). After adding the new cell and the new net (bold lines), the net 

g2^ fanout l , g2^ fanout2 and g2^fanout3 are removed. 

Assume that the positions of all other cells remain the same, to f ind an 

optimal position for the new gate, such that the total Manhattan distance 

among the g l , g2. New, fanoutl , fanout2 and fanout3 is minimum, is a 

diff icult problem (similar to f inding a Steiner Min imum Tree, which is 

NP-hard). To avoid the complexity, we adopt an arithmetic average position 

to estimate the New gate's position. 

new.x = (g l .x + g2.x + fanout 1 .x + fanout 2.x + fanout 3.x) / 5 
new.y = (gLy + g2.y + fanout 1 .y + fanout 2.y + fanout 3>.y)l 5 

In general, the position (x, y) for the new cell is estimated as: 

new.x = {AWsrc.x + A Wdst.x + ^ fanouts.x) / N 

new.y = (乂 Wsrc.y + A Wdst.y + ^ fanouts.y) / N 

where AWsrc and AWdst are the source and sink of the alternative wire, 

N is the total number of fanouts plus 2 (AWsrc and AWdst). 

As a rewir ing step usually only injects a small perturbation on a local 

area, based on our experiments this calculated position provides a reasonable 

estimation close to the real placement change, thus can be used for the next 

ret iming and rewir ing iterations. After all rewir ing iterations, the rewired 

circuit is retimed and placed again, and the clock period is calculated f rom 

the f inal placement. 
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4.5 Optimization Flow 

A n opt imizat ion scheme combining ATPG based rewir ing and ret iming 

is developed. As shown in Fig. 4.5, the optimization scheme consists of the 

fo l lowing basic steps: 

(1) Ini t ial ret iming: select the init ial TW-AW list based on the init ial 

ret iming indication. 

(2) Perform rewi r ing using a TW-AW pair f rom the TW-AW list. 

(3) Incrementally update the placement according to the rewir ing 

transformation. 

(4) Retiming evaluation: evaluate whether the rewir ing is beneficial, if yes, 

go to (5); i f not, go to (6) 

(5) If the number of accepted transformations is w i th in N (a predefined 

number of total iterations), accept the rewir ing transformation, and update 

the T W - A W list, go to (2) to perform the next iteration; if N is reached, go to 

(8) 

(6) Discard the change, if there is stil l TW-AW pair in the TW-AW list, go 

back to (2) w i t h next T W - A W pair; if TW-AW list is empty, go to (7) 

(7) If the number of perturbations performed is w i th in a predefined M, 

perturb the circuit by randomly performing a rewir ing transformation, 

update the T W - A W list and go back to (2); if M is reached, go to (8) 

(8) Final ret iming and placement, get the clock period. 
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The init ial ret iming and ret iming evaluation both solve the MILP for T 

and r(v) to predict the FF movements and resulting number of FFs, but the 

FFs are not actually moved. 

X a W list 
V 

Final Retiming & Placement 
(get real clock period) Yes 

Go to next Perturb and 
TW-AW Update 

pair TW-AW list 

Fig.4.5 Overall optimization f low 

To make the scheme more efficient, N iterations are div ided into three 

stages (each stage has N / 3 iterations) w i th a different def ini t ion of whether a 

rewi r ing is beneficial or not. 
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Stage 1: the transformation is beneficial if the clock period is less than or 

equal to the init ial clock period, and the number of FFs is less than the 

ret iming solution w i t h the least FFs so far. This is a greedy stage 

Stage 2: the transformation is beneficial if the clock period is w i th in 1.25 

times of ini t ial clock period, and the number of FFs is less than the ret iming 

solution w i t h the least FFs so far. 

Stage 3: the transformation is beneficial if the clock period is less than or 

equal to the ini t ial clock period, and the number of FFs is less than the best 

result of stage 1. 

Finally, the best result w i th least FFs and no larger clock period comes 

f rom stage 3 or stage 1 w i l l be taken. The final circuit is retimed and placed, 

and the clock period is obtained f rom placement under the same delay 

model. 

4.6 Experimental Results 

The experiments were performed for the ISCAS89 benchmark suite. The 

benchmark circuits were first mapped w i t h a l ibrary consisting of common 

logic gates (Inverters, A N D gates, OR gates, N A N D gates, NOR gates). The 

max imum number of fanins for a gate is 2. The init ial placements of the 

circuits were generated by the Capo 10.5 placer. The program was 

implemented in C language, the ret iming MILP constraints are solved by 

ILog Solver 6.0. Experiments were run on a Sun Blade 2500 (2 x 1.6GHz 

US-IIIi) 2GB R A M Solaris 8 machine. 
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The number of iterations for each stage is set to be 10 (totally N=30); for 

stage 1 and 2, the predefined number of perturbation is 5, for stage 3, the 

perturbation is performed at most 15 times (totally M=25). 

Table 4.1 shows the reduction of FFs of our approach compared to init ial 

(original) pure ret iming [5]. On average, our optimization scheme can achieve 

a 18.7% cut d o w n on the total number of FFs. Basically, rewir ing can be done 

in polynomial time, and experiments show that averagely 98.2% of the time is 

taken by solving the ret iming constraints, where the simplex algorithm is 

used. This can be improved by more effective implementation of retiming, 

however, it does not affect our optimization scheme. 

The f inal clock period is calculated on a real placement based on the same 

delay estimation model. To examine the effect on the clock period, we use the 

average and the best clock period obtained f rom 10 times of f inal placements. 

Table 4.2 shows that f rom 10 placement results, a pure ret iming has an 

average of 7.97% cut down on the init ial clock period, whi le combining w i th 

rewir ing, we also come up w i t h an average of 7.96%. Note that the clock 

period reduction could be negative in this new f low because the new FF 

topology after the rewired ret iming could be much different f rom that of the 

original pure retiming. 

Table 4.3 shows the best clock period f rom 10 times of f inal placements. 

Compared to the best reduction of 18.01%, our optimization scheme also has 

a reduct ion of 17.74%. 
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4 0 

#of FF 

in pure retiming 

#of FF 

in Rewired 

retiming 

FF 

Reduction (%) 

Runtime 

(minutes) 

%of runtime 

spent in 

retiming 

S298 133 119 10.5 2 99.1 

S344 59 53 10.2 5 99.3 

S349 57 54 5.26 6 99.5 

S382 81 77 4.94 22 99.2 

S444 93 75 19.4 5 99.4 

S510 117 103 12 4 98.5 

S526 181 166 8.29 107 99.6 

S820 207 82 60.4 53 98.1 

S832 67 17 74.6 76 96.2 

S953 96 83 13.5 9 98.4 

S1238 32 31 3.13 27 97.3 

S1488 484 387 20 19 97.1 

SI 494 417 415 0.48 25 95.8 

average 18.7 98.2 

Table 4.1 Experiment Result of FF Reduction 

Clk of initial 

circuit 

Clk of pure 

retiming 

Reduction from 

initial (%) 

Clk of rewired 

retiming 

Reduction of 

from initial (%) 

S298 41 30.5 25.6 29.1 29.0 

S344 55 50.8 7.64 50 9.09 

S349 54 49.3 8.7 51.7 4.25 

S382 48 39.3 18.1 40 16.6 

S444 52 48.4 6.92 47.3 9.03 

S510 61 65.1 -6.7 64 -4.9 

S526 49 42.4 13.4 45.2 7.75 

S820 77 75.1 2.46 71.7 6.88 

S832 81 71.7 11.5 76 6.17 

S953 88 77.3 12.16 79.2 10 

S1238 172 148.3 13.8 150 12.7 

SI 488 98 97.5 0.51 100.3 -2.34 

SI 494 95 104.9 -10.4 95.8 -0.84 

average 7.97 7.96 

Table 4.2 Experimental Result of Averap;e Clock Period 



41 
CHAPTER 4 REWIRED RETIMNG FOR FLIP-FLOP REDUCTION 

Clk of 

initial circuit 

Clk of pure 

retiming 

Reduction from 

initial (%) 

Clk of 

rewired 

retiming 

Reduction 

from initial (%) 

S298 41 27 34.1 26 36.6 

S344 55 42 23.6 44 20 

S349 54 42 22.2 43 20.4 

S382 48 34 29.2 33 31.2 

S444 52 43 17.3 41 21.2 

S510 61 58 4.9 60 1.63 

S526 49 38 22.4 41 16.3 

S820 77 67 12.9 65 15.5 

S832 81 68 16.04 71 12.3 

S953 88 70 20.4 71 19.3 

SI 238 172 138 19.7 138 19.7 

S1488 98 92 6.12 89 9.18 

SI 494 95 90 5.26 88 7.36 

average 18.01 17.74 

Table 4.3 Experimental Result of Best Clock Period 

The experimental data demonstrate that though being a quite simple 

scheme, this rewired ret iming f low can stably further cut a significant 18.7% 

of FFs used in the retimed circuit wi thout paying any compromise on the 

delay improvements produced by the original pure retiming, a result quite 

opening a new dimension for the ret iming applications. 

• End of chapter. 



Chapter 5 

Power Analysis for Rewired Retiming 

Low power is a common crucial issue nowadays, and it is also a high concern 

of us to f ind out the impact on low power yielded by our proposing f low. 

Though previously there are some contributions in this field, as discussed in 

chapter 3, the major concern of them is the reduction of switching power 

itself but not cutt ing the power by reducing flip-flops. The cost function and 

power estimation of them is relatively too complicated and thus may not be 

accurate enough for practical use. Hence, i n this chapter, we are going to 

analyze how the rewired ret iming technique, as a relatively simple power 

cutt ing approach, impacts on the dynamic power of the circuit. 

5.1 Power Model 

After the f inal placement, we have a physical design w i th less clock period 

and min imized FFs. The circuit is then analyzed by Power Compiler to 

estimate its power dissipation, and compare w i t h the circuit produced by 

pure retiming. Here, we adopt the Power Compiler as it is a 

wel l-acknowledged industrial tool for design and power analysis. 

Power Compiler is a commercial tool widely used for power analysis and 

design optimization. Its power analyst engine provides detailed gate level 

power report by capturing switching activity, mapping the design to gates, 

and annotating the design. 

The power dissipated in a circuit falls into two broad categories: static 

power and dynamic power. Static power is the power dissipated by a gate 
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when it is not switching, that is, when it is inactive or static. Static power is 

often called leakage power. Dynamic power is the power dissipated when the 

circuit is active, wh ich is composed of switching power and internal power. 

The switching power of a dr iv ing cell is the power dissipated by the 

charging and discharging of the load capacitance at the cell outputs. The total 

load capacitance at the output of a dr iv ing cell is the sum of the net and gate 

capacitances on the dr iv ing output. Internal power is the power dissipated 

w i th in the boundary of a cell. Dur ing a signal switching, a circuit dissipates 

internal power by the charging or discharging of any existing capacitances 

internal to the cell. Internal power includes power dissipated by a 

momentary short circuit between the P and N transistors of a gate, called 

short-circuit power. 

Power Compiler uses a zero-delay model for internal simulation and for 

propagation of switching activity dur ing power analysis. This zero-delay 

model assumes that the signal propagates instantly through a gate w i th no 

elapsed time, and the switching activity propagating wou ld make certain 

statistical assumptions. 

In our experiment, we adapt the power model by Power Compiler, as 

wel l as the defaults of switching activity estimation at pr imary inputs as 

such: 

P I = 0.5 (the signal is in the logic “ 1 state” 50 percent of the time), where 

P I is the probabil i ty that input P is at logic state 1. 

TR = 0.5 fclk (the signal switches once every 2 clock cycles), where fclk is 

the frequency of the input's related clock in the design. 
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5.2 Experimental Results 

In our experiment, the VTVT Standard Cell library (developed by the 

VTVT Group, Virginia Tech.) which targets the TSMC 0.18um, 1.8V CMOS 

process is adopted. 

The leakage power, switching power, internal power and total dynamic 

power (sum of switching power and internal power) are estimated by Power 

Compiler with the above model and shown in the following. 

Cell Internal 
(uW) 

Net Switching 
(uW) 

Total Dynamic 
(uW) 

Leakage (nW) 

s298 240.8 56.5 297.3 7.57 

s344 189.2 75.7 264.9 5.7 

s349 257.3 100.7 357.9 5.7 

s444 474 197.1 671.2 10.6 

s526 476.3 163.8 640.2 12.9 

s820 406 370.1 776.2 10.1 

s832 436.5 439.8 876.3 11.3 

S1238 1400 1561 2961 17.89 

s382 538.5 171.8 710.4 12.1 

s386 153.2 134.9 288.1 

s953 761.6 497 1258.7 14.4 

S 1 4 8 8 506.1 621.6 1128 16.2 

S 1 4 9 4 523.6 653.6 1177.3 16.4 

Table 5.4 Power Estimation of Pure Retiming Circuits 
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Cel l In ternal 

( u W ) 

Net Swi tch ing 

(uW) 

Total D y n a m i c 

( u W ) 

L e a k a g e ( n W ) 

s 2 9 8 201.2 47.5 248.7 6.4 

s344 223.7 72.9 296.6 5.4 

s 3 4 9 231.6 76.7 308.3 5.6 

s 4 4 4 509.2 157.9 667.1 11.2 

s 5 2 6 384.9 124.4 509.4 12.4 

s 8 2 0 407.9 395 802.9 10.6 

s 8 3 2 366.2 303.4 669.6 11.12 

S1238 1220 1337 2560 16.3 

s 3 8 2 423.2 158.6 581.8 9.7 

s 3 8 6 153.1 134.9 288.1 5 

s 9 5 3 735.8 485.8 1221 14.2 

S1488 500 591 1091 16.9 

S1494 487.3 571.4 1059 16.4 

T a b l e 5 . 5 P o w e r E s t i m a t i o n o f R e w i r e d R e t i m i n g C i r c u i t s 

Pu re Re t im ing Rew i red Re t im ing Reduc t i on % 

s 2 9 8 297.3 248.7 16.35 

s 3 4 4 264.9 296.6 -12 

s 3 4 9 357.9 308.3 13.86 

s 4 4 4 671.2 667.1 0.611 

s 5 2 6 640.2 509.4 20.43 

s 8 2 0 776.2 802.9 -3.44 

s 8 3 2 876.3 669.6 23.59 

S1238 2961 2560 13.54 

s 3 8 2 710.4 581.8 18.1 

s 3 8 6 288.1 288.1 0 

s 9 5 3 1258.7 1221 2.995 

S1488 1128 1091 3.28 

S1494 1177.3 1059 10.05 

A v e r a g e 8.26 

T a b l e 5 . 6 T o t a l D y n a m i c P o w e r R e d u c t i o n o f R e w i r e d R e t i m i n g C i r c u i t s 
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Table 5.4 and Table 5.5 show the power estimation results of the circuits 

for pure ret iming and for rewired ret iming respectively. The results 

generated by Power Compiler include cell internal power, net switching 

power, total dynamic power (sum of cell internal and net switching power) 

and the leakage power. 

Table 5.6 shows the reduction on total dynamic power by using our 

opt imizat ion scheme. For the benchmarks used in the experiment, our 

approach can achieve an average power cut down of 8.26%, compared to the 

results produced by pure retiming. 

In general, in our experimented rewired ret iming scheme a reduction of 

18.7% in the number of FFs can be achieved w i th a simultaneous power cut of 

8.26%, whi le w i t h the improved clock period remains totally uivsacrificed. 

• End of chapter. 



Chapter 6 

Conclusion 

The thesis has studied the retiming and rewir ing techniques and 

proposed an optimization scheme combining the two techniques to improve 

the interconnect delay retiming in terms of flip-flops reduction and power 

reduction. Placement w i th close relation to delay estimation, 

post-placement delay estimation and power analysis are also studied for the 

research. 

A simple whi le very effective scheme integrating rewir ing and retiming 

is developed to minimize the number of FFs while wi thout scarifying the 

original delay reduction. The whole f low is placement-aware and works 

tightly w i th a real placement thus makes the retiming result more practically 

realizable. The real clock period is calculated from the final placement. 

Experimental results show a remarkable reduction on the number of FFs 

(18.7%), which can be considered a free gain because the retimed clock period 

is kept unchanged. 

Besides a significant area cut, this extra FF reduction produced by our 

approach can also lead to a desirable savings on power (8.26%) and ease the 

clock tree generation because of less clock skews. 

The work is a new attempt to use logic re-synthesis technique to further 

improve the ret iming technique w i th real placement-based interconnect 

delays. Our approach not only reduces the area but also keeps retiming close 

to a real placement, and cuts down the adverse effect of the increased FFs 
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commonly introduced by a conventional ret iming process. Particularly, this 

remarkable f l ip- f lop and power cut-down is achieved wi thout sacrificing any 

original ret imed clock period. 

• End of chapter. 
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