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"Biology and computer science - life and computation - are related. I am confident that 

at their interface great discoveries await those who seek them.“ 

Leonard Adleman, Scientific American Magazine 1998 
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With increasing computational power, availability of databases with massive protein and 

DNA data, and mature data mining techniques, a framework is proposed to discover 

associated protein-DNA binding sequence patterns from TRANSFAC. 

To further analyze the discovered sequence patterns in the huge search space, two evolu-

tionary algorithms are proposed. Iri particular, the evolutionary algorithms are specially 

designed for multimodal optimization to avoid premature convergence and genetic drift. 

The one with less rmmber of parameters (CrowdiiigGA-L) is selected and applied to 

learn the protein-DNA bindings in generalized sequence representations. Some promis-

ing results are obtained. 

As a further application, CrowdingGA-L is also applied to predict protein structures on a 

lattice model. The experiments show that it can be applied to obtain results comparable 

with the other state-of-the-art algorithms, although it is a relatively simple technique. 
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結合逐漸強大的計算能力’大量的脫氧核糖核酸和蛋白質實驗資料庫及成 

熟的數據挖掘技術，本論文提出了一個計算框架以從TRANSFAC發現相關 

的脫數核糖核酸和蛋白質結合的序列模式。 

為了進一步在巨大的模式搜索空間分析該些序列模式，本論文提出兩個特 

別設計的進化算法以進行多模態優化，以避免過早收敛和遺傳漂移。其中 

一個參數數量較少的進化算法（CrowdingGA-L)被選擇應用以推廣該些模 

式，從而獲得有希望的結果。 

作為進一步的應用，CrowdingGA-L也被選擇應用在格模型對蛋白質結構的 

預測。實驗表明，雖然它是一個相對簡單的技術’但它卻可以得到與其他 

最先進的算法不相伯仲的成绩。 
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Chapter 1 

Introduction 

1.1 Motivation 

Protein-DNA bindings between transcription factors (TFs) and transcription factor 
binding sites (TFBSs) play an essential role in transcriptional regulation. However, 
it is expensive and laborious to experimentally identify TF-TFBS binding sequence 
pairs, for example, using DNA footprinting [3] or gel electrophoresis [4]. The technology 
of Chromatin immunoprecipitation (ChIP) [5’ 6] measures the binding of a particular 
TF to DNA of co-regulated genes on a genome-wide scale in vivo, but at low resolu-
tion. Further processing are needed to extract precise TFBSs [7]. TRANSFAC [8] is 
orie of the largest and most representative databases for regulatory elements includ-
ing TFs, TFBSs, nucleotide distribution matrices of the TFBSs, and regulated geiies. 
The data are expertly annotated and manually curated frorn peer-reviewed and exper-
imentally proved publications. Other annotation databases of TF families and binding 
domains are also available (e.g. PROSITE [9], Pfam [10]). It is even more difficult 
and time consuming to extract high-resolution 3D TF-TFBS complex structures with 
X-ray crystallography or Nuclear Magnetic Resonance (NMR) spectroscopic analysis. 
Nevertheless, the high-quality TF-TFBS binding structures provide valuable insights 
into verifications of putative principles of binding. The Protein Data Bank (PDB) [11] 
serves as a representative repository of such experimentally extracted proteiii-DNA (in 
particular TF-TFBS) complexes with high resolution at atomic levels. However, the 
available 3D structures are far frorn complete. As a result, there is strorig motivation 
to have automatic methods, particularly, computational approaches based on existing 
abundant data, to provide testable candidates of novel TF domains arid/or TFBS motifs 
with high confidence to guide and accelerate the wet-lab experiments. 

1 
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1.2 Objective 

To propose computational methods and apply them to provide testable candidates of 
novel TF-TFBS binding sequence pairs with high confidence to guide and accelerate the 
wet-lab experiments. 

1.3 Methodology 

A bioinformatics framework is proposed to discover associated TF-TFBS binding se-
quence patterns from TRANSFAC. To further analyze the discovered sequence pat-
terns in the huge search space, two evolutionary algorithms are proposed. In particu-
lar, the evolutionary algorithms are specially designed for multimodal optimization to 
avoid premature convergence and genetic drift. The one with less number of parame-
ters (CrowdingGA-L) is selected and applied to generalize the sequence representations. 
Some promising results are obtained. As a further application, CrowdingGA-L is also 
applied to predict protein structures on a lattice model. The experiments show that it 
can be applied to obtain results comparable with the other state-of-the-art algorithms, 
although it is a relatively simple technique. 

1.4 Bioinformatics 

In recent years, genome sequencing projects around the world have successfully worked 
out the whole genomes for different species . In 1995, the first free-living organism 
Haemophilus influenzae was sequenced by The Institute for Genomic Research[12]. In 
1996, the first eukaryotic genome was completely sequenced. It was the model eukaryote 
species, Saccharomyces cerevisiase[l3]. In 2000, the first plant genome, Arabidopsis 
thaliana, was also sequenced by Arabidopsis Genome Initiative[14]. Finally in 2006, 
with the last chromosome sequenced, the Human Genome Project (HGP) announced its 
completion[15]. Although the above, the story has not ended yet. Merely raw genomic 
sequence data is not sufficient for scientists to jump into any meaningful conclusions. 
Further data analysis of the genomes is required. 

In particular, computational methods have been attracting increasing attention due to 
its high speed and low cost, comparing to wet-lab experiments. They are collectively 
known as bioinformatics. For instance, motif discovery [16j helps us distinguish real 
signals from the background sequences. Multiple sequence alignment [17] can be used 
to study the similarity between multiple sequences. Protein structure prediction [18] 
can be applied to predict the 3D tertiary structure from an amino acid sequence. Geiie 
network inference [19] uses statistical methods to infer gene network from microarray 
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data. Promoter prediction [20] help us annotate the promoter region in a genome. 
Phylogenetic tree inference [21] can be used to study the relationship between different 
species. Drug scheduling [22] can help doctors solve the clinical problems in an effective 
manner. Although the accuracy of the methods is sometimes lower than that of wet-lab 
experiments, they can still serve as useful preprocessing tools to significantly narrow the 
search space. Thus putative candidates can be selected for further validation by wet-lab 
experiments. Time and money are saved. 

1.5 Computational Methods 

1.5.1 Evolutionary Algorithms 

Evolutionary algorithm builds a bridge between computer science and natural science 
[23]. Instead of artificial creation, evolutionary algorithm emphasizes on learning from 
the nature. Nature rules are applied or modeled to build brand-new computational tech-
niques, which can be well adapted and integrated into different contexts. For instance, 
inspired from the Darwin's evolutionary theory, John Holland has proposed a computa-
tional technique called genetic algorithm which resembles the evolutionary process for 
natural selection. In a typical run, it simulates the natural mechanism of a group of 
individuals (called population). The individuals perform crossovers with each other to 
form offspring, who probabilistically undergo mutations. After that, it comes to survival 
selection. Fitter offspring will be retained and kept to the next generation. The offspring 
become parents. They, again, crossover with each other to form offspring. Iteratively, it 
is expected the population become fitter and fitter. Optimization can thus be achieved. 

Since genetic algorithm was proposed by John Holland [24] in the early 1970s, evolution-
ary algorithm has emerged as a popular research field. Researchers from various scientific 
and engineering disciplines have been digging into this field and exploring the power of 
evolutionary algorithms. Many international conferences specialized for evolutionary al-
gorithms have been created like ACM GECCO, IEEE CEC, EvoStar, and PPSN.. . With 
such a diverse base of researchers, many applications have been successfully proposed in 
the past twenty years. For example, mechanical design [25], electromagnetic optiiriiza-
tion [26], environmental protection [27], finance [28], musical orchestration [29], pipe 
routing [30], and nuclear reactor core design [31]. In particular, its function optimiza-
tion capability was highlighted [32] because of its high adaptability to different function 
landscapes, to which we cannot apply traditional optimization techniques. 

The design of evolutionary algorithms draws inspiration from the nature. They simulate 
the natural mechanism and are closer to the nature. It is intuitive that they should be 
among the best methods in bioinformatics to decipher the nature . Thus evolutionary 
algorithms are heavily analysed and involved in the framework proposed in this thesis. 
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1.5.2 Data Mining for T F - T F B S bindings 

The first attempt of computational methods related to TF-TFBS bindings was to dis-
cover the motifs of TF domains and TFBSs separately. Many data mining approaches 
have also been proposed [33]. Researchers employ and transfer additional detailed infor-
mation such as base compositions, structures, thermodynamic properties [34，35] as well 
as expressions [36]，into sophisticated features to fit into certain data mining techniques. 
Although sorne approaches may provide interpretable rules, most of them have stringent 
data requirements which cannot be obtained trivially. Existing data beyond sequences 
are also insufficient and limited for practitioners. These methods usually extract com-
plicated features rather than working on interpretable data directly. Many data mining 
techniques, such as neural networks, support vector machines (SVM) [37], and regres-
sions [33], may generate rules which are not trivial to interpret. Furthermore, many 
data mining approaches are based on specific families or particular datasets, where the 
generality of the results are limited. On the other hand, sequences serve as the most 
handy primary data which carry important information for proteiii-DNA bindings [38]. 
It is desirable to make use of the large-scale and comprehensive sequence data to mine 
explicit and interpretable TF-TFBS binding rules. A framework for discovering the 
binding information is thus proposed in this thesis. 



Chapter 2 

Background 

2.1 Gene Transcription 

D N A makes R N A , R N A makes Protein is the central dogma of molecular biology. 
The first process is called Transcription, whereas the second process is called Transla-
tion. For each gene being expressed, there is probably a promoter region upstream of it. 
When several transcription factors (TFs) bind ori the transcription factor binding sites 
(TFBSs) on a promoter region, it will direct an RNA polymerase to the correct tran-
scriptional start site and transcript the target gene into RNA. The above gene regulatory 
process is called Transcription, whereas the elements involved are called Transcrip-
tion regulatory elements. There are also some enhancer and silencer regions around 
the promoter region which can enhance and hinder the transcription process at a certain 
level respectively, as shown in Figure 2.1. 
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2.1.1 Prote in -DNA Binding 

Protein-DNA binding plays a central role in genetic activities such as transcription, 
packaging, rearrangement, and replication [39, 40]. Therefore it is very important to 
identify and understand the protein-DNA bindings as the basis for further deciphering 
biological systems. We focus on protein-DNA bindings between Transcription Factors 
(TFs) and Transcription Factor Binding Sites (TFBSs), which are the primary regulatory 
activities with abundant data support. TFs bind in a sequence-specific manner to TFBSs 
to regulate gene transcription (gene expression). The DNA binding dornain(s) of a TF 
can recognize and bind to a collection of similar TFBSs, from which a conserved pattern 
called motif can be obtained. TFBSs, the nucleotide fragments bound by TFs, are 
usually short (usually about 5 - 20 bp) in the cis-regulatory/intergenic regions, and can 
assume very different locations from the transcription start site (TSS). 

It is expensive and laborious to experimentally identify TF-TFBS binding sequence 
pairs, for example, using DNA footprinting [3] or gel electrophoresis [4]. The technology 
of Chromatin immunoprecipitation (ChIP) [5, 6] measures the binding of a particular 
TF to DNA of co-regulated genes on a genome-wide scale in vivo, but at low resolu-
tion. Further processing are needed to extract precise TFBSs [7]. TRANSFAC [8] is 
one of the largest and most representative databases for regulatory elements includ-
ing TFs, TFBSs, nucleotide distribution matrices of the TFBSs, and regulated genes. 
The data are expertly annotated and manually ciirated from peer-reviewed and exper-
imentally proved publications. Other annotation databases of TF families and binding 
domains are also available (e.g. PROSITE [9], Pfam [10]). It is even more difficult 
and time consuming to extract high-resolution 3D TF-TFBS complex structures with 
X-ray crystallography or Nuclear Magnetic Resonance (NMR) spectroscopic analysis. 
Nevertheless, the high-quality TF-TFBS binding structures provide valuable insights 
into verifications of putative principles of binding. The Protein Data Bank (PDB) [11] 
serves as a representative repository of such experimentally extracted protein-DNA (in 
particular TF-TFBS) complexes with high resolution at atomic levels. However, the 
available 3D structures are far frorn complete. As a result, there is strong motivation 
to have automatic methods, particularly, computational approaches based on existing 
abundant data, to provide testable candidates of novel TF domains and/or TFBS motifs 
with high confidence to guide and accelerate the wet-lab experiments. 

2.1.2 Existing Methods 

The first attempt of computational methods related to TF-TFBS bindings was to dis-
cover the motifs of TF domains and TFBSs separately. Moreover, researchers have 
been trying hard to generalize the one-to-one binding codes from existing 3D structures. 
Data mining methods have also been proposed with feature transformations and machine 
learning to decipher complicated binding rules. They are briefly described as follows: 
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Motif discovery: TF domains and TFBSs sequences are somewhat conserved due to 
their functional similarity and importance. By exploiting conservation in the sequences, 
Bioinformatics methods called motif discovery save some of the expensive and laborious 
laboratory experiments. Motif discovery [6] can be categorized into two types: (a) motif 
matching and (b) de novo motif discovery, (a) Motif matching is to identify putative 
TF domains [9’ 10] or TFBSs [41] based on motif knowledge obtained from annotated 
data, (b) de novo motif discovery predicts conserved patterns without knowledge on 
their appearances, based on certain motif models and scoring functions [42, 43] frorn 
a set of protein/DNA promoter sequences with similar regulatory functions. While 
de novo motif discovery is successful for well conserved TF functional domain motifs, 
the counterpart for TFBSs remains very challenging with poor performances on real 
benchmarks [6, 44’ 45]. A significant limitation of motif discovery is the lack of linkage 
between the binding counterparts for revealing TF-TFBS relationships. 

One-to-one binding codes: Numerous studies have been carried out to analyze existing 
protein-DNA binding 3D structures comprehensively [40，46, 47] or with focus on specific 
families [39] (e.g. zinc fingers [48]). Various properties have been discovered concerning, 
e.g., bonding and force types, TF conservation and mutation [39], and bending of the 
DNA [46]. Some are already applicable to predict binding amino acids on the TF side, 
e.g. [49]. However, annotated data are far from complete. Alternatively, researchers 
have sought hard for general binding "codes" between proteins and DNA, in particular 
the one-to-one mapping between amino acids frorn TFs and nucleotides from TFBSs. 
Despite many proposed one-orie binding propensity mappings [39, 50, 51], it has come 
to a consensus that there are no simple binding "codes" [38]. 

Data raining: In the hope of better understanding for protein-DNA bindings, many 
data mining approaches have also been proposed [33]. Researchers employ and transfer 
additional detailed information such as base compositions, structures, thermodynamic 
properties [34, 35] as well as expressions [36], into sophisticated features to fit into 
certain data mining techniques. Although some approaches niay provide interpretable 
rules, most of them have stringent data requirements which cannot be obtained trivially. 
Existing data beyond sequences are also insufficient and limited for practitioners. These 
methods usually extract complicated features rather than working on interpretable data 
directly. Many data mining techniques, such as neural networks, support vector ma-
chines (SVM) [37], and regressions [33j, may generate rules which are not trivial to 
interpret. Furthermore, many data mining approaches are based on specific families 
or particular datasets, where the generality of the results are limited. On the other 
hand, sequences serve as the most handy primary data which carry important informa-
tion for protein-DNA bindings [38]. It is desirable to make use of the large-scale and 
comprehensive sequence data to mine explicit and interpretable TF-TFBS binding rules. 
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2.1.3 Related Databases 

2.1.3.1 T R A N S F A C - Experimentally Determined Database 

Up to now, TRANSFAC is the state-of-the-art database on experimentally proven tran-
scription regulatory elements [52]. It has been developed since 1996 [53]. BIOBASE 
GrnbH in Germany is now in charge of it. It is a database on transcription factors, 
binding sites, and regulated genes for all species. Positional weight matrices are derived 
using the above data. Up to TRANSFAC 2008.3’ it have 11,683 transcription factor 
data, 30,227 binding site data and 33,159 regulated gene data according to the BIOBASE 
company website (http://www.gene-regulation.coin /faqs/TFsiibscription.htrnl). At the 
same time, TRANSFAC also have different modules to complement its main core data: 
PathoDB, S/MARt DB, TRANSPATH, CYTOMER, TRANSPro, and TRANSCompel 
[52，54]. 

PathoDB is a database storing information about pathologically relevant mutations in 
transcription factor genes or in their binding sites. It comprises numerous cases of defec-
tive transcription factors or mutated transcription factor binding sites, which are known 
to cause pathological defects. S/MARt DB has been built as a relational database which 
comprises Scaffold matrix attached regions (S/MARs) and S/MAR-binding protein data. 
Scaffold matrix attached regions (S/MARs) have been shown to affect transcriptional 
regulation as a distinct class of cis-acting elements, but only recently they were shown 
to be targeted by several chromatin remodeling factors and thereby to influence gene 
expression. Besides S/MARs, a lot of transcription factors are regulated in response to 
extracellular signaling molecules. To capture such kind of information, TRANSPATH 
is built as a database on the signal transduction data. CYTOMER is a relational 
database that comprises tables for organs, cell types, physiological systems and devel-
opmental stages. TRANSPro is a database on eiikaryotic promoter sequences. Last 
but not least, TRANSCompel is a database on composite regulatory elements affecting 
gene transcription in eukaryotes. Composite regulatory elements consist of two closely 
situated binding sites for distinct transcription factors, and provide cross-coupling of 
different signaling pathways. 

The TRANSFAC data is expertly annotated, inanually ciirated from peer-reviewed pub-
lications, which have been experimentally proved. The curators search on the literatures 
and input the digested data into database via input clients, using controlled vocabulary. 
A quality measure is assigned to each database entry. The quality measure is assigned 
based on the quality of the related literature. For example, the absence of errors and re-
dundancy, the completeness, unambiguousness, high integration with other data sources, 
and existing commentary. TRANSFAC has been linked to a number of databases. For 
instance, TRANSFAC contains cross-references to the EMBL data library and to the 

http://www.gene-regulation.coin
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FIGURE 2.2: A screenshot of TRANSFAC 

SwissProt database. To browse the database, web interfaces have been developed in 
TRANSFAC for users to query and browse the data. 

On the application side, TRANSFAC has a tool called Match which is a web-based tool 
to identify transcription factor binding sites by weight matrix search in DNA sequences. 
Match is integrated in TRANSFAC Professional and equipped with positional weight 
matrices for analysis. Besides Match, Patch is also provided as a web-based tool which 
identifies transcription factor binding sites by pattern matching in DNA sequences. The 
transcription factor binding sites of TRANSFAC Professional are used as search patterns. 
Third-party tools have been integrated to enhance its usability. For instance, BLAST is 
connected and called 'TfBlast' in TRANSFAC. It is a search tool for sequence homology 
search in the TRANSFAC Transcription Factor data. Other miscellaneous tools have 
also been connected. Details can be referred to the TRANFAC website. 

TRANSFAC public version is free for online use at http://www.gene-regulatioii.com/ 
pub /databases. html, whereas TRANSFAC professional version needs fee subscriptions. 
The professional version has considerably large data amount comparing to the public 
version. Only flat files can be downloaded in the professional version. 

2.1.3.2 cisRED - Computational Determined Database 

cisRED was published in 2006 [55] and developed by Canada's Michael Smith Genome 
Sciences Centre iii Canada. cisRED is a database on computationally predicted reg-
ulatory element data in eukaryotes. The real genome data is downloaded from the 

http://www.gene-regulatioii.com/
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Internet. Genome-scale prediction approaches are then applied to scan over the real 
genome data to obtain the computationally predicted binding site data (motif data). 
These approaches involve multiple motif discovery methods, optimal p-value tuning us-
ing known data (experimentally determined data) and clustering methods to identify 
similar motifs. cisRED contains 236k motif data for human genome, 223k motif data for 
mouse genome, 116k motif data for rat and 158k motif data for C.elegans. As the data 
is computationally derived, the motif data, is not experimentally proved. The quality 
of motif data greatly depends on the accuracy and sensitivity of those motif discovery 
methods, though these methods are applied to the real genome data. 

As the genome data is downloaded from others, the genome data is linked to the respec-
tive organizations such as Ensembl. On the other hand, as the motif data is predicted 
by cisRED, there is no external reference links to them. The motif data can be viewed 
directly in cisRED's user interfaces. UCSC genome browser can be used for browsing. 
Direct SQL query can also be sent to the cisRED database. Though not directly related 
to the application field of cisRED, some applications can be downloaded via the cisRED 
web interfaces for further analysis. For example, Sockeye and HitPlotter. cisRED is 
available at http://www.cisred.org/. All data can be downloaded as MySQL files. 

2.1.3.3 ORegAnno - Community Driven Database 

With the open-source and open-access atmosphere wide-spreads on the Internet in recent 
years, a database called ORegAnno appeared in 2008[56]. ORegAnoo is an open-access 
community-driven database and literature curation system for regulatory annotation. 
ORegAnno is a database on regulatory regions of all species. As of November 2008， 

ORegAnno contains 37469 regulatory region data, 14607 binding site data, 175 regu-
latory polymorphism data and 7 regulatory haplotype data. One distinguished feature 
of ORegAnno is its data acquisition methods. A queue called “ Publication queue" has 
been implemented in ORegAnno. If some users feel that the publications give some 
results suitable for annotations, the users can freely input publications into this queue. 
On the other hand, users can also choose to check out publication from the queue and 
help ORegAnno perform manual curation and data extraction. Text-mining queue has 
also being developed to automate the publication insertion. Basic error checking is 
performed when inserting/updating data such as checking whether there is an existing 
data record with the same value. Existing data entry can be updated, commented, and 
scored. It is scored positive if users verify it as correct, it is scored negative if a problem 
is found. Nevertheless, in case of wrong annotation, the curated data entry can also be 
replaced or commented by other 'Validator，users. Such highly dynamic activities can 
ensure that the system maintain an acceptable quality, though may not be the highest 
quality. It is just something like Wikipedia vs Commercial encyclopedia (ORegAnno 
vs TRANSFAC). Besides, an ORegAnno evidence ontology has been created to capture 

http://www.cisred.org/
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critical details from primary experiments so that each data entry can be described using 
a controlled set of vocabularies. 

The records are well cross-referenced. Each data entry is cross-referenced to UCSC, 
Ensembl, EBI, PubMed, and dbSNP. ORegArino can also been accessed through web 
services using Perl SOAP modules. Basic web query interfaces are available on the 
ORegArmo website. Ensembl and UCSC genoine browser are also connected in ORe-
gAnno, Sequence fetchers and scanners are equipped iii ORegAniio. Several external 
applications such as Sockeye are connected in ORegAnno. ORegAnno is available at 
http://www.oreganno.org/. All data can be downloaded as XML files. MySQL dump 
can be downloaded by addressing to the authors. 
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C. «l«gars v4 tabits are »>ow � cisREO makes three levels of jnformation avarfaWe for regulatory elements: p̂ t»c ajijost )�, 7.̂o? Tb« r>9w C. Ateyank ÛUD»« has b««n 4dd«d to cuf 1. 'Atomlc' motifs: Thfts« srr cooserved, over-f«pres«nt«dr sequence sets, typically 6 to 12 bp bng, public MySQl scfvcr. 1 Chtt havt t>̂«rt diicov*rtd in « 's*arch regiorV 8«qu«nc« iet. | 

2. Croups of '%iniltnr' molHs: Theso aro tdentified e<ther by a) annotating motifs Mith Btto &equences C, ek>yanc v4 d̂tdbAi&u -"̂V -8. JWfc from TRANSFAC, JASPAR and OR«gAmo <Jacab«e« <annoutk>n-bas*d 9roups), or by b) d̂« novo' "rH% v‘riion ortĵ « -ci. »iigan�. <̂ iî 5 da—tijta-“—‘î ?ii.ri' hierarchical ckistemg with the OPTICS algor<thm ('de rvovo, groups). nematode genomes and 3847 htghly conserved 
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2.2 Evolutionary Algorithms 

Algorithm 1 A Typical Evolutionary Algorithm 
Choose suitable representation methods; 

P{t): Parent Population at time t 
0{t): Offspring Population at time t 

t — 0; 

Initialize P{t); 
while not termination condition do 

temp = Parent Selection from P(i) ; 
0{t + 1) = Crossover in temp] 
0{t + 1) = Mutate 0{t + 1); 
if overlapping then 

P{t + 1) = Survival Selection from 0{t + 1) U P(t)； 

else 
P(t + 1) - Survival Selection from 0{t + 1)； 

end if 
t <-i + 1; 

end while 

Good individuals can then be found in P{t); 

Evolutionary algorithms ^ draw inspiration from the nature. An evolutionary algorithm 
starts with a population randomly initialized. The population then evolve across sev-
eral generations. In each generation, some individuals are selected to become parent 
individuals. They crossover with each other to form new individuals, called offspring in-
dividuals. Some of the offspring individuals may then undergo certain mutations. After 
that, the algorithm selects individuals according to the survival selection scheme de-
signed. If the algorithm is overlapping [57], then both parent and offspring populations 
will participate in the survival selection. Otherwise, only the offspring population will 
participate in the survival selection. The selected individuals then survive to the next 
generation. Algorithm 1 briefly outlines a typical evolutionary algorithm. 

In this section, we follow the unified approach proposed by De Jong [57]. The design of an 
evolutionary algorithm can be partitioned into several modules: representation, parent 
selection, crossover operators, mutation operators, survival selection, and termination 
condition : 

• Representation involves genotype representation and genotype-pheiiotype map-
ping. [57]. For instance, we rnay represent an integer (phenotype) as a binary 

^Indeed, evolutionary algorithms can also be classified as parallel point search methods which it-
eratively sample a predefined space to maximize an objective function. A point is an individual. A 
population refers to a group of points. An iteration is called a generation. The search space scored by 
the objective function is called the fitness landscape. 
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array (genotype) like '19' as '10011' and '106' as '1101010，. If we mutate the first 
bit, then we will get '3' (00011) and '42' (0101010). In the examples, even we have 
mutated one bit in the genotype, the phenotype may vary very much. Thus we 
can see that there are a lot of considerations in the mapping. Thus representation 
is one of the most important parts in design. It will be further discussed in section 
2.2.1. 

• Parent selection aims to select good parent individuals for crossover, where the 
goodness of a parent individual is typically proportional to its fitness. Thus inost 
parent selection schemes prefer giving more opportunities to the fitter parent in-
dividuals and vice versa such that fitter offspring individuals are more likely to be 
generated. Details can be referred to section 2.2.2. 

• Crossover operators simulate the reproduction mechanism in the nature. Thus 
they, with mutation, are sometimes called reproductive operators. In general, a 
crossover operator combines two individuals to form a new individual. It tries to 
split an individual into parts and then assemble the parts into a new individual. 
Details can be referred to section 2.2.3. 

• Mutation operators simulate the mutation mechanism in which some parts of a 
genome undergoes random changes in the nature. Thus, as a typical modeling, a 
mutation operator in an evolutionary algorithm changes parts of the genome of an 
individual. In a typical run, mutations can be regarded as exploration mechanisms 
to balance the exploitation power of crossover operators. Details can be referred 
to section 2.2.4. 

• Survival selection aims to select a subset of good individuals from a set of indi-
viduals, where the goodness of a individual is also proportional to its fitness in 
a typical case. Thus survival selection mechanism is sornehow similar to parent 
selection mechanism. In a typical framework like 'EC4' [57], most parent selec-
tion mechanisms can be re-applied in survival selection. Details can be referred to 
section 2.2.5. 

• Termination condition refers to the condition at which an evolutionary algorithm 
should end. Details can be referred to section 2.2.6. 

To design an evolutionary algorithm, we need to choose a suitable combination of the 
above modules. However, several choices are available for each module. In total, there 
are hundreds of combinations available for a designer to choose. Thus some discus-
sions are provided in section 2.2.7. Furthermore, some solid examples of evolutionary 
algorithms are described in section 2.2.8. 
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FIGURE 2.5: Representation Examples in Evolutionary Algorithms, (a) Integer repre-
sentation (b) Protein structure representation on a lattice model (c) Tree representation 

for a mathematical expression 

2.2.1 Representation 

Representation involves genotype representation and genotype-phenotype mapping. In 
most cases, designers try to keep a genotype representation as compact as possible while 
keeping it as close to the corresponding phenotype representations as possible such that 
the metrics, say distance, in the genotype space can be mapped to those in phenotype 
space without losing much semantic information. 

In general, there are many types of representations that an evolutionary algorithm can 
employ like fixed-length linear structures, variable-length linear structures, and tree 
structures . • • To be concrete, Figure 2.5 depicts three examples. Figure 2.5a is one of 
the representations for a vector of integers. We can observe that its genotype is a binary 
array with length equal to 10. To map it into the phenotype space, the first 5 binary 
digits (10011) are mapped to the first element (19) of the vector whereas the remaining 
5 binary digits (11110) are mapped to the second element (30) of the vector. Figure 
2.5b is the relative encoding representation for a protein on a lattice model [58). Its 
genotype is ari array of moves and its length is set to the length of the amino acid 
sequence of the protein. The array of moves encodes the relative positions of amino 
acids from their predecessor arnino acids. Thus we need to simulate the move sequence 
to get the 3D structure of the protein (phenotype) for further evaluations. Figure 2.5c is 
the tree representation for a mathematical expression. Obviously, such tree structure is 
a variable length structure, which has the flexibility in design. If the expression is short, 
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it can be shrunk during the evolution. If the expression is long, it can also be expanded 
during the evolution. Thus we can observe that the structure has an advantage over 
the previous representations. Nevertheless, there is no free lunch. It is also harder for 
people to implement and translate it into the corresponding phenotype. For example, 
the corresponding mathematical expression in infix notation format. 

2.2.2 Parent Selection 

Parent selection aims to select good parent individuals for crossover, where the goodness 
of a parent individual is typically proportional to its fitness. Thus most parent selection 
schemes prefer giving more opportunities to the fitter parent individuals and vice versa. 
Here are some methods: 

• Fitness Proportional 
The scheme is sometimes called roulette wheel selection. In the scheme, the fit-
nesses of all individuals are summed. Once summed, the fitness of each individual 
is divided by the sum. The ratio then becomes the probability for each individual 
to be selected. If an algorithm needs to select an individual, then it will select the 
individuals based on the probability calculated. 

• Rank Proportional 
Unlike fitness proportional scheme, the rank proportional scheme does not depend 
on the actual values of the fitnesses of the individuals. It is a double-edged sword. 
On the positive side, it can help us prevent the domination of very high fitness 
values. On the negative side, it imposes more computational costs to rank individ-
uals such that the individual with a higher rank can be given a higher probability 
to be selected. 

• Uniform Deterministic 
Every individual is selected. 

• Uniform Stochastic 
Every individual is given equal probability to be selected. 

• Binary Tournament 
Actually, there are many tournament selection schemes available. In this section, 
the most basic one, binary tournament, is described. In each binary tournament, 
two individuals are randomly selected and competed with each other by fitness. 
The winner is then selected. It is repeated until all vacancies are filled. 

• Truncation 
Fitter individuals are selected deterministically when there is a vacancy for selec-
tion. In other words, worse individuals are never selected. For example, if there are 
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100 individuals and 50 slots are available for selection, the top 50 fittest individuals 
will be selected. 

2.2.3 Crossover Operators 

Crossover operators simulate the reproduction mechanism in the nature. Thus they, with 
mutation, are sometimes called reproductive operators. In general, a crossover operator 
combines two individuals to form a new individual. It tries to partition an individual 
into parts and then assemble the parts of two individuals into a new individual. The par-
titioning is not a, trivial task. It depends on the representation the individuals have used. 
Thus it is not hard to imagine that crossover operators are representation-dependent. 
Nevertheless, without loss of generality, a list of crossover operators commonly used is 
shown below: 

• One Point Crossover 
One point crossover is a commonly used crossover operator because of its simplicity. 
Given two individuals, it randomly chooses a cut point in their genomes. Then it 
swaps the parts after (or before) the cut point between the two genomes. Figure 
2.6a depicts an example. 

• Two Point Crossover 
Two point crossover is also a commonly used crossover operator because people 
argue that one point crossover has a positional bias toward the terminal positions. 
For instance, when making a one point crossover in Figure 2.6a’ the rightmost 
(or leftmost) bit is always swapped because most cut points are before the bit. 
Tlms the bit is mandated to be swapped, making it unable to stay after every one 
point crossover operation. Thus people propose two point crossover to avoid the 
positional bias. Figure 2.6b depicts an example. 

• Uniform Crossover 
Uniform crossover is a general one. For each gene, it gives a uniform probability 
to be swapped. 

• Blend Crossover 
Blerid crossover is commonly used in real number optimization. Instead of swap-
ping genes, it tries to blend two genes together and get the intermediate values. 
For instance, if we are going to make a crossover between two vectors [1 2 3] and 
[4 5 6], then the blended vector will be [2.5 3.5 4.5]. But, of course, the previous 
case is a typical example. Weights are sometimes given. 
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FlGURE 2.6: One Point Crossover and Two Point Crossover Examples 

2.2.4 Mutation Operators 

Mutation operators simulate the mutation mechanism in which some parts of a genome 
undergoes random changes in the nature. Thus, as a typical modeling, a mutation 
operator in an evolutionary algorithm changes parts of the genome of an individual 
probabilistically. Again, similar to crossover operators, mutation operators are repre-
sentation dependent. Nevertheless, without loss of generality, a list of commonly used 
mutation operators is shown: 

• Bitflip Mutation 
Bitflip mutation is commonly used in binary genomes. Specified by a pre-defined 
probability, each bit in a binary genome is probabilistically inverted. 

• Random Mutation 
Random mutation is generalized from bitflip mutation. It can be applied in many 
genomes. Specified by a pre-defined probability, each gene in a genome is proba-
bilistically changed to a random value within the search space of the gene. 

• Delta Mutation 
Delta mutation is commonly used in real number genomes. Specified by a pre-
defined probability, each real number in a real number genome is probabilistically 
incremented/decremented by a certain step size (called delta), where the step size 
is set manually. But, of course, it is also straightforward to make the step size 
adaptive, like the trial vector generations in differential evolution [59]. 

• Gaussian Mutation 
Gaussian mutation is also commonly used in real number genomes. Like delta 
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rnutation, each real number in a real number genome is probabilistically incre-
mented /decremented by a step size. But the difference is that the step size is 
modeled as a Gaussian distribution. [57]. 

2.2.5 Survival Selection 

Survival selection aims to select a subset of good individuals from a set of individuals, 
where the goodness of an individual is also proportional to its fitness in a typical case. 
Thus survival selection mechanism is somehow similar to parent selection mechanism. In 
a typical framework like EC4 [57], most parent selection mechanisms can be re-applied 
in survival selection like fitness proportional in section 2.2.2. 

2.2.6 Termination Condition 

Termination condition refers to the condition at which an evolutionary algorithm should 
end. Here is a list of the conditions commonly used: 

• Number of Fitness Function Evaluations 
An evolutionary algorithm terminates when a certain number of fitness function 
evaluations has been reached. 

• Number of Generations 
Ari evolutionary algorithm terminates when a certain number of generations has 
been reached. 

• CPU Time 
An evolutionary algorithm terminates when it has been run for a certain amount 
of CPU times. 

• Number of Births 
An evolutionary algorithm terminates when a certain number of individual births 
has been reached. 

• Convergence 
An evolutionary algorithm terminates when further improvement on the popula-
tion has not been observed. 

2.2.7 Discussion 

So far we have mentioned different modules and techniques in evolutionary algorithms. 
It is easy to be observed that we cannot simply adopt all of them in a single evolutionary 
algorithm. We must make a choice. Thus some discussions are provided in this section. 
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Parent selection aims to select good parent individuals for crossover, whereas survival 
selection aims to select a subset of good individuals from a set of individuals. Parent 
selection and survival selection are, indeed, not quite different. Their objectives are 
different, but their techniques are the same. Nevertheless, as described in section 2.2.2 
and 2.2.5, many techniques exist. We must make a choice. Thus de jong [57] has done 
some experiments to help iis rank the selection methods in terms of their greediness as 
follows (from the weakest to strongest): 

• Uniform 

• Fitness Proport ional 

• Rank Proportional and Binary Tournament 

• Truncation 

We can see that truncation is the greediest, whereas uniform is the weakest one. However 
it does not rnean that we need to select truncation as the top choice because one of the 
beauties in evolutionary algorithms belongs to its parallel point search ability. If the 
greediest selection is applied without any diversity maintenance, evolutionary algorithms 
will easily suffer from genetic drift and lose parallel point search ability [60]. Thus we 
need to consider the balance between convergence and diversity needs to be well analysed 
before choosing a suitable selection scheme. 

Regarding about the termination condition, many evolutionary algorithm researchers 
used different conditions. Nevertheless, as different algorithms perform different oper-
ations in one generation, it is unfair to set the termination condition as the number 
of generations. Number of births is also not a good choice because an evolutionary 
algorithm may exploit a single individual to perform many crossovers, mutations, and 
fitness evaluations. Alternatively, it is also unfair to adopt CPU time, since it substan-
tially depends on the implementation techniques for different algorithms. For instance, 
the sorting techniques and the programming languages used. In contrast, a single fit-
ness function evaluation may take several hours to complete [61]. The fitness function 
evaluation is always the performance bottleneck in practice. Thus the number of fit-
ness function evaluations was set as the termination condition in the experiments to be 
described. 

2.2.8 Examples 

2.2.8.1 Genetic Algorithm 

Genetic algorithm is the most classic evolutionary algorithm. It draws inspiration from 
the Darwin's Evolution Theory. The difference between genetic algorithm and evolution-
ary algorithm becomes blurred gradually nowadays. The words 'genetic algorithm' and 
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'evolutionary algorithm' are sometimes interchanged in use. Anyway, to clearly explain 
the working mechanism of a genetic algorithm, we use the canonical genetic algorithm 
[62] as a basis of genetic algorithm. 

In the canonical genetic algorithm, each individual has a fixed-length binary array as 
its genotype. Then the fitness of each individual is divided by the average fitness to 
become the probability to be selected. Based on the calculated probability, the al-
gorithm select parents for one point crossover to produce offspring individuals, which 
subsequently undergoes mutation. The offspring individuals become the population in 
the next generation and so and so forth. Using the previous terminology, the canonical 
genetic algorithm is a non-overlapping model since only the offspring individuals are 
selected for survival. 

2.2.8.2 Genetic Programming 

Genetic programming is indeed a special type of genetic algorithm. The difference lies 
in the representation method. Genetic programming uses trees as genotype to repre-
sent programs or expressions. (Figure 2.5c depicts an example). The typical selection 
schemes of evolutionary algorithms can still be used as parent selection and survival 
selection in genetic programming. What make genetic programming more special are 
their crossover and rnutatioii operators. The crossover and mutation operators become 
some operators on tree structure. For instance, swapping sub-trees between two trees 
and random generation of sub-trees . A list of cornmori crossover and rnutation operators 
are tabulated in Table 2.1. 

Name Description 
Subtree Exchange Crossover Exchange subtrees between individuals 
Self Crossover Exchange subtrees within an individual 

Crossover Module Crossover Exchange modules between individuals 
SCPC Exchange subtrees if coordinates inatch exactly 
WCPC Exchange subtrees if coordinates match approximately 
Point Mutation Change the value of a node 
Permutation Change the argument order of a node 
Hoist Use a subtree to become a new individual 

Mutation Expansion Mutation Exchange a subtree against a terminal node 
Collapse Subtree Mutation Exchange a terminal node against a subtree 
Subtree Mutation Replace a subtree by another subtree 
Gene Duplication Replace a subtree by a terminal 

TABLE 2.1: A list of crossover and mutation operators [2] 

2.2.8.3 Differential Evolution 

Differential Evolution [59] was first proposed by Price and Storn in 1995 [63]. It demon-
strated great potential for real function optimization in the subsequent contests [64, 65]. 
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Without loss of generality, a typical strategy of differential evolution (DE/rand/1) [66] 
is shown in Algorithm 1. 

Algorithm 2 Differential Evolution 
Pt： Population at time t 
TP: Transient population 

t — 0; 

Initialize Pt； 

Evaluate Pt； 

while not termination condition do 
T P — 0; 
for Vindivi € Pt do 

Offspring — TRlALVECTORGENERATlON(mdivi); 
Evaluate Offspring-, 
if Offspring is fitter than indiVi then 

Put Offspring into TP] 
else 

Put Parent into TP; 
end if 

end for 
t = t+l] 
Pt — TP-

end while 

For each individual indiVi in a generation, the algorithm randomly selects three indi-
viduals to form a trial vector. One individual forms a base vector, whereas the value 
difference between the other two individuals forms a difference vector. The sum of these 
two vector forms a trial vector, which recornbines with indivi to form an offspring. Re-
placing the typical crossover aiid mutation operation by this trial vector generation, 
manual parameter tuning of crossover and mutation is no longer needed. It can pro-
vide differential evolution a self-organizing ability and high adaptability for choosing 
suitable step sizes which demonstrated its potential for continuous optimization in the 
past contests [64]. A self-organizing ability is granted for moving toward the optima. 
A high adaptability is achieved for optimizing different landscapes [66]. With such self-
adaptability, differential evolution is considered as one of the most powerful evolutionary 
algorithms for real function optimization. It is still a hot research field in which schol-
ars are exploring for its power in different fields. For example, mechanical engineering 
design [25) and nuclear reactor core design [31]. 

2.2.8.4 Evolution Strategy 

Evolution Strategy was proposed in 1968 [67]. It was even older than genetic algorithm. 
Schwefel and Klockgether originally used evolution strategy as a heuristic to perform 
several experimental optimizations in air flow. They found that evolution strategy was 
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better than other discrete gradient-oriented strategy, which raised people's interests in 
evolution strategy. 

Comparing to the previous evolutionary algorithms, evolution strategy draws less in-
spiration from the nature. Instead, it was artificially created as a numerical tool for 
optimization. Thus the structure of evolution strategy is quite different from the other 
evolutionary algorithms. For example, the mutation step size and probability. Evolution 
strategy calls them as endogenous parameters encoded in the genome of an individual. 
Thus, besides the gene values, a genome is also composed of the parameter settings 
which control the convergence progress of the whole algorithm. The notation evolution 
strategy uses is quite interesting. (/i/p^A) - ES denotes an evolution strategy with a 
specific parameter setting, /i denotes parent population size, p denotes the breeding 
size, + denotes the algorithm is overlapping,，denotes the algorithm is not overlapping, 
A denotes the offspring population size. 

2.2.8.5 Swarm Intelligence 

Ant Colony Optimization [68], Particle Swarm Optimization [69], and Bee Colony Op-
timization [70] . •. etc are collectively known as Swarm Intelligence. Swarm intelligence 
is a special class of evolutionary algorithm. It does not involve any selection, birth, or 
death. Instead, it maintains a fixed-size population of individuals to search in a parame-
ter space in each generation. After each generation, the individuals report their findings 
which are recorded and used to adjust the search strategy in the next generation. Thus, 
some of the algorithms were originally designed for shortest path finding. Nevertheless, 
people have further generalized them for other applications. For instance, Bi-Criterion 
Opitmization [71], Load Balancing in Telecommunication Network [72], Protein Folding 
Problem [73], and Power System [74]. 
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2.3 Association Rule Mining 

Association rule mining is one of the hot topics in data mining. It has become pop-
ular since 1990s. It not only helps in analyzing the relationship between different at-
tributes/iterns, but also providing valuable information for people to make a right de-
cision. This section briefly reviews the methods for association rule mining. Interested 
parties may find it useful in reading the general survey by Hipp et al. [75]. 

2.3.1 Objective 

Association rule mining aims at finding association rules with minimal values in support 
and confidence from a database: 

• Database: A set of transactions. 

• Transaction: A binary vector with t[k]=l if the item 1̂  is bought. 

• Association rule: An expression of the form X => I where X and I are two 
non-overlapping sets of items. Sernantically, given X in some transactions, I is 
likely to be found in those transactions. 

—Support: The fraction of transactions which have the union of X and I. 

—Confidence: Among the transactions which have X, the fraction of those 
transactions which also have I. 

2.3.2 Apriori Algorithm 

Apriori algorithm proposed by Agrawal et al. [76’ 77] is a classical approach to find 
out frequent iternsets (sets of iterns), outlined in Algorithm 2. It is a branch and bound 
algorithm for discovering association rules in a database. With its downward closure 
property, an optimal performance is guaranteed. In other words, given a pair of values 
of confidences and support, all the related association rules must be found by the algo-
rithm. The algorithm first obtains frequent 1-itemsets. Iteratively, it uses the frequent 
ri-itemsets (itemsets with n items) to generate all possible candidate (ri+l)-itemsets. 
They are then evaluated for their supports [75]. If the support of an (n+l)-iternset is 
lower than a threshold, the (n+l)-itemset is removed. After the removal, the resultant 
(n+l)-itemsets are the frequent (n+l)-itemsets. The above procedure is repeated until 
an empty set is found. 
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Algorithm 3 Pseudocode of Apriori algorithm [76, 77] 
data : A dataset of itemsets 
Ln： Frequent n-itemsets 
Cn' Candidate n-itemsets 
X : An itemset 
minsupport: Minimum Support 
i *— 1; 

Scan data to get Lj； 

while Li + 0 do 
Ci+i 卜 EXTEND(LJ; 
U^\ — 0; 
for X e Ci+i do 

if support{x) > minsupport then 
Li+1 卜 Li+i n X] 

end if 
end for 
i <— i + 1; 

end while 

Notes: 
ExTEND(Li) is the function "Candidate itemset generation procedure" stated in [76]. 
Support{x) returns the support [75] of the itemset x. 
A frequent n-itemset is the n-itemset which support is higher than minsupport. 

2.3.3 Partition Algorithm 

Savasere et al. has proposed Partition Algorithm [78], which logically divides the 
database into several non-overlapping partitions in main memory to generate a set of 
potentially large itemsets, which is a superset of the large itemsets, in the first scan. In 
the second scan, it calculates the actual supports of the potentially large itemsets to dig 
out the large itemsets. Thus only two scans on the database are needed. 

2.3.4 D H P 

In view of the expensive computation costs in candidate itemset generation, Park et al. 
[79] has proposed an algorithm DHP, which is especially effective in filtering unnecessary 
candidates by hashing techniques. 

2.3.5 Sampling 

Since most databases are quite large, it is trivial that sampling can come into play. Thus 
Toivonen [80] has proposed a sampling technique to mine association rules from a large 
database in a single pass. Though sampling, the technique can be remedied by a second 
pass to provide the exact performance. 
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2.3.6 Frequent Pattern Tree 

To avoid repeated scanning on the database to check candidate items (or patterns), 
Frequent Pattern Tree (FP-tree) was proposed by Han et al. [81]. By two scans on a 
database, each transaction is mapped to one path in the FP-tree of the database. The 
transactions with the same items are mapped into a single path. Thus the frequent 
iternset information in each transaction is compactly and completely stored in the FP-
tree. By keep tracking the nodes for each item in a header table, it can thus help us find 
out frequent itemsets, and thus association rules, from a database without scanning on 
the database repeatedly. 
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Chapter 3 

Discovering Protein-DNA 
Binding Sequence Patterns Using 
Association Rule Mining 

Protein-DNA bindings between transcription factors (TFs) and transcription factor 
binding sites (TFBSs) play an essential role in transcriptional regulation. Over the 
past decades, significant efforts have been made to study the principles for protein-DNA 
bindings. However, it is considered that there are no simple one-to-one riiles between 
amino acids and nucleotides. Many methods impose complicated features beyond se-
quence patterns. Protein-DNA bindings are formed from associated amino acid and 
nucleotide sequence pairs which determine many functional characteristics. Therefore it 
is desirable to investigate associated sequence patterns between TFs and TFBSs. 

With increasing computational power, availability of massive databases oii DNA and 
protein data, and mature data mining techniques, we propose a framework to discover 
associated TF-TFBS binding sequence patterns in the most explicit and interpretable 
form from TRANSFAC. The framework is based ori association rule mining with Apriori 
Algorithm. The patterns found are evaluated by quantitative measurements at several 
levels on TRANSFAC. With further independent verifications from literatures, Protein 
Data Bank (PDB), and homology modeling, there are strong evidences that the patterns 
discovered reveal real TF-TFBS bindings across different TFs and TFBSs, which can 
drive for further knowledge to better understand TF-TFBS bindings. 

The chapter layout is as follows: the problem definition and proposed framework is pre-
sented in the section: Materials and Methods; experimental results and verifications 
are reported in the sections Results and Analysis and Verifications respectively; 
and finally we have the Discussion section for the approach. In addition, all the math-
ematical problem definitions are stated again in the appendix. 

27 
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3.1 Materials and Methods 

In this section, we propose a framework for mining, discovering, and verifying binding 
sequence patterns between TFs and TFBSs on TRANSFAC. The framework starts from 
data cleansing and transformation on TRANSFAC, and then applies association rule 
mining to discover TF-TFBS binding sequence patterns. Comprehensive 3D verifications 
and evaluations are carried out on PDB. Detailed bonding analysis is performed to 
provide strong supports to the discovered rules. 

TF and TFBS data were downloaded and extracted from the flat files of TRANSFAC 
2008.3 (a free public (older) version is also available ^). The entries without sequence 
data were discarded. Since a TF can bind to one or more TFBSs, TFBS data were 
grouped by TF. TFBS sequences were extracted for each TF to form a TF dataset - a 
TF sequence and the corresponding TFBS sequences. Formally, m transcription factors 
{TF^,TF^, . . . ,TF^} are concerned. Each transcription factor TF^ chemically binds 
to several binding sites, which are collectively called transcription factor binding sites. 
Each of them is denoted by TFBS�, the j-th transcription factor binding site which 
chemically binds to TF\ For example, TFBS^ denotes the 5-th transcription factor 
binding site which chemically binds to TF^. Since different transcription factors can 
bind to different number of transcription factor binding sites, N^ denotes the nuriiber of 
the transcription factor binding sites which can chemically bind to TF.�For example, 
we have the following transcription factor binding sites {TFBSf, TFBS^, ...,TFBS'^3} 
which can chemically bind to TF^. They are formally defined as follows: 

Definition 3.1 TF^ denotes the i-th transcription factor where 1 < i < m. 

Definition 3.2 TFBSj denotes the j-th transcription factor binding site which chemi-
cally binds to T_P where 1 < i < m and 1 < j < N\ 

To discover the binding sequence patterns between m transcription factors and their 
transcription factor binding sites. Sequence data is introduced. But, before doing so, 
some basic notations needs to be defined: AAseq denotes a string with the amino acid 
alphabet, DNAseq denotes a string with the DNA alphabet, and kmer denotes a string 
with length = k. Thus AAseq^ denotes the AAseq of TF\ whereas DNAseq^- denotes 
the DNAseq of TFBS]. 

The following sequence dataset is given for each transcription factor � the amino acid 
sequence of the transcription factor and the DNA sequences of the transcription factor 
binding sites which can chemically bind to the transcription factor. The dataset for 
TF' is thus denoted by TFdataset�{AAseq\DNAseqi\\/j G N , j < i V | In total, 
{TFdataset^, TFdataseP,..., TFdatasef^} is given in this problem. 

^http://www.gene-regulation.corn/pub/databases.html 

http://www.gene-regulation.corn/pub/databases.html
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In the following subsections, Apriori algorithm for association rule mining is first intro-
duced. We then elaborate how the algorithm is applied to protein-DNA binding pattern 
discovery. Finally we present how the data are preprocessed for the task with a running 
example. 

3.1.1 Association Rule Mining and Apriori Algorithm 

Association rule mining [76] aims at discovering frequently co-occurring items, called 
frequent itemsets, from a large number of data samples above a certain count threshold 
(minimum support) [75]. The support of an itemset is defined as the number of data 
samples where all the items in the itemset co-occur. In the case of protein-DNA bind-
ing, the binding domains of TFs can recognize and form strong bondings with certain 
sequence-specific patterns of the TFBSs. Therefore they are likely to co-occur frequently 
among the combinations between all possible TF and TFBS subsequences, and can be 
thus identified by association rule mining. In this study, we use the notation of k-mer (a 
subsequence with k amino acid or nucleotide residues) to represent a candidate item. A 
frequent TF-TFBS itemset is a TF k-mer and TFBS k-rner (the two k's can be different) 
pair, or simply a pair, co-occurring with a frequency no less than the minimum support 
in the TF-TFBS sequence records (TRANSFAC database). 

Apriori algorithm proposed by Agrawal et al. [76] is a classical approach to find out 
frequent itemsets. It is a branch and bound algorithm for discovering association rules 
in a databa^5e. With its downward closure property, an optimal performance is guaran-
teed. The algorithm first obtains frequent 1-itemsets. Iteratively, it uses the frequent 
n-itemsets (itemsets with n items) to generate all possible candidate (n+l)-itemsets. 
They are then evaluated for their supports [75]. If the support of an (n+l)-itei.nset is 
lower than a threshold, the (n+l)-itemset is removed. After the removal, the resultant 
(n+l)-iternsets are the frequent (n+l)-itemsets. The above procedure is repeated until 
an empty set is found. 

3.1.2 Discovering associated T F - T F B S sequence patterns 

To formulate the TF-TFBS sequence pattern discovery problem into association rule 
mining, we have to transform the protein-DNA binding records into the formats of item-
sets (k-mers). Ari illustrative example for the TF-TFBS binding records from TRANS-
FAC 2008.3 is shown in Fig.3.1. The TF (e.g. T01333 RXR-gamma) can bind to several 
TFBS DNA sequences. The DNA sequences may be different in lengths due to ex-
perimental methods and noises. Both the TF and TFBS sequences are chopped into 
overlapping short k-mers, as illustrated in Fig.3.2 (first part). They together with the 
corresponding reverse complements (e.g. GACCT and reverse complement: AGGTC) 
form one data sample. To generate the itemsets, all the k-mers are recorded in a binary 
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a TF fTRANSFAC 2008.3 ID: T01333) Legends 

RXR-gamma 

/ — 
\ ^ aggGTTCACcgaaaGTTCACtegca T"FBS 

V golgTOACGTcTQCeGTWagoate G i jCA 

\ tDoooAQTTCAoo\GGTC*g99ci JFBS k^er #1 
\ ^ ctgAGQTCAgtaoAGGCTGgaggagtaga 

goattctGQGTCAaAGGTGAkxxxA AGGTC 
™ r > ,.u Tir TFBS kHTier #2 TFBSs of the TF 

FiGURE 3.1: TFBS sequences of a TF (TRANSFAC 2008.3 ID: T01333) 

array where appearing k-mers are marked 1; and 0 otherwise. Formally, a function F 

(Found) is defined: 

Definition 3.3 If the kmer A is a substring of the string 5, F(A,S) = 1. Other-

wise, F{A, S) = 0. 

Thus, the length of the array depends on the number of all possible TF k-mers and 

TFBS k-mers (Fig.3.2, second part). Since k is usually short (4-6), all the possible 4^ 

combinations of TFBS DNA k-mers can be adopted. However, it is computationally 

infeasible to obtain all the possible 20^ combinations of TF k-mers. Thus a data-driven 

approach is employed by scanning the whole TRANSFAC to obtain frequent TF amino 

acid k-mers. 

Since there are multiple TFBSs for each TF (e.g. Fig.3.1), a question arises : How to 

define the "commonly found" TFBS k-mers of a TF. Without loss of generality, the ma-

jority rule [83] is applied. If the majority of a TF's TFBS sequences contains a certain 

DNA residue k-mer, then the k-mer is considered "commonly found". We set the major-

ity to be 50% for TFBS k-mers. We only count the number of TFBS sequences in which 

a certain k-mer appears, in order not to be biased by multiple occurrences of the k-mer 

appearing in only a few TFBS sequences. Fig.3.1 illustrates an example where there 

are 5 TFBS sequences. The TFBS DNA k-mer AGGTC (or its reverse complement: 

GACCT) can be found in three of the TFBS sequences. The k-mer appears in 60% (|) 

of the TFBS sequences of the TF, and thus is considered "commonly found". On the 

other hand, GTTCA is not considered "commonly found" because it only appears in 2 

out of the 5 (40%) TFBS sequences of the TF. Formally, a function CF' (Commonly 

Found) is defined: • 

Definition 3.4 Let ThresholdcF G [0,1], and DNAseq) be the DNAseq of TFBS]. If 

g7=i F{A^^NAseq^^ > ThresholdcF, CF'(A) = 1. Otherwise, CF'{A) = 0. 
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After all valid TF data samples are transformed into itemsets, Apriori algorithm is 
applied to generate frequent TF-TFBS k-mer sequence patterns (the links in Fig.3.2, 
second part). The special feature in this study is that the co-occurring pairs should 
contain both TF and TFBS k-mer items, as illustrated in the third part of Fig.3.2. In 
the current study, we orily consider 1 TF k-mer with 1 TFBS k-mer in the frequent 
itemsets, but it is straightforward to generalize it to be multiple TF and TFBS k-niers 
in principle. The huge computational intensity for the generalization, when applied ori 
the large TRANSFAC database, prevents iis from doing so at this time. Finally the 
association rules are computed based on the confidence measurements for the frequent 
itemsets, which are defined as follows: 

support[kmerDNA(^kmerAA) 
conf[kmevDNA ^ kmerAA) = 771 ^ 

support[kmerDNA) 
suppoH(kmerDNA<^kmerAA) 

conf{kmerDNA � kmerAA) = TT, ^ 
support[kmerAA) 

where conf{kmerDNA =^ kmerAA) is called forward confidence, conf{kmerDNA <= 
kmerAA) is called backward confidence, and support{X) is the support of itemset X. 
For each association rule, its forward confidence measures the posterior probability that 
the corresponding amino acid k-rner can be found in a TF's sequence if the DNA k-mer 
is commonly found in the TF's TFBS sequences. Its backward confidence measures 
the posterior probability that the corresponding DNA k-rner can be commonly found 
in a TF's TFBS sequences if the amino acid k-rner is found in the TF's sequence. The 
minimum of them is taken as confidence. The higher the confidence, the better the 
association rule is (Fig.3.2, fourth part). The whole proposed approach is summarized 
in Fig.3.2. 

3.1.3 Data Preparation 

To apply the methodology on TRANSFAC, TF and TFBS data were downloaded and 
extracted from the flat files of TRANSFAC 2008.3 (a free public (older) version is also 
available ^). The entries without sequence data were discarded. Since a TF can bind to 
one or rriore TFBSs, TFBS data were grouped by TF. TFBS sequences were extracted for 
each TF to form a TF dataset - a TF sequence and the corresponding TFBS sequences, 
and finally to be transformed into itemsets. To avoid sampling error, TF datasets with 
less than five TFBS sequences were discarded. Furthermore, the redundancy of TF 
sequences was removed by BLASTClust using 90% TF sequence identity [17]. Only 
one TF dataset was selected for each cluster. Note that we only used sequence data in 
TRANSFAC. None of the prior information (e.g. the binding domains of TFs) other 
than sequences was used. Importantly, it turns out that the results of the proposed 

^http://v^ww.gene-regulation.corn/pub/databases.htinl 
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FlGURE 3.2: Flowchart of the proposed framework to discover association rules from 
TRANSFAC 

approach can be verified by annotations, 3D structures from PDB, and even homology 

modeling as described in the subsequent sections. 

After data preparation, the 631 TF datasets (listed in Table A.25 in the Appendix) were 

selected. The minimum support [75] was set to 7 TF datasets to avoid sampling error. 

For the values of k, we try 4-6 for both TF k-mers and TFBS k-mers, resulting in 9 (3 

by 3) different combinations. In particular 256 DNA 4mers, 1024 DNA 5mers, and 4096 

DNA 6mers were adopted for TFBS, whereas 99621 amino acid 4mers, 82561 amino acid 

5mers, and 39320 amino acid 6mers were adopted for TF, as the frequent 1-itemsets. 
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Apriori algorithm was then applied to discover frequently co-occurring TF-TFBS k-
mer pairs (2-iternsets). Finally, the resultant pairs were re-scanned in TRANSFAC to 
measure their forward and backward confidences [84). Formally speaking, we are inter-
ested in the pairs of kmers in which one is found in the amino acid sequences of some 
transcription factors while the other is commonly found in the DNA sequences of their 
transcription factor binding sites. Such pairs are then called 'frequently co-occurring' 
defined as follows: 

Definition 3.5 Let Thresholdsupport € N+，ki e N+, and k2 G N+. A pair of kmers 
(A-B) is frequently co-occurring if IT=i CF^{A)xF{B,AAseq^) > Thresholdsuppovt where A 

is a kimer and B is a k2mer. 

We assume that the pairs of kmers frequently co-occurring are the binding sequence 
patterns which we aims to find. Thus the problem definition is summarized as follows: 
Given Thresholdcr € [0，1], Thresholdsupport e N+, ki e N+’ k2 G N+, we would like 
to find all pairs (A-B) frequently co-occurring where A is a kimer and B is a k2mer. 
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3.2 Results and Analysis 

In this section, the discovered rules are reported, followed by analysis with different 
measurements. 

3.2.1 Rules Discovered 

Varying k from 4 to 6 for both TF k-mers and TFBS k-mers, we have obtained 9 sets 
of associated pairs. For each set of pairs, the forward and backward confidences of each 
pair were calculated. Then, the pairs in the same set were sorted by the minima of 
their forward and backward confidences in descending order. The 9 sets of rules (pairs) 
exhibit a similar trend that the number of rules decreases as the association criterion 
becomes more stringent (with higher confidence levels). The TFBS5mers settings in 
general show the most available rules when the confidence level is high (> 0.5)，indicating 
more conserved and significant results. Therefore we focus on them and use TFBS5mer-
TF5mer as the representative example throughout the paper. The results for all other 
settings are available iii the Supplementary Data. 

Without confidence pruning (confidence level = 0.0), the longer associated pattern pairs 
are the supersets of the shorter pairs according to the downward closure property. For 
instance, if the pair AAACA-HNLSL is found in the set of TFBS5mer-TF5mer pairs, 
then the two sub-pairs AAACA-HNLS and AAACA-NLSL must also be found in the set 
of TFBS5rner-TF4mer pairs. Note that such property is only applied when there is no 
confidence pruning. In other words, it is only applied to the second row of Supplementary 
Table 1 where confidence level = 0.0. 

With confidence pruning (confidence level > 0.0), it can be observed that the degree 
of overlapping between different sets of pairs is decreased when the confidence level is 
increased. For instance, at the confidence level=0.1, 86.3% of the TFBS5mer-TF5mer 
pairs have all of their sub-pairs in the set of TFBS4mer-TF4mer pairs. At the confidence 
level=0.3, only 11.1% of the TFBS5mer-TF5mer pairs have all of their sub-pairs in the 
set of TFBS4mer-TF4mer pairs. Besides, it is interesting that the degree of overlap-
ping is significantly decreased when TFBS k-mers are elongated. For example, at the 
confidence level=0.1, 92.6% of the TFBS4mer-TF5rner pairs (detailed in Supplemen-
tary Table 1) have all of their sub-pairs in the set of TFBS4mer-TF4mer pairs, whereas 
only 9.09% of the TFBS5mer-TF4mer pairs (Supplementary Table 1) have all of their 
sub-pairs in the set of TFBS4mer-TF4mer pairs. 

The number of rules (pairs) discovered is summarized in Table 3.1. For instance, there 
are 70 TF5mer-TFBS5mer pairs without any further removal (iii the N column) with 
both forward and backward confidences greater than or equal to 0.5. Considering direct 
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TABLE 3.1: Number of the TFBS5mer-TF5mer pairs across different confidence levels. 
{N\ Number Of Pairs, N : Number of Pairs (duplicated pairs removed), Nm'- Number 

of Merged Pairs, S\ Mean k. SD of the support of the pairs in N ) 

“Confidence N N' Nm S 
0 262 131~~^~~9.88rh3.68 
0.1 262 131 29 9.88士3.68 
0.2 240 120 24 10.14±3.73 
0.3 180 90 23 10.63土4.11 
0.4 126 63 21 11.40土4.59 
0.5 70 35 11 13.63±5.05 
0.6 24 12 8 15.08i5.28 
0.7 6 3 2 10.33i2.36 
0.8 0 0 0 N/A 
0.9 0 0 0 N /A 
1.0 0 0 0 N /A 

TABLE 3.2: Quantitative Measurements for the TFBS5mer-TF5mer pairs across dif-
ferent confidence levels. (0: Mean k SD of (^coefficient, L: Mean k SD of Lift, FC: 

Mean k SD of Forward Conviction, BC: Mean k. SD of Backward Conviction) 

Confidence 小 L FC BC 
^ 0.49i0.11 ~~17.92i7.34~~1.89i0.67 3.50i2.29 
0.1 0 . 4 9 i 0 . 1 1 17.92±7.34 1.89±0.67 3.50土2.29 

0.2 0.51±0.11 18.32i7.46 1.94i0.68 3.51土2.30 

0.3 0.54士0.10 19.81士7.79 2.02±0.64 3.46士2.31 

0.4 0.58±0.09 21.41±8.53 2.23士0.66 3.61±2.40 

0.5 0.64士0.07 22.57±10.46 2.49士0.70 4.35士2.65 

0.6 0.71±0.06 25.80±13.76 3.33土0.57 4.21土2.55 

0.7 0.79士0.03 42.07±14.87 3.70士0.29 4.87±0.00 

0.8 N/A N/A N/A N/A 
0.9 N /A N/A N/A N/A 
1.0 ^ ^ N/A N/A 

and reverse complement TFBS DNA k-mers as equivalent, we further removed the du-
plicated pairs (e.g. leaving AGGTC-CEGCK and removing GACCT-CEGCK because 
AGGTC and GACCT are reverse complements). The results are shown in the N' col-
umn in Table 3.1. For instance, the 70 TF5mer-TFBS5mer pairs were reduced to 35 at 
confidence level = 0.5. Furthermore we found that most pairs could be merged together 
to form a longer pair. For instance, GGTCA-SGYHY and GGTCA-GYHYG could be 
merged to form a pair GGTCA-SGYHYG. Thus the pairs have been merged and the rule 
numbers are shown in the Nm column in Table 3.1. For instance, 35 TF5rner-TFBS5mer 
pairs are merged to form 11 merged pairs when the confidence level = 0.5. 
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3.2.2 Quantitative Analysis 

To evaluate the number of TF datasets supporting each pair (support), the support 
for each pair was counted. In general, more supports are found when the confidence 
level is increased. For instance, the average support of the TFBS5rner-TF5mer pairs is 
generally increased when the confidence level is increased in the S column of Table 3.1. 
The overall results are summarized in Supplementary Table 4. 

Support is considered the degree of co-occurring between a TF amino acid k-mer and a 
TFBS DNA k-mer. Forward and backward confidences consider the cases when either 
one of them is absent. Some may have questions about the remaining case. How about 
the case when both of thern are absent? To take the case into account, (?!>-coefRcients [85] 
was measured for each pair, as shown in the 伞 column in Table 3.2. The overall results 
are summarized in Supplementary Table 5. Most values are larger than 0.4，indicating 
that positive correlations exist among pairs. 

Consider the following scenario: If a TFBS DNA k-mer and a TF amino acid k-mer are 
frequently co-occiirring in the datasets, it will be very likely that they co-occur frequently 
merely by chance. To tackle such scenario, forward and backward confidences do play 
their important roles in pruning thern. But for clarity, lift [86] which estimates the ratio 
of the actual support to the expected support was measured for each pair, where the 
expected support was calculated from the random model that the TFBS DNA k-mer is 
independent of the TF amino acid k-mer for each pair. For instance, the average lift 
for the TFBS5mer-TF5mer pairs are shown in the L column in Table 3.2. The overall 
results are summarized in Supplementary Table 6. Most values of the lift are larger 
than 5. Thus the DNA residue k-mer and the amino acid residue k-mer of most pairs 
co-occur at least 5 times more frequently than the prediction based on the independent 
assumption made by the lift measurement. 

To estimate the validity of the pairs, both forward and backward convictions (the same 
directions as the forward and backward confidences respectively) [86j were measured 
for each pair. The measurements were averaged for each set of pairs. For instance, 
the average forward and backward convictions for the TFBS5mer-TF5rner pairs are 
shown in the FC and BC columns in Table 3.2. The overall results are summarized in 
Supplementary Tables 7 and 8. Most values are larger than one. The pairs commit fewer 
errors than the prediction based on the statistically independent assumption made by 
the measurements: forward aiid backward convictions. In other words, the pairs would 
have committed more errors if the association between its TFBS k-mer and TF k-mer 
had happened purely by chance. 
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TABLE 3.3: The set of TFBS 5mer-TF 5mer pairs (duplicated pairs removed and sorted 
in alphabetical order) 

Confidence Forward Backward Paira Confidence Forward Backward P&in Confidence Forward Backward P&irs Confidence Confidencc Confidence Confidence Confidence Confidcnce 0.7 ().7 0.8 AAACA-HNl̂L Q.-1 ().-1 0.7 AC.CTC-CQYCF 0.3 1).5 0.3 GCCAC-ARH.SR O.r> 0.：) 1).7 AAACAWRHNL ().2 0-2 0.¾ AGGTC-CVŴ  i)A t).5 tM 0(X'A(%F̂SARR O.rt i)It 0.6 AAACA-KPPYS ().(i O.fi l>.7 A(:(;TC-E(;Ĥ  l)-4 0.4 0.6 G(X'ACVKQSNH 0.4 0.'l l).7 AAACA-NLSLN 0.2 0.2 0.7 ACGTC-FFHRl̂  0.4 0.6 0.4 (K'('A('-NRKSA O.fi O.fl ().C AAACA-NSIHir 0.2 l).2 0.8 ACXITC-KRRTI “ 0.-1 0.4 (l.(i (;r(,A(,-QSNRPT 0.5 0.5 O.ti AAACA-PPYSY" O.G ().fi ».G AGCTC-CCKC.F" 0-1 0.5 ».'1 CCCAC-RKSAR" 0.4 (M ().G AAACA-PYSYl" 0.3 (1.3 O.r> A(;(;T(’-(;FFKR- l)A 0.4 ().ft (;(rAr-RKQSN— l).'l 0.'1 0.6 AAACA-QNSIR" l)A {).4 0.5 ACGTC-GFFRR" 0.4 0.-1 0.5 (;CCA(>RIJlKQ" t).7 0.7 0.8 AAACA-RHNLS 0.3 0.3 0,G AGCTC-KCTFK" 0.1 tU 0.5 G(T'AC-RR5RL O.r> n.r> 0,8 AAACA-SmilN 0.-l UA O.：> Ar.CTC-KcWR" 0.-l i).A ().« G(X'AC-RSRLR 0-4 (M t).(i AAACA-WQNSr i)A 0.4 0.9 ACCTC-RNRCQ" 0.4 0.5 0.4 GCCAĈSARlLS" M �M 0.(i AACAA-HNLSL" U.;i 0.3 1,.5 \COTC-TCECC' i)A 0.5 0.4 CCCAC-SXRRS" 0.3 0.:i (l,(i AA(̂AA-lRHNir n.'l l)A (1.5 ACKlTC-VCXIDK" l)A O.r. {)A (:(,(,A(,-SRLRK_ 0.3 0.3 0-5 AA('AA-NSlRH i).2 (1.2 0.5 ACGTrVVĈ  ().G 0.(i 0.8 (;(;T('ArK(:('K 0-3 0.3 H.7 AACAA-PMNAK 0.2 0.7 (1.2 ATTAA-FQMiT (1.2 0.：̂ 0.;) CCTC'A-CCDKA 0-1 0-'l t).C AACAA-RMNLS" 0.2 O.fi U.2 ATTAA-lWFQN'" t).5 0.5 0.6 GC,TCA~CKGyV~ l>.3 0.3 0.7 AACAA-RPMNA 0,2 O.ti 0.2 ATTAA-KlNŴT 0.3 0.3 ().!) r.CTCA-CQVrR ".3 (U 0.7 AArAA-SIRllN" 0.3 0.5 0.3 ATTAA-NRRMK" 0.2 0.2 0.8 (;GT(�A-C\’V(,(� 0-2 ().G 0.2 AAGCT-CKCFF 0.3 (l.ri 0.3 ATTAA-QNMKT 0.1 0.1 � �;GTCA-DLVLD 0-2 q.r> 0.2 AATTA-FQNRH 1).2 0.7 0.2 ATTAA-WFQNF O.n l)Si 0.8 (iGTCA-KGGK(i 0.3 0.3 0.3 AATTA-NRHAK 0.2 0.5 0.2 CA(X'C-(;I-:"RF̂  0.2 0.2 0.8 GCTCA-FKKR̂  0.'1 (”l 0.�) AATTA-QNRRA t).l 0.5 0.1 CArC('-HTGl̂  ().2 0.2 0.8 CCTCA-FFRRT 0-3 0.3 07 AATTA-QVWFQ 0.1 ().5 0.1 CA(XX'-TC:EKP" 0.2 ().2 1 GGTC'A-FRHT1 O.r> (>.r) 0.5 AATTA-VWKQN O.r) 0.5 0.5 (TACC-ARl̂ ^ O-fi i)I> 0.7 (K:TCA-CCK(;F (>.2 O.r) l).2 AATTA-WFQNR" 0.5 0.5 ().G CCACXMlSARH" 0.2 0.2 (1.5 (:GTCA-(;FFKR_ 't-r> ar) 11.7 A(X:T(:-AI_r 0.3 tl.3 0.7 CCACC.-KQSXR" (U (U 0.6 r.GTCA-GFFRK" »1 t).l 0-7 ACX;TC:-i:ilELK" 0.2 0-2 ().(i CCACC-LRKQA" 0.1 . 0.1 O.fi (;(;TrA-(;YHY(; »-'> ().f) fU) ACXiTG-l̂ARR O.C O.G O.G VCAVC.-}iHVlA~ 0.1 0.1 1 GCTCA-ITCEG"" l).2 0.2 11.8 AC'(iTG-KQSNR 0,3 0.3 O.C CCAC('.-QSNRE" ».2 0.2 n.6 GGTCA-KCFFK "•2 0.2 0.7 ACCTC;-LRKQA O.r, 0.5 ().(i CCACC.-HVJAAW 0.3 0.3 0.6 (:(;T(’A-K(;m� "•« 0.0 lU) A(X;T(;-N'RKSA 0.2 0.2 07 CCAC('.-HKQAir 0.1 l).l � CCTCA-NRCgŜ  ".2 n.2 0.7 A(X:T(!-QSNRl-: 0.3 0-3 l).7 CCACC-RKQ>̂  0.1 n.l 1 GGTCA-KCQY(" »5 ().r> IU) ACdTC.-HKSAU 0.3 0.3 0.5 CCA(X;-RLR1̂  0.1 0.1 0.8 (;C:T('A-RNQCQ (,� »•! 0-7 A(,(;T(;-_AF7" U.3 <U (>.(i (X'ACC-HH.SRL" (U 0.3 � （;(;T(’A-RNRr(� (>.2 0.2 0.8 A(xiT(;-_SN_ 0-t 0.3 O.fi CCACG-\IS\\U\~ 0.2 0.2 丨 （;(;TrA-sn:(:r_ 
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3.2.3 Annotation Analysis 

If the pairs iri our results are the actual binding cores between TFs and TFBSs, most 
of their TF amino acid k-mers should be inside DNA binding domains. Thus the TF 
amino acid k-mers were scanned in TRANSFAC to check whether they were within 
the annotated DNA binding domains. As stated in the previous section, the set of 
TFBS4mer-TF4mer pairs constituting all the pairs in the other sets by the downward 
closure property. Thus only the TF amino acid 4-mers of the set of TFBS4mer-TF4mer 
pairs were needed for the checking: Of the 792 TF amino acid 4-mers, 92.2% of them 
were found within the DNA binding domains listed in the TFAM 18，list downloaded 
frorn DBD [87] on 25-JAN-2010. 

3.2.4 Empirical Analysis 

Since the numbers of results are quite large, they are tabulated in a statistical perspective 
in the previous sections. This section provides readers with empirical insights into the 
results obtained. Comparing to the other sets, the set of TFBS5mer-TF5mer pairs shows 
its relative invariability to confidence level pruning. Thus it motivates us to have an 
in-depth empirical analysis on them. They are listed in Table 3.3. 
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Among the 131 pairs in Table 3.3, the TFBS DNA k-mers are quite conserved. There 
are only 15 distinct TFBS DNA k-mers. Each TFBS DNA k-mer forms pairs with 8.73 
TF amino acid k-mers on average. One of the reasons may be the specificity of DNA 
residue is lower in view of its alphabet size (4) as compared to the amino acid alphabet 
size (20). 

To act as a DNA binding protein, a TF needs to provide a basic interacting surface 
for the recognition of major/minor grooves as well as the phosphate backbone of DNA. 
Therefore, we searched through the set of pairs in Table 3.3 to count the occurring 
frequency for each residue. Interestingly, we found that the basic residues, Lysine (50 
times) and Arginine (131 times), occur at the highest frequency among 131 pairs of 
TFBS-TF. On the other hands, the hydrophobic residues [88] such as Isoleiicine (15) and 
Valine (13) occur at the lowest frequency. These results suggest the potential of the TF 
sequences for being the binding sequences between TFs and TFBSs. On the other hand, 
as the nucleotides ofTFBSs are somehow negatively charged, it can be deduced that their 
binding amino acid residues of TFs should be positively charged. Thus the occurring 
frequencies were further examined. Arnong the 131 pairs, the positively charged residues: 
Arginine (R) and Lysine (K) occur 131 and 50 times respectively. In contrast, the 
negatively charged residues Aspartic Acid (D) and Glutamic Acid (E) occur 8 and 30 
times respectively. Such discrepancy supports their potential for being the binding 
sequences between TFs and TFBSs. 

3.2.5 Experimental Analysis 

This section follows the same approach in empirical analysis. The set of TFBS5mer-
TF5mer pairs in Table 3.3 is selected for experimental analysis. Out of the 131 pairs, 5 
of them were selected and analyzed. The first pair is GGTCA-CEGCK, which have been 
experimentally proved as binding sequences in [89]. The TF amino acid k-mer (CEGCK) 
is considered part of P-box (CEGCKG) within the DNA-binding domain of Bp-nhr-2, 
which is believed to bind the DNA k-mer (GGTCA). The second pair is AAACA-IRHNL 
mentioned in [90]. Based on the corresponding PDB entry 3C06, it is believed that the 
pair was a binding pair between a TF and a TFBS as shown in Fig.3.3a. Similarly, the 
remaining pairs are GATAA-NACGL, GGTCA-GFFRR, and CTTCC-LRYYY. They 
are found as binding pairs in PDB entries 3DFV [91], 3DZY [92], and 2NNY [93] as 
shown in Fig.3.3b, Fig.3.3c, and Fig.3.3d respectively. The above 5 pairs reveal that the 
pairs generated from the proposed approach have biological evidences in literatures. 

Among the previous figures, two of them (3C06 and 2NNY) were further analyzed in 
terms of hydrogen bonding, which also means the specificity of the interaction between 
amino acids and the bases, as shown iri Figures 3.4a and 3.4b. We have also highlighted 
the hydrogen bonds as black lines as well as the residues that make contact with the 
base (only predicted residues), which are the evidence ofthe significance and accuracy of 
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TFBS:AAACA TFBS:GATAA 

毫書 
^ ^ ^ TF:NACGL 

(A) AAACA-IRHNL pair in 3C06 (B) GATAA-NACGL pair in 3DFV 

TFBS:GGTCA 
^ ^ ^ ^ TFBS:CTTCC 

赞恭 
, ™ f h^^ 

(C) GGTCA-GFFRR pair in 3DZY (D) CTTCC-LRYYY pair in 2NNY 
FlGURE 3.3: Four representative TF-TFBS pairs are shown in ribbon diagram. The 
TF amino acids and TFBS nucleotides are highlighted in ball and stick format. The 
sequences ofthe TF-TFBS pairs are also labeled in the figures. The figures are generated 

• using Protein Workshop [1] 
the prediction of the TF-TFBS pairs. Nevertheless, as the proposed approach is applied 
on a large-scale database, such extensive and detailed analysis of all the binding core 
pairs discovered are not practical. Therefore, a scalable verification approach will be 
presented in the next section to verify the massive results generated. 
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TFBS:AAACA , 

^ ¾ ¾ ¾ ? ^ 

1 6 ¾ ^ 
TF:IRHNL 

(A) AAACA-IRHNL in 3C06 

TFBS:CnCC 

m 
TF:LRYYY 

(B) CTTCC-LRYYY in 2NNY 

FlGURE 3.4: The interactions between the TF and TFBS of two representative pairs 
(a) 3C06 and (b) 2NNY are shown. The proteins are shown in ribbon diagram with 
the highlighted TF amino acids in ball and stick format. The helices and strands are 
colored in red and cyan respectively. The amino acids that interact with the nucleotides 
are labeled. The hydrogen bonds are shown in dark line. The figures are generated 

using DS visualizer, Accelrys. 
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3.3 Verifications 

In this section, we try to verify the discovered pairs with external data sources, in 
particular the 3D protein-DNA complex structures experimentally determined from PDB 
(Protein Data Bank). Homology modeling has also been done for further verifications. 

3.3.1 Verification by PDB 

PDB is selected for providing 3D Protein-DNA complex data for 3D structural verifica-
tion. The PDB data were downloaded from RCSB PDB (http://www.pdb.org) from 
16-SEP-2009 to 22-SEP-2009, where the protein-DNA complexes were selected based on 
the entry type list provided in ftp://ftp.wwpdb.org/. 

^^Query by TFkmer 
A set of pairs ^ ^ ^ """""^^^ 

< TFBSkmer-TFkmer Pair 1 t , \ r 1 ^ f C [ ^ ^ ^ " Z ^ 
TFBSkmer-TFkmer Pair 2 i J •-:."":..» .'',.‘* 

TFBSkmer-TFkmer Pair 3 ¾̂̂ ^̂¾!̂ .¾ • ‘ PDB data 

TFBSkmer-TFkmer Pair n <lĵ IiaiyBI |>.,'.C'L;.:| _ ^ 

.#P|-|> 
I 一 

o 
？ 

• 

'̂  —,卜=:-^雇…譽 
z Z 、 

Whether the pair is a core contact in binding Legends 
r - ~ ^ G 2 Q 
^_______^ TF k-mer 

r ~ ^ ( T T T - ^ I C^^^^^^^^ V-¥Mm 
.r-:"i.. "..��j '—: c~t .. I. I,"jr-:i::-:��"�? :--.:—�::� TFBS k-fTi6r 

FlGURE 3.5: Flowchart of 3D Verification for each set of pairs 

For each set of pairs in Supplementary Table 2, each pair is independently evaluated as shown in Fig.3.5. For each pair, its TF k-mer is used to query which PDB chain 

http://www.pdb.org
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has the TF k-mer. Once the corresponding set of PDB chains has been identified and 
returned, its redundancy is removed by BLASTClust using 90% sequence identity [17]. 
The removal is to ensure that redundant PDB chains are not double-counted. After the 
removal, the pair is evaluated for binding in the 3D space: 

For each PDB chain queried by the TF k-mer, its protein sequence must have the TF 
k-mer. Thus its protein sequence is scanned to locate the sequence position of the TF k-
mer. Once located, the sequence position is applied to get the corresponding 3D atomic 
coordinates of the TF k-iner in the PDB entry in which the PDB chain is. On the other 
hand, the TFBS k-mer of the pair is also scanned in the DNA sequences in the PDB 
entry. If the TFBS k-mer cannot be found in the DNA sequences, the PDB chain will 
be classified into the first category {a). Otherwise, the sequence location of the TFBS 
k-mer will be further applied to obtain the corresponding 3D atomic coordinates of the 
TFBS k-mer. As a result, the 3D atomic coordinates of the TF k-mer and the TFSB 
k-mer are found for the PDB chain. The following measurement is proposed to classify 
the PDB chain into the remaining categories {h) and (c): 

• A TFBS k-rner - TF k-mer pair is considered binding for a PDB chain if and only 
if an atom of the TFBS k-mer and an atom of the TF k-mer are close to each 
other. Two atoms are considered close if and only if their distance is smaller than 
3.5 angstrom. [34，37] 

With the pair evaluated in its PDB chains, its PDB chains can be classified into the 
following three categories: 

• PDB chains only having the TF k-mer (a) 

• PDB chains having both TF k-mer and TFBS k-mer 

—The pair binds together {b) 

- T h e pair does not bind together (c) 

Thus the number of chains in each category is counted and converted into the following 
performance metrics: 

• TFBS Prediction Score= (6 + c)/{a + b + c) 

• TFBS Binding Prediction Score = b/{a + b + c) 

• Binding Prediction Score= b/{b + c) 

Given the resultant PDB chains queried by a TF k-mer, TFBS Prediction Score measures 
the proportion of PDB chains which contain the corresponding TFBS k-mer. In other 
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words, it measures the backward confidence of a pair in PDB. TFBS Binding Prediction 
Score is a rnore stringent metric. It measures the proportion of PDB chains which ha.ve 
the corresponding TFBS k-mer binding with the queried TF k-mer. Lastly, Binding 
Prediction Score is the most important metric. It measures the proportion of PDB 
chains in which the pair is really binding. To verify the cases when {h + c) = 0 (i.e. the 
pairs do not appear in PDB), homology modeling is also performed. 

For each setting, we have a set of pairs. For each pair, the above performance metrics are 
calculated. The overall results are averaged and summarized in Supplementary Tables 
9 - 11. For each setting, we also have a set of merged pairs. For each merged pair, 
the above performance metrics are also calculated. The overall results are averaged 
and summarized in Supplementary Tables 12 - 14. Note that the most conservative 
calculation has been used for each performance metric for each pair. If a performance 
rnetric of a pair does not have enough PDB data for calculation, a value of zero will be 
given to the performance metric of the pair. For instance, the cases when (b + c) = 0 or 
(a + 6 + c) = 0. Despite the above setting, the performance metrics of the pairs still have 
reasonable performances. They are shown to be significant better than the maximal 
performance of 50 random runs in a later section. 

Nevertheless, although the above metrics can capture the performance of a pair quantita-
tively, the most important point is to know how many generated pairs could be verified 
(with at least one binding evidence in PDB data (b > 0)). To gain more insights, 
the nurnber of pairs with at least one related PDB chain ((6 + c) > 0) are tabulated 
in Supplementary Tables 15 and 16. Correspondingly, the percentage of verified pairs 
( i v = = y “ = : : " ( $ � > o ) are calculated and tabulated in Supplementary Tables 17 
and 18. In the tables, the percentage of verified pairs is high enough to justify that the 
proposed approach has produced pairs proven to be binding in PDB. For instance, the 
statistics for the TFBS5mer-TF5mer pairs is extracted in Table 3.4 and Fig.3.6. Arnong 
the 80 TFBS5mer-TF5mer pairs with at least one related PDB chain ((6 + c) > 0) when 
the confidence level = 0.0’ more than 81% of them have at least one binding evidence 
{b>0). 

The TFBS-TF pairs that we found to have binding evidences in the PDB show typical 
structural features of DNA-protein interactions. Such features include the "recognition 
helix" of the DNA-binding protein making base contacts in the major groove and direct 
hydrogen bonds between the side chains and the bases. These interactions play the cru-
cial role in the DNA recognition and site specific binding respectively [94]. Interestingly, 
the nucleotides of TFBS are located in the major groove of the DNA, which are close 
to, and rnake contacts with the amino acids of the "recognition helix" of the TF (as for 
example shown in Figure 3.3). 
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TABLE 3.4: Number of the TFBS5mer-TF5mer pairs verified across different confidence 
levels. {Nreiated' Number of the TFBS5mer-TF5mer pairs with at least one related PDB 
chain ((6 + c) > 0), Nyerified' Number of the TFBS5mer-TF5mer pairs with at least 
one PDB chain as a binding evidence ((6) > 0), Mreiated'- Number of the TFBS5mer-
TF5mer merged pairs with at least one related PDB chain ((6 + c) > 0), Myerified'-
Number of the TFBS5mer-TF5mer merged pairs with at least one PDB chain as a 

binding evidence ((6) > 0)) 

Confidence Nrelated ^verified ^related Myerified 
0.0 80 65 19 16 
0.1 80 65 19 16 
0.2 71 59 15 13 
0.3 50 44 15 13 
0.4 32 28 12 11 
0.5 19 17 7 6 
0.6 9 9 5 5 
0.7 2 2 1 1 
0.8 0 0 0 0 

0.9 0 0 0 0 
1.0 0 0 0 0 

i _ IPairs • • 
90 00% • Merged pairs 二 ^ m ^ ^ ^ K ^^H 

JIUIIII 
0.0 0.1 0.2 03 0.4 0.5 0.6 0.7 

Confidence 

FlGURE 3.6: Percentage of the TFBS5mer-TF5mer pairs verified across different con-
fidence levels 
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The verification is considered satisfactory since those pairs not found in PDB {{b + c ) = 
0) may be un-anriotated discovery as shown in the following verification by homology 
modeling. 

3.3.2 Verification by Homology Modeling 

Regarding the pairs without any related PDB chain ((6 + c) = 0), there is no PDB data 
for us to verify thern. Thus we have taken the most conservative approach to assign zero 
to their performance metrics in the aforementioned evaluations. Nevertheless, we believe 
that most of those pairs are true and our approach can be used as an effective protein-
DNA binding discovery tool. Thus 6 TFBS5mer-TF5mer pairs were taken and merged. 
The resultant pair ACGTG-SNRESARRSR was analyzed by homology modeling as 
follows: 

The model of DNA-protein complex was built by homology modeling (INSIGHT II, MSI) 
based on the structure of the GCN4-DNA complex ( lYSA) [95]. Briefly, three amino 
acids (R234S, T236R, and A238S) and two nucleotides (T29C and A31T) were mutated 
in the original structure. The side chains of the mutated amino acids were chosen from 
the rotamer database and examined using the Ramachandran plots to prevent any steric 
effect. The interactions between the amino acids and the nucleotides were searched based 
on the distance of the hydrogen bond. 

As shown in Fig.3.7, we found that the pair ACGTG-SNRESARRSR exists in plant as 
the basic leucine-zipper (bZIP) transcription factor which binds to G-box binding factors 
(GBF) of DNA [96]. Moreover, the ACGTG sequence is the consensus sequence which is 
defined as G-box core and locates at the major groove of the double strands DNA. It is 
believed that the G-box core is the DNA sequence of GBF that provides the specificity of 
the binding to bZIP proteins. In order to further understand the interactions between 
the TF-TFBS, we built a model by using homology modeling based on the structure 
of GCN4-DNA (lYSA) complex [95]. As shown in the model, the protein helix fits 
into the major groove of the DNA very well and forms extensive interactions (black 
lines) between the amino acids and the nucleotides. Interestingly, the mutations of the 
protein (R234S, T236R, and A238S) as well as nucleotides (T29C and A31T) increases 
the number of hydrogen bonds compared with the original structure ( lYSA), suggesting 
the binding specificity between this pair of TF-TFBS. In conclusion, we believe that 
the protein-DNA binding sequence patterns found usiiig association rule mining on the 
large-scale database reveal real TF-TFBS pairs in physiological relevant situation and 
this method could guide us to discover new and iindescribed TF-TFBS pairs in the 
future. 
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^ ^ 
w 

SNRESARRSR 

FiGURE 3.7: The pair A C G T G - S N R E S A R R S R using homology modeling 

3.3.3 Verification by Random Analysis 
For each set of pairs in Supplementary Table 1，we use a random process to generate a 
random set with the same number of pairs. Within a random set, its pairs were randomly 
sampled from all the combinations of the k-mers used in the proposed approach. 50 
random runs were performed. The maximal performance metrics of the 50 random runs 
are summarized in Supplementary Tables 19 - 21. In a comparison to the proposed 
approach, their performance has been depicted in Figure 3.8 and Figure 3.9. It can 
be observed that the performance of the proposed approach is significantly better than 
the best one of the 50 random runs. For instance, the Binding Prediction Score of the 
131 TFBS 5mer-TF 5mer pairs generated is 0.36±0.39 on average whereas the maximal 
Binding Prediction Score over 50 random runs is only 0.00509i0.06492 on average. 
Similar observation can also be drawn for their merged pairs in Supplementary Tables 
22 - 24. It can be concluded that the performance of the proposed approach is very 
unlikely to happen purely by chance in PDB. 
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FiGURE 3.8: Performance Comparison for PDB verifications 
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FlGURE 3 .9 : Performance Comparison for P D B verifications (Merged Pairs) 
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3.4 Discussion 

We have proposed a framework based on association rule mining with Apriori algorithm 
to discover associated TF-TFBS binding sequence patterns in the most explicit and 
interpretable form from TRANSFAC. With downward closure property, the algorithm 
guarantees the exact and optimal performance to generate all frequent TFBS k-mer 
TF k-mer pairs from TRANSFAC. The approach relies merely on sequence irifonnation 
without any prior knowledge in TF binding domains nor protein-DNA 3D structure data. 
Prom comprehensive evaluations, statistics of the discovered patterns are shown to reflect 
meaningful binding characteristics. According to external literatures, PDB data, and 
homology modeling, a good number of TF-TFBS binding patterns discovered have been 
verified by experiments and annotations. They exhibit atomic-level bindings between the 
respective TF binding domains and specific nucleotides ofthe TFBS from experimentally 
determined protein-DNA 3D structures. In fact, most ofthe pairs discovered are actually 
the binding cores from the TF binding domains and TFBS respectively. 

The proposed approach has great potential for discovering intuitive and interpretable 
rules of TF-TFBS binding mechanisms. Such rules are able to reveal TF binding do-
mains, detailed interactions between amino acids and nucleotides, accurate TFBS se-
quence motifs, and help better understanding and deciphering of protein-DNA inter-
actions. It also offers strategic help to reduce the labor and costs involved in wet-

lab experiments. With increasing computational power and more sophisticated mining 
approaches, the proposed methodology can be further improved for discovering more 
intriguing TF-TFBS binding patterns and rules. 



Chapter 4 

Designing Evolutionary 
Algorithms for Multimodal 
Optimization 

4.1 Introduction 

Since genetic algorithm was proposed by John Holland [24] in the early 1970s, evolution-
ary algorithm has emerged as a popular research field. Researchers around the world 
have been digging into this field and exploring the power of evolutionary algorithms. 
Ill particular, its function optimization capability was highlighted [32] because of its 
high adaptability to different function landscapes, to which we cannot apply traditional 
optimization techniques. 

Real world problems always have different solutions. For instance, in the varied-line-
spacing holographic grating design problem, optical engineers need to tune the recording 
parameters to get as many optimal solutions as possible for multiple trials in the design 
problem. Because the design constraints are too difficult to be expressed and solved in 
mathematical forms [97]. Unfortunately, most traditional optimization techniques fociis 
on solving for a single optimal solution. They needs to be applied several times; yet all 
solutions are not guaranteed to be found. Thus multimodal optimization problem was 
proposed. In this problem, we are interested in not only a single optimal point, but also 
the others. Given an objective function, an algorithm is expected to find all optimal 
points iri a single run. With strongly parallel search capability, evolutionary algorithms 
are shown to be particularly effective in solving this type of problems [32]. 

The work by De Jong [98] is one of the first known attempts to solve multimodal opti-
mization problems by an evolutionary algorithm. He introduced the crowding technique 
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to increase the chance for locating multiple optima. In the crowding technique, an off-
spring replaces the parent which is most similar to the offspring itself. Such a strategy 
can preserve the diversity and maintain different types of individuals in a run. Twelve 
years later, Goldberg and Richardson [60] proposed a fitness-sharing niching technique 
as a diversity preserving strategy to solve multimodal optimization problems. He pro-
posed a shared fitness function, instead of an absolute fitness function, to evaluate the 
fitness of an individual in order to favor the growth of the individuals which are distinct 
to others. With this technique, a population can be prevented from the domination of a 
particular type of individuals. Since then, many researchers started to explore different 
ways to deal with the problems. These methods include: species conserving [99], crowd-
ing [98, 100], elitism [101], differential evolution [102], clearing [103], repeated iterations 
[104] and island model [105]. Though different methods were proposed in the past, they 
were all based on the same fundamental idea. It is to strike an optimal balance between 
convergence and diversity of evolutionary algorithm in order to locate all optima (global 
and local), as defined as follows: 

4.2 Problem Definition 

The problem definition depends on the type of optimization (minimization or maximiza-
tion). They are similar in principle and defined as follows: 

4.2.1 Minimization 

In this problem, given / : X — E, we would like to find all global and local minimums of 
f in a single run. 

Definition 4.1 Local Minimum [106]: A (local) minimum xi e X of one (objective) 
function f:X — R is an input element with f{xi) < f{x) for all x neighboring X[. If 
X G E^, we can write: Vf/ 3e > 0 : / ( f / ) < f{x) Vx G X’ |x — f/| < e. 

Definition 4.2 Global Minimum [106]: A global minimum xi € X of one (objective) 
function f:X — R is an input element with f{xi) < f{x) Vx G X. 

4.2.2 Maximization 

In this problern, given f:X ~> R, we would like to find all global and local maximums of 
f in a single run. 

Definition 4.3 Local Maximum [106]: A (local) maximum f , G X of one (objective) 
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function f:X ~> E is an input element with f{xi) > f{x) for all x neighboring xi. If 
X G K " , we can write: Vf, 3e > 0 : / ( f , ) > f{x) Vx G X’ |a: — f,| < e. 

Definition 4.4 Global Maximum [106]: A global maximum xi G X of one (objective) 
function f:X — E is an input element with f{xi) > f{x) Vx G X. 

4.3 An Evolutionary Algorithm with Species-specific Ex-
plosion for Multimodal Optimization 

The species conserving technique for multimodal optimization was proposed by Li et 
al. [99j. It was claimed that the technique was considered as an effective and efficient 
method for inducing niching behavior into GAs. However, in our experiments, we find 
that the performance of the technique still has space for improvement. It always suffers 
from genetic drifts though each species is conserved with one individual. The result 
of the comparison test conducted by Singh et al. [107] also reveals that the species 
conserving technique performs the worst among the algorithms tested. As a result, we 
propose a novel algorithm to remedy the species conserving technique in this section. 

The novel algorithm is called Evolutionary Algorithm with Species-specific Explosion 
(EASE) for multimodal optimization. EASE is built on the Species Conserving Genetic 
Algorithm (SCGA), and the design is improved in several ways. In particular, it not only 
identifies species seeds, but also exploits the species seeds to create multiple mutated 
copies in order to further converge to the respective optimum for each species. Experi-
ments were conducted to compare EASE and SCGA on eight benchmark functions. 

4.3.1 Background 

4.3.1.1 Species Conserving Genetic Algorithm 

Species conserving genetic algorithm (SCGA) [99] is a technique for evolving parallel 
subpopulations for multimodal optimization. Before each generation starts, the algo-
rithm selects a set of species seeds which can bypass the subsequent procedures and be 
saved into the next generation. The algorithm then divides a population into several 
species based on a dissimilarity measure. The fittest individual is selected as the species 
seed for each species. After the identification of species seeds, the population undergoes 
the usual genetic algorithm operations: selection, crossover and rnutatiori. As the op-
erations may remove the survival of less fit species, the saved species seeds are copied 
back to the population at the end of each generation. The whole structure of SCGA is 
outlined in Appendix. 
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To determine the species seeds in a population, the algorithm first sorts the population 
in a decreasing fitness order. Once sorted, it picks up the fittest individual as the first 
species seed and forms a species region around it. The next fittest individual is tested 
whether it is located in a species region. If not, it is selected as a species seed and another 
species region is created around it. Otherwise, it is not selected. Similar operations are 
applied to the remaining individuals, which are subsequently checked against all existing 
species seeds. 

To copy the species seeds back to the population after the genetic operations have been 
executed, the algorithms need to scan all the individuals in the current population and 
identify to which species they belong. Once it is identified, the algorithm replaces the 
worst individual (lowest fitness) with the species seed in a species. If no individuals can 
be found in a species for replacement, the algorithm replaces the worst and un-replaced 
individual in the whole population. In short, the rnain idea is to preserve the population 
diversity by preserving the fittest individual for each species. 

4.3.2 Evolutionary Algorithm with Species-specific Explosion 

Evolutionary Algorithm with Species-specific Explosion (EASE) is an evolutionary algo-
rithm which identifies and exploits species seeds to locate global and local optima. There 
are two stages in the algorithm: Exploration Stage and Species-specific Stage. The 
exploration stage targets for roughly locating all global and local optima. It not only un-
dergoes normal genetic operations: selection and crossover, but also involves the addition 
of randomly generated individuals for preserving the diversity. On the other hand, the 
species-specific stage targets for gently locating the optimum for each species. Species-
specific genetic operations are applied. Only the individuals within the same species are 
allowed to perform selection and crossover to each other. No inter-species selection and 
crossover are allowed. Such a strategy is to provide more chances for each species to con-
verge to its respective optimum, with the trade-off that diversity is no longer preserved. 
To have a better global picture for locating optima, EASE starts with the exploration 
stage. It will switch to the species-specific stage only after the stage switching condition 
is satisfied. No matter in which stage, a local operation called Species-specific Explo-
sion is always executed so as to help species to climb and converge to its corresponding 
optimum. The whole structure of EASE is shown in Algorithm 4. 

4.3.2.1 Species Identification 

To determine species in a population, we adopt the dissimilarity measurement proposed 
in Goldberg and Richardson [60] and Li et al. [99]. The dissimilarity between two 

Ît involves Survival Selection if the generation is overlapping. 
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Algorithm 4 Evolutionary Algorithm with Species-specific Explosion 
G{t): Generation at time t 
Xs： A set storing species seeds 
Es： A set storing species-specific exploded individuals 
pop_size: Initial population size 
K: A real number over the interval [0，1] 
SS: Species Specific stage switching parameter 
EMSS: Expected Mutation Step Size 

t — 0; 

SS <— false] 
EMSS <r~ mutation probability x mutation step size; 
pastIndividuals <— 0 ; 
Initialize G{t)\ 
Evaluate G{t)] 
while not termination condition do 

if SS = false then 
SelectG(t + l) ; 
Crossover G{t + 1); 

else 
Species-specific Select G{t + 1); 
Species-specific Crossover G{t + 1); 

end if 
Mutate G{t + 1); 
Evaluate G{t + 1)3; 
Xs <- lDENTIFYSPECIESSEEDS(G(t + 1)); 
DEUTAEVAL[Xs,pcistIndividuals); 
if SS = false then 

SS — isSPECiEsSPECiFic(Xs, EMSSy, 
end if 
Es <— SPECIESSPECIFICEXPLOSION(G {t + 1), Xs, K, SS); 
pastIndividuals <— Xg U Eg] 
G(t + l ) ^ X , U E , ; 
if SS = false then 

Fills G{t + 1) with randomly generated individuals 
to reach pop-size\ 

end if 
t^t + l-

end while 
Identify species seeds Xg] 
Identify global optima; 

individuals are based on their Euclidean distance. The smaller the distance, the more 
similar they are: 

n 

d{xi,Xj) = ^{xik - Xjk)^ 
\ fc=l 



Chapter 4. Designing Evolutionary Algorithms for Multimodal Optimization 55 

where Xi and Xj are two individuals, which are n-dimensional vectors [xjo,2:ii, ---,X{n] 
and [xj0,xji, ...,Xjn] respectively. 

Each species is a subset of population. The fittest individual within a species is chosen 
as the species seed. The region around a species seed forms its corresponding species 
region. All individuals are classified as the same species if it is within the species distance 
(7"s) from the species seed. Petrowski [103] and Li et al. [99] proposed an algorithm to 
identify species seeds. The algorithm first sorts the population in a decreasing fitness 
order. Then it picks up the individual with the highest fitness as the first species seed 
and forms a species region around it. All individuals within r^ distance from the species 
seed are classified as the same species as that of the seed. For the next individual, it is 
checked whether it is within r^ distance from the species seed. If not, it is selected as 
another species seed. Similar operations are applied to the remaining individuals. Each 
individual is tested on whether it lies in others' species regions. If not, it is selected 
as a species seed. Otherwise, it is not selected. The main idea is to pick up the fittest 
individuals as the species seed for each species. The algorithm is shown in Algorithm 5. 

Algorithm 5 Identify Species Seeds 
procedure IDENTIFYSPECIESSEEDS(G') 

Sort G in decreasing fitness values; 
^ — 0; 

while not reaching the end of G do 
Get best un-scanned individual ig from G\ 
found <— false] 
for Vx e Xs do 

if d(x,is) < Ts then 
found <r- true; 
break; 

end if 
end for 
if notfound then 

X s 卜 X s U i s ] 

end if 
end while 
return Xg', 

end procedure 

4.3.2.2 Species Seed Delta Evaluation 

After we have identified all species seeds in the population, we perform delta evaluation 
to record the recent step changes that can increase fitness for each species seed. For 
each species seed, we pick up the fittest individual of the same species in the previous 
generation, under the constraint that its fitness is lower than that of the species seed 
itself. By doing so, we can select the individual which is most likely the ancestor of 
a species seed in the previous generation. We call this individual as the Likelihood 
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AncestoT{LA). If we can pick up the corresponding LA for a species seed, we store 
the value difference between the genome of LA and the genome of the species seed into 
the array delta of the species seed. Thus the array delta of a species seed serves as a 
memory recording the last known step sizes, which improved the species seed itself. The 
algorithm is shown in Algorithm 6. (All elements of delta are initialized to the mutation 
step size at the beginning) 

Algorithm 6 Species Seed Delta Evaluation 
dim: The maximum dimension 
x.value [z]: The genome value of x at dimension i 
LA.value [i]: The genome value of LA at dimension i 

procedure r>EUTAEVAL[Xs,pastIndividuals) 

for Va: € Xs do 
LA <— the individual G pastIndividuals 

with the highest fitness in the same species 
where its fitness is lower than that of x and x + LA] 
if LA 7̂  null then 

for i from 1 to dim do 
x.delta [z] <— x.value [z] — LA.value [z]; 

end for 
end if 

end for 
end procedure 

4.3.2.3 Stage Switching Condition 

To ensure a proper condition for switching from the exploration stage to the species-
specific stage, we propose using the expected mutation step size {EMSS) as a measure 
for controlling the switching: 

EMSS = Pm X Tm 

where Pm is the mutation probability and r^ is the mutation step size. 

For each species seed, we scan its array delta to check whether its element exceeds 
EMSS. If there does not exist an element which exceeds EMSS, the switching condi-
tion is satisfied. The algorithm will switch to the species-specific stage. Otherwise, the 
algorithm will remain in the exploration stage. The rationale behind the checking con-
dition is that EMSS can give us an expected value for measuring the mutation ability 
of the algorithm. It can serve as a measurement to assess the ability of the algorithm to 
jump from one region to another region by just using mutation. Thus if all the elements 
of the arrays delta of all species seeds do not exceed the EMSS, it is reasonable to de-
duce that the fitness improvement steps for all species in the subsequent generations are 
rnost likely smaller than the EMSS. All fitness improvement steps can be completed by 
merely using mutations, but not inter-species crossovers. Hence inter-species crossovers 
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are no longer needed. Species-specific stage should be launched. The algorithm is shown 
in Algorithm 7. 

Algorithm 7 Stage Switching Condition 
dim: The maximum dimension 

procedure isSPECiEsSPECiFic(Xs, EMSS) 
SS <— true; 
for Vx G Xs do 

for i from 1 to dim do 
if x.delta{i] > EMSS then 

SS <— false] 
end if 

end for 
end for 
return SS] 

end procedure 

4.3.2.4 Species-specific Explosion 

In SCGA, Li et al. [99] proposed conserving one individual for each species. However, 
just one individual for each species is not enough for the algorithm to well-conserve and 
nurture the species. In a run of SCGA, it is often the case that the algorithm does 
conserve species with low fitness values, but they are present in a small proportion. 
Once they form new offspring, their offspring are often removed quickly in subsequent 
generations due to their low fitness values. Thus most individuals are always of the 
species with high fitness values. An example is depicted in Figure 4.1. In the example, 
we can observe that the individuals gradually converge to the three optima fitness-
proportionally. Though different species are preserved with an individual as the species 
seed, it cannot converge to the local optimum located at the left-bottorn corner due to the 
relatively low fitness values there. Merely SCGA itself actually cannot provide enough 
indiscriminate condition for species to evolve and converge to its respective optimum in 
each run. Hence we propose a local operation called Species-specific Explosion to 
remedy the convergences in this paper. 

Species-specific explosion is the local operation in which we create multiple copies for 
each species seed and mutate them. To start this local operation, the algorithm needs 
to determine two parameters: 

1. How many copies should be created for each species seed? 

2. What is the mutation step size for each species seed? 

For the first question, we propose using the ratio of individuals in the same species to 
the current population to determine the number of copies to be created. The details are 
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FlGURE 4.1: A snapshot of S C G A in a run on Problem Peaksl - generation 1,2,4,10. 

given in the section 4.3.2.5. For the second question, we propose using the array delta 

of species seed as the corresponding mutation step size. Recall that the array delta of 
species seed saves the step size values which were known to improve the species seed itself 
in the previous generation, it can be used for approximating how far the species seed 
should mutate to have a better fitness in the current generation. Hence we choose to use 
the array delta as the mutation step size of the species-specific explosion operation. Once 
the two parameters are calculated, the algorithm starts to check whether the species seed 
is present in the previous generation. If it is present, the algorithm will "explode" it, 
which means creating multiple copies and mutating them. Otherwise, no actions will 
be executed. The rationale behind the checking is to ensure that the species seed to 
be exploded is a stable species seed. Hence we require the species seed at least survive 
through one generation to be eligible for the explosion. Alternatively, if the current 
stage is species-specific stage, the above checking is overridden. All species seeds are 
eligible for the explosions, in order to provide all species an indiscriminate condition to 
evolve in this stage. The algorithm is shown in Algorithm 8. 



Chapter 4. Designing Evolutionary Algorithms for Multimodal Optimization 59 

Algorithm 8 Species Specific Explosion 
procedure SPECIESSPECIFICEXPL0SI0N(G', Xs, K, SS) 

Es — ^.’ 
WEIGHTSEVAL(Xs, G)； 

for Vx e Xs do 
if X is present in previous generation 

or SS = true then 
size <r~ x.weight x K x popsize-, 
Es <- EgU ExPLODE{x,size); 

end if 
end for 
return Es； 

end procedure 

procedure ExPLODE(x, size) 
Explodedg 一 0 ; 

for i from 1 to size do 
temp <— Copy of x; 
Mutate temp with step size x.delta\ 
Explodeds <— Explodedg U temp; 

end for 
return Explodedg] 

end procedure 

4.3.2.5 Calculate Explosion Weights 

Before an explosion, we need to determine the explosion weight for each species seed. 
The explosion weight is defined over [0,1]. It is a scaling factor to determine the num-
ber of mutated copies that a species seed can create during the species-specific explosion 
process. In EASE, the rationale behind is to encourage a species to create more mutated 
copies if the species has less individuals in the current population. Hence the explosion 
weight of a species seed is derived from the ratio of individuals in the same species to the 
current population. The larger the ratio, the smaller is the explosion weight and vice 
versa. The algorithm is shown in Algorithm 9. Each explosion weight is normalized at 
the end so that the sum of all the explosion weights is limited to 1, in order to avoid the 
total number of the mutated copies of all species seeds exceeding the predefined value 
K X pop-size. 

4.3.3 Experiments 

We implemented EASE and SCGA using Sun's Java programming language. Its de-
velopment is based on the EC4 framework provided in Kenneth De Jong's book [57]. 
Experiments to compare the performance between EASE and SCGA were conducted on 
eight benchmark functions as shown below: 
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Algorithm 9 Calculate the explosion weight for each species seed 
procedure WElGHTSEvAL(Xs, G) 

total <r— 0; 

for Va; e Xs do 
x.weight 卜 population size - number of individuals 
in the sarne species in the current population; 
total <— total + x.weight] 

end for 
for Vx G Xs do 

x.weight <— x.weight/total\ 
end for 

end procedure 

• F1: Deb's 1st function [108] 

• F2: Himmelblau function [104] 

• F3: Six-hump Camel Back function [109] 

• F4: Branin function [109] 

• F5: Rosenbrock function [110] 

• F6: PP1 [111] 

• F7: PP3 [111] 

• F8: PP4 [111] 

4.3.3.1 Performance measurement 

For multimodal optimization, there are several performance metrics proposed previously 
[112]. The focuses of this paper are on (1) the ability of the algorithms to locate the 
optima and (2) the accuracy of the optima found by the algorithms. Heiice we use the 
peak ratio and the average minimum distance to the real optima [111] as the performance 
metrics. 

• A peak is considered found when there exists an individual which is within 0.5 
Euclidean distance to the peak in the last population. Thus the peak ratio is 
calculated using the following formula: 

PeakRatw = Numberofpeaksfound 
Total number of peaks 

• The average minimum distance to the real optirna is calculated using the following 
formula: 

n 
2 1幽 d{peak, indiv) 
^~f indiv£pop 

D = ^ 
n 
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TABLE 4.1: Parameter setting of EASE for all benchmarks 

Parameter Setting 
Mutation Type Gaussian [57] 
Mutation Formula in explosion NewValue = OldValue + 2 x StepSize x U 

whcrc U is a normally distributed rcal value with incaii 0.0 and standard deviation 1.0 
_K ^ 

TABLE 4 .2: Common parameter setting of EASE and SCGA for all benchmarks 

Parameter Setting 
Population Initialization Random 
Generation Type Overlapping [57] 
Parent Selcction Fitness Proportional 
Survival Selection Truncation [57] 
Representation Sun's ,Tava Double (double-precision 64-bit IEEE 754 floating point) 
Mutation Type Gaussian [57] “ 
Mutation Formula NewValue = OldValue + 1.3 x StepSize x U 

where U is a normally distributed rcal valuc with mean 0.0 and standard deviation 1.0 
Mutation Probability 0.2 
Mutation Step Sisjc 0.1 
Crossover Typc Intc>rnicdiatc Recombination [99] ‘ 
Crossover Fonmila Offspring =""—广'.'：'“.2 
Crossover Probability 1 
Random Sccd l2M5 ‘ 
Implementation Sun's .Iava programming language 

where n is the nurnber of peaks, indiv denotes an individual and pop denotes a 
population of individuals. 

In the following sections, all algorithms were run up to maximum 40000 fitness function 
evaluations. The above performance metrics were obtained by taking the average and 
standard deviation of 50 runs. 

4.3.3.2 Parameter settings 

The parameter setting of EASE for all benchmarks is shown in Table 4.1. The common 
parameter setting of EASE and SCGA for all benchmarks is shown in Table 4.2. The 
common parameter setting of EASE and SCGA for different benchmarks is shown in 
Table 4.3. All the common parameter settings of EASE are exactly the same as SCGA 
for fair comparisons. The selection method of the species distance parameters is based 
on the suggestions in [99]. 

4.3.3.3 Results 

Table 4.4 shows the experimental results for the comparison of EASE and SCGA. It can 
be observed that EASE outperformed SCGA in all the benchmark functions. EASE does 
improve SCGA's performance no matter in the ability to locate optima or the accuracy 

2Using the terms in [99], the species distance (r.,) = a.,/2 
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TABLE 4.3: Common parameter setting of EASE and SCGA for different benchmarks 

Benchmark Population Size Spccics Distaricc^ 
F1 100 0.01 " ^ 
F2 100 3 
F3 100 0.5 
F4 100 6 
F5 100 10 
F6 200 50 
F7 200 3 
F8 m 3 

of the optima found. Besides, UN is a canonical evolutionary algorithm in the EC4 
framework. Its results can be regarded as the baseline results without any multimodal 
optimization techniques. 

4.3.4 Conclusion 

A new evolutionary algorithm for multimodal optimization called Evolutionary Algo-
rithm with Species-specific Explosion(EASE) is proposed. EASE is an algorithm to 
remedy SCGA by exploding species seeds for locating optima. 

EASE is divided into two stages: Exploration Stage and Species-specific Stage. 
EASE starts with the exploration stage. Once the stage switching condition is satisfied, it 
will be changed to species-specific stage. Throughout the two stages, a local operation: 
Species-specific Explosion is applied so as to help each species to converge to its 
respective optimum. 

The experimental results show that EASE improves SCGA for locating optima (global 
and local), in terms of peak ratio and accuracy. 
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TABLE 4.4: Experimental Results for the comparison of EASE and SCGA 

"Benchmark Measurement SCGA EASE UN 
‘ “ M e a n o f D 1.09E-03 2.00E-05 2.53E-01 

S t D e v o f D 1.16E-03 1.41E-05 1.88E-02 
F1 Mean of Peak Ratio 1.00 1.00 0.20 

StDev of Peak Ratio 0.00 0.00 0.00 
Mean of D 2.59E-01 ~~2 .21E-12 4.86E+00 
S t D e v o f D 1.17E-01 1.49E-11 3.17E-01 

F2 Mean of Peak Ratio 0.44 1.00 0.25 
StDev of Peak Ratio 0.18 0 ^ 0.00 
Mean of D 2.03E-02~~2.25E-05~~7.18E-01 
S t D e v o f D 2.22E-02 1.13E-04 2.09E-06 

F3 Mean of Peak Ratio 0.95 1.00 0.50 
StDev of Peak Ratio 0.15 0 ^ 0.00 
Mecan of D 6.63E-01 ~~~9.78E-06~"6.90E+00 
S t D e v o f D 5.91E-01 4.91E-05 1.33E+00 

F4 Mean of Peak Ratio 0.41 1.00 0.33 
StDev of Peak Ratio 0.14 1 ^ 0.00 
Mean of D 8.76E-03~~1.15E-14~~~1.71E-02 
S t D e v o f D l . l lE-02 3.00E-14 1.65E-02 

F5 Mean of Peak Ratio 1.00 1.00 1.00 
StDev of Peak Ratio 0.00 0.00 Q.QQ 
Mean of D 2.11E+00~~1.59E-06~~7.53E+01 
S t D e v o f D 9.10E-01 1.12E-05 1.09E-05 

F6 Mean of Peak Ratio 0.34 1.00 0.33 
StDev of Peak Ratio 0.05 0 ^ 0.00 
Mean of D 4.07E-01 ~~2 .47E-07 8.04E+00 
S t D e v o f D 1.09E-01 1.28E-06 8.20E-01 

F7 Mean of Peak Ratio 0.27 1.00 0.07 
StDev of Peak. Ratio 0.08 0.00 0.00 
Mean of D 5.20E-01 ~~2 .01E-05~7 .81E+00 
S t D e v o f D 1.19E-01 5.43E-05 6.01E-01 

F8 Mean of Peak Ratio 0.20 1.00 0.07 
StDev of Peak Ratio 0.06 0.00 Q.QQ 
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4.4 A Crowding Genetic Algorithm with Spatial Locality 
for Multimodal Optimization 

Nevertheless, as EASE is built on SCGA, it also inherits the defects from SCGA. The 
parameter, species distance, needs to be tuned well before applying it to a problem. 
In other words, if the fitness landscape of a problem is not well understood, then it is 
very likely that EASE will fail in the problem. Thus we propose another evolutionary 
algorithm for multimodal optimization in order to mitigate the parameter problem in 
this section. The algorithm is called Crowding Genetic Algorithm with Spatial Local-
ity (CrowdingGA-L), which is built on CrowdingGA and does not require any extra 
parameter other than the conventional genetic parameters. 

4.4.1 Background 

4.4.1.1 Crowding Genetic Algorithm 

To extend the capability of genetic algorithm, De Jong incorporates the crowding tech-
iiique [98] into genetic algorithm (CrowdingGA) for multimodal optimization. Although 
an intense computation is accompanied, it can effectively transform genetic algorithm 
irito an algorithm specialized for multimodal optimization. To determine the dissim-
ilarity (or distance) between two individuals, the dissimilarity measurement proposed 
ill Goldberg et al. [60] and Li et al. [99] is adopted. The dissimilarity between two 
individuals is based on their Euclidean distance. The smaller the distance, the more 
similar they are and vice versa. 

4.4.1.2 Locality of Reference 

Locality of Reference [113] (or T h e Locality Principle [114])’ is one of the most 
fundamental principles widely used in computing. The principle was originated from 
memory management methods in order to predict which memory entries would be refer-
enced soon. T h e main idea is to make use of ne ighborhood relationships for prediction, 

optimizing the throughput. To define the neighborhood relationship, time and space 
are typically taken as the proximity measures. If time is taken, it is called temporal 
locality. If space is taken, it is called spatial locality. 
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4.4.2 Crowding Genetic Algorithm with Spatial Locality 

4.4.2.1 Motivation 

If we do not apply any specific technique to maintain diversity, most evolutionary algo-
rithms will prematurely converge and get stuck in a local optimum. To cope with the 
problem, the algorithms for multimodal optimization are usually equipped with their 
own local operations for diversity maintenance. In CorwdingGA, its local operation is 
the crowding technique. Thinking this technique more deeply, it is to propose a restric-
tion on the individual replacement policy such that an individual gets replaced only when 
a fitter offspring is generated within the same niche. Thus the choice of the offspring 
generation method becomes a critical performance factor. Especially, in multimodal 
optimization, it is intuitive to choose close parent individuals to crossover, instead of 
distinct parent individuals because two individuals within the same niche is more likely 
to generate a better individual for convergence than the opposite case. Unfortunately, 
the offspring generations in CrowdingGA mainly relies on fitness-based measurements. 
Some offspring useless for multimodal optimization may be generated by two distinct 
parents with high fitness. They are not suitable to offer enough feasible replacement 
schemes for all individuals. Thus we propose a new method for offspring generation, in 
order to increase the chances for successful replacements. 

4.4.2.2 Offspring generation with spatial locality 

Close individuals tend to have similar characteristics. For each generation, the pop-
ulation can be seen to be divided into different niches (See the population snapshot 
example in Figure 4.2). Within each niche, the individuals exhibit similar positions and 
step-sizes for improvement. After several generations, the difference between niches may 
be even larger. It will be a disaster if a single evolutionary strategy is applied to all of 
them regardless of their niches. Luckily, it is a two-edged sword. Such property also 
gives us spatial locality: crossovers between close individuals can have higher chances 
to generate better offsprings. 

1 • 

X / x , 

• . 

• • I n d i v i d u a l 

？ • � • X O p t i m u m 

FlGURE 4.2: A Population Snapshot Example (for illustrative purpose only) 
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Thus a local operation is proposed to take advantage of it: the individuals which are close 
together should be given rnore chances to crossover with each other. In other words, 
to bring such neighborhood idea into the offspring generation, the distances between 
an individual and its candidate individuals are first computed. Then the distances axe 
transformed into the proportions of a roulette-wheel [57]. Within the roulette-wheel, 
larger proportions of the roulette-wheel are given to closer candidate individuals. It 
follows that closer individuals are given higher chances for offspring generations. For 
the sake of clarity, the local operation is outlined in Algorithm 10. 

Combined with the local operation, Crowding Genetic Algorthtm (CrowdingGA) is re-
formulated as a hybrid algorithm which takes advantages of spatial locality. Thus it is 
named Crowding Genetic Algorithm using Spatial Locality (CrowdingGA-L). Off-
spring generations can be tailor-made for each individual. Fitter offsprings are more 
likely to be generated. More feasible replacement schemes can thus be provided. 

Algorithm 10 Offspring Generation Using Spatial Locality 
Pi： First Parent individual 
P2： Second Parent individual 
0: Offspring individual 

procedure NEWOFFSPRINGGENERATION(Pi) 

1. Transform the distances between f\ and all candidate individuals 
to proportions using a transformation function; 

2. Prepare a roulette-wheel based on the transformed proportions; 
3. Use the roulette-wheel to pick an individuals P2； 

0 = Crossovej-{Pi,P2)] 

return 0 ; 

end procedure 

Mathematically, a function is needed to transform distances to proportions of a roulette-
wheel. Thus two transformation functions are proposed: Since closer individuals are 
given higher values (proportions), the transformation function must be a monotoni-
cally decreasing function over the interval [0,MaxDistaiice], where MaxDistance is the 
maximum distance between a parent and all of its candidate individuals. Thus a sim-
ple function and Gaussian function are proposed for the transformation. The simple 
function is based on the formula: PropoHion = (^^^^MaxDist'ancT^^^ T where a is a 
scaling constant. On the other hand, the Gaussian function is based 011 the formula: 
Proportion = e x p ( - ( ^ g f ) ) where SD = MaxDi^stance since spatial locality is nor-
mal in nature [114], the Gaussian function is adopted in CrowdingDE-L for the trans-
formation if not specified explicitly. 
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FlGURE 4.3: Tt-ansformation Functions for Spatial LocaUty 

4.4.3 Experiments 

\Ve implemented all the algorithms iising Sun's Java programming language. The devel-
opment was based on the EC4 framework [57]. Experiments to compare the performance 
among CrowdingGA-L and other algorithms were conducted on eight benchmark func-
tions. The other algorithms include: Crowding Genetic Algorithm (CrowdingGA) [98], 
Fitness Sharing Genetic Algorithm (SharingGA) [60], SharingDE [102), Species Conserv-
ing Genetic Algorithm (SCGA) [99], and SDE [115j. The first five benchmark functions 
are widely adopted iii literatures: F1 is Deb's 1st function [116]，F2 is Himmelblau func-
tion [104], F3 is Six-hump Camel Back function [109], F4 is Branin function [109] and 
F5 Ls Rx>senbrock function [110]. F6, F7, and F8 are PP1, PP3, and PP4 which were 
derived from [116, 117). 

4.4.3.1 Performance measurements 

For multimodal optimization, there are several performance metrics proposed [99, 102, 
115，117]. Our focuses are on the ability of the algorithms to locate the optima and the 
accuracy of the optima found by the algorithms. Hence we adopted the Peak Ratio (PR) 
and Average Minimum Distance to the Real Optima (D) [116, 117] as the performance 
metrics. 

As different algorithms perform different operations in one generation, it is unfair to set 
the termination condition as the number of generations. Alternatively, it is also unfair 
to adopt CPU time, since it substantially depends on the implementation techniques 
for different algorithms. For instance, the sorting techniques and the programming 
languages used. In contrast, fitness function evaluation is always the performance bot-
tleneck. Thus the number of fitness function evaluations was set as the termination 
condition in the following experiments. All algorithms were niii up to a maximum of 
40000 fitness function evaluations. The above performance metrics were obtained by 
taking the average and standard deviation of 50 runs. 



Chapter 4. Designing Evolutionary Algorithms for Multimodal Optimization 68 

4.4.3.2 Parameter setting 

Sun's Java Double (double-precision 64-bit IEEE 754 floating point) was used as the real 
number representation for all algorithms. All populations were initialized randomly. The 
random seed was 12345. For all DE algorithms, the crossover probability {CR) was 0.9 
and F was 0.5. The common GA parameter settings of CrowdingGA, SharingGA and 
SCGA for all benchmarks were the same as Table 4.2. For all crowding algorithms, 
population size was set to 100 for F7 and F8. 50 was set for the remaining benchmark 
functions. The parameter settings of SharingDE, SharingGA, SCGA, and SDE for 
different benchmarks are tabulated in Table 4.5. For SharingDE and SharingGA, a and 
Oi denote the niche radius and scaling factor respectively. The parameters have been 
tuned in a few preliminary runs with manual inspections for all algorithms. 

TABLE 4.5: Parameter setting of SharingDE, SharingGA, SCGA and SDE for different 
benchmarks 

SharingDE [102] SharingGA [60] SCGA [99] and SDE [115] 
Benchmark Population Size a a a a Species Distance 

T I i ^ 1 0,001 i 0.001 o 3 I 
F2 100 1 0.03 5 0.1 3 
F3 100 1 0.01 2 40 0.5 
F4 100 1 0.01 1 0.1 6 
F5 100 3 30 3 30 10 
Peaksl 200 1 100 1 50 50 
Peaks2 200 1 100 2 50 25 
Peaks3 200 1 5 1 0.5 3 
Peaks4 200 1 5 1 0.5 3 
Peaks5 200 1 300 1 300 150 

4.4.3.3 Results 

Table 4.6 shows the experimental results for the comparison of CrowdingGA-L and the 
other algorithms. It can be observed that CrowdingGA-L outperformed the others in 
all the benchmark functions. It also improves CrowdingGA's performance no matter 
in the ability to locate optima or the accuracy of the optima found. Besides, UN is a 
canonical evolutionary algorithm in the EC4 framework. Its results can be regarded as 
the baseline results without any multimodal optimization techniques. 

4.4.4 Conclusion 

CrowdingGA-L is highlighted with its ability for effectively generating fitter offsprings. 
Extensive experiments have been conducted. The results indicate that CrowdingGA-L 
has its own competitive edge over the other algorithms tested, in terms of the perfor-
mance metrics. 
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TABLE 4.6: Experimental Results for all algorithms tested (averaged over 50 runs) 

Benchmark Measurement CrowdingGA-L CrowdingGA ShmingGA SharingDE SDE SCGA UN' 

M c a n o f D 9 .54E-07 2.24E-()(i 4.08E-(W 1.14E-(K5 1.59E-(W l.()9E-0;{ 2.5:iE-01 
StDcv of D 3.4fiE-0G 4.81E-()(i 1.21E-()2 4.53E-()4 7.87E-03 l.UiE-OH 1.88E-02 

F1 Mcaii of Peak Ratio 1.00 1.00 0.98 1.00 0.99 1.00 0.20 
StDcv of Pcak Ratio 0 £ ] ^ ^ [ ^ 0 ^ ^ ^ 0.00 
Mean of D 9 .30E-05 4.93E-04 2.0(iE+00 4.92E-01 ~ 1 . 2 0 E + 0 0 ~ ~ 2 . 5 9 E - 0 1 ~~4.8(iE+00 
StDev of D 8.28E-05 5.49E-04 1.05E+()0 7.77E-01 (i.3GE-01 1.17E-01 3.17E-01 

F2 Mean of Pcak Ratio 1.00 1.00 ().(i(i 0.91 0.78 0.44 0.25 
StDev of Peak Ratio 0.00 OjW 0J7 OJ^ OJJ 0.18 _ 
Moan of D l , 9 0 E - 0 5 2.21E-()5 1.44E-()1 L 5 5 M 2 (i.22E-(W~~2.03E-02~7.18E-01 
StDcv of D 2.91E-()5 :U8E-()r) 2.89E-01 4.!)(iE-()3 2.2fiE-(W 2.22E-02 2.(H)E-(Hi 

F3 Mean of Pcak Ratio 1.00 1.00 0.90 1.00 1.00 0.95 0.50 
StDcv of Pcak Ratio ^ ^ 0 ^ 0 ^ 0 ^ ^ 0.00 
Mean of D l . l O E - 0 3 5.96E-02 3.39E+00 1.38E+00~~2.61E-01 ~~6.C3E-01 ~~C.90E+00 
StDcv of D 1.25E-03 1.14E-01 1.99E+00 1.85E+00 7.81E-01 5.91E-01 1.33E+00 

F4 Mean of Peak Ratio 1.00 0.89 0.61 0.88 0.97 0.41 0.33 
StDev of Pcak Ratio 0.00 0 ^ 0 ^ ^ 0.10 0.14 0.00 
Mcan of D 6 .73E-04 l,22E-02 8.59E-03 4.14E-()2 4 .23E-02~8 .7 ( iE -03~1 .71E-02 
StDcv of D l.;UiE-(W 2.84E-02 1.83E-02 1.40E-(U 3.07E-()2 l.llE-()2 l.C5E-02 

F5 Moan of Peak Ratio 1.00 0.9(i 1.00 0.92 0.94 1.00 1.00 
StDcv of Pciik Ratio OAW 0 ^ 0 ^ ( ] ^ 0 ^ 0 ^ 0.00 
Mcan of D 5 .09E-01 6.3fiE-01 4.84E+00 2.67E+01 ~~5.()0E+01 ~~2.11E+00 7.53E+01 
StDev of D 1.61E+00 1.18E+00 7.78E+00 3.12E+01 7.71E+00 9.10E-01 1.09E-05 

F6 Mean of Peak Ratio 0.93 (>.8(i ().()1 0.37 0.21 0.34 0.33 
StDcv of Pciik Ratio [ m 0 £ 7 0 £ 5 ^ 0 ^ ^ 0.()Q 
Mciiu of D 3 . 4 7 E - 0 2 9.15E-()2 l.r>9E+()0 2.24E-01"""3.69E+0()~~4.07E-01 ~~8.04E+0() 
SlDcv of D r).20E-02 8.21E-02 :Ui(iE-()l 1.28E-l)l fi.48E-01 1.09EM)1 8.20E-01 

F7 Mcnn of Peak Ratio 0 .95 ().84 0.(il 0.55 0.34 0.27 0.07 
StDcv of Pcak Ratio 0.()5 ^ [ ^ [ m 0.()5 0.08 0.00 
Meaii of D 2 .04E-01 2.69E-01 2.49E+00 4.90E-01 3.3CE+00~5.20E-01 ~~7 .81E+00 
StDev of D 1.69E-01 1.75E-01 4.32E-01 1.81E-01 6.9fiE-01 1.19E-01 6.01E-01 

F8 Mean of Pcak Ratio 0 .87 0.69 0.24 0.33 0.33 0.20 0.07 
StDcv of Pcak Ratio ().()6 0 ^ [ ^ [ m 0.04 0.()(i ().()0 

The locality principle is proven simple and useful iii computing [114]. In a macro-view, 
the work in this section can be regarded as a case study for integrating the locality 
principle into an evolutionary algorithm. The numerical results can also be viewed as 
a valuable resource for comparing the state-of-the-art algorithms for multimodal opti-
mization. 



Chapter 5 

Generalizing Protein-DNA 
Binding Sequence 
Representations and Learning 
using an Evolutionary Algorithm 
for Multimodal Optimization 

In Chapter 3, we have described a set of discovered TF-TFBS sequence pairs which have 
been verified by PDB. In Chapter 4, we have described two evolutionary algorithms 
designed for multimodal optimization. In particular, Crowding Genetic Algorithm with 
Spatial Locality (CrowdingGA-L) is found to be effective and easy to be used, in terms 
of the parameter settings. In this chapter, we describe how CrowdingGA-L is applied 
and customized as CrowdingGP-L to generalize the sequence pairs discovered such that 
more information and insights can be provided for biochemists. 

5.1 Introduction and Background 

In Chapter 3，we have described several sequence pairs discovered by a data mining 
framework. In the verification process, it is found that the sequence pairs reveal some 
true binding core contacts between TFs and TFBSs, whicli can drive for further knowl-
edge in deciphering the TF-TFBS binding. 

Nevertheless, the sequence pairs discovered are in one-to-one format. One TF amino 
acid sequence is coupled with one TFBS DNA sequence. In the biological world, a TF 
may bind to their promoter using several contact surface subsequences. Some surfaces of 
the T F may also be interacting surfaces to recruit another TF as a performing complex 

70 
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[118]. For instance, McGuire et al [119] found that there were two conserved parts for 
the ArcA-P recognition motif in E.coli. Kato et al. proposed a novel method to identify 
combinatorial regulation of transcription factors and binding motifs using chromatin 
immunoprecipitation (ChIP) data with microarray expression data. A case study in the 
evolution of combinatorial gene regulation in Fungi has also been carried out by Tiich et 
al. [120]. Many experimental evidences can also be found in TransCompel [121] which is 
a comprehensive database on the composite interactions between TFs binding to their 
TFBSs, experimentally proved in literature. Thus several TF amino acid sequences 
may be coupled with several TFBS DNA sequence, instead of just one-to-one mapping. 
Considering the available resources and huge search space, we propose applying an evo-
lutionary algorithm to learn generalized representations of sequence pairs. In particular, 
the pairs are evolved to pairs of boolean expressions of kiners by CrowdingGP-L. 

Since tree structures (boolean expressions of kmers) are described in this chapter, some 
related reviews are conducted: 

Evolving trees by evolutionary algorithms are well studied in the genetic programming 
[2] field. Many design issues have also been reviewed. In particular, some researchers 
are especially concerned about the roles of crossover and mutation. Some of them argue 
that crossovers are not beneficial to the evolution, whereas the others hold the opposite 
view [122]. Some of them also argue that mutations are not needed, whereas the others 
hold the opposite view [123]. Even Sean et al. and White et al. have done an extensive 
experiments on comparing crossovers and mutations on a series of well known problems. 
They can only conclude that the benefit of crossovers is problem-dependent [124, 125]. 
The debate is still continuing. Thus, as a compromising solution, both crossover and 
mutation operators are adopted in this chapter. Another important topic in genetic pro-
gramming is to control the "bloat" property. In a run of genetic programming, it is often 
found that some unnecessary components (called "introns") are formed. It is trivial for 
us to think that they are not necessary, and thus not good. However sorne researchers 
suggest that the presence of the introns can deviate the crossover operators, protecting 
the good components [2]. Terence et al. suggested using a fitness function which pe-
nalizes trees with many introns. Rosca also suggested providing parsimony pressure on 
selecting trees were beneficial to grow toward the optimal structures. Nevertheless, the 
bloat property is a double-edged sword. Hilimi et al. made use of the bloat property 
to evolve some buffer overflow attack codes which can successfully hide themselves from 
intrusion detectors. 

With a large research community studying and analysing genetic programming, genetic 
programming has proved successes in many applications, for instance, data mining [126], 
image enhancement [127], technical trading rule finding [128], and 3-D Character Ani-
mation [129]. 
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5.2 Problem Definition 

In this problem, the 131 TFBS5mer-TF5mer pairs mentioned in Chapter 3 are trans-
formed from one-to-one mappings into many-to-mariy mappings, which are the pairs of 
boolean expressions of 5mers with the (locally) highest lift. 

Definition 5.1 A boolean expression of kmers is a tree in which its parent nodes are 
boolean operators AND/OR and its leaf nodes are kmers 

Definition 5.2 A pair of boolean expressions of kmers has two boolean expressions 
of kmers. One is only composed of amino acid kmers and evaluated in the amino acid 
sequences of transcription factors, the other is only composed of DNA kmers and eval-
uated in the DNA sequences of transcription factor binding sites. 

5.3 Crowding Genetic Algorithm with Spatial Locality 

To apply CrowdingGA-L and customized as CrowdingGP-L to learn the generalized 
pairs, several customizations are needed. Pairs are represented as pairs of boolean 
expressions of kmers in two tress so that some hierarchical information can be stored 
and exchanged during the evolution process. Several crossover operators and mutation 
operators are also proposed to evolve the pairs. 

5.3.1 Representation 

For each pair, we have two parts - amino acid sequence and DNA sequence. Thus 
we should also have such two parts in our individuals. Each individual is a pair of 
boolean expressions of krners, which is modeled as two trees - an amino acid tree in 
TFs and a DNA tree in TFBSs. The functional nodes are some logical operators (AND, 
OR), whereas the terminal nodes are the kmers found in the pairs discovered in the 
previous chapter. Figure 5.1 shows an example. The example represents a boolean 
expression which the amino acid sequences RKQAE and (CEGCK or NRESA) are found 
in one or more TF sequences, whereas the respective DNA sequences AAACA and 
(CCACG or GATAA) are commonly found to co-exist with the TF tree in the respective 
TFBS sequences. If a TF sequence has the kmers RKQAE and CEGCK and the TF's 
TFBS sequences have the kmers AAACA and CCACG commonly found, then the TF 
is considered true for the boolean expression. 
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FlGURE 5.1: A individual example - a pair of boolean expressions of kmers 

5.3.2 Crossover Operators 

Similar to genetic programming, we adopt subtree crossover as the crossover operators. 
Given two trees, we randomly pick a node in each tree. Then we swap the picked 
nodes and its children between the two trees. Figure 5.2 depicts an example. In this 
example, we randomly pick the terminal node RKQAE in the left tree whereas we pick 
the functional node AND in the right tree as the crossover points. Then, based on the 
two nodes, we swap the respective subtrees rooted at the crossover points. Two new 
offspring trees are thus formed. But, of course, this example only shows the crossover 
between the trees on the TF side. It is trivial to be applied on the trees on the TFBS 
side. Such subtree crossover may thus be applied to the two types of trees once during 
each crossover operation in the evolution process. 

5.3.3 Mutation Operators 

Besides the crossover operators, mutation operators also play a key role in an evolution 
process. They can help us balance the convergence power of crossovers such that pre-
mature convergence can be avoided. Thus we propose several mutation operators in this 
section. 

Basically, like the crossover operator, we also need to pick a random node to initiate a 
mutation on a tree. Based on the type of the node picked (functional node or terminal 
node), given the corresponding set of mutation operators, we probabilistically apply one 
of them on the node. 

Figure 5.3 depicts the set of mutation operators on functional nodes. In particular, 
it shows an example on the functional node OR. If we apply insertion, then a random 
functional node (OR node in the example) will be inserted as the parent of the functional 
node. A random terminal node (RKQAE in the example) will also be inserted as a child 
of the functional node inserted. If we apply change, the functional node will be randomly 
changed to a random functional node (AND node in the example) in the same place. If 
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FlGURE 5.2: A crossover example on the TF side - subtree crossover 

we apply deletion, the functional node and one of its child will be deleted as shown in 
5.3(c). 

Figure 5.4 depicts the set of mutation operators on terminal nodes. In particular, it 
shows an example on the terminal node CEGCK. If we apply insertion, then a random 
functional node (AND node in the example) will be inserted as the parent of the terminal 
node. A random terminal node (NRRAK in the example) will also be inserted as a child 
of the functional node inserted. If we apply change, the terminal node will be randomly 
changed to a random terminal node (NRRAK in the example) in the same place. If we 
apply deletion, the terminal node will be deleted as shown in 5.4(c). 

5.3.4 Fitness Function 

Fitness function (or objective function) is one of the most important designs in an 
evolutionary algorithm. It not only provides a landscape for an evolutionary algorithm, 
but also the direction in selecting individuals. Every individual is evaluated based on 
the fitness function designed. 

Considering the current problem, it is trivial to adopt support as the fitness function. 
Nevertheless, it will encourage the evolution process to have more null terminal nodes 
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and OR functional nodes. All individuals will just strive for more and n.iore obscure 
condition to satisfy all the sequence data to maximize its support. Thus, obscure pairs 
will be generated, providing useless information for us. In contrast, lift [86] does not 
suffer from the issue because it estimates the ratio of the actual occurrence probability 
to the expected occurrence probability for a pair (A-B). The support is normalized by 
the background frequency: 

‘ l,ft-巧或丑） 
J — P(A) X P{B) 

where P(A,B) is the occurrence probability of A and B, P(A) is the occurrence prob-
ability of A, and P(B) is the occurrence probability of B. Assume tlie total number of 
data samples is N. Then P{A,B) = Support{A,B)/N, P{A) = Support{A)/N, and 
P{B) = Support{B)/N. Thus 

j^,r^ ^ P{A,B) 二 Support{A,B)/N 一 Support{A, B) 
—P(A) X P(B) = Support{A)/N x Support{B)/N 二 Support{A) x Support{B) 乂 

Thus we use it as the fitness function: 

Fitness Function = — Support{A, B) 乂 yy 
Support{A) X Support[B) 

To be comparable to the previous pairs generated, lift is measured only when the siip-
Port is larger than or equal to seven. Otherwise, the corresponding individual will be 
discarded. 

5.3.5 Distance Metric 

In evolutionary algorithm, a distance metric can be classified as genotype, phenotype 
or functional distance. As their names stand, genotype, phenotype, and functional dis-
tances measure the distance between individuals in genotype, phenotype and functional 
spaces respectively. In this work, functional distance is adopted. The distance between 
two individuals is measured based on their functions, the TF sequences and the cor-
responding TFBS sequences where they can satisfy. The cardinality of the symmetric 
difference of them for each side is calculated. The value for the TF side and that for the 
TFBS side are combined into the formula of Euclidean distance. Square root is removed 
for computational efficiency. Mathematically, the distance between individual A and 
individual B is calculated as follows: 

‘ d ^ f f M A B ) = ^ ^ ^ ^ ^ ^ ^ \ 
� ) 陶 + |了厂5| 

,-ff “ R、 \TFBSAeTFBSB\ 
W k ^ ^ B ) = | T F B M + |TFB&| 

distance = (diffTF(A, B)f + {diffTFBs{A, B)f 
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TABLE 5.1: EC parameter setting 

Parameter Setting 
Functional Nodes AND, OR 
Terminal Nodes kmers in Table 3.3 
Population Initialization TFBS5mcr-TF5mcr pairs in Tabic 3.3 
Population Size 262 
Generation Typc Overlapping [57] 
Parent Sclection Binary Tournament [57] 
Survival Sclection Truncation [57] 
Representation Two Trecs of kmers 
Mutation Typc Mixed use of thc mutations mentioned 
Mutation Probability 0.4 
Crossover Typc Subtree Crossover [2] 
Crossover Probability 0.2 
Random Seed 5616516 
Implementation EC4 framework (Sun's Java programming language) 

TABLE 5.2: Mutation Probability 

Functional Node Terminal Node 
Insertion 0.6 Insertion 0.6 
Change 0.2 Chaiige 0.2 
Deletion 0.2 Deletion 0.2 

where TFx is the set of the TF sequences which individual X satisfies and TFBSx 
is the set of the TF sequences which individual X satisfies their TFBS sequences as 
commonly found. 

5.4 Experiments 

5.4.1 Parameter Setting 

Table 5.1 shows the EC parameter setting for the experiments. In particular, motivated 
by Kraft et al., a mixed use of mutations is adopted. Given an individual, we have two 
trees. One tree is on the TF side, whereas the other tree is on the TFBS side. For 
each tree, it has a fixed and pre-defined mutation probability (0.4 in this chapter) to be 
mutated. If mutated, the algorithm will randomly selects a node in the tree. Based on 
the type of the node (functional or temrmirial), the node will probabilistically undergo 
one of the mutations mentioned in Figures 5.3 and 5.4. These probabilities are pre-
defined in Table 5.2. To control the bloat property, individuals having a tree with more 
than eight terminal nodes will be discarded. 
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5.4.2 Search Space Estimation 

Totally, we have 78 terminal nodes on the TF side [< null〉，HNLSL, IRHNL, KP-
PYS, NLSLN, NSIRH, PPYSY, PYSYI, QNSIR, RHNLS, SIRHN, WQNSI, PMNAF, 
RPMNA, CKGFF, FQNRR, NRRAK, QNRRA, QVWFQ, VWFQN, WFQNR, ARRSR, 
ERELK, ESARR, KQSNR, LRKQA, NRESA, QSNRE, RESAR, RKQAE, RKQSN, 
RLRKQ, RRSRL, RSRLR, SARRS, SNRES, SRLRK, CEGCK, CGDKA, CQYCR, 
CVVCG, EGCKG, FFRRT, FRRTI, GCKGF, GFFKR, GFFRR, KGFFK, KGFFR, 
RNRCQ, TCEGC, VCGDK, VVCGD, IWFQN, KIWFQ, NRRMK, QNRRM, GEKPY, 
HTGEK, TGEKP, LRYYY, LWQFL, CNACG, LCNAC, NACGL, DLVLD, FFKRS, 
GYHYG, ITCEG, NRCQY, RCQYC, RNQCQ, SCEGC, SGYHY, KYGQK, RKYGQ, 
WRKYG, NWFIN], 17 terminal nodes on the TFBS side [< null >，AAACA, AACAA, 
AAGGT, AATTA, ACGTG, AGGTC, ATTAA, CACCC, CCACG, CGGAA, CTTCC, 
GATAA, GCCAC, GGTCA, GTCAA, TGACA], and 2 functional nodes [AND, OR]. 

Let the notation N{hrF^ h^FBs) be the number of possible combinations of individuals 
with a full tree with height h,TF on the TF side and with a full tree with height hrFBS 
on the TFBS side, which is calculated as follows: 

Assume hrr > 1 and h/pFBS > 1. 

N{hTF,hTFBs) = 7S2'TF X 22�ri ^ ^^2>^TFBS ^ ^2^TFBS-^ 

Based on this equation, a rough estimation of the iiumber of possible combinations with 
different values of hrF and hrFBS is shown in Table 5.3. We can observe that the search 
space is quite large even when hrr and hrFBS are small, which motivates us to apply 
an evolutionary algorithm to search the space. 

TABLE 5.3: Number of possible combinations of individuals with different heights 

hTF hrFBS N{IlTF,hTFBs) f^TF hrFBS N{hrF, hrFBs) 

~ i i 7.03E+06 r ~ 3 i 1.267E+19""" 
1 2 4.065E+09 3 2 7.324E+21 
1 3 1.358E+15 3 3 2.447E+27 
1 4 1.516E+26 3 4 2.731E+38 
2 1 8.558E+10 4 1 2.778E+35 
2 2 4.946E+13 4 2 1.605E+38 
2 3 1.653E+19 4 3 5.364E+43 
2 4 1.844E+30 4 4 5.987E+54 

5.4.3 Experimental Procedure 

With the parameter setting, we ran CrowdingGP-L on the TRANSFAC dataset de-
scribed in Chapter 3 up to a maximum of one million fitness function evaluations for 50 
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FlGURE 5.5: Generalized Example 1 

runs. After each run, we picked 131 fittest pairs (the same number as the pairs in Table 
3.3) out of the 262 pairs in the final population. Thus, in total, we had 6550 pairs after 
the 50 runs. The distribution of the pairs are tabulated in Table 5.4. For instance, 351 
pairs with support>15 and lift>25 are found. Some pairs are also shown in Figure A.1. 

5.4.4 Results and Analysis 

5.4.4.1 Generalization Analysis 

Our goal is to generalize the pairs obtained in Chapter 3. This section provides empirical 
analysis on three generalized examples obtained in this experiment. 

The first example is depicted in Fig. 5.5. Clearly, there is only one 5mer, A A A C A , 
on the TFBS side. This pair is, in effect, a generalized one-to-many mapping from the 
TFBS side to the TF side. The 5mer A A A C A on the TFBS side binds to several 5mers 
on the TF side. 

To analyze its generalization ability, we have searched through the original pairs and 
found that four of them were involved in this generalized pair. The four original pairs 
are AAACA-PPYSY, AAACA-RHNLS, AAACA-NLSLN, and AAACA-NSIRH. Each 
of them and the generalized pair were searched and recorded for their occurrences in the 
dataset as shown in Fig. 5.6. 

There are four blocks divided by stars (*). The first block (top) denotes to which pair 
each column belongs (except the first column which denotes the generalized example). 
The second block (second from the top) provides the TF IDs which each pair {X) can 
satisfy on both TFBS and TF sides {TFx A TFBSx). The third block (third from 
the top) provides the TF IDs which each pair ( X ) can satisfy only on the TFBS side 
( ^ r F x n r F B < 5 A 0 . The forth block (bottom) provides the TF IDs which each pair ( X ) 
can satisfy only on the TF side (TFx H ^TFBSx)- The black TF IDs denote the TF 
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TABLE 5.4: Number of pairs learned after 50 runs across different minimal levels of 
support and lift. For instance, 351 pairs with support>15 and lift>25 are found 

II L i f t / S u p p o r t II 7 8 9 10 11 12 13 14 15 16 17 18 19 2 0 | 

0 " 6 ^ 4 5 5 5 3 8 6 1 3 0 8 7 2 3 0 1 1 7 8 1 1 1 6 9 7 4 1 4 3 5 2 2 3 1 4 9 1 1 6 2 9 0 

1 6 5 5 0 4 5 5 5 3 8 6 1 3 0 8 7 2 3 0 1 1 7 8 1 1 1 6 9 7 4 1 4 3 5 2 2 3 1 4 9 11G 2 9 0 

~ 2 6 5 5 0 4 5 5 5 3 8 6 1 3 0 8 7 2 3 0 1 1 7 8 1 1 1 6 9 7 4 1 4 3 5 2 2 3 1 4 9 1 1 6 2 9 0 ~ 

~ 3 6 5 5 0 4 5 5 5 3 8 6 1 3 0 8 7 2 3 0 1 1 7 8 1 1 1 6 9 7 4 1 4 3 5 2 2 3 1 4 9 11G 2 9 Q ~ 

~ 4 6 5 5 0 4 5 5 5 3 8 6 1 3 0 8 7 2 3 0 1 1 7 8 1 1 1 6 9 7 4 1 4 3 5 2 2 3 1 4 9 1 1 6 2 9 0 ~ 

~5 6 5 5 0 4 5 5 5 3 8 6 1 3 0 8 7 2 3 0 1 1 7 8 1 1 1 6 9 7 4 1 4 3 5 2 2 3 1 4 9 11G 2 9 0 ~ 

6 " 6 ^ 4 5 5 5 3 8 6 1 3 0 8 7 2 3 0 1 1 7 8 1 1 1 6 9 7 4 1 4 3 5 2 2 3 1 4 9 1 1 6 2 9 0 

7 “ G550 4 5 5 5 38G1 3 0 8 7 2 3 0 1 1 7 8 1 1 1 6 9 7 4 1 4 3 5 2 2 3 1 4 9 1 1 6 2 9 ~ ^ 

8 — 6 5 5 0 4 5 5 5 38G1 3 0 8 7 2 3 0 1 1 7 8 1 11G9 7 4 1 4 3 5 2 2 3 1 4 9 1 1 6 2 9 0 

~ 9 ~ " ^ 5 Q 4 5 5 5 38G1 3 0 8 7 2 3 0 1 1 7 8 1 11G9 7 4 1 4 3 5 2 2 3 1 4 9 11G 2 9 0 

10 ~ 6 5 5 0 4 5 5 5 3 8 6 1 3 0 8 7 2 3 0 1 1 7 8 1 1 1 6 9 7 4 1 4 3 5 2 2 3 1 4 9 1 1 6 2 9 0 

11 — 6 5 5 0 4 5 5 5 3 8 6 1 3 0 8 7 2 3 0 1 1 7 8 1 11G9 7 4 1 4 3 5 2 2 3 1 4 9 1 1 6 2 9 0 

1 ^ G550 4 5 5 5 3 8 6 1 3 0 8 7 2 3 0 1 1 7 8 1 1 1 6 9 7 4 1 4 3 5 2 2 3 1 4 9 11G 2 9 0 

13 6 5 5 0 4 5 5 5 38G1 3 0 8 7 2 3 0 1 1 7 8 1 11G9 7 4 1 4 3 5 2 2 3 1 4 9 11G 2 9 0 

14 — 6 5 5 0 4 5 5 5 3 8 6 1 3 0 8 7 2 3 0 1 1 7 8 1 11G9 7 4 1 4 3 5 2 2 3 1 4 9 11G 2 9 0 

15 — 6 5 5 0 4 5 5 5 3 8 6 1 3 0 8 7 2 3 0 1 1 7 8 1 1 1 6 9 7 4 1 4 3 5 2 2 3 1 4 9 11G 2 9 0 

~ [ 6 6 5 5 0 4 5 5 5 38G1 3 0 8 7 2 3 0 1 1 7 8 1 1 1 6 9 7 4 1 4 3 5 2 2 3 1 4 9 1 1 6 2 9 0 ~ 

17 — 6 5 5 0 4 5 5 5 3 8 6 1 3 0 8 7 2 3 0 1 1 7 8 1 1 1 6 9 7 4 1 4 3 5 2 2 3 1 4 9 1 1 6 2 9 0 

~ [ 8 6 5 5 0 4 5 5 5 38G1 3 0 8 7 2 3 0 1 1 7 8 1 1 1 6 9 7 4 1 4 3 5 2 2 3 1 4 9 1 1 6 2 9 0 

~T9 6 5 5 0 4 5 5 5 3 8 6 1 3 0 8 7 2 3 0 1 1 7 8 1 1 1 6 9 7 4 1 4 3 5 2 2 3 1 4 9 1 1 6 2 9 Q 

2 0 — G 5 5 0 4 5 5 5 3 8 6 1 3 0 8 7 2 3 0 1 1 7 8 1 11G9 7 4 1 4 3 5 2 2 3 1 4 9 11G 2 9 0 

21 — 654G 4 5 5 1 3 8 5 7 3 0 8 3 2 2 9 8 1 7 7 9 1 1 6 8 7 4 1 4 3 5 2 2 3 1 4 9 11G 2 9 0 

2 2 — 6 5 0 9 4 5 1 7 3 8 3 2 3 0 6 4 2 2 8 5 17G7 1 1 6 1 7 3 5 4 3 1 2 2 0 1 4 8 1 1 5 2 9 0 

2 3 — 6 4 3 3 4 4 5 2 3 7 7 4 3 0 3 5 22G4 1 7 5 3 1 1 5 1 7 2 9 4 3 0 2 2 0 1 4 8 1 1 5 2 9 Q 

^ 6 3 2 3 4 3 4 3 3G79 2 9 4 6 2 2 0 5 1 7 0 6 1 1 1 1 7 0 1 4 0 7 2 0 3 131 1 0 1 21 Q ~ 

2 5 — 6 0 5 8 4 1 0 7 3 4 5 9 2 7 7 3 20G0 1 5 9 4 1 0 3 5 G43 351 1 4 7 7 8 6 1 3 0 

" ^ 5 4 4 8 3 6 6 7 3 0 5 5 2 4 5 0 1 8 1 8 1 3 7 1 8 1 6 4 2 7 171 2G 0 0 0 0 

~Yl 3 9 2 6 2 1 8 3 1G43 104G 5 8 8 3G5 1 8 0 7 7 2 2 0 0 0 0 0 ~ 

2 8 ~ 3 5 9 1 1 9 9 8 1 4 7 0 1 0 0 3 5 6 5 3 5 2 1 7 4 7 3 2 2 0 0 0 0 0 

~ M 2 5 5 5 1 5 3 5 1 1 8 2 8 3 0 4 7 4 3 3 6 1 6 5 7 3 2 2 0 0 0 0 0— 

~ ^ 5 2 3 6 8 1 4 0 6 1 0 9 0 7 8 9 4 3 7 3 0 2 1 5 6 6 5 15 0 0 0 0 Q ~ 

3 1 ~ 2 0 4 0 1 1 5 7 8 7 2 5 7 7 3 8 6 2 7 7 1 3 2 5 6 15 0 0 0 0 0 

3 2 — 1 8 8 1 1 0 0 8 7 5 2 5 1 6 3 2 8 2 2 2 1 2 2 4 6 5 0 0 0 0 0 

~ ^ 1 5 2 9 G87 5 1 1 3 4 6 2 4 4 1 3 8 3 8 7 0 0 0 0 0 0— 

3 4 — 1 0 0 9 5 1 5 3 5 2 2 0 1 1 0 0 6 5 3 8 7 Q 0 0 0 0 0 

3 5 一 8 8 4 4 2 4 2G1 1 6 2 G3 2 8 1 0 0 Q 0 0 Q Q 

~ m 6 7 5 2 2 4 1 4 3 7 4 4 9 2 8 1 0 Q 0 0 0 0 0— 

3 7 — 5 3 3 1 4 5 GG 3 4 9 1 0 0 0 0 0 0 0 ( � 

3 8 ~ 4 9 4 1 2 2 4 7 2 0 9 1 0 0 0 0 0 0 0 0 

3 9 — 4 6 1 8 9 4 1 14 5 0 0 0 0 0 0 0 0 0 

4 0 ~ 3 7 9 5 8 lG 1 0 5 Q 0 0 Q 0 0 0 0 0 

T T ~ 2 4 G 5 4 15 9 5 0 0 0 0 0 0 0 0 0 

~ 4 2 2 4 1 4 9 1 2 6 2 Q 0 0 0 0 0 0 0 (厂 

43 — 210 43 11 5 1 0 0 0 0 0 0 0 0 〔厂 

~ 4 4 1 8 2 15 4 4 1 0 0 0 0 Q 0 Q 0 (厂 

4 5 — 1 5 3 11 0 0 0 0 0 0 0 0 0 0 0 Q 
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FlGURE 5.6: Generalization analysis on Generalized Example 1. There are four blocks 
divided by stars (*). The first block (top) denotes to which pair each column belongs 
(except the first column which denotes the generalized example). The second block 
(second from the top) provides the TF IDs which each pair {X) can satisfy on both 
TFBS and TF sides (TFxnTFBSx). The third block (third from the top) provides the 
TF IDs which each pair (X) can satisfy only on the TFBS side (，TFx nTFBSx). The 
forth block (bottom) provides the TF IDs which each pair (X) can satisfy only on the 
TF side (rFxn"^ri^B5"x). The black TF IDs denote the TF IDs which the generalized 
example (E) cannot fully satisfy and generalize ( ( , r i^nrFB<Sf i )U(Ti^n" i rFSSE) ) , 
whereas the non-black TF IDs denote the TF IDs which the generalized example {E) 

can satisfy and generalize {TFx n TFBSx). 
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FlGURE 5.7: Generalized Example 2 

IDs which the generalized example (E) cannot fully satisfy and generalize ((^TF^ � 

T F B S E ) U {TFE n ^ T F B S E ) ) , whereas the non-black TF IDs denote the TF IDs which 
the generalized example (E) can satisfy and generalize (TFx fl TFBSx)-

From Fig.5.6, we can observe that the proposed method can indeed integrate the four 
pairs to become a single and informative pair (Generalized Example 1). For instance, let 
us imagine a scenario that we only have two pairs AAACA-RHNLS and AAACA-NLSLN 
in mind. When we find the 5mer A A A C A as commonly found in T01053 (red colour in 
Fig. 5.6), it is easy to deduce that we should find the two corresponding 5mers RHNLS 
and NLSLN in the TF sequence of T01053. However, it turns out that we cannot find 
any of them. By looking at Example 1, we realize the reason behind it: The 5mer 
A A A C A can actually bind to several 5mers besides RHNLS and NLSLN. It can also 
bind to PPYSY and NSIRH, which can finally be found in T01053. Hence we can see 
that the generalized Example 1 can help us integrate and explain some datasets which 
the standalone one-to-one mapping pairs cannot explain. (It has also been observed that 
there are many movements of the non-black TF IDs not covered by the four pairs from 
the third block into the second block covered by the generalized pair in Fig. 5.6) 

The second example is depicted in Fig.5.7. There are two similar 5mers, A G G T C and 
G G T C A , connected by the AND logical operator on the TFBS side. This pair is, in 
effect, a generalized one-to-many mapping from the TFBS side to the TF side. The 5mers 
A G G T C and G G T C A on the TFBS side bind to several 5mers on the TF side. Indeed, 
it is not hard to expect that they are most likely found as a single 6mer A G G T C A in 
the dataset. But, of course, it is also possible that it is not a 6mer but two very similar 
5mers. 

To analyze its generalization ability, we have searched through the original pairs and 
found that eight of them were involved in this generalized pair. The eight original pairs 
are AGGTC-RNRCQ, AGGTC-FRRTI, A G G T C - C V V C G , GGTCA-RNRCQ, G G T C A -
FRRTI, G G T C A - C V V C G , GGTCA-FFKRS, and G G T C A - G Y H Y G . Each o f them and 
the generalized pair were searched and recorded for their occurrences in the dataset as 
shown in Fig. 5.8. 



Chapter 5. Generalizing Protein-DNA Binding Sequence Representations 83 

»««毒》«4：««泰》拿》«««:»««拿《»拿《«$»*«»«»«**拿*«»«««»«孝««»««傘拿《«：6<:砵««:拿拿》傘拿《»»4>«*«拿傘«»*»«»傘》«»拿««拿拿《««傘《»»»«««« 

TFBS AGGIC AGGTC AGGTC GGTCA GGTCA GGTCA OGlCA GGTCA 
TF RNRCQ FRRTI CWOG RNRCQ FRRTI CVVCG FFKRS GYHYG 
_|111«*4<傘_»_«*«拿4<拿》«1«_»»傘««»41*»«<«雏》(1«4«*傘*«|»4|«拿傘«傘》«<傘傘》41拿«»*4：傘《*««»«<傘_*«>«**41«««*««»«<««««傘««拿拿«»«>4|«««« 
TO0264 T00719 T0085l T0085l BfflHi™851 TO085I T00264 TW264 
T00719 TOi333 T00886 1tW886 T00719 T00886 TQ0886 PH|ltXr719 
T00851 Tm527 T0U52 TO1152 T0i333 T0)l52 T01J52 teSI^TO4651 
1XW886 lt)J528 TOOSO—TOi350 . '1T)1527 TO1350 TO1350 :TtM65l Sfflffll_ 
T01152 [r,J^^^Mffi|pBBiiT()is2S m m m | T O t ^ n TOrW) 
T01333 ^72_ 1T^29^^i^nPmQQpS!9^g^r~^ ' i^3i 
70135» • fmTl2 jTOS43l ,EB^jTO^. fj^^fifgMai l^m lTO9914 
mMD p i p ^ [̂ isaî TtM3i fRfy» ffgM 
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FlGURE 5.8: Generalization analysis on Generalized Example 2. There are four blocks 
divided by stars (*). The first block (top) denotes to which pair each column belongs 
(except the first column which denotes the generalized example). The second block 
(second from the top) provides the TF IDs which each pair (X) can satisfy on both 
TFBS and TF sides {TFxnTFBSx). The third block (third from the top) provides the 
TF IDs which each pair (X) can satisfy only on the TFBS side {^TFx nTFBSx). The 
forth block (bottom) provides the TF IDs which each pair (X) can satisfy only on the 
TF side (7^叉门，7^5<5乂）. The black TF IDs denote the TF IDs which the generalized 
example {E) cannot fully satisfy and generalize {{^TFEnTFBSE)^{TFEn^TFBSE)), 
whereas the non-black TF IDs denote the TF IDs which the generalized example {E) 

can satisfy and generalize {TFx fl TFBSx)-
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FlGURE 5.9: Generalized Example 3 

There are four blocks divided by stars (*). The first block (top) denotes to which pair 
each column belongs (except the first column which denotes the generalized example). 
The second block (second from the top) provides the TF IDs which each pair (X) can 
satisfy on both TFBS and TF sides (TFx n TFBSx). The third block (third from 
the top) provides the TF IDs which each pair (X) can satisfy only on the TFBS side 
(，7\FxriT^FB»Sx). The forth block (bottom) provides the TF IDs which each pair (X) 
can satisfy only on the TF side {TFx D，TFBSx). The black TF IDs denote the TF 
IDs which the generalized example {E) cannot fully satisfy and generalize {{^TFE A 
TFBSE) U {TFE n ">TTB5"E)), whereas the non-black TF IDs denote the TF IDs which 
the generalized example {E) can satisfy and generalize {TFx nT"_F_B5"x). 

From Fig.5.8, we can observe that the generalized Example 2 can indeed integrate the 
eight pairs to become a single and informative pair. Similar to Example 1, we can also see 
that the generalized Example 2 can help us integrate and explain some datasets which 
the standalone one-to-one mapping pairs cannot explain. (It has also been observed that 
there are many movements of the non-black TF IDs not covered by the eight pairs from 
the third block into the second block covered by the generalized pair in Fig. 5.8) 

The third example is depicted in Fig.5.9. On the TF side, the sub-tree rooted at the 
topmost AND operator is, in effect, a single terminal node for the 5mer NRESA. Thus 
there are three inter-changeable 5mers, RKQAE, KQSNR, and NRESA. On the TFBS 
side, there are multiple combinations of 5mers. This pair is a generalized many-to-many 
mapping from the TFBS side to the TF side. 

To analyze its generalization ability, we have searched through the original pairs and 
found that eight of them were involved in this generalized pair. The eight original pairs 
are CCACG-RKQAE, CCACG-KQSNR, CCACG-NRESA, GCCAC-KQSNR, GCCAC-
NRESA, ACGTG-RKQAE, ACGTG-KQSNR and ACGTG-NRESA. Eadi of them and 
the generalized pair were searched and recorded for their occurrences in the dataset as 
shown in Fig. 5.8. 
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TtWJl3 H B f l TTŴ  TOO!g |̂ K̂mO||v 
lmirnDDHI 'IXW099 TOSm9 
tBKMTmi3 
IBBT!onu 
TO449 TIi2n0 
T0%23 | | | H 
Tn088i TI44W 
TU200 
m^F 

•••••••••••••••••••••••••••••••••••.•••••••••••••••••••••••••••••»»»4»»»奉泰»4»峰命»4»»啡4»»參參参秦秦泰秦»_參壽_ Bffl| ffl^gBH|TU06X) T0Q672 TOQg30 ^ B ^ ^ S ^ ^ ^ M |^^| IM^^^ ĴT02330 flBBiTn2?% BBBMBW8BBB 
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FIGURE 5.10: Generalization analysis on Generalized Example 3. There are four blocks 
divided by stars (*). The first block (top) denotes to which pair each column belongs 
(except the first column which denotes the generalized example). The second block 
(second from the top) provides the TF IDs which each pair {X) can satisfy on both 
TFBS and TF sides ( r F ^ n r F B S x ) . The third block (third from the top) provides the 
TF IDs which each pair {X) can satisfy only on the TFBS side {^TFx nTFBSx). The 
forth block (bottom) provides the TF IDs which each pair (X) can satisfy only on the 
TF side (rFxn"nTi^B5"x). The black TF IDs denote the TF IDs which the generalized 
example {E) cannot fully satisfy and generalize {{^TFEnTFBSE)U{TFEC]^TFBSE)), 
whereas the non-black TF IDs denote the TF IDs which the generalized example {E) 

can satisfy and generalize {TFx HTFBSx)-
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There are four blocks divided by stars (*). The first block (top) denotes to which pair 
each column belongs (except the first column which denotes the generalized example). 
The second block (second from the top) provides the TF IDs which cac-li pair (X) can 
satisfy on both TFBS and TF sides {TFx nTFBSx)- The third block (third from 
the top) provides the TF IDs which each pair (A") can satisfy only on the TFBS side 
(^TFxDTFBSx)' The forth block (bottom) provides the TF IDs which each pair {X) 
can satisfy only on the TF side (TFx n，rFB«Sx). The black TF IDs denote the TF 
IDs which the generalized example {E) cannot fully satisfy and generalize {{^TpE n 
rFZ?&)U(rF£;n，rFi?S£；))，whereas the non-black TF IDs denote the TF IDs which 
the generalized example {E) can satisfy and generalize {TFx H TFBSx)-

From Fig.5.10, we can observe that the generalized Example 3 can indeed integrate the 
eight pairs to become a single and informative pair. Similar to Example 1, we can also see 
that the generalized Example 3 can help us integrate and explain some datasets which 
the standalone one-to-one mapping pairs caiinot explain. (It has abK) been observed that 
there aie many movements of the iioii-black TF IDs not covered by the eight pairs from 
the third and forth block into the second block covered by the generalized pair in Fig. 
5.10) 

5.4.4.2 Verification By PDB 

Example 2 has been picked up for in-depth 3D binding analysis. Figure 5.11 depicts three 
respective TF-TFBS pairs, AGGTCA-RNRCQ, AGGTCA-FRRTI, and AGGTCA-GYHYG, 
constituting Example 2. Frorn these figures, it c,an be observe(i that there are binding 
evidences for Example 2. In particular, the 6mer AGGTCA can bind to three different 
5iners RNR€Q, FRRTI, and GYHYG in different situations. 

TF:RNRCQ \ 

§^撅鳥 
TFBS:AGGTCA TFBS:AGGTCA TFBS:AGGTCA ^ 

(A) A G G T C A - (B) A G G T C A - ( c ) A G G T C A -
RNRCQ pair in GYHYG pair in FRRTI pair in 

lBY4 1L01 3E00 

FICURE 5.11: Three representative TF-TFBS pairs for Example 2 are shown in ribbou 
diagram. The TF amino acids aiid TFBS nucleotides are highlighted in ball and stick 
format. The sequences of the TF-TFBS pairs are also labeled in the figures. The figures 

are generated using Protein Workshop � 
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Quantitatively, Table 5.5 shows the performance results obtained by the 6550 pairs in a 
comparison to the original 131 TFBS5mer-TF5mer pairs in Table 3.3. It can be observed 
that CrowdingGP-L improves the pairs in terms of the performance metrics. For the 
average TFBS Prediction Score, their difference is considered statistical significance 
with two-tailed P value = 0.002. For the average TFBS Binding Prediction Score, 
their difference is considered statistical significance with two-tailed P value = 0.0007. 
For the average Binding Prediction Score, their difference is not considered statistical 
significance with two-tailed P value = 0.3325. 

TABLE 5.5: Performance comparison between the original pairs and generalized pairs 

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ Original Generalized by CrowdingGP-L 
Average TFBS Prediction Score 0.41士0.41 0.53士0.44 

Average TFBS Binding Prediction Score 0.24士0.30 0.33士0.30 
Average Binding Prediction Score 0.36士0.39 0.39土0.35 

Percentage of verified pairs 81% 9 ^ 

5.5 Conclusion 

In this chapter, we have described how CrowdingGP-L is applied to generalize the 
TFBS5raer-TF5mer pairs from one-to-one mappings into many-to-many mappings. It 
has demonstrated its potential in post-processing and generalizing the pairs. The per-
formance measurements suggests that CrowdingGP-L can discover pairs with more gen-
eralized relationships verifiable in PDB. 



Chapter 6 

Predicting Protein Structures on 
a Lattice Model using an 
Evolutionary Algorithm for 
Multimodal Optimization 

This chapter considers protein structure prediction as a multimodal optimization prob-
lem. In particular, de novo protein structure prediction problems on 3D Hydrophobic-
Polar (HP) lattice model are tackled by Crowding Genetic Algorithm with Spatial Lo-
cality (CrowdingGA-L) which has been designed and applied in the previous chapters. 
The experimental results indicate that the proposed algorithm can be applied and shown 
comparable results with the state-of-the-arts algorithms in terms of the performance 
metrics used, even though it is relatively simple. 

6.1 Introduction 

A polypeptide is a chain of amino acid residues. Once folded into its native state, it 
is called protein. Proteins plays vital roles in living organisms. They perform different 
tasks to maintain a body's life. For instance, material transportations across cells, cat-
alyzing metabolic reactions and body defenses against viruses. Nevertheless, functions 
of proteins substantially depend on their structural features. In other words, researchers 
rieed to know a protein's native structure before its function can be completely deduced. 
It gives rises to the protein structure prediction problem. 

The protein structure prediction problem is often referred as the "holy grail" of biology. 
In particular, Anfinsen's dogma [130j and Levinthal's paradox [131] play important roles 
in this problem. Anfinsen's dogma postulates that a protein's native structure (tertiary 

88 
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structure) only depends on its amino acid residue sequence (primary structure). On the 
other hand, Levinthal's paradox postulates that it is too time-consuming for a protein 
to randomly sample all the feasible confirmation regions for its native structure. But, 
on the other hand, the proteins in nature can still spontaneously fold into its native 
structures in about several milliseconds. 

Based on the above ideas, researchers have explored the problem throughout several 
years. In particular, the designability of a structure and the degeneracy of a sequence 
have been studied by Li et. al. [132]. The computational complexity has also been 
examined by Hart et. al. [133]. 

Numerous prediction approaches have been proposed. In general, they can be classified 
into two categories, depending on whether any prior knowledge other than sequence 
data has been incorporated [134]. This paper focuses on De novo (or Ab initio) protein 
structure prediction on 3D Hydrophobic-Polar (HP) lattice model using evolutionary 
algorithms [58]. In other words, only sequence data is considered. 

Different protein structure models have been proposed in the past [135]. Their differ-
ences mainly lies in their resolution levels and search space freedom. For the highest 
resolution levels, all the atorns and bond angles can be simulated using molecular dy-
namics. Nevertheless, there is no free lunch. The simulation is hard to be completed 
by the current computational power. On the other hand, a study indicated that protein 
folding mechanisms might be simpler than previously thought [136]. Simplified mod-
els are enough. Thus this paper focuses on HP lattice model to capture the physical 
principles of protein folding process [137, 138]. 

6.2 Problem Definition 

In this problem, it assumes that the main driving forces are the interactions among the 
hydrophobic amino acid residues. The twenty types of amino acids are experimentally 
classified as either hydrophobic (H) or polar (P). An amino acid sequence is thus rep-
resented as a string {H,P)+. Each residue is represented as a non-overlapping bead in 
a cubic lattice L. Each peptide bond in the main chain is represented as a connecting 
line. A protein is thus represented as a non-overlapping chain in L. 

Based on the above model, the objective of the protein structure prediction problem is 
to find the conformation with the minimal energy for each protein. Mathematically, it 
is to minimize the following function [132]: 

H= E ^^a.a,A(r, - r,) 
i+l<j 
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where ri and rj are amino acid residues at sequence position i and j. The constraint 
i + 1 < j is to ensure that r̂  and Vj are not next to each other in their sequence and 
they are examined together once only. A ( n - Tj) = 1 when ri and Vj are adjacent in L, 
otherwise A(ri — Vj) = 0. As stated in the previous section, each residue is represented 
as either H or P. Thus E^^^j could be Enn, Enp, ^pw, or Epp. For their values, 
three schemes have been proposed. The most widely used scheme is Enn = —1，Efjp = 
0’ EpH = 0, Epp = 0. The second scheme Enn — —2.3，EjiP — —1, EpH = - 1 , Epp = 
0 was proposed by [132]. The last scheme Enn = - 2 , Enp = 1, Epn = 1, Epp = 1 is 
called functional model protein (or "shifted" HP model) [139]. As mentioned in [135], 
the results are insensitive to the value of Enn as long as the physical constraints [132] 
are satisfied. Thus we have chosen the first scheme in the following sections. 

6.3 Representation 

For the representation of an amino acid residue sequence, there are two conditions to be 
satisfied: [58] 

1. Sequence connectivity 

2. Self-avoidance 

Among the representations proposed [139], Internal Coordinate should be a favorable 
choice since it can handle the first condition implicitly. Internal coordinate is a repre-
sentation system which residue positions depend on their sequence-predecessor residues. 
There are two types of internal coordinate representation: Absolute Encoding and Rel-
ative Encoding. Absolute encoding represents each residue position as the absolute 
direction from the previous residue. A sequence is represented as {U, D, L, R, F, B}^~^ 
(Up, Down, Left, Right, Forward, Backward) [140]. On the other hand, relative encod-
ing represents those as relatively directional changes based on the directions of the two 
predecessor residues. Backward direction is omitted for one-step self-avoiding. Thus a 
sequence is represented as {F, /?., L, U, D}^~^ [141]. Except the forward move, a cyclic 
conformation is formed if a, move is repeated four times. Krasnogor et al. [58] have 
examined both representations on square lattices. Their results showed that relative 
encoding had better performance than absolute encoding on square lattices. Our pre-
liminary results also indicates that the performance of absolute encoding degrades as a 
sequence gets longer on cubic lattices. Thus we have chosen relative encoding as the 
representation in the following sections. For this representation, different orientations 
can be taken. Nevertheless, few explicitly stated their representations in a pictorial way. 
Thus the representation we have adopted is depicted in Fig.6.1 for the sake of clarity. 
The most left sub-figure denotes the absolute direction axis, whereas the remaining sub-
figures denotes the relative encoding representations for all the six directions in cubic 
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FlGURE 6.1: Relative encoding used 

lattices. For instance, the second left sub-figure denotes the relative encoding repre-
sentation the subsequent move should use when the current move is in the positive X 
direction. In particular, the subsequent move is called forward move if it is still in the 
positive X direction. 

6.4 Related Works 

Although the 3D HP model seems relatively simple ai.nong other models, it has been 
proved that the protein structure prediction problem on the model is NP-Complete [142]. 
Thus researchers propose heuristics as compromising solutions. In particular, the semi-
nal work by Unger et al. [140] experimentally showed that genetic algorithm approaches 
were better than Monte Carlos simulations. Thus many researchers tried genetic algo-
rithm as one of the heuristics to solve the problem. Nevertheless, the genetic algorithm 
approach by Unger et al. [140] was actually hybridized with Monte Carlo moves. Hence 
Patton et al. [141] further generalized it into a standard genetic algorithm approach, 
which search space included infeasible regions penalized by a penalty function. Fur-
thermore, they proposed "relative encoding" so that one-step self-avoiding constraints 
could be implicitly incorporated in the genome representation. Few years later, Krasno-
gor et al. [58] published a work discussing the basic algorithmic factors affecting the 
problem. Since then, researchers explored different ways to tackle the problem. For 
instance, Krasnogor et al. further applied a multimeme algorithm, which adaptively 
chose multiple local searchers to reach optimal structures [143]. Cox et al. [144] and 
Hoque et al. [145] utilized heavy machinery of specific genetic operators and techniques. 
Ant colony algorithm [146], differential evolution [147], immune algorithm [139] and esti-
mation of distribution algorithm [138] were also customized and reported in literatures. 
In particular, diversity preserving techniques were often incorporated in them. For in-
stance, Duplicate Predator [144], Aging Operator [139], and additional renormalization 
of the pheromone [146]. They can be deemed as the signs of the rnultimodality in the 
problem. However, to the authors' knowledge, the necessity of multimodal optimization 
techniques has not been emphasised. 
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6.5 Crowding Genetic Algorithm with Spatial Locality 

6.5.1 Motivation 

For the protein structure prediction problem, it is generally believed that the native state 
of a protein should be in the conformation with the lowest energy. Thus previous works 
mainly focus on the minimal energy they could achieve: the minimal energy ever found 
{H{x)) and the average and standard deviation of the minimal energy across several 
runs {mean 士 <r). 

Nevertheless, Jahn et al. [148] has shown that the native state is not necessarily a single 
global optimum. It may also be a local optimum in Fig.l of [148]. For the HP lattice 
model, Unger et al. [149] have observed that there can be multiple conformations for 
each energy value. A recent fitness landscape study also indicated that HP landscapes 
were highly multimodal [150]. 

Thus we propose applying Crowding Genetic Algorithm with Spatial Locality (CrowdingGA-
L) presented in Chapter 4 to the problem for multimodal optimization explicitly, in order 
to preserve diversity. In other words, building blocks and optima can be preserved. A 
more effective search is guaranteed throughout each run. Both global and local optima 
are more likely to be found. The native state information is less likely to be lost. 

6.5.2 Customization 

As CrowdingGA-L was originally designed for real number optimization, careful modifi-
cations are needed before applying them to protein structure prediction. In particular, 
there are two critical factors to be considered: Distance metrics and Handling infeasible 
conformations. 

6.5.2.1 Distance metrics 

The most widely used distance measure should be the root mean square deviation 
(RMSD) [151]. RMSD calculates the average absolute distances between two super-
imposed conformations' points. Nevertheless, if two conformations differ by only one 
point direction in relative encoding, their RMSD cannot reflect such small change. For 
instance, some conformations of the benchmark UM20 [152] are visualized in Fig.6.2. 
Fig.6.2a depicts one of the optimal conformations. The other sub-figures depict two 
candidate conformations: 

• Optimal : LDLDFLUFDDFRFRDDFD 

• Example A: LDLDFLUFDDFRFFDDFD 
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formation 

FlGURE 6.2 : Some conformations of U M 2 0 

• Example B: LDLDDLLRLLDRFRDDFD 

To be mutated to the optimal conformation, Example A is only needed to change its 
move between al and a2 to R whereas example b is needed to change nearly all of 
its moves between bl and b8. However, the RMSD of Example A with the optimal 
conformation (5 diagonal point changes a2 to a6) is larger than that of example B (4 
diagonal point changes b2,b3,b5,b6). RMSD cannot capture the move information in 
relative encoding. 

Furthermore, if RMSD is applied in our algorithms, it will be quite computationally in-
tensive. To calculate the RMSD between two conformations, the corresponding relative 
encoding genomes are converted to absolute 3D coordinates. Once converted, one of 
them is then translated and rotated to be optimally superimposed on the other. RMSD 
is then calculated which involves multiplications and square root calculations. In con-
trast, Hamming distance calculates the move differences between two relative encoding 
genomes. It is relatively computational tractable. Thus Hamming distance is adopted 
as the distance metric in this chapter. ^ 

6.5.2.2 Handling infeasible conformations 

Basically there are two approaches: 

• Delete infeasible conformations 

• Tolerate infeasible conformations by adjusting their energy values by a penalty 
score (either constant or adaptive) 

^Note that we have implicitly handled rotational symmetry by omitting the first move in the relative 
encoding representation. That's why a confirmation is represented as {F, R, L, U, D } "~^ , instead of 
{F, R, L, U, D } " ~ ^ in the previous sections. In other words, a single sequence in relative encoding 
representation actually represents the confirmations for all the six rotational directions in cubic lattices. 
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Both approaches were thought beneficial in different view angles [58, 135, 140, 150]. 
For the first approach, it is conjectured that search space can be smaller if infeasible 
conformations are deleted. For the second approach, it is conjectured that the paths 
to optimal conformations are shorter if infeasible conformations exist. Nevertheless, the 
study in [150] had a detailed analysis supporting the first approach. Furthermore, our 
problem is a discrete optimization problem. Unlike continuous optimization, its gene 
can easily flip between different values. There may be alternative paths to optimal 
conformations even if infeasible conformations are disallowed. Thus the first approach 
is taken. 

Having decided the distance and infeasible confirmation handling methods, CrowdingGA-
L is applied to the protein structure prediction problem on several benchmark sequences 
in the following sections. 

6.6 Experiments 

6.6.1 Performance Metrics 

The widely used performance metrics are adopted [138, 139, 152]. The energy of the 
best conformation found {H{x)) indicates the best convergence an algorithm can achieve 
across several runs, whereas the mean and standard deviation of the minimal energy 
across several runs (mean 士 ¢7) report the stochastic convergence behavior of an algo-
rithm. 

6.6.2 Parameter Settings 

The parameter settings for CrowdingGA-L in all benchmarks are tabulated in Table 6.1. 
CrowdingGA-L has been implemented in the EC4 framework [57] for this problem. With 
overlapping generation type and high selection pressure imposed in survival selection, 
mutation probability was set to a high value for achieving global search capability. Thus 
0.8 was adopted. Crowding factor was set to population size to avoid replacement error. 
To be comparable to the state-of-the-art algorithms [138, 139，152], CrowdingGA-L was 
run 50 times up to 10^ and 5 x 10^ energy evaluations respectively. The benchmarks 
were taken from [138, 139, 152]. 

6.6.3 Results 

Table 6.2 and Table 6.3 show the experimental results which were run up to 10^ and 
5 X lC)6 energy evaluations respectively. For each benchmark, the performance metrics 
discussed have been calculated. For instance, looking at Table 6.2 and sequence sl, 
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TABLE 6.1: Parameter Setting for CrowdingGA-L 

Parameter Setting 
Population Initialization Straight line (FFFF....FF) 
Population Size 100 
Generation Type Overlapping 
Parent Selection Uniform Deterministic 
Survival Selection Truncation/Crowding 
Mutation Type Bit Flip 
Mutation Probability 0.8 
Crossover Type Two Point Crossover 
Crossover Probability 1 
Random Seed 123 
Implementation EC4 framework [57] 

TABLE 6.2: Experimental Results of the state-of-the-art algorithms (10^ energy eval-
uations) 

Hyliii(l GA |152| lA |l.<9| MK-l-:i)A2 |I38| 'l>(H-KlU [13S| MT-E13M |I3S| C'r.iw<lii>sGA-L 
»1 ll(x) -11 -11 -11 -11 -11 -11 -11 -11 -11 

iiicnn±g -9.84±().8fi -lH.9()±(l.:i2 -11.00i:0.()Q -ll.QO±0.00 -11.00±0.00 -10.9fi±().(M -11.00i:0.00 -11.00±0.00 -lO.fiH±U.47 "ĵ~~iTw Ti ^ ^ 1̂3 1̂5 ^ ^ ^ ^ 
iiiram±<7 -l()±().H7 -12.22±».fa -I2.9.1±(UB -13.00±0.00 -12.8f>±(l.lf) -12!)fi±().(M -12.711^1).,¾! -13.0Qi:O.QO -11.1«±0.81 ~s3~~nw ^ ^ ^ ^ ^ ^ ^ ^ ^ iiici>iij:g -8.0-1±().(ifl -8,8Sj:().18 -S.nîl).IK'i -8.ft(ij:0.()1 -8.9ltt().IH) -S.a8±().»2 -S.98±().t)2 -S.98±().l)2 -0.00±0.00 

s.1 M(x) r i 8 H i ^ 0 8 n i A=j r i 8 r i 8 TJi 

liiTOii±g -13.72±l,1l -lli.l)S±l.()2 -lfi.fitij:I.M -15.4S±(I.Ki -lfi.31j:(l.51 -l5.()()±().sn -Ifi.ltZj：(!.!() -15.()2±O.SK -16.50±0.95 s5 ll(x) r̂  1̂  ^ Ti ^ ^ ^ 3i ^ 
iiKWi^g -IS,9l)i:2.(M -24.S2±H.7I -in,fi(i±l.:i7 -2().52±1.I5 -2:i.f)2±l.S:{ -2(l.fiS:tlfiri -l8.-11j:l.fi() -2().22±2.；«) -25.44±1.36 sfi ll{x) 2̂2 ^ ^ ^ ^ ^ ^ 3i ^ inoiui±<r -19.0fij:l.ir) -22.(讲土1..13 -2fi.:«l±2.2fi -2：1.38±1.：«) -2fl.Wtt2.82 --22.0Si:2.18 -26.70±1.97 -22 51̂1.27 -2:i.S()±1.21 

~^~~HW ^ T̂i ^ ^ ^ ^ ^ ^ ^ 
iiiwiiiJe<T -32.2SJ:3.()n -39.02j:().5() -32.f>r)i:3.13 -33.81士2.91 -：12.91±1.5；{ -:«.|0士3.11 -31.72±2.98 -;i2,1f>fcUI:i -40.n8j:1.96 N» H(x) ^ ^ ^ K) r« ：31 ^ ^ ^ 
im’iiii±ff -3(I.!M±2.55 -;ifl.07j:1.20 -：«1.00±4.()2 -310fi^2 00 -3.^T7(lifi.H7 -3».82士2.97 -32.2.1士2,17 -3l).9fi±2.17 -41.06士2.40 

CGA-mixed has ever achieved -11 as its minimal energy across 50 runs. On average, 
CGA-mixed has also achieved -10.68 as its minimal energy with standard deviation 0.47. 

Interestingly, although CrowdingGA-L is a relatively simple algorithm, it can still show 
comparable results with the state-of-the-art algorithms when the termination condition 
is set to 10^ energy evaluations and 5 x 10® energy evaluations. 

Its effectiveness is largely due to their individual replacement technique: crowding. In 
this technique, a conformation cannot replace a dissimilar conformation. It gives free-
dom for all niches to evolve to their respective optima. Diversity is adaptively pre-
served. In particular, such diversity prevent a population from genetic drift. Useful 
sub-conformations (like secondary structures [134]) can be preserved, providing the al-
gorithm a long-term sustainability for finding multiple optima at the same time. 

6.7 Conclusion 

In this paper, we have modeled protein structure prediction as a multimodal optimization 
problem. To foster its development, CrowdingGA-L has been implemented and tested. It 
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TABLE 6.3: Experimental Results of the state-of-the-art algorithms (5 x 10̂  energy 
e v a l u a t i o n s ) 

Hybrid G A [152] M K - E D A 2 [138] TiecEDA [138 M T - E D A 4 [138] CrowdingGA-L^ 

sl H(x) - 1 1 - 1 1 - 1 1 - 1 1 - 1 1 -
nieau±g -10.52土0.54 -10.82士0.38 -1().68土0.51 -10.84土0.37 -11.00士0.00 

"s2““HW ^ ^ ^ ri3 ri3 
incan±(T -11.28土0.90 -12.()2土0.94 -11.30±0.85 -11.88土0.93 -12.86±0.40 

~s3~~H(x) ^ ^ I9 I9 I9 
ii_ieaii+g -8.54士0.64 -8_9(i+0.19 -8.92±0.27 -9.00士0.00 -9.00士0.00 

“^““Hw ^ ni ri8 rn ri8 
incan±g -15.76土1.05 -10.40士0.80 -10.24士0.83 -16.50士0.96 -17.94土0.31 

“^““HM ^ ^ ^ I29 1^ 
i i i c a n ± g -24 .60d i l .57 - 2 7 . 2 4 ± 0 . 9 2 -2C.88±Q.93 -27 .Q6±1 .08 - 2 8 . 3 Q ± Q . 7 1 

s6 H(x) ^ ^ ^ : ¾ ：^ 
i"ean±g -23.02士1.48 -25.70±1.2(i -25.94土1.58 -25.74土1.22 -26.58土0.88 

~ s 7 ~ H ( x ) ^ I49 ^ I48 ^I^ 
meaiiiCT - 4 1 . 1 8 ± 2 . 7 5 - 4 6 . 3 0 i 2 . 0 4 -43.78土3.10 -42.00土6.76 - 4 6 . 1 2 i l . 3 9 

s8 H(x) ^ ^ ^ ：^ ：^ 
ineaii±g -40.40±2.50 -46.78±2.28 -43.72土2.43 -45.64土2.03 -46.36土1.95 

is observed that CrowdingGA-L is applied and shown experimental results with the other 
state-of-the-art algorithms, although it is a relatively simple technique. Such interesting 
results may also provide some biological implications for scientists. For instance, the 
importance of the existences of intermediate sub-conformations could be examined in 
the multimodal optimization pathways provided by CrowdingGA-L. 



Chapter 7 

Conclusion and Future Work 

7.1 Thesis Contribution 

In this thesis, a framework has been proposed to discover associated TF-TFBS binding 
sequence patterns from TRANSFAC. To further analyze the discovered sequence pat-
terns in the huge search space, two evolutionary algorithms have been proposed. In 
particular, the evolutionary algorithms are specially designed for multimodal optimiza-
tion to avoid premature convergence and genetic drift. The one with less number of 
parameters (CrowdingGA-L) has been selected and applied to generalize the sequence 
representations. Sorne promising results have been obtained. As a further application, 
CrowdingGA-L has also been applied to predict protein structures on a lattice model. 
Sorne experimental results comparable with the other state-of-the-art algorithms have 
been obtained by applying it, although it is a relatively sirnple technique. In summary, 
the author has made the following contributions: 

• Propose a novel data mining framework to discover and validate Proteiii-DNA 
Binding sequence patterns. Due to the simplicity of the framework, it can be 
widely applied to similar problems, such as Protein-Protein interaction. 

• Propose two novel versions of evolutionary algorithms for multimodal optimization. 
In particular, the author extends Species-Conserving Genetic Algorithm (SCGA) 
and proposes Evolutionary Algorithm with Species-Specific Explosion (EASE). 
The author also extends Crowding Genetic Algorithm and proposes Crowding 
Genetic Algorithm with Spatial Locality (CrowdingGA-L). 

• Apply CrowdingGA-L to generalize the pairs discovered. Its generalization ability 
has been empirically analyzed by some case studies. In the PDB verification 
process, some promising results have been obtained. 

• Apply CrowdingGA-L to predict protein structures on a lattice model. Compara-
ble results with the state-of-the-art algorithms have been obtained. 

97 
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7.2 Future Work 

In the future, several future works could be investigated. 

The data mining framework described in Chapter 3 can be extended for mining ap-
proximate associations. Such an extension can handle the experimental and biological 
noises, although the inevitable computational burden needs to be carefully handled, and 
much more efforts are needed to distinguish real signals from the large number of false 
positives introduced by loosening the pattern matcliiiig and clustering. Coiiibiiiatorial 
associations between multiple TF and TFBS k-mers will also be another challenging 
topic. We will also seek further real applications of the approach on experimentally 
verifiable TF-TFBS bindings. 

For the design of the evolutionary algorithms for multimodal optimization in Chapter 
4，we will focus on experiments with real world multimodal optimization problems. 
High dimensional problems will also be considered. Species-specific Explosion will be 
investigated to improve other evolutionary algorithms. Besides spatial locality, temporal 
locality will also be considered in different evolutionary algorithms. 

Besides, we suspect that most of the evolutionary algorithms applied to bioinformatics 
are always stuck in local optirna. People are either not aware of the issue, or too 
lazy to study and handle it as long as the local optima found are good enough in 
practice. Thus we can foresee, if we further apply some evolutionary algorithms for 
multimodal optimization to the bioinformatics problems other than those in Chapter 5 
and 6，promising results will be probably obtained. 
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Appendix 

Algorithm 11 Species Conserving Genetic Algorithm 
G{t): Generation at time t 
Xs： A set storing species seeds 

t <- 0; 

Initialize G{t); 
Evaluate G(t) ; 
while not termination condition do 

Identify Species Seeds Xs] 
Select G( i + 1); 
Crossover G{t + 1); 
Mutate G{t + 1); 
Evaluate G{t + 1”； 

Conserve species from Xg in G{t + 1)； 

t — t + 1; 
end while 
Identify species seeds Xg', 
Identify global optima; 
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TABLE A.1: Number Of Pairs Discovered. Each integer denotes the number of pairs 
for each setting. The first row denotes the different settings for the value of k，whereas 

the first column denotes the minimal confidence (confidence level). 
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TABLE A.2: Number Of Pairs (duplicated pairs removed). Each integer denotes the 
number of pairs for each setting. The first row denotes the different settings for the 
value of k, whereas the first column denotes the minimal confidence (confidence level). 
Since some DNA k-mers are the reverse complements of themselves, the number of pairs 

are not necessary to be half of the corresponding number in Table A.1 
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TABLE A.3: Nurnber Of Merged Pairs. Each integer denotes the number of merged 
pairs for each setting. The first row denotes the different settings for the value of 
k，whereas the first column denotes the minimal confidence (confidence level). The 

number is significantly reduced as compared to that in Table A.2. 
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TABLE A.4: Mean and SD ofSupport. Each block denotes the mean and SD of support 
of the pairs under different settings. The first row denotes the different settings for the 
value of k，whereas the first column denotes the minimal confidence (confidence level). 
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TABLE A.5: Mean and SD of (^coefficient. Each block denotes the mean and SD of 
0-coefficient of the pairs under different settings. The first row denotes the different 
settings for the value of k, whereas the first column denotes the minimal confidence 

- (confidence level). 
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TABLE A.6: Mean and SD of Lift. Each block denotes the mean and SD of lift of the 
pairs under different settings. The first row denotes the different settings for the value 

of k, whereas the first column denotes the minimal confidence (confidence level). 

Confldenct | TniSlmn-Trimci 1 TKHSIm.-i-TI-rmin | TFRSlmPi-TFnmri | Tl'HSr.mn-TF-liner | TKHSSriir-i-TIT.nK-t | TI HS'.iiici-Tl-<.iiuM | n HSt.m.i-TKlnwt | TFIiS)imn-n ^mn j TKBSIimn-Th't>ni.-i 

0 r).0!)tl K() K.n7il..l,< !),.ViiO,Hi — ir>.'2'J±8.2;i 17.{»2±7.:H ltU4±.'».W — iA.mt-iA：! — 17.Wi::t._iO _ ]XMi>'H^ 

~ U l :,.71+r).()!i ').2H+(i.:U lO.i:i^fi,37 — 15.f>0+B.U — 17.!>2+7.34 _ 18.H+5.W ~ N.PH4-4. >5 17.W+:UiO \}iM±2 % ~0l 11 71±(> % 1：< A'.)±7.M 14.37±7.(i0 l(i.nOAH.ll “ l̂ .Tii:7.46 — I8.43±5.H7 丨5�2士107 17.Wt:i.n() lH.biriW, 
~ O l ~ iu:iun.:/> lH.(i7i.K.12 一 丨9..1017.似 \H.nM^ _lf).*<117.79 _ 10.72i«.04 rVHf»±3.W) 18.Wi:U^-> IB-MilW 

~ i H n,D(iir.<7 l(>.%i-1,2-2 �U>7±r>.»^ ~ 20.97^9.30 21.-<li8.r.3 一W.^7t(i .( i7 - M>.<i7i::i-31 lK.75±-lW 1。.1灶'1"> 

iTs r, «W±U (X) N/A _ N/A 一 '21-97̂ :11,37 _ i2 .57 i l0 .4 t i 21-4li:MX^ lKl.Si:l5ti 11> i7A:ii3 m i ^ M m 

C M i ~ N/A N/A 一 N/A 一 .̂ Tr>2AlS.H 一25.W)i:13.7Ci 25.4”±8.90 N'/A lH.75i:0.<>:i \'jm±i).U7 

ff7 N/A NM N/A M.93±iri.80 42.07tH.'^7 31.f>5±0.(X) W N/A NM 

~ 0 ^ NM m N/A N/A - NVA N/A 一 力入 m F?/A 

~ iT7 i N/A • N/A N/A — N/A N/A _ N/A “ N/A ^ N'/A 

— 1 . 0 I N/A I N/A I N/A 1 N/A | N/A | N/A | N/A | N/A | N/A 

TABLE A.7: Mean and SD of Forward Conviction. Each block denotes the niean and 
SD of forward conviction of the pairs under different settings. The first row denotes 
the different settings for the value of k, whereas the first column denotes the minimal 

confidence (confidence level). 

^Qfldence | TI.'BS4mpr-TF4m(,i | TFBS^nicr-TF5mci | TKBSMmci-Tniim-i 1 TFB.S:>mn-.n,lm" j TFBS，>"、pi-TFr_mi»i | TKHSf.in>i-TFi>nm | TFBStitnoi-ThNnwi | TFBS(mH>r-TFf>mn | TKBSfinwr-TPrimor 

U,u 1.15AO-M 一 l/il±O.in 1.21±O.ir, - i.8!>±t).71 U;H:(U,7 i.77±U.f>:i 2.：«>±1.15 2MMWn 2.12^0.^» 

().1 一 丨.！7土0.14 1.2:ii:().l(i — 1.23±0.1R 一 l.WAUJl l-Wi:(U>7 \.T7±Q.M 2.39±l.ir. 2.33土1.0"2 'il2^0.&H 
(l._2 — l.:i8±O.i(> — l.mo,lf> _ l.:iHiO,l(i — Ln7t0.7U 1.91±<).(>S 1.81iO..Vt 2A2ilA7 1:»士102 2J2tO.'W 

~ U ~ i.vii:(ui n a B i m i m m t • 2m±i),m nvitiu>4 i.wi±u,i7 — -i4iti.2r> — x ' « i i » ' i 2.12mw 

o,.i 一 i.7n±ain i 7rii(UMi iJHj:O.m i:rw>.7.2 i:mi).m _ 2.mn)A7 l^^k\.v^ j .wiu>5 :nH*u.v> 

~~UT -2.(MiU.(K) N/A — N'/A —2.Wt0.7:< “ 24!)AO.fu J.ait0.51 ：1.：»±1.4?) :\.m±l.U\ •in±0.:i^ 

~ i u i ~ K/A 一 N'/A N/A 3.34j:0.(>2 3.3H±<).r.7 Il7AO.jO ‘ N/A 2.79A:0.:W 2.7：\±0.：\\ 

0.7 N/A N/A — N/A 一 3.50±0.28 3.70土0.20 “ 3.90±0.00 • N/A N/A S/A 
0.» N/A N/A N/A 一 N/A N/A — N/A N/A N/A N/A 

~ O H NM N7A FVA N/A N/A N/A ‘ N/A N/A N/A 
1.0 I N/A I N/A I N/A I N/A | N/A | K�A | N/A | VA | N/A 

TABLE A .8: Mean and SD of Backward Conviction. Each block denotes the mean and 
SD of backward conviction of the pairs under different settings. The first row denotes 
the different settings for the value of k，whereas the first column denotes the minimal 

confidence (confidence level). 

Confidence | rKHS hii<n-TFlmn | TFBSiiiK'i-TlT.iHP> | Tl'HS tim-i-Tl'(iin.-i | l l'HS^mn-Tl'hii.>i | T!'KS îii*t-TK^nii.-t | TFHS îiwi-TI'titiM i | TKI{S(mw.TF^m<'r | TKBS(ini*>t-TF5n>c> | TFBS<>n>r>-TFt>m^ 

U.U 2,04Al,7ii 'ua2m - 4.()t±;j.7» ;i.(iltl-(il .i.Mi±>.2'J •\.7\±2.l：> “ l.!Mi±aW — 2-4<itl-55 — '̂ -<->̂ "-̂ -* 

0,1 2.Hil.B:l ir»:>±2.(i«) _ ->,07f2.7!) -i.(>411.C>l l.r)Ofi.2t) :171士2.厂_ I.TM>t().H(> 2.mi:1.55 'i-4fiiO.H:i 

~ J v 2 ~ :uk'j.:i:t .i.t>'j:t:uir, 一 i:m.uv> _ j.7-ai,iii :i.r>iii:*o im'i.ii -imn)Mu 2"mii.r,r, “ 2A^nm 一 <).:t . viH±iM r>.!)!)i:{.ir. (i.-Mi:ii i -i.H()ii.w 一 uui:rM :uH-m _ xioioxH — 2.miM 2ASnm 
()..| 一 iW i l -W — r,.H7i:i 17 .V2Hi2.:U - -i.K7i:l.:W) H.(Ui:'>-10 :U>HiZ:iS 2-'2f)tO.W) ‘』.!>0土1.70 27UllM 

~ i H J.7f.t0.00 一 N/A N/A :i.i:{il.->r, - UM:2JA rH5fi72 2.0~1±1口 ：Ur>i:'j.47 2.MiO.W 
(Ui “ N/A N/A N/A 1.71±l.n:t ^.21±2.r>5 ：1.：1»±0.7» _ N'/A iM^0-07 2.57iU.W> 
0.7 N/A N/A N/A :<.iX)±0.00 -I.H7±O.tK) 4.87士(>.00 S/A S/A S/A 

l).H — N/A • N/A N/A — N/A • N/A N/A N/A S/A — N/A 
0.1) N/A — N/A — N'/A — N/A N/A N/A N/A N/A N/A 

_ 1,1) I N/A I N/A I N/A I N/A | N/A | N/A | N/A | N/A | N/A “ 

TABLE A.9: Mean and SD of TFBS Prediction Score. Each block denotes the mean 
and SD of TFBS Prediction Score of the pairs under different settings. The first row 
denotes the different settings for the value of k, whereas the first column denotes the 

minimal confidence (confidence level). 

Confldeoce 1 Tl'HSinKn-TF^itwt | TFBS'lim,r-TFrimn | i ri^Slmii-l l'luiin | 'n、BSr_"><”- n、lm<., | TKHSSfiK-i-Tr.".mn j Tl,BSrim<”-Tn>”i" | 'n'HS(iiiH-i- ri-'iiti<n | TTBSmi>f>r,TFr>mn | TFBS“m"-TF<itwi 

u.o ‘ o.2i)t(),:<r. ().r>i:i).j(> 0,r.2i:0,i2 (j.:»i±i).:iii o.4ii:().4i _ <i.4<)Au.4:t _ o.2i±o.:u o.iH±o.:» ‘ o.ni:o:tn 
().l ().:tlj:().:tii 一 (). l7i(Ui 0,f)()i:().-12 0.:<7i;(l.:ti> _ (1.4liO-41 0.40i0.4:i 0.21±0.：» u"lHiO.:n ‘ ai:iil>:tO 
().j U.>KH:().:tli () Hit().il 0.44iO U U.:t{)fO.;Wi 0.40±0.4l 0.:Wi0.42 ().XitO.:H U.lKfU.:n O l-liUK) 
0.:i 0.-15i:0,:i!) O..UH:U.lt 0.r>0±l).44 0.̂ 1±0.35 0.：̂土<).3!> l).:i(i±(M>> 0.'i-1±0.̂  0.1H±0.:U <11:1土0.̂ 0 
0.^ 0..W^0,H7 {).():itO.:tH Q.8KiO.i:i 0.45士彳1.乂> 0.3K^0.40 {).33f().40 0.38±0.30 ().:t3±0.40 U.25iQ.17 
l).r. 一 0.7:H:a00 N'/A N/A 0.:WA0.17 一 0.4'2:k0.4() — 0.42±0.4-J 0.:Hi:().40 0.:H^0.42 U.:UAtMl ~ 

().» ‘ N/A N/A N/A ‘ fl.r>:^iU.3K 0.(i2i:0.:{7 “ 0.K:t±0.()'» N/A 0.^±0.-» 1).24^0.¾< ~ 

0.7 N/A N/A - N/A 一 ().：«)±{1.4：< — ().<Ut(t.̂ r> “ ().;>rifO.(Kl N/A _ N/A S/A 
T n N/A N/A N/A 一 N/A N'/A N'/A • N/A N/A N/A 
T f ) N/A 一 N/A — N/A N/A 一 S/A N/A N'A N/A � ' ' A 
"l,l) I N/A I N/A I N'/A I N/A | S/A | N/A 1 N'/A | N./A 1 N A — 

TABLE A.10: Mean and SD o fTFBS Binding Prediction Score. Each block denotes the 
mean and SD of TFBS Binding Prediction Score of the pairs under different settings. 
The first row denotes the different settings for the value of k，whereas the first column 

denotes the minimal confidence (confidence level). 

Confldtnce | TI.'BSIii_).fTK~hi».r | TKHS^n.n-'llT.Hfi | TFBSlin.-i-Tl-(.nin | TFHSr>mfi-TF îiii-i | Tl-HSjiii.:i-lFr.m.-i | TKHSSM.n-Tri.imi | TFHSI.m.i-TFliiift | lKHSt..iwi-TFr.mrr | lTBSi.mri-TK(iii~ 

1)0 ().(M»±n.H> o.2()f(j.2*) u. ihfg. i2 a n i , m 0.34f<).30 u.if>to..u o.n±u.2«j a u t i m 11 i:>ti>2i, 
0.1 ().U7*O.lti ().2()!t:().'2K 0.'jU0:tl - (ur,+<).2:t 0.21i:0.:i0 0-2r>i-0.yt 0.1li:0.2() U.12+0/M U.l2±O.JI> 
().-J O.Ht().2:t 0.22士(),2» 0.-i:i±0.:{2 ().irii:0.21 U.23i0.29 U.2:iA0-:i2 0 12±().21 ».12士<}.24 0.12i0.2li 

Q.:t ().l(aO-2r> ().2210.31 <).2f>iO.:t4 0.18i:0.2H 0-2.MU.y> ().2710.：<4 ai:i±0-22 0.121().2^ 0.12丄0.2« 

U.-1 ().:<HtO,j7 ().47tO.:M 0.75±0.25 0.'21̂ 0.2：» 0;25±().ai 0.2>±0.3^ 0.22±0.20 0.2^^0.2() U.2:itQ.:<2 

o.r. ‘ (),r.r>i:0-(Kl N/A N/A — o.-j3±o.-i7 — tKWiu.:u a:i:t±a37 _ u.mu.2H oz27itm ~ 0-27tu:r) 

0.(i “ N/A N/A N/A a:tfH:l)y> (),f>0-fc().:il “ O.W+O.H _ N/A (U:i+(UK Oy>-H).:i.S 

(,.7 “ N/A N/A N/A ‘ 0.24f().:U O.M)iO.yi “ 0.7r)±0.(X) N/A N/A 一 N'/A 

O.K N/A N/A 一 N/A 一 N/A — N/A ‘ N/A N/A N/A N/A 
0.9 N/A ^ r^ N/A • N/A N/A N/A ‘ N/A N/A 一 

1,0 丨 N/A 丨 N/A 1 N/A I N/A 丨 N/A | N/A 丨 N/A 1 N/A 丨 N/A — 
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TABLE A .11 : Mean and SD of Binding Prediction Score. Each block denotes the mean 
and SD of Binding Prediction Score of the pairs under different settings. The first row 
denotes the different settings for the value of k, whereas the first column denotes the 

minimal confidence (confidence level). 

T^Tfifldnirp I Tl-USliiHT-TFIiiK-i I TKHS Iin>-i- ITf>nin | Tl-»SlniM-TFlii»ct | TKB.Sr.iiH'i-TFlitH-r ! Tl.'BS.̂ imn-TFr.mn | -rKltSStiin-Trf.m.-i | mtSt.m^-i-Tl- lriH'i | ITBS<“》r,-TKVnw | TFB%mPt-TFfin>er 

().() 0.i:t±0.2t< 0.;i0 (̂)..<7 0,:i5i:U.:ti} ().28±0.:i(i <).;ili±0-:W () MM-ll 0.1<>t(J.27 I) r>t<l J'> 0.in±0.34 

0.1 0.14f0.2f) ().:U^O.H7 0.:M^O.:tO — O.yj±().:». 0.:W>̂ QH!) 0.:W>10.41 ().l(i±0.27 U.i:.^),2*i n.lf>iO..U 

0.2 U.2H+0.3̂  0.:tl+0-:t7 l).32+a:W ().304:0.:t(i 0.:i5j-0.30 0.3̂ +0.-11 n.Hi+0.2H O.lVHXM — O.Ui*(i:H 

O.a (),2(t̂ U.:tr> 0.29i:0.H7 ().:i:<i0.3f) U.:il±0.3?) 0.35A0.39 U.37i0.4'i 0-t7tQ.2^ Ul5^0.W O.ltiiO.:H 

{).A 0.50±0.Ti 0,.V>i:0.:t() U.y.UO-17 0.a4±0.3(i 0^410.40 — 0.31i0.40 Omu..T> 0.28i0^i a.y)i.0.42 

O.r, 0.75土0.00 N/A N/A 0.：»±().38 0.39±0.42 0.y)±0.-i3 1)30±0-.%1 0.31^0.40 0.^2A0.4i 

O.r> “ N/A N/A N/A ‘ i)M±O.m 0.(>1^0.37 “ O.H2±O.W N/A 0.15±0,:i4 0-2(it0.4i 0.7 N/A N/A N/A 一 0.2<i+0.37 _ 0.&3iH).37 0.TOi:0.00 “ N/A _ N/A N/A Ts N7A N/A N/A NM WJl Wfk N/A N/A N/A 
().；> — N / A - N/A NVA —— N/A N7A — N/A 一 � • W k ~ N.'A 

1.0 N/A N/A N/A N/A — N/A N/A N/ A N/A N/A 

TABLE A.12 : Mean and SD of TFBS Prediction Score (Merged Pairs). Each block 
denotes the mean and SD of TFBS Prediction Score of the merged pairs under different 
settings. The first row denotes the different settings for the value of k, whereas the first 

column denotes the minimal confidence (confidence level). 

Confidence | TFBS lnin-TFhi><'i | TrHShn<-i-TK5tin i | TKHSIiiici-TFliinn } Tl'BSr>nifi-TF4n>>T ! TrHSrin><-i-TF5mf i | 'H BŜ iiiu-i-TK(Vnin | TKB.S(inirt'-TI''lmfr | TKBS(iin<-[-TK̂ nK>r | TFBS(>iiu-t-Tl inmi 

0.0 ().20±0,:U ().;iK^U.4U ().4-l^(U'i U,:̂ i;().:iK 0.47^,^;i O.riO±U.->5 O.mO.:i5 0.:i-i^0.i(t ().i4±Oii 

0.1 lU’<i±U.:r> ().40i:0.4() ailiO.<T2 ‘Ufi±a:ti< 0.47±0.4^ O.V]fO.^^ 0,iftt0.Ar. t),:t4i:0.4() 0 M i 0 24 

0.2 n.:tH±0.:iH 0,17i0.U) 0,̂ <ii0.-J2 “ a3ri±0.,ir> 0.39±0..1Q 0.-l:ii0.4:i 0.29A0.3?) 0.:ui:0.40 0.14i0.i-i _ 

0.3 O.aOt().:i!) ().jO±(),41 0.39f0.4'2 0,>!^).¾¾ 0.43̂ Q.-10 O-IWfO.-ll ().27iO.HTi U.:U±0.40 O.UiU.24 

U.4 0-72j:0.3:j 0,<t7±0.3r> ().K8j:0.l:i ().42±0.：̂4 U.:H>±0.:i7 U.:»±().:W U.14±0.:<7 0.“l±0.:ffl 0.27t0.27 

0.5 ‘ n.7.i^0.(X) N/A “ N/A — 0.:Wi±0.:«) _ 0.4()A().:H ~ 0.44±0.:W tUi0A0.43 ‘ O.fiO:H).43 0 42±0.42 

Q.(i N/A ^ ^ 0.-ir>±().40 0.51±0.40 U.82±Olj N/A 0.42^0.42 0-42±0-42 0.7 • N/A N/A - N/A 0.45±0.45 — 0.-18±0.48 Q.95i0.00 “ N/A 一 N'/A N/A 
O.K — N'/A ~ " N/A - N/A N/A N/A N'/A “ N/A — N/A — N/A 

JMJ N/A - ^ N/A [ ^ W ^ N7A - N/A _ N/A — N'/A _ 

~ I N/A I N/A I N/A I N'/A | N/A | N/A | N/A | N/A | N/A 

TABLE A .13 : Mean and SD of TFBS Binding Prediction Score (Merged Pairs). Each 
block denotes the mean and SD of TFBS Binding Prediction Score of the merged pairs 
under different settings. The first row denotes the different settings for the value of k, 

whereas the first column denotes the minimal confidence (confidence level). 

Confldtnce j TrBS hin-Tl,lm_.i | TrHShnn-TFr.mn | Tl liSlnin.'mMiii i | TrBSr.iii. i-TFlt»n | TFasr»mri TlTin» i | TrBSr>m«.t.TF“》".i 1 TKiiS“m«i-TF“iw»i | TKHS(>iiii-i-TrSriHi | TFliS(imfi-TF<im* r 

(><> ‘ aui^iur> {).l7tU.2U - 0.-j4i0.;W U.17±U.:W) 一 0-31±0.:t7 0.;t7^U.;il> - U,U±0.20 _ U.lSiK).2^ i)M±n.2\ 
tU ().»^±01(> ').1»±0.：«) - 0.24i0.:i4 0.1S±0.30 ().：{1±().：17 0.:i7iU.:ifl Q.UtO.'>() O.lHtO.24 0.14A<).2-i 

"-••’ 0-Uli:().2(> 0.2^^0.:U ~ l).2-iiO.:i:t 0.17i0.2fi 0.2r>f0.:i2 U.WiU.y> 0.N±0.20 0.1H±0,24 ~ tU4iU.24 

0:t (l.lM.:iO 0-2̂±0.H5 ~ 0.2(H0.38 0.2210.27 a:tli0.3~i 0.m0.39 O.Uj.0.2() O.lHiO.24 一 0.141().24 

0 > O.M±().32 ar_2i().:r> ~ 0.7r.i0.25 ().23±U.2(i 0.2<iia28 0.2()i0.3'i - 0.25i:(),2:< 0.l7^0.22 ~ " 0-27f0.27 

"•‘ (>.r>r»iU.00 N/A — N/A 0.2I±0.>8 0.30土0.31 0.30i:0.3(i ~ 0.-14f0.33 _ 0.4-j±0.33 — O.OTAO.:W ("i N/A N7A _ N/A — (J.40i-0.:<(> ().41*O.r> or>hi-().i:i N'/A a3K+0.̂8 - 0.扔士0.39 
"7 N/A ^ N/A ‘ U.:Wi±().:W 0.:iH±0.:W ».75±().W N/A N/A 一 N/A 

O.K 一 N/A 一 N'/A - N/A N/A N/A N/A “ N/A — N'/A N/A — 
⑶ — N'/A — N/A N..-A _ N/A N/A N'/A N'/A N/A V A H) I N/A I N/A I N/A I N'/A | N/A | N'A | ��A | N/A | NA 

TABLE A .14 : Mean and SD of Binding Prediction Score (Merged Pairs). Each block 
denotes the mean and SD of Binding Prediction Score of the merged pairs under different 
settings. The first row denotes the different settings for the value of k，whereas the first 

column denotes the minimal confidence (confidence level). 

"5Snfld(m« I TFMSIiiH-i-TFlmn | TKl)S-lmfi-TITniK-i j TrHSIm.-i-TF(inu-t | Tl-BSr.in.-i-TF^niPi | Tl-BS în. i-TFr.ni.'i | Th'liS%m<M-Triiim.i | TFliSl.nK-i-TKlntf-i | TFHSfimn-TF5mrr | TFBSlimw-TFliimi 

"•» 0»7土(>.22 0.jf>i:0.:iH 一 aX i i (U l U.2()±().38 U.ia^U.i-i 0.4ti±U.-H ().2：1±0.：̂  0.2：.±().35 0.25±0.4i 

"1 — n.lWiir2l _ 0.27i0.3H 一 ().341(M1 l).27i.U-y) ‘ O.lUO.n g-UilO-Ci O.y>i:U.:M 0.2510.¾¾ U.25i.o.4:t — 

M a'l̂ (l.:t7 0.:Uj:U.:l?i a:<2i0.10 “ 0.32t0.:tD ().tOiO.-l2 — {)A2iQ.n — 0.25i0.:i4 _<).-ir.i:0.:iri U.25iU-j:i 
M (Uthta4U U:MMV> ir40i0.il “ 0.12tQ.41 0-47i:U.4r. — O.mO.45 一 ().V.)±{Ul _U25iO_y, 0,25i0.4:t 
j l : i ".…+謂 o.fii+<i.:t7 o.8:i+ai7 — u.yjiro.：}；) o-nta^ii u..i'jj-o.-i-j ~ a:i7+o.:M, n.ri0+0.:w u.r>o+u.*jo ‘"� 0,75±().(X) N/A N/A 0.̂ ±0.-li 0.-1(î 0,-ll i).:i7±{).A:\ ().4f)±().iH M<i5<ilK ol7iol7 "•“ N/A N/A N/A 一 O.r>4iQjJ — 054i042 — O.H2i.O-OK ‘ N'/A ().45±().4：> 0-j7i0.17 
(口 N/A N'/A ‘ N/A U.:M>±U.:m “ ().:m±U.:tf) _ 0.79±0.(X) — N/A ‘ N'/A N/A — 

M ^ ^VA — N/A 一 N/A — N/A — N/A N/A , N/A l i J l 

M ^ N/A N/A _ N/A N/A 一 N/A N/A N7A N^A '•" I N/A I N7A I N/A I N/A | N/A | N/A | N/A | N/A | �’'A 

TABLE A .15 : Number of Pairs with at least one related PDB chain. Each integer 
denotes the number of pairs with at least one related PDB chain for each setting. The 
first row denotes the different settings for the value of k, whereas the first column 

denotes the minimal confidence (confidence level) 

"S îifld<Mifr I 'n.'BSlii"T-Tnn_m | .lTBS'imw-ThTimn | TrBSlin.-i-TKtimcr � TKMSSmri-TrinuT � Tt B.Ŝ nu-i- !'Kr.mn � Ti-HS'.im-i-TF(.n»-i | TKBS(imn-TKlnw. | THi!^fin>rt-tFr,mfr | tl̂ Btifinwi-tF(im<-t 

"•" ~ Kti7 _ r>f)n 一 :yn . — 151 m sr> i'j ‘ io (¾ JLi LLi!i 厂27 一 27-j — 1.¾) — W) - 5̂  1<J 10 (} jL̂  2M - Hi-i — 101 — 1.11 _ 71 -1H 1K 10 - r. — JH l!!H ^^ 14 ”r> ~ V) """- ：“ — i,i — 10 ci iL! L1 <i �i 一 (i'i — T2 — 20 _ 14 u u 
Jhh ！ N'/A - N/A _ 21) — 1!) 一 12 f. • 4 ^ 
i i i l N/A N7A — N/A — 12 一 U _ 5 N./A _ 1 2 
iLZ N/A — N/A - N/A 一 1 — 2 丨 — N . / A “ N'/A N/A 
J i ^ ^ M N/A ; ^ N/A — N/A “ N/A SjA WfR NM JL!! N/A — N/A - N7A — N/A — N/A N/A N./A S7A ^ •” I NM I N/A I NA I N7A | N/A N/A “ N/A N/A N/A 
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TABLE A.16 : Number of Pairs with at least one related PDB chain (Merged Pairs). 
Each integer denotes the number of merged pairs with at least one related PDB chain 
for each setting. The first row denotes the different settings for the value of k, whereas 

the first column denotes the minimal confidence (confidence level) 

CSaTancB I TFhSliiir.-TKlMU-. | TPltS-]nin-TF5tnr. | TrUS-liiM-.-TKHni.-. | TK»Sr»i_<”-Tl-Mimn | TFHS^mn-TK5n.-. | TKBS，,in,,j-Tr<>n".i | TKH.SI..i.p.-TKlmr, | TntS(..n.-i-TF-.mr. | TFHSI>.n--TFl.i...r 

0.0 ~ m 112 — (»f) ~ -<<t n> H 1 j ！ 

0.1 :t:t7 _ 100 Ĥ “ 1̂> >9 l i ： i ！ 
0-j 一 <HI 一 4'J 一 ：ffl - -ih \h 12 1 i ！ 0.3 — M 15 一 n “ :¾) 1¾ H 1! i ！ 04 — r, 一 4 "*~ 2 24 12 [| 5 i 1 

151 j N/A — N'/A \4 7 j 2 i ！ 
in； N/A - N'/A — N/A — r. r, 1 N/A 1 ！ 
0 7 NM N/A N/A i 1 ！ m m ^ 

T i NM NM N/A 1 ^ m N ^ NM ^ 盟 

T7i N/A N/A 一 N/A N'/A N/A W ^ N/A N/A 
1.1) I N/A I N " \ I N/A I N/A | N A | 、.M | N,A | N A | V A 

TABLE A .17 : Fraction of Verified Pairs. Each fraction denotes the fraction of verified 
pairs for each setting. The first row denotes the different settings for the value of k, 

whereas the first column denotes the minimal confidence (confidence level) 

Confidence | TI-HSlnn-i-TFIim-i | TFHSlmci-TFf>m>-i 1 TFHSIim-i-Tl-(inin | ri'ltSr>m. t-l'f-lnR-i | TFUS5mn-TI'r,mn | TFBS'.im-i- TR.iii.-i | TFiiS<>m"-TF-lmei | TKitS(im.-i TF̂ iii.-T | TrRS<iim‘i-TFlii»pi U0 Q,3Q.r209.1 i)AiM U.75Hf>Ut) _ 0.(i22r>l(i<i O-HliS “ U.S3h3<ia<i Q.7H'M7i7 OJ| ] 7n 0.4181211 0.718WW 0.7H1021H 一 O.imnm7 一 0.812r> - O.M<i:W:Mi 0.78tM7:<7 0̂  ！ 0 2 o.M(̂ i43i ―一 o.7r>:KWM _ 0.7920792 {)Amvi2i oMmm o.m̂ m Q.fi:mm 0̂  1 
7 n o.(i.ViWi-i7 o.72r>H()(iS o.75 - o.72<mr>8 _ ().tw [).u:mm) o j i ^ «：2 ！ 0.4 丨 一 1 丨 ~ 0.7419355 0875 0.9 0.02K5714 J 1 
7T5 i N7A N/A 0.7riKf>2U7 - i).mTMiK 0.9UW>f>7 1 - 1 1 

— > N/A - m Nĵ  丨 1 一 � N/A 一 1 1 

T 7 N M N/A N/A “ 1 “ 1 — 1 . N/A N ;̂A N/A 
0 8 N'/A — N/A N7A N/A N.'A • N/A _ N/A N£A S'.\ 

Tf) N/A — N/A ‘ N/A N/A — N.A N/,\ N ^ L^ i 、:、 1.n I N/A I N/A I N7A I N/A | NA 1 �/A | N/A | N/A 1 N/A 

TABLE A.18 : Fraction of Verified Pairs (Merged Pairs). Each fraction denotes the 
fraction of merged pairs verified for each setting. The first row denotes the different 
settings for the value of k, whereas the first column denotes the minimal confidence 

(confidence level) 

CS^<iencg I TKUS4ii.-i- rF-lmcT | TI-HSlmn-TF.^mn | TKBS t̂nPi-TRin>iT | TFBSr.n.o.-TKlmrr | TFHS-,nK--TK-.ni.-i | T|-HS->,iK-i-TFnmci | TFHS<irwr-TK4nH-i | TKltSli,u..-TFr,mcr j rVMSimm-TFti^ 

0.0 0.32717(̂ 8 0.tMHM̂121J 一 U.7:t9U04 — 0.5(i52l7^ — “ • _ • UK571-12*> i).H,^7U2'J Ji^^j ！ 

U.1 ‘ ().XS(X)831 0,(i9Kli:VJ 0.7?K»0:M O.r>f.r»2174 0.><-12H)M QH57H2*i ().sr>7l42!) 0.75 1 0.2 • 0,ti4-M.M4 (1.77f)5102 ‘ 0.7:U:»:i3 一 ().(Wr>714:i O.W>(i(il)(i7 0-0 O.Kr,7N2?) “ OĴ  i 
1U 0.(M70r.KH ().H 0.7(if)2:i0H O.H O.MMMt(i<i7 1 ().>̂ :<:»3:丨:{ ~ 0.7¾ | 

~ i 1 1 0.79HK)l)7 ().91(¾>(>(>? 1 0-H | J 7Tft i NM N/A 0..S7M2H(i 0.K 7̂142<) ".7r> 丨 一 1 ！ 

0« N/A — N/A - N/A I 一 1 1 — N/A 1 ‘ 
T l N/A - N/A — N/A — 1 1 » N/A NM N/A 

TS N'/A K/A 一 N'/A m N7A m 杭 m N/A 

lM> — N'/A “ N/A N/A — N/A N/A — N/A N/A N/A N/A 
1.0 丨 N/A 丨 N'/A 丨 N/A I N/A j N'/A | N/A | N/A ! N/A | 、'/A 

TABLE A .19 : Maximal TFBS Prediction Score over 50 runs. Each block denotes the 
maximal performance of TFBS Prediction Score of the pairs over 50 random runs under 
different settings. The first row denotes the different settings for the value of k, whereas 

the first column denotes the minimal confidence (confidence level). 

Confl(i<nca | TFUShiM-i-TF-jnu-i | TFliShiu'i-TlT>m<-t | TF/HSjiiuM- TI (>in.-i ! TFB.SruiH-t-Trjim't | TFBS-Wi-TKr.nt.i | l KM.S^nH-t-TFiim<i | TI-BSiunn-rFimri | rniS<)ii>"i-TI'">iim | TFHSIItiu-i-TKt.tini 
(M) i) , iH(i;uam') ""iuT!)isr.io,:>^Hi;i ti.<M2!xa<t.i7Kr2 ii.o,V).>r.x<i.22(iii am7ii7i().iMoi 'nr2Mi7io i^7(.i i).in.>'):>ni i't7r>i 'MHfi7H^ii vmn " "Hzrao V2*m 

7Ti U.lf)0'i><^0.:n72 U.Ot>Oti7±U.:̂ VKr» <H)i!>i:it(>.n>:71 O.Or)r>Ht0.22102 0(HI)l><si) l'WK):t a»2:t7.'>±U.l->f>H» U.0.viri<i±0.2t)521 “ O.tfiKl5x<i.l<i2-2(> (1細1*<±‘1.!._ 

0.2 “ 0.1(i-i(Mt0.:v!^ in0(>lt2±0.274-i!) “ (l(M>^)>Kt0.2;;;<H 0.00_土0.‘細-2 0.0;i-.K!»±».lS24 0.()2'J22±0-H-Mr> { ) m m ± i ) m77 O.Q2mUO.H>21f* 0_!广,±(,1膽 

{).：\ ().l770Jj-0.:<lirF" 0.108()：{±0.2»7：{7 ().()7：«)24-().235~ 0.08r>41:̂:0.2TO —0.(M9:U+(U151 O.tfi4M̂4-(1.14K:» "T̂5:tSH+a20S81 0.(r>:i81̂0.H2Wi O.U21tU*U.i:i2M ().1 l).2K2(>7i:().:{H():{> 0,2f>0H>±().:<7fir»S il2Stnn3m "TwW72i:U.22(H<r" a,0(i:M)R2:0.2:{̂M> ~0.0209K±().H>159 ().057<i»±0.:>:nif> Q.O:i4(Mĵ0.U>fiO7 0.0277H±O.U)4:t4 
Tf> 0.H70:<7t(M2;m:i N/A N/A — 0.07»±0.:>f)-Ui:i ~0.05|71：>±(12032^" a()iHi7±().19fl»H OWHlHioriK-n U.0r*t0.217Q-1 ~ ().0(>25s0.2^2(M； 

().(i N/A N/A N/A ai4m:H:U.:i07f 0.(Mi4m0.->'2:Ul 0.1±0.3 — N/A ~^:»:i±0.27(i:{!) • (M)714:ii:0.2W" 

U.7 ‘ N/A N/A 1 ^ Q.233:i3±l).372<tf< ~0T(»(>(>7±0.372<>8 ~ 0土(） N/A — N'/A N/A 

T n N/A N/A — N/A 一 N'/A N/A — N/A _ N/A N/A N/A 
0') - N'/A 一 N/A N/A N/A N/A — N/A ^ ^ N/A 

TtT I N/A I >J/A I N'/A I SJ/A I N7A | NM | N/A ! 、.A 1 N/A 

TABLE A .20 : Maximal TFBS Binding Prediction Score over 50 runs. Each block 
denotes the maximal performance of TFBS Binding Prediction Score of the pairs over 
50 random runs under different settings. The first row denotes the different settings 
for the value of k, whereas the first column denotes the minimal confidence (confidence 

level). 

CoDfldtnca | 'ri'MS-lniPi-TF^mPi | TKHS-lniPi-Tpr,,iii>i | 'i rUSlnipi- l'I'tinHi I TFBSfmi<_r-TKlmn I TFHS îmT-TFSnwr j TFBSr>mrr-TKliiiHr j TFBS(iniPi-TF4mpi | TFHS(iinPi-TF5mci | TK»Sfiin.-i-'I K t . i~ 7To ().(M)̂:f2-H)-<><7(i8 ().(K)22'i4-O.Ôfi2H 0(K1115+h(>:Usn | (1.0ur>l_îa0<i!J29 | (l(X)tS2̂(UK>HWr" 1).005+0.070.53 0.()lM9±0.nW:i O.UriM+ailM<i 0.0U>95:*-U.12IM)K 
0.1 ().lK):t2l±O.M'J47 0.002^7i0.0i:tr.7 ().(M)i:U±().0:Ui'j:j U.00»31±0.074~ni ().lX)7(i:>±O.UH7(H OAO U.Ol(mi:OH?i>< ().(MMri±O.OaS4!> OtO 

[).2 • (>.(M)iW)i.().or>4()',> ~TMxm>ii.(i.(M772 (n)(>(ir2in.()7n} (u>m<57iu.wmH ooo7 jaoowm aoor>i:uo.<)7y,2 o.tf.MMi±o.n7o:i" aouMi.u.nS4(i n . < " i a u o . r w 

T?i (MK)7Sli0.0719'J ().(X)'i1I±t).0j21)l ().tX)r»±0.()HiHn ().(K}821±0.()K72t» ().(M):)r>(î ().()7433 0±() 0.()lKy)±0 1221 n.0i:W)^0.H703 l>iM),>54jcO.()l'j:i<i 

T1 ().l):<S71±O.lKW8 0.(N)m>7̂ ().(K>l<M ()tO ().(K)f>Wt0.07tvl7 ()()07'>it0.QKH71 U.OOO:M>tO.OO:̂ 2 U-02-1&j±().140?Jl 0.011^>±0 07452 ().(MJiKf)±0.()l(KW» U.r> ».‘VHhr» N/A N/A ~"l).OHX>4j-<l.U)2M~ a"l l:",+(l �lWi7 U,<)02ltrtr0.017Kr. 0.0227:t̂ -0.10-lir. Q.O.rrilj-().M5H ~ 0+0 
7Tfi FJ7A N/A NAA 0.02MltQ.l<tHfXi 0.(l2l)x.>t0.(Wf)<~ t)±0 _ N/A 0d:0 ^ 

(17 — K/A M/A - N/A 一 () .mi l lO.->7K4r- 0±0 010 “ N/A N/A _ N/A 
Oh N/A N/A N/A — N'/A — N/A 一 N/A N/A • N/A N/A 

()•!) N/A ^ ^ ^ ¢ ^ ^ W ^ N/A 
1,0 I N7A 丨 N/A I N〉A 丨 N,/A 丨 N/A 丨 N/A | N/A 丨 N/A | N/A 
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TABLE A .21 : Maximal Binding Prediction Score over 50 runs. Each block denotes the 
maximal performance of Binding Prediction Score of the pairs over 50 random runs 
under different settings. The first row denotes the different settings for the value of k, 

whereas the first column denotes the minimal confidence (confidence level). 

CoMeoct I tl^BSlimi-TFlm..i | .lTBS-lmn-—n"m».i | TFBSl.m-i-TFlinM-. 1 TritSr.ni.-TKln.er | TKUS-.ti.r,-l K'nm-. | TKItS->m.M-TFf..nr, | TKHS<m>.i-TKlmr. | TKltSl,m.--TI -K...-i | Th.BSt.m.-.-TF(im<7" 

7Jo ()(K)7:aO(tK(r> <).0O:iMlQ.Or>l*(ir" a002:Pj_(UM:in2 ~K)77Un()7773 “ OXHmY.i£{).m^ U.W:.J.U.U7ir..i ()Ui,U0.1479 0.()-27U:<i.0.H»JHi O.Uit.'<51().12Wy 

T i OW7.Hi() 07S1.1 a.(M):«M±0.0(il)r.4 ().(K)197iQ,0-j(Mfr" () (KHXi)>i:t).<H>14-l 0.(K)7(iHi:0.(>87ftJ “ 0士{| (>.01H12i:0.127r.7 0.01^51±0.nM(i QiO 

T5 o()ii,%±() ̂ m\^ (iw7:«»±o.u7«)i o.iM)(>wio.oK-i2 (KK)'H.io.(Hnfw o.o(W)±o.of):m " m v m o " 7 \'>i _ i ^ 8 t o . m w 0.0iy>ii:0.nM(i n.oifi9r.±0.i290« 

^ 0 01M74-U 1122<» 0m:im+ai0318 ().()i:«Hi:0.10:i ~ (umn+t t .mm 0.0092(>j-0.wni “ 0+U ir^M9+0.1?i42f> 0.020M+0.13U1 O.WM7*0.<M>̂ &-1 

T3 0 07) n±0->r.7^4 0 (K5fWi7iO 2VM 0±n 一 H.OH71i:O.lHl 0.00794±0.<«<H7:t 0.(KKM7i:0.004^ () (Kitq(i±0.19231 0.02273i:<U4W3 0.0277Ki:0.Hi43^ 

7j^ [Tnnn N/A N/A ().nM(.:tlO.U)9ir" OOHmO llHO7 ~)10j->i.0.0714l “ 0.WM5i:0.1>()Hl O.O.S±O.jl7!ja i)U) 

7J^ N/A N M N/A ""7Ta{i)SK±() i403n 0.(>U(i7i:0.10W3 _ 0±0 — N/A «*!] , > � 

l f 7 iNM W\ N/A ^ H l l l U t i l i m V »±0 一 Qi() “ N/A W N/A 

TK NM N/A — N/A • N/A • N/A _ N/A _ N/A N ^ ^ 

— N M N'A N/A “ N/A m JJM ^ ^ ^ 

^j;;^^;^^^^jg;;;;;::::::^^g;g:;;^__^^;(j__^-^)^ N/A I N/'A I m I Ĵ/A I N7A 

TABLE A.22 : Maximal TFBS Prediction Score over 50 runs (Merged Pairs). Each 
block denotes the maximal performance of TFBS Prediction Score of the merged pairs 
over 50 random runs under different settings. The first row denotes the different settings 
for the value of k, whereas the first column denotes the minimal confidence (confidence 

level). 

I Confldepcc I T|-HS-l,nr,-TFl.n... | TFliS^nu-.-TKm.w | TKBS],,...,-TRimr. | TFBSr>mn-TFh»e, | TFasr,mr.-TP,met | TFBS5mcr-TF(>mcr | TFBS<imer-TF4mor | TFBSfi.on-Tr：.....-. | TriiS(.,,..-r-TF(,..H-, 

lTo 0 i i;{s7io:um 0.09isf)±().2r.Ki~ (i.oi:M)iio.i7Kr,2 ~m2:>±( ) : nm • o.o:i7(H±o.iH^oi (ur2<in7io.ifmi2 o.04202i:0.if)7r>i OMmi:O.m>^ uoiuu^n) vi-m 

T i (UWI7i:(U17M O.OWW7d;(Ur>mr> ~M'))3i:().l!)171 ~ 0,Ur>r.Ki:().221l)'i "(UM01Ki0.19W:i 0.0237.SA0.I4lmr" ().05^f.±0.2()S21 0.02Kir)±0.I(i22(> 0.(r>ill^fi) HlH>̂  in 0 i(i227J.() :V2m {) KMXf2l0 27ijr"' (i (H>r>1Ki(1.22:tl1 ~Xi8(>(i±().2HH<)2 “ ().0:i5H8i.().18-î  "ao7i2210.H.M5 O.0:i77,U0.1K:i77 0.(ri70:a0.H.iHi OOHi'ir.ili l̂J!XK̂  
— 0 17702±1) M m O.lOW)UO-iH7:i7" D07it02ji0 2 l r j r " ().QHMltO-2(i%> ~.(M;i3ii().21M o.{y>^?>i>in.i4~ ().»5咖士0.20妨丨 a<mtU±0.14_Wi O l)jmtU.lT2:.l 

— 0 2H-2()f±n m m i) -ir>o^oi(i nr>r.n ~ n i r ; i r m m ?r0<i072±i>.'j2»jn- aoomr,t().2:RMi ".nyw<i(u<i4y) (u>r,7fiQ±<u:»i(i ().av<(w±(u“w7 0.0277Hi0.ifi4^ 

7,- »tmm+OP%.i N7A N/A 0.07K:fc0.2R-iÎ """ U.or)7134-n.-->ol̂  0.g<m7+(umwi 0.WiKlH4:0.2->H^ a05+tUI7<M 0.(Mi2f>*U.2420(» 

TT； N 7 A ^ N/A — _ N/A "TuiG^U.:W)75:i 0.編8:丨全().223丨~ 01 i0 .3 N/A 0.08:»:丨士().27(>:«) 0.a7141i0.257M 
7T7 N/A N/A — N/A a2:t:»:iia372W— ().l(i(M>7lU.:t7a^< (U0 N/A NM ^ 

T s N M N/A N/A N/A N/A N/A ^ J M H 
— , N ^ ^ m N/A - m S/A SVA N/A — N,A 

1.0 I N/A I N/A I N/A I N/A | N/A 丨 N/A | N/A 丨 N/A | N/A | 

TABLE A ,23 : Maximal TFBS Binding Prediction Score over 50 runs (Merged Pairs). 
Each block denotes the maximal performance of TFBS Binding Prediction Score of 
the merged pairs over 50 random runs under different settings. The first row denotes 
the different settings for the value of k, whereas the first column denotes the minimal 

confidence (confidence level). 

[~~ I TKHSItn. i- l'riiiifi I rKBS-lnu-i-TF:.iiin | TFHShiin-Tl fiiiifi | TKHSr.M..i Tniiiffi | 'i rHS-.ni<-i-TI-T.m.-i | TI-'HŜ [i»-i-Tl <.MH-r | TFBSf.n>rT-TK4nwi | TFBS(inwi-TKrHnfi | TFUS(in>rr-TK<.nin 

I (M) I l)(Km>i:l).OI777 ().(M)-iri±(l l)HH2K ».(只)丨丨5土<).(丨:丨:{别丨 ~?17̂丨�》丨<丨土1丨.<)<|{>2̂> U.(K):m2zlU)01<>(i 一()-OU.^i:0.07UVi~ U.(Ji'»lhl±a.in:^H O.On51aO.llM(> O.OlHO5tO.r2tK)X 

I 0 1 I 0(MVi22iOOIT.() 0.(KJ2l7t().(H:̂ r)7 ~aU()i:U±0.(m2:{ (t.(MMmi().t>74̂  a007":ja:_7aj »±0 O.OHmiO.lI72K ().004S±0.0:<H49 "t» 
| o i | lj (X)i%i:(l()MO-2 O.m-M4±iUU77-2 ‘ ().(M)(>12±0.07̂ -14 nu]OK57±O.UUl(>8 0.<X)7L>f)±0.W0ir" 0.O0.Vi:ttO.O7r>-2 '~0.Q->->Mi±0.1470T" O.OlH51xO.nMf> ().0ir>05±().l2fJ()H 

H).3 I ().(KI7Mf(i.07Hl2 ~M)241±0.(r22()l ().(K).-,±Q(l.|(>B9 ~7rW821±Q.(lK7-i(i 0 W.-)5(-.±0.074:i：> <>±0 O.OlKy)tO.I22l 0.0i:W»±0.1170:t O.OQ2M±0.019:ti> 

I 0.4 I (),i):tr.71i:0.isr,r>8 ().0(Hm7±O.oT}?M 0士(） — 0.mf)SKi:0.07f>^7 ^0.007!)4j0.ws7:i U.(xw:i0±a00:vr2 0.(r>4(M^0.14(Wl 0.()I13(>r0.07<.S2 aOmKM:amO% 

I <).r> I i).:,±(),：, N/A N/A - ().oio<n±o.io2r)U ^o-oi42^>^u-nK~ 0.002fia:0.0i78r> ().<y>27:iio.iour> {)mm±o.\ m i)±o 

I o.(i I N/A ^ f l N/A ~0;?yifMli:0 I(»H<J(»~ 0‘0酬丈謹则 ()±Q _ N/A <)=» "土" 
h r f i j^M W k N/A 0.11】11士0.2仆4「> Qj-0 “ n+0 N/A N'/A N/A 

h m W N M N/A - N/A - N/A N/A N/A ^ W 

h n h m r^/A 一 N/A • N/A N/A N/A N/A N'/A N/A 
rrr|~ N/A I N/A I N/A I N/A | N/A | N'/A | N/A 1 N/A 1 N/A 

TABLE A .24 : Maximal Binding Prediction Score over 50 runs (Merged Pairs), Each 
block denotes the maximal performance of Binding Prediction Score of the merged 
pairs over 50 random runs under different settings. The first row denotes the different 
settings for the value of k, whereas the first column denotes the minimal confidence 

(confidence level). 

— I 'rKBSlii"._.TF<<im.i 1 TFBS4mer-TFr<ntPr | Tl'HS lmri. rF()iiin | TKIiSr.tuct-TKImei | i FHS')i_"‘i-mnH-t | TFBSr,m<i-TK<iiwr | TF!tS(m>n-TK4n>er | TFliS(itnPf-TF5tiMT | TFHS<mift-TF(in^ 

"iJ7i (l.(K)7(MJi0.078!l'2 0.(M)3MA0.n5(KMt (l.(W)'2 t7t(MM U.:i n.(IU771il).lD77:i 0.(Kir.W:r().(Mi>!)'> 1>.<批广_士(）（)7!广》:1 0.(«：>25±0.14»̂ )：< 0-(CT):>t0 1(i'>K> 0 ()丨6丨>5土()1200*> 

~ 0.(K17i:<i:0.()7K'i4 <).(K)3&4fQ.(KiOr)) (llH)lf>7i:(>.(n(MH 0 00%!1女<1(>!比7) l)(K)7(.i3:t)<>H7lM 0±0 U.01812t0.l2757 ().01^)1±().11^(» 0±i) 

T T ().()llMii().(W81H 0.0073fli0.n7:Wl U(K)(i8i:ll.{>>̂ '>2 一 IUMM)<>i:<).(KJ:i!W U.WW±l).l)^):t^~ ().(X)M.{t().()7:r>> O.O:il5ht0.l74SH OOKi5ItO llM(>^ 化01咖±<】1』鄉 

~ IM>l.M7^0.ni2(i ^ ) X n m t 6 . m n r 0.(li:ilM±n i(>:ni ~W>!H7i:()(>!HK^ • O.UW2<itO(Wn~' C)±0 U.(ri-j:wt0.ir>4^ (1.021)K-if().i:U)l "0.(KJHl7t<).0(>ir.T" 

~ O.oTll.UO.-irtTM n.(MKW7t0.2^914 0±0 — U.Oi.l7l3:().1141 0.(X)7fMtO.()HS7H 0.ixm7i:a00451 <1.0{片4<;土().1{?231一 n.Oj'J7:tr(l.UWn O.a277HtO-l(i4:y 
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~ N/A N/A N/A 一 0.0:iOH8iHl<0:M) ^»04Ui7±0.1!)!)~ OiO N/A (>¾" '>*» 

"UT N/A N/A N/A 0,linii0,'i4815 oIo UtO N/A N/A N'/A 

— m r^/A - N'/A _ N/A — S'/A N/A K'/A N/A — N/A 
i r r N/A N/A N/A N/A N/A 一 N/A — N/A N/A S/A 

1.(1 I N M I N'/A I N/A I N/A 丨 N/A | N/A | N/A | N/A | N/A 



Appendix ^Q^ 

TABLE A.25: 631 TRANSFAC 2008.3 IDs and Factor Names used 

m FftTtor N»ii»- I in K.irt<>r Nmm, | ID Fartnr NniuP J ID Factor N«m>- | ID F^ t.>r Nmm- — lD Ftu-Un N,mie 
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T()(Kn() AhR TWm-A Ubx TOHW2 AM-A TOJ(ilO SXR T08Wr> WRKY1 H(XWO P(WV2 
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T(KX)7U Cml TOON()() WT1 T020r.0 Nkx(i-2 T0472h CDCriL mh87h 0|miiu.w2 TlU2(>7 (JATA-(i 

T(MK)80 CBF1 'roO!MO YB-I TiV2im HOXlI T04733 AUlnl TOh472 KAR2 T W m NkxM 

'rO{)l(M C/KBP.ilphn TO(Wir) YY1 'rU2W:i KNOX;j T047:M i'oporviw.fc>niil TtWJ7h Dl-A T1U211 Kvi-1 
T(H)lWi C/liBP 'I'(K)')17 Z.'ii-1 T02(Mitt PU.1 'HM7h3 »utTFA T<)h5Wri Pti4 TlU2<i"i LRH-1 

TOm()!i C/I-:nP<Mu 'roO!Jlh Z.^t.. 'l'0209u 7.0̂ -2 TO-J7M PK1 11>W,MJ hWl Tl"27“ Ent. 

TOOn2 f-Et,s-l TOW)2;i Zt.i nV2KM) Zi^tv T()4SM FOXPlu TOhlWl HIF-Ul|jlia-i»nfoniil T102ft2 C)u2 

TOOll：} f.KtH-2 1,0092¾ AMTJ 1^)2128 SAP-Ih T(M817 U M I TWm\ nPCI V i m 7 IA-1 
rO{)J 15 c-KiH-l (i8 TOO!);{7 HBP-la T02I42 OCA-B T<MS1!* KmBP U ’nwmh N-Myt l U ) m NHF-1 
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T0017!) CUP2 ruiOr,{) MNBla T02302 GCM T() .̂137 CA7,U] T(WlW R”lA-p(ir, Tl(>r,7:i DRKBlA 
T { W m DBP '101072 TKF Y02:UA MIBPl W . l H ) DSF T<mil7 K'iF-1 TH)',t^ Simli 
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'r(M)r>Ol) M(:M1 T()ir>2h nORnljilm2 T(ni78 SgUA Ti)h-m Kaiw) T(M"7^ K J A b i T l U l O M«fA 
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rO()(i27 NI12 T()l(il9 lIKS-1 '10:i4'l7 UlX3h ' i m m |>r..{ TOMMil R<mz TWVi'> ChxlO 
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Appendix ^Q^ 

A.1 Problem Definition in Chapter 3 

m transcription factors { T F ^ T F ^ , . . . ,TF'" } are concerned. Each transcription factor 
TF^ chemically binds to several binding sites, which are collectively called transcrip-
tion factor binding sites. Each of them is denoted by TFBSj, the j-th transcription 
factor binding site which chemically binds to TF\ For example, TFBS^ denotes the 
5-th transcription factor binding site which chemically binds to TF^. Since different 
transcription factors can bind to different number of transcription factor binding sites, 
N^ denotes the number of the transcription factor binding sites which can chemically 
bind to TF\ For example, we have the following transcription factor binding sites 
{TFBSf,TFBSl . . . ,TFB5^3} which can chemically bind to TF^. They are formally 
defined as follows: 

Definition 3.1 TF^ denotes the i-th transcription factor where 1 < i < m. 

Definition 3.2 TFBSj denotes the j-th transcription factor binding site which chemi-
cally binds to T_P where 1 < i < m and 1 < j < N\ 

To discover the binding sequence patterns between m transcription factors and their 
transcription factor binding sites. Sequence data is introduced. But, before doing so, 
some basic notations needs to be defined: AAseq denotes a string with the amino acid 
alphabet, DNAseq denotes a string with the DNA alphabet, and kmer denotes a string 
with length = k. Thus AAseq' denotes the AAseq of TF�whereas DNAseq^ denotes 
the DNAseq of TFBSj. 

The following sequence dataset is given for each transcription factor : the amino acid 
sequence of the transcription factor and the DNA sequences of the transcription factor 
binding sites which can chemically bind to the transcription factor. The dataset for 
TF' is thus denoted by TFdatasef: {AAseq\DNAseq]\^j e NJ < i V | In total, 
{TFdataset^, TFdatasef, ...,TFdatasef^} is given in this problem. To dig out binding 
sequence patterns from them, we would like to know which kmers are found in the amino 
acid sequence AAseq\ Thus a function F (Found) is defined: 

Definition 3.3 If the kmer A is a substring of the string S, F{A,S) = 1. Other-
wise, F{A,S) = 0. 

In each TFdataset\ we would also like to know which kmers are commonly found in the 
DNA sequences {DNAseq]\Wj e N , j < Ni}. Thus a function CF' (Commonly Found) 
is defined: 

Definition 3.4 Let ThresholdcF G [0,1], and DNAseq^ be the DNAseq of TFBS]. If 
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Eff i F{A^DNAseq)) ^ ThresholdcF, CF'{A) = 1. Otherwise, CF'{A) = 0. 

In particular, we are interested in the pairs of kmers in which one is found in the 
amino acid sequences of some transcription factors while the other is commonly found 
in the DNA sequences of their transcription factor binding sites. Such pairs are then 
called 'frequently co-occurring' defined as follows: 

Definition 3.5 Let Thresholdsupport € N+, ki G N+, and k) € N+. A pair of kmers 
(A-B) is frequently co-occurring if ^'='。卩{A)xF{B,AAseq ) ^ Thresholdsupport where A 
is a kimer and B is a k2rr1er. 

We assume that the pairs of kmers frequently co-occiirring are the binding sequence 
patterns which we aims to find. Thus the problem definition is summarized as follows: 
Given Thresholdcr € [0,1], Thresholdsupport G N+, ki e N+, k2 G N+, we would like 
to find all pairs (A-B) frequently co-occurring where A is a kimer and B is a k2mer. 
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