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ABSTRACT 

The focus of this research is on the development of efficient solution schemes for 

multiply constrained separable nonlinear integer programming (MCSNIP). Dy-

namic programming, one of the most powerful solution methodologies to adiieve 

optimality for separable problems, suffers heavily from the notorious "curse of di-

mensionality" ,which prevents its direct applications to MCSNIP. By aggregating 

multiple constraints into a single surrogate constraint, the surrogate constraint 

formulation offers an ideal platform for powerful utilization of dynamic program-

ming, with a, price of the existence of a duality gap in general situations. This 

thesis seeks a research goal to build up a framework of convergent surrogate 

dual search in the sense that the duality gap will be gradually eliminated during 

the solution process of the surrogate dual search. The overall research goal is 

achieved by accomplishing the following two research tasks, i) As any singly 

constrained separable optimization problem is corresponding to a shortest path 

problem and the dual value offers a lower bound of the optimal value, we propose 

a new formulation of the distance confined path problem and develop a solution 

scheme using successive network reduction. This new solution concept in turn 

leads to a new type of convergent surrogate dual search by removing gradually 

infeasible points of the primal prom from the feasible region of the surrogate 

relaxation, ii) By attaching bounds on the objective value in the surrogate con-

straint formulation and tightening the bounds successively using the updated 

dual value, the convergence to the primal optimality can be guaranteed in the 

surrogate dual search. Recognizing that the same function appears in both objec-
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tive and constraint, we convert the doubly constrained formulation into a singly 

constrained one, thus facilitating effective utilization of dynamic programming. 

The computational results demonstrate the applicability of our proposed solution 

algorithms in solving large-scale MCSNIP problems. Our research extends the 

reach of dynamic programming to tackle successfully the long-standing challenge 

arisen from MCSNIP. 



摘要 

本论文主要研究多约束可分离非线性整数规划问题 (MCSNIP)的有效求解 

方案。动态规划，作为最有效的求解可分离问题最优解的方法之一，曲于深 

受为人熟知的”维数灾”的拖累，因而无法直接应用于(MCSNIP)问题。通过把 

多约束聚合成单一替代约束，替代约束问题为有效利用动态规划提供了一个 

理想的平台，而付山的代价是在一般情况下会引入对偶间隙。这篇论文的研 

究R的在于探讨并建立一种收敛替代对偶搜索框架，能够逐步消除对偶间隙 

以至找出原问题的最优解。我们通过完成以下两件任务来达到整体的研究F1 

标：1)由于任意单约束可分离最优化问题对应于一个最短路问题，且对偶值 

提供最优解的下界，我们提山一种新的距离限制路径问题模型并幵拓了一种 

网络逐步简化的求解方案。这种新的求解魁想进一步引山一种新的收敛对偶 

替代搜索，逐步从替代松她可行域中移除原问题的不可行点。2)在齊代约束 

问题中添加冃标值的上下界限制并应用更新的对偶值不断收紧R标值.h下界 

范围，我们能保证对偶搜索收敛至原问题最优解。注意到R标函数和一个约 

束函数相同，我们把双约束的问题转化成单约束问题，从而便利使用动态规 

划。计算结果显示了我们提出的算法在解决大规模MCSNIP问题的适用性。 

我们的研究拓展了动态规划的应用范围，特别能成功应对来自MCSNIP问题 

造成的长期挑战。 
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C H A P T E R 

INTRODUCTION 

We consider in this research the following general class of multiply constrained 

separable integer programming problems, 

n 

(P) min /(a：) 二 ；^力Ocj ) 

n 
s . t . g i ( x ) = ^ ^ g i j i x j ) < bi, i = 1 , . . . , m , 

j = i 

xeX = XixX2X---x Xn, 

where all f / s and g i j ' s are real-valued functions defined on R , and all Xj'vS are 

finite integer sets in R. Problem (P) covers very general situations of nonlin-

ear integer programming problems as no additional property such as linearity, 

convexity, concavity, monotonicity or differentiability is assumed in (P). Prob-

lem (P) possesses a nonconvex nature in many instances, e.g., concave integer 

programming [2] [4] [17] and polynomial integer programming [18]. 

Problem (P) has a wide variety of applications, including resource alloca-

tion problems and nonlinear multi-dimensional knapsack problems. In partic-

ular, capital budgeting, manufacturing capacity planning, production planning, 

network reliability, stratified sampling are special cases of (P). 

Integer programming has been one of the great challenges in front of the 

optimization research community for many years, due to an exponential growth in 

its computational complexity with respect to the problem dimension. It has been 
9 



Chapter 1. Introduction 10 

shown in the literature that many special cases of (P) are NP-hard [8] [19] [38]. 

Therefore, constructing an efficient exact algorithm for (P) is a. challenging task. 

The literature on the solution methods of (P) has been dominated by the 

results for singly constrained situations until recently. Ibaraki and Katoch [19 

summarized certain algorithms for singly constrained resource allocation prob-

lems where the objective function is convex and separable and the single con-

straint is of a special form of � j = N. Bretthauer and Shetty [5] proposed 

a branch-and-bound algorithm for a special singly constrained case of (P) where 

all / j ' s and 仿 /s are convex. Hochbaum [16] studied a singly constrained case 

of (P) where all / j ' s and gij,s are convex and moiiotonically nonincreasing. The 

piecewise linear approximations of f/s and 恥’s are used in [16] to convert the 

problem into a 0-1 linear integer programming problem. 

The concept of duality plays an important role in discrete optimization. 

The Lagrangian relaxation methods are widely adopted in integer programming 

(see, e.g., [11][12][13][39]). As discussed in [33], the conventional Lagrangian dual 

method often fails to generate an optimal solution to (P) due to the existence of 

a duality gap. Using group theory, Bell and Shapiro [1] proposed a, convergent 

Lagrangian duality theory for linear integer programming in which the duality 

gap is reduced by reshaping the feasible region. Recently, the duality gap in 

general nonlinear integer programming was examined and its related properties 

were studied in [28] [33]. Nonlinear Lagrangian formulations are proposed in 

28] [33] [40] to offer a success guarantee for the dual search in generating an 

optimal solution of the primal integer programming problem. Although the 

nonlinear Lagrangian formulations possess strong duality or asymptotic strong 

duality, it does not lead to a decoinposability which is crucial for an efficient 

implementation of a dual scheme. 

Along with the Lagrangian duality theory, the surrogate duality theory 

has been widely used in solving integer programming problems. While the La-

grangian dual formulation generates a relaxation by incorporating the constraints 

into the objective function, the surrogate dual generates a relaxation by aggre-
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gating multiple constraints into a single surrogate constraint. To eliminate the 

duality gap, Li [27] proposes a nonlinear surrogate dual method which guarantees 

the equivalence between the primal problem and its relaxation and eliminates the 

need of dual search. However, the resulting nonlinear surrogate constraint for-

mulation is, in general, more difficult to solve than the primal problem, as the 

separability of the primal problem (P) is destroyed. 

The past few years have witnessed research efforts in developing iinple-

mentable solution schemes to identify the exact solution of (P) in a process 

of gradually reducing duality gap via an integration of Lagrangian dual search 

and various cutting schemes. 

Li, Wang and Sun [32] develop a convergent Lagrangian method for (P) 

using objective cuts. The algorithm starts with a lower bound derived from the 

dual value by the conventional Lagrangian dual search and an upper bound by 

a feasible solution generated in the dual search (if any). The lower level cut 

and upper level cut are imposed to (P) such that the duality bound (duality 

gap) is forced to shrink. The objective cut is updated successively with the 

range between the upper cut and the lower cut monotonically decreasing. The 

algorithm terminates in a finite number of iterations, either reaching an optimal 

solution to (P) or reporting an infeasibility of (P). 

For problem (P) with a. quadratic objective function, Li, Sun and Wang [29 

propose a solution method that combines the Lagrangian dual method with a 

duality reduction scheme using contour-cut. At each iteration of the algorithm, 

lower and upper bounds of the problem are determined by the Lagrangian dual 

search. To eliminate the duality gap, a cut-and-partition scheme is derived by 

exploring the special structure of the quadratic contour. The method finds an 

exact solution of the problem in a finite number of iterations. 

For the nonlinear rnulti-dimensional knapsack problem, a special case of 

(P) , Li, Sun, Wang and McKinnon [31] develop a convergent Lagrangian and 

domain cut method. The proposed method exploits the special structure of the 

problem by Lagrangian decomposition and dual search. The domain cut is used 
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to eliminate the duality gap and thus to guarantee the finding of an optimal 

exact solution to the primal problem. 

Dynamic programming pioneered by Richard Bellman in 1950's is one of 

the most powerful methodologies for separable optimization problems. However, 

it suffers heavily from the notorious "curse of dimensionality" which prevents a 

direct application when a large number of constraints are present. Mitigating the 

curse of dimensionality in dynamic programming has been a challenging research 

task in front of the control and optimization community for many years. A few 

solution algorithms have been suggested in the literature for alleviating the "curse 

of dimensionality" in dynamic programming. 

Recognizing a relationship between the optimal solutions and the efficient 

solutions in the constraint space, a hybrid method was developed in [36] with a 

purpose to fathom in the solution process inefficient incomplete feasible solutions 

by bounds and dominance rules. 

Many attempts have been made to mitigate the curse of dimensionality of 

dynamic programming in its control applications. 

A successive approximation technique was proposed in [24] [25] for a discrcte-

time deterministic optimal control problem. A nominal trajectory of state x and 

control u are specified first. One of the n state variables is selected each time to be 

optimized while the others are held fixed. The procedure repeats such that each 

of the state variables is selected at least once. Thus, the original n-dimensional 

problem is transformed to a sequence of one dimensional problems which can 

be effectively handled by dynamic programming. However, the convergence to 

the global solution is not guaranteed and this method may be trapped in a local 

minimum. 

Differential dynamic programming (DDP) developed in [20] [34] [37] [41] is a 

second-order method that successively improves the incumbent trajectory under 

a convexity assumption based on the principle of optimality. The advantage of 

DDP over traditional dynamic programming is that it does not require discretiza-

tion of the state space, thus avoiding the "cures of dimensionality". However, 
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convergence issues may arise and paper [34] addresses the convergence issues of 

differential dynamic programming (DDP). 

The idea of region reduction was adopted in [35] by successively refining a 

coarse grid assignment of the state space. 

Note that the curse of dimensionality disappears when an analytical form 

of the cost-to-go function can be achieved. Thus, different numerical methods, 

such as linear and spline interpolation [21] and neural computing [3], have been 

suggested in the literature to approximate the cost-to-go by an analytical form. 

The focus of this research is on the development of efficient solution schemes 

for problem (P). By aggregating multiple constraints into a, single surrogate con-

straint, the surrogate constraint formulation offers an ideal platform for powerful 

utilization of dynamic programming, albeit with a price of the existence of a du-

ality gap in general situations. This research seeks a research goal to build up a 

framework of convergent surrogate dual search in the sense that the duality gap 

will be gradually eliminated during the solution process of the surrogate dual 

search. The overall research goal is achieved by accomplishing the following two 

research tasks. 

i) As any singly constrained separable optimization is corresponding to a 

shortest path problem and the dual value offers a lower bound of the optimal 

value, we propose a new formulation of the distance confined path problem and 

develop a solution scheme using successive network reduction. This new solution 

concept in turn leads to a new type of convergent surrogate dual search by 

removing gradually infeasible points of the primal prorn from the feasible region 

of the surrogate relaxation. 

ii) By attaching bounds on the objective value in the surrogate constraint 

formulation and tightening the bounds successively using the updated dual value, 

the convergence to the primal optimality can be guaranteed in the surrogate dual 

search. Recognizing the same function appears in both objective and constraint, 

we convert the doubly constrained formulation into a singly constrained one, 

thus facilitating effective utilization of dynamic programming. The computa-
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tional results demonstrate the applicability of our proposed solution algorithms 

in solving large-scale instances of (P). 

The structure of this dissertation is as follows. After the introduction given 

in this chapter, we review dynamic programming and the surrogate constraint 

formulation, respectively, in Chapters 2 and 3. We propose a. new formulation 

of distance defined path problem and develop a solution algorithm in Chapter 

4 and discuss its applications in networks. This new problem formulation and 

its corresponding graphical solution algorithm lead further a successive reduction 

scheme to reduce infeasible and/or non-optimal points from the dynamic table of 

the surrogate constraint formulation for (P), resulting in our first convergent sur-

rogate dual search algorithm. In Chapter 5, we consider our second convergent 

surrogate dual search algorithm for problem (P) by attaching a bound constraint 

on the objective value in the surrogate constraint formulation. By successively 

reducing the range of the bounds, we ensure a convergence to the solution of the 

primal problem (P) under this solution algorithm. Recognizing the special struc-

ture of the objective confined surrogate constraint formulation, we convert the 

doubly constrained formulation into its equivalent singly constrained counter-

part, thus facilitating effective utilization of dynamic programming. We further 

demonstrate the efficiency of the proposed algorithm in numerical tests. We fi-

nally summarize this research in Chapter 6. Our research extends the reach of 

dynamic programming to tackle successfully the long-standing challenge arisen 

from problem (P). 

• End of chapter. 



C H A P T E R 2 

CONVENTIONAL DYNAMIC 
PROGRAMMING 

Dynamic programming has been widely adopted as a solution scheme for 

discrete optimization. The separability of both the objective function f and 

constraint function g / s in (P ) makes dynamic programming method an ideal 

technique. The following assumption is essential for an efficient implementation 

of a dynamic programming method for (P) . 

Assumption 2.0.1. Function gij is integer-valued, for all j = 1,...，n and i = 

1 . . . . , m . 

2.1. Principle of optimality and decomposition 

To apply dynamic programming in solving the problem (P) , we need to introduce 

the stage variable k and state vector s^ G R / " at stage k that satisfies the 

following recursion: 

Sk+i = Sk + g^(xic), fc 二 1 ’ . . . ’ n, 

with an initial condition Si = 0, where 

gH^k) = {gik(xk), •. 

Since the constraints are integer-valued, we only need to consider integer 

points in the state space. Furthermore, the feasible region of the state vector at 
15 



Chapter 2. Conventional Dynamic Programming 16 

stage k with 2 < A; < n + 1 can be confined as follows: 

where 

and 

= 

Sk< Sk< Sfc, 

(2.1.1) 

Sk 

9u{xt),h — YTt=k 

maXx-iGXt 9mt{xt),hr,x — EILfc ini^TteXt gmi{xt)] 

(2.1.2) 

The principle of optima,lity revealed by Richard Bellman in his pioneering 

work in 1950，s is the cornerstone of dynamic programming. The following is a 

backward version of principle of optimality originally stated by Bellman in his 

seminal work: 

An optimal policy has the property that whatever the initial state and initial 

decision are, the remaining decisions must constitute an optimal policy with 

regard to the state resulting from the first decision. 

Similarly, a forward version of the principle of optimality can be stated as 

follows: 

An optimal policy has the property that whatever the later states and later 

decisions will be, the early portion of the decisions must constitute an optimal 

policy with regard to the intermediate state from which the later portion of the 

decisions starts to apply. 

The principle of optimality enables us to decompose the primal n-varial)lc 

optimization problem into a family of univariate optimization problems, thus 

reducing significantly the computational efforts. Dynamic programming can be 

applied to solve problem (P) either by a backward recursion or by a forward 

recursion. 
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2.2. Backward dynamic programming 

For a given state s at stage k, 1 < k < n, define the cost-to-go function as 

follows, 

n 
i k ( s ) = m i n ^ f j { x j ) , 

j=k 

n 

si s + ^^ < b’ 

n ^ j， 7 Ay , . . . . 77-. (2.2.1) 

It is obvious that 

v(P) = U{0). 

Based on Bellman's principle of optimality, the cost-to-go function satisfies the 

following backward recursive relation for /c = n — 1’ n - 2’...，1, 

i k { s ) = m i n { f k ( x k ) + + 一 ⑷ ) } 

with boundary condition 

i n { s ) = m i n { f n ( X n ) \ s + g'^ixn) < b}. 
Xn^-^n 

Define 

and 

< ( s ) = arg min {fn{xn)\s + g^'ixn) < b}, 
Xn€An 

xl(s) = arg min {fk(xk) + 4+i (s + g'^ixk))}, k = n -

The backward dynamic programming starts at k = n and moves backwards, 

/c 二 n — l ’ . . .， l . It calculates the cost-to-go recursively for every s between Sj, 

and Sfc at stage k and finally stops at Si 二 0. The tracing process is then carried 
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out in a forward way to identify the optimal solution of (P). Starting from ；rT(0)’ 

the optimal state at stage 2 is obtained as s^ 二 以i(a;“0)). The algorithm then 

identifies the optimal solution at stage 2, which yields the optimal state 

at stage 3, S3 = + 办⑶ . T h e process terminates when it reaches s* and 

finds out a:*(s*). 

Example 2.2.1. 

min f(x) = 2x\ — 3x2 + S.Ts 

s.t. g\[x) = -2xi + 2x2 + X3 < 1, 

" 2 � = X i + <0, 

Xi e { - l , 0 , l } , i = 1,2,3. 

It can be checked that the optimal solution of this small-scale example is 

X* = ( 0 , 0 ， w i t h f(x*) = —5. We now illustrate how to identify the optimal 

solution by using dynamic programming. 

Using formulas in (2.1.1) and (2.1.2), the feasible regions of the state vector 

: = 2，3 and 4 , 

/ - 2 ] 
< S 2 < 

( -1 J 
( — 4 � 

1 - 9 
< S 3 < 

1 

- 4 

- 3 
< S4 < 

0 

Table 2.1 gives the solution processes using backward dynamic programming. 

The solution process using backward dynamic programming starts from 

stage 3. For each possible S3, the optimal decision 工办3) is found and the cor-

responding optimal cost-to-go £3(53) is recorded. For example, at S3 = (1, —2)'̂ ， 

both X3 = 1 and 0:3 = —1 are infeasible. The optimal decision ^^((l, —2)'̂ ') is 
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Table 2.1: Solution process for Example 2.2.1 using backward dynamic program-

ming 

Si x1(si)/ii(si) S2 X*2(s2)/i2{s2) S3 X^Ss 

(0,0) T 0 / - 5 * - 2 , - 1 ) 了 

( - 2 , o r 

( - 2 , 1 ) 了 

- 1 , - i r 

( - 1 , 1 ) 了 

(0,-1广 

(0,0 广 

( 1 , - i r 

( 1 , 0 ) 了 

r 
(1,1) 

(2,-1) 
(2’0)。 

(2,1)^ 

T 

1/-8 

1/-8 

0/-5 

0/-5 

0/-5 

0/-5 

0/-5 

0/-5 

0/-5 

0/0 

0/0 

-1/-2 

-1/-2 

-1/-2 

- 1 / - 2 

- 4 , - i r 

( - 4 , o r 

( - 4 , i r 

:—3，—2广 

T (-3,0) 

(-3,1) 了 

- 2 ’ - 2 ) 了 

- 2 , - 1 ) 了 

( - 2 , o r 

(-2,1广 

：-1,-2 广 

T (-1,0) 
(-1，1广 

( 0 , - 2 , 

( 0 , - i r 

( o , o r 

( o , i r 

(1’-2 广 

( 1 , - i r 

( i , i r 

5 

5 

5 

5 

5 

5 

5 

5 

-5 

-5 

-5 

-5 

-5 

- 5 

-5 

0 

0 

0 
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found to be 0 and the corresponding f3((l, —2)'^) is 0. If there does not exist a 

feasible solution at S3, a;办3) is set as 00. Then, we move back to stage 2. At 

each possible S2, we compare /2(a^2)+ 4(^2+^^(2:2)) for X2 = —1,0 and 1 and find 

out a；办2) and the corresponding optimal cost-to-go For example, at S2 = 

( - 1 , - i r , comparison of - 3 ( - l ) + ^ ( ( l , 0)^) = 3, - 3 ( 0 ) + t 3 ( ( - l , i D = - 5 

and —3(1)3 + £3((—3’ —2)t) = _ 2 yields -1)了）= 0 and t〜（（—1, 一1广）二 

—5. Finally, we move back to stage 1. Checking f i { x i ) + &((0，0)7’ + g^{xi)) for 

xi = - 1 , 0 and 1 gives = (0’0)了) = 0 and £i(si = (0,0)^) = - 5 . Tracing 

back, we find the optimal solution for the example problem: xi = X2 = 0 and 

X3 = - 1 . 

2.3. Forward dynamic programming 

For a given state s at stage k, 2 < k < n + define the cost-to-accumulate 

function as follows, 
fc-i 

ik{s) 二 m i n f 力(:cj)， 

fc-i 
s-t. " ^ g ^ X j ) < s, 

Xj £ X j^ j = 1 , . . . — I. (2.3.1) 

It is obvious that 

v(P) = min{tn+i(s)|s < b}. 

Based on the forward version of Bellman's optimality principle, the cost-to-

accumiilate function satisfies the following forward recursive relation for k — 

1 ’ . . . ’ n + 1, 

ik{s) = min + ik-i(s - g^'^Xk^i))}, 
Xk-i€Xk-i 

with boundary condition 

kis) = min {fi{xi)\g\xi) < s}, 
x\GX\ 
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Define 

and 

= arg min {fi{xi)\g\xi) < s}, 
•"ClG-Al 

4 - 1 (s) = arg min {fk-i{xk-i) + ik—� s — 
xk-ieXk-i 

k -. 2 ’ . . . ’ + 1. 

The forward dynamic programming starts at k = 2 and moves forward, 

k = 3 , . . . , n + 1. It calculates the cost-to-accumulate recursively for every s at 

stage k between and Sfc and finally stops at stage n + 1. Let 

= argmm{in+i{s)\s < b}. 

The tracing process is then carried out in a backward way to identify the optimal 

solution of P. Starting from .t* the optimal state at stage n is obtained 

as s* = - (̂ "(a;* The algorithm then identifies the optimal solution 

at stage n, ), which yields the optimal state at stage n — 1, = 

s* - The process terminates when it reaches and finds out 

Example 2.3.1. We solve again Example 2.2.1, but this time, by forward dy-

namic programming. The forward dynamic programming starts from stage 2 and 

ends at stage 4- Minimizing with respect to S4 < (1,0)^ finds out the optimal 

value of the example problem “((1，—1)^) = —5. Tracing back identifies optimal 

solution: .T3 = —l,X2 = 0, x\ = 0. Table 2.2 presents the solution process using 

forward dynamic programming. 

Determining the feasible region could become a tedious task in applying 

dynamic programming. This difficulty can be alleviated to certain degree when 

the following approach is adapted [30 . 
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Table 2.2: Solution process for Example 2.3.1 using forward dynamic program-

mirig 

S2 X\[s2)li2{s2) S3 xl^S^) / h{Sz) S4 

- 2 , - I f 

( 一 2 ， 0 ) 了 

(-2,1, 
：-1,-1” 

(-1,0 广 

( - u r 
( 0 , - i r 

( o , o r 

(()’ 1 广 

( 1 , - l r 

(1’0) 了 

( U ) 了 

( 2， - I f 

(2, o r 

( 2 , 1 ) 了 

inf /oo 

inf/00 

1/2 

inf/00 

inf /oo 

inf /oo 

inf /oo 

0/0 

0/0 

inf /oo 

0/0 

0/0 

- 1 / 2 

0/0 

0/0 

- 4’ - 2广 

- 4 , - i r 

(-4, or 
(-4,ir 
- 3 , - 2 ^ 

—3,-1 广 

( - 3 , O f 

(-3,ir 
[ - 2 ’ - 2 ) 了 

( - 2， - I f ’ 

(-2, O f 

( - 2 , 1 ) 了 

( - 1 ’ - 2 ) 了 

(-1,-ir 
( - 1 , 0 ) 了’ 

(-i,ir 
(0,—2)T 

(0,-ir 
( 0 , 0 ) 了 

( 0 , 1 ) 了 

(l，-2 广 

( 1 , - 1 ) 了 

( 1’ 0 ) 了 

( l ’ l f ’ 

inf/00 

inf /oo 

-1 /5 

inf/oo 

inf /oo 

inf /oo 

inf /oo 

inf/oo 

inf /oo 

-1 /3 

-1 /3 

0/2 

inf /oo 

-1/3 

-1/3 

inf/00 

-1 /5 

inf/00 

0/0 

inf /oo 

inf/00 

inf /oo 

inf /oo 

inf/00 

-4’-3) 了 

-4，-2)了 

-4，-1)7’ 

(—4,0) 
T 

- 3 , - 3广 

- 3 ’ - 2 ) T 

-3,-ir 
( - 3， o r 

-2，-3广 

- 2 ’ - 2 ) 了 ’ 

-2,-ir 
T (-2,0) 

- 1， - 3广 

- 1 ， - 2 ) 了 

- 1 , - 1 ) 7， 

( - 1 , 0 , , 

(0, — 3)7’ 

(0，-2 广 

(0,-1)7’ 

(0，0广 

( 1 ’ - 3 , 

( 1 ， - 2 ) 了 

(1,-ir 
(1,0) T 

inf /oo 

inf /oo 

inf/oo 

0 /5 

inf /oo 

inf /oo 

-1 /0 

inf /oo 

inf /oo 

inf/00 

0/3 

inf /oo 

inf /oo 

- 1 / - 2 

inf /oo 

-1 / -3 

iiif/00 

0 /5 

inf /oo 

0/0 

-1 /0 

inf /oo 

-1/ -5* 

inf /oo 
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Assumption 2.3.1. For all j = 1 , . . . , n and i = 1,... ,m，function gij is integer 

valued and is nonnegative for all Xj G Xj. 

When Assumption 2.3.1 is satisfied, the range of Sk at stage /c, for k 二 

2’... ’ n + 1，can be simply determined by [(0，...，(6i,..., 吓 

If the nonnegativity assumption does not hold for some gij, then we can 

subtract mirixjgXj 9ij(^j) from both gij and bi at the same time. Repeating 

this equivalent transformation for all g i /s that do not possess the nonnegativity 

property such that Assumption 2.3.1 holds for the transformed problem. The 

range of (sk)i at stage k for k = 2 , . . . , n + 1 can be then given by [0, bi — 

Yljeh "^^^xj^Xj Qij], where U = { j 二 1,...，n| min�e;^j. 9ij < •}. The price to 

perform such a transformation is an enlargement of the feasible region of the 

state space which affects an efficient implementation of dynamic programming. 

It is evident that the number of the possible states increases exponentially 

with respect to the number of constraints. Thus, although dynamic programming 

is conceptually an ideal solution scheme for separable integer programming, the 

"curse of dimensionality" prevents its direct application to multiple constrained 

cases of (P) when m is large. Dynamic programming, however, remains as an 

efficient solution scheme for separable integer programming problem when rn is 

small, especially for singly constrained cases. 

2.4. Curse of dimensionality 

Consider the following problem with 3 variables and 5 constraints: 
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min f(x) = 2x1 一 + 

s.t. gi(x) = —2xi + 2x2 + 2；3 < 1, 

92(X) = a；! + 0；2 - 3；3 < 0, 

93(X) = - x ? - 2x2 + 2x1 < 0, 

. 9 4 � = - x l - x l - x l < - 1 , 

g5(x) = .T? — 2X2 — 3X3 < 3, 

Xi G { - 1 , 0 , l } , z = 1 , 2 , . . . , 5. 

By the formula in 2.1.1 and 2.1.2, we get the feasible region of the state 

vector as follows at stage 2 and 3, 

—2 , 

- 1 
2 

1 
- 1 <S2 < 0 

- 1 0 

1-1 J � 1 1 

f 1 \ 
- 2 

- 3 < S 3 < 

1 

2 

- 2 0 

The numbers of the states in stage 2 and stage 3 are 5 * 3 * 2 * 2 * 3 = 180 

and 6 * 4 * 6 * 3 * 7 = 3024 respectively. From the calculation, we see that the 

number of states in its feasible region does increase exponentially with respect to 

the number of constraints. Therefore, dynamic programming method becomes 

inefficient when m is large as it requires huge computational efforts and storage 

spaces. Besides, it will also cost much more computation efforts if the state 

range is comparatively large. This phenomenon which prevents us using dynamic 
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programming to solve the problem (P) directly is termed by Richard Bellman as 

"curse of dimensionality". 

It is unfortunate that the number of states increases exponentially with the 

number of constraints m when adopting dynamic programming method. The 

term "curse of dimensionality" describes the dimensionality problem caused by 

the exponential increase in the state space, resulting in a significant obstacle in 

solving large-scale instances of (P) by numerical backwards induction. 

• End of chapter. 



C H A P T E R 3 

SURROGATE CONSTRAINT 
FORMULATION 

The surrogate duality theory has been developed in solving mathematical pro-

gramming problems, including both continuous optimization and integer pro-

gramming problems. While the dynamic programming method is inefficient to 

solve directly multiply constrained separable integer programming problems, the 

surrogate constraint formulation generates a platform for an efficient utilization 

of dynamic programming by aggregating multiple constraints into a single sur-

rogate constraint. 

3.1. Surrogate constraint formulation 

Let g{x) = {g\(x),..., and b == (/>i，...，bm.)^. Aggregating the multiple 

major constraints of (P ) into a single surrogate constraint yields the following 

surrogate constrained formulation, 

(Pp) minfix) 

s.t. /J.'^igix) - b ) < 0 

X e X, 

where 1.1 = ( / i i , . . . , j-im)^ G R f is a vector of surrogate multipliers. Define S to 

26 
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be the feasible region of decision vectors in (P), 

5" 二 {a; e Xlgi(x) < bi,i = 1,2,... ,m} , 

and S(/2) to be the feasible region of decision vectors in P{p), 

S(l^) = {xe X\f/(g{x) -b)< 0}. (3.1.1) 

Since S C V /z G R + , (P^) is a relaxation of (P). 

Denote by v(Q) the optimal value of an optimization problem (Q). The 

surrogate dual is an optimization problem in fi, 

{Ds) maxu(P^) 

s.t. II e R̂ JN 

The following weak surrogate duality is evident, 

< y(P). v^ G 

Consequently, the surrogate dual provides a lower bound for v{P). 

v{Ds) < v(P). 

Since S C V/x G a minimizer, x*, over S[/i*) with fi* e R![！ and 

X* E S must be also a minimizer over S. Furthermore, from the weak surrogate 

duality and from the fact that problems (P) and (P^) have the same objective 

function, we have J(x*) = < v[Ds) < v(P) = f{x*). Therefore,u(Ds)= 

v{P). In summary, we have the following strong surrogate duality theorem. 

Theorem 3.1.1. [30](STRONG SURROGATE DUALITY) If an x* solves 

for a fi* E R+ and x* is feasible in {P), then x* solves (P) and v{Ds) = v(P). 

It is clear that v{Ds) = v[Po^) for any 0 > 0. Thus, the surrogate dual 

problem [Dg) can be normalized to an equivalent problem with a compact feasible 

region: 

[ D � ) maxi;(P^) 

s.t. /i 6 A, 
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where A = {/i G < 1} and e = (1’... ’ 1广. 

3.2. Singly constrained dynamic programming 

Problem (P,,) is a singly constrained separable integer programming problem 

and can be solved efficiently by dynamic programming. We consider dynamic 

programming in this section for the singly constrained case of (P): 

{P) mm / � 

s.t. g(x) = Y^gj(xj) < b 

X e X = Xi X Xo X • • • X Xr 

where X j = {xj G Z\lj < xj < Uj} with Ij and Uj being integers. Wc assume 

gj{xj) > 0 on X j for all j = 1, n. 

For adopting backward dynamic programming, the cost-to-go function is 

defined as follows, 

ik{s) = minJ^fj(xj) 
j=k 

n 
S.t. s + y^ gjl^Xj) < b 

j=k 
'X j ^ X j, j ^ /c,.. n, 

for k = n — 1, s = 0 , . . . , 6. The backward recursive equation is 

ik{s) = min{/fc(.Tfc) + k+i{s + gki^k))} 

s.t. s + gk{xk) < b 

工fc = “>••• J 叫， 

for /c 二 1’ …，n — 1, and s = 0’...，b, with boundary conditions 

ik(s) = +00, for s < 0’ /c = 1’...，n, 

in{s) = min{/„,(a;„)|s + gnM < b, Xn = L) Zn + 1 , . . . ’ ^n}, s = 0, 
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For adopting forward dynamic programming, we define the following cost-

to-accumulate function. 

fc-i 
= mm^fj{xj) 

i=i 
k-i 

s.t. s + y^^gjjxj) < s 

Xj e X j , J. = 1’...，/c — 1’ 

The forward recursive equation is 

ik{s) = min{/fc(xfc) + 一 gk{xk))} 

s.t. gk(xk) < s 

Xk = + 1 • •. 

foi, /c = 3’.. .，n, s 二 0’...，6. 

In this situation, the dynamic programming table has a size of n * (b + 1). 

3.3. Surrogate dual search 

A key issue in applying the surrogate dual method is how to solve the surro-

gate dual problem, more specifically, how to update the surrogate multipliers. 

Several surrogate dual search methods have been developed for linear integer 

programming and they can be also applied to nonlinear programming problems. 

For Q； G R,let X(a) denote the level set of / ( x ) , X{a) = {x G X\f(x) < a } . 

For given // G A and a G R , v{P,j) < a if and only if 

+ 0’ (3.3.1) 

where »S(/i) is defined by (3.1.1). Consider the following problem 

(P(a , / i ) ) min - b) 

s.t. X e X{a). 
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We notice that (3.3.1) holds if and only if v{P{a,iJ.)) < 0. Since = 

max{i;(P^)|M e A} , it follows that < o； if and only if v(P{a,^i)) < 0 

for all // G A. Similar to the Lagrangian dual, we can define the following dual 

problem: 

s.t. /i e A. 

The above discussion leads to the following theorem. 

Theorem 3.3.1. [SOjFor given aeK, < a if and only if v(D{a)) < 0. 

An immediate corollary of Theorem 3.3.1 is as follows. 

Corollary 3.3.1. [30] The optimal surrogate dual value is the minimum, 

Q € R such that v(D{a)) < 0. 

The cutting plane method can be used to solve D(a). Notice that D{a) is 

equivalent to the following linear program: 

max 3 
(/?’"） 

s.t. (5 < ij^\g(x) - e X{a), 

fi e A. 

For each x E X(q；), the first constraint forms a cutting plane. We can construct 

T^ C X ( a ) step by step, thus approximating v(D{a) successively by solving the 

following linear program: 

(LPfc) inax/3 
09’"） 

s.t. 

/i e A. 

Procedure 3.3.1. [30j (CUTTING PLANE PROCEDURE FOR (D：；)) 

Step 0 (Initialization). Set a® 二 一oo, = 0. Choose any /j} G Set k = 1. 
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Step 1 (Surrogate relaxation). Solve the surrogate relaxation problem i^P》and 

obtain an optimal solution x^. If g{x'^) < b, stop and x'^ is an optimal solution 

to (P) and u(D^) = v{P). 

Step 2(Updating lower bound). If /{x'') > a厂―丄，then set a^ = f(x^). Other-

wise, set a^ = a^一 1. 

Step 3(Updating multiplier). Set T^ 二 i U {x'^}. Solve the linear program 

[LPk) and obtain an optimal solution If < 0； stop and a" = 

Otherwise, set /J^+i = /i^ and k = k + 1, go to Step 1. 

Theorem 3.3.2. [30] Algorithm 3.3.1 finds an optimal value of D" within a 

finite number of iterations. 

To illustrate Procedure 3.3.1, we consider the following example: 

Example 3.3.1. 

min f(x) = 2x1 ~ + 5x3 

s.t. gi{x) = —2xi + 2x2 + 3；3 < 1, 

ff2�=+ X2 - < 0, 

Xi e { - 1 , 0 , 1 } , 2 = 1,2,3. 

The iteration process of Procedure 3.3.1 for this example is described as 

follows: 

Step 0. Set /3 = Q,T0 = (/}. Choose …=(1，0广.Set k = 1. 

Iteration 1 

Step 1. Solve the surrogate problem 

(F^i) min - 3a:,�+ 50：3 

s.t. 1 * ( - 2x1 + 2x2 + 3:3) + 0 * (xi + 0：2 — xl) < 1, 

Xi e { - l , 0 , l } , i = 1,2,3. 

We obtain = ( 1 , 1 , - 1 ) ^ with g{x^) 二（1,1)了 not < (1,0)了. 

Step 2. Since f{x^) = - 6 > aO’ set o；̂  = -6. 
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Step 3. Set T^ 二 {工].Solve the linear program: 

(LPi) max/? 

S.t. + 

< 1， 

Ml >0, /H2> 0. 

We obtain = 1 � 0 and /̂ i = (0’ 1)^. Set k = 2 and ji^ = /i^ 

Iteration 2 

Step 1. Solve the surrogate problem 

mill 2x\ - 3x1 + 5x3 

s.t. rcf + X2 — xl < 0, 

Xi 6 { - 1 , 0 , 1 } , 1 , 2 , 3 . 

We obtain = ( - 1 , 1 , - 1 ) ^ with g(x^) = (5，_1)了riot < (1,0广. 

Step 2. Since /(a:^) = set a"̂  = a^. 

Step 3. Set T^ 二 {a;^,x^}. Solve the linear program: 

(LP2) max 

s.t. (3 < / i 2 , 

< 4 ^ 1 - "'2’ 

Ml + M2 < 1’ 

IM > 0,//2 > 0. 

We obtain 二 2 / 3 � 0 and /i^ = (1 /3 ,2/3广.Set k = 3 and /J^ =“入 

Iteration 3 

Step 1. Solve the surrogate problem 

(_P"i) min 2xi — 3x1 + 6x3 

s.t. 2x1 - + 4x2 

Xi e {-1,0,1},?； = 1,2,3. 
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We obtain = ( 0 , 0 , - 1 ) ^ with g(x^) = ( 1 , - 1 广 < (1,0)^ 

Stop, and we get the optimal solution to the problem. Note that the La-

grangiari dual value is calculated as —6 which is smaller than —5. It means that 

the surrogate dual method provides a dual value tighter than Lagrarigian dual 

method does. 

Compared to the original multiply constrained separable integer program-

ming problem, the surrogate constraint formulation offers a promising platform 

with a singly constraint separable integer programming problem which dynamic 

programming can efficiently be applied. However, unless the optimal solution 

to the surrogate constraint formulation is feasible to the primal problem, there 

exists a duality gap due to the relaxation of the feasible region. On the other 

hand, performing surrogate dual search requires to apply dynamic programming 

many times, which will become a concern when the convergence is slow. 

• End of chapter. 



C H A P T E R 4 

DISTANCE CONFINED PATH 
ALGORITHM 

The shortest path problem deals with a task of finding the path with minimum 

time, distance, or cost from a source node to a destination node in a connected 

network. The shortest path problem has been playing a significant role in the 

development of operations research, due to its wide applications in various appli-

cation areas, including transportation, communications networks, robot motion 

planning, and many others. The shortest path problem often serves as a starting 

point in learning dynamic programming as the philosophy of dynamic program-

ming can be best explained by the shortest path problem. At the same time, 

many optimization problems solved by dynamic programming can be formulated 

under a unifying framework using a shortest path problem formulation, such as 

the knapsack problem and the sequence alignment problem in molecular biology 

7’ 9 . 

As a natural extension of the shortest path problem, the /cth shortest paths 

problem [26，42] is to find the shortest, the 2nd shortest, . . . , and the kth shortest 

paths connecting a given source-destination pair in a network. Development of 

algorithms for the kth. shortest paths problem is motivated by considerations to 

incorporate additional constraints, model evaluation and generation of alterna-

tives. Depending on whether cycles are allowed in the graph, there are two types 

of kth shortest paths network problems. Eppstein [10] provides a review on the 

34 
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fcth shortest looping path problem. The kth shortest loopless paths problem has 

been investigated in [42，14, 22]. It is interesting to note from [42] that i) The 

jth shortest path can be obtained by comparing perturbations of the shortest, 

the 2nd shortest, . . . , and the ( j — l)th shortest paths, and ii) the computational 

efforts of calculating k shortest paths is only linear with respect to k. 

In this chapter, we investigate an algorithm in finding out paths of length 

within a given distance window for an n-stage loopless network with sink S and 

destination T. Let the network be denoted by {A, N) where N is the node set 

and A is the arc set. For a pair of two connecting nodes P and Q at neighboring 

stages, respectively, we use d(P, Q) to denote the arc length between them. If 

there does not exist a direct arc between nodes P and Q, d(P, Q) is set at infinity. 

Note that in our study, we allow multiple arcs with different lengths between a 

pair of two nodes, as we are not only interested in the shortest path. A path is 

an n-sector connecting path from S to T. 

4.1. Yen's algorithm for the kth shortest path 

problem 

There are several algorithms presently available for solving a /c-shortest-loopless-

paths problem in an M-node network. Yen [42] proposed an algorithm with 

complexity of ^kM'^ which is linear with respect to k, which is one of the most 

efficient algorithms in finding the first k shortest paths in a. loopless network. 

We focus in our study only on the n-stage network problems and we use the 

following notations and definitions modified from [42]. 

In an (n + l)-stage network, let pk = N � Nf — … — N j ; with N^ = 

S and N^ = T be the kth shortest path from S to T. For i = 0 , 1 , . . . , n — 1, 

let be a path "deviated" from that satisfies: (i) Its first i nodes 

coincide with 尸“一i; and (ii) The distance from N^ to T is minimized subject to 

that the first (i + 1) nodes of do not coincide with the first (i + 1) nodes 
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of any P-̂ , j = 1, . . . , k — I. The subpath of formed by the first i nodes 

is termed the root of and is denoted by while the subpath of 

formed by the last {n - i + 1) nodes is termed the spur of and 

is denoted by 

The algorithm of Yen [42] for finding k shortest paths can be described now 

as follows: 

Iteration 1: Determine the shortest path from S to T, using dynamic 

programming or some other solution methods. Add P^ to List A. Set j = 2. 

Iteration j ( j = 2 , 3 , . . . , k ) : Determine PK For i = 1 ,2 , . . . ,n - 1, find 

possible the paths deviated from If there are some, add them to 

List B. Choose the path in List B with the minimum distance and add it to List 

A as P^. If j = k, stop; Otherwise, set j = j + 1 and go to Iteration j. 

4.2. Application of Yen's method to integer 

programming 

The surrogate dual formulation aggregates multiple constraints of problem (P) 

into a singly constrained formulation (尸 " ) . T h e singly constrained surrogate 

relaxation problem can be solved efficiently by dynamic programming. From the 

strong duality of the surrogate duality, one key recognition is that the optimal 

solution to (P) must be the solution in the ranking list of the minimum, the 

second minimum, ...，the A;th minimum,…’ of (P^), that first satisfies the 

feasibility of (P) . 

Note that any singly constrained separable integer programming problem 

can be transformed to a shortest path problem in a loop-less graph. We can then 

apply Yen's method successively to find the kth shortest path of the correspond-

ing loopless network which is first feasible in (P) among the first k shortest paths 

in the ranking list. 

The network resulted from a surrogate constraint formulation is an n-stage 
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loopless network. The structure of the network is determined by the surrogate 

constraint, where the node at stage i corresponds to state which represents the 

accumulative "consumption" up to stage i with respect to the surrogate con-

straint. The range of the state at each stage can be determined by using (2.1.1) 

and (2.1.2). 

The lengths of the arcs in the network are determined by the objective 

function. More specifically, the arc length between two nodes Si and is 

assessed by {fi(xi)\xi G Xi, gi(xi) = Sj+i — s j . If there are multiple XiS satisfying 

gi(xi) = Si+i — Si and Xi G X^ there are then multiple arcs between Si and Si+i 

with different arc lengths. Thus, any path in the network yields an objective 

value of { X X i f iMI^ ' i ^ ^ i } -

We use the following example to illustrate the process of applying Yen's 

method in solving integer programming problems. 

Example 4.2.1. 

inin f{x) = 2x1 一 + 

s.t. gi(x) = -2xi + 2x2 — 2x2 + < 0, 

g2(x) = x\ + x 2 - xl < 0, 

gsix) = Xl + X2 < 0， 

Xi e { - l , 0 ’ l } ’ i = 1，2’3. 

Assigning ^ = (0,1,0) ' yields the following surrogate constraint formulation 

rriin f{x) 二 - Srcg + 5.T3 

s.t. g^{x) = x'^-h X2 - < 0, 

a; G X = { - 1 , 0 , 1 } ^ 

The problem can be transformed to a shortest path problem of a, loop-less 

network in Figure 4.1. Let state be defined by 
m 

Si+1 = Si i = 0，1，2, 
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Figure 4.1: Network in Example 4.2.1 

with So = 0. According to (2.1.1) and (2.1.2), the state space is obtained: GS：= 

0,0], GS2 = [ - 1 ’ 1], GS3 = [ - 2 , 1 ] and GS4 = [—3,0]. Each node in the network 

is marked with its corresponding state value. Note all paths which do not satisfy 

gf^{x) < 0 are removed from the graph. 

We now show how to solve this integer programming example by using Yen's 

method iteration by iteration. 

Iteration Q: Let A = (/) and B = 

Iteration 1: It is easy to verify that the shortest path is 

P' = {s = (0,1,0); 0； = ((0，1，-1); f = -8}. 

The shortest path P^ is described in Figure 4.2 with red lines. 

Let A = P^UA. Since solution (0，1, —1) does not satisfy the first constraint 

of the primal problem, we go to the next iteration. 
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Figure 4.2: Shortest path in Example 4.2.1 

Iteration 2: Considering the 3 deviations from P^ gives rise to 

1)1(2) = { s - ( 0 , l , 0 ) ; x - ( 0 , l , l ) ; / - 2 } , 

DHO) = {s = (-l,[\-l)-x = i - l , l , - i y j = -6}. 

The 3 paths D\2) deviating from the shortest path P^ are 

marked in the Figure 4.3. 

Let P2 = D^O), A = P^U A ?ind B = {D\2),D\l)} U D. As the 2nd 

shortest solution P � d o e s not satisfy the 1st constraint of the primal problem, 

we go to the next iteration. 

Iteration 3: The 3 deviations from P^ give rise to 

D\2) = { s = (—l’0，0);:c = (—l,l，0);/ = - l}， 

D\l) = = ( - 1 , 0 , - 1 ) ; / - - 3 } , 

D\0) = {s = {1,1,-1)-X = (1,0,-1)- f = -3}. 

Let P'' 二 1)1(1)’ 4 = u 4 and B 二 D^{0)} U (B \ D\l)). 

As the 3rd shortest solution P^ does not satisfy the 1st constraint of the primal 
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Figure 4.3: Deviating paths in Example 4.2.1 

problem, we go to the next iteration. 

Iteration 4: Considering the deviations from P''̂  gives rise to 

l>3(2) = {s = (o,o,oy,x = (o,o,oyj = o}, 

zp3(i) = { s 二（0,—1,—2);:r = ( 0 ’ — 1 ’ — 1 ) ; / = —2}, 

^ ' ( 0 ) - {6’ = ( l ’ l，- l ) ; : r = ( l ’ 0， _ l ) ; / = - 3 } . 

Note that D^{Q) is the same as we do not need to add it to the candidate 

list. Let = A = P'^U a and D = {D^(2), D^(1)} U ( B \ D\l)). As 

the 4th shortest solution P^ does not satisfy the 1st constraint of the primal 

problem, we go to the next iteration. 

Iteration 5: Considering the deviations from P^ gives rise to 

D4(2) = = l ’ - l， - l ) ; : r = ( - l， 0 ’ 0 ) ; / = 2 } , 

^ ' ( 0 ) = { s = ( l ’ l ’ - l ) ; : r : = ( l ’ 0 , — l ) ; / = —3}. 

Note that is the same as we do not need to add it to the candidate 

list. Let P^ = D2(0), A = P^U a and B = { D \ 2 ) , D\l)} U ( B \ D \ 0 ) ) . As 
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the 5th shortest solution P^ does not satisfy the 1st constraint of the primal 

problem, we go to the next iteration. 

Iteration 6: Considering the deviations from P^ gives rise to 

昨 ） = { s = ( l ’ l ’ 0 ) ; : c = ( l ’0， l ) ; / = 7}, 

= {s = ( l ’ 0 ’ - l ) ; : r = ( l ’ - l ’ - 1 ) ; / : = 0 } . 

Note that there is no candidate for D^O). Let P® = A = P^' U A and 

D = {D5(2) ’D5(1) } U(B\ AS the 6th shortest solution does not 

satisfy the 1st constraint of the primal problem, we go to the next iteration. 

Iteration 7: Considering the deviations from P® gives rise to 

D ' (2 ) = = 1’一 l);:r = (0’—1，0);/ = 3}. 

Note that there is no candidate for either or ^^(0). Let P? = 

A = P'^U A and B = {D^(2)} U {B \ D^(2)). As the 7th shortest solution P� 

does not satisfy the 1st constraint of the primal problem, we go to the next 

iteration. 

Iteration 8: Considering the deviations from P" gives rise to 

D'{2) = { s H - l ’ 0 ’ - l ) ; : c = ( - l ， l ’ l ) ; / = 4}， 

L>7(1) = {s = ( - l , - 2 , - 3 ) - , x ( - l , - l , - l ) ; f = 0}. 

As there is no candidate for and is the same as Z)'^(O), we do not 

have new member to add to the candidate list. Let P® = D'^(l), A = P^ U A 

and B = U(B\ D'^(2)). As the 8th shortest solution P� satisfies 

all the constraints of the primal problem, x = (0,0,0) is the optimal solution to 

Example 4.2.1. To reach the 8tli shortest path, we have generated in total 16 

paths in the process. 

All the paths can be found according to Yen's algorithm from the corre-

sponding dynamic programming table in Table 4.1 where Xi),i 二 1 , . . . ,3, 

denotes the minimum distance from state s?: to destination using control .Tj. For 

example, starting from S3 = —2, three shortest subpaths from state S3 = —2 
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to destination using controls X3 = —1, 0 and 1 arise respectively. Similarly, 

we record the values for S3 = —1,0 and 1. Then we calculate the minimum 

values using different controls for every state S2 and finally obtain 3 shortest 

paths from si = 0 to destination using Xi = —1, 0，and 1. The shortest path 

p i 二 {s 二（0’1，0);工 二（(0’1’一1);/ = - 8 } is marked with " * ". Then we can 

find the candidates for the second shortest path according to Yen's algorithm. 

To find out the distance from Si = 0 to destination should be minimized 

and the first control of should be different from that of pi ’s . Taking 

control Xi = —1 and moving forward we get = {s = ( —1,0, —1); :r = 

( - 1 , 1 , - 1 ) ; / = —6}. For the first node is required to be the same as 

that of •Pi's’ which means that Xi = 0. Then we need to find the minimum 

distance from S2 = 0 to destination with a, control different from that of P^'s. 

Deviating from 0:2 = 1, we find X2 = 0 can satisfy our requirements. Moving 

forward we obtain = (s = (0,0,-l);x = ( 0 , 0 , - 1 ) , / = —5}. At last, to 

find out the first two nodes should be the same as that of P ” s , using 

Xi = 0 and X2 = 1 leads to S3 = 1. Then the distance from S3 — 1 to destina-

tion should be minimized using control different from X3 = —1. We finally get 

D'(2) = (s = (0,l,0);x = (Q,l,iyj = 2}. 

4.3. Distance confined path problem 

Although Yen's algorithm for finding the kXh shortest path possesses a linear 

complexity with respect k, it acquires identification from the shortest to the 

(k — l)th shortest before reaching the kth shortest. When k is large, it is often 

unnecessary to go through this tedious process. In real life, with an appointment 

being t hours away, a traveler may want to find a path which consumes touring 

time within a time window [t — 26, i — <5], where (5 is a positive small number, to 

fully utilize the available time for sightseeing. In the later part of this chapter, we 

will see that a surrogate constraint formulation of multiply constrained integer 

programming problem corresponds to a network problem where the desired path 
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Table 4.1: The extended dynamic programming table in Example 4.2. 

k 1 2 3 

Sk fl{xi) S2 i{suXi) X2 /2O2) S3 i(s2,X2) X3 /3 � S4 i{ss,X3) 

1 

1 -3 2 00 

-5 

-2 

1 5 0 5 

oc 

-5* 

1 0 0 1 

00 

-5 

-2 

0 0 1 

5 

oc 

-5* 

1 

- 1 3 0 

00 

-5 

-2 -1* -5 0 

5 

oc 

-5* 

0 

1 2 1 -3 

-8* 

-6 

1* -3 1 -8* 

-5 

-2 

1 5 -1 5 

0 

-5 

0 0* 0 0 

-3 

-8* 

-6 

0 0 0 

-8* 

-5 

-2 

0 0 0 

5 

0 

-5 

0 

-1 2 -1 

-3 

-8* 

-6 -1 3 -1 

-8* 

-5 

-2 -1 -5 -1 

5 

0 

-5 

-1 

1 -3 0 -8 

-5 

-2 

1 5 -2 5 

0 

-5 

-1 0 0 - 1 

-8 

-5 

-2 

0 0 - 1 

5 

0 

-5 

-1 

-1 3 -2 

-8 

-5 

-2 -1 -5 -2 

5 

0 

-5 

-2 

1 5 -3 5 

0 

-5 

-2 0 0 - 2 

5 

0 

-5 

-2 

-1 -5 -3 

5 

0 

-5 

is bounded from below by a distance value dictated by the dual value of the 

integer programming problem. Thus, we are interested in developing solution 

algorithms for a, distance confined path problem introduced below. 

Definition 4.3.1. The distance confined path problem is to find all the paths in 

a graph from the origin, S, to the destination, T, with distance within a given 

distance window [/, u . 

We use Q) and Aimx(尸’ Q) to denote the minimum distance and the 

maximum distance, respectively, between two nodes P and Q in the graph. More 

specifically, Dmin(5', P) denotes the minimum distance from the origin to node 

P, P) the maximum distance from the origin to node P, T) the 

minimum distance from node P to the destination, and P) the maximum 

distance from node P to the destination. 
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Definition 4.3.2. The distance confined path problem, is in feasible either when 

D—[S,T) < I or when T) > u. 

Carrying out i) forward dynamic programming twice to find out the 

shortest path and the longest path from the origin to the destination, and 

ii) backward dynamic programming twice to find out the shortest path 

and the longest path from the origin to the destination yields quadruple 

(Anin(5', P), Anax(5"’ P), � ) ’ A腿 (尸 ’ T)) for every node P in the graph. 

If P) + AxUn(戶’ T) > u, or P) + A磁 (户，T ) ) < 1 then any 

path passing through node P possesses a path length outside of the range [/, u 

and node P can be removed from the graph from further consideration. 

Let us consider the feasible range of the accumulative path length from the 

origin to node P in a distance confined path problem. We define the following 

pair for every node P in the graph, 

L{P) = m a x { A n i „ ( ' S , P ) , / - (4.3.1) 

and 

L{P) = min{Anax(5,P), 'a — (4.3.2) 

When a distance confined path problem is feasible, we have L(S) = L(S) = 0 

for the origin. When both Anin('S', T) < I and T) > u^ we have L(T) = u 

and L{T) = I for the destination. 

Lemma 4.3.1. For any node P in the graph, L[P�< U^P) holds if and only if 

P) + A 丽 ( P ’ T)<1 or P) + Anin(P, T) > U. 

Proof: i) Assume that I ( P ) < L{P). 

( a ) If > I - then L ( P ) 二 Dn如(5•，P) > L ( P ) = 

min{Aimx('S', P),u - 7")}, which can only happen when P) > 

？卜如(尸，n 

(b) If P)<1- Anax(P’T)，then L(F) 二 I — A 醒 ( P , 了）> L{P)= 

niin{jDinax('S', P),u — Dmin(尸）T)}, which can only happen when I - D^axiP, T) > 

P)-
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ii) Assume that 1)腿\(5；户）+ D艱(P,T) < I. Then < 

DnuJj5 ,P) < Thus, L(P) = l-D^[P,T). As Anax(5 ,P) < I — 

D 雕 < Ani„(P，T)’ then I ( P ) = D雌财\ leading t o L ( P ) < L(P). 

iii) Assume that + Dn,i„(P,T) > u. Then P) > 

DnUS, P) > u-D—人P,T). Thus, L{P) = AsLU„(<S’P) > u— 

> I — Dmax(P，T)，then L{P) = P), leading to L{P) < L(P) . 

• 
Proposition 4.3.1. Graph reduction rule 

i) Any node P with L(P) < L(P) can be removed from the graph. 

ii) Any branch between two connected nodes P and Q with Anax(5', P) + 

d(P, Q) < L(Q) or Dmin{S, P) + d[P, Q) > L{Q) can be removed from the graph. 

Proof: i) Evidenced from Lemma 4.3.1, any path passing through P with 

L{P) < L(P) has a length outside of range [/, u] and node P can be thus removed. 

ii) Assume that P) + d{P, Q) < L(Q). Since P)^d(P, Q) > 

Anin(5 ,P) + d(P,Q) > Anin(5",Q)’ then L(Q) = I — A 皿 ( Q , T ) . Thus, 

d - A n a x ( Q ， n i . e . , Anax(5;P) + d (P ’Q) + Anax(Q,7^ < 

I. As the length of the longest path passing through branch (P, Q) is still smaller 

than /, branch (P, Q) can be removed from the graph. 

(ii) Assume that Dnun(S, P") + d�P, Q) > L(Q). Since P)-i-d{P, Q) < 

P) + d(P,Q) < A 加 t h e n L(Q) = u - A_(Q，了 ) . Thus, 

P) + d(P, Q)>u-Ani„(Q’ T) , i.e., P) + d{P, Q) + T) > 

u. As the length of the shortest path passing branch (P, Q) is still larger than 

u, branch (P, Q) can be removed from the graph. • 

Definition 4.3.3. If all incoming or all outgoing branches of a node P (other 

than S or T) are removed, node P is called isolated. 

Any isolated node can be removed from the graph. For any node P in the 

graph, after we identify and record all the paths which pass through P and have 

a length within range [/, u], node P can be removed from the graph. 
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Algorithm 4.3.1. Finding all paths with length in a given range [I, u]. 

Step 1. For every node p in the graph, calculate P), Aiiax('5, P), 

(尸’ n Anax(P’n 
Step 2. Update I and u by 

I = max{/’ Anin(5",T)} 

u = min{ii,Dniax('S', T ) } 

Calculate L{P) and L(P) for all nodes. Remove infeasible nodes and branches 

according to Proposition 4-3.1 and remove isolated nodes. 

Step 3. Update the graph and repeat the process in Steps 1 and 2 until no 

further reduction can be done. If there is no node left, stop. Otherwise, go to 

Step 4-

Step 4. Finding node P such that P) + T)), (A顺(5"，P) + 

Dmax(PjT))] has the minimum intersection with [/, u] among all P) + 

Dnim(P,T)), P) + Anax(-P, ^))]• Use Yeu's ktfi shortest or longest path 

algorithm to find out all paths passing through node P that have length range 

within [/, u] and record them. Remove node P from, the graph. Go back to Step 

1. 

It is obvious from the above algorithm that, for all nodes in the graph, L{P) 

and L [ P � a r e nondecreasing and nonincreasing, respectively, in the iterations 

when implementing Algorithm 4.3.1. 

Example 4.3.1. Find all the paths with path length within range [28,30j in 

Figure 4-4-

Performing dynamic programming four times gives rise to Table 4.2 in which 

the quadruples are listed for every node in the graph. From Table 4.2, node F can 

be removed as D^a^^S, F) + T)) < 28 or F > F. Furthermore, we find 

that B) + d{B, E) < L{E), C) + d(C, E) < L{E), •’ D) + 

d�D, E) > L{E). Thus, all incoming branches to node E can be removed. Node 

E becomes isolated and can be removed too. The problem structure of Example 
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[28,30] 

Figure 4.4: Graph in Example 4.3. 

4.3.1 reduces to a one in Figure 4.5 and the value table is updated as in Table 

4.3. 

As + + = [22,28] readies 

the minimum intersection with [l,u\ = [28,30] among all nodes in Figure 4.5, we 

start from node D. Using Yen's algorithm, we first find the longest path passing 

node B with length 28，SBGIT. As the second longest path passing node J3, 

SBGHT, has a length 24’ we conclude all paths passing node B, except SBGIT, 

have lengths less than 28. After recording SBGIT, we remove node B. Similar 

situation happens at node D. The shortest path passing node D, SDGJT, has 

path length 28 and the 2nd shortest path passing node D, SDGHT, has path 

length 30, and the distance of the 3rd shortest path passing node D goes beyond 

30. After recording paths SDGJT and SDGHT, node D can also be removed and 

paths are recorded. After removing node B and D and checking the remaining 

4 paths, only one path has a distance length within [28,30], i.e., path SCGIT 

with length 29. In summary, our algorithm successively identifies four paths with 

length in [28,30]. 
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Table 4.2: The value table in Example 4.3.1 
Node Value Forward Backward sp sp Total 

B min 6 12 6 6 18 B 

max 6 22 28 

C min 3 14 3 3 17 C 

max 3 26 29 

D min 12 6 12 12 18 D 

max 12 26 38 

E min 8 9 15 21 17 E 

max 25 13 38 

F min 13 5 16 13 18 F 

max 13 12 25 

G min 14 8 14 20 22 G 

max 20 14 34 

H min 12 5 23 25 17 H 

max 29 5 34 

I min 15 6 22 24 21 I 

max 32 6 38 

J min 17 1 27 29 18 J 

max 35 1 36 
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[6,61 [23,25] 

[28,301 

Figure 4.5: Graph in Example 4.3. 

Table 4.3: The updated value table in Example 4.3. 

Node Value Forward Backward sp Total 

B min 6 16 6 6 22 

max 6 22 28 

C min 3 20 3 3 23 

max 3 26 29 

D min 12 16 12 12 28 

max 12 22 34 

G min 14 8 14 20 22 

max 20 14 34 

H min 19 5 23 25 24 

max 25 5 30 

I min 22 6 22 24 28 

max 28 6 34 

J min 21 1 27 29 22 

max 27 1 28 
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4.4. Application of distance confined path 

formulation to integer programming 

Yen's method can serve for the purpose in finding the ktli minimum solution of 

(P^), that first satisfies the feasibility of (P). The value of k to reach the first 

feasible solution of (P) in the ranking list of (P^) could be, however, very large. 

On the other hand, it is unnecessary to start from the minimum solution of (P^J. 

One shortcut is to use the dual value to lower-bound the optimal value. We can 

find the optimal solution of (P) by identifying the ranking list of solutions only 

with objective values within range [ / , / ] where f is the dual value of problem (P) 

and / is the objective value of the incumbent. Furthermore, we can partition 

range [ / , / ] into a union of several non-overlapping sub-ranges to speed-up the 

convergence. When a feasible solution of (P) is found in a sub-range with lower 

objective values, there will be no need to search in any sub-range with high 

objective values. 

For the graph defined by < b…we can further utilize the constraint 

gj{x) < bj, j 二 1, m, to remove infeasible nodes and branches. More 

specifically, we consider the following m feasibility problems for j = 1，.. •，m, 

(^Mi) < �and gj(x) < bj. 

Problem (F^ij) can be be partially solved by the distance confined path problem 

formulation which we discussed in the previous section. We first construct a 

graph based on g^{x) < b^ and assign arc length according to gj(x). Utilizing 

the constraint of gj(x) < bj, we may remove some infeasible nodes and branches 

in the graph. Problem (F�•），j = 1, . . . ’ m, can be solved successively, one 

after the other. The reduced graph from the previous formulation is used as the 

starting point for the next formulation. 
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We consider the integer programming problem of example 4.2.1 again: 

min f(x) = 2x1 — + 

s.t. gi{x) = -2xi + 2x2 — 2x2 + 2:3 < 0, 

g2(x) = x \ ^ - x 2 - x l < 0, 

仍 ⑷ = X i + 0；2 < 0, 

Xi e { —l，0’l}’i 二 1’2’3. 

It can be verified that the optimal solution to this example is (0，0,0). On the 

other hand, the surrogate dual search yields a dual value of — 1. We demonstrate 

now how our proposed solution scheme works. 

Setting fi = (0,1,0)'，we formulate a surrogate constraint problem (P^J as 

follows, 

min f{x) = 2x1 — + 5 而 

s.t. g2[T) = xl X2 - xl < 0, 

xeX = { - 1 , 0 , 1 } ^ 

Using Yen's method, we can identify the ranking list successively starting from 

the minimum solution, in which the first feasible solution, (0,0,0), is reached at 

the 8th position. Our proposed method will, instead, identify the ranking list of 

f{x) within the range [—1,10], where —1 is the dual value and 10 is an upper 

bound obtained by assigning the largest value to each term in f{x). We further 

partition the whole objective value range into 4 sub-ranges [ -1 ,1 ] , [2,4], [5, 7 

and [8,10] and to check the solutions in the lowest range [ - 1 , 1 ] first. 

But before we solve the above surrogate constraint problem to its optimum, 

we may first use other constraints of the primal formulation to reduce the graph 

dictated by g2{x) < 0. Problem (F^i) : {g2{x) < 0 and gi(x) < 0} is depicted in 

Figure 4.6 in which the graph structure is constructed based on g2(x) < 0 and 

the arc length is assigned according to 仍 � . 

The corresponding value table is given in Table 4.4. Take gi{x) < 0 into 

consideration, we can remove nodes and arcs which only allow paths with positive 
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Table 4.4: The original value table of F^i in Example 4.2. 

Node Value Forward Backward sp sp Total 

B min 2 0 2 0 2 B 

max 2 1 3 

C min 0 0 0 0 0 C 

max 0 1 1 

D min -2 0 -2 -2 -2 D 

max -2 1 -1 

E min 2 0 2 0 2 E 

max 2 1 3 

F min 0 0 0 0 0 F 

max 2 1 3 

G min -2 0 -2 0 -2 G 

max 0 1 1 

H mill -2 1 -2 0 -1 H 

max 0 1 1 

I min 3 0 3 0 3 I 

max 3 0 3 

J min 1 0 1 0 1 J 

max 2 0 2 

K min -1 0 -1 0 -1 K 

max 2 0 2 

L min -2 0 -2 0 -2 L 

max 2 0 2 
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1 [-2,0] 

Figure 4.6: Graphical presentation of F… 

gi values. Nodes B, E, I, and J can be removed as their IJ^P)�L(P). The 

graph is reduced to Figure 4.7 and the corresponding revised value table is in 

given in Table 4.5. 

As the graph in Figure 4.7 can not be further reduced by constraint (; i(. t) < 0 

and solving problem : {92(x) < 0 and g2(x) < 0} would not help removing 

infeasible nodes or branches in the graph constructed by g2(x) < 0, we now 

switch to (•F"3) : to� < 0 and 仍⑷ < 0} on the reduced graph, resulting in 

the graph in Figure 4.8. Reading corresponding value in Table 4.6 indicates that 

node H can be removed, leading to the graph in Figure 4.9 and the corresponding 

value table in Table 4.7. 

The graph in Figure 4.9 cannot be further reduced by constraint g^ix) < 

0. We now switch to the surrogate constraint formulation with f{x) G [—1,1], 

resulting in the graph in Figure 4.10 and the corresponding value table in Table 

4.8. 
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Stage 1 Stage 2 Stage 3 

0 [0.0] C 0 [0,0] F 

Stage 4 

-oo’o] 

[ - 0 0 . 0 ] 

Figure 4.7: Graphical presentation of reduced version 1 of 

Table 4.5: The updated value table of F̂ a in Example 4.2 

Node Value Forward Backward sp Jp Total 

C rnin 0 0 0 0 0 C 

max 0 1 1 

D inin -2 0 -2 -2 -2 D 

max -2 1 

F rnin 0 0 0 0 0 F 

max 0 0 0 

G min -2 2 -2 0 -2 G 

max 0 1 1 

H min -2 1 -2 0 H 

max 0 1 1 

K min -1 0 -1 0 -1 K 

max 1 0 1 

L min -2 0 -2 0 -2 L 

max 2 0 2 
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stage 3 Stage 4 

[-1,-1] F 0 

[ - 0 0 , 0 ] 

Figure 4.8: Graphical presentation of reduced version 2 of F"；； 

Table 4.6: The original value table of F^s in Example 4.2. 

Node Value Forward Backward sp sp Total 

C min 0 -1 0 0 C 

max 0 1 1 

D min 1 -1 1 1 0 D 

max 1 0 1 

F min -1 0 -1 -1 F 

max -1 0 

G mill 0 0 0 0 0 G 

max 0 0 

H min 1 0 1 0 1 H 

max 1 0 1 

K min -1 0 -1 0 -1 K 

max 0 0 0 

L mill 0 0 0 0 0 L 

max 1 0 1 
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stage 1 Stage 2 Stage 3 Stage 4 

S 0 [0,0] c -1 M.-1] F 0 

[-co,o] 

-CO,0] 

Figure 4.9: Graphical presentation of reduced version 3 of 

Table 4.7: The updated value table of F^s in Example 4.2. 

Node Value Forward Backward sp sp Total 

C in in 0 -1 0 0 -1 C 

max 0 0 0 

D min 1 -1 1 1 0 D 

max 1 -1 0 

F min -1 0 -1 -1 -1 F 

max -1 0 

G min 0 0 0 0 0 G 

max 0 0 0 

K min -1 0 -1 0 K 

max 0 0 

L min 0 0 0 0 0 L 

max 0 0 0 
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Stage 2 Stage 3 Stage 4 

0 [0,0] c 3 [3,1LF 5 

, 1 ] 

[ - 1 . 1 ] 

Figure 4.10: Graphical presentation of reduced version 4 of P" 

Table 4.8: The updated value table of P^ in Example 4.2. 

Node Value Forward Backward sp sp Total 

C mill 0 -5 0 0 -5 C 

max 0 5 5 

D mill 2 -2 2 2 0 D 

max 2 8 10 

F min 3 0 3 1 3 F 

max 3 0 3 

G min 0 -5 0 5 -5 G 

max 5 5 10 

K min -5 0 -1 1 -5 K 

max 10 0 10 

L min 0 0 0 1 0 L 

max 5 0 5 
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stage 1 Stage 2 

S 0 [0.0] C 
Stage 3 Stage 4 

. 1 , 1 1 

, 1 ] 

Figure 4.11: Graphical presentation of reduced version 5 of P^ 

After checking the value table in Table 4.8, we conclude that i) node F 

can be removed as L(F) > L{F) and ii) one branch between nodes G and K 

with arc length of 5 can be removed as As Dmin{S, G) + 5 � L ( K ) . The graph 

is further reduced to Figure 4.11. Checking the feasibility of the four possible 

paths identifies the optimal solution (0,0,0). 

• End of chapter. 



C H A P T E R 5 

CONVERGENT SURROGATE DUAL 
SEARCH 

The most challenging task to achieve the strong duality in the surrogate con-

straint formulation is to modify the formulation of (P^) such that the optimal 

solution of the modified (P^) is feasible in the primal (P) at the same time. 

The feasible region of (P^), 5( / i ) , enlarges the feasible region of (P) , S. 

When an infeasible solution of (P ) that has an objective value smaller than v{P) 

is included in the optimal solution of (P^) cannot be feasible. The solution 

concept presented in this chapter is to remove such infeasible points which attain 

the optirnality of (P^J from further consideration. We require the integrality of 

f in this research task in order to efficiently implement dynamic programming. 

Consider the following modified version of (P) by imposing a lower cut a 

and an upper cut 

inin fix) 

s.t. gi{x) < hi, i = 1,... ,m, 

X e X(l,u) 二 {:r e X I a S fix) < 外 

It is obvious that (P(a,/J)) is equivalent to (P) if a < f* < j3. 

59 
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The surrogate relaxation of (P(a, P)) is: 

(尸>’")） mmf(x) 

s.t. ii^{g(x) - b ) < { ) 

« < f(x) < P 

X G X. 

Problem is a separable integer programming problem with two con-

straints, one of which is the same as the objective function. Utilizing this special 

property, we will develop an efficient solution scheme in solving (P (̂q：, (5)). 

Note that problem (户"(0：，/3)) is equivalent to the conventional surrogate 

constraint formulation when a < v(P^). Let the feasible region of (P"(a!, p)) 

be 5(/i； {a, (3)). The following theorem provides the basis for development of the 

convergent surrogate dual search using the concept of an objective cut. 

Theorem 5.0.1. (i) When v(P^) <a< v{P), S C S(ii\{a,(3)) C S[ii). 

(a) Let 6 二 min"[v(_P) — f(x) | a: G X and f(x) < v(P)}. Any optimal 

solution to problem (P) also solves problem (尸“a,/?)) when v(P) - 5 < a < 

v(P). 

The extent of the initial interval [a,j3] has significant impact on the efficiency 

of dynamic programming when solving To reduce the range without 

losing any optimal solution, a, partition scheme is proposed to divide the range 

a, P] into q smaller non-overlapping blocks such that 

[a,/3] = u L i [ a � / n 

where a ! = a ， 二 卢 and q;®+i = + 1. The original problem can be then 

divided into q subproblems with s = 1，2,…，g : 

i n m i n / ( x ) 

s-t. gi(x) < hi, 2 = l , . . . , m , 

化 (5.0.1) 
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These q subproblems will be solved successively form s = 1 io s = q. If an 

optimal solution .t* is found in problem (P®) for 1 < s < g, then x* is an optimal 

solution to (P) and no need to solve the remaining subproblems. If the all the q 

subproblems are infeasible, then we claim the infeasibility of the primal problem. 

Let s and s denote the upper bound and lower bound of the range of state 

variable Sj, respectively. Let 

f j = max f j {x j ) , 
lj<Xj<Uj 

L = , min 
—J lj<Xj<Uj 

With the initial condition s f = s f = 0, the range s f of the state variable 

Sj at stage j can be determined by a forward recursive formulation, 

sf+i = sf + fj, for j = 1,..., n, 

sf+i = sf+ for j = l,...,n. 

With the initial condition s f = Uk, s f = Ik, the range sf of the state variable 

Sj at stage j can be determined by a backward recursive formulation, 

sf = sf+i - for j ==n,...,l, 

sf = sf+i - fj, for j = n,...,l. 

Therefore, the exact expression of the state range can be given as follows: 

‘10,0], f o r j = l, 

[马’力 1 = forj = 2,.,�n, (5.0.2) 

forj = n + l. 
\ 

If any [sj, Sj] is empty, then (5) has no feasible solution. In general, the 

state space of dynamic programming can be significantly reduced by the foriniilas 

above. 

Although the objective function is assumed to be integer-valued in the algo-

rithm, we can also handle cases with a rational objective function by multiplying 

a suitable number. 

We now present the proposed convergent surrogate dual search algorithm as 

follows. 
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5.1. Algorithm for convergent surrogate dual 

search 

Algorithm 5.1.1. fConvergent surrogate dual search and objective level cut) 

Step 0 (Initialization). Set a � equal to min^ex f(^) and set (3 equal to the 

objective value of an incumbent solution xq generated by some heuristic method 

when possible. When no feasible solution is available, set (3 equal to max^ex f(x). 

Choose any fio G R̂ ；. Let = 0 and k = Q. 

Step 1 (Surrogate relaxation). Solve the surrogate relaxation problem with ob-

jective level cut ,(3)). If the solution x^ satisfies < b, stop and 丄 

is an optimal solution to (P) . Otherwise, go to Step 2. 

Step 2 (Updating lower bound). Set a(斗丄=/(rc人二) if > a" and set = 

a^ if fix'') = cA 

Step 3 (Updating multiplier). Set T(斗i = T^ U x''. Solve the following linear 

program, 

(LPk) max 7 
(7’"） 

s . t . 仏 : v e T “ � 

；U e A, 

where A = G < 1} and e = ( 1 , . . . , and obtain an optimal 

solution (7'^,life)- If 十 < 0, go to Step 4. Otherwise, set fi^+i = fJ'k u,nd 

k = k 1, go to Step 1. 

Step 4 (Exhausting the solutions at the level of the current lower bound). Find 

out all solutions with their objective f{x) = under constraint ij'[(g(x) — b) < 

0. If any one solution is feasible to the primal problem, stop and the optimal 

solution is found. Otherwise, set = a^ + 1, 人外 1 = 0 and k = k and 

go to Step 1 with any fik ^ R-^ -

Theorem 5.1.1. When the primal problem (P) is feasible, Algorithm 5.1.1 finds 

an optimal solution of {P) in a finite number of iterations. 
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Proof. From Step 2 of the algorithm, a^ > for alii = 1，.. .，/c — 1，and 

the equality is achieved at least one of them. When a'^ < v(P) < (3 is satisfied, 

= f(x'') is always a lower bound of v{P). Thus, cv" < g 

always holds in the whole solution process. When the algorithm stops at either 

Step 1 or Step 4, the strong duality holds and the primal problem is solved. 

From Step 2 of the algorithm, {a^} is a nondecreasing sequence. We only 

need to prove that {a'^} cannot repeat at any level infinite times. Then the 

condition v(P) — 6 < a'^ < v{P) will be satisfied in a finite number of iterations, 

leading to the identification of an optimal solution to (P) and the termination 

of the algorithm based on Theorem 5.0.1. 

Condition � > 0 in Step 3 implies 

Thus, 

to the 

to (P) 

which further implies the infeasibility of all x̂  G in ( P 卯 ’ / ? ) ) . 

no Xk found in the previous iteration will appear again as a solution 

surrogate constraint formulation in later iterations. 

Entering Step 4 will result in an identification of an optimal solution 

or 二 a" + 1. Thus, no x satisfying f(x) = a^ will appear again as the 

solution to the surrogate constraint formulation. • 

5.2. Solution schemes for and 

/Or) 二 

The key step in Algorithm 5.1.1 is to solve the following doubly constrained 

surrogate constraint formulation with objective level cut: 

( P > ’ / 3 ) ) min / ( x ) 

s.t. - 6) < 0 

a < fix) < (3 

X e X. 
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Note that constraint — < 0 may not be integer valued, as surrogate 

multiplier vector fi is in general real-valued, which may cause large number of 

state grids when using dynamic programming. One feature of (P"(q;，/3)) is that 

the one constraint and the objective function are of the same functional form. 

Recognizing the above characteristics of problem P�a, j3), we are able to de-

rive an efficient solution scheme, fortunately, by considering the following singly 

constrained separable integer programming problem, 

(尸>’")） mm,Fg(x) 

s.t. a < f(x) < p 

xeX. 

Note that the assumption that f{x) is integer valued facilitates a good con-

trol of the number of state grids resulted from the single constraint in (5)). 

We adopt forward dynamic programming to solve (P^(a,(3)). More specifi-

cally, we apply forward dynamic programming to find solutions corresponding to 

f{x) 二 a, a + 1，...，successively. If the solution corresponding to f{x) = a in 

satisfies fi^ {g(x) — 6) < 0, this solution is also optimal to {P^{a,j3)). 

Otherwise, there is no solution of (_P,t(a，/?)) satisfying n'^ (g(x) — b) < 0 with 

f{x) = a, the lower bound of f{x) can be raised to o； + 1, and we consider next 

the solution of (P^{a,(3)) corresponding to f{x) = a + 1. The process continues 

until we first find a solution {P^(a,l3)) that satisfies fi^{g(x) - 6) < 0, which 

yields the solution of (P^(a,l3)). 

Example 5.2.1. 

min f(x) = 2x1 _ + 5x3 

s.t. g{x) = - i x i + 2x2 + X3 < 1, 

-8 < f(x) = 2x1 一 30；̂  + 5x3 < 10 
a: G X = { - 1 , 0 , 1 } ^ 
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We now show how to identify the optimal solution of the above problem by 

solving the following singly constrained integer programming problem, 

(D) ming(x) = + 2x2 + 

s.t. - 8 < f(x) = 2x1 一 + 5x3 < 10 

a; G X = { - 1 , 0 , 1 } ^ 

The range of the state space induced by constraint —8 < f{x) < 10 can be 

determines as: FSi = [0,0], FS2 = [0,2], FS3 = [ -3 ,5 ] and FS^ = [—8,10:. 

Evidenced from Table 5.1 that presents the results of using forward dynamic 

programming, the minimum S4 value with ^4(54) value less than 1 is —5. Thus, 

the optimal solution to this example is { . t i = Q,X2 = 0,0:3 = —1}. 

As the objective function in (D) is originally the constraint in the example 

bounded above by 1, we can make use of this to cut infeasible states. The 

range of the objective function of problem (D) can be determined as GSi = 

0,0], GS2 二 [-0.5’().5] ’ GS3 = [ -2 .5 ,1] and GS4 = [-2.5,1], When wc 

perform forward dynamic programming, if the value of the minimum cost-to-

accumulate function of a. s t a t e , � i ( S f c + i ) ’ is outside the feasible range of the 

objective value for the given stage, the corresponding decision will be blocked 

from further consideration. 

For example, at the second stage with S3 二 —3，the value of the cost-to-

accuniulate, 4(S3), is 2，which is larger than the upper bound of GS3. Then 

states derived from it will not be considered in next stage. The whole process of 

the forward dynamic programming is shown in Table 5.2. 

Problem will be solved during the solution process many times 

for different /从，ak and (3k- Note that is nondecreasing and f3k is nonincreas-

ing. Furthermore, when some parts of the table are removed due to violating 

— b) < 0 for any ĵ i, these deleted parts must violate one constraint and 

they should not be considered again in the later iterations. Therefore, the size 

of the dynamic programming table will be monotonically decreasing. 
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Table 5.1: Solution process for problem D using forward dynamic programming 

We now describe how to find out all solutions with their objective f{x) 

=Q；人under constraint /i�(g[a:) — b) < 0. Similar to our solution scheme 

for (P^{a,/3)), we consider a dynamic programming table induced by objective 

function iJ^lg{x) and constraint f(x) 二 a � . T h e condition / 4 ， (咖 ) — ^ 0 can 

be used to reduce the size of the dynamic programming table before performing 

an exhausting search for solutions of f{x) = c/’+i. We remark that this problem 

can be also solved by rank listing all solutions from the one that achieves the 

minimum of iilg[x) to the maximum one that satisfies f.ij.g[x) < ^Ib. 

To illustrate how the algorithm works, we consider the following example 

with 5 variables and 3 constraints. 
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Table 5.2: Solution process for problem D using forward dynamic programming 

incorporated with surrogate constraint. 

S2 X\{S2)力、(S2) S3 3^2(53) ^3(53) S4 0:3(54) ^4(54) 

2 1 -0.5 5 -1 -2.5 10 1 -1.5 

0 0 0 3 -1 -2 8 1 -1 

2 0 -0.5 7 1 0.5 

0 0 0 5 1 1 

- 1 1 1 . 5 / 0 0 4 1 2 . 5 / 0 0 

-3 1 2 / 0 0 3 0 - 2 

2 0 -0.5 
n n U (J u 

- 1 0 1 . 5 / 0 0 

- 2 - 1 - 1 

-3 -1 0.5 

-5 -1 1 

- 6 - 1 2 . 5 / 0 0 

- 8 - 1 3 / 0 0 

Example 5.2.2. 

min -2xi - 3xf + xf + 8x2 一 7x2 _ 5x3 — + 2x4 + — 4t5 — 7x1 

s.t. 6x1 + 7x] + 4t2 + ixl + xl - 8x3 - Ixl 一 7.T4 + 2x\ — 50:5 + 2x1 < —8， 

8x1 - + 4x2 - -\-xl- 4x3 + Sxl + 7x4 - Qxl - 2工5 — < 0， 

- X l - 3x1 - 2工2 + 2x1 + xl- 2x3 + 8x1 一 5x4 - 3x1 + 5x5 — 7x1 < 3’ 

xe X = {xe z5|l <Xi< 5,'i = 1,2,3,4,5} . 

Initial values of and (3 are calculated as - 4 3 2 and 300, respectively. Then 

the initial interval of objective cut is [-432,300]. The algorithm terminates at 

iteration 6 when solving problem P^(-307,300) and finds an optimal solution. 

At iteration 5, fi^ is updated to 0 and we then search all the solutions of the 
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surrogate constraint formulation with objective value equal to —307. As no 

feasible solution to the original problem is found, we increase the lower bound 

by 1. Then we get the solution to P,,(-306，300) with value —304，which is also 

feasible to the original problem. Table 5.3 summaries the iteration process of 

the algorithm. The real-valued / / is rounded off with 3 decimal numbers in the 

table. 

Table 5.3: Iteration dynamic programming process in Example 5.3.1 

Iteration f(x*) a' P 
0 (1,0, o r -432 300 

1 (0’0’1 广 (2,4,5,1,5) -377 -377 300 

2 (0.262,0,0.738)^ (2,5,1,1,5) -340 -340 300 

3 (0.070’ 0,0.93•严 (2,2,5,1,5) -309 -309 300 

4 (0.163,0,0.837)'^ (3,4,4,3,5) -307 -307 300 

5 (0,0, o r (3,2,5,1,5) -307 -306 300 

6 (1,0, o r (2,3,4,1,5) -304 

5.3. Computational Results and Analysis 

We report in this section the computational results in testing Algorithm. 5.1. 

for order-3 polynomial integer problems. 

M工J 

ffiA 工 J 

=YlcjkX � 
k=l 

J = 77', 

= E aijkXj，：]= mj = 1： n. 

Coefficients Cjh are set as integers with Cji G [-20,20], Cj2 G [-10,10], and 

Cj3 G [—5,5]. Coefficients aijk are real valued numbers with a^i G [—20,20], 

a,J2 G [—10,10], and a ĵs G [—5,5]. All the coefficients are generated uniformly 
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and independently. The decision variables are bounded with 

Let 0 < Vi < l,i = 1 , . . . , m. The right-hand side V s take the following 

form, 

= + niQi - £.), i = 

where g. = m in^cex ffi(x), g^ = maXa-^x 9i(x), and the ratio r̂  is used to control 

the size of the feasible region of the problem and the difficulty level. The exper-

iments show that the smaller ri is, the more cpu time is needed to identify the 

optimal solution. In our experiments, r^'s are randomly generated between 0.5 

and 0.7. A similar rule of determining the right-hand side was used in generating 

problems in Bretthauer and Shetty [5] [6 . 

11 m Average No. of iterations Average CPU times 

50 20 1 0.03 

50 30 4 1.60 

100 40 2 0.16 

100 50 3 1.07 

The algorithm is coded by Fortran 90 and runs on a Dell PC with IG ram 

and 2.8GHZ CPU. Table 5.4 reports sets of test problems with different number 

of variables and different number of constraints. 

Table 5.5 compares the convergent Lagrangian dual search and objective 

level cut method[32] with the convergent surrogate dual search and objective 

level cut method for a. special set of test problems with n = 30 and m 二 20, it 

demonstrates that the surrogate dual outperforms Lagrangian dual in both dual 

value and in CPU time. 
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Table 5.5: Comparison with Lagrangian dual search method(n = 30, m 二 20) 

Problem Surrogate method Lagrangian method 

Initial dual value CPU time(s) Initial dual value CPU time(s) 

1 -5115 0.01 -5115 0.01 

2 -5501 0.15 -5504 1.81 

3 -5355 1.46 -5458 7.25 

4 -5371 0.10 -5378 4.54 

5 -6882 0.03 -6892 4.01 

6 -5511 0.02 -5511 0.12 

7 -7508 3.56 -7520 89.37 

8 -7083 0.16 -7089 6.98 

9 -5618 0.06 -5641 2.61 

Average dual value Average time(s) Average dual value Average tinie(s) 

-5993 0.61 -6012 12.96 

Table 5.6 compares convergent Lagrangian dual search and objective level 

cut method[32] with the convergent surrogate dual search and objective level 

cut method for cases where n is set as 50, in which 4 sets of test results are 

reported. Table 5.6 shows that the average CPU time of the convergent surrogate 

Table 5.6: Comparison with Lagrangian dual search method 

n m Surrogate method Lagrangian method 

Average number Average CPU Average number Average CPU 

of iteration time(s) of iteration time(s) 

50 20 2 0.03 3 9.41 

50 30 4 1.60 7 30.13 

50 40 3 4.71 4 11.99 

50 50 3 0.37 9 13.69 
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dual search and objective level cut method is much less than the convergent 

Lagrarigian dual search and objective level cut method[32 . 

• End of chapter, 



C H A P T E R 6 

CONCLUSIONS 

The surrogate constraint dual method provides an alternative dual scheme for 

deriving tighter lower bound for multiply constrained separable integer program-

ming problems. The surrogate relaxation, (P^), differs from the primal problem, 

(尸)’ only in the feasible region. In general, the feasible region of the surrogate 

relaxation enlarges the feasible region of the primal problem. If this enlarged 

feasible region contains an infeasible solution that has an objective value less 

than the optimal value of (P), then the surrogate relaxation, will fail to 

identify an optimal solution of the primal problem, (P) , while searching for the 

minimum in this enlarged feasible region. 

Although the optimal point of the primal problem does not attain the mini-

mum of the surrogate relaxation when the duality gap exists, it is always hidden 

in the ranking order of the minimum solutions. Invoking the concept of the /cth 

minimum path in networks, we can devise a solution scheme to pin point the opti-

mal solution of (P) by generating successively the ranking order of the minimum 

solutions of a surrogate relaxation and identifying the one which first satisfies the 

primal feasibility. By proposing a new graph formulation of distance confined 

path problem, we have made substantial revisions to the traditional kth shortest 

path algorithms and translate them into the corresponding operations in the dy-

namic programming table. First, as the lower bound information dictates that 

the optimal value must be no less, we seek the optimality from a suitable mid-

72 
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die point of the ranking order, thus removing unnecessary computational efforts 

starting from the bottom. Second, a shrinking range of the objective value allows 

us to reduce gradually the dynamic programming table in the solution process by 

removing non-promising "nodes" and "arcs" from the "graph". This prominent 

feature helps speeding up the convergence. We emphasize that, as the size of 

the state space affects significantly the performance of dynamic programming, 

our first convergent surrogate dual search solution algorithm currently does not 

update the surrogate multipliers in order to avoid non-integer multipliers. 

We impose bounds on the objective function of (P) in our second conver-

gent surrogate dual search solution algorithm. A range reduction of the objective 

value forces the infeasible solutions of (P) which are better-performing gradually 

out of the feasible region of the surrogate relaxation, making the algorithm to 

converge to the optimal solution of the primal problem. Recognizing some kind of 

complementary positions of the objective function and the surrogate constraint 

in the resulting doubly constrained formulation, we switch the positions between 

them to benefit the algorithm from both the resulting singly constrained formu-

lation and the surrogate dual search. 

As the surrogate dual search offers a tighter bound than the more popu-

lar Lagraiigian dual, our preliminary numerical experiments have demonstrated 

promising computational results. 

• End of chapter. 
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