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Abstract 

Abstract of thesis entitled: 

Image Inpainting by Global Structure and Texture Propagation 

Submitted by HUANG, Ting 

for the degree of Master of Philosophy 

at the Chinese University of Hong Kong in 2008 

Image inpainting is a technique to repair damaged images or modify images 

in a non-detectable form. It has a wide range of applications, and is currently 

an active and challenging research area of computer graphics and computer 

vision. 

Structure information and texture information are the two critical ingre-

dients of image inpainting. They are both required to produce a high-quality 

output. In the literature, many approaches are either purely texture-based or 

purely structure-based. Others deal with structures and textures using differ-

ent schemes separately, but can't handle them both well. Considering these 

aspects, and motivated by the exemplar-based approaches, we propose a novel 

image inpainting algorithm, combining both structure and texture information 

under a unified framework, which automatically finds a balance between the 

structure and texture. 

After removing objects from an image, our approach fills in the regions 

using patches taken from the known region. The filling process is formulated 
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as a discrete global optimization problem using Markov random fields (MRFs) 

whose energy function measures both structure and texture consistencies. Be-

lief propagation (BP) is utilized to solve the minimization problem. 

One big challenge in using standard BP is that its computational complex-

ity is the square of the number of label candidates. For a typical 481 x 321 

image, the number of label patches is at the order of 10 .̂ To reduce the large 

number of label candidates, we present a coarse-to-fine scheme where two BPs 

run with much smaller numbers of label candidates instead of one BP running 

with a large number of label candidates. Experimental results demonstrate 

the excellent performance of our algorithm over other related algorithms. 
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摘要 

阔像修補（丨mage Inpainting)是計算機視覺和圖形學中一個非常活躍的研究領域，在圖像恢 

復和阔像修改的研究及應用屮被廣泛採用，比如它可以用於恢復舊照片或被損照片。 

近些年來，圆像修袖得到眾多研究人員的重視，各種相關算法不斷發展和進步。對於圖像 

修補，結構信息和紋理信息是兩個 重要的因素，因為人類視覺系統對於圆像修袖區域與 

周圍區域在紋理和結構上的一致性與連續性更加敏感和關注。因而，高質量的阚像修補算 

法必須充分利用和保持圖像的紋理和結構信息。在以前的眾多相關算法中，大部分都只考 

慮了阔像的紋理信息（比如基於紋理合成的算法），有些則用不同的方式分別處理這兩種 

信息，但並不能很好地處理這兩者之間的關係。基於此，我們提出了一種新的基於樣本的 

關像修補算法，將結構信息和紋理信息放到統一的框架下處理，自動地平衡兩者之間的相 

對關係以责現修補後阔像紋理和結構的連續性。 

在我們的算法屮，我們相[Ml像已知區域屮的圖像片段(patch)來填補未知區域。整個填袖過 

程是基於馬爾可夫隨機場(Markov Random Fields)全局優化模型來完成的。我們提出的優 

化目標函數同時包含了閫像的結構和紋理信息。這種結構紋理統一化的模型使我們的優化 

過程能同時责現結構紋理一致性。很多優化算法可以求解基於馬爾可夫隨機場的目標函数。 

這裡，我們採用Belief Propagation (BP)來解決這個優化問题。 

然而，大量的計算開銷足BP算法應用於贲際問題的一個重要限制。其中備選樣本败的大 

小是 重要的影键因子，因為標準BP算法的算法複雜度正比於備選樣本数的平方。在_ 

像修補中，對於一幅481x321的圖像，圖像樣本片段有上萬個，這使得標準BP算法不能 

直接運用到我們的模型上。因此，我們提出了 一個逐層細化BP算法。這個算法的核心思 

想就是利用多次小樣本BP代替一次大樣本BP，從而極大地降低了算法的時問複雜度。我 

們在大量圖像数據上進行了測試，贳驗結果表明，我們算法明顯優於其他相關算法。 
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Chapter 1 

Introduction 

Image inpainting [16, 35, 26, 4, 1, 11] (also known as image completion or 

filling-in), is the process of filling in the gap of missing data in a form that 

is non-detectable for an ordinary observer [4]. Its origin can be tracked back 

to as early as Renaissance, when medieval artwork started to be restored as 

"up-to-date". This practice is called retouching or inpainting. 

Traditionally, inpainting has been done by professional artists. In pho-

tography and film industry, it is used to revert deterioration (e.g., cracks in 

photographs or scratches and dust spots in film), or to add or remove elements 

(e.g., removal of stamped date and red-eye from photographs, the infamous 

"airbrushing" of political enemies [26]). 

Nowadays, digital technique is a widespread way of automatically perform-

ing inpainting. The applications are numerous, ranging from the restoration 

of damaged paintings and photographs to the removal/replacement of selected 

objects. Some examples are shown in Fig. 1.1. Image inpainting is currently 

an active and challenging research area of computer graphics and computer 

vision. 
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Figure 1.1: Two examples of image inpainting from [4]: restoration of a dam-
aged photograph and removal of superimposed text. 

1.1 Related Area 

There're mainly four groups of works are related to image inpainting in the 

literature: film restoration, texture synthesis, disocclusion and contour com-

pletion. 

The first one deals with the restoration of damaged films [27’ 28, 25]. Its 

basic idea is to use motion estimation and the information from past/future 

frames to restore the current one, by copying the right pixels into the gap. 

This general approach cannot be directly used when handling still images. 

Moreover, it cannot deal with movies where the region to be filled is static with 

respect to its background (e.g., a logo on a shirt), or the region ranges a large 

number of frames, since the motion cannot be estimated and the past/future 
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frames do not provide new information for the loss data. 

Another very active area related to the work here is texture synthesis [15, 

14, 21, 22]. The basic idea is to select a texture and synthesize it to fill 

the region. The most notable approaches are based on Markov Random Fields 

[15, 36], which are widely used in many computer vision areas, including image 

inpainting. Texture synthesis is highly related to image inpainting. Actually, 

as we'll see later, texture is one of the two most important features for image 

inpainting. Texture synthesis approaches focus purely on texture, and often 

require the user to specify the texture to be copied. Thus, these methods 

cannot deal with images in which the region to be filled covers several different 

structures, but they do provide a helpful insight for image inpainting. 

In the group of disocclusion algorithms, a pioneer work is described in [33]. 

Its basic idea is to connect T-junctions at the same gray-level with elastica 

minimizing curves. An extended work [31] proposed a general variational for-

mulation for disocclusion. Since removing occluding objects can be considered 

as filling-in the occluded region, disocclusion is quite analogous to image in-

painting. They both try to restore missing visual information for a 2D image, 

and mathematically, they can both be classified into the same category of 

inverse problems. The differences lie in both their goals and focuses. 

Last, a number of fundamental works on the topic of edge and contour 

completion have been reported in the literature [19, 37], and they are quite 

related to image inpainting. Edge completion methods find the most likely 

smooth curves to connect edge elements, usually by minimizing a function 

based on the shape of the curve. The likelihood that any two elements are 

connected defines a field for each element, and completion is performed by 

optimizing over the whole fields. The completed contours partition the whole 

image into several regions, each with similar properties (e.g., texture) within 

itself. This reveals the underlined structure of the image, which is another 

critical ingredient for inpainting. 
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1.2 Previous Work 

First, as stated above, the two most important features for image inpainting are 

structures and textures. Remember that the goal of inpainting is to produce 

a revised image in which the inpainted region is seamlessly merged into the 

image ("non-detectable for an typical observer"). Here, the structure plays a 

critical role for human vision. The inpainting process should fill in structures 

naturally, and merge different structures "seamlessly" • On the other hand, the 

texture reflects details of an image, and represents a notable property within 

one structure. Highly consistent and detailed textures are required for filling in 

the region in a "non-detectable" form. As described above, contour completion 

and texture synthesis purely focus on one of these two aspects respectively. In 

the following, we'll review and evaluate inpainting algorithms in terms of these 

two aspects as well as computation efficiency. 

In the literature, a number of inpainting algorithms focus on filling in 

the target region by propagating linear structures (called isophotes in in-

painting) via diffusion. The terminology of Image Inpainting was first in-

troduced by Bertalmio, Sapiro, Caselles, and Ballester [4). Inspired by the 

traditional inpainting process of artists, they proposed a successful digital in-

painting scheme, by propagating image Laplacians continuously in the level-

lines (isophotes) directions. The algorithm introduces the importance of prop-

agating both gray levels (photometry) and the gradient direction (geometry) 

of the image in a band surrounding the hole. It is based on partial derivation 

equation (PDE) and rooted in the Navior-Stokes equation in fluid dynam-

ics [3]. A variational framework based on interpolation of the image gray-

levels and gradient directions is presented in [1]. The method in [11] called 

Curvature-Driven Diffusions (CCD) is proposed to handle curve structures by 

incorporating Euler's elastica. All these methods focus purely on structures 

and work at pixel level. They perform well for small or thin gap fillings, such 
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as speckles, scratches, and text overlays. They work convincingly as restora-

tion algorithms in text removal and retouching old photos. However, they pay 

little attention to textures, and introduce blurring effects due to their diffusion 

process, which become noticeable when filling large regions. 

Inspired by texture synthesis techniques [15’ 14’ 22], another group of al-

gorithms perform inpainting based on pure texture synthesis. Amongst these 

algorithms, the exemplar-based techniques are most effective, in which one fills 

the unknown region by simply sampling and copying pixels or texture pat-

terns from the source part of the image. Starting with the notable work in 

[15], this method has been mainly used for texture synthesis, until recently 

been extended to image inpainting as well [20, 2’ 7]. 

Recent exemplar-based approaches also incorporate structure information. 

Jia et al. [24] fills the target region based on texture segmentation and a 

tensor-voting algorithm for smoothly linking structures across the region. This 

approach has a clear advantage that it connects curved structures by the ex-

plicit completion of texture contours, which is followed by a texture synthesis 

process. On the other hand, the algorithm requires an expensive segmentation 

step, and a hard decision about what makes a boundary between two textures. 

Our approach avoids both issues through global optimization. 

Bertalmio et al. [5] decomposed the image into structure and texture com-

ponents, one of which is processed by inpainting and the other by texture syn-

thesis. The final result is the sum of the two completed components. This ap-

proach is still limited to small gaps, since the diffusion process causes blurring. 

‘• In [13], the completion process is iteratively guided by the smooth approxima-

tion in a coarse-to-fine manner, interleaved by adaptive example fragments. It 

requires assistance from the user as the "points of interest" and may introduce 

blurring- artifacts too. The long computational time is another limitation of 

[5] and [13] (as reported processing may take between 83 and 158 minutes on 

a 384 X 256 image). 

r 
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In [12], a fast algorithm is presented to simultaneously propagate texture 

and structure in a greedy scheme, by placing emphasis on the order of image 

synthesis procedure. Like the method in [13], it fills in the region more effec-

tively by processing synthesis with some automatic guidance. The guidance 

here is a computed confidence map, which determines the synthesis ordering 

and may improve the quality of completion by preserving some salient struc-

tures. On the other hand, as the confidence map is based on heuristics and 

ad hoc principles, it may not apply in general cases, and often produces arti-

facts. Moreover, once a missing block has been assigned some source patch, 

the block cannot change its appearance thereafter. This reveals the greediness 

of the approach, which again leads to visual inconsistencies. 

Contrary to the greedy methods, recently some approaches formulate the 

image completion as discrete global optimization problems solved using Belief 

Propagation (BP) [34], [30]. In [34], user assistance is required to identity 

structure information in and surrounding the unknown region. The algorithm 

first fills in the area along the manually added structures. This process is 

called structure propagation. After structure propagation, the remaining un-

known regions have been partitioned into several disjoint subregions by the 

user-specified curves, each with usually one known subregion around. These 

relationships between a pair of corresponding known/unknow subregions are 

critical for the next step - texture propagation. The approach produces quite 

convincing results, especially when the structure is rather complex. On the 

other hand, it's built upon user guidance and is not actually an automatic 

inpainting algorithm. 

In [30], a recent exemplar-based approach is presented based on Markov 

Random Fields. Komodakis et al. formulated image completion as an op-

timization problem with an objective function. Image completion is auto-

matically solved using an efficient BP, called Priority-BP. The computational 

complexity of standard BP is the square of the number of label candidates. 
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In order to reduce the intolerable computational cost of BP caused by the 

large number of labels, they proposed two cooperative optimization methods 

over standard BP, i.e.,"dynamic label pruning" and "priority-based message 

scheduling". The basic idea is to discard labels that are unlikely to be optimal, 

and use some greedy-like scheme to speed up BP'S convergence. These methods 

highly reduced the computational cost, but are not proofed to find the optimal 

solution generated by the standard BP. Moreover, structure information is not 

included in their frame. 

1.3 Proposed Framework 

As stated above, the structure and texture are the two most critical ingredi-

ents of image inpainting. They are both required to produce a high-quality 

output. In the literature, many approaches are either purely texture-based or 

purely structure-based. Others deal with structures and textures using dif-

ferent schemes separately. Considering these aspects, and motivated by the 

exemplar-based approaches, which are the most efficient group of inpainting 

algorithms, we propose a novel image inpainting algorithm, combining both 

structure and texture information under a unified framework. 

After removing objects from an image, our approach fills in the regions 

using patches taken from the known region. The filling process is formulated 

as a discrete global optimization problem using Markov random fields (MRFs), 

whose energy function measures both structure and texture consistency. Belief 

.. propagation (BP) is utilized to solve the minimization problem. One challenge 
/ 

in using standard BP is that its computational complexity is the square of the 

number of label candidates. For a typical 481 x 321 image, the number of label 

patches'is at the order of 10 .̂ To handle the high computational complexity, 

we present a two-step coarse-to-fine scheme, where two BPs run with much 

smaller numbers of label candidates instead of one BP running with a large 

“ r 
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number of label candidates. Experimental results demonstrate the excellent 

performance of our algorithm over other related algorithms, with reasonable 

time consumption. 

1.4 Overview 

The rest of this dissertation is organized as follows. Chapter 2 introduces 

Markov Random Fields model and Belief Propagation. The MAP understand-

ing of MRF model and two standard BP algorithms are presented. Chapter 3 

then introduces our formulation. We propose a unified framework for struc-

ture and texture information, and a coarse-to-fine BP approach is formulated 

to make our algorithm practical. Experimental results are presented in Chap-

ter 4. We compare our results with two most recent related algorithms. The 

last chapter gives the conclusion and future work. 

This dissertation is based on our publication of ACMM07' [23]. 



Chapter 2 

Markov Random Fields and 

Optimization Schemes 

Despite the recent success and rapid advances of the Markov random fields 

(MRFs) model, which provides a robust and unified framework for many early 

computer vision tasks, such as image restoration, image segmentation, stereo 

vision, image matting and image completion, MRF model draws much atten-

tiori of many researchers. MRFs formulate the problem as an energy minimiza-

tion problem [18] based on probability inference. This formulation is justified 

in terms of maximum a posteriori (MAP) estimation of a Markov random field 

in the Bayesian framework. The energy minimization solution is regarded as 

the realization of a Markov random field, as well as a configuration of the can-

didate labels. To the best of our knowledge, for the general case, this energy 

minimization problem in discrete domain is NP-hard. The major obstacle of 

the optimization is the large computational cost owing to the high dimensional 

computing space. Many approaches have been proposed to solve the MRFs en-

ergy optimization. Simulated annealing, popularized in [18], can minimize an 

arbitrary energy function but is very slow. Iterated conditional modes (ICM) 

introduced in [6], iterates greedily to a local minimum depending on initial 

values. Recently developed algorithms, including graph cuts [10, 29，8] and 

9 
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Chapter 2 Markov Random Fields and Optimization Schemes 10 

belief propagation [38，39, 32], approximately solve MRFs with the consider-

ation about tradeoffs between accuracy and efficiency. Graph cuts and belief 

propagation both make the problem in discrete sense, and thus usually can 

only find a locally optimal solution, depending on the initialization and the 

convergence criteria. 

2.1 MRF Model 

Markov Random Fields were fist introduced into vision in [18], and provide 

attractive theoretical models for many computer vision problems. In such 

problems, we usually want to infer an underlying representation of what is 

really out there, from the data we're given, i.e., the pixel values of an image. 

Figure 2.1: A figure from [39], describing a square lattice Markov Random 
Field. The filled-in circles represent the nodes with observed information 
the empty circles represent the "hidden" scene nodes with underlying infor-
mation Xi. 

Generally, assume that we observe some information about the image Y = 
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[yi,?/2,... and want to infer some other information about the under-

lying scene X = [xi,x2,. • •, XnY. Here, P = {1’ 2 ’ . . . ’ n } denotes the set of 

nodes, and each node i could represent a single pixel or a small patch of pixels. 

To infer X from Y, we further assume that there is some statistical depen-

dency between X and Y at each node i, which could be described as a joint 

"evidence" function (j)i[0Ci,yi). Moreover, there must be some prior structure 

of X , otherwise the problem will be ill-posed. For an image, as the nodes are 

arranged in a two-dimensional grid, the scene information Xi at node i should 

be consistent with its neighboring variables xj, as represented by a "compati-

bility" function ipij{xi, xj) . Then the overall joint probability of an underlying 

scene Xi and an observed image could be: 

P{X,Y) = ^llUxuVi) J J M^u^j) (2.1) 

where Z is a normalization constant, and the product over (ij) is in neighbor-

hood M. 

A graphical description is shown in Figure. 2.1. 

2.1.1 MAP Understanding 

The above equation (2.1) could be justified in terms of maximum a posteriori 

(MAP) estimation on the Bayesian framework. Using the same depiction, Y = 

[yi,y2i • • • .Vn]'^ and X = [:ri，2:2’.••，^：几]丁 denote the known and underlying 

information respectively, which are both considered as random variables. The 

goal is to find an X that maximizes the posterior probability P{X\Y) given 

the information Y, which results in the global optimal solution from statistic 

viewpoint. This definition is suitable for many computer vision tasks. In 

the follpwing, we will use image denoising as an example to illustrate how to 

construct the probability in computer vision. In image denoising, Y is regarded 

as noised image intensities and X as restored pixel intensities. With the known 



Chapter 2 Markov Random Fields and Optimization Schemes 12 

Ui configuration, our goal is to find a new label assignment Xi for each pixel i 

that satisfies some predefined criteria. 

By using the Bayes' rule, we have 

P{X\Y) = P{Y\X)P{X)/P{Y) 

二 P{Y\X)P{X), (2.2) 

where P{Y) can be removed since it is a constant with respect to X. Therefore, 

the MAP estimation is to find X such that 

X = argmax P{Y\X)P{X). (2.3) 

As Y is already know, we'll drop jji in the following equations. P{Y\X) 

here is the likelihood function which can be represented by the joint "evidence" 

function (t)i{xi), as 

P{Y\X) (xllUxi) (2.4) 
ieP 

In image denoising, assuming that the noise is an additive Gaussian white 

noise, the evidence function could be defined as 

M ^ i ) = exp ( - Di(xi)) 

Here Di{xi) is called the data penalty function, because it penalizes the incon-

sistency between output and observed data. 

In the context of Markov assumption that each random variable Xi also de-

pends on those in X that correspond to the neighbourhood nodes of node i, the 

prior probability P{X) describes the structure of X, which can be represented 

by the "compatibility" function ilj{xi, Xj), as 

P{X)(X n 称i,工j) (2 .5) 
(iJ)eAr 

In the case of image denoising, we model the prior probability by 

MRFs whose clique potentials involve pairs of neighboring pixels, which is 



Chapter 2 Markov Random Fields and Optimization Schemes 13 

defined as 

P{X) oc exp ( - 而’巧•))， 

where N{i) is the neighbourhood of z, and s{xi ,x j ) is the clique potential, 

which is also commonly called smoothness penalty function to imposing the 

spatial homogeneous. Notice that 称i,Xj�= e x p { - s ( x i , x j ) ) . There have 

been some clique potential formats to enforce the intensity smoothness con-

straint for neighboring nodes, e.g., generalized Potts Model, W i j . ( l - d ( J i - f j ) ) , 

(S{-) is the unit impulse function), and linear clique potential, Wij • \fi- fj\ [9]. 

The generalized Potts Model penalizes any neighbourhood pair of different la-

bels while the penalization is independent on the difference. By contrary, some 

other costs of spatial incoherency in clique potential are proportional to the dif-

ference between neighbouring pixels' labels, such as quadratic label difference 

smoothness constraint and absolute label difference constraint. Meanwhile, to 

further avoid the outlier observed information which may leads to an unsta-

ble and incorrect result, data truncation and smoothness truncation terms are 

popularly used as well. That is to give a upper bound for each penalty term 

to prevent the cost being too large. 

From (2.2), (2.4), and (2.5), we can get: 

Yl ^{xi.xj) (2.6) 

ieP ii,j)eM 

Notice that this is consistent with equation (2.1). Similarly, in the case of 

image denoising, the probability becomes 

P{X\Y) a exp ( - X I ( " 动 (2.7) 

i€P ii,j)eAf 

Obviously, by taking a negative logarithm, maximizing the above MAP 

estimation is equivalent to minimizing the following energy function: 

五 = 以(而）+ S(x i ,x j ) . (2.8) 
ieP (i’j)eAr 

r 
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The first term on the right hand side is called the data term and the second 

one is the smoothness term. By minimizing the energy E{X), that is, the 

minimal cost realization of a Markov random field, X tends to be consistent 

with the observed data Y as well as maintain self continuities. 

2.2 Belief Propagation Optimization Scheme 

Belief Propagation (BP) is an efficient algorithm to solve inference problems 

based on passing local messages. Inference problems come up in many different 

scientific fields, e.g. statistical physics, computer vision, error-correcting cod-

ing theory and AL So it is not that surprising that a good algorithm to solve 

such problems has been repeatedly re-discovered. In fact, different methods 

such as the forward-backward algorithm, the Viterbi algorithm, iterative de-

coding algorithms for gallager codes and turbocodes, Pearl's belief propagation 

algorithm for Bayesian networks, the Kalman filter, and the transfer-matrix 

approach in physics, are all special cases of the BP algorithm discovered in 

different scientific communities. Recently, BP has also begun to be used as an 

“engine" for low-level computer vision problems [17]. In the following of this 

section, we review two variations of belief propagation on MRFs. 

2.2.1 Max-Product BP on MRFs 

The max-product BP algorithm is used to approximate the MAP estimation 

on MRF problems. Normally, the formulation is defined in terms of probability 

distributions, as to maximize the posterior probability P(X\Y). An equivalent 

formulation can be defined by taking negative logarithm over the probability, 

where the max-product becomes a min-sum. This formulation is less sensitive 

to numerical computation. Moreover, it directly corresponds to the energy 

function definition in computer vision. 

The BP algorithm introduces variables mij{xj) , which can intuitively be 
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understood as a "message" from node i to node j about what state node j 

should be in. The message rriij is a vector of the same dimensionality as Xj, 

with each component being proportional to how likely node i believes that node 

j has the corresponding state Xj. The algorithm passes messages around the 

graph defined by the neighboring relationships N . Messages from all nodes are 

passed in parallel. When using negative log probabilities, all messages m^j(xj) 

are initialized to zero. And at each iteration, new messages are updated in the 

following way: 

m'j.^iixi) = min S{xi ,x j ) + Dj {x j ) + ^ ’ (2.9) 
L seAf{j)\i _ 

where A/'(i)\i denotes the neighbors of node j excluding node i. After T 

iterations, a belief vector bi(xi) is computed as: 

bi(xi) = Di{xi) + Y ^ (2.10) 

In the BP algorithm, the belief bi(xi) at a node i is proportional to the 

product of local evidence at that node. Finally, the label Xi minimizing hi{xi) 

is selected as the optimal label for node Vi. For a graph with N nodes and 

K label candidates, the running time for T iterations is 0(TNK^). It takes 

time to compute message for each node, and there are 0{N) nodes. 

2.2.2 Sum-Product BP on MRFs 

Rather than maximizing the posterior probability, another common formula-

tion is to maximize the marginal probabilities, which selects the most probable 

label for each pixel instead of choosing an overall configuration. This scheme 

minimizes the number of pixels with incorrect labels, but the overall labeling 

might have small joint posterior probabilities. 

The message update process is based on summation rather than minimum, 

f 
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as in the following way: 

'^iji^j) = ^ipi {xi ) ( f ) i j {xi ,x j ) f j mki(xi) (2.11) 
Xi keN{i)\j 

The belief bi{xi) is an approximation of the marginal probability at node 

i. It is computed in the same way as in the max-product algorithm: 

bi�=iMxi) n 爪d工“ (2.12) 
jeN{i) 

Notice that we cannot transform this formulation into a negative log prob-

ability form. Thus it is less numerical stable, and less popular in computer 

vision problems, as we must transform the directly defined energy function 

into probabilities. 



Chapter 3 

Our Formulation 

Structure and texture information are the two critical ingredients of image 

completion. They are both required to produce a high-quality output. In the 

literature, some of the works are either pure texture or pure structure. Others 

deal with structures and textures using different schemes. Considering these 

aspects, and motivated by the exemplar-based approaches, which is the most 

efficient group of inpainting algorithms, we propose a novel image completion 

algorithm, combining both structure and texture information under a unified 

framework. 

The framework solve image completion in a global scheme. Similar to 

[30] and [34], we formulate the image completion problem as an exemplar-

based graph labeling problem modeled by discrete MRFs. However, our energy 

function is different from those in [30] and [34]. The goal of using this global 

scheme is to put structure and texture under one unified framework. 

Belief propagation (BP) is utilized to solve the minimization problem. One 

“ challenge in using standard BP is that its computational complexity is the 

square of the number of label candidates. For a typical 481 x 321 image, the 

number of label patches is the order of lOl To handle the high computational 

c o m p M t y to make BP practical, we present a two-step coarse-to-fine scheme, 

where two BPs run with much smaller numbers of label candidates instead of 

one BP running with a large number of label candidates. 

17 

f 
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3.1 An MRF Model 

Let n be the region of an input image I and Q, be the region marked to be 

filled, called the target region. We need to fill in Q using the information from 

the source region <J> = 11 — fi. 

We first sparsely sample the input image with a horizontal spacing sh and a 

vertical spacing sv. Let P = {pi’p2，…，Pat} be N sampled pixels in the target 

region. The process of image completion is to fill the target region by pasting 

some w X h patches taken from the source region to the locations centered at 

Pi e P, 1 < i < N. It is a process of propagating textures and structures 

from the source region to the target region. Denote Vi as the w x h region 

centered at the point Pi. Construct an undirected weighted graph G = (V, £"), 

where the node set V = ..., vn] contains all the wx h rectangle regions 

centered at some points in P, and E is the set of edges connecting each node 

to its four neighbors. Fig. 3.1 demonstrates the process of graph construction. 

Let C = {li,l2, Ik} be the set of label candidates containing all the wxh 

patches taken from the source region. Then the labeling problem is to find the 

best label configuration X — {x\,x2, ••••,xm} to minimize an energy function 

defined later in this section, where Xi € C, 1 < i < N and Xi = Ik means that 

the label (patch) for node Vi is Ik. 

Before giving the energy function in our algorithm, let us consider the con-

fidence term. In [12], a confidence term is proposed to determine the filling 

priority. They propagate the confidence of the synthesized pixel values in a 

manner similar to the propagation of information in inpainting. Our approach 

defines another confidence term, which is based on the distance from an un-

known pixel to the source region. It reflects the importance of the nodes in 

our propagation process. Since image completion is to propagate textures and 

structures in the source region to the target region, the pixels in the target 

region closer to the source region should be more important in the propagation 



Chapter 3 Our Formulation I9 

sh 
I ~ « ~ , 

sv-

AVr^^— mpmvr—rry一— — , 

r i . y i ！ n 

M i � 〜 丨 
^ » ) •. I 

n > ； 

Figure 3.1: Graph construction. The image is sparsely sampled with a hori-
zontal spacing sh and a vertical spacing sv. The samples in the target region ft 
construct the nodes of the graph G. The overlapping part (region 1) between 
Xi and the source region provides the data cost for Xi and the overlapping part 
(region 2) between Xi and x j gives the consistency cost for {xi,Xj). 

process, thus have larger confidence values. Fig. 3.2 shows an example of the 

confidence value distribution. 

Based on the MRF model, our energy function is defined in the following 

form 

= E (3.1) 
Viev {vi,Vj)eE 

where Ei{xi) is the data cost for label Xi and E2(xi, x j ) is the consistency cost 

for {xi ,x j ) (see Fig. 3.1). Actually, this 

energy function is where we combine 

both structure information and texture information together. By minimizing 

“ the energy, the structure and texture are both considered and also collaborate 

with each other to help the propagation process. MRFs and the energy defined 

here constitute 

a unified framework. Detailed definition of Ei and E2 are 

discussed bellow. In [30] and [34], the energy functions are defined in a similar 

form to (3.1). However, their definitions of these Ei and E � a r e different from 

ours, which result in a different scheme to handle structure information. The 
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• • f 

(a) (b) 一 (c) 

Figure 3.2: An example of the map of the confidence values, (a) The input 
"bungee" image, (b) The mask (in green) of the boy to be removed, (c) The 
confidence map in the mask, in which the brighter a pixel is, the larger the 
confidence value. 

differences will be explained in the following contents. 

The data cost term for label Xi is defined as: 

Ei(xi) = C(i) - (3.2) 

where C{i) is the confidence value for node Vi and d{xi, constrains the 

synthesized patch Xi to match well with the source region $ when Xi and <J> 

overlap. d{xi, <J>) is calculated as the sum of the squared differences (SSD) of 

pixel colors in the overlapping part between Xi and $ (e.g., region 1 surrounded 

by the red dashed curve in Fig. 3.1). When Xi and 少 do not overlap, Ei{xi) = 0. 

In [34], the cost term is linearly composed of the structure and texture 

components, which are used to propagate structure and texture information, 

respectively. The structure information is some curves drawn interactively by 

the user. The texture component is defined the same as d{xi, in (3.2) but 

without C{i). The cost term used in [30] is also the same as d(xi^ without 
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The consistency cost term E2(xi,xj) in our algorithm is defined as 

巧 ） = C � 2 C � � X j ) + \2El{xi, Xj)] ’ (3.3) 

where C(i) and C(j) are the confidence values of nodes vi and Vj, respectively, 

is a term used to enforce consistency for texture propagation, and 

El (x i ,x j ) for structure propagation. Ai and A2 are two factors to balance Ei, 

El, and 五!. Here El (x i ,x j ) is computed by 

E\{xuxj) = d{xi ,xj) , (3.4) 

where d(xi ,x j ) is the SSD in the overlapping part between Xi and Xj (e.g., 

region 2 surrounded by the red solid curve in Fig. 3.1). E 办 “ Xj) is computed 

by 

E^ixuxj) = dl^{xi,xj) + dly(xi,xj), (3.5) 

where dgx{xi, Xj) and dgy{xi, Xj) are the gradient differences between Xi and x j 

in 2; "and y directions, respectively. The maximum gradient of the pixels in a 

patch is used to denote the gradient of the patch, which roughly describes the 

structure of the patch. The constraint of gradient consistency propagates the 

structure information. 

In [34] and [30], only SSD values are used in the consistency cost term. 

This is sufficient for the algorithm in [34] since the manually added structure 

information is incorporated in its cost term. However, for [30], there is no 

component used for structure propagation. 

3.2 Coarse-to-Fine Optimization by BP 

Minimizing (3.1) is an NP-hard problem. BP can find a local optimum for 

such an MRF energy function, in polynomial time. As stated in Chapter 2， 

the max-product and sum-product are two typical BP algorithms on MRFs. 

t 
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In our work, the max-product algorithm is used since it is less sensitive to 

numerical inaccuracy. Conventionally, the max-product algorithm is defined 

in terms of probability distributions. By taking the negative logarithm of 

the probabilities, the max-product problem becomes an equivalent min-sum 

problem, which handles messages directly based on the energy function. 

The max-product BP works iteratively by passing messages along the graph. 

At each iteration t, the message passing from vj to Vi for label Xi is computed 

in the following way 

= min Xj) + Ei {x j ) + ^ m二 ( oc j ) , (3.6) 
巧 [ seAf{j)\i _ 

where Af(j)\i denotes the neighbors of Vj excluding Vi. Intuitively, 

indicates how likely node vj believes that node Vi has label Xi. After T itera-

tions, a belief value for each node Vi with label Xi is computed by 

bi(xi) = Ei(xi) + (3.7) 
jeM{i) 

Finally, the label Xi minimizing bi{xi) is selected as the optimal label for node 

Vi. For a graph with N nodes and K label candidates, the running time for T 

iterations is 0{TNK^). 

In our image completion approach, the main problem with such a standard 

BP algorithm is that the number of label candidates K is too large to be used 

in practice. For instance, there are normally more than 10000 patches for a 

typical 256 x 256 image, taking a BP hours to run. Moreover, the huge num-

ber of labels also implies that for any pair of adjacent nodes Vi and Vj, their 

matrix of pair wise consistency cost Eql̂ oCi, Xj) is so large that it cannot fit into 

memory and therefore cannot be pre-computed. Thus, this matrix must be 

re-calculated each time node Vi sends messages to node Vj, meaning that K"̂  

times of E2 calculations are required for each message update. This is intoler-

able and makes standard BP impractical. In [30], they encountered the same 
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problem. In order to reduce the intolerable computational cost of BP caused 

by the large number of labels, they proposed two cooperative optimization 

methods over standard BP, i.e.,"dynamic label pruning" and "priority-based 

message scheduling". The basic idea is to discard labels that are unlike to 

be optimal, and use some greedy-like scheme to speed up BP's convergence. 

These methods highly reduced the computational cost. However, as they drop 

out a large number of labels for each node, and update messages in a greedy 

way rather than the standard way, some important information might be lost 

in the process, and the result might be quite different from the result obtained 

from a standard BP. ” 

3.2.1 Coarse-Level Belief Propagation 

In our work, to handle the high computational complexity to make BP prac-

tical, we propose a coarse-tofine scheme. We maintain the diversity of label 

candidates to keep important structure and texture information. The main 

idea'of this scheme is to perform BP twice with Ki and K2 label candidates 

instead of performing BP once with K candidates, where Ki and K2 are much 

smaller than K. The steps of our coarse-to-fine algorithm are described as 

follows. 

First, we use the K-means algorithm to classify all the image patches in 

C into Ki clusters, denoted as 81,82, ...,Ski. Then C = {81,82, 

Take the Ki cluster centers as the label candidates C^ = {ci , C2, ...，cĵ J and 

minimize (3.1) using the standard max-product BP with to find the best 

label configuration J î 二 {a;}’ ...’ a:；̂ }’ where x} e C\ 1 < i < N and 

xj = Cfci means that the best label for node Vi is Cfĉ  after the first BP. As 

demonstrated in Fig. 3.3(a), this optimization step fills the target region in a 

coarse level with blurring effect, since the label candidates are centers of each 

cluster. 
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Figure 3.3: An example of our coarse-to-fine BP optimization, (a) The coarse-
level result of the first BP step, with blurring effect, (b) The fine-level result 
of the second BP step, with detailed information filling in. 

3.2.2 Fine-Level Belief Propagation 

After the coarse result is obtained, the second BP is used to refine the result. 

Suppose that after the first BP, the best label for node Vi is x] — Ck^. Then the 

label candidates for node Vi is Cf = Sk” where Ski is the A;ith cluster obtained 

by the K-means algorithm. A constant K2 is used to limit the maximum label 

number for C}: if the patch number of Sk̂  is larger than K2, then K2 patches 

are randomly selected from Sk̂  as the label candidates in C^. Using such 

different label candidate sets for different nodes, the second BP runs to find the 

best label configuration, which gives the final result of our image completion 

algorithm. Actually in this step, the total number of label candidates is still 

K. What we do here is using the result from the coarse level as a constraint 

on each node, i.e., the label candidates for node Vi can only be chosen from 

the cluster whose center is x]. In Fig. 3.3 an example is shown. Compared 
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with the coarse-level result, the second BP uses the original patches from 

the source region, producing better result with detailed texture and structure 

information. 

3.2.3 Performance Enhancement 

By using a two-step BP, the most critical benefit is that it makes our algorithm 

practical. Suppose K = 10000, Ki = K2 = 100, and all the BP algorithms 

take the same number of iterations to stop. Then our two-step BP algorithm is 

about 5000 times faster than the standard BP algorithm. Actually, it reduces 

the computational complexity from 0{TNK^) to 0{TNK) by setting Ki and 

K2 appropriately. 

Moreover, the scheme significantly reduces the computational cost in an-

other way. In the normal case, where K > 20000, the consistency cost 

E2(xi, Xj) can hardly fit into memory, as it takes at least 3GB. Thus, whenever 

updating the message in (3.6)，E2(xi,Xj) needs to be recalculated. 

For standard BP algorithm, the total complexity of recalculating E2(xi,xj) is 

0(TNK^P)，where P (around 100) is the number of pixels in a patch. It is P 

times the complexity of the main algorithm, and makes the un-optimized ap-

proach terribly unpractical. By adopting the coarse-to-fine scheme, the mem-

ory required by 工j) is significantly reduced to less than 200MB. So the 

consistency cost can be calculated beforehand and fetched from memory when-

ever needed. 

According to the above two reasons, our two-step BP scheme is critical to 

make the algorithm practical. The standard BP would unbearably take weeks 

for a typical image, while our optimized algorithm only needs 1 minutes. 

Obviously, such a coarse-to-fine BP scheme leads to a result different from 

that obtained with the standard BP. This is the tradeoff for speeding up. As 

we maintain all the label candidates from the source region, we preserve the 
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label diversity and keep important structure and texture information as much 

as possible, which promises good performance. Our experiments show that 

this scheme achieves satisfactory results. 

This approach is similar to the pyramid-based method in computer vision. 

The coarser level provides candidate constraints for the next level, and the finer 

level result shows more detailed information. Obviously, we may use multi-

level models. The model with more than two levels increases the algorithm's 

complexity, and might not perform better than the two-level procedure for our 

inpainting problem. Last but not least, such a coarse-to-fine BP procedure is 

not only limited to our specific problem. It can also be used to speed up other 

MRF based applications in computer vision and computer graphics. 

\ 



Chapter 4 

Experiments 

4.1 Comparison 

In this chapter, we perform a number of experiments and comparisons. To 

demonstrate the performance of our algorithm, we test it on real images. Most 

recent related algorithms are published in [12], [34], and [30]. We do further 

comparison with [34], even though it is based upon manually added structure 

guidance and not belongs to automatic inpainting algorithms. 

Fig. 4.1 gives the comparative results on the "bungee" image in Fig. 3.2(a), 

where we want to remove the boy. Fig. 4.1(a) is obtained by the algorithm 

in [12], which propagate texture and structure in a greedy scheme by using 

some automatic guidance. As the guidance is based on heuristics and ad hoc 

principles, the algorithm does not apply in general cases, and often produces 

some obvious artifacts, as shown here in Fig. 4.1(a). Another drawback of [12] 

is that, once a missing block has been assigned some source patch, the block 

“ cannot change its appearance thereafter. This reveals the greediness of the 

approach, which again leads to visual inconsistencies. Later we will show more 

comparison results. 

Fig.'4.1(b) is the result by our BP algorithm with the confidence term 

C{i) and the structure term E^ removed from the energy function in (3.1). 

This turns out to be the same energy function as in [30]. As stated before, 

27 
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Figure 4.1: The comparative results on the "bungee" image, (a) The result 
of the greedy approach in [12]. (b) The result of BP without confidence and 
structure terms (i.e., C and 五!)，as in [30]. (c) Our result. 

the algorithm in [30] use two cooperative optimization methods over standard 

BP. Their basic idea is to discard labels that are unlike to be optimal, and 

use some greedy-like scheme to speed up BP'S convergence. This approach 

greatly reduces the computational costs, but might lose important information 

by discarding most of their labels. From Fig. 4.1(b) we can see that some 

strong structures (e.g., the roof) cannot be propagated well, due to the loss 

of structure information and confidence term. Fig. 4.1(c) shows our result. 

We successfully propagates the structure and texture, and produces a quite 

satisfying image in which the filling in is non-detectable. The boundaries 

different regions are smoothly connected, and the detailed texture information 

is correctly filled in. 

More comparative results are shown below in Fig. 4.2. Each column con-

tains a set a experiment. From top to bottom, respectively, each row contains 

the original images, the masked images, the results obtained by the greedy al-

gorithm in [12], the results of BP without confidence and structure terms (i.e., 
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Figure 4.2: More comparative results. Each column contains a set a experi-
ment. Prom top to bottom, respectively, each row contains the original images, 
the masked images, the results obtained by the greedy algorithm in [12], the 
results of BP without confidence and structure terms (i.e., C and as in 
[30]，and our results. (The results can be seen more clearly on the screen with 
enlarged images.) 
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C and E2) as in [30], and our results. These comparisons further demonstrate 

the advantages of our algorithm. The results can be seen more clearly on the 

screen with enlarged images. 

We do further comparison with [34], even though it is based upon manually 

added structure guidance and not belongs to automatic inpainting algorithms. 

As Fig. 4.3 shows, by adopting manual guidance, the algorithm in [34] (3rd 

row) performs almost perfectly. Obviously, our fully automatic algorithm can 

hardly perform better than Sun's, but it also produces comparable results 

when the source region provides enough structure and texture information 

(e.g., the "window" image in Fig. 4.3). When the information is lacking (e.g., 

the "eagle" image in Fig. 4.3), our result is reasonable and satisfying to some 

extent. 

Fig. 4.5 and Fig. 4.6 shows more results by our algorithm. Our global 

propagation scheme can produce visually natural results without obvious ar-

tifacts. Both structure (e.g., branches and the horizon) and texture (e.g., the 

pasture and snow) are handled very well in the images with excellent visual 

consistency. These comparison experiments demonstrate the advantages of 

our global optimization approach. By combining both structure and texture 

information under the unified framework, the BP process finds the optimal 

solution which automatically balances the structure and texture. 

In our approach, the patch size ranges between 9 x 9 and 15x15, the cluster 

constants Ki and K2 range from 100 to 200. For a typical 481 x 321 image, 

the /('-means algorithm (in Matlab) costs about 1 minute. The two-step BP 

procedure (in C + + ) takes less than 20 seconds, while a standard BP would 

take weeks to tackle one image. This makes our approach practical without 

losing any information or reducing the output quality. 

� 
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Figure 4.3: The comparison with [34]. Each column contains a set a experi-
ment. FVom top to bottom, respectively, each row contains the original images, 
the masked images, the results obtained by [34] with manual guidance, and 
our results. 
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4.2 Failure Case 

Definitely, there're failure cases for our algorithm, on which we cannot produce 

satisfying outputs. Fig. 4.4 shows an example, (b) is our result which obviously 

has some blurring effect. There're two reasons for this: (1) most of the label 

candidates in the source region are blurred; (2) the SSD energy function in our 

algorithm "prefer" blurred textures than detailed textures. But we notice that 

the structure of the leaf is well propagated. We also test this failure case on 

the other algorithms. The greedy approach shows many artifacts. The result 

of BP without C and E; cannot fill-in structures, and produce blurring effects 

too. 

W ‘ (b) 

R B H ^ H ^ I E H H ^ H ^ I 
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(C) (d) 

Figure 4.4: A failure case of removing the bug. (a) original image; (b) our 
result; (c) the result obtained by the greedy algorithm in [12]; (d) the result 
of BP without confidence and structure terms (i.e., C and E! ) as in [30]. 
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Figure 4.5: More results by our algorithm. Each row contains a set of experi-
ments. Prom left to right: original images, masked images, and the results. 
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Figure 4.6: More results by our algorithm. Each row contains a set of experi-
ments. From left to right: original images, masked images, and the results. 



Chapter 5 

Conclusion 

A novel image inpainting approach incorporating texture and structure in-

formation is proposed in our work. We formulate the inpainting as a global 

discrete optimization problem by an MRF model. Our unified framework au-

tomatically balances structure and texture information, which are the two 

critical factors in image inpainting. 

Notice that, in our energy function definitions, we use two simple forms to 

represent structure and texture information. The experiments show that these 

simple definitions are capable enough to produce satisfactory results. We can 

surely use some other more complex structure and texture features to enhance 

the output quality. 

The max-product BP algorithm is used to solve the optimization problem. 

To improve the efficiency, a coarse-to-fine scheme is taken in our algorithm, 

where the BP runs twice with two much smaller numbers of label candidates. 

As we maintain all the label candidates from the source region, we preserve 

the label diversity and keep important structure and texture information as 

much as possible, which promise good performance. By using a two-step BP, 

the most critical benefit is that it makes our algorithm practical without los-

ing any information or reducing the output quality. Actually, it reduces the 

computational cost from 0{TNK^) to 0(TNK) by setting Ki and K2 appro-

priately, and solves the recalculating problem by fitting 场(a;i’ xj ) into memory. 
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Such a coarse-to-fine BP procedure is not only limited to our specific problem. 

It can also be used to speed up other MRF based applications in computer 

vision and computer graphics. The experimental results demonstrate that our 

algorithm is efficient and outperforms two most recent algorithms. 

Though we have made encouraging progress in image inpainting, it is far 

from the end of the road. A lot of work can be done to make further improve-

ment. Video completion is one of our further works. 



Bibliography 

[1] C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and J. Verdera. Filling-

in by joint interpolation of vector fields and gray levels. Image Processing, 

IEEE Transactions on, 10(8): 1200-1211, 2001. 

[2] W. Barrett and A. Cheney. Object-based image editing. In SIGGRAPH, 

2002. 

[3] M. Bertalmio, A. Bertozzi, and G. Sapiro. Navier-Stokes, Fluid Dynamics, 

and Image and Video Inpainting. Proc. of lEEE-CVPR, pages 355-362， 

-2001. 

[4] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image inpainting. 

ACM Press/Addison-Wesley Publishing Co. New York, NY, USA, 2000. 

[5] M. Bertalmio, L. Vese, G. Sapiro, and S. Osher. Simultaneous structure 

and texture image inpainting. Image Processing, IEEE Transactions on, 

12(8):882-889, 2003. 

[6] J. Besag. On the Statistical Analysis of Dirty Pictures. Journal of the 

Royal Statistical Society. Series B (Methodological), 48(3):259—302, 1986. 

[7] R. Bornard, E. Lecan, L. Laborelli, and J. Chenot. Missing data correction 

in still images and image sequences. In ACM MM, 2002. 

37 

f 



[8] Y. Boykov and V. Kolmogorov. An experimental comparison of min-

cut/max-flow algorithms for energy minimization in vision. IEEE Trans. 

Pattern Analysis and Machine Intelligence, 26(9):1124—1137, 2004. 

[9] Y. Boykov, 0 . Veksler, and R. Zabih. Markov random fields with effi-

cient approximations. IEEE Conference on Computer Vision and Pattern 

Recognition, pages 648-655, 1998. 

[10] Y. Boykov, 0 . Veksler, and R. Zabih. Fast approximate energy minimiza-

tion via graph cuts. Pattern Analysis and Machine Intelligence, IEEE 

Transactions on, 23(11):1222-1239, 2001. 

[11] T. Chan and J. Shen. Nontexture Inpainting by Curvature-Driven Dif-

fusions. Journal of Visual Communication and Image Representation, 

12(4):436—449, 2001. 

[12] A. Criminisi, P. Perez, and K. Toyama. Region filling and object removal 

by exemplar-based image inpainting. Image Processing, IEEE Transac-

tions on, 13(9):1200—1212，2004. 

[13] I. Drori, D. Cohen-Or, and H. Yeshurun. Fragment-based image comple-

tion. ACM Transactions on Graphics (TOG), 22(3):303-312, 2003. 

[14] A. Efros and W. Freeman. Image quilting for texture synthesis and trans-

fer. Proceedings of the 28th annual conference on Computer graphics and 

interactive techniques, pages 341-346, 2001. 

[15] A. Efros and T. Leung. Texture synthesis by non-parametric sampling. 

International Conference on Computer Vision, 2(9): 1033—1038, 1999. 

[16] G. Emile-Male. The Restorer's Handbook of Easel Painting. Van Nostrand 

Reinhold, 1976. 

38 



[17] W. Freeman, E. Pasztor, and O. Carmichael. Learning Low-Level Vision. 

International Journal of Computer Vision, 40(l):25-47, 2000. 

[18] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions and 

the Bayesian restoration of images. Readings in Computer Vision: Issues, 

Problems, Principles, and Paradigms, pages 564-584, 1987. 

[19] G. Guy and G. Medioni. Inferring global pereeptual contours from local 

features. International Journal of Computer Vision, 20(1):113-133, 1996. 

[20] P. Harrison. A non-hierarchical procedure for re-synthesis of complex 

textures. In WCSG, 2001. 

[21] D. Heeger and J. Bergen. Pyramid-based texture analysis/synthesis. Pro-

ceedings of the 22nd annual conference on Computer graphics and inter-

active techniques, pages 229-238, 1995. 

[22] A. Hertzmann, C. Jacobs, N. Oliver, B. Curless, and D. Salesin. Image 

-analogies. Proceedings of SIGGRAPH 2001, pages 327-340, 2001. 

[23] T. Huang, S. Chen, J. Liu, and X. Tang. Image inpainting by global 

structure and texture propagation. Proceedings of the 15th international 

conference on Multimedia, pages 517-520, 2007. 

[24] J. Jia and C. Tang. Image repairing: robust image synthesis by adap-

tive NDtensor voting. Computer Vision and Pattern Recognition, 2003. 

Proceedings. 2003 IEEE Computer Society Conference on, 1, 2003. 

[25] L. Joyeux, O. Buisson, B. Besserer, and S. Boukir. Detection and removal 

of line scratches in motion picture films. Proceedings of the IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition, 

1:548-553, 1999. 

[26] D. King. The commissar vanishes. Metropolitan Books, 1997. 

39 



[27] A. Kokaram, R. Morris, W. Fitzgerald, and P. Rayner. Detection of 

missing data in image sequences. Image Processing, IEEE Transactions 

on, 4(11):1496-1508, 1995. 

[28] A. Kokaram, R. Morris, W. Fitzgerald, and P. Rayner. Interpolation of 

missing data in image sequences. Image Processing, IEEE Transactions 

on, 4(11):1509-1519, 1995. 

[29] V. Kolmogorov and R. Zabin. What energy functions can be minimized 

via graph cuts? Pattern Analysis and Machine Intelligence, IEEE Trans-

actions on, 26(2):147-159, 2004. 

[30] N. Komodakis and G. Tziritas. Image completion using global optimiza-

tion. CVPR06, pp. /，pages 442-452, 2006. 

[31] S. Masnou and J. Morel. Level lines based disocclusion. Image Processing, 

1998. ICIP 98. Proceedings. 1998 International Conference on, pages 259-

263, 1998. 

[32] K. Murphy, Y. Weiss, and M. Jordan. Loopy belief propagation for ap-

proximate inference: An empirical study. Proceedings of Uncertainty in 

AI, pages 467-475, 1999. 

[33] M. Nitzberg, D. Mumford, and T. Shiota. Filtering, Segmentation, and 

Depth. Springer, 1993. 

[34] J. Sun, L. Yuan, J. Jia, and H. Shum. Image completion with struc-

ture propagation. International Conference on Computer Graphics and 

Interactive Techniques, pages 861-868, 2005. 

[35] S. Walden. The Ravished Image; Or, how to Ruin Masterpieces by 

Restoration. St. Martin's Press, 1985. 

40 



[36] L. Wei and M. Levoy. Fast texture synthesis using tree-structured vector 

quantization. Proceedings of the 27th annual conference on Computer 

graphics and interactive techniques, pages 479-488, 2000. 

[37] L. Williams. Stochastic Completion Fields: A Neural Model of Illusory 

Contour Shape and Salience, 1997. 

[38] J. Yedidia, W. Freeman, and Y. Weiss. Generalized belief propagation. 

Advances in Neural Information Processing Systems, 13:689-695, 2001. 

[39] J. Yedidia, W. Freeman, and Y. Weiss. Understanding belief propaga-

tion and its generalizations. Exploring Artificial Intelligence in the New 

Millennium, pages 239-236, 2003. 

41 

f 



i 

. \ 

‘ �� 

• • ‘ � 

. •/ ‘ • 

‘"•丨 . 

. ‘ •• . • 

- . . • . V ..‘ 
• . . . •‘ 

/ 均 • . - ‘ • 
• ， .. :.:.� f. *、： 



‘ i 
. > 

• i 

‘ i 
‘ \ 

i 

_ i 
. ‘ * — 

• j 
• ' I 

• • . - - i 

i 

, \ 
. J 

.. V . i 
• . - i 

•i 

•• •• , ‘ .i 
•； 

4 

•• % 

I 

i 
� 1 

.. . I 
• 4 

. -f 

• - . . . i 
- • � 

. • �J 

+ ^ 

. ‘ - ‘ i 
^ . ： 

‘ It 

. ‘ , / j -.‘ ， 

‘ V - J 
‘ ,1 

Vi • _ 

- . . ‘ • • ’ . ？ 

- CUHK L i b r a r i e s J 

. _ _ l l l l l l ！ 
004561273 j 


