
Quantified Weighted Constraint Satisfaction
Problems

M A K , Wai Keung Terrence

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Philosophy

in

Computer Science and Engineering

The Chinese University of Hong Kong

September 201 1

[n 2 3 JAH 2013 j i i . 卜 ，

一 ~ - 々 , ,

Thesis/Assessment Committee

Professor Ho Fung Leung (Chair)

Professor Jimmy Ho Man Lee (Thesis Supervisor)

Professor Lap Chi Lau (Committee Member)

Professor Arnaud Lallouet (External Examiner)

Abstract

Soft constraints are functions returning costs, and are essential in modeling over-

constrained and optimization problems. Weighted constraint satisfaction is a soft

constraint framework, aiming to find a complete assignment wi th min imum costs.

Recently, we are interested in exploring constraint frameworks wi th adversaries.

Quantified constraint satisfaction, which associates 3 and V quantifiers wi th vari-

ables, is one o f these frameworks.

We are interested in tackl ing soft constrained problems wi th adversarial con-

ditions. A im ing at generalizing the weighted and quantified constraint satisfaction

f rameworks, a Quantified Weighted Constraint Satisfaction Problem (QWCSP) con-

sists o f a set o f finite domain variables, a set o f soft constraints, and a m in or max

quantifier associated wi th each o f these variables. We formally define QWCSP, and

give examples to show how we compute the costs we desire.

We give a complete solver based on alpha-beta pruning, fol lowed by discus-

sions on the general pruning conditions al lowing us to further prune the search

space. Node and arc consistency notions satisfying these conditions are introduced.

Furthermore, we suggest two value ordering heuristics to increase efficiency. These

notions and heuristics exploit the semantics o f the quantifiers.

QWCSPs are useful special cases o f QCOP/QCOP+, and can be solved as a

QCOP/QCOP+. Restricting our attention to only QWCSPs, we show empirically

that our proposed solving techniques can better exploit problem characteristics than

those developed for QCOP/QCOP+. Experimental results confirm the feasibility

and efficiency o f our proposals.

viii

摘要

軟約束是一種輸出費用的函數，是用來模擬過約束問題以及約束優化問題必

不可少的工具。加權約束滿足是軟約束框架下的問題。它的g標是找到一個

最小費用的完整解。

最近，我們有興趣探討可以模擬有對抗條件的約束框架問題。而量化約

束問題，就是其中一種問題。它用存在量化 (3)以及全稱量化 (V)來量化變

數。

我們有興趣解決有對抗條件的軟約束問題。歸納了加權約束滿足問題以

及量化約束滿足問題，我們提出量化加權約束滿足問題（QWCSP)。它是由

一組有限的變數，一組軟約束，以及用最少量化(mm)或最大量化(max)來

量化變數的問題。我們給了QWCSP的正式定義，並給予例子來説明如何計

算最終的費用。

我們給一個以》-/5剪枝（0^-/^^ pruning)為基礎的完整解算器，接著

討論了一般用來減少搜索空間的條件。我們也介紹了滿足這些條件的節點相

容（Node Consistency)和弧相容（Arc Consistency)。此外，我們還

提出了兩種提高效率的變數數值排序策略法。這些相容概念和排序策略法是

利用量化的語義來制定。

量化加權約束滿足問題是有用的特殊QCOP / QCOP+，並可以以QCOP

/ QCOP +來解決。把注意力集中在量化加權約束滿足問題，我們證叨丨:t:j我

們提出的解決技術比QCOP / QCOP+的解決方法可以更好地利用問題的特

徵。實驗結果證實了建議的可行性以及解決技術的效率。

viii

Acknowledgments

I sincerely thank my supervisor Professor Jimmy Lee for bringing me into the area

o f research, and from there, I started my research journey in constraint satisfaction

at 2009. Jimmy is always enthusiastic about his leaching and research, and I enjoy

his lessons very much. Throughout his teaching and guidance, I gain knowledge

not only in doing research, but also in many other areas/aspects, and 1 enjoy having

discussions wi th him.

I would like to thank Professor Arnaud Lallouel. Professor Ho Fung Leung, and

Professor Lap Chi Lau to be my examiners. They provide valuable comments and

constructive suggestions to improve my thesis. Future research directions are also

suggested and discussed.

I would like to thank May Woo and Charles Siu for their guidance wi th in these

years. They patiently listen to my questions. I also thank Wu Yi , Shum Yu Wai,

and L i Jing Ying for our daily discussions in our office. ‘‘Extreme proof-reading"

methods w i l l not be established without them.

Lastly, 1 would like to give my best wishes to my family for their endless sup-

ports throughout my studies.

viii

Contents

1 In t roduc t ion j

1.1 Constraint Satisfaction Problems 1

11 Weighted Constraint Satisfaction Problems 2

1.3 Quantified Constraint Satisfaction Problems 3

1.4 Motivat ion and Goal 4

1.5 Outline o f the Thesis 6

2 Background y

2.1 Constraint Satisfaction Problems 7

2.1.1 Backtracking Tree Search 9

2.1.2 Local Consistencies for solving CSPs 11

Node Consistency (NC) 13

Arc Consistency (AC) . 14

Searching by Maintaining Arc Consistency 16

2.1.3 Constraint Optimization Problems 1 7

2.2 Weighted Constraint Satisfaction Problems 19

2.2.1 Branch and Bound Search (B & B) 23

2.2.2 Local Consistencies for WCSPs 25

Node Consistency 26

Arc Consistency 28

2.3 Quantified Constraint Satisfaction Problems 32

viii

2.3.1 Backtracking Î rce scarch 37

2.3.2 Consistencies for QCSPs 38

2.3.3 Look Ahead for QCSPs 45

3 Quanti f ied Weighted CSPs 48

4 Branch & Bound w i th Consistency Techniques 54

4.1 Alpha-Beta Pruning 54

4.2 Consistency Techniques 57

4.2.1 Node Consistency 62

Overview 62

Lower Bound of A-Cosl 62

Upper Bound of A-Cost 66

Projecting Unary Costs lo C0 67

4.2.2 Enforcing Algori thm for NC 68

Projection Phase 69

Pruning Phase 69

Time Complexity 71

4.2.3 Arc Consistency 73

Overview 73

Lower Bound of A-Cosl 73

Upper Bound of A-Cosl 75

Projecting Binary Costs to Unary Constraint 75

4.2.4 Enforcing Algori thm for AC 76

Projection Phase 77

Pruning Phase 77

Time complexity 79

5 Performance Evaluat ion 83

5.1 Definitions of QCOP/QCOP+ 83

V

5.2 Transforming QWCSPs into QCOPs 90

5.3 Empirical Evaluation . 91

5.3.1 Random Generated Problems 92

5.3.2 Graph Coloring Game 92

5.3.3 Min-Max Resource Allocation Problem 93

5.3.4 Value Ordering Heuristics 94

6 Conc lud ing Remarks 96

6.1 Contributions 96

6.2 Limitations and Related Works 97

6.3 Future Works 99

Bib l iography 議

viii

List of Figures

2.1 Solutions for the 4-queens problem 9

2.2 Backtracking Tree Search for CSPs 10

2.3 Backtracking Tree Search for 4-qLieens problem 12

2.4 Node Consistency Enforcing Algor i thm 14

2.5 Arc Consistency Enforcing Algor i thm . 15

2.6 Searching By Maintaining Arc Consistency 17

2.7 Searching by Maintaining AC for 4-queens problem 18

2.8 Backtracking Tree Search for COP 19

2.9 Branch and Bound for the modified 4-queens problem 20

2.10 WCSP for Example 5 22

2.11 Branch and Bound for WCSPs 24

2.12 LookAhead for WCSPs wi th only unary and binary constraints . . . 24

2.13 Branch and Bound for Example 5 25

2.14 WCSP for Example 6 27

2.15 Enforcing algorithm for N C * 28

2.16 WCSP for Example 7 29

• 2.17 WCSP after binary projections . 30

2.18 Enforcing algorithm for A C * 31

2.19 And-Or Tree for Example 8 。 . . ， ， . . . 36

2.20 Backtracking Tree Search for QCSP 38

2.21 Search Tree for l^xample 8 39

2.22 Node Consistency Fin forcing Algor i thm for QCSl) 41

viii

2.23 Arc Consistency Enforcing Algor i thm for QCSP 44

2.24 Search Tree for Example 11 。 ‘ . . ‘ ‘ . 。 47

3.1 Constraints for Example I , 50

3.2 Labeling Tree for Example 1 。 - • • • 。 . 。 . • 。 . • • • 。 … … 。 5 0

4.1 Labeling Tree for Example 1 after applying alpha-beta pruning . . . 55

4.2 A QWCSP Solver 56

4.3 Labeling Tree for Example 14 59

4-4 Labeling Tree for Example 15 60

4-5 Labeling Tree for Example 16 65

4.6 Labeling Tree for Example 16 after pruning a of X2 65

4.7 Enforcing algorithm for NC 70

4.8 Enforcing algorithm for AC 80

4。9 AC lower bound approximation 81

4.10 AC upper bound approximation 82

vi i i

List of Tables

4.1 When can we prune/backtrack 57

5.1 Random Generated Problem 95

5.2 Graph Coloring Game 95

5.3 Min-Max Resource Al location 95

viii

Chapter 1

Introduction

This thesis reports a f ramework Quantified Weighted Constraint Satisfaction Prob-

I 嚷 (Q W C S P s) , which aims to tackle constraint optimization problems wi th adver-

saries control l ing part o f the variables. The proposed framework is based on both

Weighted Constraint Satisfaction Problems and Quantified Constraint Satisfaction

Problems. This chapter gives a brief introduction on the classical constraint sat-

isfaction framework, weighted constraint satisfaction framework, and followed by

the quantified constraint satisfaction framework. We w i l l outline our motivations

and goals, and then give an overview of the thesis.

1.1 Constraint Satisfaction Problems

Many combinatorial decision problems and optimization problems can be modeled

as Constraint Satisfaction Problems (CSPs). According to the definitions by Mack-

worth [26], we can define CSPs as follows:

‘‘购眺 given a set of variables, a domain of possible values for

euch variable, and a conjunction of comlrainls. Each constraint is a

relation defined over a subset of ihe variables, limiting the comhiim-

"(川 of values that I he variables in (his subset can take. The goal is to

a consistem assi^nmen! of values to the variables so lhal all the

constraints are salisficd simiiliancouslv.“

viii

(Ihipfcr I hUrociuction 2

The basic solving algorithm lor CSPs is backtracking tree scarch 111, which tra-

verses I he solution spacc ofCSPs by assigning a value lo a variable cach time. The

goal of the scarch is lo find a set of̂ assignments which assigns values to all variables

in the CSP. such thai all the constraints are satisfied. If、the current set ofassignincnts

does not satisfy a constraint, the algorithm assigns another value to the last assigned

variable (backtracks), otherwise, il extends Ihc current set of assignments by assign-

ing a value lo an unassigned variable. The scarch is complete and sound, however,

the execution time of the algorithm can be large. To improve efficiency, Mackworth

introduces consistency notions [26]. These notions extract values which must not

participate in any solutions, and hence, we can remove (prune) these values before

extending the current set of assignments. I f the domain of a variable is empty after

prunings, this implies the current set of assignments must violate at least one con-

straint. The searching algorithm wi l l perform backtracks. Node consistency [26

and arc consistency [26] are common consistency notions.

CSPs, in general, have many solutions. To find the best solution of a CSP, one

way is to construct a Constraint Optimization Problem (COP) by adding an objec-

tive function to the CSP. The objective function maps each complete assignment to

a real number. The goal of a COP is lo find a complete assignment which satisfies

all the constraints, and maximizes (,or minimizes) the objective function. To solve

a COP, we augment the backtracking tree search for CSPs by using the objective

function to guide search. After finding a solution, we add a constraint to remaining

unexplored problems. The constraint restricts all solutions must be better, according

to the objective function, than the current solution.

1.2 Weighted Constraint Satisfaction Problems

We often encounter preferences in industrial optimization problems. The goal for

these problems is to find solutions minimizing the degree of violation for these pref-

erences. Suppose we directly translate these preferences into constraints, restricting

Chapter I Introduction 3

ail solutions must satisfy all preferences。The resulting CSP is usually unsatisfi-

able, as conflicts usually exist among preferences and no solutions satisfy all the

preferences。

Soft constraint frameworks (soft CSPs) extend classical CSPs by allowing soft

constraints to return costs for each combination of values. Weighted constraint

frameworks (Weighted CSPs/ WCSPs) are soft constraint frameworks which further

require costs must be positive bounded integers, and the goal is to find a complete

assignment minimizing the summation of costs given by soft constraints. Using

Weighted CSPs, we can model preferences by soft constraints. We give higher

costs for combinations of values violating higher the degree of violation for the

preference.

To solve a weighted CSPs, we apply the Branch and Bound algorithm simi-

lar to COPs. To further increase efficiency, we define consistency notions which

extract costs information and pruning opportunities for soft constraints. Example

consistency notions include NC* [23], AC* [23], FDAC* [22], ED AC* [18], and

OSAC [16]。To extract costs from soft constraints, two important notions: projec-

dons and extensions for enforcing consistency algorithms are used. Projection is an

operation which extract costs from higher arity constraints to lower arity constraints,

and extension is an operation which extract costs from lower arity constraints to

higher arity constraints. Both operations preserve problem equivalence, and allow

us to redistribute costs among constraints.

1.3 Quantified Constraint Satisfaction Problems

In planning problems, we may not be able to control all decisions. Environmental

changes and unexpected behaviours from adversaries may arise in planning prob-

lems and affecting decisions. We classify decisions which are not control led by us

as uncontrollable decisions. For planning problems, we sometimes aim to find a

feasible plan for the worst ease scenarios, or to find a plan for all scenarios. To

(lidpfcr 1 Inlroc/iicfioH 4

lack I c this class of problems, wc formulate QLiantificcl Constraint Salislaclion Prob-

lems (QCSPs) by associating 3 quantifiers and V quantifiers to variables in classical

CSPs, To model planning problems, we use an existential variable to represent

controllable decisions, and a universal variable (V;/;,) to represent uncontrollable de-

cisions. The semantic of a QCSP is to find assignments for an existential variable,

where each assignment corresponds to a combination of values for the universal

variables preceding the existential variable, such that all the constraints are salis-

fieci. In general, different ordering of variables results in different QCSPs, and the

time complexity of QCSPs raises lo PSPACH-complele 115].

To solve a QCSP, one way is lo modify the backtracking tree search for solving

CSPs. In this way, we are tackling QCSPs in a top-down approach, by branching

values of preceding variables first. QCSP-Solvc |211 is a solver using backtracking

tree search. Arc consistencies notions [27] and forward checking algorithms f21]

for quantified constraints are used in the solver. In addition, several techniques are

also developed for solving QCSPs. These include conflict based-backjumping [2 1 ,

solution-directed backjumping [3J, pure literal rule [21], and symmetry breaking

techniques [21 J. There is also a solver called BlockSolve [44], which uses a bottom

up approach tackling QCSPs.

1.4 Motivation and Goal

The task at hand is thai of an optimization problem with adversarial conditions. As

an example, we begin with a generalized graph coloring problem in which numbers

are used instead of colors. In addition, the graph is numbered by two players. The

nodes arc partitioned into two sets, A and 13. Player 1 wi l l number set」 f i rs t ,

followed by player 2 numbering set B. The goal of player 1 is to maximize the total

difference between numbers of adjacent nodes, while player 2 wishes to minimize

the total difference. The aim is to help player 1 devising the best strategy.

The example is optimization in nature, and the adversaries originate from the

Chapter I Introduction 5

numbers being placed on nodes by player 2. The question can be translated lo

maximizing total difference for all possible combinations of numbers player 2 can

write. One way to solve this problem is by tackling many Constraint Optimization

Problems [1] or Weighted CSPs [23], where each of them maximizes the total dif-

ference conditioned on a specific combination of numbers given by player 2. Solv-

ing these sub-problems independently, however, defies opportunities for exploiting

global problem structure and characteristics, and reuse of computation. Another

way is to model the problem as a QCSP [12] by finding whether there exists combi-

nations of numbers for player 1 for all number placements by player 2 such that the

total difference is less than a cost k. Trying different values of/c progressively in

separate QCSPs falls short in utilizing the objective function to guide search glob-

ally. We propose to coinbinc the best of both worlds.

Weighted CSPs are minimization in nature. We introduce the max quantifier to

further allow inin-max operations on constraint costs in Weighted CSPs. A Qiicm-

Ufied Weighted Constraint Satisfaclion Problem (Q W C S P) consists o f an ordered

sequence of finite domain variables, a set of soft constraints, and a niin or max

quantifier associated with each variable. Note that the existential (3) and universal

(V) quantifiers in QCSPs can be expressed using mm and max respectively. WC-

SPs and QCSPs are thus also special cases of QWCSPs. We define solutions of

a QWCSP, and show how branch-and-bound search with alpha-beta pruning can

be applied to solve a QWCSP. We introduce node and arc consistency notions and

two value ordering heuristics. In addition, general pruning conditions of alpha-beta

search are defined and discussed. The new framework aims to answer such inter-

esting questions as "What is the best plan I can choose to minimize all the possible

penalties for the worst case scenario?” QWCSPs can be modeled as QCOPs [5]’

which are a more general framework. Wc give a construction method followed by

an example. We perform experimental evaluations, comparing our proposed solv-

ing techniques and those for QCOPs, on three benchmarks to show the cmcicncy

and feasibility of our framework.

C liaplcr I Inlrodiic/ion 6

1.5 Outline of the Thesis

Wc now outline of the remaining parts of Ihc thesis.

Chapter 2 provides basic background information lor the thesis. Definitions and

semantics for CSPs. WCSPs, and QCSI\s wi l l be given. Wc wi l l explain solving

algorithms together with consistency notions for these frameworks, [examples wi l l

be provided throughout the chapter.

Chapter 3 gives formal definitions for our framework. We wi l l explain the se-

mantics, following by an example. Relationships with QCSPs and WCSPs wi l l be

highlighted.

Chapter 4 describes the complete solver for our framework, starting by dis-

cussing the basic alpha-beta primings. Sufficient conditions allowing consistency

algorithms to utilize alpha-beta prunings wi l l be discussed. We wi l l then show our

node consistency and arc consistency notions, followed by their respective enforc-

ing algorithms. Theorems for the correctness of these notions wi l l be provided, and

time complexity for enforcing algorithms wi l l be given.

Chapter 5 discusses performance evaluations on our frameworks and solving

techniques. To show the effectiveness of our approach, wc compare our work with

one of our related frameworks, QCOPs | 5 |. We wi l l show how to construct QCOPs

from QWCSPs, and conjecture that our framework can achieve more primings by

an example. We also give einperical results on three benchmarks, and compare

our solver against the solver for solving QCOPs. Results for using different value

ordering heuristics are hightlighted.

We conclude our thesis in Chapter 6. We summarize our contributions, and

highlight related frameworks aiming to tackle optimization problems with adver-

saries. Comparisons between our framework and these frameworks wi l l be drawn.

Future works, limitations, and potential enhancements for our framework wi l l also

be discussed.

Chapter 2

Background

This chapter provides background information for the rest o f the thesis. The frame-

work we proposed, Quantified Weighted Constraint Satisfaction Problems (QWC-

SPs), combines Quantified Constraint Satisfaction Problems (QCSPs) and Weighted

Constraint Satisfaction Problems (WCSPs). Both frameworks extend the classi-

cal Constraint Satisfaction Problems (CSPs). CSP is a general framework used to

model and solve combinatorial problems. WCSP extends CSP by al lowing soft

constraints, whi le QCSP extends CSP by al lowing quantifiers associated wi th each

variables. We w i l l introduce each o f these frameworks, starting from classical CSPs.

Definitions, semantics, and examples wi l l be given for each framework. Algor i thms

and solving techniques wi l l be presented afterwards.

2.1 Constraint Satisfaction Problems

A comtrainl satisfaction problem [I | is a tr iple V = (X ^ V X) . where =

{.x.i,:l.2’ . . . , Xr,} is a finite set o f variables, V = {Z)i,i>2，. . . , } is a set o f finite

domains o f possible values for each variable, and C is a set o f constraints. Each

constraint C[S] G C act on a subset o f variables S C X, restricting the allowed

combinations o f values the subset o f variables S can take. We name S as the scope

of constraint C[S\. The arily o f the constraint C[S] is defined as the number o「

variables in S\ i.e. 八 constraint is imary i f its arity is 1, is hi miry i f its arily

viii

('Ihiplcr J iHick^roiDui 8

is 2. and is n-ary i f its arily is n, To simplify notations, wc denote a unary con-

straint 「!{./、}| by G , and a binary constraint ’.。}| by 丨.Wc write ./., /',

as an assignment assigning value r.丨 G I), lo variable ./�,, i.e. variable .r:丨 taking

value Lei I : {,/•,, = u….i•” 二 t),” ...，.t:丨…丨 二 /’,,"} be a set o f assignments.

We abuse terminology by saying the scope of / {sc(ype[l)) to be the set o f variables

involved in /’ i.e. scope (I) = {‘t;?]，：？:…...，工,:"丨}. We sometimes denote I by a

tuple . ..，u, J i f the associated variable for each coordinate in the tuple

is clear. A complete assignment is an I where scope{[) = A partial assign-

ment / 问 = { . ? . , = v,]'x, = V, G I A .T；, S } is a projection of / onto a subset

o f variables where S' C A set of assignment / satisfy a constraint C[<S],

where S C sco])e(l\ i f 1\S] specifies an allowed combination of values the subset

of variables S can take. A solution o f V is a complete assignment such that all

constraints are satisfied. Example 1 shows a CSP instance. Solutions of a CSP are

not necessarily unique.

E x a m p l e 1. Given a CSP V with the set of varicih/es ,Y 二 { . r j . .vo. .r.J, domains

Oi ：二 [()..4|, Do 二 [2.. 10], ami D、= [13..20], and the set of constraints C = {.r、

20, .7:1 +.7.2 > 4, j ' l +工.‘2 = X's}. The CSP V has 3 variables: x'l, xo, cwdx3, and each

variable associate with the domain D,. There are three constraints: one unary,

one binary, and one 3-ary constraint, for the CSP V. The unary constraint x^ • 20

restricts values of x^ must not equal to 20. The binary constraint Xi + xo > 4

restricts values of X\ adding to values of X2 larger than 4. The 3-ary constraint

iT! + x'2 =工3 restricts values of 'i、adding to values of xo equal to values ofxs. The

set of assignments { j : 】 = = 10, .1:：^ = 13} and { . r j = 4, Xo = 10，.r] = 14}

are two of the feasible solutions for the above CSP.

In general, solving CSPs on finite domain is NP-complele, while solving some

specific instances are proven lo be tractablc |331. We use the famous 4-queens

problem (an instance of 7卜queens problem) lo show how we use CSPs to model and

solve combinatorial problems.

(l u ip t e r 2 Background \ 3

广广 ryt /-VTi ryi ry^ ry^ ry*
山1 山2 山3 4 山1 山2 3 4

1 r I Q I j 11—: Jq — j — :] : —

2 [q 2 Q

3 〔 — — —J Q 3 j Q r — = :

4 t Z t o ^ l l — — 二 4 广 - 树 一

Figure 2.丨：Solutions for the 4-queens problem

E x a m p l e 2. The n-queens problem is to place n queens on an n x n chess board

//7 a way such that no two queens can be placed on the same row’ same column,

or same diagonal. For a 4-queens problem, we will use a CSP V =

w///? 4 variables X = ./;2,丄.:；，.7:4}’ each associates with an integer domain

IL4]. A variable x, represents the row position of the queen in the i/^ column. The

model implicitly enforces no two queens on the same column. We are left to give

constraints in C to enforce no two queens in the same row/diagonal. Constraints

工t •工、,VI < z < J < 4 are used to enforce no two queens in the same row, and

constraints \x, - Xj \ + j — /:, V I < / < ,y < 4 are used lo enforce no two queens in

the same diagonal. There are two solutions, {xi = 2,1.2 = 4,:乙'3 = 1.^4 二 3} and

{^'1 = 3, 0：2 = 1,工3 二 4’ 丄.4 = 2}, for the 4-queens problems. Figure 2.1 shows the

graphical representation for these two solutions.

2.1.1 Backtracking Tree Search

A common technique tackl ing CSPs is to apply the Backtracking Tree Search [1 ,

which traverses the solut ion space o f a CSP in a depth-first lef t - to-r ight mannar.

The search guarantees to find all solutions o f a CSP, and able to prove no solutions

exist. Figure 2.2 shows the Backtracking Tree Search.

Wc use the notation P in the funcl ion b a c k t r a c k i n g S e a r c h (P) to denote

the input CSP V. The funct ion g e t U n a s s i g n e d V a r (P) is used to return an

Linassigncd variable o f'P (symbol b o t i f not exists), and the funcl ion c o n s (P) is

(Inipicr 2 Inick^roiifKi \ ()

I f u n c t i o n backtrackingSearch(P)：

i f getUriassignedVar (P) 二 = bot ： r e t u r n (cons (P)) ? true： f a l s e
3 else：

•1 x i = getUnassignedVar (P)
、 f o r V i n Di：

(’ Ps … P [x i = v]
7 i f cons(Ps)：

s i f backtrackingSearch(Ps)： r e t u r n t rue
、丨 r e t u r n f a l se

Figure 2.2: Backtracking Tree Search for CSPs

used to check whether the current set o f assignments I satisfy all constraints C G C.

where scope(C) C scope{l). We use P [x i = v] lo denote a function returning

the sub problem obtained from V by assigning value r G D, lo variable ./;,. The main

goal o f the search is to assign values lo unassigncd variables incrementally (line 6),

and checks whether the current set of assignments leads to solutions (line 7).

The search starts by checking whether all variables are assigned (line 2). I f

the current complete assignment satisfies all constraints, the search returns true. I f

there are variables not assigned, the search assigns (line 6) a value o f an unassigned

variable. After an assignment, i f the current set o f assignments (current partial

assignment) cannot satisfy all constraints, the search wi l l not extends the current

partial assignment. Instead, i l chooses other unassigned values (the loop in line 5

to 8). The aim o f the search is to extend the currcnl set o f assignments, by recur-
c J

sively call ing itself, until a solution is found. The whole searching process requires

exponential time as it may eventually checks all combinations of possible values.

Figure 2.3 shows the Backtracking Tree Search for the 4-queens problem. The

algorithm uses lexicographic ordering to choose values and variables for assign-

ment. Variable Xi is chosen before X4, and value 1 is chosen before value 4. We

only show the nodes being visited by the tree search t i l l the first solution { x i =

2，X2 = 4, xa = 1, 2:4 = 3} is found. When a variable o f the 4-queens problem

are assigned, we can view the position o f the respective queen is fixed. We can,

therefore, represent tree nodes in the search tree as a combination o f queens' fixed

(luipter 2 Background \ 3

positions on the board. Nodes at the level represent sub-problems, where vari-

ables XuX2,. . . , are assigned, and nodes being marked by 'Failed' mean the

corresponding sets of assignments must violate at least one constraint.

There is another type of searching algorithms called local search [1]. Algorithms

in this thesis are based on Backtracking Tree Search, therefore, we only outline the

basic idea of local search. Local scarch algorithms, in general, generate complete

assignments, and check whether solutions are found. I f a generated complete as-

signment is not a solution, the search alter it until a solution is found. Algorithms

generating complete assignments and altering them may be done detenninistically

depending on problem structure, i.e. not purely in a random way. Two well known

methods, repair method and hill climbing method, are commonly used to alter com-

plete assignments which are not solutions. For local searching methods, there are

chances for them to trap in local optima. Most methods equip with heuristics or

perform restarts to avoid this situation. Similarly, these heuristics may be designed

based on problem structures. Adaptive search [43] is one of the local search.

2.1.2 Local Consistencies for solving CSPs

In Figure 2.3, the search space is huge. If the search can perform reasonings by

considering properties of CSPs, the search may not need to traverse all of the tree

nodes, and the perfonnancc increases. Local consistencies are notions identifying

properties of CSPs. We then further devise enforcing/filtering algorithms to main-

tain these properties. By maintaining these properties, the enforcing algorithms wi l l

prune values of variables which cannot lead to solutions, and as a result, transform

a harder CSP to a easier one and the search space is smaller. Before introducing

consistency notions, we give conditions for these enforcing algorithms. These con-

ditions ensure the correctness of enforcing algorithms.

Def in i t i on 2 丄 Given Iwo CSPs P , (A ' , P , , C,) and V^.C,). The CSP V, is

叫謂 Glem 111 to another CSP V. if they have the same set ofsolulions.

2

l
i
s
 I
I
I
 l
l
v

」
I

 i

 i

匿 I
s

」

 1
5

」

a
,
朽
”

 t
x
H
^

 1
a
,

 t

a
 I
:

 :

 一
c
j

 ̂

 14
—
-
运

 L

 ̂

 :

 :

I
 ̂

 j
 I

哥
 J
I

 I

 1
1

过

 I
「
4

 1
「
b
:
:
?

 m

v
(

。
x
>
.
r
 -^
^
n
-
H
-
H

 -
H
^
n
H
-
H

 ̂y
^
H
-
H

 「H
V
=
H
【
：
C

^

b

 ”

寸

「

l

^

i

 -

 l
b
:

 -

 r
i
b
一

 I
-

 b

 {
.
.

 J
「
1

 -

 I

 i

 i

 t

.

 .

 .

 .

 I

 f

 i

 I

 J

 .
-
f

 j

 I
-

 -
i

 L
—

 I
 .
4

‘

‘

•

 •.

.

 」
,

一

一

-

，

>

•

「

 a

 h
t
l
^
j
c

 一
b
一

 J
s

 ̂

^
！
！

 I

 T
同
 :

 J
-
I

 -
5

 b

 I

b

i

 .

 l
b
一

l

b

!

叶

 M
M
M
n
^
M
M
H
H
^

 V

 .

 6
1

—

 1

 _

 l
u
^
n
n
H
^

一

 n
^

 s

M
M
i
^
 M

M
M
M
M
^
R
n
H
^

 T
H
I
U
^

 H
i

 J
 L
F
^
^
n
M
n
u
^

 n
M
M
n
^

沈

I
_
丨
 a

 ̂

 I
:
:
 i
b
l
g
r
T
T
^
b
g

 n
H
K
^

 I
!
丨
〕

 i
l
L
l
^
n
i
^
n
^

 r
u
^

 ̂

1
 I
 t
:
.
:

一
【
i
r

 一
，
「
一

 I

 .

！
Q
j

 i

 I
 .

 N

 d
 I
 h
y

 “

 ru
y

 ̂
 nu
s

 ̂
 g

s

 .

 i

 I

 M
^

 i
m
m
m
^

 3

1

 f
f
l
-
.
^
^
/
/
/
/
 \
\
\
-
-
-
-
-
-
-
^

.

 ot
o

I
M
^

 ,

 •

 n

/
 ̂

 L
^
^

 -
M
s

 F

2

 」」
」
c

r
 :

 -

1

L

 !

 —
—
J
 1
 !

 r

^
 二
」
二

⑴

^
h
^
H

 n
H

r
h

c

(luipter 2 Background \ 3

D e f i n i t i o n 2.2. Given a local consistency a. An a-enforcing algorithm is to iram-

form a CSP V into V丨 such that V' is a and equivalent to P.

Intuitively, these two definitions prevent enforcing algorithms returning CSPs

with different sets of solutions, and ensuring enforcing algorithms return CSPs with

the required properties.

We now introduce node consistency for unary constraints, followed by arc con-

sistency for binary constraints. A l l consistency notions follow the notations in the

book 'Principles of Constraint Programming' [1].

Node Consistency (NC)

D e f i n i t i o n 2.3. [26, 1] A value v, e D丨 is node consistent iff v, satisfy Q. A

暫 丨 — e .V, is node consistent {(fall values in D, are node consistent. A CSP is node

consistent iff all its variables are node co mi stent

Intuitively, we want to prune values which are not node consistent. These values

must not participate in any solutions, as they must violate a unary constraint.

E x a m p l e 3. Given a CSP V with the set of variables X = {x^.x^.x；}, domains

A = {1,3,4}, D2 = {4 ,5} , and D； = {13,17,18}, and the set of constraints

C = { 0 : 3 〉 1 4 ” t i + 工2 < 6 } . Value 13 of variable .x'3 in V is not node consistent.

The CSP V’ therefore, is not node consistent.

To devise an enforcing/filtering algorithm for node consistency, one way is to

enumerate all unary constraints C, in a CSP V, and then prune all values r丨 G A

which do not satisfy C,. l-1gurc 2.4 |26| shows an enforcing algorithm for NC.

The function c o n s (Ci , v i) chccks i f the value v i satisfy conslrainl Ci, and the

function p r u n e (xi, v i) prune value v i of variable xi. It is easy lo chcck after

a叩lying the algorithm in Figure 2.4’ the resulting CSP is node consistent, and is

equivalent to the original CSP.

('Ihipicr J luick^^roiincl I 4

I function NC(P)：
: for X i in 11 . .n | ：

！ i f C i ex.i sLs ：

•I for v.i in Di :
、 i f cons(Ci ,v i) == false：
(、 prune (x; i ,v i)

Figure 2.4: Node Consistency Enforcing Algorithm

Arc Consistency (AC)

Def in i t i on 2.4. [26’ 1] A binary constraint C 。 i s arc consistent iff: 1) W? G

D,’3r乂 G 1)1 sJ. {.r, = u,’ .rj = r ^ } satisfies C,j, and 2) \/Vj G D”3vi e

D, s.f. {.r, 二-「丨、,1.) = V j } satisfies C)〗.A CSP V is arc consistent iff all its binary

conslraini are arc consislent.

We also give another definition which is also commonly used to define arc con-

sistency.

Def in i t i on 2.5. A value Vj of variable Xj is a support for value v；, of variable x,

[if the set of assignments { x , � v,, Xj = V j } satisfies the constraint Q j . A binary

constraint C.j is arc consistent iff every value v, G D^ has at least one support

Vj e Dj, and every value v] G D] has at least one support u, E D,. A CSP V is arc

consistent iff all its binary constraint are arc consistent.

Intuitively, we want to find values of variables which must violate at least one

binary constraint. I f a value v,, G D, does not have any supports from values Vj G Dj

w.r.t. C”, then we know the assignment x, 二 v, must not be in any solutions. As

seen in Example 3, we have one binary constraint ./.i + .广2 < 6 on variable .n and .r^.

Value 3 and 4 of c! do not have any supports from values in Do, and value 5 of./.—)

does not have any supports from values in /J,. l l icrcforc, the constraint ,r, + ./：) < 6

is not arc consislent.

Figure 2.5 shows the classical AG enforcing algorithm, AC-3 |26]. The algo-

rithin maintains a queue Q storing all pairs of variables (/, y) where variable 丄does

not guarantee to have supports from values or: / :" A l cach iteration (the while loop

(luipter 2 Background \ 3

I func t ion AC-3(P):
: N C (P)
’、Q = { (1, j) , (j , i) |C i j i n C)
•J whi le Q ！ = n u l l ：
^ (k,l) = pop(Q)
0 if Revise(P,k,1)：
7 add(Q,k,1)
s func t ion Revise(P,k,1)：
" delete = false

10 fo r vk i n Dk ：

11 if n o S u p p o r t (vk, Ckl)：

12 prune (xk, vk)
13 delete = t rue
14 r e t u r n d e l e t e

Figure 2.5: Arc Consistency Enforcing Algor i thm

in lines 4 to 7), we retrieve a pair o f variables (k j) by using the p o p (Q) func-

tion on the queue Q, and invoke the function R e v i s e (P, k , 1) to find supports

(lines 10 to 13) for values of variable x^.. The function n o S u p p o r t (v k , C k l)

checks whether value v k of variable 人.has any supports from values in D i w.r.t.

constraint C k l . I f there are no supports, the function returns true. The algorithm

wi l l then prune value tŷ (line 12). I f a value " " o f variable x^ is pruned as there are

no supports from values o(\r丨,values of other variables 丄.…，,n l/\ m 半 k may lose

supports w.r.t. constraint There are chances for values o f i川 using r .̂ as sup-

ports. We need to recheck by finding supports o f .r,," The function a d d (Q, k , 1)

(line 7) wi l l add pairs o f variable (m, k) where m 社 f\ m ^ I A (?…人.g C to the

queue Q to resolve this issue. The time complexity of AC-3 is where e is

the number o f constraints and d is the maximum domain size.

There are various arc consistency algorithms such as: AC-4 [29], AC-5 [34],

AC-6 [6], AC-7 [8]，AC-2001 [7], AC-3.1 [49], and AC-2001\3.1 [9]. Some o f

these algorithms, for example AC-2001, speed up the run-time for the function

R e v i s e (P, k , 1) by util izing data structures (hence memory) to store previously

round supports.

There arc also other types of consistency algorithms (e.g. GAC |30|) I or high

arily constraints, i.e. constraints covering on more than two variables. As this thesis

(liLiptcr 2 Bcick^^roiind I 6

foe uses mainly on unary and binary constraints, we skip detail definitions for these

algorithms.

Searchiiio by Mainta in ing Arc Consistency

When values of a CSP are being pruned, the associated search tree is smaller and

the backtracking tree search can traverse faster. IZnforcing local consistencies arc

useful as it may prune values of variables in a CSP and result in a smaller search

tree.

One way lo combine search and local consistencies is to: 1) apply the NC and

AC enforcing algorithms once to obtain a smaller CSP, and 2) use backtracking

search to traverse the solution space of the smaller CSP. This method falls short in

exploring pruning opportunities during search. When a value of an NC and AC CSP

is assigned (during search), the obtained sub-problem is NC, but are not guaranteed

to be AC. I f we further require enforcing AC in every node of the search tree, we

can achieve a smaller search tree. This leads lo another method 'Maintaining Arc

Consistency (MAC) [39]', aiming to maintain AC during search. We show the

algorithm for MAC in Figure 2.6.

The algorithm maintains AC during search by calling the AC enforcing algo-

rithm in line 6 before assigning values. We assume the NC enforcing algorithm is

called before calling the MAC algorithm. This allows the AC enforcing algorithm

to prune infeasible values for sub-problems obtained during search. I f there exists

a domain which is empty after pruning values, Ihc AC enforcing algorithm wi l l

trigger backtrack (by breaking the for loop). We use the function P [x i ！ = v]

to prune value v of x i in this algorithm. The search aims to maintain AC at each

tree node, and prevents searching unnecessary assignments. When an assignment

X,, = V is explored without finding a solution, the search prunes value 'u of vari-

able X, (line 10) during backtrack. As values of oihc^ variables may use value r of

•x'v； as support, the search re-runs the AC enforcing algorithm before assigning other

values. Figure 2.7 shows the search tree for the 4-qLieens problem by using the algo-

(luipter 2 Background \ 3

I function MAC(P)：

: if getUnassignedVar(P) == bot： return (cons(P))? true： false

3 else：

4 xi = getUnassignedVar(P)

5 for V in Di:

6 AC-3(P)

7 Ps = P[xi = v]

s if cons(Ps)：

Q if MAC(Ps)： return true

10 P [xi ！ = v]

11 return false

Figure 2.6: Searching By Maintaining Arc Consistency

rithin in Figure 2.6. We indicate values removed by the AC enforcing algorithm by

a cross We can see the search tree is smaller by comparing with Figure 2.3. For

example, in order to prove the assignment x i = 1 cannot lead to solutions, the im-

proved algorithm only needs to traverse one nodes. For the backtracking algorithm,

we need to traverse 17 nodes before concluding failure.

2.1.3 Constraint Optimization Problems

A CSP may have more than one solution, and in some cases, we are interested in

finding the best one. Optimization version of CSPs is used to model such scenar-

ios. A constraint optimizcilion problem [37] (C O P) V = (A M) , C . /) is a CSP

V.C), together with an objective fimction f that maps complete assignments lo

real numbers. An opt i met I solution lo a minimization (maximization resp.) COP is

a solution I lo V that minimize (maximizes resp.) the value of ./.(/)• COPs is one of

the well-known frameworks for optimization.

E x a m p l e 4. As an example, we modify Example 2 by adding an objective function

f ^hich returns a product miilliplying the values of all variables. Therefore, ii’c, can

write
11

./({丄.1 : ' " I , ...，:/:,, = V n }) = V：,

7 = 1

Tlie problem now becomes a COP problem. In Example 2, there arc hvo soliiiions

(Inipicr 2 lufckoroiind 1 8

.1.1 , ,/ . r .

1
2

；!
1 !

r I . 1 . 1 . , . , , (• 丨

1 X X I \ I X
2 X X \ 2 (i X X X
..! X X ：! X X
1 XX 1 X

Kiul ,,」=4
(iMiiply I)oniiun)

1 : [X - .] - -X -
2 Q x' X

二 H =
' O r I ^ I Z

•'•a = 1
.7:1 .1：-, .；：,.；： I

1 —X—QX
2 Q X X X

^ X X 一
1 Q xXx_

•r, = 3

1 I X (jl x
2 Q j x X X

1 .Mxiv

Figure 2.7: Searching by Maintaining AC for 4-queens problem

Ui = 2.,/：2 二 4. .r:3 = 1, ；7；.1 = 3 } and (J �二 3.. /2 二 1 ’ .r.、= 4 . , . ! 二 2 } . The

ohjedive function maps the first solution to 27. and the second solution to 24. If

the COP is a minimization (maximization res p.) problem, the second (first resp.)

solution is the optimal solution.

Figure 2.8 shows the branch and bound algorithm [1] for COP (minimization

problem). The search can be seen as a modification of the backtracking tree search

for CSP with MAC, which is also a depth-first left-to-right search. The algorithm

maintains a bound which stores the current best optimal value, and uses a function

a d d C o n s t r a i n t (o b j < b o u n d) to add a constraint restricting the value re-

lumed by the objective function smaller than the bound. Initially, we set the bound

to infinity. I f a solution is found at the leaf node, the search returns its objective

value (line 3). When a solution with belter objective value is found, the search:

1) updates the bound (line 12), and 2) adds a constraint lo restrict fiilure solutions

(luipter 2 Background \ 3

1 function BranchAndBound(P, bound)：

2 if getUnassignedVar(P) == b〇t:
] return (cons(P))？ obj(P)： infinity

.1 else ：

^ xi = getUnassignedVar(P)

0 for V in Di :
7 AC-3(P)

8 Ps = P [xi = V]

9 if cons(Ps)：
10 cost = BranchAndBound (Ps, bound)

11 if cost < bound：

12 bound = cost

13 addConstraint (obj < bound)

丨 4 P[xi ！ = v]

丨“̂ return bound

Figure 2.8: Backtracking Tree Search for COP

must associate with better objective values (line 13). In this way, the algorithm pre-

sents searching solutions with objective values worse than the current one. After

completing the search, the last found solution is the best optimal solution.

Figure 2.9 shows the search tree for the modified 4-queens problem in Exam-

ple 4. The bound is set to infinity before search. When the first solution { x i =

2’ 1：2 = 4,X3 = 1,X4 = 3} with objective value 27 is found, the bound is updated to

the solution's objective value. A constraint Xi x X2 x xs x X4 < 27 is added to the

remaining unsearched sub-problems. The bound is updated to 24 after the second

solution { x i = 3, = 1,X3 = 4,X4 = 2} is found. As the last found solution is

the second solution, the optimal solution is the second one.

2.2 Weighted Constraint Satisfaction Problems

Weighted Constraint Satisfaction Problems (WCSPs) is a framework allowing con-

straims to return costs. WCSPs extend CSPs by associating costs to tuples of vari-

able assignments.

八 观 i 咖 e d constrain/ salisfaclion problem [23] (W C S P) is a tuple (X . T\ C丄I

where 二 {./;i，. . . , } is a finite set of variables and V 二 {/；, /),,} is a

(lhi/)U'r 2 luicki^roiind 2()

B o u i k I = inl'iiiil.y
1 工,•'^'a 丄.4

1厂
2

—

厂 ： 1 ， 川 1 - uih川I..Y . r , : 3
' ' ^ Z . 7、 = 2 .7；, = 4

./ 1 J ./ 1 J： 1 ./； , J' y ./: ./: 1 ,7',.厂.1'-
1 X 1 ； x , x 1 ! x l x '

、. I ‘ . - t 务斗 I J .令 ., + . +.1
2' X X X 2 Q X X X 21 !x X 2 X! X：
‘、t ’ - -f . ‘ h --- f-—— ..i I . I . I . .

丨 4 L l J x , x i ,1; |x 丨 iX: -IlQIxIxix：
1 广 1 Honn<i — inlinii v
^ T = 4 Bound = 27 Fail

(b:mpl,.、.丨—)omam) ” = 1 (Erriplv Domain)
i 「 同 |x1 i l [Q1

2 m i 2 一 又 =

4 | Q | X | X | 4 广 x '

Bound = infinity Bound = 27
= 1 .7:3 = 4

+ .7； J
1| |X Q XI -等

2 Q X X X ：̂ - -

4 n Q l x J Y ^ X—mx
Rel.uni ol.i = 27 Return ohj = 24

•‘ 7. = 2
.7：, = 3 丄 1 z

iJ;1;[X|q1x； 1 ' (/ X Xi
2 Q X X X 2 X X Q：

:《—X 2C —Q ：{ gjx 1 X X!
4 i Q x J x 1 : x i '4 x i

Solution SoliiLion

Figure 2.9: Branch and Bound for the modified 4-queens problem

(luipter 2 Background \ 3

set of domains o f possible values. We reuse the notions for assignments, scopes

of a set of assignments, complete assignments，and partial assignments defined in

previous section (Section 2.1). C is a set of (soft) constraints, each C[5J of which

represents a function mapping tuples corresponding to assignments on a subset of

variables to a cost valuation structure V(k) = ([0../c],©, <) . The structure V(k)

contains a set of integers |()..A:| with standard integer ordering < . Addit ion © is

defined by a e 6 = mm(/c，a + b). Subtraction e is defined hy a Q h = a — b

if a ^ k and k e a = k for any a > b. We reuse the definitions for arities,

unary constraints, and binary constraints in Section 2.1. To distinguish constraints

between CSPs and WCSPs, we named constraints in CSPs as hard constraints and

constraints in WCSPs as soft constraints. We write Q for the unary constraint on

variable x,, for the binary constraint on variables x, and Xj, C人d) for the cost

returned by the unary constraint when d is assigned to and v) for the cost

returned by the binary constraint when u and i) is assigned to x, and .x, respectively.

Without loss o f generality, we assume the existence of denoting the lower bound

of the minimum cost of the problem. I f it is not defined, we assume C。二 0. The

cosl of a complete assignment / in A' is defined as:

(‘().、丨(丨)=①④C问刚）

A complete assignment I on A:' is feasible i f ⑶,s/:(/) < k, and is a solution of a

WCSP i f / has the minimum cost among all feasible tuples.

E x a m p l e 5. Given a WCSP V with the set ofvariables { m , domains D, 二

{a , 6, c}, D2 = {a , b}, and D：^ = { a , b}，the set of constraints represented in Figure

2」()’ —the global upper hound k = 10. The problem is to find a complete

assignment with minimum costs. Figure 2.10 indicates there are 3 umuy constraints

C'],C'2，C:3，and 2 binary comiramts For unary constraims. non-zero

譲 ⑶ ‘ 似 are depicted inside a circle and domain values are placed above the

(賞丨K()'，丨丨y conslramls, non-zero binary costs are depictcci as labels on 办c'‘v

⑶隨‘丨…X ⑶丨)(）ndm⑶uir of values. Only non-zero costs arc shown. The

(Ihiptcr 2 Background 22

coniplulc assio^nDicnt { . r ! = a, .1..2 二 /)’ ./、：- a} has a cos! of 2, and is a solution for

the problem V as it has the minimum costs among all o/her comple/e assignments.

a , ‘ .
；C \ 7 n ,„ '丨

h ： 7 , 5
--X • ~ ； I : '；2 ： I I “

I \ / 丨 I I , . ‘

： I l> ： ： h
\ '' '' ： ‘ 9 1

f- 、 . I iv “ , - ‘

Figure 2.10: WCSP for Example 5

Given a hard constraint C. We can construct a soft constraint C on the same set

of variables. A soft constraint C returns cost 0 i f C is satisfiable on the same set of

assignments; otherwise, C returns cost k.

T h e o r e m 2.6. A CSP V = {？^, P , C) can be transformed by Karp reduction [2]

to cm equivalent WCSP V' = { ？ (. V . C . k) \vilh k ：二 1 cmd C is the set of soft

consfrainls constructed from C.

Proof. Wc first prove i f is unsalisfiable, then V must be unsatisfiable. The proof

for the other case follows afterwards. The equivalent WCSP V' has the same set

of variables and domains. Suppose V' has no solutions, i.e. there arc no feasible

complete assignments for V'. This implies there are no complete assignments I s.t.

cost{l) < 1. We can conclude thai for all complete assignments, there exists a

soft constraint s.t. (7问（/问）=1. Since all soft constraints are constructed

from hard constraints C, therefore, all complete assignments must violate at least

one hard constraint in V. This implies V is unsatisfiable. We now prove the other

cases. Suppose V' has a solution I, i.e. cost{l) < 1. This implies for all constraint

G C , = Q; otherwise, cost(i) must not less than 1. Since the set of

soft constraints C' are constructed from the set of hard constraints C, the complete

assignment / must satisfy all hard constraints (\ This implies V is satisfiable. •

Chupler 2 Background 23

2.2.1 Branch and Bound Search (B&B)

To solve WCSPs, we can reuse and modify the Branch and Bound for solving COP.

Figure 2.11 shows a high level abstraction of the modified search。The search main-

tains a bound which stores the current best costs found, and initially, the bound is

set to the global 叩per bound k of the problem.

Similar to the B&B for COP, i f all variables are assigned, the search returns

the costs of the current complete assignment. This can be achieved by function

cos t : (P) in line 2. I f there are variables unassigned, we choose a variable for as-

signmem. Similar lo the tree search for solving CSPs and the Branch and Bound

search for solving COPs, we allow the B&B to invoke consistency enforcing algo-

rithins for WCSPs, hoping to reduce the search space. Line 6 shows the function

L o c a l C o n s i s t e n c y (P, b o u n d) for calling these enforcing algorithms, and

we wil l introduce them in later sections. After choosing a value v of variable x,

for an assignment, the function P [x i 二 v] (line 7) is invoked to return the sub-

prob丨em obtained after the assignment.

When a value u is assigned to variable x” all constraints 问 where x, e S

can be reduced to constraints [列，y = { x J . I f 问 returns costs c for a

set of assignments l[S], we transform into returning the same costs c

for /f^'']. The function L o o k A h e a d (Ps , x i = v) (line 8) finds all constraints

q ^ l in the WCSP Ps where x i e S\ and for each of them, the function: 1)

Transform into the C | y | where S' = S - { x i } , i f C [y] does not exist

before the transformation; 2) Transform and merge the resulting constraint

with \{C\S'] exists before the transformation. Figure 2.12 shows the func-

tion L o o k A h e a d (Ps , x i = v) for the transformation assuming there are only

unary and binary constraints. Wc can derive functions for higher arily conslrainls

similarly.

The function c o n s (Ps, b o u n d) is used to check whether the costs returned

(、 o f the WCSP Ps is greater than or equal to b o u n d . I f the function rclurns

(Ihifncr 2 luicki^roimd 24

I func t ion BranchAncU^ound (P, bound)：
i f gcLUnass.i gnedVar (P) = 二 b〇L: re tu rn c:osL (P)

； else：

.1 x.i geLUnass i.gnedVa r (P)

、 for V i n Di：
0 IjOcalC〇nsist:ency(P, bound)
- Ps P Ix i = v]
s L o o k A h e a d (P s , x i = v)
Q if cons(Ps,bound)：

10 cost = BranchAndBound(Ps, bound)
11 if cost < bound： bound = cost

I： P [x i ！ = v]
13 return b o u n d

Figure 2.11: Branch and Bound for WCSPs

1 function LookAhead(Ps, xi = v)：

: C — n u l l Ci (v)
3 remove Ci
•1 fo r j i n f I . .n]：
s if Cij in C：

0 for u in Dj:

7 Cj (u) f= C i j (v,u)
s remove Ci j

Figure 2.12: LookAhead for WCSPs with only unary and binary constraints

true, the cost of the sub-problem Ps must be greater than or equal to the bound,

and the search wi l l not explore Ps; otherwise, the search recursively calls itself to

find the cost for the sub-problem obtained. We update the bound i f the costs for a

sub-problem is lower than the bound (line 11).

Figure 2.13 shows the search tree for solving Example 5 by using the algorithm

in Figure 2.11. We denote sub-problems in the search tree by the constraint graph

similar to Figure 2.10. We mark sub-problems V with C^ > bound by ‘Fail，in the

figure, as these sub-problems wi l l not be further explored by the search. Once the

search finds a feasible complete assignment with a belter costs, e.g. {x] = a. .ro 二

h, 二 the bound is updated. The remaining parts of the search seek better

feasible complete assignments. The last found feasible complete assignment is the

optimal solutions.

(luipter 2 Background \ 3

曰 1 N PI
'I = a - -

\ i3<)"t"i = 2 n.,1111(1 = 2

/D\ A A A A A A
丨f?M〇 U _]險…i8\

0 10 • " h . ^ ,
W'-V U LP W N

/ F'li 丨 Fail

A 力 A , T.. .T.

ft _

I I ©/ ！ \6j 0i
Fail n。mid = 10 / noimd - 2

= a ^ ^ - b

a A A A A A I' I ！ bi i 1 I \
I I ^ . I I i , I : , ;

U pi U \ I bi p丨

Fail

Figure 2.13: Branch and Bound for Example 5

2.2.2 Local Consistencies for WCSPs

Reasons for us to define consistency notions and enforce consistency algorithms in

WCSPs are the same as in CSPs. I f we perform reasonings for WCSP sub-problems

at tree nodes to infer prunings or backtracks, we can reduce the search space. Tree

search algorithms traversing smaller search trees wi l l be faster than larger search

trees. Consistency enforcing algorithms in WCSPs aim to extract pruning informa-

tions by transferring costs between constraints. By transferring costs, we can extract

the lower bound of a WCSP as well as inferring values not leading to solutions. In

order to define consistency notions, wc need to define cquivalcncc of WCSPs.

D e f i n i t i o n 2.7. Given Iwo WCSPs P 丨 (X . P , , C, , k) anciV.{X. k). The WCSP

C liaplcr 2 Background 26

7)1 is ecjuivalciU to another WCSP V2 if： 1) I hey have the same set of feasible com-

plete assignments, and 2) the cost for each feasible complete assign men I is the same

oil both V\ and Vo-

Def in i t i on 2.8. Given a local consistency rv. An (\-enforcing algorithm is lo trans-

form a JVC \SP V into V' such that V 丨 is n and eq nival en! lo /).

Intuitively, a WCSP is equivalent lo another WCSP if、they have the same set of

feasible complete assignments with the same costs. Wc restrict consistency enforc-

ing algorithms not to prune values which may lead to feasible solutions.

Node Consistency

Def i n i t i on 2.9. [23] For a WCSP V = (A：, P , C, k), a value u of variable x, E ；f

is node consistenffNC^) iff':

C0 ① C八u) < k

A variable is node consistent (NC) iff all its values are node consistent, and

G D, s.t. C)(r) = 0

WCSP V is node consistent (NC) iff all its variables are node consistent.

We want to identify values which are not node consistent, as these values must

not participate in any feasible complete assignments. For a variable lo be node

consistent, in addition to the usual requirement requiring all its values to be node

consistent, we further require there exists a value for the variable such that its unary

costs is 0. This unusual requirement relates lo the fad that we can transfer costs

among constraints. For a unary constraint C, on variable the minimum costs Q

incur is equal to m i n 败 Q (v) , or we alternatively write a shorter notation ni in C,.

The cost rnin C,, is guaranteed to incur, for any value v G D, variable x； takes,

i r ihe minimum costs of a unary constraint is larger than zero, we can increase the

lower bound C0, and deduct the minimum costs from ihc unary constraint. This can

(luipter 2 Background \ 3

further cause values of other variables not node consistent. Suppose we transform a

CSP V into a WCSP V、NC* on V' collapses to NC on V. We can easily observe

V isNC \ffV' i sNC* .

E x a m p l e 6. For the WCSP in Example 5, value c of variable x： is not node con-

sistent. Therefore, variable Xx is no! node consislenl. Variable X2 is not node con-

sistent as none of the values v has a unary cost of 0, i.e. \/v e > 0 .

Therefore, the WCSP is not node consistent. Figure 2.14 shows a WCSP which is

NC*, and is equivalent lo the WCSP in Example 5.

工、1 X.,

. \ I \ / \ I \ / \ / \ ,”\ / “ \ 10 卜 \
‘ o 1 7 / 厂、丨
丨 • 丨 • C J i

I ‘ ； ^ ： 8 i ^

丨丨/> I 6 ！ 5

\ © / | P 1©

Figure 2.14: WCSP for Example 6

To transform the WCSP in Example 5 which is not NC* to the WCSP in Ex-

ample 6, we need an operation called projection [23] to preserve the equivalence of

WCSPs. We now define projections for unary constraints, called unary projections.

Def in i t i on 2.10. A unary projection of a cost c from Q to C0 where 0 < c <

is defined as an operation transforming C^ and Q to Cl and C]

respectively, s. I.:

= © c,, and

W e A , a / (i ;) = c , (' ^ ;) ec

After defining unary projections, we give the enforcing algorithm W - N C * in

figure 2.15 to enforce NC*. The algorithm uses a function u n a r y P r o j e c t (Ci)

(liapicr 2 lUick^roiDui 2 8

I function W NC*(P)

? for i in 丨1..nj :

‘ unaryProJoct(Ci)

•1 for i in [.1 . . n]：

、 for V in l〕i :

(、 if C__nul I (Ci (v) >= k ：

] prune(xi,v)

sfunction unaryProject(Ci)

、） minCost = k

10 for u in Da ：

11 if Ci (u) < minCost ： minCost = Ci (u)

12 for u in Di ：

13 Ci (u) = Ci(u) - minCost

1.1 C—null = C__null + minCost

Figure 2.15: Enforcing algorithm for N C *

to perform unary projection o f a cost min C i from the unary constraint C i to C'0.

The function is called n times to perform unary projections on all unary constraints.

Af ter call ing this function, it is easy lo see for all variables there must exists a

value V s.t. C, {v) = 0. A t the last stage, vvc prune all values o f all variables which

are not node consistent (for loop in line 4 lo 7).

Arc Consistency

D e f i n i t i o n 2 . 1 1 . [23] For a WCSP V = (X . V X . A:), a value u ofvariable :r? G ^

is arc consistent(AC*) with respect to constraint C” i f f :

3v G [u,v) = 0.

We called the value v a support of value u. Variable x, is arc consistent(AC” iff it

is NC, and all its values are arc consistent w.r.t. every binary constraint covering

on X,. The WCSP V is arc consistent (AC) iff all its variables are arc consistent.

A value u e D, o f a variable w.r.t. any binary constraint C.,」must incur a

cost o f C,jiu’v), \ f u is chosen for assignment. We want lo extract these

min imum costs for all associated binary constraints, and combine with the cost

To acheive the goal, we require for cach value u ofvar iable .r 丨 w.r.t. a binary

(Iniplcr 2 Background 29

constraint C,,, there must be a support. In addition, i f unary costs C,('u.) is increased,

a NC氺 WCSP may become not NC*. Therefore, we further require an AC* WCSP

to be NC*. Suppose we transform a CSP V into a WCSP V'. Similar to NC*, AC*

on V' collapses to AC on V. We can easily observe V is AC i f f is AC*.

E x a m p l e 7. For the WCSP in Figure 2.14’ value b of variable Xi and value a of

variable X2 is not arc consistent (AC^). Variable xi and X2 is not arc consistent

(AC), and therefore, the WCSP is not arc consistent (AC). Figure 2.16 shows

a WCSP which is AC (therefore NC*), and is equivalent to the two WCSPs in

Figure 2.10 and Figure 2.14.

』I J 2 工、

. . . , 、
\

f； a \
、；

i> ： ’ . I ‘ ： 1
‘ ‘ ‘ I

I, • b ！

. ‘ 、； 1 ‘ - ‘ / - ‘*' ；

、乂 V / 、乂

Figure 2.16: WCSP for Example 7

In order to transform the WCSP in Example 6 which is not AC* to the AC*

WCSP in Figure 2.16, we need to use projections [23]. We now define binary

projections for binary constraints.

Def in i t i on 2.12. A binary projection of a cost c from to C, for value u. of x,

0 < c < min?’GDj d) is defined as an operation transforming C, and

to C/ and Cj^ respectively, sA.:

〔1 ⑷ 二 C,{u) © r

Vr, e " , — _ { " } ’ （ ” ⑷ = C , { a)

V " G 1)丨{?,},•/’ C ！).”(、.!)(a、r) 二 /’）

(liLiplcr 2 iHick^iviinci 30

Wc can find supports for values of./;, IVom values of:/;? w.r.t. by using binary

projections. Figure 2.17 shows the resulting WCSP in Figure 2.14 after finding

supports for all values of all variables using binary projections. We can achieve the

NC* and AC* WCSP in Figure 2.16 after applying the NC* enforcing algorithm.

We are now ready to give the enforcing algorithm W-AC*3 [23] for AC*.

,々 /\
/ \ f \ z \、
；a \ I a ‘ “
丨 、 . “ . 2

、 P
I I . .

\ / I
I 〜---I ：

I I
1 „ : : 丨 ' ‘ 丨 >
K 3、• .、乂 I ‘
\、. i 乂
\ ,
\ Co - 2 \

\ /

\

Figure 2.17: WCSP after binary projections

The enforcing algorithm is based on the AC enforcing algorithm AC3 for

CSPs. Similar to the AC enforcing algorithm for CSPs, we maintain a propaga-

tion queue Q. Initially, all variables are placed into the queue. Variables with val-

ues being pruned wi l l also be placed into the queue. I f the queue is not empty,

we retrieve a variable Xj by the function p o p (Q) (line 4). A l l binary con-

straints associated with Xj wi l l be checked for supports by calling the function

FindSupportAC3 (Cij) (line 7).

The loop from line 18 to line 24 in the function is essentially equivalent to

performing binary projections for all values u oi\v, with a cost C,j[u、v)

from to C,, After finding supports for each value v of variable .r” the unary

costs Qi ' i i) may be increased. This may cause variable ,r, not NC*. Therefore,

we need to call the function u n a r y P r o j e c t (Ci) (line 26) introduced in the

enforcing algorithm of NC*. Function FindSirpp〇rtAC3 (Cij) returns true i f

C0 is increased after calling the function.

In the final step, we need to enforeNC*. Function F i n d S u p p o r t s A C 3 (C i j)

ensures one of the condition 3v e A , s.t.Q,{v) = 0 in NC*. We are left to prune

values V which cannot satisfy the other condition: C0 0 Q,{v) < k. This is done by

(luipter 2 Background \ 3

1 function W-AC*3 (P)

2 Q = {1,2,...,n}

飞 while Q ！= null：

» j = pop(Q)

f l ag 二 fa lse
b for Cij in C

7 f l a g = f l a g | | FindSupportsAC](Cij)
8 PruneVar(xi,Q)

'' i f f l a g == t rue:
10 fo r i i n [1 . .nj ：

11 PruneVar(xi,Q)

li function PruneVar (xi, Q)

13 fo r u i n Di :
1-1 if C—null + Ci (u) >= k ：

15 prune (xi, u)

16 addQueue (Q, i)

17 function FindSupportAC3(Cij)

18 fo r u i n Di ：

… minCost = k

20 fo r V i n Dj ：

21 if Cij (u,v) < minCost: minCost = Cij(u,v)

22 Ci (u) = Ci (u)十 minCost

23 fo r V i n Dj ：

24 Cij (u,v) = Cij (u, v) - minCost

25 original = C—null

26 unaryProj ect (Ci)

27 return original ！ = C—null

Figure 2.1 8: Enforcing algorithm for AC*

calling the function P r u n e V a r (x i , Q) . There are two cases for calling this func-

tion. After finding supports for a value v of variable 丄.” costs C,{ u) may increases.

I f value V does not satisfy the condilion ('0 ㊉〔;(/’) < A：, we can prune this value by

calling P r u n e V a r (x i , Q) in line 8. In the other case, i f C0 is increased, values

u of variables c/，/ 7； may not satisfy the condition C0 ① C/.(u) < k. We need to

prune these values by calling P r u n e V a r (x i , Q) in line 11.

We need to re-check supports for all binary constraints on x, i f values of .r, is

pruned, and therefore, we place x, into the queue Q again (line 16). This is similar

to AC in CSPs.

The time complexity of W-AC*3 is + er/、)，where “ is the luimbci- of

variables, (I is the maximum domain si/.c, and r is the number of conslrainls.

(liaplci' 2 Back^roinui 32

2.3 Quantified Constraint Satisfaction Problems

In rcccnl years, we are interested in exploring qLianlified constraint satisfaction

problems (QCSPs). QCSPs can solve model chccking problems, adversary games

and planning problems under uncertainly conditions. QCSPs generalize CSPs by al-

lowing variables to take either existential 3 or universal V quantifiers. This is similar

to how Quantified Boolean Formula (QBF) 119] generalizing SAT by allowing vari-

ables to lake cither existential or universal quantifiers. For a QCSP, we are interested

to find whether there exists assignments for existential variables, for all values in

universal variables, such that the constraints are satisfied. This generalization raises

the hardness of the problem from NP-complete to PSPACE-complete [15].

A quantified constraint satisfaction problem [31] (Q C S P) P is a tuple

[X . V. C, Q), where A" = (;ri, X2) is an ordered sequence of variables, V =

(A ’ Do A ,) is an ordered sequence of finite domains, C 二 {C ’̂（72，• . • , Ce]

is a set of constraints, and Q = Q2 Q J is a quantifier sequence in which

each Q, is either an existential quantifier E) or a universal quantifier V. A con-

strainl C 问 G C consists of a sequence S of variables s.t. 5 is a subsequence of

C[S] has an associated set L{C\S]) of tuples which specify the allowed com-

binations of values for variables in S. The arily of the constraint is defined

as the number of variables in the sequence S, i.e. We reuse the notion of

unary constraints, binary constraints, and n-ary constraints defined in Section 2.1.

Similar to previous sections, we denote a unary constraint (7[(x,)] by C ” and a

binary constraint C[{x^,xj)] by Q]. We write x, = v, as an assignment assign-

ing value v̂ G D, to variable x^ G A', i.e. variable .r, taking value v,. Let

/ = 二 v,,^, Xi^ = . . , x,^^ = u丨,爪)be a sequence of assignments, where

the sequence is ordered according to the variable ordering defined in A'. I f / con-

tains the assignment x, = v,, we abuse set notations by saying .t? = v, e /. I f

/ contains a subsequence S, we abuse set notations by saying S C /• We abuse

terminology by saying the scope of / (scope {I)) to be the subsequence ofvariables

Chapler 2 Background 33

involved in /, i.e. scope (I) : : (.r,丨,.?:,” ...，工,,,,).We sometimes denote / by a tuple

(t.'v,i, …，y/.,n) i f the associated variable for each coordinate in the tuple is clear.

A complete assignment is an I where scope{l) = A'. A partial assignment /[S'j is

a subsequence o f I, such that i f / contains an assignment 工?: = u, and x , e S, l[S'

contains x, = v.,. A sequence o f assignments I satisfy a constraint C[S], where S

is a subsequence o f scope{l), i f '[S] specifies an allowed combinations o f values

the sequence o f variables 5 can lake, i.e. l[S] G 丄P [问 j . Let firstx(P) returns the

first Linassigned variable in the variable sequence. I f there are no such variables, it

returns 丄.The semanlics o f a QCSP V is defined recursively as follows:

• In case f i r s t x (P)=丄， i f all constraints C[S] G C are satisfiable, V is satisfi-

cible\ and i f any constraint fails. V is imsatisfiable.

• Otherwise, let fii\stx(7^) = . I fQ,, = 3 then V is satisfiable i f f there exists

a value a G D, such that the simplif ied problem V wi th a assigned to x,

is satisfiable. I f Q, = V then V is satisfiable i f f for all values a G A the

simplif ied problem V with a assigned to x, is satisfiable.

Examp les . Given a QCSP V with the ordered sequence of variables X = (:r i , X3).

domains A = {2, 3, 5} ’ and D2 = D[二 {4, 5}，the set of constraints C = {.t-, >

2,工1 ^ X2,X2 • xs}, and the sequence of quantifiers (3, V, 3). We usually write

the QCSP V as follows:

3.riV丄s.l. ./.I > 2,.ri 丄.2，j.2 + .c；^

败)⑴，e G'sking does there exists a value for ‘v\、for all values of ,1:2、there exists a

v—e of、、^uch that Ihe three conslrainls, .r, > 2, 寸一 .r^.xo ^ are scUisfieci

in Example 8, we can see that there exists value 3 of.?;,, for value 1 of . ro, there

exists value 5 of j、, such thai all the three constraints arc satisfied. I f the value o f

7:2 is now changed to 5, there exists also a value 4 of,/：；̂ such lhal all the conslrainls

are satisfied We can concludc the above QCSP is satisfiable. In order to pcrlbrm

the above reasonings easier, wc need to formal i /x solutions for QCSPs.

C Ihjpicr 2 Jhickoroiind 34

In I he QCSP literal Lire, there arc diflcrcnl notations for solutions 11 1, 3 1, 51. The

notation wc use mainly follows IVom Bordeaux ct.al., with slight modifications. A

complete assignment i is a feasible assignment lo a QCSP V 二 (A:^r>,C，Q) i f t

satisfies all constraints in C. A strategy is a family {s,\Q^ = 3, 1 < i < n} of

functions of the following type: for each existential variable .r?: G the function

associates lo cach tuple t G x二 q尸^D) a value v., G P,:. Intuitively, we can

view each function ’s、specifies which value G D, should be assigned to for a

combination of values taken by the preceding universal variables. The function ,s、

is a constant function i f there are no universal variables preceding variable j、. A

scenario / of a strategy s is a complete assignment such that for each value /[(.r,)"

assigning lo an existential variable the value follows according to the strategy

s,. We say f[(,r,)] follows according to the strategy s, i f / |(,r,)] is the value specifies

by Si for the tuple We are usually interested in knowing the

set of possible scenarios of a strategy s. I fa l l possible scenerios of a strategy s. are

feasible assignments, we called the strategy a winning strategy/solution. A QCSP

is satisfiable i f f there exists a winning strategy/solution.

Bordeaux et al. [11] use adversarial viewpoint to understand quantifier alter-

nations of QCSPs. We can view a QCSP as a game, and there are two players

interacting in the game. One of the players chooses values for existential variables

aiming to satisfy all constraints, while the other player chooses values for universal

variables aiming lo falsify al least one constraint. The game is played in a turn-

based manner, and values for variable x； wi l l be chosen in each turn i. Therefore,

the game is played according to the variable sequence. Treating a QCSP as a game

leads to game-theoretic terminology. In particular, the notion of strategies and win-

ning strategies in games fits well to the semantic of QCSP.

E x a m p l e 9. We give a strategy sa = {.s.i ’ ,s、} /?)厂 the QCSP in Example 8 as an

example. The function is a constant fimct ion giving value 3 e D、. The fund ion

maps to value 5 G D3 (A G D3 resp.) if variable .7;2 takes A e Do (h e Do

resp.). The two outcomes of strategy s^ are {xi = 3, X2 = 4, X3 = 5) and (丄.1 =

(luipter 2 Background \ 3

3, 二 5, xs = 4). As all the outcomes of strategy sa are feasible assignments,

is a winning strategy. We can conslnicl another strategy ’s." 二 {-s i . .s：̂} similar lo

The function ,s] is a constant fimction giving value 5 G Di, and the function s：^

maps to value 5 e" D：^ (A G res p.) if variable X2 takes A ^ D2 G D) res p.). As

one outcome {.I ' l 二 5, x-z = 5, x：^ 二 4 } of strategy sb is not a feasible assignment,

sB is not a winning strategy.

We can use And-Or trees based on labeling trees for CSPs to explain the seman-

tics and solution space of QCSPs. The root node of an And-Or tree is at level 1, and

the level of a node is equal to the level of its parents plus one. Nodes at level i are

labelled as ' 0 r ' nodes ('And' nodes resp.) i f Q,： = 3 (f t = V resp.).

Let V [x i = Vi\ denotes the sub-problem obtained from the QCSP V by assigning

V, to X,. Suppose Qi = V. I f V is satisfiable, then for all vi e A , 巧工 1 =厂 i] must

be satisfiable. We label the root node as an 'And' node, indicating all the sub-

problems V[x\ = vi] must be satisfiable for V to be satisfiable. On the other hand

if = 3. I f V is satisfiable, then there exists a sub-problem V[.r 1 = r i] where

(、G D i which is satisfiable. We label the root node as an ‘ O f node, indicating i f a

sub-problem V[xi = I'j j is satisfiable, then V is satisfiable. Followed by the same

reasonings, we can infer labelings for all the remaining nodes inductively. Leaf

nodes in the tree represent complete assigned sub-problems. I f these problems are

satisfiable, then the associated complete assignments are feasible assignments. We

can easily infer satisfiability of a QCSP by following its And-Or tree, viewing from

bottom to top.

Figure 2.19 shows the And-Or tree for the QCSP in Example 8. We label all

feasible assignments. We also show the outcomes for the two strategies and

•SB in Example 9, With the help of the And-Or tree, we can see a strategy of a

QCSP specifies a sub-graph G of the associated And-Or Tree. The sub-graph G

contains the root node o「the And-Or Tree. If G contains an 'And' node, all its

childi-cn arc conlaincd in the graph. Suppose C contains an 'Or，node at level

representing a partial assignment /; (./•, v, , r, ,). I.cl the

(liaptcr 2 Bdck^^roiind 36

Cy)
3x, 2 3 5

O G) G)
Vx, ^ 5 4 5 4 5

© ® ® (力 O) 0

3a:,, 4 5 4 5 4 5 4 5 4 5 4 5

〇 〇 〇 o o 〇 〇 〇 o 〇 o 〇
Feasible / / /

assignments

Strategy / /

Strategy s r / /

Figure 2.19: And-Or Tree for Example 8

sequence be a maximum subsequence of (.Ti, • . .，:c?:—i), such that each variable

in the subsequence must be a universal variable. The function 5, in the strategy

must specify which value v., G A for the tuple of values p[S], i f z > 1 and S is not

an empty sequence. I f z = 1 or is an empty sequence, the function s, must be

a constant function specifying which value /’, e D 丨. T h e child node representing

the assignment x, = ？’?： must contain in G. As the sub-graph G is unique for each

strategy, we can represent strategies using sub-graphs.

T h e o r e m 2.13. A CSP V = (X . V X) can be transformed by Karp reduction [2]

to cm equivalent QCSP V' = {A：, P , C’ Q') where all qiiandfiers in Q are 3.

Proof. Suppose V' is satisfiable. The winning strategy ’s 二 {,si’ s^,} of is a

set of constant functions, where each constant function s, indicates which value v,

the variable should take. By definition of winning strategy, the only outcome of

strategy s is a complete assignment satisfying all the constraints in C. Therefore, V

must be satisfiable.

Suppose V' is unsatisfiable. This implies there does not exist a strategy such

that all its outcomes are feasible assignments. As all quantifiers o f P ' are existential

quantifiers, all possible strategies must be a set of constant functions s, indicating

which value v.,, should ；7；, takes. The outcome of a strategy must be a complete

assignment. Finally, we can conclude there does not exist any complete assignment

(luipter 2 Background \ 3

satisfying all the constraints C. Otherwise, we can construct a strategy which is

winning. V must be unsatisfiable. •

2.3.1 Backtracking Tree search

To solve a QCSP, we can modify the backtracking tree search for CSPs to traverse

the associated And-Or Tree. Figure 2.20 shows a high level abstraction of the tree

search For QCSPs. The tree search algorithm mainly follows the tree search used by

QCSP-Solve [211. I f the node is an ‘Or, node, the search is required to traverse all its

children in order to prove the associated sub-problem is not satisfiable. I f any child

returns satisfiable, the search can infer the associated sub-problem is satisfiable. The

for loop in Lines 7 to 14 shows how the search traverses ‘Or, nodes. On the other

hand i f the node is an ‘And, node, the search is required to traverse all its children

in order to prove the associated sub-problem is satisfiable. I f any child returns

unsatisfiable, the search can infer the associated sub-problem is not satisfiable. The

for loop in Lines 16 to 23 shows how the search traverses 'And, nodes. We can

easily see the two loops are symmetric to each other.

The search uses a function f i r s t x (P) to return the first unassigned variables

for the QCSP P. I f there are no variables unassigned, the function returns b o t . The

function c o n s (P) is used to check whether the current complete assignment for

P satisfies all constraints. Il returns t r u e i fa l l constraints are satisfied, otherwise

it returns f a l s e . We reuse the two runctions P [x i = v] and P [x i ! = v]

defined in Section 2.1.

The flinction l o c a l C o n s i s t e n c y (P) (line 8 and 17) is used to maintain

consistencies during search. Wc wi l l introduce consistency notions in subsequent

sections. To solve QCSPs, we can use different kinds of forward chccking algo-

Hthins. In particular, QCSP-Solvc implements two kinds of forward chccking al-

gorithms FCO |27| and FCl |27| for QCSPs with binary constraints only. Function

FC (P) in line] 0 and 19 is used to invoke these forward chccking algorithms.

(licipicr 2 lUick^i-oiiiui 3H

I function backLrackingSearch(P)：

: i f f. i rsLx(P) bot ：
’ r e tu rn (cons(P))? true： fa lse
•t i f f i r s t x (P) ！ = bot ：
s x i = fMrstx(P)
0 i f Qi 二= ex i s t s :
1 fo r V i n Di:
s localConsistency(P)

q Ps = P[xi 二 V]

10 if FC(Ps)：
丨丨 if backtrackingSearch(Ps) == true：

丨： return true

13 P[x i ！ = v]
14 re tu rn fa lse
15 i f Qn == f o ra l l：
lo fo r V i n Di :
17 1 oca] Consistency (P)

IS Ps = P [xi = V]
卜） if FC(Ps)：

：!() if backtrackingSearch(Ps) 二 = false：
21 re tu rn fa lse
：： P [X土 ！ = V]

；3 re tu rn t rue

Figure 2.20: Backtracking Tree Search for QCSP

Figure 2.21 shows the search tree for Example 8 without applying preprocess-

ing, enforcing local consistencies, and using forward checking algorithms. We as-

sume the tree search checks the satisfiability of a constraint only when a constraint

is fully assigned. We represent sub-problems for tree nodes by its constraints. We

mark tree nodes by Ta i l ' i f the corresponding partial assignments violate at least

one constraint. Feasible assignments are marked by 'Feasible,.

2.3.2 Consistencies for QCSPs

Similar to CSPs and WCSPs, defining consistency notions help lo extract pruning

informations. We redefine the notions for equivalence and enforcing algorithms for

QCSPs.

Definit ion 2.14. Given Im^o QCSPs V,[？(：.V^C.^Q) 伪，〔2、Q). The

QCSP V\ is equivalent lo another QCSP V^ if they have the same set of winning

(luipter 2 Background \ 3

1

{：…、

X\=l

,, \ /
(2 > 2 \ 3 > 2
\ 2 1- ：1：2 : ‘ 3 ^ i
\ / •'•1 \ ：厂2 丰:、、J 、 ‘ 乂 乂

Fail /

Vi, / \ ^2=5

乂 \
‘ 3 > 2 / 3 > 2 \

-3 / 4 ： 3 ^ 5 ：

• \ 4 / \ 5 牛.7；3 /'

, 3 > 2 \ / 3 > 2 \ (, 3 > 2 \

乂 4 牛 a J

Fail F e a s i b l e F e a s i b l e

Figure 2.21: Search Tree for Example 8

Chuplcr 2 Buck^romid 40

sinue^ies.

D e f i n i t i o n 2.15. Given a local consistency fv. An (y-enforcing algorithm is to trans-

form a OCSP V into V' such that V' is rv and equivalent to P.

For a value r.丨 e D, of an existential variable G A", i f the assignment r? 二 .i),丨.

docs not satisfy the unary constraint C,，we can prune u,. The reason is similar to

node consistency (NC) in CSPs. I f x, is a universal variable, and the assignment

.r, = r, docs not satisfy C,, the QCSP is trivially unsalisfiable. We can prune all

values (’, E D, to indicate the QCSP is unsalisfiable. Similar to CSPs. all unary

constraints in the QCSP can be trivially removed after preprocessing. Based on the

above intuition, we can define node consistency (NC) and its enforcing algorithm

as follows.

D e f i n i t i o n 2.16. A value v^ e A of a variable x^ is node consistent (NC) if x^ =

satisfies unary constraint C^. A variable x, is node consistent (NC) if all its values

are NC. A QCSP is node consistent (NC) if all its variables are NC. If a value

LV G D^ of cm existential variable x, is not NC, we prune v, to enforce NC. If a value

of a universal variable is not NC, (he QCSP must be unsatisfiable.

NC conditions for QCSPs are the same as CSPs. The enforcing algorithm for

NC in CSPs cannot be reused as it is unsound for QCSPs. We have to follow

the pruning conditions/filtering conditions. In particular, we cannot mix up the

two pruning conditions for enforcement algorithms. I f a value v, of a universal

variable is not NC, and we prune u” We may transform an unsatisfiable QCSP into

a satisfiable QCSP. Figure 2.22 shows the NC enforcing algorithm for QCSPs. by

following the pruning conditions. Similar to the NC enforcing algorithm for CSPs,

we use a function c o n s (C i , v i) to check whether value e D, satisfies the

unary constraint Q , and a function p r u n e (x i , v i) to prune value t;, of variable

Xr We also introduce a function b a c k t r a c k () to perform backtrack.

Similar to CSPs, it is safe to remove all unary constraints after enforcing NC.

The preprocessing algorithm in the tree search always enforce NC before search.

(l u i p t e r 2 Background \ 3

1 function QNC(P)：

2 for xi in [1. .n]：

] if Ci exists:

4 for vi in Di:

5 if c〇ns(Ci,vi) == false：

6 if Qi == exists：

7 prune (:x;i,vi)

8 if Qi == forall：

q backtrack()

10 return

Figure 2.22: Node Consistency En fo rc ing A l g o r i t h m for Q C S P

For a b inary constraint C,」、i < j in QCSPs, they can be spl i t ted into four types

depending on the quant i f iers o f var iable x , and t " Type represents b inary

constraints where Q, = 3 and Q； 二 3 ’ type represents b inary constraints

where Q^ = 3 and Qj = V, type Cvx-ei.tj represents b inary constraints where Q, = V

and Q j = 3, and type C y工加] r e p r e s e n t s b inary constraints where Q , = V and

Q] = V.

D e f i n i t i o n 2.17. We define arc consistencies (AC) [27] for each type of constraints:

This is the case for classical CSPs. Binary conslraini C” is AC iff all values

m D, are supported by al least one value Vj G D」.IfC.j is not AC, there must

exists values i.', e: /) , having no supports from all values in D」.To enforce

^C we prime these values u丨.The QCSP is unsatisfiahle if D, is empty.

Binary conslraini C” is AC iff all values in D, are supported by all values

'i{j £ Dj. If C,j is no! AC, there must exists values v, G D! no I having a

support from at least one of the values in D). To enforce AC, vi-c^ prime these

values u丨.The QCSP is imsalisfiahle if D, is empty.

• f'or Cv.,. 3.X-,

B 隨 ry conslraini Q,.) is AC iff all values in D, are supported by at least one

C liapicr 2 luickoroiifK/ 42

yuliic I’丨(PJ. If C,J is not AC, there imisl exists va/iies v, G D, having no

suppoi'ls from all values in /)" If such value r, (1)丨 is found ihe problem

must he unsatisfkihle.

•卜’or Cy求)

Binary constraint C,j is AC iff ail values in /) , are supported by all values

r) e DJ. If Ci,j is not AC, there must exists values v^ G D?: not having a

support from at least one of the values in D〕. If such value G D, is found,

the problem must be unsatisfiable.

We can see the A C condit ions for C'3工却 and Cv.,,̂：；：, (, and also C3丄、vx； and

Cvx,vxj) are the same, depending on quanti f ier o f variable ； (Q j) . However, the

prun ing condit ions for enforcement algor i thms depend on the quanti f ier Q, . I f

(h = 3, we w i l l prune values o f x,,. Otherwise, we prune all values o f x, or per-

form backtrack. There is one interesting observation for the two types o f binary

constraints C乂、：丨 and Cvx^v.^j • I f all binary constraints o f these two types are AC.

we can safely remove these constraints. We always cnforcc A C for these two types

o f constraints dur ing preprocessing.

E x a m p l e 10. Given a QCSP V with the ordered sequence of variables X =

(.Ti,X2,x'3), domains Di = { 1 , 2 } , D2 = { 2 , 3 , 5 } , D3 = { 4 , 5 } , the set of con-

straints C = {xi • < X3}, and the sequence of quantifiers (3, V, 3). Both

constraints are not AC. For constraint Xi X2, value 2 ofx^ does not have sup-

ports from all values of X2. We can prime 2 ofx^ to make the constraint AC. After

pruning, can safely remove the constraint. For constraint X2 < X3, value 5 ofxo

does not have any support from values of x、、. We can conclude V is unsatisfiable.

If the constraint .7; 2 < 工 3 changes to X2 < 丄、’ the consrainl is AC. All values of xo

now have at least one support from values of x：^.

E x a m p l e 11. The QCSP in Example H is no! NC ami AC. If we apply NC ami AC

in Example 8, we can achieve an equivalent QCSP V wilh the ordered scqucncc of

(liapler 2 Background 43

variables X =(丄.1，巧，domains 1)、二 {3}, and D2 二 D、二 {4,5}, ihe set of

conslrainls C 二 { . r 。 • j:、}’ and (he sequence of quantifiers (3 , V, 3). Note thai we

can safely remove constricwl Xi〉2 and Xi ^ X2.

Figure 2.23 shows a high level abstraction of the AC enforcing algorithm for

QCSPs [20], which is based on AC-2001\3.1. The algorithm assumes the input

QWCSP has no unary constraints, as these constraints can be removed during pre-

processing (by enforcing NC once).

The algorithm starts by preprocessing binary constraints of type and

(for loop in line 3 lo 19). These two types of binary constraints wi l l be

removed after preprocessing. We store all these two types of constraints in the set

S'、and use the function adds (S ' , C i j) lo add them in S' one by one.

Line 21 shows a function i n i t i a l i z e S u p p o r t () used to initialize the data

structure for storing supports. Initially, all values do not have any supports. The

while loop in line 22 to 28 resembles the propagation loop in the AC enforcing al-

gorithm for CSPs. Each constraint C,, in the propagation queue S wi l l be processed

by finding supports for values i)丨 G D, of variable x,.

The function R e v i s e (P, C i j) is the core function used to find supports for

values of variable 2、： w.r.t. constraint C i j , and it returns true i f a value v, e D, is

being pruned. I f any value v, is pruned and the type of constraint currently process-

ing is the solver can perform backtracking. The solver can also backtrack i f

ail values in D, are pruned. Both cases follow according to the pruning conditions

in Definition 2.17.

If any value v, of .r , is pruned, other constraints covering on variable x, may not

be AC. We need lo en fore AC for these constraints. The function a d d (S , i , j)

(line 28) is then used to add constraints CV, where k + ,八 k j A C\., e C S' to

the propagation queue

The funclion n o S u p p o r t (v i , C i j) is used to check whether value v i G /),

of variable ；/;, has a support fVom values in 丨）丨 w.r.t. the conslrainl C i j . I f there arc

no supports, ihc function returns true; otherwise, it returns (alsc. In 八（、-；2()01 1,

(l]iif)icr 2 Ihick^routui 44

the function lirsl checks whether a support for value v i w.r.t the constraint C i j

was found during past executions of this lunction. I f true, the fund ion immediately

i,L、Uims false. Otherwise, the function searchs supports from D ” starting from the

last found supports. By storing previous found supports, n o S u p p o r t (v i , C i j)

redLiCCS lime to find supports which have not been pruned.

1 func t ion QAC-2 001(P)：
: S ' = {}
3 fo r C i j i n C：

•‘ if Qi = forall && Qj = forall:

s for vi in Di :

。 Cor vj in Dj：

7 if cons(Cij,vi,vj) 二= false：

s backtrack()

、） return

10 addS(S',c:ij)
11 i f Qi = ex is ts && Qj 二 f o r a l l ：
I: for vi in Di ：

13 fo r v j i n Dj ：

14 i f cons (Ci j , v i , v j) == fa lse ：
p r u n e (>:i,vi)

16 i f emptyDomain (Di) :
17 b a c k t r a c k ()

15 r e t u r n

19 adds (S', C i j)
20 S = {Cij in C} - S'

21 i n i t i a l i z e S u p p o r t ()

22 w h i l e S ！ = n u l l ：

23 C i j = pop (S)
24 i f Revise (P-Cij)：

25 if Qi = forall | | e m p t y D o m a i n (Di):

26 b a c k t r a c k ()

27 r e t u r n

28 add (S； i , j)

24 f u n c t i o n Revi se (P, Ci j):

30 d e l e t e = false

31 for v i in Di ：

32 i f noSupport (v i , C i j)：
33 prune (;Ki_,vi)
34 i f Qi = f o r a l l ：

r e t u r n true

3(> d e] e t e = true

n r e t u r n d e l e t e

Figure 2.23: Arc Consistency Enforcing Algorithm for QCSP

The worst case time complexity for QAC-2001 is 0(e(P) [20], where e is the

(luipter 2 Background \ 3

iiLimber o f binary constraints and d is the maximum domain size. It is the same as

AC-2001\3.1.

A QCSP V is called a binary QCSP has only unary and binary constraints.

If、we enforce NC and AC on V , we can safely remove all unary constraints, and

all binary constraints of type and CW'v,.厂 Therefore, a constraint o f a pre-

processed binary QCSP is either a binary constraint o f type C3:,.,士, or a binary

constraint of type CV,.二七厂

2.3.3 Look Ahead for QCSPs

We now introduce two look ahead algorithms, FCO and F C l , for QCSPs [27, 2 1 .

FCO is an algorithm that can discover dead-ends early by forward checking the

current variable assignment x, = v, against values Vj G D] o f future existential

variables Xj : j > t A Qj = 3 constrained with current variable. The reason behind

is that after preprocessing, we have only binary constraints o f type and type

r'v"士。. Variables for these types of constraints are existential variables. Given a

preprocessed binary QCSP with the current variable assignment ,r, 二- u丨.To apply

FCO. we check whether all sequences of variable assignments (.r, 二 r " = r 」

where x) : j > 1 八 Q」二 3，t。e D丨 satisfy the binary constraint C)〗.Ifa sequence

ofvariable assignments violates the respective binary constraint, we prune value r)

of J" .

FCl has exactly the same behavior as FCO i f the current variable being assigned

is an existential variable. I f the current variable is a universal variable and u, is

assigned, FCl wi l l check not only u丨,but all values in A : against all future variables

J:] • 〉 I before assigning a specific value to I f a value in D, causes backtrack,

then FCl performs backtracks. Otherwise, il proceeds by assigning /’，to . r ” and

checks whether all sequences of variable assignments (.r, = ””.r丨 一 - w i t h

:〉丨八（力：日 and ,丨))e D, satisfy the binary constraint C,丨.Ifa scquciicc o f

variable assignments violates the rcspcctivc binary constraint, vvc pmnc value r , o f

(Ihiptcr 2 Ihicki^roiind 46

. r "

Suppose I he scarch is allowed lo prcproccss the QCSP in Example 8, and lo

apply I he I'C 1 forward checking algorithm. After preprocessing, wc arc solving

I lie smaller QCSP in Example 1 1 which is equivalent to the QCSP in Example 8.

iMgurc 2.24 shows the corresponding scarch tree.

Apart from apply preprocessing and scarch with forward chccking, we can re-

place forward checking by algorithms maintaining AC (MAC). In particular, we can

devise M A C algorithms based on FCl callcd M A C l . I f the current variable is an

existential variabe and v, is assigned, M A C l enforces AC (by running QAC-2001)

after the assignment is made. When the current variable x, o f a QCSP V is a uni-

versal variable and v, is assigned, M A C l not only applies AC for the sub-problem

V [x i , = i,’,j, but on all sub-problems V[x, = Vj] where Vj e D,. I f any of these

sub-problems is unsatisfiable, we can backtrack.

There are also other techniques which have been investigated for solving QC-

SPs. These techniques include: 1) pure value rule [21], 2) solution directed prun-

ing [21]/confiict-based backjumping [3], and 3) symmetry breaking [21]. These

techniques can be found in QCSP-Solve.

(luipter 2 Background \ 3

,-一----z
/ \

； y-i i 工 ；

i

X|=3

\
I X2

Vx, X2=4 / \ X2=5

人\ >、
/ \ (\

\ 4 丰.7；, j 1 . T ,

\ / \
\ y \ /

\ ” \

\ , \
I -I / 5 1 5^4 ,!
\ / >

V 乂 V
l - cas ib lc F e a s i b l e

Figure 2.24: Scarch 1Yee for Hxample 1 1

Chapter 3

Quantified Weighted CSPs

Standard WCSPs are minimization in nature, we aim at also opt imizing prob-

lems with adversarial conditions, by modeling adversaries using max quantifiers.

A Quantified Weighted Constraint Salisfaclion Problem (Q W C S P) P is a tuple

(足 V X . Q, where Y =(.厂】) is defined as an ordered sequence of vari-

ables, V = (D i , . . . , Dy,) is an ordered sequence of finite domains, C is a set of soft

conslrainls as in WCSPs, Q = (Q i Q,,} is a quantifiers sequence where Q, is

either max or in in associated with x ” and k. is the global upper bound.

We reuse the notions o f assignments, scopes of a set o f assignments, complete

assignments, partial assignments, constraint arities, unary constraints, and binary

constraints for WCSPs. Similar to WCSPs, we name constraints in CSPs as hard

constraints and constraints in WCSPs as soft constraints to distinguish constraints

between CSPs/QCSPs and QWCSPs. We write C\ for the unary constraint C[{x,}

on variable C” for the binary constraint C[{x-,, :c J] on variables x, and j•”

C,{d) for the cost returned by the unary constraint C, when d is assigned to j:丨:and

Crj{u, v) for the cost returned by the binary constraint C” when u and v is assigned

to x^ and respectively.

In a QWCSP, ordering o f variables is important. Without loss of generality, we

assume variables are ordered by their indices. We define a variable with ni i i i (max

rcsp.) quantifier to be a minimization variable (maximization variable resp.). l .cl

= " ' i l l 丄 = • • •[工,"，=a,,J be the sub-probletn obtained from V by

4 8

(liapier 3 Quantified Weighted CSPs 49

assigning value a丨] t o variable r , " assigning value a ” to variable x,,,. . , assigning

value a,' , to variable ./;,,.
'fri i-rti

We reuse the definition of rirslx(7^) defined in QCSPs. The A-cosl of a QWCSP
P, denoted by A-cost(P), is defined recursively as follows:

f

c(),st{l). if firstx(P) -二 丄

A - c o s t (巧 - m a x (M ?) , if firstx(P) = x, and Q, = max

min(M,；), if firstx(7^) = and Qi = min
\

where I is the complete assignment of the completely assigned problem V (i.e.

firstx(P)=丄)，and M , = {A-cost(Pfj；, = G A } -

A QWCSP V is satisfiable i f f A-cost,(巧 < k. Similar to QCSPs, we define

a block ofvariables in a QWCSP P to be a maximal subsequence ofvariables in

；I" which has the same quantifiers. Changing the variable ordering within the same

block ofvariables does not change the A-cost, of a QWCSP.

For a maximizalin variable, the goal is to maximize costs. The global upper

bound k in QWCSPs means the maximum destructor for maximum variables. Once

a maximization variable encounters an A-cost k in a sub-problem, k must be the

resulting A-cost. Similarly, 0 means the mini mum possible costs for minimization.

E x a m p l e 12. Given a QWCSP V with the ordered sequence ofvariables

'domains D, = { a , 6, c } , a, = { a , 6}’ and D； = { a , 6, c } , the set of constraints rep-

^^^emed in Figure 3.1, the quantifier sequence (Q： = m a x , Q^ = m m , Q3 = max) ,

— global upper bound k. The problem is to find the A-cost ofV. Figure 3.1 in-

d隨tes there are 3 unary constraints C,, C2, C：^ and 2 binary constraints

/y从 unary comlraints, non-zero unary costs are depicted inside a circle ami domain

are placed above the circle. For binary conslramls, non-zero hinary cosfs

肌) d 叩 丨 c t e d as labels on ed^es connecting the corresponding pair of values. Only

議 蒙 shown. Wc show (he compulafionfor ihc A-cost of/he OIJ'CSP

V as follows:

八 (巧 - 二 仏 二 U 二 咒 { A - (‘ () s l (H ' I 「 n l k . : r , !) } } }

(Ihiplcr 3 OiunUijicci IVcii^/i/cc/ (:S7)、. 50

i u a . \ { i n i u { u i a x { c o , s 7 (a , (; " ') ’ cost{<i, a , b), (."、•/.("’ a, <•)}, i i i ; i x { r(;,s7 (r;,, h, a), r " ,s . / , (a ’ / ;) , cos I (a, h, f) } } .

u i i u { lunx{<'<),、,/(/_)’ a , (j) , rost{h, a. h), C()sl{l), a, c)}, m a x { r ' o . s / (/;, a) , c<)st{b, h’ />)’ coslib, fi, c)}},

i i n n { i n a x { c () . s / (c , n , r /) , r () . s / (r ’ <i、h) ’ cos! (r , n , r) } , u i a x { r'o,s7 (r , li、（i)、cos! (c, hjj)、cos! {r, /;, c)} } }

i " a x 彳 i n i u { i u ; v x { 10, T), 1 } , i n a , x { 1 l , 8 , (i } } .

i m n { i i . a x { 7 , 2 , 1 } , i i i a x { 7, 1, 2 } } ,

i n i i 小 u a x { (i . l , 0 } , i n a x { « , 5 , : 5 } } }

m a x { m m { 10, 1 1 } , i n i i i { 7 , 7 } , i u i u { () . 8 } }

- i i i a x j 10、7, (i } ^ 10

h I i , . fe
U ‘ u u

Figure 3.1: Constraints for Example 1

@

max X] a b e

® © 0
mm .X, a b a b a b

® ® © © 0 ©

max x , a b ^ a b c a b c a b ^ a b ^ a b ^

Figure 3.2: Labeling Tree for Example 1

i r k > 10 in Example 12, then the problem is satisfiable. Otherwise, Exam-

ple 12 is unsatisfiable. Solution of a WCSP is a complete assignment with the

minimum costs, while solution in QCSPs is winning strategy [1 11. We define a

Chapter 3 Quantified Weighted CSPs 5 1

solution of a QWCSP P as a complete assignment {xi = 巧 ， . . . , = Vn} s.t.:

A-cost(P) = A-cost(7^[a:i = vi] . . . [x, = u,]), V I < z < n. Extracting solu-

tions is easy after computing the A-cost of a QWCSP. The complete assignment

{xi = 0,, X2 = a, x'3 = a} is a solution of Example 12.

We can use Min-Max trees based on labeling trees [1] for CSPs to explain the

semantics and solution space of QWCSPs. The root node of the tree is defined as

level 1, and the level of a node is equal to the level of its parents plus one. Nodes

at level / G [1..,/,] are labelled as 'Max' nodes ('M in ’ nodes resp.) i f Q, = max

= mi l l resp.). Suppose Qi = max. The A-cost of V is equal to the maximum

A-cost of all sub-problems V [x i = " i] where Vi G D i . We label the root node as

a ‘Max’ node, indicating we are choosing the maximum costs for all sub-problems

V[xi = vi]. On the other hand i f Qi : min. The A-cost of V is equal to the

minimum A-cost of all sub-problems V [x i = Vi] where Vi e D i . We label the root

node as a 'Min , node, indicating we are choosing the minimum costs for all sub-

problems V [x i = vi] . Followed by the same reasonings, we can infer labelings for

all the child nodes inductively. Leaf nodes in the tree represent complete assigned

sub-problems, and we label the leaf nodes by their costs. Figure 3.2 shows the Min-

Max tree for Example 12. The A-cost for each sub-problem is placed inside the

corresponding node. We can easily infer the A-cost of the QWCSP by viewing its

Min-Max tree from bottom to top.

T h e o r e m 3.1. A WCSP V 二（ V. C, /.：) can be transformed by Karp reduction [2]

/o an equivalent QWCSP V' = (A ' , V, C, Q , A:) with all Q, G Q equal to the m m

quantifier.

Prooj： As all quantifiers in V' are min quantifiers, finding the A-cost o f P ' is equiv-

alent in finding the minimum costs among all feasible complete assignments. I f

A-cost(P') < /c, then the solution of V is a complete assignment giving the mini-

mum costs, and it must be a solution of P . I f A-cosiCP') > 人.，then the minimum

costs ofP must be greater than or equal to k, and V docs not have any solutions. 1 1

(l i c i j i i c r 3 Oiuuuificd Weighted (，Sl)s 32

Ciivcii a hard conslrainl C\ Wc can conslrucl a soil conslrainl C' on ihc same scl

ol'variables. A soft constraint C reUirns cost 0 i l Y ' is satisfiable on ihc same scl ()「

assignments: otherwise, C returns cost k.

T h e o r e m 3.2. A QCSP V = Q) can he trumformed by Karp reduc-

tion /2J 10 an equivcilen/ QWCSP V' = (,Y，P’ C: 1) where C is the set of con-

slrainls constructed from C. For each Q'- G Q', ifx^ G A：' is an existential variable

QCSP, then Q'- is a m i n quantifier; othenvisa, Q\ is a m a x quantifier.

Given a QCSP-P = Q), we conslrucl a QWCSP V' 二、X、V、C'、Q. I j .

For each constraint C G C, we construct a constraint C G C on the same set o f

variables. C returns cost 0 i f (7 is satisfiable on the same set o f assignments. Oth-

erwise. C ' returns cost 1.

• Base case: H r s t x (P) =丄

Al l variables are assigned in this ease. Lcl ihc complete assignment be /. I f

all constraints C G C are satisfied, i.e. V is satisfiable. then all constraints

C e C must return costs 0. This implies cost [I) : () and further implies

A-cos t (P ') = 0. I f at least one constraint C e C are not satisfied, i.e. V is

not satisfiable, then at least one constraint C G C returns cost 1. This implies

costil) == 1 and further implies A-cos t (P ') = 1.

• f i rstx(P) = x^ and Q^ = 3

Assume the simplified sub-problem V[x, = a] is satisfiable i f f A - c o s t (P ' [. r , =

a]) = 0. By definition o f QCSP, we can easily observe:

V is satisfiable ^ ^ 3a e D, s.t. V\x, = a] is satisfiable

By the assumption, we can see:

3a G D, s.t. A-c()st(P'|,r, : a]) 二（）

Since there exists a sub-problem with A-cosl 0,

i i i i i iCP' J., - a) : 0
aG/J, ‘

Chapter 3 Qiianlified Weighted CSPs 53

By definition of QWCSP,

A-costCPO = •

• firstx(7^) 二 X., and Q, 二 V

Assume the simplified sub-problem = a] is satisfiable i f f A-cos t (P ' [x ' ,=

a]) = 0. By definition of QCSP,

V is satisfiable Va G D, s.t. V[x., = a] is satisfiable

By assumption,

Va e D, s.t. A-cost(7^'[x, = a]) = 0

Since all sub-problems with A-cost 0,

mc\x(V'\x, = a]) 二 0

By definition ofQWCSP,

A-cost(-p') = 0

C o r o l l a r y 3.3. QCSPs and WCSPs are special cases ofQWCSPs, which are PSPACE-

hard.

Chapter 4

Branch & Bound wi th Consistency

Techniques

This chapter outlines a complete solver for QWCSPs. The key idea of the solver

is thai, by applying alpha-beta pruning [38] in the Branch & Bound search and

adapting consistency techniques used in WCSPs |23|, we can estimate the A-cost

early in the search so as to reduce the search space.

We first discuss alpha-beta pruning. Then, we describe how various consistency

notions, (e.g. NC* , AC*) used in WCSPs, can be modified and integrated with

alpha-beta pruning to solve QWCSPs more elTicicnlly.

4.1 Alpha-Beta Pruning

Alpha-beta pruning attempts to reduce search nodes in a minimax algorithm by

exploiting (a) semantics of the max and min quantifiers and (b) the upper and lower

bounds of the costs of previously visited nodes. We can apply alpha-beta pruning

in the Branch & Bound search directly in solving QWCSPs as only max and mm

quantifiers are allowed. Alpha-beta pruning is also used for solving real-time online

QCSPs [411.

Figure 4.2 is a high-level abstraction of a QWCSP solver. We first ncglecl Ihc

propagation routine (the grey box) in lines 5 -18 and discuss the basic alpha-beta

5 4

(luiplcr 4 I)ranch Bound with C\)nsislency Techniques 55

@
max x\ a b Q

@ © ©
mm X, a b a b a b

® ® © ® © ®
max a b c a b c a b c a b c a b c a b ^

Figure 4.1: Labeling Tree for Example 1 after applying alpha-beta pruning

pruning algorithm. The search starts with a l p h a 上 e t a (P, 0 , k) . We denote the

input QWCSP P by P in Figure 4.2. The bounds lb and ub are the range of costs

found by the alpha-beta pruning algorithm. QWCSP propagators further exploit

these bounds to achieve stronger propagation. We use P [x j ！ = u] to denote a

function pruning value u of variable Xj in V, and P [x i = v] to denote a function

assigning value v to variable x, in V. Both functions return the modified problem.

Line 2 is the base case in which all variables are bound. The routine c o s t returns

the cost of the complete assignment. Lines 19—24 give the main routine of the tradi-

tional alpha-beta pruning algorithm. Wc only explain the cost for the mm quantifier,

since that of max is similar. The for loop in lines 4-24 evaluates all sub-problems

= by recursively invoking the alpha-beta algorithm. Since the goal is to

find a minimum value, the upper bound is updated. When the upper bound is 丨ess

than the lower bound (line 24), it triggers the short-cut to break out of the remain-

ing search since every value returned by subsequent calls wi l l be dominated by the

current bounds. The function a l p h a — b e t a ends by returning the upper bound for

the mm quantifier (line 25). We illustrate the code with an example.

Examp le 13. Consider the tree in Figure 3.2, ami assume values are labeled in

Ik)、叫 () f [a j) , (] . The search skirts with alpha^beta (P, 0, k). Consider

//7c) node V' " I , which firsi visits Us suh-prohlcm 'P'[r2 (i\ hv calliji^r

(lhi/)lcr 4 Branc/i Bound with (\)}isis(cncy Tcchniciucs 56

1 function alpha beta(P,lb,ub)：

.、 i f f i rsLx (P) : b o t ： r e t u r n cost: (P)
'’ X i f i rsLx (P)

•I f o r V i n 1) i :
、 // Pruning using QWCSP semantics

I c h a n g e d = t r u e
while changed：

^ changed = false
‘ f o r j i n i . .n：

H for u in Dj:
II ap—lb = appr〇;x:_lb(P, x j = u)
I： i f ub <= ap—lb:
1、 if Qj := min: P = P [xj ！ = u] , changed = true

1-1 else： return ub

ap_ub = approx_ub(P, x j 二 u)
i(i f ap_ub <= l b :
1' if Qj == min： return lb

IS else： P = P [xj ！ = u] , changed = true
N // Basic alpha-beta pruning

20 i f Qi == min：

uJd -- mi n (ub, alpha—beta (P [xi 二 v],l—b,ulD))
:: else ：

:1b = max (lb, alpha—beta (P [xi = v) ,]_b, ub))

24 i f ub <= l b : b reak
return (Qi 二 = min) ？ub ： lb

Figure 4.2: A Q W C S P Solver

alphaJoeta (P ‘ [xs = a], 0 , k) and a value of 10 is returned. Since Qo =

min , the upper bound is updated. The routine then invoke alpha—beta (P ‘ [x-z 二

0, 10). After visiting V'[x2 = b] [xs = a], we get cm A -cos t of 11 for the sub-

problem. The quantifier here is max , the cost is greater than the upper bound and

the con da ion in line 24 holds. No matter what costs the remaining sub-problems

produce, they have no impact on the solution and a short-cut to break out of the

remaining search is triggered. Hence, the sub-problems V'[x2 = b] [x^ = /；] and

V'{x2 = /)] |：/：3 = c] are not explored.

l : igure 4.1 i l lustrates the nodes pruned, denoted by the symbol A : by alpha-beta

pruning.

(luiplcr 4 I)ranch Bound with C\)nsislency Techniques 57

4.2 Consistency Techniques

In traditional CSPs, we enforce different levels of consistency to prune infeasible

domain values and hence reduce the search space. In WCSPs, the consistency al-

gorithms take the cost of constraints into account. Various consistency notions (e.g.

NC*, AC* [23], FDAC*, EDAC*, OSAC, and VAC [17]) have been proposed and

proven to be useful in improving solver performance. Such techniques, however,

cannot be directly applied to QWCSP since the quantifiers change the semantics of

constraints.

To prune values of a QWCSP, the main idea is that i f the A-cost of a sub-problem

V' 二 V[d：, 二 v\ is greater than or equal to the upper bound ub (less than or equal to

the lower bound lb resp.), the pruning techniques in alpha-beta can be applied. Let

= L’i..? — 1 , 丄 = v] denote the subproblein V[xi = Vi][x2 = ^>2]--小1.卜1 二

v,-l][x.^ = v]. Formally, we consider two conditions: 3v G A s.t. \/v\ G

Di’ v,_i G A —1:

A-cost(P[:ci..,—i = "1.,,—i”r, = ”]) > ub (4.1)

A-cost(P[j;i.,,_ i = = v]) < lb (4.2)

When any of the above conditions is satisfied, we can apply alpha-beta pruning

according to Table 4.1.

A-cost > ub < lb
Q, = 二 nii i i prune v backtrack
Q, 二二 max backtrack prune v

Table 4.1: When can we prune/backtrack

T h e o r e m 4.1. Given a QWCSP V. If Condition (l) / (2) for V is satisfied, applying

primings and backtrackings according lo Table 4.1 is sound.

Proof. (Skctch) Reasons to perform primings and backtracking for min and max arc

syinmclrical. Wc only dcscribc ihc ease where Q, = inii i. Suppose Condition (1)

(Ihipfcr 4 Branch Bound wUh (\)nsislency 'lechniijucs 5H

holds. Wc consider A-('()‘st(s) for sub-problems ,卜丨 二 “] i j . Without loss

of generality, wc write V i - \ to be one of these sub-problems = " i i j by

f ixing values G D i , ih G D‘2, • . . , u, —i G D丨小 Wc wi l l see the proof using V,—]

applies for all sub-problems = " i . , 一丨],regardless on which values we fix.

Given Q, 二 mill，we obtain:

A-(、()st("P卜 1) 二 mi l l V, 1 .r, = a

I f A-cc)st.(P, _ 1) < ///；, the fol lowing must be true:

3/’' G D, where v d s.t. A-(‘()st,(P,一 ！ |:r, 二 /“]) < yh

Pruning value v does not change the A-a)st of /), i. I f A-cost(P,__i) > ub, i.e.

Vi — Y must not lead to solutions, the fol lowing must be true:

W G A ’ A-cost("P卜_j[./:, 二 •"’']) > lib

After pruning value v’ either domain wipe out occurs or A-cost (P卜 !）> ub. For

both cases, the sub-problem V卜]_ cannot lead to solutions. Combining the two

cases, pruning value v does not change the problem from unsatisfiable to satisfiable(

,and vice versa).

We now discuss Condition (2). Similar lo the previous case, we consider the

A-cost for these sub-problems] = r] . . , 丄 and we fix V 卜、 t o be one of

these sub-problems similarly. Given Q, = ini i i , we obtain:

A-cost(P, —1) 二 mi l l V, 1 ./., 二 a
(lei)丨 丨

By Condition (2), "P,—i [z、: = “] < lb holds, and therefore:

A-a)st(P,— i) <

Recall A-cost(P[rr i . . ,_i = = t']) < lb applies regardless on which value

v\ , V2, • . •, Vt~\ we fix. Therefore, we obtain:

V'"i G /J>],...，t̂ :—i G A - i , A-cosi(P[.7;i.,, 1 = < lb

(luiplcr 4 I) r a n c h Bound with C\)nsislency Techniques 59

厂、Upper bound ub : 10
(2 j) Lower bound lb : 1

max b c

© &
a b a b

mm X2

© ® ① ©
— a b c a b c a b c a b c

Figure 4.3: Label ing Tree for Example 14

We can easily obtain the fo l l ow ing results using the def in i t ion o f A-cos t for a

QWCSP:

A - c o s t (巧 < lb

QWCSP V must be unsatisfiable, and the solver can backtrack. •

Examp le 14. Given a QWCSP V with ihe ordered sequence of variables (丄 1’工2’丄'3).

domains Di = {cuh.c}. D2 = {a. h}, and D：^ = {a,6,c}, the quantifier sequence

(Q i = max. Q2 = rnin. Q：̂ = nuix) . and the global upper bound 10. Suppose the

A-cost / o r ihe sub-problem V\x\ 二 is I. Figure 4.3 shows the upper bound ub,

lower bound lb, and the A-cost for the remaining sub-problem. By inspecting the

figure, we can easily observe Condilion (2) holds: 3a G s.t. V " ! G D i , Vt'2 G

D2.

A - c o s t (P [, T] = Vi][X2 二 [工 = a]) < lb

By Table 4.1’

we can prune value a of x^. We can easily observe the solution must

/7o/ contain ihe assignment Xg 二 a, and therefore, prune the value. After priming

a ofx：^, we can easily observe Condilion (1) holds: 3h G Do s.t. V r , G ’

A -cos t , (" I " ; 1 : : /；,]|.7-2 = /；])> lib

“少 similar reasons, vi^c can prime value h of.i y.

(7 / (/ /) / t ' / . -/ Hnincli Bound with 川‘、im'iuy Teclinicjiics 6 0

, , 、 U p p e r bound ub : 10
(^0 j Lower bound 11) • 1

m a x .1.1 b c

© 0
a b a b

m a x

© © 0 ©
"川u、 a b c a b c a b c a b c

Figure 4.4: Label ing Tree for Example 15

E x a m p l e 15. Suppose the quantifier sequence of Example 14 is replaced by (Q i =

m a x . Qo = max , Q3 = min) , and the A - c o s t / o r the sub-problem V[xi = a] remain

unchanged ("A-cost(V [x 1 = a]) = I). Figure 4.4 shows the upper bound ub, lower

bound lb, and the A-cosi for the remaining siih-proh/em. Costs for each complete

assignment remain the same as in Example 14. The only difference is the modified

A-cost for sub-problems, resulting from I he change in quantifiers. By inspecting

the figure,]ve can easily observe Condition (2) still holds: 3(i G D、s.t. V r] G

A - c o s t (P [. r i = [丄.2 = (i\) < lb

As Q3 二 min, we can easily observe all the A-cos t for sub-problems V[xi =

巧][工2 =巧]，Vui G Di, V2 G D2 must be less than or equal to the lb. By induction,

we can conclude sub-problems V[xi 二 G D i must be less than or equal to

the lb, andfinally obtain A - c o s t (P) < lb. Therefore following Table 4.1，the solver

can perform backtrack.

In other words, Condi t ion (1) and (2) are suff icient condit ions for the pr imings

and backtrackings in Table 4.1.

To chcck Condi t ion (l) / (2) , one way is lo find the exact value o f A-cost, for

each sub-problem, which is computat ional ly expensive. The problem is essentially

(luiplcr 4 I)ranch Bound with C\)nsislency Techniques 61

equivalent to determining i f a variable assignment belongs to a solution in classical

CSPs in general, which is NP-hanl A common technique in constraint prograin-

tning is to formulate consistency notions and algorithms, which aim at extracting

information in a problem to make it explicit. Useful information includes pruning

and cost information. Here we apply the same idea. We give some efficient ways

to extract a good upper bound and lower bound of A-cost, so as to backtrack or

identify non-solution values from domains early in the search.

In the QWCSP solver (Figure 4.2), lines 5-18 prune or backtrack according to

the conditions specified in Table 4.1. Sincc finding A-cost is difficult, the algorithm

finds the approximated bounds (app rox—lb in line 1 I, and a p p r o x _ u b in line

15). Functions a p p r o x lh(V..v, = /’）and approx_ub(7^ , x, = ?,’) find the

approximate A-cost for the set 5 of sub-problems, where:

<5 = 二 卜 1, J;.,: = G D i , . . . ’m—i e A—i }

such that:

e A-cost(P') < a p p r o x — = v) ,and

VP' G S, A-cost(P') > a p p r o x _ l b (P , : r , = v)

a p p r o x _ u b (P , x, = v) is tight if:

m^xA-cost (P ') 二 appr〇x—ub(7^iC, = v)

Similarly, a p p r o x _ l b (7 ^ , .r, 二 v) is f i g h if:

mm : a p p r o x — l b (P ’ 丄.，=r)

Corol lary 4.2. Given a QIVCSP V, If approx—ub{V, 二 r ’ ） < //；, ”,c) can

飞鞭 of variable ./;」,：if Q, : : max. and perform backtrack i / Q , : miii.

1/ approx—lb(V,x 丨=v) > vh, vue can prune value v of variable ,r 丨 i / Q , —二 inin,

and perform hack!rack if'Q, 二 丨 mi,x.

('/i(i/)icr 4 Brunch S： lyoiun/ wilh (\)nsislcncy TucI川iqiiL's 62

Proof. (Skctch) Wc can easily observe the following:

Ih > approx_ub(7-^, x, = v) > 1 二—-.,卜 i，./;, = v

"b < a p p r o x _ l b (P , ; i ; ,： 二 v) < i = ' " i . , , — i，. t , 二 u

Vt] G Di. ih G /) 2 ， . . . ， • " 卜 1 G /) 卜 i. Condition a p p r o x _ u b (P , x, 二 v) <

lb implies Condition (2), and condition a p p r o x — l b (7 ^ .r, 二 ？.'）> vh implies

Condition {1). We then apply Tabic 4.1 according to these conditions. •

We have designed two kinds of consistency notions: node consistency and arc

consistency, which extract the approximalcd upper and lower bounds (hence im-

plement a p p r o x . u b and a p p r o x . l b) for QWCSPs.卜or simplicity, we restrict

our discussion only to zero-arily constraint C0, unary constraints C " and binary

constraints C,j.

We first discuss Node Consistency notions which use mainly unary constraints

to perform pruning. Then we discuss Arc Consistency which takes all of C0. unary

conslrainls and binary constraints into account. Our algorithms can be generalized

to higher-arity constraints.

4.2.1 Node Consistency

Overview

The Node Consistency algorithm depends on three components: a lower bound for

A-cost, similarly an upper bound, and a weak-NC* notion. We first discuss the

intuition and definition for each of them, and then demonstrate how to integrate

them with our proposed QWCSP solver (Figure 4.2).

Lower Bound of A-Cost

We consider computing bounds by closely examining unary constraints. The func-

tion ncujiV, X,, = v) returns a lower bound for all sub-problems with value v as-

signed to variable .x,.

(luiplcr 4 I)ranch Bound with C\)nsislency Techniques 63

Def in i t ion 4.3. The function n(:n,{V, x, 二 v) approximates the A-cost /r ;r a set S

of sub-problems:

{Pki.,卜 1 = '[’ 1..,一 1..1., 二 v\\\/v^ e Di, 1)2 e 0-2,...,从卜1 e

in which value v is assigned to variable x,j:

ncib{V, X, = v)三（^0 © Ci,{v)① mm Cj(u) ffi max Cj(u)
^ ^ ueDj . ^^ ueDj J •.i<j f\Qj—nwn J:i< J. AQ尸maX

where Qj is the quantifier for variable Xj.

Theorem 4.4. Vt;： G 卜] G A - i , A-cost(P[xi..^_i 二 巧..卜i，：?：！ = v]) >

ncib{V,Xi = v).

By Theorem 4.4, the function ncu,(V. x, = v) returns a lower bound for all

sub-problems with value v assigned to .7:,.

Proof, (sketch) C^ gives the global minimum costs, and C,(t') gives costs when

value V is assigned to variable j:丨.Including these two terms to the lower bound

estimation is trivial as these costs must incurred to all sub-problems P[.ri」—！=

”L t - i ,工 t 二 v]. Intuitively, we should count the minimum unary costs for variables

Xj where j < i to make the lower bound tighter. We choose to ignore these unary

costs. The reason behind is that we wil l perform unary projections projecting the

minimum costs of each unary constraint to C^, and as a result, the minimum costs

for these unary constraints arc always 0. Consider the node corresponding to sub-

problem V with x, = v. I f ft+i = max, the cost of its child node is at least the

maximum cost of Q+u since the max quantifier wi l l choose a solution at least as

great as max C⑷.L ikew ise , i f Q “ i = min, the min quantifier wi l l choosc sub-

problem with the minimum cosl. The reasoning process continues recursively until

the leaf node. Therefore, we can add unary costs given by C ” j > / according to

the quantifier Q，to make the lower bound estimation tighter. •

C Ihiplcr 4 Ih'dHch Bound with (\)nsislencv 'H'chriKjucs 64

lo simplify our notations, wc write the minimum costs imii"r：：/), (T a n d max-

iniuni costs iuax"“)，（：(//) o「a unary conslraini C丨 as Follows:

mil l C, — mil l C,(i i)
• uci), •‘

max C, 二 inax C , [u)
ueDj

Wc then define QjC) as follows:

/

mill C, Q / 二二 mil l

稱 H ….
nicix Cj i f QJ = in ax

\

We can now write function ncu,{V, x, = v) in a more compact way.

ricii,{V. X, = v)三 C0 ① C,(t’)①① QjCj

J-KJ

Readers may be aware that there may be ways to achieve a tighter bound: 1)

replace / < j by / ^ j , and 2) modify x, 二 v) such that it returns a

lower bound of the A-cost of P[i：, = ,’]. However, these changes lead to unsound

primings, which we demonstrate in Example 16.

E x a m p l e 16. Given a QWCSP V with the ordered sequence ofhvo variables (“、，.r)),

domains Di 二 D‘2 二 {a’/)}’ (m'o unary conslrainls Cj and Cy. one binary con-

straint Ci,2, and a quantifier sequence [Q^ 二 m a x , Q^ = min). We denote the

global upper bound by k. Non-zero costs given by constraints are listed as follows:

C i (a) = 50’ C2{a) = 9, C、2賴=k. If k = 59’ the A-cost ofV is 50. Fig-

ure 4.5 shows the labeling tree for V. I f i < j is replaced by i + j in Definition 4.3,

nciiXV, X2 二 a) returns 59 > A-cost(P[:r;i =,)][工.2 二 - 9. If ncii)、V山―=o)

returns the lawyer bound approximation o/'A-cost(^[.ro = a]), it may return 59.

Both cases may cause value a ofx^ to be pruned. Figure 4.6 shows the labeling tree

after pruning, and we can easily observe I he A-cost of the new problem changes

from 50 to 59. The pruning is unsound.

(luiplcr 4 I)ranch Bound with C\)nsislency Techniques 65

(50)

max x\ a b

@ ©
mm .1:2 a b a b

(59) (59)

Figure 4.5: Labeling Tree for Example 16

@
a h

max 3：丨 a u

(50) (59)

min.7:2 b b

@ @
Figure 4.6: Labeling Tree for Example 16 after pruning a of.r^

(Ijciplcr 4 Hrnncli cC Bound with ('on.sislcncv '/cchni(/iii'\ 66

I ' ppcr Bound of A-Cost

Coinpiil ing the upper bound is less straightforward. Unlike its lower bound coun-

terpart, in which we know the minimum cost is always 0, wc need to take all con-

straints into account. In particular, maximum costs max；,战’拔/」」C),j{u, v) for each

binary constraint C ” are needed in order to com pule a correct upper bound. We

use max C,丨 lo denote the maximum costs m a x "叫.丨,；^/) , C,j[u’ ") for a binary con-

slrainl C,

D e f i n i t i o n 4.5. The funclion n(、“) approximates the A-cost for a set S of siib-

prohlems: = "i.,,:i’.r,=叫|Wi G "i,/’」G Do r, , G A——i}

in }\'hicli value /' is assigned to variable

丨丨〔‘1山[7\ 二 r)三 Co © C ; (r) ① ④ QjC丨①① max C〗9 0 max C,,

'<J .!<' J 补

Theorem 4.6. V l ' i G A ’ 卜 i ^ A—i’ A-cost(P[:Ci..卜i = = i']) <

riCybiV, X, = v).

By Theorem 4.6，the function nc、山{V, .i:丨 二 r) returns an upper bound for ail

sub-problems with value v assigned to x ”

Proof, (sketch) The main idea for the first Ihrcc terms is similar to that of the lower

bound. However, lo get the upper bound, we have lo lake into account of every con-

straint in the problem. Otherwise, the upper bound may be incorrect. We consider

the maximum unary costs, for variables Xj where j < /. Maximum costs given by

binary constraints, which are precomputed before scarch, are used as a weak uppcr

boLind for binary constraints. The fourth term takes Ihc maximum cost for unary

constraints before '/:, and the fifth considers all binary constraints. Recall thai, for

simplicity, we only allow Q , unary constraints, and binary constraints. •

(luiplcr 4 I)ranch Bound with C\)nsislency Techniques 67

Similar to nc",, there may be ways to achieve a tighter bound for nCy},: 1) replace

I < J by / • J, and 2) modify nCubiV, x., = v) returning the upper bound for

V = t'J. However, due to similar reasons as illustrated in Example 16. These

modifications are unsound.

Projecting Unary Costs to C^

In WCSPs, costs can be projected from higher arity constraint to lower arity ones

to achieve propagation. The function ncit does not take all unary constraints into

account. I f we are able to project some unary costs to C0, we can make ncib[V, x i =

v) a tighter bound.

Suppose there is a variable x e D = {a, b} and a unary constraint C over

X where C{a) 二 1 and C(b) = 2. In any assignment, the cost incurred by C

is at least 1. We can project a cost of 1 from C to the zero-arity constraint C^.

After projection, the cost of C is therefore changed to C{a) = 0 and C{b) 二 1

and C0 = 1. Pro jec t ion preserves problem equivalence, and it is discussed in the

background section. Before computing the bounds, we require weak-NC to hold

to achieve stronger propagation.

Definition 4.7 (Weak-NC*). V/, Eh e D, ： C,(v) = 0.

By enforcing weak-NC* using unary projections, we can make ncik{V, x, = v) a

tighter bound. However, weak-NC* docs not improve since the maximum cost

of all constraints have already been taken into account. For completely instantiated

unary constraints, weak-NC* wi l l projcct costs w.r.t. the assigned value to C0.

E x a m p l e 17 (L o w e r Bound) . fVe re-use Example 13. Suppose we arc at siih-

prohlem V' 二 a] and we have j us! visited the further siih-problem V'l.vo =

" I which have a new upper hound of 10. Before visiting V'l.vo 二 h], u'c irv lo prune

、(證 vcjliies according lo Table 4.1 using the new upper bound. In parliciilcn： //(.",

/‘s, applied. First, since .r, is hoimcl, /he unary cos! C\ (a) is pwjcctcci to and ” r

(li(i/)lcr 4 Brcinch Bound with (\)nsislency Tcchniijiics 68

hdvc (4. J Vc want to check if the value I) am he pruned from 1)2. In (he suh-

prohloii 'P'lr-2 ()\, the quantifier Q：^ is i iu ix, and il will take at least the maximum

unary cosl max C：^. We have C^ + C^^l)) + max C、二二 1 + 2 + 厂）> 11 > ul). The

cosi of (my cissignnicnl in the sub-pwhleni V'\.V2 /」is ul least 11, which is greater

than the upper hound 10. The value b can therefore he removed from domain /)‘」.

Notice lhal such node is not pruned by basic alpha-beta pruning.

Examp le 18 (Upper Bound). Consider the sub-problem V' 二 V[xi = b] [：7；2 = a .

The search algorithm currently has a lower bound of 10. We want to check the

A-cos t C0 has a value of 0, and both C\ and C2 incur a cost of zero. It remains

lo consider all other constraints. The easiest M'ciy is to sum up the maximum cost

of every remaining constraint. The sum is 8, which is less than the lower bound.

According to Table 4.1 ’ the algorithm can backtrack.

We are now ready to integrate all components to define Node Consistency.

Def in i t i on 4.8. A QWCSP V is Node Consistent (NC) when the following condi-

tions hold:

V/. 3v G D, : C-,{v) :: 0 (Weak-NC*)

V.i', e X y v e D 丨 : n c i i (V . X, -二 r) < uh A "(.丨“八V. j•丨 二 r) > lb

where ub and lb are the upper and lower hounds in alpha-beta pruning.

4.2.2 Enforcing Algorithm for NC

Achieving NC using the QWCSP solver (Figure 4.2) is easy. The solver would

maintain the three NC conditions: 1) weak-NC*, 2) ncii{V, x^ = v) < ub’ and 3)

nCub{V, x^ 二 z ;) 〉 l b , in a step-wise manner. We use projection algorithms from

WCSP solvers to maintain weak-NC*. To maintain condition 2) and condition 3),

wc use pruning/filtering algorithms to prune values v of variables x, which do not

satisfy either condition 2) or condition 3). We then add extra routines for these algo-

rithms to handle backtracking cases. Writing such pruning/filtering algorithms can

(luiplcr 4 I)ranch Bound with C\)nsislency Techniques 69

be seen as implementing functions app rox—lb (line 11) and a p p r o x _ u b (line 15)

in Figure 4.2 by ncib and ncui) respectively. We note that after enforcing condition 3)

and a value v of variable x^ is being pruned, variable Xi may loss weak-NC* prop-

erty. One way to re-enforce weak-NC* is to allow the propagation routine repeats

(the while loop in lines 7 to 19) until no domains are further reduced.

We now explain the NC enforcing algorithm in details, by showing the algorithm

QWNC-1 (P) in Figure 4.7. The algorithm is divided into two phases: projection

phase for enforcing weak-NC* (line 6 to 7), and pruning phase (line 9 to 25) for

enforcing condition 2) and 3).

Projection Phase

In the projection phase, we perform unary projections for all unary constraints

similar to the NC* enforcing algorithm for WCSPs. We re-use function

u n a r y P r o j e c t in the NC* enforcing algorithm (line 7).

Pruning Phase

We then use two functions QWNC-1 - L b A p p r o x and QWNC- 1 - U b A p p r o x to en-

force the two condit ions ncit{V, x, = v) < ub and nCuh{V, x, = v) > lb respec-

tively in the pruning phase. The main goal of these two functions is to compute

expression ncuJiic,,i, by gathering required costs from constraints. After the expres-

sions are computed, bounds wil l then be checked and prunings/backtrackings wi l l

be performed accordingly.

Intuitively, we need to form the two expressions 0 (nd) times (, where n is the

number of variables and d is the maximum domain size), as values of all variables

are required to be checkcd. Inspecting costs for unary constraints and binary con-

straints, which are stored in tables, takes time. One way to reduce the complexity

or this procedure is to pre-computc terms in expression nc", and nc,山 before calling

the tw。rimctions. Terms such as: max C,；,④.〗〈：丨 Q j C ” and ①,<,ma,x r； in m.",

(luipun- 4 Ih-mich (X. Bound with (\)nsislcncv Tcchniciucs 70

I function QWNC 1 (P)

.’ change t rue
‘ while change：
•I changc - fa lse
、 / / Projection Phase
0 fo r :i i n I "1 . .n] :

unaryProject: (Ci)

s / / Pruning Phase
。 f o r 土 i n [1 . . n]：

10 MaxUnaryCost [i] = maxCost:(Ci)

11 fo r 士 i n [1. .n]：

12 SumOfUnaryCostsAfter [i] = 0

fo r j i n [i + l . .n]：
II if Qj == max:
IS Sum〇fUnaryC〇stsAfter[土] += MaxUnaryCost[j]
1 丨、 fo r 1 i n [1 . .n]：

r SumOfUnaryCostsBefore[i] = 0

IS fo r k i n [1 . . i - 1] ：

i、> SumOfUnaryCostsBefore [i] f = MaxUnaryCost fk]

:o if QWNC-l :LbAppr〇x(P,M)：
change 二- true

22 i f doireinWipeOut () ： re tu rn
i f QWNC-l-UbApprox(P,M)：

:4 change -- true

25 i f domainWipeOut: () ： re tu rn
26 return

27 function QWNC-1 -LbApprox (P, M)
28 change = fa lse
24 fo r i i n [1 . .nj ：

30 for V in Di :
31 if C—NULL + C_i(v) + SumOfUnaryCostsAfter [i] >= ub：
32 if Qi == min：
33 prune (x i ,v)
34 change = t rue
35 if Qi == max:
36 pruneAll (xi)
37 change = t rue
38 re tu rn change
39 return change

40 func t ion QWNC- 1 - UbApprox (P, M)
41 change = fa lse
42 for i in 11. . n]:

43 fo r V i n Di ：

44 if C—NULL + C_i(v) + SumOfUnaryCostsAfter[i1 +

SumOfUnaryCostsBefore [i] + b i n a r y M a x O < : lb:

46 i f Qi .:= max：
17 prune (xi,v)

4H change = t rue
44 i f Qi 二 = rrdn:

so pruneAll (xi)

SI change = t rue
、i return change

Si return change

Figure 4.7: Enforcing algorithm for NC

(luiplcr 4 I)ranch Bound with C\)nsislency Techniques 71

and ncub are precomputed before calling the two function QWNC - 1 - L b A p p r o x

and Q W N C - 1 - U b A p p r o x . We now explained as follows.

To ensure efficient access to the maximum costs rna,x C, of unary constraints

C, in both functions, we store these costs in the array M a x U n a r y C o s t (line 10),

where M a x U n a r y C o s t [i] holds the maximum costs for unary constraint C ” We

use the function maxCos t (C) to compute the maximum possible costs given by a

constraint C, where the constraint, in general, can be a constraint of any arity.

The two functions also use an array S u m O f U n a r y C o s t s A f t e r to compute

Q j C j for all variables x^ (line 11 to 15). We can view the array element

S u m O f U n a r y C o s t s A f t e r [i] stores costs generated by unary constraints on

variables j where j > i.

In addition, Q W N C - 1 - U b A p p r o x uses an array

S u m O f U n a r y C o s t s B e f o r e to compute max Cj for all variables x^

(line 16 to 19). Similar to the array S u m O f U n a r y C o s t s A f t e r , we can view the

array element S u m O f U n a r y C o s t s B e f o r e [i] stores costs generated by unary

constraints on variables j where j < t.

A function b i n a r y M a x () is used to query the summation of maximum costs

for all binary constraints, which is precomputed before search.

We use a function p r u n e A l l (x i) to prune all values of variable x i , and a

function d o m a i n W i p e O u t () to detect i f there exists a variable with empty do-

main (i.e. all values being pruned). These two functions are used to detect back-

tracking cases.

Time Complexity

Theorem 4.9. QWNC-1 runs in lime where n is the number of variables,

ond d is the maximum domain size of the corresponding QWCSP.

Proof： (Sketch)

(luiplcr 4 I)ranch Bound with C\)nsislency Techniques 72

I'imc complexity for computing u n a r y P r o j e c t (or all unary c()n-

straints and ihc array MaxUnaryCost arc both 0{n(l). To achicvc

a bcUcr lime complexity, we choosc lo pre-compute ihc two arrays:

S u m O f U n a r y C o s t s A f t e r and S u m O f U n a r y C o s t s B e f o r e in a recursive

dynamic programming approach before calling QWNC- 1 - L b A p p r o x (P, M) and

QWNC-1 -UbApp rox (P, M) . Wc can express S u m O f U n a r y C o s t s A f t e r [i]

and SumOfUnaryCostsBefore [i] as follows:

0 if/:-—//

S u m O f U n a r y C o s t s A f Lerl? + 1|
S u m O f U n a r y C o s t s A f ter[/]=

+MaxUnaryCost|v； -4 1| i f + i = m a x . I </.< n - 1

S u m O f U n a r y C o s t s A f t e r (z + 1] i f = min, 1 < ^ < n — 1
•

0 i n 二 1

S u m O f U n a r y C o s t sBefore[z] = S u m O f U n a r y C o s t sBefore[z — 1)

、+MaxUnaryCost:l/ — 1] if2 $? $ n

It is easy to see by modifying the computation of array S u m O f U n a r y C o s t s A f t e r

and S u m O f U n a r y C o s t s B e f o r e in a recursive dynamic programming approach

(line 1 1 to 1 5 and line 16 to 19 in Figure 4.7), ihc computation time reduces to time

0 (i i). Q W N C - 1 - L b A p p r o x and QWNC-1-UbApprox , both computing costs for

each value of all variables, run in time 0(n(l). I f a value is pruned, the propaga-

tion routine may repeat. There are 0{n(l) values’ therefore, the propagation rou-

tine can repeal at most 0{nd) time. Overall, the lime complexity for QWNC-1 is

Oin^cfy •

(luiplcr 4 I)ranch Bound with C\)nsislency Techniques 73

4.2.3 Arc Consistency

Overview

E x a m p l e 19. Given a QWCSP V with an ordered sequence of two variables { x] , X2),

domains Di = D2 = {a, b}, two unary constraints Ci and C2, one binary con-

straint C[’2’ a quantifier sequence (Q1 = m i n , Q2 = max) , and a global upper

bound k = 10. Non-zero costs given by constraints are listed as follows: C\ {a)=3,

C2(a)=2, Value a of Xy can be primed as A - c o s t = aj) > k.

Enforcing NC on V cannot prune this value. Even if we apply binary projections on

no costs can be projected lo unary constraints to trigger primings by NC.

We need to consider quantifier properties in order to define Arc Consistency

(AC) in the QWCSP framework. Based on the costs of unary and binary con-

straints, we can define functions to compute a tighter lower and upper bounds to

A-cost. These functions, however, depend on the quantifiers associated with the

two variables in the binary constraints under consideration. There are four com-

binations of min and max, and two bounds to compute. We have a total of eight

functions, split into two categories: functions ac$’仏 for computing the AC upper

bound, and functions ac?:。' for computing the AC lower bound of the A-cost for

a set S of sub-problems:

{巧:6.1.,卜1 = 'L'l.,,-小丄，二e Di, V2 e Do t’卜 1 G —

in which value v is assigned to variable x,. We always assume / < j in the following

definitions.

Lower Bound of A-Cost

Def in i t i on 4.10. The funclion a(忿，approximates the A-cost for the set S ofsiib-

prohlems:

ar.f = V)三 C0 ① C,(v)①① Q,C, 0 ⑶,①。,"（"，n)}
k-i.<kr\jr/k ‘

(Inipicr 4 Hrcincli (X’ Bound wif/i (\)fisislcncy Jcchnic/iics 74

山 。 “) Q j 丨 丨 、 i s e q i u , / la: mm,,("丨{('丨、丨i)小 C。(丨、")}//々"nun,

""(/max"、/), {(、“")① r,7(/’’"）} if Q丨 max.

Informally, this generic function is based on the NC lower bound n (: i i) i j \ :r, 二 v)

and considers a binary constraint C ” in addition. The only difference is that we

need lo pay extra attention to the unary cost of Cj . Quantifier Q丨 wi l l be used to

determine primings or backtrackings by referencing Table 4.1. For example, we are

considering a min variable x, and a max variable Xj. The function for AC can be

easily derived from the general function: ac?f;’Q]. We obtain:

«c)r)’""x("P’ •r丨-二 r) 三 ① QCu) © ① Q , C , © max . "印 {C j (u)④ u)}
k: I < /.• A] -/： k-

Theorem 4.11. Vr ! G D^’....，’,、] e f),—小 A-cost , = /丫卜]’./., 二 /,]) >

二 u).

Proof, (sketch) C^ gives the global minimum costs, and C,(v) gives costs when

value V is assigned to variable x,. Including these two terms to the lower bound

estimation is trivial as these costs must be incurred lo all sub-problems =

= v]. Similar to NC, unary costs given by variables Xj where j < i are

ignored, as the minimum costs for unary constraints are 0 by enforcing weak-NC*.

Consider the node corresponding to sub-problem V with x, = v. I f = max,

the cost of its child node is at least the maximum cost of since the max quan-

tifier wi l l choose a solution at least as great as nmxC,+ i . Likewise, i f = min,

the mil l quanlifier wi l l choose sub-problem with the minimum cost. The reasoning

process continues recursively until the leaf node. Therefore, we can add unary costs

given by 人:，/、： > /:, including C), according lo Ihc quantifier (j人’.For the binary

constraint C.,.〗 on sub-problems 二 ‘、..，卜./。二: /'], we view it as a unary

constraint C丨 by assuming value v is assigned to variable .v,. Therefore, we merge

the costs lor the binary constraint C,, with C丨 using the expression C,(u)y])C,u)

Chapter 4 Branch & Boimd wilh Consistency Techniques 75

for the approximation. The third term is modified to prevent double counting the

unary constraint Cj. •

Upper Bound of A-Cost

Definition 4.12. The function aĉ ；"̂ ^ approximates the A-cost for the set S of sub-

problems:

k:i<kAj=^k k<i

© ① r i m x Q c / 巧 ④ C：”如，w)}
CkieB 3

• 丨 = { C k l e C\k / l } - { C , j } , Qj."叫{Cj_C,ij(:u、u)、is equal lo: {C, (w)e

if QJ = mill, and 丨{Cj(u) © (y;, } if Q] = max

Theorem 4.13. V . l ’ i G A … i e： A-cost(P[xi, , ,_i = '"1.,卜1，工,:=t']) <

；’〜〜二 t’).

/Voo/ (sketch) Similar to the NC upper bound n c ‘ computing the upper bound is

less straightforward, and we need to take all constraints into account. The function

is based on the nCubiV. x., = v) and considers a binary constraint C ” in addition.

丁he first five terms are adopted from the NC upper bound. The main difference

is that we take account of the binary constraint Q] . We apply the same technique

in AC lower bound. For the binary constraint Q j on sub-problems 巧:i、.,卜i =

二 4 we can view it as a unary constraint Cj by assuming value v is

assigned to variable x,. We merge the costs for the binary constraint C ” with C」

using the expression ①(7” ("，u) (sixth term) for the approximation. The third

term and the fifth term are modified to prevent double counting the unary constraint

CJ and the binary constraint C”. 口

Projecting Binary Costs to Unary Constraint

To maximize propagation as in the ease o f N C , wc wi l l adopt part o「Ar* |23| in

our Arc Consistency notion.

(’//‘//"(_,/• -/ Branch cC Bound wilh (\)nsislcncy Techniques 76

Del ini t ion 4.14 (Weak-AC*).

G !)”3v.) G Dj : C”{v”u)、=()

y c , j y v j G Dj,3i’, e D丨：C丨」(v,、”“ = ()

Similar lo NC, by enforcing weak-AC* using binary projections (discussed in

the background section), we can make "r" , ('P’ . r , 二。V(i(.ih(V.丄.丨 二 /’）a lighter

bound. I lovvevcr, weak-AC* does not improve n(\hl(i(‘uh since the maximum cost

of all conslrainls have already been taken into account.

D e f i n i t i o n 4.15. A QWCSP V is A rc Consistent (AC) when the following condition

holds:

V?：, G D, :C,(v) = () (Weak-NC*)

VC;:pV叫 G D ” 3 u j e D j = 0 A

、C.i]Mv] E Dj,3vi e D, :C,j{v,, Vj) 二 0 (Weak-AC*)

G A : :a(/jj;’Qj(V、、i:, = L,) < ah A

E D, 二 v) > lb

where u b and lb are the upper and lower bounds in alpha-beta pruning.

4.2.4 Enforcing Algorithm for AC

Similar to the NC enforcing algorithm, achieving AC in the QWCSP solver is easy.

The solver would similarly maintain three conditions: 1) weak-AC* and weak-NC*.

2) 二 v) < ub, and 3) ac^l/^'{V, x, = d) > //；, in a step-wise man-

ner. Wc use projection algorithms from WCSP solvers lo maintain weak-AC* and

weak-NC*. To maintain condition 2) and condition 3), we derive pruning/filtering

algorithms based on the NC enforcing algorithm to prune values v of variables .r,

which do not satisfy either condition 2) or condition 3). Writ ing such pruning/fil-

tering algorithms can be seen as implementing funclions a p p r o x . l b (line 1 1) and

(luiplcr 4 I)ranch Bound with C\)nsislency Techniques 77

a p p r o x _ u b (line 15) in Figure 4.2 by acf^ ' ^ ' and ac〒丄'()。respectively. Similar to

the AC* enforcing algorithm for maintaining AC* in WCSPs, constraints may loss

weak-AC* property after a value is pruned during enforcement of condition 2)/con-

dition 3). To handle this situation, the propagation routine repeats (the while loop

in lines 7 to 19) until no domains arc further reduced.

We give a detailed combined AC and NC enforcing algorithm for the prop-

agation routine in Figure 4.8. The enforcing algorithm QWAC-1 is divided into

projection phase (line 5 to 9) and pruning phase (line 10 to 33). Projection phase

enforces weak-AC* and weak-NC* by performing projections, while the pruning

phase enforces other remaining conditions by performing prunings/backtracks. To

maximize pruning opportunities in the pruning phase, we enforce weak-AC* and

weak-NC* by the projection phase first.

Projection Phase

The projection phase enforces weak-AC* by calling function b i n a r y P r o j e c t ,

which performs binary projections similar to function F i n d S u p p o r t A C 3 in the

AC* enforcing algorithm for WCSPs. After enforcing weak-AC*, it wi l l enforce

weak-NC* by calling function u n a r y P r o j e c t , which performs unary projec-

tions similar to the NC enforcing algorithm. Function b i n a r y P r o j e c t enhances

FindSupp〇rt:AC3 by updating the data structure storing the maximum costs of

a binary constraint (funclion u p d a t e B i n a r y M a x C o s t in line 54) i f costs are

being projected (line 41 and 49).

Pruning Phase

In the pruning phase, we enforce condition 2) and condition 3) by per-

forming prunings. Function Q W A C - 1 - L b A p p r o x in Figure 4.9 and function

(Ihipici- 7 Hrnficli (X’ Hound with (\)iisislL'ncy Tcchni(/iics 78

QWAC - 1 - U b A p p r o x in Pigiirc 4.10 show ihc prLining/filtcring algorithms (or cn-

torcing condition 2) and condition 3) respectively. Again similar to the NC" en-

forcing algorithm, ihc main goal of these two liinclions is to com pule expression

by gathering required costs from constraints. After ihc expressions

arc computed, bounds wi l l then be checked and prunings/backtrackings wil l be per-

formed accordingly.

Line I I to line 21 shows the computation of arrays M a x U n a r y C o s t ,

S u m O f U n a r y C o s t s A f t e r , and Sumof U n a r y C o s t sBe f o r e for the expres-

sion max C,. ©/,’:,〈人’ QkCk, and 人 m a x CV respectively. Details for these com-

putations are slated in the NC enforcing algorithm.

The two functions both need to compute costs for the term 田。〈/^、〜]种 QkCk-

which is equivalent to this term:①人.:,</、. QkCkOQjC, , assuming ① 人 Q k C k must

have costs smaller than the global upper bound. Obtaining costs for the resulting

term is easy, we can substract term Q丨C丨 from the /出 element in the pre-comptued

array S u m O f U n a r y C o s t s A f t e r . By vvcak-NC*. costs for the term Qj C, must

be 0 i f Qj 二 mil l . Therefore, we only need to consider the subslraction i f Q^ 二

max. Line 5 in Mgure 4.9 (, and line 5 in Figure 4.10) shows the compulation.

Function QWAC- 1 - U b A p p r o x computes the term max C^i in line 7.

which sums up all the maximum costs for all binary constraints except the current

checking binary constraint C ” . We use a function b i n a r y M a x () to return the

summation of all maximum possible costs given by all binary constraints, and also

a function m a x C o s t (C) to return the maximum costs of a constraint C.

After computing all the terms, the remaining for loops (QWAC-1 - L b A p p r o x :

line 6 lo 30, QWAC - 1 - U b A p p r o x : line 8 lo 34) compute the lower bound approx-

imation (upper bound approximation resp.) according lo the definition of ocl '^^ '

resp.). We then perform prunings/backtrackings accordingly.

(luiplcr 4 I)ranch Bound with C\)nsislency Techniques 79

Time complexity

Theorem 4.16. QWAC-1 runs in lime + ned、），where n is I he number of

variables, d is the maximum domain size, and e is the number of binary constraints

in the corresponding QWCSP.

Proof. (Sketch)

In the projection phase, we perform projections followed by pre-computing

data structures for the pruning phase. We compute u n a r y P r o j e c t for

all unary constraints and the array M a x U n a r y C o s t using time O(nri),

which have been shown in the NC enforcing algorithm. We also com-

pute b i n a r y P r o j e c t for all binary constraints using time O(ecP).

Recall in the NC enforcing algorithm, we pre-compute the two ar-

rays: SumOfUnaryCostsAfter and S u m O f U n a r y C o s t s B e f o r e for

QWNC-1-LbApprox and QWNC - 1 - U b A p p r o x in a recursive dynamic pro-

gramming approach using time 0 (n) . These computations are re-used in the AC

enforcing algorithm. We do not need lo re-construct these two arrays in functions

Q W A C - 1 - L b A p p r o x a n d Q W A C - 1 - UbApprox.

The solver maintains a data structure which uses 0(e) space to store the max-

imum costs for each binary constraint, and 0 (1) space to store the total sum of

these maximum costs. We update the data structure during projections (in fuiic-

tion b i n a r y P r o j ect), and assignments. Therefore, the time being used to query

b i n a r y M a x () and m a x C o s t () for a binary constraint are both 0 (1) .

It is not hard to observe the time complexity of function Q W A C - 1 - L b A p p r o x

and Q W A C - 1-UbApprox are both time 0 [c (f) , as these algorithms calculatc costs

by scanning tuples in binary constraints. Wc can conclude the time complexity for

running the propagation routine once is 0 [i i d + cd：'). The propagation routine may

restart when a value of a variable is pruned, and there are 0 (/ " /) values. Overall,

the time complexity of QWAC-1 is + e m / ” .

•

(liLipicr •/ Ih'LUjch cC- Bo I Hid wiih (\)}}sislcncy Tcchni(jiics 80

I f u n c t i o n Q W A C - 1 (P)

: c h a n g e 二 t r u e

‘ w h i l e change：

•t c h a n g e = f a l s e

、 / / Projection Phase
I’ for Cij in C ：

^ b inaryPro jec t (C i j)
s fo r i i n [] . . n j ：

unaryProject (Ci)
10 ,'/ Pruning Phase
11 fo r i i n [1. .n)：
I： M a x U n a r y C o s t fi] - m a x C o s t (Ci)

M for i i n [1..n]：
14 S u m O f U n a r y C o s t s A f t e r [i] 二 0

f o r k i n [i + 1. .n]：
i(、 if Qk == max：
17 SumOfUnaryCostsAf te r [i] += MaxUnaryCost [k)
15 for j in [1, .n]:

SuirOfUnaryCostsBefore [i] = 0

20 fo r k i n [1. . i — 1] :
21 S u m O f U n a r y C o s t s B e f o r e [i] += M a x U n a r y C o s t [k]

2； if QWAC- 1 -LbApprox (P, M)：
23 c h a n g e 二 t r u e

24 i f domainWipeOut () ： re tu rn
25 if QWNC- 1 - LbApprox (P, M)：
26 change = t rue
27 if domainWipeOut () ： return
28 if QWAC-1 -UbApprox (P, M):
29 change = t rue
30 if domainWipeOut()： return
3 1 if QWNC-1 -UbApprox (P, M)：
32 change = t rue
33 if domainWipeOut () ： return
34 r e t u r n

IS function binaryProject(Cij)
change = fa lse

、i fo r u i n Di ：

m i n C o s t = k

34 for V in Dj ：

40 if Cij(u,v) < minCost: minC〇st 二 Cij(u,v)
41 if m i n C o s t > 0: c h a n g e = true

42 ci (u) = Ci (u) + minCost
43 for V i n Dj ：

44 Cij (u,v) = Cij (u,v) — m i n C o s t

4s for V in Dj ：

46 m i n C o s t 二 k

47 for u in Di :
48 if Cij(u,v) < minCost： minCost = Cij(u,v)
4'> if mi.nCost > 0: change = true
50 Cj (v) = Cj (V) + minCost
51 for u in D i ：

« C i j (u , v) = C i j (u , v) - m i n C o s t

Si if c h a n g e ：

S4 u p d a t e B i n a r y M a x C o s t (Ci j)

Figure 4.8: Hnforcing algorithm for AC

(luiplcr 4 I)ranch Bound with C\)nsislency Techniques 81

1 function QWAC-1-LbApprox(P,M)

2 change = false

3 for Cij in C：

4 SumOfUnaryCos t s = SumOfUnaryCostsAfter[i]
‘ if Qj = max： SumOfUnaryCosts —= MaxUnaryCost[j]

6 for u in Di:

7 if Qj = max：

8 maxCost = 0

9 for V in Dj：

10 if Cj(v) + Cij(u,v) > maxCost： maxCost = Cj(v) + Cij(u,v)

11 if C—NULL 十 Ci(u) + SumOfUnaryCosts + m a x C o s t >= ub：

12 if Q土 = min:

13 p r u n e (xi,v)

14 change = true

丨5 if Qi 二 max:

16 pruneAll (xi)

17 change = true

return change

I') if Qj = min ：

20 minCost = k

21 for V in Dj :

“ i f Cj (v) + Ci:i(u,v) < minCost: minCost = Cj (v) + C i j (u,v)
2、 i f C—NULL + Ci (u) t- SumOfUnaryCosts + minCost >= ub：

if Qi = min：

prune (xi, V)
26 change 二 true

27 if Qi = max:

28 pruneAll (;x.i)

change = true

return change

31 return change

Figure 4.9: AC lower bound approximation

(licipicr 4 Brdnch Bound with (\)nsislcncy 'rechniijues 82

I function QWAC 1-UbApprox(P,M)

：. change - fa lse
- f o r C i j i n C：
-1 SumOfUnaryCosts = SumOfUnaryCostsAf te r [i]
、 if QJ = max： SumOfUnaryCosts .-= MaxUnaryCost [j]

(、 SumOfUnaryCosts += SumOfUnaryCostsBef〇re [i]
7 otherBinaryMax 二 binaryMax() - maxCost(Cij)
s fo r u i n Di :
q i f Qj = max：
10 maxCost = 0
11 fo r V i n Dj：
12 i f Cj(v) + C i j (u ,v) > maxCost： maxCost 二 Cj(v) + C i j (u , v)
13 i f C—NULL + Ci (u) + SumOfUnaryCosts +
14 otherBinaryFlax + maxCost <= l b ：
15 i f Qi = max：
lo prune (x i ,v)
17 change = t rue
IS i f Q:i 二 min:

… pruneAl l (x i)
20 change = t rue

return change

22 i f Qj = min:
23 mi nCost = k
24 fo r V i n Dj ：

？ i f Cj (v) + Ci; i(u,v) < minCost ： minCost = Cj (v) + C i j (u, v)
26 i f C—NULL + Ci(u) + SumOfUnaryCosts +
27 OtherBinaryMax + minCost <二 lb：
28 i f Qi = max：

prune (x i , v)
30 change = t rue
31 i f Qi = min：
32 pruneAl l (xi)
33 change = t rue
34 re tu rn change
3s return change

Figure 4.10: AC upper bound approximation

Chapter 5

Performance Evaluation

This chapter evaluates the performance of our solving techniques. To show the ef-

fectiveness of our approach, we compare our framework and techniques against one

of our related works QCOPs. QWCSPs arc special cases of QCOPs/QCOPs十[5].

Given a QWCSP, we can show how to construct a QCOP instance by the "Soft As

Hard,, approach [35], which was used to construct classical COP instances from

WCSP instances. We then conjecture, though QWCSPs are special instances of

QCOP, our consistency notions provide more pruning opportunities than those for

QCOP/QCOP+ when tackling the same QWCSP, and illustrate this using an exam-

ple‘ In the remaining part of the chapter, we provide empirical evidence to demon-

strate that our proposed solving techniques are more efficient than those for QCOPs

for tackling QWCSPs.

5.1 Definitions of QCOP/QCOP+

We first give the definitions ofQCOfVQCOPt [51. Given a set ofvariables I ' as in

classical CSPs. A restricted qiian/ifiecl set ofvariables (rqset) is a tuple ((/’ U； C)

where q G {3, V}, HZ is a subset of variables where 11' C and C is a CSP. A

/資//X P ofrqscts is a scqucncc ofrqscls {{q,, H,,, T ,) ’ . . .， (r y „ , i r „ , r j) such that

M/, n 14/乂 二 0 , V/: + J. Wc define range(P) for a prefix P with n rqscts to be [I . . /； .

he/are,/Pj to be M^” and nu^P) 二 ini〜〉,{j 卜 , , = • } lo be the index of ihc

83

(Ihiplcr 5 Pcr/ornninci'厂、’"//""")"

nc \ l universal block variables located after an index /. 11、no such index exists,

wc denote nui[P) by n + 1.

Example 20. Given a prefix ofrqsels P as follows:

where

C, = ({ . x - i , . r 2 } , { A 二 {1’2}，A^ = { 2 , 3 } } , { . r i ^.T；.,}),

G = = {1,3}},{.Ti + X,}), and

C-, 二({.r3，.r,i}，{D3 = { l ’3 }、D. i :: {2,3}},{.T;,i + < x , })

In a OCOP/QCOP \, if variables with the same indices appear in different CSPs

of a prefix of rqsets, we assume these variables are common, i. e. they are referring

to the same variable with the same do wain. In P, we can see variable .r】appears in

both CSP Ci and Co, cmd variable .r：] appears in both CSP Co onci €：>,. To simplify

writing, we write P as follows:

3 G {1,2}工 ‘2 G {2,3} [.Ti ¥

V X3 G { 1 , 3 } — X'3

3 x 4 £ { 2 , 3 } [X 4 ^ 3 , X 4 < ：7；3

We can easily see that the range of P is [1..3] as there are three rqsets, before2[P)=

U is the set of variables { ^ i , 22, x：]},(尸）is equal to 2 as = V, and

ti'U'iiP) is equal to 4.

Given two winning strategies o f a QCSP, we cannot tell which one is better.

The reason behind is that we do not quantify how good a winning strategy is. To

quantify a winning strategy, one way is to give different costs to different scenarios.

However, for a winning strategy, there are many scenarios, and we have to aggre-

gate these costs for each o f these scenarios. To classify winning strategies, some

problems require taking the costs for the worst ease scenario, whi le some may need

to sum up all the costs for all scenarios. QCOP/QCOP+ allows different aggrega-

tion functions associate wi th aggregate names lo tackle this issue. We can choose

Chcipler 5 Performance Evaluation 85

max functions to aggregate costs for the worst case scenario, and define aggregate

names to label these aggregated costs. An aggregate function f is defined by an as-

sociative function on a multiset of values, and a neutral element 0/ which indicates

the value o f / ({ { } }) . Let ^ be a set of aggregate names and be a set of aggregate

functions. An aggregate is an atom of the form a : f [X) where a e A, f e T,

and X e V U A. Intuitively, we can see that aggregate functions aggregate values

of variables in V as well as aggregate names. However, we are not allowed to use

variables in V to store the aggregated value of an aggregate function.

An optimization condition is an atom of the form m i n (X) , m a x (X) where

X E VUA or the atom any. An atom m i n (X) (max (X) resp.) means the user is in-

terested in strategies that minimize (maximize resp.) this value, while any indicates

the user does not care about the returned strategy.

An 3 -orgset is a tuple (3, H \ C, o) where (3，W\ C) is a rqset and o is an opti-

mization condition. A \f-orqsei is a tuple (V, W,’ CM) where (V, I V, C) is a rqset

and / I is a set of aggregates (of the form a : f { X)) . We denote names of the set

of aggregates A in a V-orqset by nam.es(A). An ore丨set is either a 3-orqset or a

V-orqset.

Given a QCOP+. Suppose the value of the variable x^ in an 3-orqset is subject to

change for different value assignments of current set of variable U, in an V-orqset,

which is located before the 3-orqset. We can define an aggregate function sum

which sums the values of x j for different value assignments of the current set of

variables in W. We write a : sum(;i;i) in the set of aggregates A in the V-orqset to

mean a wi l l take the sum of all values taken by variable x u for all combinations of

assignments for the set of variables VK.

A QCOP+ is a pair (P, G) where C is a CSP and P = {orq^,. . • ’ orq„) is a

prefix oforqsets such that V/ G ran(jeU)), with k = '/m/(P):

(I) “ ()'.(“ 一一 (—],M';C“)）with () i i i i i i (X) or () = n iax(X) , then wc must have

X e before丨——八丨)、ij (/,： < (1 ?".",",「,、（/!人.）：0), and

(Ihiplcr 5 Pcr/orniancc Evaludtion 86

(2) \i'()r(j, 二（V, 1K, C, / I) , then for all a : r(A,) in A, wc must have X G before^. , (J

[k < “ I I?7m7"r’_s(/U.) : 0) .

A QCOP is a QCOP+ in which no orqsets have restrictions, /.e. no constraints in

the CSP of all orqscls.

E x a m p l e 21. IVe begin by giving (he example QC \)P ((/) . G) in [5 / , with slighl

modifications cis follcnvs. Given an array A of integers nmging from 0 lo 100. P is

a prefix of orqsets:

C2 = ({ x i , . r 2 } , { A = {0, 1}，D. = [0..9]}, {X2 mod 2 = x：}).

C 3 - ({ : r 3 } , { D 3 = [0 . .100]}J) ,

Oi 二 m in (a i) ’

A2 ={o\ : sum(2'3)}, and

03 =any

G is a classical CSP as follows:

G = ({ , r 2 , : r ; 3 } , {D2 二 [0..(J1，[h 二 1()..10()1}, {.r；, 二，1[./.21})

To simplify writing, we write the QCOP+ as follows:

3 iTi G {0 ,1 }

y X2 £ [O..9][x'2 mod 2 = x i

3 xs e [0..100

1 C 3 二

a I = sum{x：])

rri in(ai)

IVe ignore all optimization condilions which are any.

Chcipler 5 Performance Evaluation 87

To define the semantic of a QCOP+, we need to define several notations. Given

two subset of variables W and U. We define their sets of possible combinations

of values be = { x D . l x , G VV}, D^ = {xDj\xj e U}. Naturally, the

set of possible combinations of values for the set of variable W U U is the set

G H/ U U } . Let AC VV andB C U. We define yom {A m B) on

A and B is the set { t G e A A t[U] e B}. We can view A m B sls

a set constructed from A and B indicating the subset of possible combinations of

values for the set of variables IV and V,. We denote by | the sequence constructor

and by () the empty sequence. For example, we use、orqx\[orq2、orq:、)) to construct

a sequence of orqsets (o/y/i , orr/2. orcjii). Given a QCOP+ Q = (P, G). Let .sol(C)

be the set of solutions for the classical CSP C, and va r (C) be the set of variables

in the classical CSP C. We define function val computing the value of an aggregate

a f (X) according to a set 5, which contains tuples of values, as follows: val{a :

/ (X),<s) = f { l t [X] \ t e 5}}). We first define strategies [5] for the prefix P of a

QCOP/QCOP+ Q = (P, G) as follows:

STRAT{{)) = 0

STRAT{{i3, H/, C)\P')) ={t ^ s'\t e D"^ A s' e ST RAT {P')}

5 T i L 4 : r (((V , H / ’ C 0 | P ')) G JJ {{T n G SRRAT{P')})}

I f the prefix is empty, the set of strategies is an empty set. Given that the first orqset

is a 3-orqset. The possible set of strategies is the possible combinations of values

for the set of variables H', joined by the sub-strategies s' for the remaining prefixes.

Given that the first orqset is a V-orqsel. The term {/ M ,S ' | ,S ' G STRAT[P^)] lakes

account of all sub-strategies for each combianlion / of values for the set of variables

HA It computes the set of strategies beginning by a tuple t. The operator H/e/) "

takes the cartesian product of all these sets, returning a set of tuples. Each tuple n

specifics a strategy for all combinations t for the set of variables，and therefore, an n

spccifks strategies. Wc can also view a； as a function called (v(/J>i「）mapping

each tuple of D ^ to a strategy, which is also a set of tuples. Suppose for cach

(liciplcr > Pcr/ornnmcc Kvciliidlion 88

111 net ion n (/), wc lake ihc union of the image set. The union is a new strategy

which contains a siib-slratcgy for cach I〔: /)丨、.The goal is lo construct ihc union

of ihc image set for each fund ion (、'（/)、、).

The oplinud strategies \VJN{Q) for the QCOP+ Q is defined recursively as

follows:

• Base case where there are no orqsets:

WIN{{{)^G)) = sol{C)

Optimal strategies of the QCOP are equal to the set of solutions of the body

CSP G.

• First orqset is an 3-orqset without any optimization conditions:

i r M , ((((3 ’ i r ’ C \ a , , ") | /) ') ’ G)) =

{/ N .s|/ e D^^'M\r(ir(C)\ G sol (C) As G \\'I \ {(P'. G))}

The optimal strategies are equal lo joining the optimal strategies s without the

first orsqet, and combinations of values / which satisfy the CSP C.

• First orqset is an 3-orqset with minimization condition:

lVIN((((3,W,amin(X))lF'),G)) =

{,s G WIN((((3, M/, C, any)|P'), G'))15[X] = min (、"[A,])}

The optimal strategies must be the optimal strategies with any as the opti-

mization condition. We further minimize these strategies according to the

minimization condition mm{X).

• First orqset is an 3-orqset with maximization condition:

M / / / V ((((3 , M / C , max{X))\P')^G)) 二-

{,s G H//yV((((3’ \V,C,any)\P'),G))\s X\ 二 max A l) }
‘ s'cWl N{[{{,}M\(\nuii)\l'')Xr))

('hapler 5 Performance Evaliialion 89

The optimal strategies must be the optimal strategies with any as the opti-

mization condition. We further maximize these strategies according to the

maximization condition n iax(X) .

• First orqset is a V:

{{Val{a ： f{X),s))aenarnes{A) ^ 5|5 E WIN{{{{^, VV, C)\P') , G))}

e Yl ({^ M s\t[var{C)] e sol{C)?
teiJ^^'

S e \ V I N (P \ G) -.8 G STRAT{P\G)})}

Intuitively, we can view the optimal strategies are a set of optimal sub-strategies,

where each sub-strategies represent strategies w.r.t. a combination of values

for the variables in set H,. We then compute all the aggregates and stores the

result in the optimal strategies.

However, we have lo deal with cases where the combination t of values

for variables in H, do not satisfy the constraint C. It follows that any sub-

strategies s for all these violating combinations can be freely glued, and we

require these strategies 5 in the form of ST RAT G)。

Given a QCOP+, the goal is to find its optimal strategy. We omit the Branch and

Bound tree search for solving QCOP+. The framework is general enough to model

QCSPs, and even bi-level programs [5]. It is natural for this framework to model

our proposed framework, QWCSPs.

In Hxampie 21, we can see that variable ,r, can choose value 0 or 1, and its

objective is to minimize the aggregate name “卜 I f . r , is assigned to 0 (1 resp.),

./2 must take even (odd resp.) numbers in the interval |()..9j. The aggregate name

r/ | is summing even (odd resp.) indiccs of the array /I , as j::《 must be assigned to

C Ihiplcr 5 I\'r/()ri)i(n]ce EvalucUion 90

]丨.;.:小 Therefore, .vi wi l l choose 0 i f the summation of odd indicics in the array A

is smaller than or equal to the summation of even indicics.

5.2 Transforming QWCSPs into QCOPs

We can iransform any QWCSP V - { X . V X . Q.k) into a QCOP V' = (P'XJ')

based on ihc modified “Soft As Hard’’ approach as follows. For each variable ,r,

in 'P, there is an orqset orq丨 二 (3, {./••}. C-.()'丨、in where C\ has no conslrainls.

For every soil constraint C in C, there is a corresponding cost variable in the

CSP G' with domain being equal to all possible costs given by C. We construct an

auxiliary cost variable 5 in CSP G' which is equal lo the sum of all cost variables

x'c. A constraint s < k is added to restrict the total cost to be less than the global

upper bound. 1 f x,, is a minimization variable, then we add o[= min(<s); otherwise,

o- = max(5). Suppose C on a set S of variables giving cost m when a tuple of

assignment I is assigned. There is a reified constraint in the CSP G' restricting oc:

to take value rri i f variables in S are assigned with tuple /.

E x a m p l e 22. Given a QWCSP V with an ordered sequence of variables (x i , ^2),

domains D\ 二 Do 二 a set of constraints {Ci, C2}, a quantifier sequence

{ Q i 二 m m , Q 2 = ma,x)’ and a global upper bound k 二 7. C i (a) = 0, Ci(h)=

5 ’ C 2 (a) = 1,(79(6) = 3. The QCOP V' can he expressed using the "Soft As HarcT

approach as follows:

如,1 e D i

G D2

x'c, e {0,5}, G {1,3},.S G {1,3,6}

s = x'Ci 0 /\ s < 7

x[= a] 二 0]八 [x \ = b] [x'f^^ = 5|

X2 = a] [x'q^ = 1] a [xo = b] [x'q^ 二 3

max s

mill .s

Chcipler 5 Performance Evaluation 103

T h e o r e m 5.1. A QWCSP V can he transformed into a QCOP V. The A -cos t of P

can be found by solving the optimal strategy [5] ofV.

The proof follows directly from the “Soft As Hard'construction. In particular,

A-cost o f P is equal to the value assigned to s in the optimal strategy [5] of "P'.

The central theme of this paper is to show QWCSP, a more restricted but useful

subclass of QCOP+, can be solved more efficiently. Based on WCSPs, QWCSP's

consistency techniques redistribute constraint costs by projections and extensions.

In turn, we conjecture that this allows extra prunings over the classical consistencies

used in QCOP+. The situation is similar to how Lee and Leung [24] show WCSP

(soft approach) consistencies to be stronger than classical optimization used in “Soft

As Hard". We illustrate this idea using an example. In Example 22, the QWCSP

^ is not node consistent as value b of Xi is not NC. QCOP+ performs cascade

propagation [5] by utilizing standard propagators in CSPs. In the corresponding V ,

the constraints in the body part is NC and GAC [1] in classical CSPs.

5.3 Empirical Evaluation

In this section, we compare the QCOP i solver QeCode against our solver in three

progressive modes: Alpha-beta pruning, Node Consistency (NC), and Arc Consis-

tency (AC). Values are labeled in three ways: static lexicographic order and two

dynamic value ordering heuristics based on value costs.

We generate 20 instances for each benchmark's particular parameter setting.

Results for each benchmark are tabulated with number of solved instances, average

time used, and average number of tree nodes encountered. We take average for

solved instances only. Winning entries for average time used and average number of

tree nodes encountered are highlighted in bold. A symbol ‘ - , represents all instances

fail to run within the time limit of 900 seconds. The experiment is conducted on a

Pentium 4 3.2GI lz with 3GB memory.

(Ihiplcr 5 rcr/ornhincc livaliicilion 92

Wc comparc our solver against QcCodc, which uses minimax. A l l QWCSP

inslanccs arc Iranslbrmed lo QCOl^ using the ‘‘Soft As 1 laixT approach outlined.

Wc note alpha-beta pmnings can be employed (or QCOP—, but we believe there

wi l l be less primings by enforcing classical consistencies.

5.3.1 Random Generated Problems

We generate random binary QWCSPs with parameters (n, 5, d), where n is the num-

ber of variables, 5 is the domain size for each variable, and d is the probability for a

binary constraint to occur between two variables. We purposefully do not generate

unary constraints to make the problem harder to solve. The costs for each binary

constraint are generated uniformly in [0..30|. Quantifiers are generated randomly

with half probability for min (max resp.), and number of quantifier levels vary from

instances lo instances.

Table 5.1 shows the results. For all instances, even just alpha-beta pruning is

two orders of magnitude faster than QeCode, which cannot handle even moder-

ately sized instances. NC and AC both run faster than alpha-beta pruning, with the

search space dramatically decreased and runtime significantly faster. AC, utilizing

information from both unary and binary constraints, performs best among all solver

modes.

5.3.2 Graph Coloring Game

We have generated instances (v, c, d) for a graph coloring game similar to the one in

the introduction, where v is an even number of nodes in the graph, c is the range of

numbers allowed to place, and d is the probability of an edge between two vertices.

Player] (Player 2 resp.) is assigned to play the odd (even resp.) numbered turns,

players play in turn, and in each turn a node is numbered. The node corresponding

lo each turn is generated randomly.

Chcipler 5 Performance Evaluation 93

There are t 丨 variables in the QWCSPs, each of them has a domain of |1 ..c| repre-

senting a node in the graph, i f there is an edge between two nodes, there is a binary

constraint constraining the two nodes. Quantifier Q, is m m (or max resp.) i f turn i

is played by player 1 (player 2 resp.). The violation measure of a binary constraint

Chj is (c — 1) — — Xj \ (, or equivalently \xi — Xj \ by swapping the min and max

quantifiers)。

Table 52 shows the results. Similar to Random Problems, alpha-beta pruning

runs faster than QeCode in all instances two orders of magnitude faster. NC and AC

both run faster than alpha-beta pruning. Comparing AC and alpha-beta pruning, we

can gain up to six times speedup for AC, which prunes up to two-third of the search

space of NC. Again, AC betters in almost all instances in runtime.

5.3.3 Min-Max Resource Allocation Problem

Suppose N units of resources are allocated to t activities. We let x, be the amount

of resources allocated to activity ?；, and a function returns the cost incurred

from activity i by allocating units of resources the activity. The resource allo-

cation problem [28] is to find an optimal resource allocation so as to minimize the

total cost. Suppose now there are 5 functions c |， . . .， c ^ The min-max resource

allocation problem [48] is to find a resource allocation to minimize the maximum

cost functions.

We have t variables < i < t in the QWCSP associated with domains

Each variable x, represents the amount of resources allocated to activity /,.

There is a hard linear constraint restricting the summation of these variables must be

smaller than or equal lo N . There is another variable with a domain which

represents which function wc arc choosing. I f " : " is assigned to 1, wc are choosing

function c;. For each variable j:.,，wc have a binary constraint C”人a、b) constraining

on variable j:, and variable The constraint gives costs for the function r'； when a

un" of resources is allocated to activity /. There are no particular rcquircmcnls on

C Ihiplci- 5 rcr/ornnincc EvciliKilion 94

I He variable ordering between the I variables ./:,, 1 < / < L, cxccpt wc must ordcrc

" as Ihc last variable.

Table 5.3 shows the results. Alpha-beta pruning runs an order of magnitude

(aster than QeCode. Again, NC and AC both run faster than alpha-beta pruning. AC

can prune up lo 90% of the search space of NC and runs the fastest in all instances.

5.3.4 Value Ordering Heuristics

Value ordering heuristics are useful for solving WCSPs 117，25], QCSPs [42], and

QCOPs j |451. In this section, we propose two value ordering heuristics for our

solver, which are inspired by adversarial scarch (minimax heuristics).

For a sub-problem QWCSP P at a tree node, the goal of the two heuristics

is to choose values v for the next unassigncd inii i (max resp.) variables .r\ with

lower (higher resp.) A-cost(P[.T,： = "]). Instead of computing the exact costs of

sub-problems, which are expensive, these two heuristics estimate costs from con-

straints associated with x,. The first heuristic checks costs from the unary con-

straint C ” while the second heuristic checks costs from all unary and binary con-

straints covering x,. Our approach is similar to solution-focused approach [42] for

QCSPs. For mm (max resp.) variables, heuristics ADVUnaiy wi l l choose value

•V G Dj of the next unassigned variable x, i f C人u) is the smallest (largest resp.)；

while heuristic ADVBinary wi l l choose v G D, of the next unassigned variable x, i f

C-Xv) © ① Q k . u (; ! h C “ A ” . ") is the smallest (largest resp.).

We give preliminary results on the above three benchmarks, by comparing the

two proposed ordering heuristics with the lexicographic ordering (Static). A l l ex-

periments run with AC. We mark A DVB i nary the best for instance (18,5,0.4) in

Table 5.1 as ADVBinary solves the most number of instances. Table 5.2 shows

ADVBinary runs fastest on the Graph Coloring Game, and Table 5.1 shows AD-

VUnary and ADVBinary runs faster than Sialic for Random Generated Problem.

For Min-Max Resource Allocation Problem in Table 5.3, Static runs faster than the

Chcipler 5 Performance Evaluation 95

other two heuristics. The results vary. We can only conclude that value ordering

does matter but how well certain heuristics work depends on particular problem

characteristics.

QeCode Alpha-beta Node Consistency Arc Consistency
S tatic Static Static ADVlJnar^ A DV Binary

(',.、.,/)浮solve Time Anodes /^solve Time "nodes //solve Tune Wnodes #solve Time "nodes #solve Time 存nodes ^solve Time /Anodes
< 9 . 5 . 0 4) 20 401 62 4 , 3 9 4 . 5 3 1 2 0 0 M I 10 ,738 20 " (H Q 11,115 M o T ? 4 0 2 \ M (U j s ^ ~ o ： ^ ^

C^. 5 , 0 6) 20 5 5 0 32 4 . 3 9 4 , 5 3 1 20 1 Q5 2 2 8 , 0 1 7 20 0 23 I 1 ,817 2 0 0 28 4 , 0 2 4 20 O i l 8 5 5 20 0 . 1 0 7 4 8

(12 . 5. 0 4) 0 20 91 23 5 , 9 6 7 . 4 6 1 20 5 04 158 ,179 20 4 25 5 3 , 8 6 6 2 0 0 91 5 , 7 7 5 20 0 . 7 6 4 , 6 2 3

(I - . 5, 0 6) 0 - - 20 66 54 4 , 7 8 2 , 5 4 1 20 3 87 i 18 ,40 2 0 4 27 4 1 , 7 1 0 20 1 3 0 6 , 9 7 5 20 1.26 6 : 3 8 5

(1 6 , 5 , 0 4) 0 - - 2 7 0 6 51 2 6 , 2 6 9 , 0 2 5 20 2 9 9 15 5 , 7 8 0 , 0 7 5 2 0 193 63 1 ,657 ,203 20 2 0 62 8 6 , 8 5 5 20 17.88 7 1 ^ 7 9

(1 6 . 5 , 0 . 6) 0 - - I 8 3 0 20 3 2 , 8 5 9 . 7 3 5 17 4 3 8 , 4 2 8 , 0 8 5 , 2 0 0 19 4 2 8 35 2 , 9 0 9 , 3 8 8 20 .12 96 112 ,895 20 3 0 . 9 4 100 ,71 1

(1 8 . 5 , 0 4) 0 - - 0 - - 1 8 1 5 , 6 9 1 1 ,210 ,135 3 5 9 5 , 3 3 3 , 5 1 4 , 4 2 6 17 150 6 8 5 0 5 , 9 0 5 18 156 .91 5 0 2 : 3 2 4

5, 0.6)1 0 - 0 I 7 I H 15 9 . 1 7 1 . 8 2 7 I 2 4 7 0 . 2 7 2 . 6 1 3 , 4 3 o | 18 104 .58 3 1 6 . 3 8 o | 18 9 9 . 8 7 2 8 7 , 4 0 8

Table 5.1: Random Generated Problem

QeCode Alpha-beta Node Consistency Arc Consistency
Static Static Static ADVUnary ADVBinary “

(r . r . f /) #solve Time tfnodes tfsolve Time 如 odes tfsolve Time tfnodes tfsolve Time tfnodes tfsolve Time 如odes tfsolve Time 如 odes
(10’ 4’ 0,4) 20 141.16 2 , 4 4 6 , 6 7 7 ^ o T i 4 3 , 5 0 9 2 0 O e J S S 2 0 ~ O T H ^ 2 0 0.03 4 1 3 2 0 0 03 299
(10’ 4，0.6) 20 179.58 2,446,677 20 0.49 49,029 20 0.17 8,124 20 0.17 3,617 20 0.06 553 20 0.04 309

('2-4.0.4) 0 - - 20 3.46 266,589 20 0.95 33,739 20 0.70 13,124 20 0.17 1,810 20 0.10 990

(12,4’ 0.6) 0 20 4.22 302,255 20 1.34 47,010 20 1.19 18,088 20 0 25 1 924 20 0 13 929

(16.4,0.4) 0 - - 20 214.93 10,050,800 20 44.73 1,002,145 20 30.20 363,523 20 2 58 17 199 20 1 21 7 590
4.0.6) 0 - - 20 210.21 9,213,029 20 43.85 949,861 20 37.93 352,691 20 3.58 18,226 20 1.27 5^569

(1 8 . 4 , 0 4) 0 - - 0 - 2 0 2 7 8 . 0 0 4 . 0 9 5 . 9 9 3 2 0 1 5 8 . 7 1 1 . 3 1 5 , 2 1 2 2 0 I 1 . 6 0 5 8 . 2 6 8 2 0 4 . 2 2 1 9 , 2 3 9

(I8、《06)| 0 - i 0 - - I 20 362.04 5.295.433| 20 238.51 l.711,88o| 20 14.97 60.666| 20 4.62 15,657

Table 5.2: Graph Coloring Game

QeCode Alpha-ji^ Node Consistency Arc Consistency
Static 二—̂ îtic Static ADVUnarv ‘ ADVBinarv

丄"存solve Time >̂ nodes " s — mc //nodes //solve Time "nodes tfsolve Time tfm^//solve Time Anodes ̂solve Time Anodes
(10 .8 .7) 20 49 03 656,221 20 2,17 146.77^ 13 39,605" 20 0.48 4,317 20 O l ^ T W 20 0 % 4 965
(12 :8 ,7) 20 166 42 1,889,371 20 9 26 444.340 20 4.95 132,257 20 1.91 15,096 20 2 40 I9 3S5 ，0 ，44 193S5
(12 9 .7) 20 399 39 4,408,771 20 20.63 981,967 20 8,61 226.456 20 3.05 21,563 20 3.80 28 137 20 3 86 ^ s ' l l ?
(13. 9’ 7) 20 716.22 7.461,106 20 41 82 1,732,234 20 17 17 398,072 20 5.87 39,831 20 6 8S 47 1 18 ，0 6 9S 47 118
1(13,9,8)1 20 852.29 8’455,920| 20 42.07 l,7()0.088| 20 丨 7.25 399’2211 20 6.34 39,526| 20 7.56 48,1031 20 7 67 48." 103

Table 5.3: Min-Max Resource Allocation

Chapter 6

Concluding Remarks

In this chapter, we summarize our works and contributions. Limitations, related

works, and possible future enhancements for our framework wi l l also be discussed.

6.1 Contributions

We define a QWCSP framework for modeling optimization problems with adver-

saries. The framework is based on WCSPs by adding max quantifiers. We give

formal definitions and semantics to our framework, and show the relationships be-

tween WCSPs and QCSPs.

We propose and implement a complete solver incorporating alpha-beta prunings

into branch-and-bound. We formally give sulTicient pruning conditions which allow

us to prune the search space of QWCSPs, via approximating the lower/upper bound

for a set of sub-problems. Correctness for these pruning conditions follows naturally

from alpha-beta prunings. We then devise Node Consistency and Arc Consistency,

based on these pruning conditions and exploiting the quantifier semantics, to allow

further pruning of search space. Techniques from WCSPs are reused in order to

allow Node Consistency and Arc Consistency performing bounds approximation.

Enforcing algorithms with time complexities for both Node Consistency and Arc

Consistency are discussed.

We show thai QCOP is indeed more general than our framwork, and conjecture

9 6

Chapter 6 Concluding Remarks 97

that though our framwork is more specific, consistency methods developed for our

framework is stronger than those for QCOP. Our work allows us to model and solve

interesting problems, such as graph coloring game and min-max resource allocation

problem efficiently。

We evaluate our proposal using three benchmarks and compare with QeCode.

Two value ordering heuristics are proposed. Experimental results show consistency

enforcement is worthwhile in general and our solver is orders of magnitude faster

than QeCode in tackling QWCSPs. We also gain some understanding about value

ordering heuristics.

6.2 Limitations and Related Works

QWCSPs attempt to explore soft constraint techniques combining with alpha-beta

prunings to tackle several classes of optimization problems with adversaries. In

this thesis, we assume adversaries always choose the worst case scenario for the

users/players. Therefore, the adversaries are worst-case adversaries. In general, an

adversary may be an average-case adversary, or the adversary may be interested in

optimizing his/her costs only.

There are other works exploring in different directions, which can also tackle

these problems. The Plausibility-Feasibility-Utility (PFU) framework [36] is a gen-

eral framework, which formalizes sequential decision problems with feasibility (re-

striction of descisions), utility (cost), and plausibility (uncertainty). We can view

QWCSPs as a sub-class of the PFU framework, by expressing feasibility and utility

as soft constraint and plausibility as max quantifier.

Another related work is Stochastic CSPs (SCSPs) [47], which can represent ad-

versaries by known probability distributions. Probabilities for every action decided

by adversaries are known beforehand. We then seek actions to minimize/maximize

the expected cost for all possible scenarios. Our work is similar in ihc sense thai we

arc minimizing the cost for the worst case scenario. At curreni stage, QWCSPs do

C Iniptc)' () (\)nc!ii(/ini^ Renuirks 98

not handle probability distributions lor any ol'lhc adversaries.

QCSP I |4| /QC0P+ |5] arc also our related works. QCSP+ enhances QCSP by

allowing restricted quantified set of variables (rqsets) associated with sets of vari-

ables. Bcnedelli el. al. then give the optimization framework QCOP/QCOP+ at

later times. QCSP+/QCOP+ allows us to model practical applications, which con-

tain restrictions restricting moves(, or decisions) of a player conditioned on previous

moves(, or decisions). Chapter 5 shows the relationship between QCOP/QCOP+

and QWCSPs.

Bilevel programming [13] is a mathematical programming framework allow-

ing us to model “mathematical programs with optimization problems in the con-

straints", in which it is useful in solving problems in the form of Stackelberg games/S-

tackelberg leadership models [46]. Stackelberg leadership model is a strategic game

(in economics) in which the leader firm moves first and the follower firms move

afterwards. We can translate the game, in game-theoretical terminologies, as a two-

round game, where the first round is played by a leader (representing the leader

firm), followed by the second round played by a follower (representing the follower

firms), both aim to maximize their profits. Most often, we want to find the sub-

game perfect Nash equilibrium [32] of a Stackelberg game, which states the best

responses for the leader and the follower. We can also use QWCSPs to find the

subgame perfect Nash equilibrium for two-player (min and max player) zero-sum

games, which does not require to be played in two rounds.

Brown et. al propose a similar framework, Adversarial Constraint Satisfaction

Problems (Adversarial CSPs) [14], which focuses on the case where two opponents

take turns to assign variables, each trying to direct the solution towards their own

objectives. They describe the process as a game-tree search, and the solving al-

gorithm is based on the minimax algorithm. Our work pushes the idea further by:

1) applying alpha-beta pruning, and 2) exploiting costs information using soft con-

straint techniques. We can view our work as one of their future directions.

Chapter 6 Concluding Remarks 99

6.3 Future Works

Our results suggest alpha-beta pruning techniques can be a future possible direction

for enhancing QeCode. In Chapter 5, we can see that the 3-orqset of a QCOP/Q-

COP+ must have either a maximization condition, or a minimization condition,

or an any condition. It may be worthwhile to apply alpha-beta prunings to solve

QCOP/QCOP+ with many 3-orqset having different optimization conditions.

Our pruning conditions which follow from alpha-beta prunings do not neces-

sarily require: 1) constraint costs must be integers, and 2) constraint costs from

different constraints are added together. In fact, i f the cost valuation structure for

constraints changed, we can still apply the sufficient pruning conditions. We are

interested to achieve consistency notions obtaining the lower/upper bound based

on other cost valuation structures. It may be worthwhile to define quantified VC-

SPs [40]/Semiring-CSPs [10], together with consistency notions utilizing the same

pruning conditions.

It wi l l be interesting to study how lo model non-zero sum optimization prob-

lems. One way to enhance our framework is to allow constraints to give costs in

higher dimension integers Z ^ , where n is a fixed constant. We can easily model n

player non-zero sum games by writing down costs for the player in the ？：出 coor-

dinate of the constraint costs. We then generalize quantifiers min, (max, resp.) to

select sub-problems minimizing (maximizing resp.) the zth coordinate of the costs.

We wi l l then generalize the pruning conditions, and devising consistency notions

for these conditions.

Another possible future direction is to add restricted quantified set of variables

rr/,s.e/.s in QCOP+. This can make our framework to model a wider variety ofappl i-

cations.

In Chapter 5, wc show preliminary results on value ordering hcuristics. It wi l l

be interesting lo investigate other variable/value ordering heuristics.

Bibliography

11 I Krzyszlof Apt. Principles ofConslrainI Programming. Cambridge University

Press, New York, USA, 2003.

2] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Ap-

proach. Cambridge University Press, 1 st edition, 2009.

[3] Fahiein Bacchus and Kostas Stergioii. Solution directed backjumping for

QCSP. In CP '07, pages 148—163, 2007.

4] Marco Benedetti, Arnaud Lallouel, and Jereinie Vautard. QCSP made practi-

cal by virtue of restricted quantification. In LJCAr()7, pages 38-43, 2007.

[5] Marco Benedetti, Arnaud Lallouel, and Jeremie Vautard. Quantified constraint

optimization. In CP '08’ pages 463-477, 2008.

[6] Christian Bessiere. Arc-consistency and arc-consistency again. Art if. Intel/..

65:179-190, January 1994.

7] Christian Bessiere. Refining the basic constraint propagation algorithm. In

IJCAI'OU pages 309-315, 2001.

[8] Christian Bessiere, Eugene C. Freuder, and Jean-Charles Regin. Using con-

straint metaknowledge to reduce arc consistency computation. Artificial Intel-

ligence, 107(1):125 - 148, 1999.

1 0 0

[9] Christian Bessiere, Jean-Charles Regin, Roland H.C. Yap, and Yuanlin Zhang.

An optimal coarse-grained arc consistency algorithm. Artificial Intelligence,

165(2): 165 - 185,2005.

[10] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-based con-

straint satisfaction and optimization. JACM, 44:201—236, 1997.

11 1] Lucas Bordeaux, Marco Cadoli, and Toni Mancini. CSP properties for quan-

tified constraints: Definitions and complexity. In AAA/'OS, pages 360-365,

2005.

[12] Lucas Bordeaux and Eric Monfroy. Beyond np: Arc-consistency for quantified

constraints. In CP '02, pages 371-386, 2002.

[13] Jerome Bracken and James T. McGi l l . Mathematical programs with optimiza-

tion problems in the constraints. Operations Research, 21(l) :pp. 37-44, 1973.

[14] Kenneth N. Brown, James Little, Paidi J. Creed, and Eugene C. Freuder. Ad-

versarial constraint satisfaction by game-tree search. In ECAIW, pages 151-

155,2004.

[15] Hubert M i n g Chen. The compiilational complexity of qiicmtified constraint

satisfaction. PhD thesis, Cornell University, 2004.

[16] M. C. Cooper, S. De Givry, and T. Schiex. Optimal soft arc consistency. In

IJCAI'O?, pages 68-73, 2007.

[17] M.C. Cooper, S. de Givry, M. Sanchez, T. Schiex, M. Zytnicki, and T. Werner.

Soft arc consistency revisited. Artificial Intelligence, 174(7-8):449-478, 2010.

[18] Simon de Givry, Matthias Zytnicki, Federico Heras, and Javier Larrosa. Ex-

istential arc consistency: Getting closer to ful l arc consistency in weighted

CSPs. In IJCAI'OS, pages 84-89, 2005.

1 0 1

|卜)| Ian I). Cjcnt, Pclcr Nightingale, and Andrew Rowley. I'jicocling quantified

CSl\s as quantified boolean Ibrmulac. In EC AI '04. pages 1 76 1 80, 2004.

[201 Ian 1). Gcnl, Peter Nightingale, Andrew Rowley, and Kostas Stergiou. Solv-

ing quantified constraint satisfaction problems. Artificial Intelligence, 1 72(6-

7):738—771’ 2008.

21] Ian P. Gent, Peter Nightingale, and Kostas Stergiou. QCSP-Solve: A solver

for quantified constraint satisfaction problems. In IJCAr05, pages 138-143,

2005.

[22] Javier Larrosa and Thomas Schiex. In the quest of the best form of local

consistency for weighted CSP. In IJCAI’03, pages 239-244, 2003.

[23] Javier LaiTosa and Thomas Schiex. Solving weighted CSP by maintaining arc

consistency. Artificial Intelligence, 159(1-2):! - 26, 2004.

|24] Jimmy Ho Man Lee and Ka Lun Leung. Towards efficient consistency en-

forcement for global constraints in weighted constraint satisfaction. In LJ-

CAJW, pages 559-565, 2009.

25] Nicolas Levasseur, Patrice Boizuinault, and Samir Loudni. A value ordering

heuristic for weighted CSP. In ICTAI '07, pages 259-262. IEEE Computer

Society, 2007.

[26] Alan K. Mackworth. Consistency in networks of relations. Artificial Intelli-

gence. 8(1):99 — 118, 1977.

127] Nikos Mamoulis and Kostas Stergiou. Algorithms for quantified constraint

satisfaction problems. In CP '04, pages 752-756, 2004.

28] K . M . Mje lde . Methods of Allocation of Limited Resources. John Wi ley. 1 983.

1291 R. Mohr and T. Henderson. Arc and path consistency revised. Arfificial Inlel-

ligence. 28(2):225 - 233,丨 986.

1 0 2

1301 Roger Mohr and G. Masini. Good old discrete relaxation. In European Con-

ference on Artificial Intelligence, pages 651-656 , 1988.

[31] Peter Nightingale. Non-binary quantified CSP: algorithms and modelling.

Constraints, I4(4):539-581, 2009.

[32] M.J. Osborne and A. Rubinstein. A course in game theory. M I T Press, 1994.

[33] Wanlin Pang and Scott D. Goodwin. Characterizing tractable CSPs. \nAI '98,

pages 259-272, 1998.

34] Mark Perlin. Arc consistency for factorable relations. Artificial Intelligence,

53(2-3):329 - 342, 1992.

[35] Thierry Petit, Jean-Charles Regin, and Christian Bessiere. Specific filtering

algorithms for over-constrained problems. In CP '01, pages 451-463, 2001.

[36] Cedric Pralet, Thomas Schiex, and Gerard Verfaillie. Sequential Decision-

Making Problems - Representation and Solution. Wi ley, 2009.

Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint

Programming (Foundations of Artificial Intelligence). Elsevier Science Inc.,

New York, NY, USA, 2006.

[38] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-

proach. Pearson Education, 2003.

[39] Daniel Sabin and Eugene C. Freuder. Contradicting conventional wisdom in

constraint satisfaction. In Proceedings of the Second International Workshop

on CP '94, pages 125 -129, 1994.

1401 Thomas Schicx, Hclenc l^argier, and Gerard Verfaillie. Valued constraint sal-

israction problems: hard and easy problems. In IJCAI、95，pages 631-637.

1995.

1 0 3

|4 1 I David Slyncs and Kcencth N. Brown. Realtime online solving o f quantified

CSPs. In CP '09. pages 771-786，2009.

421 David Stynes and Kenneth N. Brown. Value ordering for quantified CSPs.

Constraints. 14(1): 16-37, 2009.

431 C. Tmchet and P. Codognet. Musical constraint satisfaction problems solved

wi th adaptive search. Soft Computing - A Fusion of Foundations, Methodolo-

gies cmdApplications, 8:633-640, 2004.

44] Guil lauine Verger and Christian Bessiere. Blocksolve: A bottom-up approach

for solving quantified CSPs. In CP '06, pages 635—649，2006.

[45] Guil lauine Verger and Christian Bessiere. Guiding search in QCSP+ with

back-propagation. In CP '08, pages 175-189, 2008.

[46]卜 1. von Stackelberg. The Theory of the Markel Economy, Oxford University

Press. 1952.

|47] Toby Walsh. Stochastic constraint programming. In KCAI ’02，pages 1 1 1 — 1 15.

2002.

[48] G. Yu. Min-max optimization o f several classical discrete optimization prob-

lems. Journal of Optimization Theory and Applications, 98 :221-242, 1998.

[49] Yuan 1 in Zhang and H. C. Yap. Making ac-3 an optimal algorithm. In UCAI'Ol,

pages 316-321, 2001.

1 0 4

C U H K L i b r a r i e s

_ _ _

0 0 4 8 0 6 7 9 1

