
DeRef: A Privacy-Preserving

Defense Mechanism Against

Request Forgery Attacks

FUNG, Siu Yuen

A Thesis Subrnitted in Partial Fulfilrnent

of the Requirements for the Degree of

Master of Philosophy

In

Computer Science and Engineering

The Chinese University of Hong Kong

September 2011

2 3 JA~~ 2013

Thesis/ Assessment Committee

Professor L UI Chi Shing (Chair)

Professor LEE Pak Ching (Thesis Supervisor)

Professor LEE Moon Chuen (Collllnittee lVIen1ber)

Professor YAU David King Yeung (External Exalniner)

This page is intentionally left blank.

Abstract of thesis entitled:

DeRef: A Privacy-Preserving Defense Mechanism Against

Request Forgery Attacks

Submitted by FUNG, Siu Yuen

for the degree of Master of Philosophy

at The Chinese University of Hong Kong in September 2011

One top vulnerability in today's web applications is request

forgery, in which an attacker triggers an unintentional request

from a client browser to a target website and exploits the client's

privileges on the website. To defend against a general class

of cross-site and same-site request forgery attacks, we propose

DeRef, a practical defense mechanism that allows a website to

apply fine-grained access control on the scopes within which the

i

client's authentication credentials can be embedded in requests.

One key feature of DeRef is to enable privacy-preserving check-

ing, such that the website does not know where the browser ini-

tiates requests, while the browser cannot infer the scopes being

configured by the website. DeRef achieves this by using two-

phase checking, which leverages hashing and blind signature to

make a trade-off between performance and privacy protection.

We implement a proof-of-concept prototype of DeRef on Fire-

Fox and WordPress 2.0. We also evaluate our DeRef prototype

and justify its performance overhead in various deployment sce-

narios.

ii

在現今的網絡世界’其中一種最常被黑客利用的漏洞是僞造請

求(Request Forgery)�當中的攻擊者於受害者瀏覽器裏觸發一個

HTTP請求到目標網站，而受害者對於這個請求是全不知情的。

當目標網站收到這個請求時，會以受害者的權限去處理，因此

攻擊者能以受害者的權限在目標網站上作一些惡意的操作。針

對著不同種類的僞造請求攻擊，我們設計了 DeRef能切

實讓網站管理員精細地控制他們網站的存取權，同時亦能保障

網站及其遊客的私隱。

爲了達到這一個目的，DdRef應用了兩階段的檢查機制，當中包

括Hashing及Blind Signature的檢測。最後我們爲DeRef在

Firefox及WordPress上製作了一個原型’以證明的成效。

iii

Acknowledgement

First of all, I would like to express my greatest gratitude to my

supervisor, Prof. Patrick Lee. During my graduate studies, he

works with me shoulder-to-shoulder and spends so much time

to improve our work again and again. Although my research

road is bumpy, with the guidance from my supervisor, I can

keep moving on the right track. The guidance and support from

Patrick are not limited to my research. In the beginning of my

last semester, I had made one of the toughest decision in my

life, in which, Patrick gave me insightful suggestions as usual

and acted in concert with my final decision. Therefore, thank

you, Patrick. You are my role model.

I am also grateful fo'r the help from my group, Advanced -

IV

Networking and System Research Laboratory, especially thanks

to Prof. John Lui and Dr. Mole Wong.

Finally, I would like to thank my parents. My mother May

Fung for taking care of me and providing me with such a warm

falnily. My father Monty Fung for introducing me to computer

sCIence.

v

Contents

Abstract
.
I

Acknow ledgement
.
IV

1 Introduction 1

2 Background and Related Work 7

2.1 Request Forgery Attacks 7

2.2 Current Defense Approaches 10

2.3 Lessons Learned . 13

3 Design of DeRef 15

3.1 Threat Model 16

3.2 Fine-Grained Access Control . 18 -

VI

3.3 Two-Phase Privacy-Preserving Checking 24

3.4 Putting It All Together. 29

3.5 Implementation................... 33

4 Deployment Case Studies 36

4.1 WordPress...................... 37

4.2 Joomla! and Drupal 42

5 Evaluation 44

5.1 Performance Overhead of DeRef in Real Deploy-

ment . 45

5.2 Performance Overhead of DeRefwith Various Con­

figurations .. 50

6 Conclusions 56

Bibliography 58

Vll

List of Figures

3.1 Initiating URLs and target URL. Suppose that

the target link is clicked. The Referer header

will have the URL of iframe1. The target URL

will be the URL of the target link, and there

are three initiating URLs, including the URLs of

iframe1, iframe2, and the browser tab. 19

3.2 Main idea of two-phase checking. 30

3.3 DeRef workflow. 31

5.1 Experiment B.1: Scalability study of two-phase

checking. .. 52

VUl

5.2 Experiment B.2: Performance versus k for differ-

ent nun1bers of URLs configured in I-ACL. 53

IX

List of Tables

5.1 Perforn1ance overhead of DeRef in different settings. 46

x

List of Publication

• Ben S.Y. Fung. A Fine-Grained Defense Mechanism Against

General Request Forgery Attacks. In Proc. of IEEE/IFIP

DSN Student Forum, 2011 .

• Ben S.Y. Fung and Patrick P. C. Lee. A Privacy-Preserving

Defense Mechanism Against Request Forgery Attacks. In

Proc. of IEEE TrustCom, November 2011

Xl

Chapter 1

Introduction

Session state management [16] is a critical component in modern

web applications. It augments stateless HTTP and embeds au­

thentication credentials of web clients into HTTP messages (e.g.,

in the form of cookies or the HTTP authentication header), so

that a website can identify different clients and deterrnine their

privileges. However, HTTP session state management is subject

to various security vulnerabilities [22]. One such vulnerability

is Cross-Site Request Forgery (CSRF), in which an attacker's

website triggers a client's browser to send an HTTP request to

1

CHAPTER 1. INTRODUCTION 2

a target website. If the HTTP .request carries the client's cre­

dentials, then the attacker can perform actions on the website

using the client's privileges, without the client being notified.

There are different variants of CSRF, such as Clickjacking [9]

and Login CSRF [3].

There have been extensive studies on how to defend against

CSRF (e.g., [3, 7, 13, 15, 17, 21]). One approach is Referer

checking, in which the target website can determine the com­

plete URL from which the request is initiated. However, the

URL information can reveal the access history of the client [3].

A more robust approach is token validation (e.g., see [24]), in

which the target website embeds secret tokens in HTTP re­

sponses, so that the browser can include those tokens in HTTP

requests to authorize the request initiations. These tokens are

inaccessible by third-party websites due to the same origin pol­

icy (SOP) [23]. However, such protection fails if both target and

malicious websites have the same origin but are o\\Tned by dif-

CI-IAPTER 1. INTRODUCTION 3

ferent parties (e.g., http://www . f 00 . eoml - al i eel and http:

Ilwww. f 00 . eoml -trudy I), as the malicious party can steal the

tokens from another same-origin website and trigger forged re­

quests. We call this attack the same-site request forgery (SSRr)

attack.

To effectively defend against both CSRF and SSRF attacks,

we consider an approach based on fine-grained access control of

scopes. A scope defines a con1bination of the protocol, domain,

and path (see Chapter 3.2). The intuition is that a website

can configure, in a policy file, the scopes that are legitirnate

to initiate or receive sensitive requests that contain authenti­

cation credentials. The browser can download the policy file

from the website to check the validity of each of its initiated re­

quests, and exclude sensitive credentials from any requests that

are considered to be forged. This fine-grained access control is

also considered in previous studies (e.g., [7, 21]). However, one

shortcoming of this approach is that the policy file carries sensi-

CHAPTER 1. INTRODUCTION 4

tive scope information in plain format that is accessible by every

browser to check against its initiated requests. Users can find

out from the policy file how a website designs its access control

policy and its trust relationships with other websites. Thus, our

goal is to allow the browser and the website to exchange ' sen­

sitive scope information while they may not need to fully trust

each other.

In this thesis) we propose DeRef) a practical defense mech­

anism against cross-site and same-site request forgery attacks

using privacy-preserving fine-grn'lned access control. By privacy­

preserving, we mean to not only protect a browser from reveal­

ing the URLs from which it initiates requests, but also protect

a w~bsite frol~ revealing ho\iV it configures the legitin1ate scopes,

except for those that have been visited by the browser. The

main idea of DeRef is to employ two-phase checking. First, the

website configures (i) the scopes that are permitted to initiate

sensitive requests and (ii) the scopes on the website that are

CHAPTER 1. INTRODUCTION 5

protected by DeRef. Then the website sends the hash values of

the scopes to the browser, where the hash values are incomplete

and reveal only partial scope information. In the first phase,

the browser checks to see if its initiated requests potentiapy

fall within the configured scopes, and eliminate those that are

kno\vn to be not configured by the website. In the second phase,

the browser sends the blinded scopes of its initiated requests to

confirm if these scopes actually match the configured scopes. In

a nutshell, DeRef uses two-phase checking to make a trade-off

between performance and privacy protection in real deployment.

To our knowledge, this is the first work that aims to build a prac­

tical system that addresses the defense against request forgery

attacks, while achieving the privacy-preserving property.

To show that DeRef can be feasibly deployed in practice, we

implement a proof-of-concept prototype of DeRef on FireFox [18]

(as a browser plugin) and WordPress 2.0 [29]. We also address

how the prototype is deployable in other web applications and

CHAPTER 1. INTRODUCTION 6

how it is backward compatible with the original client/server

operations without DeRef. We evaluate our DeRef prototype,

and show that its response time overhead can be reduced to

within 20% by caching the already checked scopes.

The rest of the thesis proceeds as follows. Chapter 2 reviews

the background on request forgery attacks and their defense

mechanisms. Chapter 3 presents the design and implementa­

tion details of DeRef. Chapter 4 discusses several deployment

case studies for DeRef and its security effectiveness. Chapter 5

evaluates the performance and scalability of DeRef. Finally,

Chapter 6 concludes.

o End of chapter.

Chapter 2

Background and Related Work

2.1 Request Forgery Attacks

A request forgery attack is to trigger a forged HTTP request from

a victim client browser to a target website without the knowl­

edge of the client. A forged request may carry the client's au­

thentication credentials that an attacker can exploit to perform

malicious actions on the website using the client's privileges. In

the following, we describe different variants of request forgery

attacks.

Cross Site Request Forgery (CSRF) [3, 13, 15, 17]. In -

7

CHAPTER 2. BACI{GROUND AND RELATED WORK 8

CSRF, an attacker uses an external website to trigger an HTTP

request from a client to a target website. Suppose that a client

currently has an active session with a target website A and then

visits a malicious website B. The attacker can put a malicious

URL on website B that triggers the client's browser to send an

HTTP request to website A using the currently active session.

Then the credentials associated with website A will be attached

to the triggered HTTP request, and website A will process the

request using the client's privileges.

There are two variants of the CSRF attack, namely Clickjack­

ing [9] and Login CSRF [3]. Clickjacking puts an invisi~le frame

of a target website on a malicious website. When a client clicks

on the invisible frame, a forged HTTP request can be triggered

to the target website without the client being notified. Login

CSRF is an attack that can be launched even before a session

starts. It triggers the client's browser to send a request that

contains the attacker's login credentials to the target \\Tebsite.

CHAPTER 2. BACI(GROUND AND RELATED WORK 9

This allows the attacker to later access the client's information

such as the client.'s activity history.

Same Site Request Forgery (SSRF) [20, 21]. Different

websites Inay have the same origin [23] (i.e., same protocol,

hostname, and port number), while these websites correspond

to different owners. For exalnple, Alice (target) and Trudy

(attacker) may individually own websites on the URLs http:

//www.foo.com/-alice/ and http://www.foo.com/-trudy/.

Suppose that a client currently has an active session with Alice's

website and then visits Trudy's website. In this case, Trudy's

malicious page can read the content in Alice's website, which

is permitted under the same-origin policy [23]. This is referred

to as an SSRF attack. Note that the attack still works even

though Alice uses token validation [24], which can effectively

defend against CSRF attacks.

CHAPTER 2. BACI{GROUND AND RELATED WORK

2.2 Current Defense Approaches

10

There are varIOUS defense approaches against request forgery

attacks. I\1ost of them target cross-site attacks. We also describe

the approaches that are based on fine-grained access control,

such that they can be extended to defend against . SSRF attacks

as well.

Header checking. A simple approach is to let the website

check the Referer header and determine where the request is

initiated. However, this approach has privacy concerns, as the

Ref erer header reveals the last visited URL of a client from

which the request is initiated. To protect a client's privacy, the

origin header approach [3] introduces the Origin header, which

is similar to the Referer header except that it only contains

the origin information with the patl~ details relTIoved. How­

ever , checking only the origin information cannot protect against

SSRF attacks, in which both target and lTIalicious websites are

CHAPTER 2. BACI(GROUND AND RELATED WORK 11

hosted under the san1e origin but on different paths.

Tokell validation (e.g., [24]). Token validation is now widely

deployed to defend against CSRF. The website generates a se­

cret token in a client session, and validates the token when the

client initiates requests to perform privileged actions. The to­

ken is protected from other websites by the same-origin pol­

ICy. However, token validation is difficult to implement due to

the possibility of leaking the token value [3]. NoForge [15] is a

server-side proxy that associates secure tokens with active ses­

sions. However, as addressed in Chapter 2.1, token validation

cannot defend against SSRF attacks.

Client-side defense. Unlike the above approaches, some stud­

ies consider client-side approaches that do not require server-side

participation, thereby making deployment easier. RequestRodeo

[13] is a client-side proxy that strips credentials from a request

whose URL has a different origin from the originating webpage.

Since it is proxy-based, it cannot exarnine HTTPS traffic. BEAP

CHAPTER 2. BACI{GROUND AND RELATED WORI{ 12

,

[17] is implemented as a browser plugin so that it can examine

HTTP and HTTPS traffic. It focuses on inferring the intentions

of clients in generating cross-site requests. However, it does not

address how to defend against SSRF attacks.

Fine-grained access control. Fine-grained defense approaches

allow website owners configure the access scopes from which re-

quests can be initiated. SOMA [21] requires a website to set

up the policy files that specify the external websites with which

the website can communicate, and requires external websites to

allow the interactions. The browser can use the policy files to

enforce protection. Csfire [7] is a browser plugin that parses a

fine-grained policy file that specifies which third-party sites can

initiate cross-site requests. Other studies, such as MashupOS

[10], Subspace [11], and OMash [6], consider n10re fine-grained

access control for cross-site cOlnmunications in n1ashup appli-

cations. W3C [26] also drafts a specification that states how

websites can configure the objects that can be shared across ori-

CHf\PTER 2. BACI(GROUND AND RELATED WORI{ 13

gins. Although the above approaches focus on protecting against

cross-site attacks, 'we can extend them by configuring the access

scopes within the same site to defend against SSRF attacks.

2.3 Lessons Learned

In this thesis, we consider how to use fine-grained access con-

trol to defend against both CSRF and SSRF attacks . Similar

to SOMA [21], we allow a website to configure a policy file that

describes how requests can be initiated and received between

a browser and the website. Then the browser uses the policy

file to enforce access control. Although this approach is sound,

one major concern is that clients can access the policy file and

easily determine how a website designs its access control policy

and its trust relationships with other websites. Thus, our goal

is to design a privacy-preserving approach that can protect the

policy inforrnation frorn outsiders, while still effectively defend­

ing against both CSRF and SSRF attacks. There are extensive

CHAPTER 2. BACI{GROUND AND RELATED WORK 14

studies on privacy-preserving rpechanisn1s in different aspects,

such as in data mining (e.g., see [1]) and two-party communica­

tion (e.g., see [4, 19]). To our knowledge, this is the first work

that aims to design a practical system that defends against re­

quest forgery attacks from a privacy-preserving perspective.

o End of chapter.

Chapter 3

Design of DeRef

DeRef is designed as a privacy-preserving, fine-grained defense

mechanism against request forgery attacks. In summary, DeRef

aims for the following design goals.

• Detecting forged requests. DeRef seeks to defend against

general request forgery attacks, including both cross-site

and same-site (see Chapter 3.1) .

• Fine-grained access control. DeRef enables a website owner

to configure the scopes that are under protection, so as to

eliminate stringent checking on all incoming requests (see

15

CHAPTER 3. DESIGN OF DEREF

Chapter 3.2) .

16

• Privacy-preserving checking. DeRef can identify forged re­

quests without requiring both the browser and the website

to disclose private information to the other side (see Ghap­

ter 3.3) .

• Feasible deployment. DeRef can be feasibly deployed in

today's browsers and websites (see Chapters 3.4 and 3.5).

3.1 Threat Model

DeRef seeks to defend against the cross-site and same-site re­

quest forgery attacks (i.e., CSRF, Clickjacking, Login CSRF,

and SSRF) described in Chapter 2. Specifically, DeRef enables

a browser to identify "forged" requests and strip any authen­

tication credentials from these requests or their corresponding

responses before relaying them.

In this thesis, we focus on two types of authentication cre-

CHAPTER 3. DESIGN OF DEREF 17

dentials: (i) cookies and (ii) HTTP authentication (i.e., the

Authorization header). Although authentication credentials

can also appear in the query strings of GET requests or in

the data in POST requests, their definitions and formats a,re

application-specific and it is difficult to distinguish the creden­

tials fronl application data. The identification of application­

specific credentials will be posed as future work.

To deternline if a request is forged, we need to first determine

how the request is triggered and where the request is destined

for. We define the initiating URLs as the set of URLs that can

directly or indirectly initiate the request. They include (i) the

Referer URL and (ii) the URLs of the current active iframe's

ancestors in the iframe hierarchy [3]. Also, we define the target

URL as the destination URL of the request. Figure 3.1 depicts

an example of how the initiating URLs and target URLs are

defined. We allow a website owner to configure a set of target

URLs on the website that are to be protected, as well as a set

CHAPTER 3. DESIGN OF DEREF 18

of initiating URLs that are "approved" to initiate requests that

carry authentication credentials to the protected target URLs

(see Chapter 3.2 for details). If a request is sent to a protected

target URL from any non-approved initiating URL, then we say

that the request is forged. For example, in Figure 3.1, if the URL

of the target link is protected, then all three initiating URLs

(i.e., the URLs of iframe1, iframe2, and the browser tab) must

be approved by the website in order for a request to be able

to carry authentication credentials; otherwise, the credentials

will be removed from the request. Here, we assume that the

permitted initiating URLs are benign and no request forgery

attacks are launched from there.

3.2 Fine-Grained Access Control

DeRef is built on two access control lists (ACLs), narnely T­

ACL and I-A CL, to enable fine-grained defense against request

forgery attacks. T-ACL stores the target URLs on the vvebsite

CHAPTER 3. DESIGN OF DEREF 19

Browser tab
iframe 2
iframe 1

Target link

Figure 3.1: Initiating URLs and target URL. Suppose that the target link

is clicked. The Referer header will have the URL of iframel. The target

URL will be the URL of the target link, and there are three initiating URLs,

including the URLs of iframe1, iframe2, and the browser tab.

those are to be protected. The stored URLs generally corre-

spond to the sensitive web objects that need to respond to the

authentication credentials inside the requests, and hence they

need protection against forged requests. Other non-sensitive

web objects that are not stored in T-ACL will remain unaf-

fected. Thus, a main purpose of T-ACL is to eliminate stringent

checking on the non-sensitive web objects.

I-ACL stores the initiating URLs that are trusted to initi-

ate requests to the target URLs configured in T-ACL. A main

purpose of I-ACL is to configure the UR,Ls that have different

CHAPTER 3. DESIGN OF DEREF 20 '

origins while being trusted (i.e., the same origin policy cannot

be directly applicable). One real-life example would be the web-

sites www. asiarniles. corn and www. cathaypacific. corn. While

they have different origins, they are lTIutually trusted as they

deploy the Single Sign-On (SSO) mechanism [25]. Thus, I-ACL

is used to customize the trusted initiating URLs that may have

the SalTIe or different origins. If any initiating URL of a request

is not configured in I-ACL, while the request is destined for the

target URL that is configured in T-ACL, then the request is

considered to be forged.

Scope. Before deploying DeRef, the website on the server side

first configures the ACLs with a set of scopes. A scope is defined

based on the same origin policy for cookies [31], and it specifies

the range of URLs using scheme: / / domain/path, where (i) the

scheme corresponds to the protocol of the request (e.g., http

or h t t ps), (ii) the domain includes the domain itself, its su b­

domains, and its underlying hosts, and (iii) the path includes

CHAPTER 3. DESIGN OF DEREF 21

the path itself and its path suffixes. To show how a scope is

used, let us configure a scope http: / / . f 00 . com/ dir/. Then

examples of URLs that match our configured scope are http: / /

www.foo.com/dir / and http://www1 . f 00 . eom/ dir / sub/ .Qn

the other hand, examples of URLs that do not match our con­

figured scope are http://www . abe . eom/ dir / and http://www .

f 00 . eom/, since they have a different domain and different path,

respectively. Note that a scope can be simply an individual

URL.

Creating privacy-preserving lists. The website should keep

the ACLs private to browsers to avoid revealing its defense strat­

egy. Instead, it releases the privacy-preserving lists of scopes de­

rived from the configurations in the ACLs, so that the lists will

be used in our two-phase checking approach (see Chapter 3.3).

The lists will be stored in a policy file that is accessible by client

browsers.

Publicizing the policy' file. The website owner specifies the -

CHAPTER 3. DESIGN OF DEREF 22

base URL, which states the exact hostname and path of the

website under which the policy file will be stored. We assume

that only the website owner has the write permission to store

the policy file under the specified base UR,L. The base UR,L

will be included in a response message to let the browser know

where to download the policy file. Note that a bro"\vser may

have downloaded multiple policy files from different websites. To

choose the policy file for a given request, we use the longest prefix

match based on the target URL of the request. For example,

if the target URL is http://www.foo.com/ ... ali ce/login. php

and there are two policy files with base UR,Ls http://www . foo.

com/ and http://www.foo.com/ ... alice/ , then according to the

longest prefix match, the browser chooses the policy file vvith the

base URL http://www.foo.com/ ... alice/.

Checking. For each request to be sent to the "\vebsite, the

browser checks the initiating URLs and the target URL associ­

ated with the request against the scopes configured in the policy

CHAPTER 3. DESIGN OF DEREF 23

file. Since a scope n1ay not state the complete URL , we apply

incremental checking for each URL. The main idea is to check

all possible scopes associated with each URL, including all lev­

els of domains starting from the top-level domain, as well ~s

all levels of paths starting from the root path. To illustrate,

suppose that we are given a URL http://foo . corn/a/b. html.

Then there are six possible scopes to check: including (1) http:

//.com/, (2) http://.com/a/, (3) http://.com/a/b.html, (4)

http://foo.com/, (5) http://foo.com/a/, and (6) http://

foo. corn/a/b. html. We then apply two-phase checking on all

derived scopes (see Chapter 3.3).

Caching. If a URL has been checked, then the browser can

cache the URLs in memory to eliminate checking on the subse­

quent requests for those URLs. We note that using caching can

significantly irnprove the peri'orrnance, as shown in Chapter 5.

CHAPTER 3. DESIGN OF DEREF 24

3.3 Two-Phase PrivaGy-Preserving Checking

We now present our two-phase checking approach that acts as a

building block in DeRef. It allows the browser and the website

to exchange information in a privacy-preserving manner. It is

mainly composed of two phases: hash checking and blind check-

zng.

Before we describe how our two-phase checking works, let us

assume that the website configures L legitimate scopes in an

ACL (either T-ACL or I-ACL), denoted by Xi, where i == 1, 2,

.. " L. Now, if the browser initiates a request to the website

from URL y, then it checks if y belongs to any of the xi's, so as

to decide whether the request is within the configul'ed scopes.

To do this, the browser derives all possible scopes for a given

URL y (see Chapter 3.2) into Yl, Y2, "', YnL' where m is the

number of scopes that are derived from y. Then the browser

checks if any Yj Cj ==1, 2, "', m) equals any Xi (i == 1, 2,

CHAPTER 3. DESIGN OF DEREF 25

L). Our privacy-preserving goals are: (1) the browser does not

reveal y to the website and (2) the browser does not know the

X i' S configured by the website, unless a scope of y matches any

of these.

Hash checking. In hash checking, the website sends the browser

a list of k-bit hashes of the configured scopes, i.e., h(s, Xl)'

h(s, X2), "', h(s, XL)' where h(.) is a function derived by the

first k bits of some one-way hash function, and s is a random

salt [28] that is sent alongside the hash list. When the browser

initiates a request from URL y, it computes h(s, Yj) (j == 1, 2,

... , m) and checks if it matches any h(s, Xi) (i == 1, 2, ... , m).

Note that the checking process does not reveal Y to the website

(i.e., goal (1) is achieved).

The value of k determines the degree of privacy that the

website reveals its configured scopes. If k is large (e.g., k == 128

bits as in MD5) and h(.) is collision resistant, then we claim

CHAPTER 3. DESIGN OF DEREF 26

that it is unlikely for two URLs to have the same hash value1 .

However, having a large k is susceptible to the dictionary attack.

For example, after downloading the hash list, an attacker can

use the popular URLs (e.g., the frequently visited URLs) and

the salt s as inputs, and see if the resulting hash values equal

On the other hand, if k is small, then the browser cannot

surely tell ifaxi is being configured since there are 111any false

positives that create "noise" to prevent Xi from being fully re-

vealed. For example, if k == 4, then there are 24 == 16 possible

values of h(.). If h(.) is uniforlnly distributed, then on average

1/16 of URLs in the entire web can potentially match a h(s, Xi).

However, we need to eliminate the false positives through blind

checking (see below) to see if URL y is actually within a config-

ured scope.

1 As of December 2010, the number of indexed web pages in the web space is about

22 billion (less than 235) [30], which is signifkant.ly less than (,he 1\I1D5 SpRce size.

CHAPTER 3. DESIGN OF DEREF 27

Blin.d ch.eckillg. Blind checking is built on the privacy-preserving

'matching protocol. -[19], which uses Chaum's RSA-based blind

signature [5]. We adapt the matching protocol to allow the

browser to query the website in a privacy-preserving manne~.

Specifically, we use the potentially matched scopes returned by

hash checking as inputs, and conduct blind checking as follow:

• Initialization. The website prepares a RSA public-private

key pair (e, d) with modulus n. The public key (n, e) will be

sent to the browser. Also, the website sends the list to the

browser: H'(Xi' H(s, Xi)d mod n) for i==l, 2, ... , L, where

H (.) and H' (.) are some one-way hash functions and s is the

salt value (which is also sent to the browser). We assume

that H (.) and H' (.) return a long-enough hash (e.g., 128

bits in MD5) so that it is unlikely for two inputs to return

the same hash.

• Step 1. For each scope Yj (for j 1, 2, m) that

CHAPTER 3. DESIGN OF DEREF 28

,

matches any h(s, Xi) in the first phase , it generates a ran-

dom value rj and sends the blinded hash rjH(s, Yj) mod n

to the website .

• Step 2. The website signs and returns rjH(s, Yj)d mod n to

the browser, which removes rj and retrieves H(s, Yj)d mod

n. It then computes and checks if H'(Yj, H(s, Yj)d mod n)

equals any signed hashes H'(Xi' H(s, Xi)d mod n).

Since the browser sends ,only blinded hashes to the website, it

does not reveal Y to the website (i.e., goal (1) is achieved). Also,

an attacker cannot feasibly launch the dictionary attack offiine

as in hash checking, since it is computationally infeasible to

generate the signature of the website for a given input Y without

knowing the website's private key. Although the attacker can

launch the dictionary attack online by querying the website \vith

different values of Yj) the attack becon1es more difficult than the

offline one as it can easily alert the website if the querying rate

CHAPTER 3. DESIGN OF DEREF 29

is too high. By lilniting the query rate of a browser, the privacy

of the configured xi's of the website is also protected (i.e., goal

(2) is achieved).

vVe elnphasize that using blind checking alone can still achieye

our privacy-preserving goals. A key drawback is that there will

be significant process overhead. In blind checking, the browser

needs to take a round trip to send every potentially matched

scope to the website and have the website sign the scope. Also,

each signing consists of an expensive asymmetric cryptographic

computation. Thus, we introduce hash checking to ignore any

scopes that are guaranteed to be not configured, so as to reduce

the overhead of blind checking.

Figure 3.2 summarizes the idea of two-phase checking.

3.4 Putting It All Together

DeRef is implemented on both client and server sides to examine

the communication between the browser and the website. We

CHAPTER 3. DESIGN OF DEREF

I Client 1 I Server I
Initialization

Phase one (hash chec

For each scope: Yj

Check h(s,y) = h(s,xJ?

king)

Phase two (blind check
Send blillded

Check HI(Yj ,H(s,y)d mo

HI (xi' H(S , XJd mod

ing)
scope

dn) =
/1)?

~

"

.J

......

r

H'(xpH(s,x;y'modn)
h(s,x;)
s,(e,n)

r/ H(s,y)modn
. . ,

rjH(s, Yj)d mod n

'Ir

Send privacy­
rving lists prese

Sign bl inded scope
d reIl/m an

Figure 3.2: IVlain idea of two-phase checking.

30

now explain the flow of DeRef and how it enforces protection.

Figure 3.3 shovls the flow of DeRef.

Start-up. When a user signs in a website, it initiates a login

request with valid authentication credentials. Then the web-

site replies a login response, in which the server-side DeRef

includes a new header Protection-Policy, whose syntax is

Protection-Policy: Last Update Time=[Time stamp]; Expiry

Time= [Time stamp J; Base URL= [Base URL J. This header

serves two purposes: to indicate DeRef is inlplelnented in this

CHAPTER 3. DESIGN OF DEREF 31

I Browser I I DeRef(client) I I DeRef(server) I I Website I
.... ,.

Send login request
J

'"

J
Return login response

~

Set Protection-Policy
header

'"
Download policy file J

,
....

'" Check login request J

,
....

.J.

'" Return login request

.... ,
Send request

'" Check request J

,
....

'" ,
Relay request

J
Return response

" " 'v ' ,

Figure 3.3: DeRef workflow.

CHAPTER 3. DESIGN OF DEREF 32

website and to state the base URL in which the policy file is

stored. Also, the header includes the last update time and the

expiry tin1e of the policy file. If the policy file with the same

base URL has been downloaded before, while the last update

tilne remains the same and the expiry time is not yet reached,

then the client-side DeRef will not download it again.

Downloading the policy file. If no up-to-date policy file is

available, then the client-side DeRef dovvnloads the policy file

as specified in the base UR,L and stores it locally. However,

an attacker may intercept and n10dify the policy file when it is

being downloaded, for example, by deleting some of the entries

in the policy file. To prevent the policy file frorn being rIlodi­

fied, we propose to have it translnitted through HTTPS, which

authenticates all message transn1issions. Since the policy file is

downloaded during the login process, we expect that HTTPS

has been enabled by default.

Checking Process. The client-side DeRef perforn1s the t\\TO

CHAPTER, 3. DESIGN OF DEREF 33

phase checking on the login request that is previously relayed

before returning the login response to the browser, so as to de­

fend against any possible login CSRF attack. For subsequent re­

quests originated from the browser, the client-side DeRef checks

the target URLs and the initiating URLs against the policy file.

It strips any authentication credentials (i.e., cookies and HTTP

authentication headers) from the requests and the corresponding

responses if the requests are considered to be forged.

3.5 Implementation

We implement a prototype of DeRef to justify its practicality in

deployment. DeRef is built on the components residing on both

server and client sides. We now explain in detail the implemen­

tation on both sides, and address the deployment issues if only

one side enables DeRef.

Server side implementation. The server-side DeRef is im­

plemented in PHP, and hence is applicable in any PHP-enabled

CHAPTER 3. DESIGN OF DEREF 34

\vebsites. There is a PHP program genPolicy . php, which gen­

erates the policy file with respect to the URLs defined by the

website owner. Here, we use MD5 for hash operations and 1024-

bit RSA for blind checking. In addition, we use the header func-

tion of PHP to specify a new custom HTTP header Protection-Policy

to indicate the base URL that specifies the locations of the pol-

icy file. The browser can retrieve the policy file by visiting

genPolicy . php. In Chapter 4, we explain via examples how

DeRef can be deployed in various real-life server-side web appli-

cations.

Client side implementation. We implement a Firefox browser

plugin compatible with Firefox versions 3 and 4. It retrieves

the. policy file from the base URL stated by the server-side

DeRef, and inspects any outgoing requests for any forged re­

quests. Our plugin intercepts requests and responses by listening

to the events http-on-modify-request and http-on-examine-response ,

respectively, both of which are available in the Firefox in1ple-

CHAPTER 3. DESIGN OF DEREF 35

nlentation. Our ilnplementation of the plugin consists of about

1000 lines of code ..

Illcremental deployment. DeRef requires the supports of

both the client and server sides. If only one side has DeRef

enabled, then our implelnentation is backward compatible with

the normal operations without DeRef. To elaborate, if the client

side implementation is absent, then the browser simply ignores

the custom header Protection-Policy defined by the server

side and will not download any policy file. On the other hand,

if the server side implementation is absent, then the browser

plugin will find that the custon1 header Protection-Policy is

absent and will simply forward all outgoing requests.

o End of chapter.

Chapter 4

Deployment Case Studies

DeRef needs both client-side and server-side deployments. On

the client side, DeRef is deployed as a browser plugin, which

can be readily included in a browser. On the other hand, the

deployment on the server side needs n10difications in web ap­

plications. It is irnportant that the rnodifications are rninirnal

to make DeRef deployable. In this chapter, we show via exan1-

pIes that DeRef can be feasibly deployed in today's ,veb appli­

cations. We explain how to deploy DeRef in -three top open­

source content management systems [27], including WordPress

36

CHJ-\PTER '1. DEPLOYl\ifENT CASE STUDIES 37

[29], Joomla! [14], and Drupal [8].

4.1 WordPress

'IVe first study the deployn1ent of DeRef on WordPress 2.0. We

choose WordPress 2.0 as it has a known CSRF vulnerability

[12], which allows us to test the security effectiveness of DeRef

in defending against request forgery attacks. Note that we also

verify that the 1110dification we make in this version is applicable

to the latest WordPress versions as well.

Suppose that Alice wants to host WordPress 2.0 on her per­

sonal website http://www.foo.com/ ... alice/. on which she de­

ploys DeRef. First, Alice needs to first configure T-ACL to

specify the target URLs to be protected. Here, we include three

scopes in T-ACL for WordPress, including:

• http://www.foo.com/ ... alice/wp-admin/ •

• http://www.foo.com/ ... alice/wp-login.php. and

CHAPTER 4. DEPLOY1\1IENT CASE STUDIES 38

• http://www.foo.com/~alice/wp-cornrnents-post.php.

The folder wp-adrninl contains the webpages that manage all

WordPress operations, and hence needs to be protected. We

include wp-login. php so as to defend against the Login CSRF

attack by restricting all login actions to be initiated from au­

thorized URLs only. We also include wp-comments-post. php,

which handles the comments posted by visitors.

Alice also needs to configure the valid initiating URLs in

I-ACL to specify where the requests can be triggered to the

protected scopes. Here, we assume that Alice includes http:

Ilwww.foo.com/~alice/. meaning that all requests must be

initiated from within Alice's website.

Both T-ACL and I-ACL are transformed into a privacy-preserving

policy file (see Chapter 3.2). Alice can store the policy file on

http://www.foo.com/~alice/ , from which different browsers

can retrieve.

In the following, we use WordPress 2.0 as a case study and

CHAPTER "1. DEPLOY1\1IENT CASE STUDIES 39

present how each of the request forgery attacks described In

Chapter 2.1 is feasible. We then justify why DeRef can defend

against these attacks.

CSRF. The CSRF attack is possible in WordPress 2.0 [12], by

exploiting the vulnerability that WordPress 2.0 does not validate

the origin of the requests. An attacker can host a malicious web­

page on, say, http://www.attack.com/csrf . html, and trigger

forged requests to Alice's WordPress. If DeRef is used, then the

client-side DeRef browser pI ugin will strips all cookies of the re­

quests that are initiated from http://www . attack. corn as it is

not within the scope of http://www.foo.com/ ... alice/. Thus,

any forged request will not be processed by WordPress, and the

CSRF attack is avoided.

Clickjacking. In the original WordPress 2.0, the Clickjacking

attack can work as follows. An attacker hosts a malicious web­

page on http://www.attack.com/clickj acking. html, which

embeds Alice's website http://www.foo.com/ ... alice/ as an in-

CHAPTER 4. DEPLOYMENT CASE STUDIES 40

visible fraIne. The malicious webpage clickj acking. html can

instruct Alice to click on different buttons to trigger forged re­

quests to her WordPress. If DeRef is deployed, then the DeRef

browser plugin will find that each request contains three ini­

tiating URLs, including the Referer URL, the URL of the

invisible iframe, and the URL of the browser tab. Both the

Referer URL and the URL of the invisible iframe are http:

I Iwww.foo.com/ ... alice/. However, the URL of the browser

tab is http://www.attack.com/clickj acking. html, ,vhich is

not configured in I-ACL. Thus, DeRef can defend against Click­

jacking.

Login CSRF. Login CSRF is possible in the original Word­

Press 2.0. An attacker can host a malicious webpage on http:

I Iwww.attack.com/logincsrf . html, which triggers a login re­

quest to the login page of Alice's WordPress o.n http://www .

foo. com/"'alice/wp-login.php. The login request includes

t he login credentials of the attacker. When Alice visits Word-

CHAPTER L1. DEPLOYlvIENT CASE STUDIES 41

Press afterwards, she would have been signed In as the at­

tacker. If DeRef · is deployed, then before relaying the login

response back to the browser (see Figure 3.3), the client-side

DeRef inspects that the target URL of the request is http: (I

www.foo.com/ ... alice/wp-login . php, while the initiating URL

is http://www.attack.com/logincsrf . html, which is not de­

fined in I-ACL. Thus, the attacker's login becomes unsuccessful.

SSRF. The SSRF attack is similar to the CSRF attack, except

that an attacker hosts a malicious webpage on http://www . foo.

coml "'trudy I ssrf . html. Although both Alice's website and the

malicious webpage are hosted on http://www.foo.com/. DeRef

can still defend against the SSRF attack because the initiating

URLs are restricted by the policy file but not the same-origin

policy. Specifically, DeRef can detern1ine that http://www .

foo. coml "'trudy I ssrf . html is not configured within the scope

of I-ACL (which includes only http://www.foo.com/ ... alice/).

Thus, DeRef will strip off any authentication credentials of the

CHAPTER 4. DEPLOY1VIENT CASE STUDIES 42

requests that are initiated fromhttp://www.foo.com/-trudy I

ssrf . html.

4.2 Joomla! and Drupal

To deploy DeRef in Joomla! and Drupal, we need to address

SOlne implementation subtleties that (slightly) complicate the

server-side deployment of DeRef, as explained below. Our dis­

cussion is based on Joomla! 1.6.3 and Drupal 7.0.

J oomla! The deployrnent of DeRef requires the scope configu­

rations of T-ACL and I-ACL. In particular, T-ACL specifies the

sensitive web objects being protected (see Chapter 3.2). How­

ever, in Joomla!, the same URL may correspond to either a

sensitive or an insensitive web object, depending on the query

strings in the URL. For example, the webpage index. php itself

simply lists the index page and is considered insensitive. Hovv-

ever , the webpage index. php?task=article. save n1ay corre­

spond to the article editing function and is considered a sensi-

CHAPTER L'1. DEPLOYlVIENT CASE STUDIES 43

tive web object. To differentiate between sensitive and insen­

sitive web objects defined by query strings, one can create a

new sensitive web object (e.g., protected/ art i cle . save. php)

and redirect the request for index. php?task=article . save to

protected/article. save. php. Then the URL for protected/

article. save. php can be included in T-ACL.

Drupal. By default, Drupal uses query strings to access web ob­

jects. We use the "Clean URLs" function in Drupal to make all

web objects accessible without using query strings. For example,

the administration page is originally accessed by /?q=admin. Af­

ter enabling "Clean URLs" , the relative URL becomes / admin/.

D End of chapter.

Chapter 5

Evaluation

We now evaluate our implemented DeRef prototype in real net­

work settings. The client-side DeRef is deployed as a plugin

in Firefox 4.0, where the browser is deployed in a desktop PC

with CPU 2.4GHz. The server-side DeRef is included in Word-

Press 2.0, with the sarne configurations as stated in Chapter 4.1.

There are three different entities: a client browser (Firefox), a

target website (WordPress), and a malicious website. We deploy

all entities in the same local area network of a uriiversity depart­

ment, so as to minimize the overhead of network transl11ission.

44

CHAPTER 5. EVf\LUATION 45

This allows us to focus on evaluating the performance overhead

of DeRef.

5.1 Performance Overhead of DeRef in Real

Deployment

\lYe first evaluate the performance overhead of our DeRef pro­

totype in real deployment using Firefox and WordPress. Our

goal is to understand the overhead of DeRef in surfing different

types of webpages. We also evaluate how the use of caching (see

Chapter 3.2) on the client-side DeRef improves the performance.

Recall that DeRef uses two-phase checking. Here, we focus

on the case where there is no false positive returned by hash

checking by setting a large enough value of k (e.g., using k ==

128 bits as in MD5). In Chapter 5.2, we evaluate how different

values of k affect the performance.

We measure the response time, i.e., from the time when the

CHAPTER 5. EVALUATION 46

Exp. A.l Exp. A.2 Exp. A.3

Index Admin Login CSRF Login CSRF

No DeRef 144.941TIS 165.441TIS 225.821TIS 65.33ms 58.47ms

DeRef 159.581TIS 494. 771TIS 647.55ms 108.65ms 131.6ms

(no (10%) (199%) (187%) (66%) (125%)

cache)

DeRef 160.761TIS 184.081TIS 261.78ms 77.35ms 70.26ms

(\vith (11 %) (11%) (16%) (18%) (20%)

cache)

Table 5.1: Performance overhead of DeRef in different settings.

browser sends the first request until it receives all response mes­

sages from the WordPress website. Note that the response time

also includes the processing time of performing two-phase check­

ing between the browser and the website. The measurements are

averaged over 100 runs. Table 5.1 summarizes the results of our

experiments.

Experiment A.I (Browsing insensitive webpages). \~Te

CI-IA.PTER, 5. EVALUATION 47

first consider the case where the browser visits an insensitive

webpage that is not under the protection of DeRef, i.e., the URL

of the webpage is not configured in T-ACL. Here, we measure

the response time when we visit the index page index. php on

WordPress. Since the index page is insensitive, DeRef does not

need to perform blind checking (provided that no false positive is

returned in hash checking). Thus, we expect that DeRef incurs

minimal overhead. Table 5.1 shows that the additional overhead

of DeRef is around 10%, which conforms to our intuition. Note

that the performance is similar with or without cache.

Experiment A.2 (Browsing sensitive webpages). We next

consider the case when the browser vi~its a sensitive webpage.

In this case, the DeRef browser plugin will perform both hash

checking and blind checking, to confirm that the URL of the sen­

sitive webpage is in T-ACL and the initiating URL is in I-ACL.

Here, we measure the time when the browser visits /wp-login.

php and /wp-admin/ on WordPress from a legitimate initiating

CHAPTER 5. EVALUATION 48

URL.

Table 5.1 shows that both cases incur significant performance

overhead, mainly due to the RSA blind signature computation

in blind checking. If no caching is used, then the overheads are

199% and 187% for /wp-login.php and /wp-admin/, respec­

tively. Nevertheless, we can mitigate the overhead via caching,

which stores the UR,Ls that are known to be configured in T­

ACL and I-ACL. When we visit the two webpages again, the

overheads decrease to 11% and 16% for /wp-login.php and

/wp-admin/, respectively.

Experiment A.3 (Browsing malicious webpages). We no"\iV

consider the case when we visit malicious webpages that trigger

request forgery attacks to sensitive webpages. Here, we consider

the CSRF and login CSRF attacks, in which forged requests are

sent from our malicious website that we set up to the URLs

/wp-admin/ and /wp-login. php, respectively. Note that in

both cases , the initiating URLs are not configured in I-ACL, so

CI-IAPTER 5. EVALUATION 49

DeRef only performs two-phase checking to confirm that the tar­

get URLs are configured in T-ACL. Thus, the number of URLs

to be signed in blind checking is less than Experiment A.2. Over­

all, the additional overheads are 66% and 125% for CSRF and

Login CSRF, respectively, when caching is disabled, and they

reduce to 18% and 20%, respectively, when caching is used.

Compatibility study. Note that DeRef is backward compat­

ible with existing websites that do not deploy DeRef (i.e., no

server-side deployment of DeRef). To justify this, we enable the

DeRef browser plugin and have it visit the top 50 websites as

listed on Alexa [2]. We observe that the DeRef browser plugin

does not have any incorrect behavior in those visits.

CHAPTER 5. EVALUATION 50

5.2 Performance Overhead of DeRef with Var-

ious Configurations

'Ve now study how various configurations affect the performance

of DeRef. In particular, we aim to show that DeRef can maintain

acceptable performance even under complicated settings.

Experiment B.l (Scalability study of two-phase check­

ing). We evaluate the scalability of DeRef in performing a large

number of checking steps during two-phase checking (see Chap­

ter 3.2). We note that there are two potential performance

bottlenecks in two-phase checking. First, we apply incremen­

tal checking for all possible scopes derived from a URL, and its

performance depends on the number of checked scopes. Second,

we conduct blind checking for all matched scopes found in hash

checking, and its performance depends on the number of the

matched scopes.

We modify our DeRef browser plugin to generate a randon1

CHAPTER 5. EVALUATION 51

nun1ber of scopes and measure the processing times of the two

potential bottlenecks. Figure 5.1(a) shows the processing time

of increlnental checking versus the number of checked scopes.

We observe that the processing time increases with the nu~­

ber of checked scopes, and it is within 35ms when the number

reaches 100. We expect that this processing time has limited

ilnpact when compared to the overall performance in DeRef in

real deployment (see Chapter 5.1), where the response time is

on the order of lOOms. Figure 5.1(b) shows the processing time

of blind checking .(i.e., the time from the browser sending the

blinded hashes for all matched scopes until the website return­

ing the signed hashes) versus the number of matched scopes.

We observe that the processing time increases linearly with the

number of matched scopes, and it reaches 3.6 seconds when the

number of matched scopes is 100. As shown in Chapter 5.1, the

performance overhead can be significantly reduced by caching

the already checked URLs.

CHAPTER 5. EVALUATION

0.03
Ci)

';0.025
E
i= 0.02
Cl
c

.~ 0.015
Cl)

g 0.01
et

0.005

O~~~~~~~~

Number of checked scopes

(a) Nlunber of checked scopes in

incremental checking

4 ,----.,--~-,--,....----,--,---,--,....----,-----,

3.5

:§: 3
Cl)

.S 2.5
t-
g' 2

'(jj

~ 1.5
u

£ 1

0.5

00
Number of matched scopes

(b) Number of matched scopes

in blind checking

Figure 5.1: Experilnent B.1: Scalability study of two-phase checking.

52

Experiment B.2 (Trade-off between performance and

privacy). R,ecall that the perforlnance-privacy trade-off of two-

phase checking is determined by the value of k (see Chapter 3.3),

which decides how much information is revealed in hash check-

ing. In this experiment, we evaluate the impact of k. We first

collect the top 500 \vebsite URLs on Alexa [2]. We then config-

ure .the first l of the 500 URLs in I-ACL, where l == 1, 10, 50,

100, or 200. The configuration of T-ACL ren1ains the same as in

Chapter 4.1. We generate 500 requests from our DeRef browser

plugin to the WordPress website that we set up, such that each

request has its initiating URL hardcoded to each of the 500 col-

CHAPTER 5. EVA.LUATION

4.5,-----.---.--.---.--,.--,...---.--,

4 •••••••••••••••

co 3.5 ~~ la =
~ ., 1= 50'
-; 3 1= 100 "
.~ 2.5 1= 200 : . "

~ 2 0 000 ••• 0 •• 00000000 0 00 " 0000000 0 0

>.. ('Ill (1 ,., (1 f1 00

.~ 1.5
~ 1

00- 5 10 15 ~20 25 ' 3C; 35 40
k (bits)

(a) Size of policy file

45,----~~~--,----~~/-1~ __ ~

40:! w'
:[35 • :"~ ' ", .

Q) 30

~ 25

.~20
I/)

~ 15
u
et 10

5

1 10
1 50 .
1 100 0

1 200 - . -

53

°0~~~~~~~~~~40 '

(b) Processing time

Figure 5.2: Experilnent B.2: Performance versus k for different numbers of

URLs configured in I-ACL.

lected URLs. For different values of k, we measure the process-

ing time for performing two-phase checking (i.e., hash checking,

followed by blind checking if needed) on each initiating URL

between the browser plugin and the WordPress website. We do

not include the time of returning the response from WordPress,

so the processing time of two-phase checking is less than the

total response time that we measure in Chapter 5.1. Note that

when k == 0, we assume that the browser directly conducts blind

checking.

Figure 5.2 (a) shows the SIze of the policy file versus k for

CHAPTER 5. EVALUATION 54

different numbers of URLs configured in I-ACL. The size of the

policy file increases with k and the number of URLs being con­

figured in I-ACL, but the size is within 4.5 KB in all cases. Note

that the policy file is downloaded once at the start-up phase and

is cached until it expires (see Chapter 3.4). Thus, we expect that

the policy file itself introduces n1inimal overhead.

Figure 5.2(b) shows the processing time of two-phase check­

ing. We observe that when k increases, the time used in two

phase checking decreases, mainly because hash checking discov­

ers rnost non-configured URLs and skips the second-phase blind

checking. For example, if I-ACL contains only 10 URLs, then

the processing time is reduced by 40% from k == 0 to k == 4.

The trade-off is that more information of the configured scopes

is revealed with a larger value of k. Another observation is that

when the nun1ber of configured URLs '(i.e., l) increases, the pro­

cessing time is higher. The reason is that hash checking can only

fil tcr non-configurcd scopes. If more scopes are configured in an

CHAPTER 5. EVALUATION 55

ACL, then 1110re scopes need to be verified by blind checking as

"vell.

o End of chapter.

Chapter 6

Conclusions

We present DeRef, a practical privacy-preserving approach to

defending against cross-site and same-site request forgery at­

tacks. DeRef uses fine-grained access control to allow a web­

site owner to decide how requests should be sent and received

within protection scopes, so as to prevent forged requests from

being initiated outside the scopes. We use two-phase check­

ing as a building block that allows the browser and the website

to exchange configuration inforn1ation in a privacy-preserving

manner. We implement a proof-of-concept prototype of DeRef,

56

CHAPTER 6. CONCLUSIONS 57

and delTIonstrate that it can successfully defend against request

forgery attacks in ' real-life applications , while incurring justifi­

able performance overhead. We plan to publicize the source

code of DeR.ef in the final version of this thesis.

o End of chapter.

Bibliography

[1] R. Agrawal and R. Srikant. Privacy-preserving data mining.

In Proc. of AGM SIGMOD, 2000.

[2] Alexa the Web Information Company. http://www . alexa.

corn.

[3] A. Barth, C. Jackson, and J. C. Mitchell. 'Robust Defenses

for Cross-Site Request Forgery. In Proc. of AGM GGS,

2008.

[4] S. M. Bellovin and W. R. Cheswick. Privacy-enhanced

searches using encrypted bloo111 filters. Technical Report

CUCS-034-07, Columbia University, 2007.

58

BIBLIOGRftPHY 59

[5] D. ChaU111. Blind Signature for Untraceable Payments. In

Advances inCrypto.: Proc. of Grypto, 1983.

[6] S. Crites, F. Hsu, and H. Chen. Omash: enabling secure

web mashups via object abstractions. In Proc. of AGM

GGS, 2008.

[7] P. De Ryck, L. Desmet, T. Heyman, F. Piessens, and

VV. Joosen. Csfire: Transparent client-side mitigation of

n1alicious cross-domain requests. In Int. Symp. on Engi-

neering Secure Software and Systems (ESSOS) , 2010.

[8] Drupal. http://drupal.org.

[9] R. Hansen and J. Grossman. Clickjacking. http://www .

sectheory.com/clickjacking.htm, 2008.

[10] J. Howell, C. Jackson, H. J. Wang, and X. Fan. MashupOS:

operating system abstractions for client mashups. In Proc.

of USENIX HOTOS, 2007.

BIBLIOGRAPHY 60

[11] C. Jackson and H. J. Wang. "~ubspace: Secure CrossDomain

COlTIlTIUnication for Web Mashups. In Proc. of WWW, 2007.

[12] M. Johns. Outdated advisory: Code injection via CSRF

in Wordpress < 2.03. http://shampoo . antville. org/

stories/1540873, 2007.

[13] 1V1. Johns and J. Winter. RequestRodeo: Client Side Pro­

tection against Session Riding. In Proc. of the OWASP

Europe 2006, 2006.

[14] Jommla! http://www . j oomla. ~rg.

[15] N. Jovanovic, E. Kirda, and C. Kruegel. Preventing cross

site request forgery attacks. In SecureComm, 2006.

[16] "D. Kristol and L. Montulli. HTTP State 1VlanagelTIent

Mechanism, Oct 2000. RFC 2965.

[17] Z. Mao, N. Li, and 1. Molloy. Defeating Cross-Site Re­

quest Forgery Attacks withBrowser-Enforced Authenticity

BIBLIOGRAPHY 61

Protection. In Financial Cryptography and Data Security,

2009.

[18] IVlozilla. About mozilla add-ons.

https:/ / addons.mozilla.org/ en-US /firefox/ about.

[19] R. Nojilna and Y. Kadobayashi. Cryptographically Secure

Bloom-Filters. Transactions on Data Privacy, 2: 131-139,

2009.

[20] Nytro. Using XSS to bypass CSRF Protection.

http://packetstormsecurity.org/files/view/82676/

Using_XSS_ to_bypass_CSRF _protection. pdf, Nov 2009.

[21] T. Oda, G. Wurster, P. van Oorschot, and A. Somayaji.

SOMA: Mutual approval for included content in web pages.

In Proc. of ACM CCS, 2008.

[22] OWASP. Owasp top 10 for 2010. http://www . owasp. org/

index.php/Category:OWASP_Top_Ten_Project.

BIBLIOGRAPHY 62

[23] J. Ruderman. Same orIgIn policy for JavaScript.

https://developer.rnozilla.org/En/Same_origin_

policy_for_JavaScript, 2010.

[24] E. Sheridan. OWASP CSRFGuard Project. http://www .

owasp.org/index.php/CSRF_Guard, 2010.

[25] The Open Group. Introduction to Single Sign-On. http:

//www.opengroup.org/security/sso/sso_intro.htrn.

[26] W3C. Cross-origin resource sharing. http://www . w3. org/

TR/cors/, Jul 2010.

[27] Water&Stone. 2010 open source CITIS market share re­

port. http://www.waterandstone.com/si tes/defaul t/

files/2010%200SCMS%20Report.pdf, 2010.

[28] C. Wille. Storing Passwords - done right! http://www .

aspheute.com/english/20040105.asp, Jah 2004.

[29] WordPress. http://en.wordpress.com/ about/.

BIBLIOGRAPI-IY

[30] WorldWide WebSize.com.

worldwidewebsize.com/.

63

http://www.

[31] M. Zalewski. Browser security handbook, part 2. http:

//code.google.com/p/browsersec/wiki/Part2, 2010, "

CUHK Libraries

004806819

