
Surrogate Dual Search in Nonlinear
Integer Programming

WANG, Chongyu

A Thesis Submitted in Partial Fulfillment

of the R.equirements for the Degree of

Master of Philosophy

ill

Systems Engineering and Engineering Management

.June 2009

Thesis/Assessment Committee

Professor Shuzhong Zhang (Chair)

Professor Duan Li (Thesis Supervisor)

Professor Janny Leung (Committee Member)

Professor Xiaoling Sun (External Examiner)

ABSTRACT

The focus of this research is on the development of efficient solution schemes for

multiply constrained separable nonlinear integer programming (MCSNIP). Dy-

namic programming, one of the most powerful solution methodologies to adiieve

optimality for separable problems, suffers heavily from the notorious "curse of di-

mensionality" ,which prevents its direct applications to MCSNIP. By aggregating

multiple constraints into a single surrogate constraint, the surrogate constraint

formulation offers an ideal platform for powerful utilization of dynamic program-

ming, with a, price of the existence of a duality gap in general situations. This

thesis seeks a research goal to build up a framework of convergent surrogate

dual search in the sense that the duality gap will be gradually eliminated during

the solution process of the surrogate dual search. The overall research goal is

achieved by accomplishing the following two research tasks, i) As any singly

constrained separable optimization problem is corresponding to a shortest path

problem and the dual value offers a lower bound of the optimal value, we propose

a new formulation of the distance confined path problem and develop a solution

scheme using successive network reduction. This new solution concept in turn

leads to a new type of convergent surrogate dual search by removing gradually

infeasible points of the primal prom from the feasible region of the surrogate

relaxation, ii) By attaching bounds on the objective value in the surrogate con-

straint formulation and tightening the bounds successively using the updated

dual value, the convergence to the primal optimality can be guaranteed in the

surrogate dual search. Recognizing that the same function appears in both objec-

1

tive and constraint, we convert the doubly constrained formulation into a singly

constrained one, thus facilitating effective utilization of dynamic programming.

The computational results demonstrate the applicability of our proposed solution

algorithms in solving large-scale MCSNIP problems. Our research extends the

reach of dynamic programming to tackle successfully the long-standing challenge

arisen from MCSNIP.

摘要

本论文主要研究多约束可分离非线性整数规划问题 (MCSNIP)的有效求解

方案。动态规划，作为最有效的求解可分离问题最优解的方法之一，曲于深

受为人熟知的”维数灾”的拖累，因而无法直接应用于(MCSNIP)问题。通过把

多约束聚合成单一替代约束，替代约束问题为有效利用动态规划提供了一个

理想的平台，而付山的代价是在一般情况下会引入对偶间隙。这篇论文的研

究R的在于探讨并建立一种收敛替代对偶搜索框架，能够逐步消除对偶间隙

以至找出原问题的最优解。我们通过完成以下两件任务来达到整体的研究F1

标：1)由于任意单约束可分离最优化问题对应于一个最短路问题，且对偶值

提供最优解的下界，我们提山一种新的距离限制路径问题模型并幵拓了一种

网络逐步简化的求解方案。这种新的求解魁想进一步引山一种新的收敛对偶

替代搜索，逐步从替代松她可行域中移除原问题的不可行点。2)在齊代约束

问题中添加冃标值的上下界限制并应用更新的对偶值不断收紧R标值.h下界

范围，我们能保证对偶搜索收敛至原问题最优解。注意到R标函数和一个约

束函数相同，我们把双约束的问题转化成单约束问题，从而便利使用动态规

划。计算结果显示了我们提出的算法在解决大规模MCSNIP问题的适用性。

我们的研究拓展了动态规划的应用范围，特别能成功应对来自MCSNIP问题

造成的长期挑战。

ACKNOWLEDGEMENT

I would like to express my greatest gratitude to my supervisor, Professor

Diian Li, for his invaluable advices and excellent guidance in the development of

the ideas in this thesis and all the help throughout rny postgraduate studies.

I am also thankful to Professor Xiaoling Sun for serving as the external

examiner of my thesis and grateful to Professor Shuzhong Zhang and Profes-

sor Janny Leung for their expert serving as members of my thesis committee.

Moreover, I would like to thank Professor Yirong Yao, Dr. Jim Wang and Dr.

Chi-Kong Ng for their professional suggestions in the course of this work.

I also want to thank my fellow members, Chiiili Liu, Jianjun Gao, Lan Yi,

Xiangyu Cui, Shengsheng Gu and Xiaojin Zheng for their enthusiastic helps and

valuable discussions.

Many thanks to my good friend Xiangwei Wan, roommate Di Wii and all

my friends in Chinese University of Hong Kong. I really enjoy the happy times

spent with them.

Finally, special thanks should be devoted to the girl who changed my life.

CONTENTS

Abstract 1

Abstract in Chinese 3

Acknowledgement 4

Contents 5

List of Tables 7

List of Figures 8

1. Introduction 9

2. Conventional Dynamic Programming 15

2.1. Principle of optimality and decomposition 15

2.2. Backward dynamic programming 17

2.3. Forward dynamic programming 20

2.4. Curse of dimensionality 23

3. Surrogate Constraint Formulation 26

3.1. Surrogate constraint formulation 26

3.2. Singly constrained dynamic programming 28

3.3. Surrogate dual search 29

Contents 6

4. Distance Confined Path Algorithm 34

4.1. Yen's algorithm for the kth shortest path problem 35

4.2. Application of Yen's method to integer programming 36

4.3. Distance confined path problem 42

4.4. Application of distance confined path formulation to integer pro-

gramming 50

5. Convergent Surrogate Dual Search 59

5.1. Algorithm for convergent surrogate dual search 62

5.2. Solution schemes for a n d / � = a " 63

5.3. Computational Results and Analysis 68

6. Conclusions 72

Bibliography 74

LIST OF TABLES

2.1. Solution process for Example 2.2.1 using backward dynamic pro-

gramming 19

2.2. Solution process for Example 2.3.1 using forward dynamic pro-

gramming 22

4.1. The extended dynamic programming table in Example 4.2.1 . . . 43

4.2. The value table in Example 4.3.1 48

4.3. The updated value table in Example 4.3.1 49

4.4. The original value table of F â in Example 4.2.1 52

4.5. The updated value table of F^i in Example 4.2.1 54

4.6. The original value table of F^s in Example 4.2.1 55

4.7. The updated value table of F…in Example 4.2.1 56

4.8. The updated value table of P�i in Example 4.2.1 57

5.1. Solution process for problem D using forward dynamic programming 66

5.2. Solution process for problem D using forward dynamic program-

ming incorporated with surrogate constraint 67

5.3. Iteration dynamic programming process in Example 5.3.1 68

5.4. Numerical results for third degree polynomial integer programming 69

5.5. Comparison with Lagrangian dual search method(n = 30, m 二 20) 70

5.6. Comparison with Lagrangian dual search method 70

LIST OF FIGURES

4.1. Network in Example 4.2.1 38

4.2. Shortest path in Example 4.2.1 39

4.3. Deviating paths in Example 4.2.1 40

4.4. Graph in Example 4.3.1 47

4.5. Graph in Example 4.3.1 49

4.6. Graphical presentation of F^i 53

4.7. Graphical presentation of reduced version 1 of F^i 54

4.8. Graphical presentation of reduced version 2 of … 55

4.9. Graphical presentation of reduced version 3 of 56

4.10. Graphical presentation of reduced version 4 of P^ 57

4.11. Graphical presentation of reduced version 5 of 58

C H A P T E R

INTRODUCTION

We consider in this research the following general class of multiply constrained

separable integer programming problems,

n

(P) min /(a：) 二 ；^力Ocj)

n
s . t . g i (x) = ^ ^ g i j i x j) < bi, i = 1 , . . . , m ,

j = i

xeX = XixX2X---x Xn,

where all f / s and g i j ' s are real-valued functions defined on R , and all Xj'vS are

finite integer sets in R. Problem (P) covers very general situations of nonlin-

ear integer programming problems as no additional property such as linearity,

convexity, concavity, monotonicity or differentiability is assumed in (P). Prob-

lem (P) possesses a nonconvex nature in many instances, e.g., concave integer

programming [2] [4] [17] and polynomial integer programming [18].

Problem (P) has a wide variety of applications, including resource alloca-

tion problems and nonlinear multi-dimensional knapsack problems. In partic-

ular, capital budgeting, manufacturing capacity planning, production planning,

network reliability, stratified sampling are special cases of (P).

Integer programming has been one of the great challenges in front of the

optimization research community for many years, due to an exponential growth in

its computational complexity with respect to the problem dimension. It has been
9

Chapter 1. Introduction 10

shown in the literature that many special cases of (P) are NP-hard [8] [19] [38].

Therefore, constructing an efficient exact algorithm for (P) is a. challenging task.

The literature on the solution methods of (P) has been dominated by the

results for singly constrained situations until recently. Ibaraki and Katoch [19

summarized certain algorithms for singly constrained resource allocation prob-

lems where the objective function is convex and separable and the single con-

straint is of a special form of � j = N. Bretthauer and Shetty [5] proposed

a branch-and-bound algorithm for a special singly constrained case of (P) where

all / j ' s and 仿 /s are convex. Hochbaum [16] studied a singly constrained case

of (P) where all / j ' s and gij,s are convex and moiiotonically nonincreasing. The

piecewise linear approximations of f/s and 恥’s are used in [16] to convert the

problem into a 0-1 linear integer programming problem.

The concept of duality plays an important role in discrete optimization.

The Lagrangian relaxation methods are widely adopted in integer programming

(see, e.g., [11][12][13][39]). As discussed in [33], the conventional Lagrangian dual

method often fails to generate an optimal solution to (P) due to the existence of

a duality gap. Using group theory, Bell and Shapiro [1] proposed a, convergent

Lagrangian duality theory for linear integer programming in which the duality

gap is reduced by reshaping the feasible region. Recently, the duality gap in

general nonlinear integer programming was examined and its related properties

were studied in [28] [33]. Nonlinear Lagrangian formulations are proposed in

28] [33] [40] to offer a success guarantee for the dual search in generating an

optimal solution of the primal integer programming problem. Although the

nonlinear Lagrangian formulations possess strong duality or asymptotic strong

duality, it does not lead to a decoinposability which is crucial for an efficient

implementation of a dual scheme.

Along with the Lagrangian duality theory, the surrogate duality theory

has been widely used in solving integer programming problems. While the La-

grangian dual formulation generates a relaxation by incorporating the constraints

into the objective function, the surrogate dual generates a relaxation by aggre-

Chapter 1. Introduction 11

gating multiple constraints into a single surrogate constraint. To eliminate the

duality gap, Li [27] proposes a nonlinear surrogate dual method which guarantees

the equivalence between the primal problem and its relaxation and eliminates the

need of dual search. However, the resulting nonlinear surrogate constraint for-

mulation is, in general, more difficult to solve than the primal problem, as the

separability of the primal problem (P) is destroyed.

The past few years have witnessed research efforts in developing iinple-

mentable solution schemes to identify the exact solution of (P) in a process

of gradually reducing duality gap via an integration of Lagrangian dual search

and various cutting schemes.

Li, Wang and Sun [32] develop a convergent Lagrangian method for (P)

using objective cuts. The algorithm starts with a lower bound derived from the

dual value by the conventional Lagrangian dual search and an upper bound by

a feasible solution generated in the dual search (if any). The lower level cut

and upper level cut are imposed to (P) such that the duality bound (duality

gap) is forced to shrink. The objective cut is updated successively with the

range between the upper cut and the lower cut monotonically decreasing. The

algorithm terminates in a finite number of iterations, either reaching an optimal

solution to (P) or reporting an infeasibility of (P).

For problem (P) with a. quadratic objective function, Li, Sun and Wang [29

propose a solution method that combines the Lagrangian dual method with a

duality reduction scheme using contour-cut. At each iteration of the algorithm,

lower and upper bounds of the problem are determined by the Lagrangian dual

search. To eliminate the duality gap, a cut-and-partition scheme is derived by

exploring the special structure of the quadratic contour. The method finds an

exact solution of the problem in a finite number of iterations.

For the nonlinear rnulti-dimensional knapsack problem, a special case of

(P) , Li, Sun, Wang and McKinnon [31] develop a convergent Lagrangian and

domain cut method. The proposed method exploits the special structure of the

problem by Lagrangian decomposition and dual search. The domain cut is used

Chapter 1. Introduction 12

to eliminate the duality gap and thus to guarantee the finding of an optimal

exact solution to the primal problem.

Dynamic programming pioneered by Richard Bellman in 1950's is one of

the most powerful methodologies for separable optimization problems. However,

it suffers heavily from the notorious "curse of dimensionality" which prevents a

direct application when a large number of constraints are present. Mitigating the

curse of dimensionality in dynamic programming has been a challenging research

task in front of the control and optimization community for many years. A few

solution algorithms have been suggested in the literature for alleviating the "curse

of dimensionality" in dynamic programming.

Recognizing a relationship between the optimal solutions and the efficient

solutions in the constraint space, a hybrid method was developed in [36] with a

purpose to fathom in the solution process inefficient incomplete feasible solutions

by bounds and dominance rules.

Many attempts have been made to mitigate the curse of dimensionality of

dynamic programming in its control applications.

A successive approximation technique was proposed in [24] [25] for a discrcte-

time deterministic optimal control problem. A nominal trajectory of state x and

control u are specified first. One of the n state variables is selected each time to be

optimized while the others are held fixed. The procedure repeats such that each

of the state variables is selected at least once. Thus, the original n-dimensional

problem is transformed to a sequence of one dimensional problems which can

be effectively handled by dynamic programming. However, the convergence to

the global solution is not guaranteed and this method may be trapped in a local

minimum.

Differential dynamic programming (DDP) developed in [20] [34] [37] [41] is a

second-order method that successively improves the incumbent trajectory under

a convexity assumption based on the principle of optimality. The advantage of

DDP over traditional dynamic programming is that it does not require discretiza-

tion of the state space, thus avoiding the "cures of dimensionality". However,

Chapter 1. Introduction 13

convergence issues may arise and paper [34] addresses the convergence issues of

differential dynamic programming (DDP).

The idea of region reduction was adopted in [35] by successively refining a

coarse grid assignment of the state space.

Note that the curse of dimensionality disappears when an analytical form

of the cost-to-go function can be achieved. Thus, different numerical methods,

such as linear and spline interpolation [21] and neural computing [3], have been

suggested in the literature to approximate the cost-to-go by an analytical form.

The focus of this research is on the development of efficient solution schemes

for problem (P). By aggregating multiple constraints into a, single surrogate con-

straint, the surrogate constraint formulation offers an ideal platform for powerful

utilization of dynamic programming, albeit with a price of the existence of a du-

ality gap in general situations. This research seeks a research goal to build up a

framework of convergent surrogate dual search in the sense that the duality gap

will be gradually eliminated during the solution process of the surrogate dual

search. The overall research goal is achieved by accomplishing the following two

research tasks.

i) As any singly constrained separable optimization is corresponding to a

shortest path problem and the dual value offers a lower bound of the optimal

value, we propose a new formulation of the distance confined path problem and

develop a solution scheme using successive network reduction. This new solution

concept in turn leads to a new type of convergent surrogate dual search by

removing gradually infeasible points of the primal prorn from the feasible region

of the surrogate relaxation.

ii) By attaching bounds on the objective value in the surrogate constraint

formulation and tightening the bounds successively using the updated dual value,

the convergence to the primal optimality can be guaranteed in the surrogate dual

search. Recognizing the same function appears in both objective and constraint,

we convert the doubly constrained formulation into a singly constrained one,

thus facilitating effective utilization of dynamic programming. The computa-

Chapter 1. Introduction 14

tional results demonstrate the applicability of our proposed solution algorithms

in solving large-scale instances of (P).

The structure of this dissertation is as follows. After the introduction given

in this chapter, we review dynamic programming and the surrogate constraint

formulation, respectively, in Chapters 2 and 3. We propose a. new formulation

of distance defined path problem and develop a solution algorithm in Chapter

4 and discuss its applications in networks. This new problem formulation and

its corresponding graphical solution algorithm lead further a successive reduction

scheme to reduce infeasible and/or non-optimal points from the dynamic table of

the surrogate constraint formulation for (P), resulting in our first convergent sur-

rogate dual search algorithm. In Chapter 5, we consider our second convergent

surrogate dual search algorithm for problem (P) by attaching a bound constraint

on the objective value in the surrogate constraint formulation. By successively

reducing the range of the bounds, we ensure a convergence to the solution of the

primal problem (P) under this solution algorithm. Recognizing the special struc-

ture of the objective confined surrogate constraint formulation, we convert the

doubly constrained formulation into its equivalent singly constrained counter-

part, thus facilitating effective utilization of dynamic programming. We further

demonstrate the efficiency of the proposed algorithm in numerical tests. We fi-

nally summarize this research in Chapter 6. Our research extends the reach of

dynamic programming to tackle successfully the long-standing challenge arisen

from problem (P).

• End of chapter.

C H A P T E R 2

CONVENTIONAL DYNAMIC
PROGRAMMING

Dynamic programming has been widely adopted as a solution scheme for

discrete optimization. The separability of both the objective function f and

constraint function g / s in (P) makes dynamic programming method an ideal

technique. The following assumption is essential for an efficient implementation

of a dynamic programming method for (P) .

Assumption 2.0.1. Function gij is integer-valued, for all j = 1,...，n and i =

1 , m .

2.1. Principle of optimality and decomposition

To apply dynamic programming in solving the problem (P) , we need to introduce

the stage variable k and state vector s^ G R / " at stage k that satisfies the

following recursion:

Sk+i = Sk + g^(xic), fc 二 1 ’ . . . ’ n,

with an initial condition Si = 0, where

gH^k) = {gik(xk), •.

Since the constraints are integer-valued, we only need to consider integer

points in the state space. Furthermore, the feasible region of the state vector at
15

Chapter 2. Conventional Dynamic Programming 16

stage k with 2 < A; < n + 1 can be confined as follows:

where

and

=

Sk< Sk< Sfc,

(2.1.1)

Sk

9u{xt),h — YTt=k

maXx-iGXt 9mt{xt),hr,x — EILfc ini^TteXt gmi{xt)]

(2.1.2)

The principle of optima,lity revealed by Richard Bellman in his pioneering

work in 1950，s is the cornerstone of dynamic programming. The following is a

backward version of principle of optimality originally stated by Bellman in his

seminal work:

An optimal policy has the property that whatever the initial state and initial

decision are, the remaining decisions must constitute an optimal policy with

regard to the state resulting from the first decision.

Similarly, a forward version of the principle of optimality can be stated as

follows:

An optimal policy has the property that whatever the later states and later

decisions will be, the early portion of the decisions must constitute an optimal

policy with regard to the intermediate state from which the later portion of the

decisions starts to apply.

The principle of optimality enables us to decompose the primal n-varial)lc

optimization problem into a family of univariate optimization problems, thus

reducing significantly the computational efforts. Dynamic programming can be

applied to solve problem (P) either by a backward recursion or by a forward

recursion.

Chapter 2. Conventional Dynamic Programming 17

2.2. Backward dynamic programming

For a given state s at stage k, 1 < k < n, define the cost-to-go function as

follows,

n
i k (s) = m i n ^ f j { x j) ,

j=k

n

si s + ^^ < b’

n ^ j， 7 Ay , 77-. (2.2.1)

It is obvious that

v(P) = U{0).

Based on Bellman's principle of optimality, the cost-to-go function satisfies the

following backward recursive relation for /c = n — 1’ n - 2’...，1,

i k { s) = m i n { f k (x k) + + 一 ⑷) }

with boundary condition

i n { s) = m i n { f n (X n) \ s + g'^ixn) < b}.
Xn^-^n

Define

and

< (s) = arg min {fn{xn)\s + g^'ixn) < b},
Xn€An

xl(s) = arg min {fk(xk) + 4+i (s + g'^ixk))}, k = n -

The backward dynamic programming starts at k = n and moves backwards,

/c 二 n — l ’ . . .， l . It calculates the cost-to-go recursively for every s between Sj,

and Sfc at stage k and finally stops at Si 二 0. The tracing process is then carried

Chapter 2. Conventional Dynamic Programming 18

out in a forward way to identify the optimal solution of (P). Starting from ；rT(0)’

the optimal state at stage 2 is obtained as s^ 二 以i(a;“0)). The algorithm then

identifies the optimal solution at stage 2, which yields the optimal state

at stage 3, S3 = + 办⑶ . T h e process terminates when it reaches s* and

finds out a:*(s*).

Example 2.2.1.

min f(x) = 2x\ — 3x2 + S.Ts

s.t. g\[x) = -2xi + 2x2 + X3 < 1,

" 2 � = X i + <0,

Xi e { - l , 0 , l } , i = 1,2,3.

It can be checked that the optimal solution of this small-scale example is

X* = (0 , 0 ， w i t h f(x*) = —5. We now illustrate how to identify the optimal

solution by using dynamic programming.

Using formulas in (2.1.1) and (2.1.2), the feasible regions of the state vector

: = 2，3 and 4 ,

/ - 2]
< S 2 <

(-1 J
(— 4 �

1 - 9
< S 3 <

1

- 4

- 3
< S4 <

0

Table 2.1 gives the solution processes using backward dynamic programming.

The solution process using backward dynamic programming starts from

stage 3. For each possible S3, the optimal decision 工办3) is found and the cor-

responding optimal cost-to-go £3(53) is recorded. For example, at S3 = (1, —2)'̂ ，

both X3 = 1 and 0:3 = —1 are infeasible. The optimal decision ^^((l, —2)'̂ ') is

Chapter 2. Conventional Dynamic Programming 19

Table 2.1: Solution process for Example 2.2.1 using backward dynamic program-

ming

Si x1(si)/ii(si) S2 X*2(s2)/i2{s2) S3 X^Ss

(0,0) T 0 / - 5 * - 2 , - 1) 了

(- 2 , o r

(- 2 , 1) 了

- 1 , - i r

(- 1 , 1) 了

(0,-1广

(0,0 广

(1 , - i r

(1 , 0) 了

r
(1,1)

(2,-1)
(2’0)。

(2,1)^

T

1/-8

1/-8

0/-5

0/-5

0/-5

0/-5

0/-5

0/-5

0/-5

0/0

0/0

-1/-2

-1/-2

-1/-2

- 1 / - 2

- 4 , - i r

(- 4 , o r

(- 4 , i r

:—3，—2广

T (-3,0)

(-3,1) 了

- 2 ’ - 2) 了

- 2 , - 1) 了

(- 2 , o r

(-2,1广

：-1,-2 广

T (-1,0)
(-1，1广

(0 , - 2 ,

(0 , - i r

(o , o r

(o , i r

(1’-2 广

(1 , - i r

(i , i r

5

5

5

5

5

5

5

5

-5

-5

-5

-5

-5

- 5

-5

0

0

0

Chapter 2. Conventional Dynamic Programming 20

found to be 0 and the corresponding f3((l, —2)'^) is 0. If there does not exist a

feasible solution at S3, a;办3) is set as 00. Then, we move back to stage 2. At

each possible S2, we compare /2(a^2)+ 4(^2+^^(2:2)) for X2 = —1,0 and 1 and find

out a；办2) and the corresponding optimal cost-to-go For example, at S2 =

(- 1 , - i r , comparison of - 3 (- l) + ^ ((l , 0)^) = 3, - 3 (0) + t 3 ((- l , i D = - 5

and —3(1)3 + £3((—3’ —2)t) = _ 2 yields -1)了）= 0 and t〜（（—1, 一1广）二

—5. Finally, we move back to stage 1. Checking f i { x i) + &((0，0)7’ + g^{xi)) for

xi = - 1 , 0 and 1 gives = (0’0)了) = 0 and £i(si = (0,0)^) = - 5 . Tracing

back, we find the optimal solution for the example problem: xi = X2 = 0 and

X3 = - 1 .

2.3. Forward dynamic programming

For a given state s at stage k, 2 < k < n + define the cost-to-accumulate

function as follows,
fc-i

ik{s) 二 m i n f 力(:cj)，

fc-i
s-t. " ^ g ^ X j) < s,

Xj £ X j^ j = 1 , . . . — I. (2.3.1)

It is obvious that

v(P) = min{tn+i(s)|s < b}.

Based on the forward version of Bellman's optimality principle, the cost-to-

accumiilate function satisfies the following forward recursive relation for k —

1 ’ . . . ’ n + 1,

ik{s) = min + ik-i(s - g^'^Xk^i))},
Xk-i€Xk-i

with boundary condition

kis) = min {fi{xi)\g\xi) < s},
x\GX\

Chapter 2. Conventional Dynamic Programming 21

Define

and

= arg min {fi{xi)\g\xi) < s},
•"ClG-Al

4 - 1 (s) = arg min {fk-i{xk-i) + ik—� s —
xk-ieXk-i

k -. 2 ’ . . . ’ + 1.

The forward dynamic programming starts at k = 2 and moves forward,

k = 3 , . . . , n + 1. It calculates the cost-to-accumulate recursively for every s at

stage k between and Sfc and finally stops at stage n + 1. Let

= argmm{in+i{s)\s < b}.

The tracing process is then carried out in a backward way to identify the optimal

solution of P. Starting from .t* the optimal state at stage n is obtained

as s* = - (̂ "(a;* The algorithm then identifies the optimal solution

at stage n,), which yields the optimal state at stage n — 1, =

s* - The process terminates when it reaches and finds out

Example 2.3.1. We solve again Example 2.2.1, but this time, by forward dy-

namic programming. The forward dynamic programming starts from stage 2 and

ends at stage 4- Minimizing with respect to S4 < (1,0)^ finds out the optimal

value of the example problem “((1，—1)^) = —5. Tracing back identifies optimal

solution: .T3 = —l,X2 = 0, x\ = 0. Table 2.2 presents the solution process using

forward dynamic programming.

Determining the feasible region could become a tedious task in applying

dynamic programming. This difficulty can be alleviated to certain degree when

the following approach is adapted [30 .

Chapter 2. Conventional Dynamic Programming 22

Table 2.2: Solution process for Example 2.3.1 using forward dynamic program-

mirig

S2 X\[s2)li2{s2) S3 xl^S^) / h{Sz) S4

- 2 , - I f

(一 2 ， 0) 了

(-2,1,
：-1,-1”

(-1,0 广

(- u r
(0 , - i r

(o , o r

(()’ 1 广

(1 , - l r

(1’0) 了

(U) 了

(2， - I f

(2, o r

(2 , 1) 了

inf /oo

inf/00

1/2

inf/00

inf /oo

inf /oo

inf /oo

0/0

0/0

inf /oo

0/0

0/0

- 1 / 2

0/0

0/0

- 4’ - 2广

- 4 , - i r

(-4, or
(-4,ir
- 3 , - 2 ^

—3,-1 广

(- 3 , O f

(-3,ir
[- 2 ’ - 2) 了

(- 2， - I f ’

(-2, O f

(- 2 , 1) 了

(- 1 ’ - 2) 了

(-1,-ir
(- 1 , 0) 了’

(-i,ir
(0,—2)T

(0,-ir
(0 , 0) 了

(0 , 1) 了

(l，-2 广

(1 , - 1) 了

(1’ 0) 了

(l ’ l f ’

inf/00

inf /oo

-1 /5

inf/oo

inf /oo

inf /oo

inf /oo

inf/oo

inf /oo

-1 /3

-1 /3

0/2

inf /oo

-1/3

-1/3

inf/00

-1 /5

inf/00

0/0

inf /oo

inf/00

inf /oo

inf /oo

inf/00

-4’-3) 了

-4，-2)了

-4，-1)7’

(—4,0)
T

- 3 , - 3广

- 3 ’ - 2) T

-3,-ir
(- 3， o r

-2，-3广

- 2 ’ - 2) 了 ’

-2,-ir
T (-2,0)

- 1， - 3广

- 1 ， - 2) 了

- 1 , - 1) 7，

(- 1 , 0 , ,

(0, — 3)7’

(0，-2 广

(0,-1)7’

(0，0广

(1 ’ - 3 ,

(1 ， - 2) 了

(1,-ir
(1,0) T

inf /oo

inf /oo

inf/oo

0 /5

inf /oo

inf /oo

-1 /0

inf /oo

inf /oo

inf/00

0/3

inf /oo

inf /oo

- 1 / - 2

inf /oo

-1 / -3

iiif/00

0 /5

inf /oo

0/0

-1 /0

inf /oo

-1/ -5*

inf /oo

Chapter 2. Conventional Dynamic Programming 23

Assumption 2.3.1. For all j = 1 , . . . , n and i = 1,... ,m，function gij is integer

valued and is nonnegative for all Xj G Xj.

When Assumption 2.3.1 is satisfied, the range of Sk at stage /c, for k 二

2’... ’ n + 1，can be simply determined by [(0，...，(6i,..., 吓

If the nonnegativity assumption does not hold for some gij, then we can

subtract mirixjgXj 9ij(^j) from both gij and bi at the same time. Repeating

this equivalent transformation for all g i /s that do not possess the nonnegativity

property such that Assumption 2.3.1 holds for the transformed problem. The

range of (sk)i at stage k for k = 2 , . . . , n + 1 can be then given by [0, bi —

Yljeh "^^^xj^Xj Qij], where U = { j 二 1,...，n| min�e;^j. 9ij < •}. The price to

perform such a transformation is an enlargement of the feasible region of the

state space which affects an efficient implementation of dynamic programming.

It is evident that the number of the possible states increases exponentially

with respect to the number of constraints. Thus, although dynamic programming

is conceptually an ideal solution scheme for separable integer programming, the

"curse of dimensionality" prevents its direct application to multiple constrained

cases of (P) when m is large. Dynamic programming, however, remains as an

efficient solution scheme for separable integer programming problem when rn is

small, especially for singly constrained cases.

2.4. Curse of dimensionality

Consider the following problem with 3 variables and 5 constraints:

Chapter 2. Conventional Dynamic Programming 24

min f(x) = 2x1 一 +

s.t. gi(x) = —2xi + 2x2 + 2；3 < 1,

92(X) = a；! + 0；2 - 3；3 < 0,

93(X) = - x ? - 2x2 + 2x1 < 0,

. 9 4 � = - x l - x l - x l < - 1 ,

g5(x) = .T? — 2X2 — 3X3 < 3,

Xi G { - 1 , 0 , l } , z = 1 , 2 , . . . , 5.

By the formula in 2.1.1 and 2.1.2, we get the feasible region of the state

vector as follows at stage 2 and 3,

—2 ,

- 1
2

1
- 1 <S2 < 0

- 1 0

1-1 J � 1 1

f 1 \
- 2

- 3 < S 3 <

1

2

- 2 0

The numbers of the states in stage 2 and stage 3 are 5 * 3 * 2 * 2 * 3 = 180

and 6 * 4 * 6 * 3 * 7 = 3024 respectively. From the calculation, we see that the

number of states in its feasible region does increase exponentially with respect to

the number of constraints. Therefore, dynamic programming method becomes

inefficient when m is large as it requires huge computational efforts and storage

spaces. Besides, it will also cost much more computation efforts if the state

range is comparatively large. This phenomenon which prevents us using dynamic

Chapter 2. Conventional Dynamic Programming 25

programming to solve the problem (P) directly is termed by Richard Bellman as

"curse of dimensionality".

It is unfortunate that the number of states increases exponentially with the

number of constraints m when adopting dynamic programming method. The

term "curse of dimensionality" describes the dimensionality problem caused by

the exponential increase in the state space, resulting in a significant obstacle in

solving large-scale instances of (P) by numerical backwards induction.

• End of chapter.

C H A P T E R 3

SURROGATE CONSTRAINT
FORMULATION

The surrogate duality theory has been developed in solving mathematical pro-

gramming problems, including both continuous optimization and integer pro-

gramming problems. While the dynamic programming method is inefficient to

solve directly multiply constrained separable integer programming problems, the

surrogate constraint formulation generates a platform for an efficient utilization

of dynamic programming by aggregating multiple constraints into a single sur-

rogate constraint.

3.1. Surrogate constraint formulation

Let g{x) = {g\(x),..., and b == (/>i，...，bm.)^. Aggregating the multiple

major constraints of (P) into a single surrogate constraint yields the following

surrogate constrained formulation,

(Pp) minfix)

s.t. /J.'^igix) - b) < 0

X e X,

where 1.1 = (/ i i , . . . , j-im)^ G R f is a vector of surrogate multipliers. Define S to

26

Chapter 3. Surrogate Constraint Formulation 27

be the feasible region of decision vectors in (P),

5" 二 {a; e Xlgi(x) < bi,i = 1,2,... ,m} ,

and S(/2) to be the feasible region of decision vectors in P{p),

S(l^) = {xe X\f/(g{x) -b)< 0}. (3.1.1)

Since S C V /z G R + , (P^) is a relaxation of (P).

Denote by v(Q) the optimal value of an optimization problem (Q). The

surrogate dual is an optimization problem in fi,

{Ds) maxu(P^)

s.t. II e R̂ JN

The following weak surrogate duality is evident,

< y(P). v^ G

Consequently, the surrogate dual provides a lower bound for v{P).

v{Ds) < v(P).

Since S C V/x G a minimizer, x*, over S[/i*) with fi* e R![！ and

X* E S must be also a minimizer over S. Furthermore, from the weak surrogate

duality and from the fact that problems (P) and (P^) have the same objective

function, we have J(x*) = < v[Ds) < v(P) = f{x*). Therefore,u(Ds)=

v{P). In summary, we have the following strong surrogate duality theorem.

Theorem 3.1.1. [30](STRONG SURROGATE DUALITY) If an x* solves

for a fi* E R+ and x* is feasible in {P), then x* solves (P) and v{Ds) = v(P).

It is clear that v{Ds) = v[Po^) for any 0 > 0. Thus, the surrogate dual

problem [Dg) can be normalized to an equivalent problem with a compact feasible

region:

[D �) maxi;(P^)

s.t. /i 6 A,

Chapter 3. Surrogate Constraint Formulation 28

where A = {/i G < 1} and e = (1’... ’ 1广.

3.2. Singly constrained dynamic programming

Problem (P,,) is a singly constrained separable integer programming problem

and can be solved efficiently by dynamic programming. We consider dynamic

programming in this section for the singly constrained case of (P):

{P) mm / �

s.t. g(x) = Y^gj(xj) < b

X e X = Xi X Xo X • • • X Xr

where X j = {xj G Z\lj < xj < Uj} with Ij and Uj being integers. Wc assume

gj{xj) > 0 on X j for all j = 1, n.

For adopting backward dynamic programming, the cost-to-go function is

defined as follows,

ik{s) = minJ^fj(xj)
j=k

n
S.t. s + y^ gjl^Xj) < b

j=k
'X j ^ X j, j ^ /c,.. n,

for k = n — 1, s = 0 , . . . , 6. The backward recursive equation is

ik{s) = min{/fc(.Tfc) + k+i{s + gki^k))}

s.t. s + gk{xk) < b

工fc = “>••• J 叫，

for /c 二 1’ …，n — 1, and s = 0’...，b, with boundary conditions

ik(s) = +00, for s < 0’ /c = 1’...，n,

in{s) = min{/„,(a;„)|s + gnM < b, Xn = L) Zn + 1 , . . . ’ ^n}, s = 0,

Chapter 3. Surrogate Constraint Formulation 29

For adopting forward dynamic programming, we define the following cost-

to-accumulate function.

fc-i
= mm^fj{xj)

i=i
k-i

s.t. s + y^^gjjxj) < s

Xj e X j , J. = 1’...，/c — 1’

The forward recursive equation is

ik{s) = min{/fc(xfc) + 一 gk{xk))}

s.t. gk(xk) < s

Xk = + 1 • •.

foi, /c = 3’.. .，n, s 二 0’...，6.

In this situation, the dynamic programming table has a size of n * (b + 1).

3.3. Surrogate dual search

A key issue in applying the surrogate dual method is how to solve the surro-

gate dual problem, more specifically, how to update the surrogate multipliers.

Several surrogate dual search methods have been developed for linear integer

programming and they can be also applied to nonlinear programming problems.

For Q； G R,let X(a) denote the level set of / (x) , X{a) = {x G X\f(x) < a } .

For given // G A and a G R , v{P,j) < a if and only if

+ 0’ (3.3.1)

where »S(/i) is defined by (3.1.1). Consider the following problem

(P(a , / i)) min - b)

s.t. X e X{a).

Chapter 3. Surrogate Constraint Formulation 30

We notice that (3.3.1) holds if and only if v{P{a,iJ.)) < 0. Since =

max{i;(P^)|M e A} , it follows that < o； if and only if v(P{a,^i)) < 0

for all // G A. Similar to the Lagrangian dual, we can define the following dual

problem:

s.t. /i e A.

The above discussion leads to the following theorem.

Theorem 3.3.1. [SOjFor given aeK, < a if and only if v(D{a)) < 0.

An immediate corollary of Theorem 3.3.1 is as follows.

Corollary 3.3.1. [30] The optimal surrogate dual value is the minimum,

Q € R such that v(D{a)) < 0.

The cutting plane method can be used to solve D(a). Notice that D{a) is

equivalent to the following linear program:

max 3
(/?’"）

s.t. (5 < ij^\g(x) - e X{a),

fi e A.

For each x E X(q；), the first constraint forms a cutting plane. We can construct

T^ C X (a) step by step, thus approximating v(D{a) successively by solving the

following linear program:

(LPfc) inax/3
09’"）

s.t.

/i e A.

Procedure 3.3.1. [30j (CUTTING PLANE PROCEDURE FOR (D：；))

Step 0 (Initialization). Set a® 二 一oo, = 0. Choose any /j} G Set k = 1.

Chapter 3. Surrogate Constraint Formulation 31

Step 1 (Surrogate relaxation). Solve the surrogate relaxation problem i^P》and

obtain an optimal solution x^. If g{x'^) < b, stop and x'^ is an optimal solution

to (P) and u(D^) = v{P).

Step 2(Updating lower bound). If /{x'') > a厂―丄，then set a^ = f(x^). Other-

wise, set a^ = a^一 1.

Step 3(Updating multiplier). Set T^ 二 i U {x'^}. Solve the linear program

[LPk) and obtain an optimal solution If < 0； stop and a" =

Otherwise, set /J^+i = /i^ and k = k + 1, go to Step 1.

Theorem 3.3.2. [30] Algorithm 3.3.1 finds an optimal value of D" within a

finite number of iterations.

To illustrate Procedure 3.3.1, we consider the following example:

Example 3.3.1.

min f(x) = 2x1 ~ + 5x3

s.t. gi{x) = —2xi + 2x2 + 3；3 < 1,

ff2�=+ X2 - < 0,

Xi e { - 1 , 0 , 1 } , 2 = 1,2,3.

The iteration process of Procedure 3.3.1 for this example is described as

follows:

Step 0. Set /3 = Q,T0 = (/}. Choose …=(1，0广.Set k = 1.

Iteration 1

Step 1. Solve the surrogate problem

(F^i) min - 3a:,�+ 50：3

s.t. 1 * (- 2x1 + 2x2 + 3:3) + 0 * (xi + 0：2 — xl) < 1,

Xi e { - l , 0 , l } , i = 1,2,3.

We obtain = (1 , 1 , - 1) ^ with g{x^) 二（1,1)了 not < (1,0)了.

Step 2. Since f{x^) = - 6 > aO’ set o；̂ = -6.

Chapter 3. Surrogate Constraint Formulation 32

Step 3. Set T^ 二 {工].Solve the linear program:

(LPi) max/?

S.t. +

< 1，

Ml >0, /H2> 0.

We obtain = 1 � 0 and /̂ i = (0’ 1)^. Set k = 2 and ji^ = /i^

Iteration 2

Step 1. Solve the surrogate problem

mill 2x\ - 3x1 + 5x3

s.t. rcf + X2 — xl < 0,

Xi 6 { - 1 , 0 , 1 } , 1 , 2 , 3 .

We obtain = (- 1 , 1 , - 1) ^ with g(x^) = (5，_1)了riot < (1,0广.

Step 2. Since /(a:^) = set a"̂ = a^.

Step 3. Set T^ 二 {a;^,x^}. Solve the linear program:

(LP2) max

s.t. (3 < / i 2 ,

< 4 ^ 1 - "'2’

Ml + M2 < 1’

IM > 0,//2 > 0.

We obtain 二 2 / 3 � 0 and /i^ = (1 /3 ,2/3广.Set k = 3 and /J^ =“入

Iteration 3

Step 1. Solve the surrogate problem

(_P"i) min 2xi — 3x1 + 6x3

s.t. 2x1 - + 4x2

Xi e {-1,0,1},?； = 1,2,3.

Chapter 3. Surrogate Constraint Formulation 33

We obtain = (0 , 0 , - 1) ^ with g(x^) = (1 , - 1 广 < (1,0)^

Stop, and we get the optimal solution to the problem. Note that the La-

grangiari dual value is calculated as —6 which is smaller than —5. It means that

the surrogate dual method provides a dual value tighter than Lagrarigian dual

method does.

Compared to the original multiply constrained separable integer program-

ming problem, the surrogate constraint formulation offers a promising platform

with a singly constraint separable integer programming problem which dynamic

programming can efficiently be applied. However, unless the optimal solution

to the surrogate constraint formulation is feasible to the primal problem, there

exists a duality gap due to the relaxation of the feasible region. On the other

hand, performing surrogate dual search requires to apply dynamic programming

many times, which will become a concern when the convergence is slow.

• End of chapter.

C H A P T E R 4

DISTANCE CONFINED PATH
ALGORITHM

The shortest path problem deals with a task of finding the path with minimum

time, distance, or cost from a source node to a destination node in a connected

network. The shortest path problem has been playing a significant role in the

development of operations research, due to its wide applications in various appli-

cation areas, including transportation, communications networks, robot motion

planning, and many others. The shortest path problem often serves as a starting

point in learning dynamic programming as the philosophy of dynamic program-

ming can be best explained by the shortest path problem. At the same time,

many optimization problems solved by dynamic programming can be formulated

under a unifying framework using a shortest path problem formulation, such as

the knapsack problem and the sequence alignment problem in molecular biology

7’ 9 .

As a natural extension of the shortest path problem, the /cth shortest paths

problem [26，42] is to find the shortest, the 2nd shortest, . . . , and the kth shortest

paths connecting a given source-destination pair in a network. Development of

algorithms for the kth. shortest paths problem is motivated by considerations to

incorporate additional constraints, model evaluation and generation of alterna-

tives. Depending on whether cycles are allowed in the graph, there are two types

of kth shortest paths network problems. Eppstein [10] provides a review on the

34

Chapter 4. Distance Confined Path Algorithm 35

fcth shortest looping path problem. The kth shortest loopless paths problem has

been investigated in [42，14, 22]. It is interesting to note from [42] that i) The

jth shortest path can be obtained by comparing perturbations of the shortest,

the 2nd shortest, . . . , and the (j — l)th shortest paths, and ii) the computational

efforts of calculating k shortest paths is only linear with respect to k.

In this chapter, we investigate an algorithm in finding out paths of length

within a given distance window for an n-stage loopless network with sink S and

destination T. Let the network be denoted by {A, N) where N is the node set

and A is the arc set. For a pair of two connecting nodes P and Q at neighboring

stages, respectively, we use d(P, Q) to denote the arc length between them. If

there does not exist a direct arc between nodes P and Q, d(P, Q) is set at infinity.

Note that in our study, we allow multiple arcs with different lengths between a

pair of two nodes, as we are not only interested in the shortest path. A path is

an n-sector connecting path from S to T.

4.1. Yen's algorithm for the kth shortest path

problem

There are several algorithms presently available for solving a /c-shortest-loopless-

paths problem in an M-node network. Yen [42] proposed an algorithm with

complexity of ^kM'^ which is linear with respect to k, which is one of the most

efficient algorithms in finding the first k shortest paths in a. loopless network.

We focus in our study only on the n-stage network problems and we use the

following notations and definitions modified from [42].

In an (n + l)-stage network, let pk = N � Nf — … — N j ; with N^ =

S and N^ = T be the kth shortest path from S to T. For i = 0 , 1 , . . . , n — 1,

let be a path "deviated" from that satisfies: (i) Its first i nodes

coincide with 尸“一i; and (ii) The distance from N^ to T is minimized subject to

that the first (i + 1) nodes of do not coincide with the first (i + 1) nodes

Chapter 4. Distance Confined Path Algorithm 36

of any P-̂ , j = 1, . . . , k — I. The subpath of formed by the first i nodes

is termed the root of and is denoted by while the subpath of

formed by the last {n - i + 1) nodes is termed the spur of and

is denoted by

The algorithm of Yen [42] for finding k shortest paths can be described now

as follows:

Iteration 1: Determine the shortest path from S to T, using dynamic

programming or some other solution methods. Add P^ to List A. Set j = 2.

Iteration j (j = 2 , 3 , . . . , k) : Determine PK For i = 1 ,2 , . . . ,n - 1, find

possible the paths deviated from If there are some, add them to

List B. Choose the path in List B with the minimum distance and add it to List

A as P^. If j = k, stop; Otherwise, set j = j + 1 and go to Iteration j.

4.2. Application of Yen's method to integer

programming

The surrogate dual formulation aggregates multiple constraints of problem (P)

into a singly constrained formulation (尸 ") . T h e singly constrained surrogate

relaxation problem can be solved efficiently by dynamic programming. From the

strong duality of the surrogate duality, one key recognition is that the optimal

solution to (P) must be the solution in the ranking list of the minimum, the

second minimum, ...，the A;th minimum,…’ of (P^), that first satisfies the

feasibility of (P) .

Note that any singly constrained separable integer programming problem

can be transformed to a shortest path problem in a loop-less graph. We can then

apply Yen's method successively to find the kth shortest path of the correspond-

ing loopless network which is first feasible in (P) among the first k shortest paths

in the ranking list.

The network resulted from a surrogate constraint formulation is an n-stage

Chapter 4. Distance Confined Path Algorithm 37

loopless network. The structure of the network is determined by the surrogate

constraint, where the node at stage i corresponds to state which represents the

accumulative "consumption" up to stage i with respect to the surrogate con-

straint. The range of the state at each stage can be determined by using (2.1.1)

and (2.1.2).

The lengths of the arcs in the network are determined by the objective

function. More specifically, the arc length between two nodes Si and is

assessed by {fi(xi)\xi G Xi, gi(xi) = Sj+i — s j . If there are multiple XiS satisfying

gi(xi) = Si+i — Si and Xi G X^ there are then multiple arcs between Si and Si+i

with different arc lengths. Thus, any path in the network yields an objective

value of { X X i f iMI^ ' i ^ ^ i } -

We use the following example to illustrate the process of applying Yen's

method in solving integer programming problems.

Example 4.2.1.

inin f{x) = 2x1 一 +

s.t. gi(x) = -2xi + 2x2 — 2x2 + < 0,

g2(x) = x\ + x 2 - xl < 0,

gsix) = Xl + X2 < 0，

Xi e { - l , 0 ’ l } ’ i = 1，2’3.

Assigning ^ = (0,1,0) ' yields the following surrogate constraint formulation

rriin f{x) 二 - Srcg + 5.T3

s.t. g^{x) = x'^-h X2 - < 0,

a; G X = { - 1 , 0 , 1 } ^

The problem can be transformed to a shortest path problem of a, loop-less

network in Figure 4.1. Let state be defined by
m

Si+1 = Si i = 0，1，2,

Chapter 4. Distance Confined Path Algorithm 38

Figure 4.1: Network in Example 4.2.1

with So = 0. According to (2.1.1) and (2.1.2), the state space is obtained: GS：=

0,0], GS2 = [- 1 ’ 1], GS3 = [- 2 , 1] and GS4 = [—3,0]. Each node in the network

is marked with its corresponding state value. Note all paths which do not satisfy

gf^{x) < 0 are removed from the graph.

We now show how to solve this integer programming example by using Yen's

method iteration by iteration.

Iteration Q: Let A = (/) and B =

Iteration 1: It is easy to verify that the shortest path is

P' = {s = (0,1,0); 0； = ((0，1，-1); f = -8}.

The shortest path P^ is described in Figure 4.2 with red lines.

Let A = P^UA. Since solution (0，1, —1) does not satisfy the first constraint

of the primal problem, we go to the next iteration.

Chapter 4. Distance Confined Path Algorithm 39

Figure 4.2: Shortest path in Example 4.2.1

Iteration 2: Considering the 3 deviations from P^ gives rise to

1)1(2) = { s - (0 , l , 0) ; x - (0 , l , l) ; / - 2 } ,

DHO) = {s = (-l,[\-l)-x = i - l , l , - i y j = -6}.

The 3 paths D\2) deviating from the shortest path P^ are

marked in the Figure 4.3.

Let P2 = D^O), A = P^U A ?ind B = {D\2),D\l)} U D. As the 2nd

shortest solution P � d o e s not satisfy the 1st constraint of the primal problem,

we go to the next iteration.

Iteration 3: The 3 deviations from P^ give rise to

D\2) = { s = (—l’0，0);:c = (—l,l，0);/ = - l}，

D\l) = = (- 1 , 0 , - 1) ; / - - 3 } ,

D\0) = {s = {1,1,-1)-X = (1,0,-1)- f = -3}.

Let P'' 二 1)1(1)’ 4 = u 4 and B 二 D^{0)} U (B \ D\l)).

As the 3rd shortest solution P^ does not satisfy the 1st constraint of the primal

Chapter 4. Distance Confined Path Algorithm 40

Figure 4.3: Deviating paths in Example 4.2.1

problem, we go to the next iteration.

Iteration 4: Considering the deviations from P''̂ gives rise to

l>3(2) = {s = (o,o,oy,x = (o,o,oyj = o},

zp3(i) = { s 二（0,—1,—2);:r = (0 ’ — 1 ’ — 1) ; / = —2},

^ ' (0) - {6’ = (l ’ l，- l) ; : r = (l ’ 0， _ l) ; / = - 3 } .

Note that D^{Q) is the same as we do not need to add it to the candidate

list. Let = A = P'^U a and D = {D^(2), D^(1)} U (B \ D\l)). As

the 4th shortest solution P^ does not satisfy the 1st constraint of the primal

problem, we go to the next iteration.

Iteration 5: Considering the deviations from P^ gives rise to

D4(2) = = l ’ - l， - l) ; : r = (- l， 0 ’ 0) ; / = 2 } ,

^ ' (0) = { s = (l ’ l ’ - l) ; : r : = (l ’ 0 , — l) ; / = —3}.

Note that is the same as we do not need to add it to the candidate

list. Let P^ = D2(0), A = P^U a and B = { D \ 2) , D\l)} U (B \ D \ 0)) . As

Chapter 4. Distance Confined Path Algorithm 41

the 5th shortest solution P^ does not satisfy the 1st constraint of the primal

problem, we go to the next iteration.

Iteration 6: Considering the deviations from P^ gives rise to

昨 ） = { s = (l ’ l ’ 0) ; : c = (l ’0， l) ; / = 7},

= {s = (l ’ 0 ’ - l) ; : r = (l ’ - l ’ - 1) ; / : = 0 } .

Note that there is no candidate for D^O). Let P® = A = P^' U A and

D = {D5(2) ’D5(1) } U(B\ AS the 6th shortest solution does not

satisfy the 1st constraint of the primal problem, we go to the next iteration.

Iteration 7: Considering the deviations from P® gives rise to

D ' (2) = = 1’一 l);:r = (0’—1，0);/ = 3}.

Note that there is no candidate for either or ^^(0). Let P? =

A = P'^U A and B = {D^(2)} U {B \ D^(2)). As the 7th shortest solution P�

does not satisfy the 1st constraint of the primal problem, we go to the next

iteration.

Iteration 8: Considering the deviations from P" gives rise to

D'{2) = { s H - l ’ 0 ’ - l) ; : c = (- l ， l ’ l) ; / = 4}，

L>7(1) = {s = (- l , - 2 , - 3) - , x (- l , - l , - l) ; f = 0}.

As there is no candidate for and is the same as Z)'^(O), we do not

have new member to add to the candidate list. Let P® = D'^(l), A = P^ U A

and B = U(B\ D'^(2)). As the 8th shortest solution P� satisfies

all the constraints of the primal problem, x = (0,0,0) is the optimal solution to

Example 4.2.1. To reach the 8tli shortest path, we have generated in total 16

paths in the process.

All the paths can be found according to Yen's algorithm from the corre-

sponding dynamic programming table in Table 4.1 where Xi),i 二 1 , . . . ,3,

denotes the minimum distance from state s?: to destination using control .Tj. For

example, starting from S3 = —2, three shortest subpaths from state S3 = —2

Chapter 4. Distance Confined Path Algorithm 42

to destination using controls X3 = —1, 0 and 1 arise respectively. Similarly,

we record the values for S3 = —1,0 and 1. Then we calculate the minimum

values using different controls for every state S2 and finally obtain 3 shortest

paths from si = 0 to destination using Xi = —1, 0，and 1. The shortest path

p i 二 {s 二（0’1，0);工 二（(0’1’一1);/ = - 8 } is marked with " * ". Then we can

find the candidates for the second shortest path according to Yen's algorithm.

To find out the distance from Si = 0 to destination should be minimized

and the first control of should be different from that of pi ’s . Taking

control Xi = —1 and moving forward we get = {s = (—1,0, —1); :r =

(- 1 , 1 , - 1) ; / = —6}. For the first node is required to be the same as

that of •Pi's’ which means that Xi = 0. Then we need to find the minimum

distance from S2 = 0 to destination with a, control different from that of P^'s.

Deviating from 0:2 = 1, we find X2 = 0 can satisfy our requirements. Moving

forward we obtain = (s = (0,0,-l);x = (0 , 0 , - 1) , / = —5}. At last, to

find out the first two nodes should be the same as that of P ” s , using

Xi = 0 and X2 = 1 leads to S3 = 1. Then the distance from S3 — 1 to destina-

tion should be minimized using control different from X3 = —1. We finally get

D'(2) = (s = (0,l,0);x = (Q,l,iyj = 2}.

4.3. Distance confined path problem

Although Yen's algorithm for finding the kXh shortest path possesses a linear

complexity with respect k, it acquires identification from the shortest to the

(k — l)th shortest before reaching the kth shortest. When k is large, it is often

unnecessary to go through this tedious process. In real life, with an appointment

being t hours away, a traveler may want to find a path which consumes touring

time within a time window [t — 26, i — <5], where (5 is a positive small number, to

fully utilize the available time for sightseeing. In the later part of this chapter, we

will see that a surrogate constraint formulation of multiply constrained integer

programming problem corresponds to a network problem where the desired path

Chapter 4. Distance Confined Path Algorithm 43

Table 4.1: The extended dynamic programming table in Example 4.2.

k 1 2 3

Sk fl{xi) S2 i{suXi) X2 /2O2) S3 i(s2,X2) X3 /3 � S4 i{ss,X3)

1

1 -3 2 00

-5

-2

1 5 0 5

oc

-5*

1 0 0 1

00

-5

-2

0 0 1

5

oc

-5*

1

- 1 3 0

00

-5

-2 -1* -5 0

5

oc

-5*

0

1 2 1 -3

-8*

-6

1* -3 1 -8*

-5

-2

1 5 -1 5

0

-5

0 0* 0 0

-3

-8*

-6

0 0 0

-8*

-5

-2

0 0 0

5

0

-5

0

-1 2 -1

-3

-8*

-6 -1 3 -1

-8*

-5

-2 -1 -5 -1

5

0

-5

-1

1 -3 0 -8

-5

-2

1 5 -2 5

0

-5

-1 0 0 - 1

-8

-5

-2

0 0 - 1

5

0

-5

-1

-1 3 -2

-8

-5

-2 -1 -5 -2

5

0

-5

-2

1 5 -3 5

0

-5

-2 0 0 - 2

5

0

-5

-2

-1 -5 -3

5

0

-5

is bounded from below by a distance value dictated by the dual value of the

integer programming problem. Thus, we are interested in developing solution

algorithms for a, distance confined path problem introduced below.

Definition 4.3.1. The distance confined path problem is to find all the paths in

a graph from the origin, S, to the destination, T, with distance within a given

distance window [/, u .

We use Q) and Aimx(尸’ Q) to denote the minimum distance and the

maximum distance, respectively, between two nodes P and Q in the graph. More

specifically, Dmin(5', P) denotes the minimum distance from the origin to node

P, P) the maximum distance from the origin to node P, T) the

minimum distance from node P to the destination, and P) the maximum

distance from node P to the destination.

Chapter 4. Distance Confined Path Algorithm 44

Definition 4.3.2. The distance confined path problem, is in feasible either when

D—[S,T) < I or when T) > u.

Carrying out i) forward dynamic programming twice to find out the

shortest path and the longest path from the origin to the destination, and

ii) backward dynamic programming twice to find out the shortest path

and the longest path from the origin to the destination yields quadruple

(Anin(5', P), Anax(5"’ P), �) ’ A腿 (尸 ’ T)) for every node P in the graph.

If P) + AxUn(戶’ T) > u, or P) + A磁 (户，T)) < 1 then any

path passing through node P possesses a path length outside of the range [/, u

and node P can be removed from the graph from further consideration.

Let us consider the feasible range of the accumulative path length from the

origin to node P in a distance confined path problem. We define the following

pair for every node P in the graph,

L{P) = m a x { A n i „ (' S , P) , / - (4.3.1)

and

L{P) = min{Anax(5,P), 'a — (4.3.2)

When a distance confined path problem is feasible, we have L(S) = L(S) = 0

for the origin. When both Anin('S', T) < I and T) > u^ we have L(T) = u

and L{T) = I for the destination.

Lemma 4.3.1. For any node P in the graph, L[P�< U^P) holds if and only if

P) + A 丽 (P ’ T)<1 or P) + Anin(P, T) > U.

Proof: i) Assume that I (P) < L{P).

(a) If > I - then L (P) 二 Dn如(5•，P) > L (P) =

min{Aimx('S', P),u - 7")}, which can only happen when P) >

？卜如(尸，n

(b) If P)<1- Anax(P’T)，then L(F) 二 I — A 醒 (P , 了）> L{P)=

niin{jDinax('S', P),u — Dmin(尸）T)}, which can only happen when I - D^axiP, T) >

P)-

Chapter 4. Distance Confined Path Algorithm 45

ii) Assume that 1)腿\(5；户）+ D艱(P,T) < I. Then <

DnuJj5 ,P) < Thus, L(P) = l-D^[P,T). As Anax(5 ,P) < I —

D 雕 < Ani„(P，T)’ then I (P) = D雌财\ leading t o L (P) < L(P).

iii) Assume that + Dn,i„(P,T) > u. Then P) >

DnUS, P) > u-D—人P,T). Thus, L{P) = AsLU„(<S’P) > u—

> I — Dmax(P，T)，then L{P) = P), leading to L{P) < L(P) .

•
Proposition 4.3.1. Graph reduction rule

i) Any node P with L(P) < L(P) can be removed from the graph.

ii) Any branch between two connected nodes P and Q with Anax(5', P) +

d(P, Q) < L(Q) or Dmin{S, P) + d[P, Q) > L{Q) can be removed from the graph.

Proof: i) Evidenced from Lemma 4.3.1, any path passing through P with

L{P) < L(P) has a length outside of range [/, u] and node P can be thus removed.

ii) Assume that P) + d{P, Q) < L(Q). Since P)^d(P, Q) >

Anin(5 ,P) + d(P,Q) > Anin(5",Q)’ then L(Q) = I — A 皿 (Q , T) . Thus,

d - A n a x (Q ， n i . e . , Anax(5;P) + d (P ’Q) + Anax(Q,7^ <

I. As the length of the longest path passing through branch (P, Q) is still smaller

than /, branch (P, Q) can be removed from the graph.

(ii) Assume that Dnun(S, P") + d�P, Q) > L(Q). Since P)-i-d{P, Q) <

P) + d(P,Q) < A 加 t h e n L(Q) = u - A_(Q，了) . Thus,

P) + d(P, Q)>u-Ani„(Q’ T) , i.e., P) + d{P, Q) + T) >

u. As the length of the shortest path passing branch (P, Q) is still larger than

u, branch (P, Q) can be removed from the graph. •

Definition 4.3.3. If all incoming or all outgoing branches of a node P (other

than S or T) are removed, node P is called isolated.

Any isolated node can be removed from the graph. For any node P in the

graph, after we identify and record all the paths which pass through P and have

a length within range [/, u], node P can be removed from the graph.

Chapter 4. Distance Confined Path Algorithm 46

Algorithm 4.3.1. Finding all paths with length in a given range [I, u].

Step 1. For every node p in the graph, calculate P), Aiiax('5, P),

(尸’ n Anax(P’n
Step 2. Update I and u by

I = max{/’ Anin(5",T)}

u = min{ii,Dniax('S', T) }

Calculate L{P) and L(P) for all nodes. Remove infeasible nodes and branches

according to Proposition 4-3.1 and remove isolated nodes.

Step 3. Update the graph and repeat the process in Steps 1 and 2 until no

further reduction can be done. If there is no node left, stop. Otherwise, go to

Step 4-

Step 4. Finding node P such that P) + T)), (A顺(5"，P) +

Dmax(PjT))] has the minimum intersection with [/, u] among all P) +

Dnim(P,T)), P) + Anax(-P, ^))]• Use Yeu's ktfi shortest or longest path

algorithm to find out all paths passing through node P that have length range

within [/, u] and record them. Remove node P from, the graph. Go back to Step

1.

It is obvious from the above algorithm that, for all nodes in the graph, L{P)

and L [P � a r e nondecreasing and nonincreasing, respectively, in the iterations

when implementing Algorithm 4.3.1.

Example 4.3.1. Find all the paths with path length within range [28,30j in

Figure 4-4-

Performing dynamic programming four times gives rise to Table 4.2 in which

the quadruples are listed for every node in the graph. From Table 4.2, node F can

be removed as D^a^^S, F) + T)) < 28 or F > F. Furthermore, we find

that B) + d{B, E) < L{E), C) + d(C, E) < L{E), •’ D) +

d�D, E) > L{E). Thus, all incoming branches to node E can be removed. Node

E becomes isolated and can be removed too. The problem structure of Example

Chapter 4. Distance Confined Path Algorithm 47

[28,30]

Figure 4.4: Graph in Example 4.3.

4.3.1 reduces to a one in Figure 4.5 and the value table is updated as in Table

4.3.

As + + = [22,28] readies

the minimum intersection with [l,u\ = [28,30] among all nodes in Figure 4.5, we

start from node D. Using Yen's algorithm, we first find the longest path passing

node B with length 28，SBGIT. As the second longest path passing node J3,

SBGHT, has a length 24’ we conclude all paths passing node B, except SBGIT,

have lengths less than 28. After recording SBGIT, we remove node B. Similar

situation happens at node D. The shortest path passing node D, SDGJT, has

path length 28 and the 2nd shortest path passing node D, SDGHT, has path

length 30, and the distance of the 3rd shortest path passing node D goes beyond

30. After recording paths SDGJT and SDGHT, node D can also be removed and

paths are recorded. After removing node B and D and checking the remaining

4 paths, only one path has a distance length within [28,30], i.e., path SCGIT

with length 29. In summary, our algorithm successively identifies four paths with

length in [28,30].

Chapter 4. Distance Confined Path Algorithm 48

Table 4.2: The value table in Example 4.3.1
Node Value Forward Backward sp sp Total

B min 6 12 6 6 18 B

max 6 22 28

C min 3 14 3 3 17 C

max 3 26 29

D min 12 6 12 12 18 D

max 12 26 38

E min 8 9 15 21 17 E

max 25 13 38

F min 13 5 16 13 18 F

max 13 12 25

G min 14 8 14 20 22 G

max 20 14 34

H min 12 5 23 25 17 H

max 29 5 34

I min 15 6 22 24 21 I

max 32 6 38

J min 17 1 27 29 18 J

max 35 1 36

Chapter 4. Distance Confined Path Algorithm 49

[6,61 [23,25]

[28,301

Figure 4.5: Graph in Example 4.3.

Table 4.3: The updated value table in Example 4.3.

Node Value Forward Backward sp Total

B min 6 16 6 6 22

max 6 22 28

C min 3 20 3 3 23

max 3 26 29

D min 12 16 12 12 28

max 12 22 34

G min 14 8 14 20 22

max 20 14 34

H min 19 5 23 25 24

max 25 5 30

I min 22 6 22 24 28

max 28 6 34

J min 21 1 27 29 22

max 27 1 28

Chapter 4. Distance Confined Path Algorithm 50

4.4. Application of distance confined path

formulation to integer programming

Yen's method can serve for the purpose in finding the ktli minimum solution of

(P^), that first satisfies the feasibility of (P). The value of k to reach the first

feasible solution of (P) in the ranking list of (P^) could be, however, very large.

On the other hand, it is unnecessary to start from the minimum solution of (P^J.

One shortcut is to use the dual value to lower-bound the optimal value. We can

find the optimal solution of (P) by identifying the ranking list of solutions only

with objective values within range [/ , /] where f is the dual value of problem (P)

and / is the objective value of the incumbent. Furthermore, we can partition

range [/ , /] into a union of several non-overlapping sub-ranges to speed-up the

convergence. When a feasible solution of (P) is found in a sub-range with lower

objective values, there will be no need to search in any sub-range with high

objective values.

For the graph defined by < b…we can further utilize the constraint

gj{x) < bj, j 二 1, m, to remove infeasible nodes and branches. More

specifically, we consider the following m feasibility problems for j = 1，.. •，m,

(^Mi) < �and gj(x) < bj.

Problem (F^ij) can be be partially solved by the distance confined path problem

formulation which we discussed in the previous section. We first construct a

graph based on g^{x) < b^ and assign arc length according to gj(x). Utilizing

the constraint of gj(x) < bj, we may remove some infeasible nodes and branches

in the graph. Problem (F�•），j = 1, . . . ’ m, can be solved successively, one

after the other. The reduced graph from the previous formulation is used as the

starting point for the next formulation.

Chapter 4. Distance Confined Path Algorithm 51

We consider the integer programming problem of example 4.2.1 again:

min f(x) = 2x1 — +

s.t. gi{x) = -2xi + 2x2 — 2x2 + 2:3 < 0,

g2(x) = x \ ^ - x 2 - x l < 0,

仍 ⑷ = X i + 0；2 < 0,

Xi e { —l，0’l}’i 二 1’2’3.

It can be verified that the optimal solution to this example is (0，0,0). On the

other hand, the surrogate dual search yields a dual value of — 1. We demonstrate

now how our proposed solution scheme works.

Setting fi = (0,1,0)'，we formulate a surrogate constraint problem (P^J as

follows,

min f{x) = 2x1 — + 5 而

s.t. g2[T) = xl X2 - xl < 0,

xeX = { - 1 , 0 , 1 } ^

Using Yen's method, we can identify the ranking list successively starting from

the minimum solution, in which the first feasible solution, (0,0,0), is reached at

the 8th position. Our proposed method will, instead, identify the ranking list of

f{x) within the range [—1,10], where —1 is the dual value and 10 is an upper

bound obtained by assigning the largest value to each term in f{x). We further

partition the whole objective value range into 4 sub-ranges [-1 ,1] , [2,4], [5, 7

and [8,10] and to check the solutions in the lowest range [- 1 , 1] first.

But before we solve the above surrogate constraint problem to its optimum,

we may first use other constraints of the primal formulation to reduce the graph

dictated by g2{x) < 0. Problem (F^i) : {g2{x) < 0 and gi(x) < 0} is depicted in

Figure 4.6 in which the graph structure is constructed based on g2(x) < 0 and

the arc length is assigned according to 仍 � .

The corresponding value table is given in Table 4.4. Take gi{x) < 0 into

consideration, we can remove nodes and arcs which only allow paths with positive

Chapter 4. Distance Confined Path Algorithm 52

Table 4.4: The original value table of F^i in Example 4.2.

Node Value Forward Backward sp sp Total

B min 2 0 2 0 2 B

max 2 1 3

C min 0 0 0 0 0 C

max 0 1 1

D min -2 0 -2 -2 -2 D

max -2 1 -1

E min 2 0 2 0 2 E

max 2 1 3

F min 0 0 0 0 0 F

max 2 1 3

G min -2 0 -2 0 -2 G

max 0 1 1

H mill -2 1 -2 0 -1 H

max 0 1 1

I min 3 0 3 0 3 I

max 3 0 3

J min 1 0 1 0 1 J

max 2 0 2

K min -1 0 -1 0 -1 K

max 2 0 2

L min -2 0 -2 0 -2 L

max 2 0 2

Chapter 4. Distance Confined Path Algorithm 53

1 [-2,0]

Figure 4.6: Graphical presentation of F…

gi values. Nodes B, E, I, and J can be removed as their IJ^P)�L(P). The

graph is reduced to Figure 4.7 and the corresponding revised value table is in

given in Table 4.5.

As the graph in Figure 4.7 can not be further reduced by constraint (; i(. t) < 0

and solving problem : {92(x) < 0 and g2(x) < 0} would not help removing

infeasible nodes or branches in the graph constructed by g2(x) < 0, we now

switch to (•F"3) : to� < 0 and 仍⑷ < 0} on the reduced graph, resulting in

the graph in Figure 4.8. Reading corresponding value in Table 4.6 indicates that

node H can be removed, leading to the graph in Figure 4.9 and the corresponding

value table in Table 4.7.

The graph in Figure 4.9 cannot be further reduced by constraint g^ix) <

0. We now switch to the surrogate constraint formulation with f{x) G [—1,1],

resulting in the graph in Figure 4.10 and the corresponding value table in Table

4.8.

Chapter 4. Distance Confined Path Algorithm 54

Stage 1 Stage 2 Stage 3

0 [0.0] C 0 [0,0] F

Stage 4

-oo’o]

[- 0 0 . 0]

Figure 4.7: Graphical presentation of reduced version 1 of

Table 4.5: The updated value table of F̂ a in Example 4.2

Node Value Forward Backward sp Jp Total

C rnin 0 0 0 0 0 C

max 0 1 1

D inin -2 0 -2 -2 -2 D

max -2 1

F rnin 0 0 0 0 0 F

max 0 0 0

G min -2 2 -2 0 -2 G

max 0 1 1

H min -2 1 -2 0 H

max 0 1 1

K min -1 0 -1 0 -1 K

max 1 0 1

L min -2 0 -2 0 -2 L

max 2 0 2

Chapter 4. Distance Confined Path Algorithm 55

stage 3 Stage 4

[-1,-1] F 0

[- 0 0 , 0]

Figure 4.8: Graphical presentation of reduced version 2 of F"；；

Table 4.6: The original value table of F^s in Example 4.2.

Node Value Forward Backward sp sp Total

C min 0 -1 0 0 C

max 0 1 1

D min 1 -1 1 1 0 D

max 1 0 1

F min -1 0 -1 -1 F

max -1 0

G mill 0 0 0 0 0 G

max 0 0

H min 1 0 1 0 1 H

max 1 0 1

K min -1 0 -1 0 -1 K

max 0 0 0

L mill 0 0 0 0 0 L

max 1 0 1

Chapter 4. Distance Confined Path Algorithm 56

stage 1 Stage 2 Stage 3 Stage 4

S 0 [0,0] c -1 M.-1] F 0

[-co,o]

-CO,0]

Figure 4.9: Graphical presentation of reduced version 3 of

Table 4.7: The updated value table of F^s in Example 4.2.

Node Value Forward Backward sp sp Total

C in in 0 -1 0 0 -1 C

max 0 0 0

D min 1 -1 1 1 0 D

max 1 -1 0

F min -1 0 -1 -1 -1 F

max -1 0

G min 0 0 0 0 0 G

max 0 0 0

K min -1 0 -1 0 K

max 0 0

L min 0 0 0 0 0 L

max 0 0 0

Chapter 4. Distance Confined Path Algorithm 57

Stage 2 Stage 3 Stage 4

0 [0,0] c 3 [3,1LF 5

, 1]

[- 1 . 1]

Figure 4.10: Graphical presentation of reduced version 4 of P"

Table 4.8: The updated value table of P^ in Example 4.2.

Node Value Forward Backward sp sp Total

C mill 0 -5 0 0 -5 C

max 0 5 5

D mill 2 -2 2 2 0 D

max 2 8 10

F min 3 0 3 1 3 F

max 3 0 3

G min 0 -5 0 5 -5 G

max 5 5 10

K min -5 0 -1 1 -5 K

max 10 0 10

L min 0 0 0 1 0 L

max 5 0 5

Chapter 4. Distance Confined Path Algorithm 58

stage 1 Stage 2

S 0 [0.0] C
Stage 3 Stage 4

. 1 , 1 1

, 1]

Figure 4.11: Graphical presentation of reduced version 5 of P^

After checking the value table in Table 4.8, we conclude that i) node F

can be removed as L(F) > L{F) and ii) one branch between nodes G and K

with arc length of 5 can be removed as As Dmin{S, G) + 5 � L (K) . The graph

is further reduced to Figure 4.11. Checking the feasibility of the four possible

paths identifies the optimal solution (0,0,0).

• End of chapter.

C H A P T E R 5

CONVERGENT SURROGATE DUAL
SEARCH

The most challenging task to achieve the strong duality in the surrogate con-

straint formulation is to modify the formulation of (P^) such that the optimal

solution of the modified (P^) is feasible in the primal (P) at the same time.

The feasible region of (P^), 5(/ i) , enlarges the feasible region of (P) , S.

When an infeasible solution of (P) that has an objective value smaller than v{P)

is included in the optimal solution of (P^) cannot be feasible. The solution

concept presented in this chapter is to remove such infeasible points which attain

the optirnality of (P^J from further consideration. We require the integrality of

f in this research task in order to efficiently implement dynamic programming.

Consider the following modified version of (P) by imposing a lower cut a

and an upper cut

inin fix)

s.t. gi{x) < hi, i = 1,... ,m,

X e X(l,u) 二 {:r e X I a S fix) < 外

It is obvious that (P(a,/J)) is equivalent to (P) if a < f* < j3.

59

Chapter 5. Convergent Surrogate Dual Search 60

The surrogate relaxation of (P(a, P)) is:

(尸>’")） mmf(x)

s.t. ii^{g(x) - b) < {)

« < f(x) < P

X G X.

Problem is a separable integer programming problem with two con-

straints, one of which is the same as the objective function. Utilizing this special

property, we will develop an efficient solution scheme in solving (P (̂q：, (5)).

Note that problem (户"(0：，/3)) is equivalent to the conventional surrogate

constraint formulation when a < v(P^). Let the feasible region of (P"(a!, p))

be 5(/i； {a, (3)). The following theorem provides the basis for development of the

convergent surrogate dual search using the concept of an objective cut.

Theorem 5.0.1. (i) When v(P^) <a< v{P), S C S(ii\{a,(3)) C S[ii).

(a) Let 6 二 min"[v(_P) — f(x) | a: G X and f(x) < v(P)}. Any optimal

solution to problem (P) also solves problem (尸“a,/?)) when v(P) - 5 < a <

v(P).

The extent of the initial interval [a,j3] has significant impact on the efficiency

of dynamic programming when solving To reduce the range without

losing any optimal solution, a, partition scheme is proposed to divide the range

a, P] into q smaller non-overlapping blocks such that

[a,/3] = u L i [a � / n

where a ! = a ， 二 卢 and q;®+i = + 1. The original problem can be then

divided into q subproblems with s = 1，2,…，g :

i n m i n / (x)

s-t. gi(x) < hi, 2 = l , . . . , m ,

化 (5.0.1)

Chapter 5. Convergent Surrogate Dual Search 61

These q subproblems will be solved successively form s = 1 io s = q. If an

optimal solution .t* is found in problem (P®) for 1 < s < g, then x* is an optimal

solution to (P) and no need to solve the remaining subproblems. If the all the q

subproblems are infeasible, then we claim the infeasibility of the primal problem.

Let s and s denote the upper bound and lower bound of the range of state

variable Sj, respectively. Let

f j = max f j {x j) ,
lj<Xj<Uj

L = , min
—J lj<Xj<Uj

With the initial condition s f = s f = 0, the range s f of the state variable

Sj at stage j can be determined by a forward recursive formulation,

sf+i = sf + fj, for j = 1,..., n,

sf+i = sf+ for j = l,...,n.

With the initial condition s f = Uk, s f = Ik, the range sf of the state variable

Sj at stage j can be determined by a backward recursive formulation,

sf = sf+i - for j ==n,...,l,

sf = sf+i - fj, for j = n,...,l.

Therefore, the exact expression of the state range can be given as follows:

‘10,0], f o r j = l,

[马’力 1 = forj = 2,.,�n, (5.0.2)

forj = n + l.
\

If any [sj, Sj] is empty, then (5) has no feasible solution. In general, the

state space of dynamic programming can be significantly reduced by the foriniilas

above.

Although the objective function is assumed to be integer-valued in the algo-

rithm, we can also handle cases with a rational objective function by multiplying

a suitable number.

We now present the proposed convergent surrogate dual search algorithm as

follows.

Chapter 5. Convergent Surrogate Dual Search 62

5.1. Algorithm for convergent surrogate dual

search

Algorithm 5.1.1. fConvergent surrogate dual search and objective level cut)

Step 0 (Initialization). Set a � equal to min^ex f(^) and set (3 equal to the

objective value of an incumbent solution xq generated by some heuristic method

when possible. When no feasible solution is available, set (3 equal to max^ex f(x).

Choose any fio G R̂ ；. Let = 0 and k = Q.

Step 1 (Surrogate relaxation). Solve the surrogate relaxation problem with ob-

jective level cut ,(3)). If the solution x^ satisfies < b, stop and 丄

is an optimal solution to (P) . Otherwise, go to Step 2.

Step 2 (Updating lower bound). Set a(斗丄=/(rc人二) if > a" and set =

a^ if fix'') = cA

Step 3 (Updating multiplier). Set T(斗i = T^ U x''. Solve the following linear

program,

(LPk) max 7
(7’"）

s . t . 仏 : v e T “ �

；U e A,

where A = G < 1} and e = (1 , . . . , and obtain an optimal

solution (7'^,life)- If 十 < 0, go to Step 4. Otherwise, set fi^+i = fJ'k u,nd

k = k 1, go to Step 1.

Step 4 (Exhausting the solutions at the level of the current lower bound). Find

out all solutions with their objective f{x) = under constraint ij'[(g(x) — b) <

0. If any one solution is feasible to the primal problem, stop and the optimal

solution is found. Otherwise, set = a^ + 1, 人外 1 = 0 and k = k and

go to Step 1 with any fik ^ R-^ -

Theorem 5.1.1. When the primal problem (P) is feasible, Algorithm 5.1.1 finds

an optimal solution of {P) in a finite number of iterations.

Chapter 5. Convergent Surrogate Dual Search 63

Proof. From Step 2 of the algorithm, a^ > for alii = 1，.. .，/c — 1，and

the equality is achieved at least one of them. When a'^ < v(P) < (3 is satisfied,

= f(x'') is always a lower bound of v{P). Thus, cv" < g

always holds in the whole solution process. When the algorithm stops at either

Step 1 or Step 4, the strong duality holds and the primal problem is solved.

From Step 2 of the algorithm, {a^} is a nondecreasing sequence. We only

need to prove that {a'^} cannot repeat at any level infinite times. Then the

condition v(P) — 6 < a'^ < v{P) will be satisfied in a finite number of iterations,

leading to the identification of an optimal solution to (P) and the termination

of the algorithm based on Theorem 5.0.1.

Condition � > 0 in Step 3 implies

Thus,

to the

to (P)

which further implies the infeasibility of all x̂ G in (P 卯 ’ / ?)) .

no Xk found in the previous iteration will appear again as a solution

surrogate constraint formulation in later iterations.

Entering Step 4 will result in an identification of an optimal solution

or 二 a" + 1. Thus, no x satisfying f(x) = a^ will appear again as the

solution to the surrogate constraint formulation. •

5.2. Solution schemes for and

/Or) 二

The key step in Algorithm 5.1.1 is to solve the following doubly constrained

surrogate constraint formulation with objective level cut:

(P > ’ / 3)) min / (x)

s.t. - 6) < 0

a < fix) < (3

X e X.

Chapter 5. Convergent Surrogate Dual Search 64

Note that constraint — < 0 may not be integer valued, as surrogate

multiplier vector fi is in general real-valued, which may cause large number of

state grids when using dynamic programming. One feature of (P"(q;，/3)) is that

the one constraint and the objective function are of the same functional form.

Recognizing the above characteristics of problem P�a, j3), we are able to de-

rive an efficient solution scheme, fortunately, by considering the following singly

constrained separable integer programming problem,

(尸>’")） mm,Fg(x)

s.t. a < f(x) < p

xeX.

Note that the assumption that f{x) is integer valued facilitates a good con-

trol of the number of state grids resulted from the single constraint in (5)).

We adopt forward dynamic programming to solve (P^(a,(3)). More specifi-

cally, we apply forward dynamic programming to find solutions corresponding to

f{x) 二 a, a + 1，...，successively. If the solution corresponding to f{x) = a in

satisfies fi^ {g(x) — 6) < 0, this solution is also optimal to {P^{a,j3)).

Otherwise, there is no solution of (_P,t(a，/?)) satisfying n'^ (g(x) — b) < 0 with

f{x) = a, the lower bound of f{x) can be raised to o； + 1, and we consider next

the solution of (P^{a,(3)) corresponding to f{x) = a + 1. The process continues

until we first find a solution {P^(a,l3)) that satisfies fi^{g(x) - 6) < 0, which

yields the solution of (P^(a,l3)).

Example 5.2.1.

min f(x) = 2x1 _ + 5x3

s.t. g{x) = - i x i + 2x2 + X3 < 1,

-8 < f(x) = 2x1 一 30；̂ + 5x3 < 10
a: G X = { - 1 , 0 , 1 } ^

Chapter 5. Convergent Surrogate Dual Search 65

We now show how to identify the optimal solution of the above problem by

solving the following singly constrained integer programming problem,

(D) ming(x) = + 2x2 +

s.t. - 8 < f(x) = 2x1 一 + 5x3 < 10

a; G X = { - 1 , 0 , 1 } ^

The range of the state space induced by constraint —8 < f{x) < 10 can be

determines as: FSi = [0,0], FS2 = [0,2], FS3 = [-3 ,5] and FS^ = [—8,10:.

Evidenced from Table 5.1 that presents the results of using forward dynamic

programming, the minimum S4 value with ^4(54) value less than 1 is —5. Thus,

the optimal solution to this example is { . t i = Q,X2 = 0,0:3 = —1}.

As the objective function in (D) is originally the constraint in the example

bounded above by 1, we can make use of this to cut infeasible states. The

range of the objective function of problem (D) can be determined as GSi =

0,0], GS2 二 [-0.5’().5] ’ GS3 = [-2 .5 ,1] and GS4 = [-2.5,1], When wc

perform forward dynamic programming, if the value of the minimum cost-to-

accumulate function of a. s t a t e , � i (S f c + i) ’ is outside the feasible range of the

objective value for the given stage, the corresponding decision will be blocked

from further consideration.

For example, at the second stage with S3 二 —3，the value of the cost-to-

accuniulate, 4(S3), is 2，which is larger than the upper bound of GS3. Then

states derived from it will not be considered in next stage. The whole process of

the forward dynamic programming is shown in Table 5.2.

Problem will be solved during the solution process many times

for different /从，ak and (3k- Note that is nondecreasing and f3k is nonincreas-

ing. Furthermore, when some parts of the table are removed due to violating

— b) < 0 for any ĵ i, these deleted parts must violate one constraint and

they should not be considered again in the later iterations. Therefore, the size

of the dynamic programming table will be monotonically decreasing.

Chapter 5. Convergent Surrogate Dual Search 66

Table 5.1: Solution process for problem D using forward dynamic programming

We now describe how to find out all solutions with their objective f{x)

=Q；人under constraint /i�(g[a:) — b) < 0. Similar to our solution scheme

for (P^{a,/3)), we consider a dynamic programming table induced by objective

function iJ^lg{x) and constraint f(x) 二 a � . T h e condition / 4 ， (咖) — ^ 0 can

be used to reduce the size of the dynamic programming table before performing

an exhausting search for solutions of f{x) = c/’+i. We remark that this problem

can be also solved by rank listing all solutions from the one that achieves the

minimum of iilg[x) to the maximum one that satisfies f.ij.g[x) < ^Ib.

To illustrate how the algorithm works, we consider the following example

with 5 variables and 3 constraints.

Chapter 5. Convergent Surrogate Dual Search 67

Table 5.2: Solution process for problem D using forward dynamic programming

incorporated with surrogate constraint.

S2 X\{S2)力、(S2) S3 3^2(53) ^3(53) S4 0:3(54) ^4(54)

2 1 -0.5 5 -1 -2.5 10 1 -1.5

0 0 0 3 -1 -2 8 1 -1

2 0 -0.5 7 1 0.5

0 0 0 5 1 1

- 1 1 1 . 5 / 0 0 4 1 2 . 5 / 0 0

-3 1 2 / 0 0 3 0 - 2

2 0 -0.5
n n U (J u

- 1 0 1 . 5 / 0 0

- 2 - 1 - 1

-3 -1 0.5

-5 -1 1

- 6 - 1 2 . 5 / 0 0

- 8 - 1 3 / 0 0

Example 5.2.2.

min -2xi - 3xf + xf + 8x2 一 7x2 _ 5x3 — + 2x4 + — 4t5 — 7x1

s.t. 6x1 + 7x] + 4t2 + ixl + xl - 8x3 - Ixl 一 7.T4 + 2x\ — 50:5 + 2x1 < —8，

8x1 - + 4x2 - -\-xl- 4x3 + Sxl + 7x4 - Qxl - 2工5 — < 0，

- X l - 3x1 - 2工2 + 2x1 + xl- 2x3 + 8x1 一 5x4 - 3x1 + 5x5 — 7x1 < 3’

xe X = {xe z5|l <Xi< 5,'i = 1,2,3,4,5} .

Initial values of and (3 are calculated as - 4 3 2 and 300, respectively. Then

the initial interval of objective cut is [-432,300]. The algorithm terminates at

iteration 6 when solving problem P^(-307,300) and finds an optimal solution.

At iteration 5, fi^ is updated to 0 and we then search all the solutions of the

Chapter 5. Convergent Surrogate Dual Search 71 68

surrogate constraint formulation with objective value equal to —307. As no

feasible solution to the original problem is found, we increase the lower bound

by 1. Then we get the solution to P,,(-306，300) with value —304，which is also

feasible to the original problem. Table 5.3 summaries the iteration process of

the algorithm. The real-valued / / is rounded off with 3 decimal numbers in the

table.

Table 5.3: Iteration dynamic programming process in Example 5.3.1

Iteration f(x*) a' P
0 (1,0, o r -432 300

1 (0’0’1 广 (2,4,5,1,5) -377 -377 300

2 (0.262,0,0.738)^ (2,5,1,1,5) -340 -340 300

3 (0.070’ 0,0.93•严 (2,2,5,1,5) -309 -309 300

4 (0.163,0,0.837)'^ (3,4,4,3,5) -307 -307 300

5 (0,0, o r (3,2,5,1,5) -307 -306 300

6 (1,0, o r (2,3,4,1,5) -304

5.3. Computational Results and Analysis

We report in this section the computational results in testing Algorithm. 5.1.

for order-3 polynomial integer problems.

M工J

ffiA 工 J

=YlcjkX �
k=l

J = 77',

= E aijkXj，：]= mj = 1： n.

Coefficients Cjh are set as integers with Cji G [-20,20], Cj2 G [-10,10], and

Cj3 G [—5,5]. Coefficients aijk are real valued numbers with a^i G [—20,20],

a,J2 G [—10,10], and a ĵs G [—5,5]. All the coefficients are generated uniformly

Chapter 5. Convergent Surrogate Dual Search 69

and independently. The decision variables are bounded with

Let 0 < Vi < l,i = 1 , . . . , m. The right-hand side V s take the following

form,

= + niQi - £.), i =

where g. = m in^cex ffi(x), g^ = maXa-^x 9i(x), and the ratio r̂ is used to control

the size of the feasible region of the problem and the difficulty level. The exper-

iments show that the smaller ri is, the more cpu time is needed to identify the

optimal solution. In our experiments, r^'s are randomly generated between 0.5

and 0.7. A similar rule of determining the right-hand side was used in generating

problems in Bretthauer and Shetty [5] [6 .

11 m Average No. of iterations Average CPU times

50 20 1 0.03

50 30 4 1.60

100 40 2 0.16

100 50 3 1.07

The algorithm is coded by Fortran 90 and runs on a Dell PC with IG ram

and 2.8GHZ CPU. Table 5.4 reports sets of test problems with different number

of variables and different number of constraints.

Table 5.5 compares the convergent Lagrangian dual search and objective

level cut method[32] with the convergent surrogate dual search and objective

level cut method for a. special set of test problems with n = 30 and m 二 20, it

demonstrates that the surrogate dual outperforms Lagrangian dual in both dual

value and in CPU time.

Chapter 5. Convergent Surrogate Dual Search 70

Table 5.5: Comparison with Lagrangian dual search method(n = 30, m 二 20)

Problem Surrogate method Lagrangian method

Initial dual value CPU time(s) Initial dual value CPU time(s)

1 -5115 0.01 -5115 0.01

2 -5501 0.15 -5504 1.81

3 -5355 1.46 -5458 7.25

4 -5371 0.10 -5378 4.54

5 -6882 0.03 -6892 4.01

6 -5511 0.02 -5511 0.12

7 -7508 3.56 -7520 89.37

8 -7083 0.16 -7089 6.98

9 -5618 0.06 -5641 2.61

Average dual value Average time(s) Average dual value Average tinie(s)

-5993 0.61 -6012 12.96

Table 5.6 compares convergent Lagrangian dual search and objective level

cut method[32] with the convergent surrogate dual search and objective level

cut method for cases where n is set as 50, in which 4 sets of test results are

reported. Table 5.6 shows that the average CPU time of the convergent surrogate

Table 5.6: Comparison with Lagrangian dual search method

n m Surrogate method Lagrangian method

Average number Average CPU Average number Average CPU

of iteration time(s) of iteration time(s)

50 20 2 0.03 3 9.41

50 30 4 1.60 7 30.13

50 40 3 4.71 4 11.99

50 50 3 0.37 9 13.69

Chapter 5. Convergent Surrogate Dual Search 71

dual search and objective level cut method is much less than the convergent

Lagrarigian dual search and objective level cut method[32 .

• End of chapter,

C H A P T E R 6

CONCLUSIONS

The surrogate constraint dual method provides an alternative dual scheme for

deriving tighter lower bound for multiply constrained separable integer program-

ming problems. The surrogate relaxation, (P^), differs from the primal problem,

(尸)’ only in the feasible region. In general, the feasible region of the surrogate

relaxation enlarges the feasible region of the primal problem. If this enlarged

feasible region contains an infeasible solution that has an objective value less

than the optimal value of (P), then the surrogate relaxation, will fail to

identify an optimal solution of the primal problem, (P) , while searching for the

minimum in this enlarged feasible region.

Although the optimal point of the primal problem does not attain the mini-

mum of the surrogate relaxation when the duality gap exists, it is always hidden

in the ranking order of the minimum solutions. Invoking the concept of the /cth

minimum path in networks, we can devise a solution scheme to pin point the opti-

mal solution of (P) by generating successively the ranking order of the minimum

solutions of a surrogate relaxation and identifying the one which first satisfies the

primal feasibility. By proposing a new graph formulation of distance confined

path problem, we have made substantial revisions to the traditional kth shortest

path algorithms and translate them into the corresponding operations in the dy-

namic programming table. First, as the lower bound information dictates that

the optimal value must be no less, we seek the optimality from a suitable mid-

72

Chapter 6. Conclusions 73

die point of the ranking order, thus removing unnecessary computational efforts

starting from the bottom. Second, a shrinking range of the objective value allows

us to reduce gradually the dynamic programming table in the solution process by

removing non-promising "nodes" and "arcs" from the "graph". This prominent

feature helps speeding up the convergence. We emphasize that, as the size of

the state space affects significantly the performance of dynamic programming,

our first convergent surrogate dual search solution algorithm currently does not

update the surrogate multipliers in order to avoid non-integer multipliers.

We impose bounds on the objective function of (P) in our second conver-

gent surrogate dual search solution algorithm. A range reduction of the objective

value forces the infeasible solutions of (P) which are better-performing gradually

out of the feasible region of the surrogate relaxation, making the algorithm to

converge to the optimal solution of the primal problem. Recognizing some kind of

complementary positions of the objective function and the surrogate constraint

in the resulting doubly constrained formulation, we switch the positions between

them to benefit the algorithm from both the resulting singly constrained formu-

lation and the surrogate dual search.

As the surrogate dual search offers a tighter bound than the more popu-

lar Lagraiigian dual, our preliminary numerical experiments have demonstrated

promising computational results.

• End of chapter.

BIBLIOGRAPHY

Bell, D. E. and J. F. Shapiro, A convergent duality theory for integer

programming, Operations Research 25’ 419-434, 1977.

2] Benson, H. P. and Erenguc, S. S.，An algorithm for concave integer mini-

mization over a polyhedron, Naval Research Logistics 37, 515-525, 1990.

3] Bertsekas, D. P. and J. Tsitsiklis, Neuro-Dyiiamic Programming, Athena

Scientific 1996.

4] Bretthauer, K. M., Cabot, A.V. and Veiikataramanan, M. A., An algorithm

and new penalties for concave integer minimization over a polyhedron, Naval

Research Logistics 41, 435-454，1994.

5] Bretthauer, K. M. and B. Slietty, The nonlinear resource allocation problem,

Operations Research 43, 670-683, 1995.

6] Bretthauer, K. M. and B. Shetty, A pegging algorithm for the nonlinear

resource allocation problem, Computers k Operations Research 29, 505-

527, 2002.

7] Byers, T. H. and M. S. Waterman, Determining all optimal and near-optimal

solutions when solving shortest path problems by dynamic programming,

Operations Research 32，1381-1384, 1984.

8] Chei.n, M. S.’ On the computational complexity of reliability redundancy

allocation in a, series system, Operations Research Letters 11, 309-315, 1992.

74

Bibliography —

[9] Dai, Y. , H. Imai, K. Iwano and N. Katoh, How to treat delete requests

in semi-online problems, in Proceedings of the 4th International Sympo-

sium, Algorithm and Computation, Lecture Notes in Computer Science

762, Spring- Verlag, New York, 48-57, 1993.

10] Eppstein, D.’ Finding the k shortest paths, Siam Journals on Computing

28(2), 652-673，1999.

[11] Fisher, M. L., The Lagrangian relaxation method for solving integer pro-

gramming problems, Management Science 27, 1-18, 1981.

12] Fisher, M. L. and Sharpiro, J. F. Constructive duality in integer program-

ming, SIAM Journal on Applied Mathematics 27, 31-52, 1974.

13] Geoffriori, A. M., Lagrangian relaxation for integer programming problems,

Mathematics Program Study 2，82-114, 1974.

[14] Hadjiconstantinou, E. and N. Christofides An efficient implementation of

an algorithm for finding K shortest simple paths, Networks 34(2), 88-101,

1999.

15] Haurie, A. and P. L'Eciiyer, Approximation and bounds in discrete event

dynamic programming, IEEE Transactions on Automatic control 31, 227-

235, 1986.

16] Hochbaum, D. S., A nonlinear knapsack problem, Operations Research

Letters 17, 103-110, 1995.

17] Horst, R. and Thoai, N. V.，An integer concave minimization approach

for the minimum concave cost capacitated flow problem on networks, OR

Spektrum. 20, 47-53, 1998.

18] Horst, R. and Tiiy, H.’ Global optimization: Deterministic Approaches,

Springer, Berlin, Heidelberg, New York, 1993.

Bibliography —

19] Ibaraki, T. and N. Katoh, Resource Allocation Problems: Algorithmic Ap-

proaches, MIT Press, Canibrige, Massachusetts, 1988.

[20] Jacobson, D. and D. Ma.yne, Differential Dynamic Programming Elsevier

Science Publishing, New York, 1970.

21] Johnson, S. A., J. R. Stedinger and C. A. Shoemaker, Numerical solution

of continuous-state dynamic programs using linear and spline interpolation,

Operations Research 41, 484, 1993.

22] Katoh, N., T. Ibaraki and H. Mine, Efficient algorithm for K-shortest simple

paths, Networks 12(4)，411-427, 1982.

23] Kellerer, H., U. Pferschy and D. Pisinger, Knapsack Problems, Springer-

Press, Berlin, Heidelberg, 2004.

24] Larson, R. E.’ Dynamic programming with reduced computational require-

ments, IEEE Transactions on Automatic Control 10, 135-143, 1965.

25] Larson, R. E. and Korsak, A. J., A dynamic programming successive ap-

proximations technique with convergence proofs, Automatica 6, 245-252,

1970.

26] Lawlaer, E. L., A procedure for computing the k best solutions to discrete

optimizations and its application to the shortest path problem, Management

Science 18, 401-405, 1972.

27] Li, D.’ Zero duality gap in integer programming: P-norm surrogate con-

straint method, Operations Research Letters 25(2), 89-96’ 1999.

28] Li, D. and X. L. Sun, Success guarantee of dual search in integer program-

ming: p-th power Lagrangian method, Journal of Global Optimization 18,

235-254, 2000.

Bibliography —

29] Li, D., X. L. Sun and F. L. Wang, A convergent Lagrangian and contour-

cut method for nonlinear integer programming with a quadratic objective

function, SI AM Journal on Optimization 17, 372-400, 2006.

[30] Li, D. and X. L. Sun, Nonlinear Integer Programming, Springer Press, New

York, 2006.

31] Li, D., X. L. Sun, J. Wang and K. McKinnon, Convergent Lagrangian

and domain cut method for nonlinear knapsack problems, Computational

Optimization and Applications 42, 67-104, 2009.

32] Li, D., J. Wang and X. L. Sun, Computing exact solution to nonlinear in-

teger programming: Convergent Lagrangian and objective level cut method

Journal of Global Optimization 39, 127-154, 2007.

；33] Li, D. and D. J. White, P-th power Lagrangian method for integer pro-

gramming, Annals of Operations Research 98, 151-170, 2000.

34] Liao, L. Z. and C. A. Shoemaker, Convergence in unconstained discrete-

time differential dynamic programming, IEEE Transactions on Automatic

Control 36, 692-706, 1991.

35] Luus, R.’ Iterative dynamic programming: Prom curiosity to a practical

optimization procedure, Control Intelligent Systems 26, 1-8, 1998.

36] Marsten, R. E. and T. L. Morin, A hybrid approach to discrete mathematical

programming, Mathematical Programming 14, 21-40, 1978.

37] Mayne. D, A second-order gradient method for determining optimal trajec-

tories of non-linear discrete-time systems, International Journal of Control

3, 85-95, 1966.

'38] Nemhaiiser, G. P. and L. A. Wolsey, Integer and Combinational Optimiza-

tion Wiley, New York, 1998.

^hliography I?

39] Shapiro, J. F, A survey of lagrangian techniques for discrete optimization,

Annals of Discrete Mathematics 5, 113-138, 1979.

[40] Sun, X. L. and Li, D.，Asymptot ic strong duality for bounded integer

programming: a logarithmic-exponential dual formulation, Mathematics

of Operations Research 25，625-644, 2000.

41] Yakowite, S. and B. Rutherford, Computational aspects of discrete-time

optimal control, Jounal of Applied of Mathematics and Computing 15, 29-

45’ 1970.

[42] Yen, J. Y. , Finding the k shortest loopless paths in a network, Management

Science 17，712-716, 1971.

办 J

i 1
斯

1

_

m
n

？ m
jfH:: I ,

s

1

C U H K L i b r a r

004660047

