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“Biology and computer science - life and computation - are related. I am confident that

at their interface great discoveries await those who seek them.”

Leonard Adleman, Scientific American Magazine 1998
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With increasing computational power, availability of databases with massive protein and
DNA data, and mature data mining techniques, a framework is proposed to discover
associated protein-DNA binding sequence patterns from TRANSFAC.

To further analyze the discovered sequence patterns in the huge search space, two evolu-
tionary algorithms are proposed. In particular, the evolutionary algorithms are specially
designed for multimodal optimization to avoid premature convergence and genetic drift.
The one with less number of parameters (CrowdingGA-L) is selected and applied to
learn the protein-DNA bindings in generalized sequence representations. Some promis-

ing results are obtained.

As a further application, CrowdingGA-L is also applied to predict protein structures on a
lattice model. The experiments show that it can be applied to obtain results comparable

with the other state-of-the-art algorithms, although it is a relatively simple technique.
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Chapter 1

Introduction

1.1 Motivation

Protein-DNA bindings between transcription factors (TFs) and transcription factor
binding sites (TFBSs) play an essential role in transcriptional regulation. However,
it is expensive and laborious to experimentally identify TF-TFBS binding sequence
pairs, for example, using DNA footprinting [3] or gel electrophoresis [4]. The technology
of Chromatin immunoprecipitation (ChIP) [5, 6] measures the binding of a particular
TF to DNA of co-regulated genes on a genome-wide scale in vivo, but at low resolu-
tion. Further processing are needed to extract precise TFBSs [7]. TRANSFAC [8] is
one of the largest and most representative databases for regulatory elements includ-
ing TFs, TFBSs, nucleotide distribution matrices of the TFBSs, and regulated genes.
The data are expertly annotated and manually curated from peer-reviewed and exper-
imentally proved publications. Other annotation databases of TF families and binding
domains are also available (e.g. PROSITE [9], Pfam [10]). It is even more difficult
and time consuming to extract high-resolution 3D TF-TFBS complex structures with
X-ray crystallography or Nuclear Magnetic Resonance (NMR) spectroscopic analysis.
Nevertheless, the high-quality TF-TFBS binding structures provide valuable insights
into verifications of putative principles of binding. The Protein Data Bank (PDB) [11]
serves as a representative repository of such experimentally extracted protein-DNA (in
particular TF-TFBS) complexes with high resolution at atomic levels. However. the
available 3D structures are far from complete. As a result, there is strong motivation
to have automatic methods, particularly, computational approaches based on existing
abundant data, to provide testable candidates of novel TF domains and Jor TFBS motifs
with high confidence to guide and accelerate the wet-lab experiments.
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1.2 Objective

To propose computational methods and apply them to provide testable candidates of
novel TF-TFBS binding sequence pairs with high confidence to guide and accelerate the
wet-lab experiments.

1.3 Methodology

A bioinformatics framework is proposed to discover associated TF-TFBS binding se-
quence patterns from TRANSFAC. To further analyze the discovered sequence pat-
terns in the huge search space, two evolutionary algorithms are proposed. In particu-
lar, the evolutionary algorithms are specially designed for multimodal optimization to
avoid premature convergence and genetic drift. The one with less number of parame-
ters (CrowdingGA-L) is selected and applied to generalize the sequence representations.
Some promising results are obtained. As a further application, CrowdingGA-L is also
applied to predict protein structures on a lattice model. The experiments show that it
can be applied to obtain results comparable with the other state-of-the-art algorithms,
although it is a relatively simple technique.

1.4 Bioinformatics

In recent years, genome sequencing projects around the world have successfully worked
out the whole genomes for different species . In 1995, the first free-living organism
Haemophilus influenzae was sequenced by The Institute for Genomic Research[12]. In
1996, the first eukaryotic genome was completely sequenced. It was the model eukaryote
species, Saccharomyces cerevisiase[13]. In 2000, the first plant genome, Arabidopsis
thaliana, was also sequenced by Arabidopsis Genome Initiative[14]. Finally in 2006,
with the last chromosome sequenced, the Human Genome Project (HGP) announced its
completion[15]. Although the above, the story has not ended yet. Merely raw genomic
sequence data is not sufficient for scientists to jump into any meaningful conclusions.
Further data analysis of the genomes is required.

In particular, computational methods have been attracting increasing attention due to
its high speed and low cost, comparing to wet-lab experiments. They are collectively
known as bioinformatics. “For instance, motif discovery [16] helps us distinguish real
signals from the background sequences. Multiple sequence alignment [17] can be used
to study the similarity between multiple sequences. Protein structure prediction [18]
can be applied to predict the 3D tertiary structure from an amino acid sequence. Gene
network inference [19] uses statistical methods to infer gene network from microarray



Chapter 1. Introduction 3

data. Promoter prediction [20] help us annotate the promoter region in a genome.
Phylogenetic tree inference [21] can be used to study the relationship between different
species. Drug scheduling [22] can help doctors solve the clinical problems in an effective
manner. Although the accuracy of the methods is sometimes lower than that of wet-lab
experiments, they can still serve as useful preprocessing tools to significantly narrow the
search space. Thus putative candidates can be selected for further validation by wet-lab
experiments. Time and money are saved.

1.5 Computational Methods

1.5.1 Evolutionary Algorithms

Evolutionary algorithm builds a bridge between computer science and natural science
(23]. Instead of artificial creation, evolutionary algorithm emphasizes on learning from
the nature. Nature rules are applied or modeled to build brand-new computational tech-
niques, which can be well adapted and integrated into different contexts. For instance,
inspired from the Darwin’s evolutionary theory, John Holland has proposed a computa-
tional technique called genetic algorithm which resembles the evolutionary process for
natural selection. In a typical run, it simulates the natural mechanism of a group of
individuals (called population). The individuals perform crossovers with each other to
form offspring, who probabilistically undergo mutations. After that, it comes to survival
selection. Fitter offspring will be retained and kept to the next generation. The offspring
become parents. They, again, crossover with each other to form offspring. Iteratively, it
is expected the population become fitter and fitter. Optimization can thus be achieved.

Since genetic algorithm was proposed by John Holland [24] in the early 1970s. evolution-
ary algorithm has emerged as a popular research field. Researchers from various scientific
and engineering disciplines have been digging into this field and exploring the power of
evolutionary algorithms. Many international conferences specialized for evolutionary al-
gorithms have been created like ACM GECCO, IEEE CEC, EvoStar, and PPSN. .. With
such a diverse base of researchers, many applications have been successfully proposed in
the past twenty years. For example, mechanical design [25], electromagnetic optimiza-
tion [26], environmental protection [27], finance [28], musical orchestration [29], pipe
routing [30], and nuclear reactor core design [31]. In particular, its function optimiza-
tion capability was highlighted [32] because of its high adaptability to different function
landscapes, to which we cannot apply traditional optimization techniques.

The design of evolutionary algorithms draws inspiration from the nature. They simulate
the natural mechanism and are closer to the nature. It is intuitive that they should be
among the best methods in bioinformatics to decipher the nature . Thus evolutionary

algorithms are heavily analysed and involved in the framework proposed in this thesis.
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1.5.2 Data Mining for TF-TFBS bindings

The first attempt of computational methods related to TF-TFBS bindings was to dis-
cover the motifs of TF domains and TFBSs separately. Many data mining approaches
have also been proposed [33]. Researchers employ and transfer additional detailed infor-
mation such as base compositions, structures, thermodynamic properties [34, 35] as well
as expressions [36], into sophisticated features to fit into certain data mining techniques.
Although some approaches may provide interpretable rules, most of them have stringent
data requirements which cannot be obtained trivially. Existing data beyond sequences
are also insufficient and limited for practitioners. These methods usually extract com-
plicated features rather than working on interpretable data directly. Many data mining
techniques, such as neural networks, support vector machines (SVM) [37], and regres-
sions [33], may generate rules which are not trivial to interpret. Furthermore, many
data mining approaches are based on specific families or particular datasets, where the
generality of the results are limited. On the other hand, sequences serve as the most
handy primary data which carry important information for protein-DNA bindings [38].
It is desirable to make use of the large-scale and comprehensive sequence data to mine
explicit and interpretable TF-TFBS binding rules. A framework for discovering the
binding information is thus proposed in this thesis.
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Background

2.1 Gene Transcription

DNA makes RNA, RNA makes Protein is the central dogma of molecular biology.
The first process is called Transcription, whereas the second process is called Transla-
tion. For each gene being expressed, there is probably a promoter region upstream of it.
When several transcription factors (TFs) bind on the transcription factor binding sites
(TFBSs) on a promoter region, it will direct an RNA polymerase to the correct tran-
scriptional start site and transcript the target gene into RNA. The above gene regulatory
process is called Transcription, whereas the elements involved are called Transcrip-
tion regulatory elements. There are also some enhancer and silencer regions around
the promoter region which can enhance and hinder the transcription process at a certain
level respectively, as shown in Figure 2.1.
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2.1.1 Protein-DNA Binding

Protein-DNA binding plays a central role in genetic activities such as transcription,
packaging, rearrangement, and replication (39, 40]. Therefore it is very important to
identify and understand the protein-DNA bindings as the basis for further deciphering
biological systems. We focus on protein-DNA bindings between Transcription Factors
(TFs) and Transcription Factor Binding Sites (TFBSs), which are the primary regulatory
activities with abundant data support. TFs bind in a sequence-specific manner to TFBSs
to regulate gene transcription (gene expression). The DNA binding domain(s) of a TF
can recognize and bind to a collection of similar TFBSs, from which a conserved pattern
called motif can be obtained. TFBSs, the nucleotide fragments bound by TFs, are
usually short (usually about 5 - 20 bp) in the cis-regulatory/intergenic regions, and can
assume very different locations from the transcription start site (TSS).

It is expensive and laborious to experimentally identify TF-TFBS binding sequence
pairs, for example, using DNA footprinting [3] or gel electrophoresis [4]. The technology
of Chromatin immunoprecipitation (ChIP) [5, 6] measures the binding of a particular
TF to DNA of co-regulated genes on a genome-wide scale in vivo, but at low resolu-
tion. Further processing are needed to extract precise TFBSs [7]. TRANSFAC (8] is
one of the largest and most representative databases for regulatory elements includ-
ing TFs, TFBSs, nucleotide distribution matrices of the TFBSs, and regulated genes.
The data are expertly annotated and manually curated from peer-reviewed and exper-
imentally proved publications. Other annotation databases of TF families and binding
domains are also available (e.g. PROSITE [9], Pfam [10]). It is even more difficult
and time consuming to extract high-resolution 3D TF-TFBS complex structures with
X-ray crystallography or Nuclear Magnetic Resonance (NMR) spectroscopic analysis.
Nevertheless, the high-quality TF-TFBS binding structures provide valuable insights
into verifications of putative principles of binding. The Protein Data Bank (PDB) [11]
serves as a representative repository of such experimentally extracted protein-DNA (in
particular TF-TFBS) complexes with high resolution at atomic levels. However, the
available 3D structures are far from complete. As a result, there is strong motivation
to have automatic methods, particularly, computational approaches based on existing
abundant data, to provide testable candidates of novel TF domains and/or TFBS motifs
with high confidence to guide and accelerate the wet-lab experiments.

2.1.2 Existing Methods

The first attempt of computational methods related to TF-TFBS bindings was to dis-
cover the motifs of TF domains and TFBSs separately. Moreover, researchers have
been trying hard to generalize the one-to-one binding codes from existing 3D structures.
Data mining methods have also been proposed with feature transformations and machine
learning to decipher complicated binding rules. They are briefly described as follows:
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Motif discovery: TF domains and TFBSs sequences are somewhat conserved due to
their functional similarity and importance. By exploiting conservation in the sequences,
Bioinformatics methods called motif discovery save some of the expensive and laborious
laboratory experiments. Motif discovery [6] can be categorized into two types: (a) motif
matching and (b) de novo motif discovery. (a) Motif matching is to identify putative
TF domains [9, 10] or TFBSs [41] based on motif knowledge obtained from annotated
data. (b) de novo motif discovery predicts conserved patterns without knowledge on
their appearances, based on certain motif models and scoring functions [42, 43] from
a set of protein/DNA promoter sequences with similar regulatory functions. While
de novo motif discovery is successful for well conserved TF functional domain motifs,
the counterpart for TFBSs remains very challenging with poor performances on real
benchmarks [6, 44, 45]. A significant limitation of motif discovery is the lack of linkage
between the binding counterparts for revealing TF-TFBS relationships.

One-to-one binding codes: Numerous studies have been carried out to analyze existing
protein-DNA binding 3D structures comprehensively [40, 46, 47] or with focus on specific
families [39] (e.g. zinc fingers [48]). Various properties have been discovered concerning,
e.g., bonding and force types, TF conservation and mutation [39], and bending of the
DNA [46]. Some are already applicable to predict binding amino acids on the TF side,
e.g. [49]. However, annotated data are far from complete. Alternatively, researchers
have sought hard for general binding “codes” between proteins and DNA, in particular
the one-to-one mapping between amino acids from TFs and nucleotides from TFBSs.
Despite many proposed one-one binding propensity mappings [39, 50, 51], it has come
to a consensus that there are no simple binding “codes” [38].

Data mining: In the hope of better understanding for protein-DNA bindings, many
data mining approaches have also been proposed [33]. Researchers employ and transfer
additional detailed information such as base compositions, structures, thermodynamic
properties [34, 35] as well as expressions [36], into sophisticated features to fit into
certain data mining techniques. Although some approaches may provide interpretable
rules, most of them have stringent data requirements which cannot be obtained trivially.
Existing data beyond sequences are also insufficient and limited for practitioners. These
methods usually extract complicated features rather than working on interpretable data
directly. Many data mining techniques, such as neural networks, support vector ma-
chines (SVM) [37], and regressions [33], may generate rules which are not trivial to
interpret. Furthermore, many data mining approaches are based on specific families
or particular datasets, where the generality of the results are limited. On the other
hand, sequences serve as the most handy primary data which carry important informa-
tion for protein-DNA bindings [38]. It is desirable to make use of the large-scale and

comprehensive sequence data to mine explicit and interpretable TF-TFBS binding rules.
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2.1.3 Related Databases

2.1.3.1 TRANSFAC - Experimentally Determined Database

Up to now, TRANSFAC is the state-of-the-art database on experimentally proven tran-
scription regulatory elements [52]. It has been developed since 1996 [53]. BIOBASE
GmbH in Germany is now in charge of it. It is a database on transcription factors,
binding sites, and regulated genes for all species. Positional weight matrices are derived
using the above data. Up to TRANSFAC 2008.3, it have 11,683 transcription factor
data, 30,227 binding site data and 33,159 regulated gene data according to the BIOBASE
company website (http://www.gene-regulation.com /fags/TFsubscription.html). At the
same time, TRANSFAC also have different modules to complement its main core data:

PathoDB, S/MARt DB, TRANSPATH, CYTOMER, TRANSPro, and TRANSCompel
52, 54).

PathoDB is a database storing information about pathologically relevant mutations in
transcription factor genes or in their binding sites. It comprises numerous cases of defec-
tive transcription factors or mutated transcription factor binding sites, which are known
to cause pathological defects. S/MARt DB has been built as a relational database which
comprises Scaffold matrix attached regions (S/MARs) and S/MAR-binding protein data.
Scaffold matrix attached regions (S/MARs) have been shown to affect transcriptional
regulation as a distinct class of cis-acting elements, but only recently they were shown
to be targeted by several chromatin remodeling factors and thereby to influence gene
expression. Besides S/MARs, a lot of transcription factors are regulated in response to
extracellular signaling molecules. To capture such kind of information, TRANSPATH
is built as a database on the signal transduction data. CYTOMER is a relational
database that comprises tables for organs, cell types, physiological systems and devel-
opmental stages. TRANSPro is a database on eukaryotic promoter sequences. Last
but not least, TRANSCompel is a database on composite regulatory elements affecting
gene transcription in eukaryotes. Composite regulatory elements consist of two closely

situated binding sites for distinct transcription factors, and provide cross-coupling of
different signaling pathways.

The TRANSFAC data is expertly annotated, manually curated from peer-reviewed pub-
lications, which have been experimentally proved. The curators search on the literatures
and input the digested data into database via input clients, using controlled vocabulary.
A quality measure is assigned to each database entry. The quality measure is assigned
based on the quality of the related literature. For example, the absence of errors and re-
dundancy, the completeness, unambiguousness, high integration with other data sources,
and existing commentary. TRANSFAC has been linked to a number of databases. For
instance, TRANSFAC contains cross-references to the EMBL data library and to the
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FIGURE 2.2: A screenshot of TRANSFAC

SwissProt database. To browse the database, web interfaces have been developed in
TRANSFAC for users to query and browse the data.

On the application side, TRANSFAC has a tool called Match which is a web-based tool
to identify transcription factor binding sites by weight matrix search in DNA sequences.
Match is integrated in TRANSFAC Professional and equipped with positional weight
matrices for analysis. Besides Match, Patch is also provided as a web-based tool which
identifies transcription factor binding sites by pattern matching in DNA sequences. The
transcription factor binding sites of TRANSFAC Professional are used as search patterns.
Third-party tools have been integrated to enhance its usability. For instance, BLAST is
connected and called *TfBlast’ in TRANSFAC. It is a search tool for sequence homology
search in the TRANSFAC Transcription Factor data. Other miscellaneous tools have
also been connected. Details can be referred to the TRANFAC website.

TRANSFAC public version is free for online use at http://www.gene-regulation.com/
pub/databases.html, whereas TRANSFAC professional version needs fee subscriptions.
The professional version has considerably large data amount comparing to the public
version. Only flat files can be downloaded in the professional version.

2.1.3.2 cisRED - Computational Determined Database

cisRED was published in 2006 [55] and developed by Canada’s Michael Smith Genome
Sciences Centre in Canada. cisRED is a database on computationally predicted reg-

ulatory element data in eukaryotes. The real genome data is downloaded from the
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Internet. Genome-scale prediction approaches are then applied to scan over the real
genome data to obtain the computationally predicted binding site data (motif data).
These approaches involve multiple motif discovery methods, optimal p-value tuning us-
ing known data (experimentally determined data) and clustering methods to identify
similar motifs. cisRED contains 236k motif data for human genome, 223k motif data for
mouse genome, 116k motif data for rat and 158k motif data for C.elegans. As the data
is computationally derived, the motif data is not experimentally proved. The quality
of motif data greatly depends on the accuracy and sensitivity of those motif discovery
methods, though these methods are applied to the real genome data.

As the genome data is downloaded from others, the genome data is linked to the respec-
tive organizations such as Ensembl. On the other hand, as the motif data is predicted
by cisRED, there is no external reference links to them. The motif data can be viewed
directly in cisRED’s user interfaces. UCSC genome browser can be used for browsing.
Direct SQL query can also be sent to the cisSRED database. Though not directly related
to the application field of cisRED, some applications can be downloaded via the cisRED
web interfaces for further analysis. For example, Sockeye and HitPlotter. cisRED is
available at http://www.cisred.org/. All data can be downloaded as MySQL files.

2.1.3.3 ORegAnno - Community Driven Database

With the open-source and open-access atmosphere wide-spreads on the Internet in recent
years, a database called ORegAnno appeared in 2008[56]. ORegAnoo is an open-access
community-driven database and literature curation system for regulatory annotation.
ORegAnno is a database on regulatory regions of all species. As of November 2008,
ORegAnno contains 37469 regulatory region data, 14607 binding site data, 175 regu-
latory polymorphism data and 7 regulatory haplotype data. One distinguished feature
of ORegAnno is its data acquisition methods. A queue called "Publication queue” has
been implemented in ORegAnno. If some users feel that the publications give some
results suitable for annotations, the users can freely input publications into this queue.
On the other hand, users can also choose to check out publication from the queue and
help ORegAnno perform manual curation and data extraction. Text-mining queue has
also being developed to automate the publication insertion. Basic error checking is
performed when inserting/updating data such as checking whether there is an existing
data record with the same value. Existing data entry can be updated, commented, and
scored. It is scored positive if users verify it as correct, it is scored negative if a problem
is found. Nevertheless, in case of wrong annotation, the curated data entry can also be
replaced or commented by other 'Validator’ users. Such highly dynamic activities can
ensure that the system maintain an acceptable quality, though may not be the highest
quality. It is just something like Wikipedia vs Commercial encyclopedia (ORegAnno
vs TRANSFAC). Besides, an ORegAnno evidence ontology has been created to capture
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critical details from primary experiments so that each data entry can be described using
a controlled set of vocabularies.

The records are well cross-referenced. Each data entry is cross-referenced to UCSC,
Ensembl, EBI, PubMed, and dbSNP. ORegAnno can also been accessed through web
services using Perl SOAP modules. Basic web query interfaces are available on the
ORegAnno website. Ensembl and UCSC genome browser are also connected in ORe-
gAnno. Sequence fetchers and scanners are equipped in ORegAnno. Several external
applications such as Sockeye are connected in ORegAnno. ORegAnno is available at
http://www.oreganno.org/. All data can be downloaded as XML files. MySQL dump
can be downloaded by addressing to the authors.
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2.2 Evolutionary Algorithms

Algorithm 1 A Typical Evolutionary Algorithm
Choose suitable representation methods;

P(t): Parent Population at time ¢
O(t): Offspring Population at time ¢

t — 0
Initialize P(t);
while not termination condition do
temp = Parent Selection from P(t);
O(t + 1) = Crossover in temp;
O(t + 1) = Mutate O(t + 1);
if overlapping then
P(t + 1) = Survival Selection from O(t + 1) U P(t) ;
else
P(t + 1) = Survival Selection from O(t + 1) ;
end if
t—1t+1;
end while

Good individuals can then be found in P(t);

Evolutionary algorithms ! draw inspiration from the nature. An evolutionary algorithm
starts with a population randomly initialized. The population then evolve across sev-
eral generations. In each generation, some individuals are selected to become parent
individuals. They crossover with each other to form new individuals, called offspring in-
dividuals. Some of the offspring individuals may then undergo certain mutations. After
that, the algorithm selects individuals according to the survival selection scheme de-
signed. If the algorithm is overlapping [57], then both parent and offspring populations
will participate in the survival selection. Otherwise, only the offspring population will
participate in the survival selection. The selected individuals then survive to the next
generation. Algorithm 1 briefly outlines a typical evolutionary algorithm.

In this section, we follow the unified approach proposed by De Jong [57]. The design of an
evolutionary algorithm can be partitioned into several modules: representation, parent
selection, crossover operators, mutation operators, survival selection, and termination
condition :

e Representation involves genotype representation and genotype-phenotype map-
ping. [57]. For instance, we may represent an integer (phenotype) as a binary

'Indeed, evolutionary algorithms can also be classified as parallel point search methods which it-
eratively sample a predefined space to maximize an objective function. A point is an individual. A
population refers to a group of points. An iteration is called a generation. The search space scored by
the objective function is called the fitness landscape.
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array (genotype) like '19’ as '10011" and '106’ as '1101010’. If we mutate the first
bit, then we will get '3’ (00011) and ’42’ (0101010). In the examples, even we have
mutated one bit in the genotype, the phenotype may vary very much. Thus we
can see that there are a lot of considerations in the mapping. Thus representation

is one of the most important parts in design. It will be further discussed in section
2.2.1.

e Parent selection aims to select good parent individuals for crossover, where the
goodness of a parent individual is typically proportional to its fitness. Thus most
parent selection schemes prefer giving more opportunities to the fitter parent in-
dividuals and vice versa such that fitter offspring individuals are more likely to be
generated. Details can be referred to section 2.2.2.

e Crossover operators simulate the reproduction mechanism in the nature. Thus
they, with mutation, are sometimes called reproductive operators. In general, a
crossover operator combines two individuals to form a new individual. It tries to
split an individual into parts and then assemble the parts into a new individual.
Details can be referred to section 2.2.3.

e Mutation operators simulate the mutation mechanism in which some parts of a
genome undergoes random changes in the nature. Thus, as a typical modeling, a
mutation operator in an evolutionary algorithm changes parts of the genome of an
individual. In a typical run, mutations can be regarded as exploration mechanisms

to balance the exploitation power of crossover operators. Details can be referred
to section 2.2.4.

e Survival selection aims to select a subset of good individuals from a set of indi-
viduals, where the goodness of a individual is also proportional to its fitness in
a typical case. Thus survival selection mechanism is somehow similar to parent
selection mechanism. In a typical framework like "TEC4’ [57], most parent selec-

tion mechanisms can be re-applied in survival selection. Details can be referred to
section 2.2.5.

e Termination condition refers to the condition at which an evolutionary algorithm
should end. Details can be referred to section 2.2.6.

To design an evolutionary algorithm, we need to choose a suitable combination of the
above modules. However, several choices are available for each module. In total, there
are hundreds of combinations available for a designer to choose. Thus some discus-
sions are provided in section 2.2.7. Furthermore, some solid examples of evolutionary
algorithms are described in section 2.2.8.
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FIGURE 2.5: Representation Examples in Evolutionary Algorithms. (a) Integer repre-
sentation (b) Protein structure representation on a lattice model (c) Tree representation
for a mathematical expression

2.2.1 Representation

Representation involves genotype representation and genotype-phenotype mapping. In
most cases, designers try to keep a genotype representation as compact as possible while
keeping it as close to the corresponding phenotype representations as possible such that
the metrics, say distance, in the genotype space can be mapped to those in phenotype
space without losing much semantic information.

In general, there are many types of representations that an evolutionary algorithm can
employ like fixed-length linear structures, variable-length linear structures, and tree
structures ...To be concrete, Figure 2.5 depicts three examples. Figure 2.5a is one of
the representations for a vector of integers. We can observe that its genotype is a binary
array with length equal to 10. To map it into the phenotype space, the first 5 binary
digits (10011) are mapped to the first element (19) of the vector whereas the remaining
5 binary digits (11110) are mapped to the second element (30) of the vector. Figure
2.5b is the relative encoding representation for a protein on a lattice model [38]. Its
genotype is an array of moves and its length is set to the length of the amino acid
sequence of the protein. The array of moves encodes the relative positions of amino
acids from their predecessor amino acids. Thus we need to simulate the move sequence
to get the 3D structure of the protein (phenotype) for further evaluations. Figure 2.5¢ is
the tree representation for a mathematical expression. Obviously, such tree structure is
a variable length structure, which has the flexibility in design. If the expression is short,



Chapter 2. Background 16

it can be shrunk during the evolution. If the expression is long, it can also be expanded
during the evolution. Thus we can observe that the structure has an advantage over
the previous representations. Nevertheless, there is no free lunch. It is also harder for
people to implement and translate it into the corresponding phenotype. For example,

the corresponding mathematical expression in infix notation format.

2.2.2 Parent Selection

Parent selection aims to select good parent individuals for crossover, where the goodness
of a parent individual is typically proportional to its fitness. Thus most parent selection
schemes prefer giving more opportunities to the fitter parent individuals and vice versa.
Here are some methods:

e Fitness Proportional
The scheme is sometimes called roulette wheel selection. In the scheme, the fit-
nesses of all individuals are summed. Once summed, the fitness of each individual
is divided by the sum. The ratio then becomes the probability for each individual
to be selected. If an algorithm needs to select an individual, then it will select the
individuals based on the probability calculated.

e Rank Proportional
Unlike fitness proportional scheme, the rank proportional scheme does not depend
on the actual values of the fitnesses of the individuals. It is a double-edged sword.
On the positive side, it can help us prevent the domination of very high fitness
values. On the negative side, it imposes more computational costs to rank individ-
uals such that the individual with a higher rank can be given a higher probability
to be selected.

e Uniform Deterministic

Every individual is selected.

e Uniform Stochastic

Every individual is given equal probability to be selected.

e Binary Tournament
Actually, there are many tournament selection schemes available. In this section,
the most basic one, binary tournament, is described. In each binary tournament,
two individuals are randomly selected and competed with each other by fitness.
The winner is then selected. It is repeated until all vacancies are filled.

e Truncation
Fitter individuals are selected deterministically when there is a vacancy for selec-

tion. In other words, worse individuals are never selected. For example, if there are
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100 individuals and 50 slots are available for selection, the top 50 fittest individuals
will be selected.

2.2.3 Crossover Operators

Crossover operators simulate the reproduction mechanism in the nature. Thus they, with
mutation, are sometimes called reproductive operators. In general, a crossover operator
combines two individuals to form a new individual. It tries to partition an individual
into parts and then assemble the parts of two individuals into a new individual. The par-
titioning is not a trivial task. It depends on the representation the individuals have used.
Thus it is not hard to imagine that crossover operators are representation-dependent.

Nevertheless, without loss of generality, a list of crossover operators commonly used is
shown below:

e One Point Crossover
One point crossover is a commonly used crossover operator because of its simplicity.
Given two individuals, it randomly chooses a cut point in their genomes. Then it

swaps the parts after (or before) the cut point between the two genomes. Figure
2.6a depicts an example.

e Two Point Crossover

Two point crossover is also a commonly used crossover operator because people
argue that one point crossover has a positional bias toward the terminal positions.
For instance, when making a one point crossover in Figure 2.6a, the rightmost
(or leftmost) bit is always swapped because most cut points are before the bit.
Thus the bit is mandated to be swapped, making it unable to stay after every one
point crossover operation. Thus people propose two point crossover to avoid the
positional bias. Figure 2.6b depicts an example.

e Uniform Crossover

Uniform crossover is a general one. For each gene, it gives a uniform probability
to be swapped.

e Blend Crossover
Blend crossover is commonly used in real number optimization. Instead of swap-
ping genes, it tries to blend two genes together and get the intermediate values.
For instance, if we are going to make a crossover between two vectors [1 2 3] and
[4 5 6], then the blended vector will be [2.5 3.5 4.5]. But, of course, the previous
case is a typical example. Weights are sometimes given.
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FIGURE 2.6: One Point Crossover and Two Point Crossover Examples

2.2.4 Mutation Operators

Mutation operators simulate the mutation mechanism in which some parts of a genome
undergoes random changes in the nature. Thus, as a typical modeling, a mutation
operator in an evolutionary algorithm changes parts of the genome of an individual
probabilistically. Again, similar to crossover operators, mutation operators are repre-
sentation dependent. Nevertheless, without loss of generality, a list of commonly used
mutation operators is shown:

e Bitflip Mutation

Bitflip mutation is commonly used in binary genomes. Specified by a pre-defined
probability, each bit in a binary genome is probabilistically inverted.

e Random Mutation
Random mutation is generalized from bitflip mutation. It can be applied in many

genomes. Specified by a pre-defined probability, each gene in a genome is proba-
bilistically changed to a random value within the search space of the gene.

e Delta Mutation

Delta mutation is commonly used in real number genomes. Specified by a pre-
defined probability, each real number in a real number genome is probabilistically
incremented /decremented by a certain step size (called delta), where the step size
is set manually. But, of course, it is also straightforward to make the step size
adaptive, like the trial vector generations in differential evolution [59].

e Gaussian Mutation

Gaussian mutation is also commonly used in real number genomes. Like delta
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mutation, each real number in a real number genome is probabilistically incre-
mented/decremented by a step size. But the difference is that the step size is
modeled as a Gaussian distribution. [57].

2.2.5 Survival Selection

Survival selection aims to select a subset of good individuals from a set of individuals,
where the goodness of an individual is also proportional to its fitness in a typical case.
Thus survival selection mechanism is somehow similar to parent selection mechanism. In
a typical framework like EC4 [57], most parent selection mechanisms can be re-applied
in survival selection like fitness proportional in section 2.2.2.

2.2.6 Termination Condition

Termination condition refers to the condition at which an evolutionary algorithm should
end. Here is a list of the conditions commonly used:

e Number of Fitness Function Evaluations

An evolutionary algorithm terminates when a certain number of fitness function
evaluations has been reached.

e Number of Generations

An evolutionary algorithm terminates when a certain number of generations has
been reached.

e CPU Time
An evolutionary algorithm terminates when it has been run for a certain amount
of CPU times.

e Number of Births

An evolutionary algorithm terminates when a certain number of individual births
has been reached.

e Convergence

An evolutionary algorithm terminates when further improvement on the popula-
tion has not been observed.

2.2.7 Discussion

So far we have mentioned different modules and techniques in evolutionary algorithms.
It is easy to be observed that we cannot simply adopt all of them in a single evolutionary

algorithm. We must make a choice. Thus some discussions are provided in this section.
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Parent selection aims to select good parent individuals for crossover, whereas survival
selection aims to select a subset of good individuals from a set of individuals. Parent
selection and survival selection are, indeed, not quite different. Their objectives are
different, but their techniques are the same. Nevertheless, as described in section 2.2.2
and 2.2.5, many techniques exist. We must make a choice. Thus de jong [57] has done
some experiments to help us rank the selection methods in terms of their greediness as
follows (from the weakest to strongest):

e Uniform
e Fitness Proportional
e Rank Proportional and Binary Tournament

e Truncation

We can see that truncation is the greediest, whereas uniform is the weakest one. However
it does not mean that we need to select truncation as the top choice because one of the
beauties in evolutionary algorithms belongs to its parallel point search ability. If the
greediest selection is applied without any diversity maintenance, evolutionary algorithms
will easily suffer from genetic drift and lose parallel point search ability [60]. Thus we
need to consider the balance between convergence and diversity needs to be well analysed
before choosing a suitable selection scheme.

Regarding about the termination condition, many evolutionary algorithm researchers
used different conditions. Nevertheless, as different algorithms perform different oper-
ations in one generation, it is unfair to set the termination condition as the number
of generations. Number of births is also not a good choice because an evolutionary
algorithm may exploit a single individual to perform many crossovers, mutations, and
fitness evaluations. Alternatively, it is also unfair to adopt CPU time, since it substan-
tially depends on the implementation techniques for different algorithms. For instance,
the sorting techniques and the programming languages used. In contrast, a single fit-
ness function evaluation may take several hours to complete [61]. The fitness function
evaluation is always the performance bottleneck in practice. Thus the number of fit-

ness function evaluations was set as the termination condition in the experiments to be
described.

2.2.8 Examples
2.2.8.1 Genetic Algorithm

Genetic algorithm is the most classic evolutionary algorithm. It draws inspiration from
the Darwin’s Evolution Theory. The difference between genetic algorithm and evolution-

ary algorithm becomes blurred gradually nowadays. The words 'genetic algorithm’ and
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’evolutionary algorithm’ are sometimes interchanged in use. Anyway, to clearly explain
the working mechanism of a genetic algorithm, we use the canonical genetic algorithm
[62] as a basis of genetic algorithm.

In the canonical genetic algorithm, each individual has a fixed-length binary array as
its genotype. Then the fitness of each individual is divided by the average fitness to
become the probability to be selected. Based on the calculated probability, the al-
gorithm select parents for one point crossover to produce offspring individuals, which
subsequently undergoes mutation. The offspring individuals become the population in
the next generation and so and so forth. Using the previous terminology, the canonical
genetic algorithm is a non-overlapping model since only the offspring individuals are
selected for survival.

2.2.8.2 Genetic Programming

Genetic programming is indeed a special type of genetic algorithm. The difference lies
in the representation method. Genetic programming uses trees as genotype to repre-
sent programs or expressions. (Figure 2.5¢ depicts an example). The typical selection
schemes of evolutionary algorithms can still be used as parent selection and survival
selection in genetic programming. What make genetic programming more special are
their crossover and mutation operators. The crossover and mutation operators become
some operators on tree structure. For instance, swapping sub-trees between two trees

and random generation of sub-trees . A list of common crossover and mutation operators
are tabulated in Table 2.1.

Name Description

Subtree Exchange Crossover | Exchange subtrees between individuals

Self Crossover Exchange subtrees within an individual
Crossover | Module Crossover Exchange modules between individuals

SCPC Exchange subtrees if coordinates match exactly

WCPC Exchange subtrees if coordinates match approximately

Point Mutation Change the value of a node

Permutation Change the argument order of a node

Hoist Use a subtree to become a new individual
Mutation | Expansion Mutation Exchange a subtree against a terminal node

Collapse Subtree Mutation | Exchange a terminal node against a subtree

Subtree Mutation Replace a subtree by another subtree

Gene Duplication Replace a subtree by a terminal

TABLE 2.1: A list of crossover and mutation operators (2]

2.2.8.3 Differential Evolution

Differential Evolution [59] was first proposed by Price and Storn in 1995 [63]. It demon-
strated great potential for real function optimization in the subsequent contests [64, 65].
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Without loss of generality, a typical strategy of differential evolution (DE/rand/1) [66]
is shown in Algorithm 1.

Algorithm 2 Differential Evolution
P;: Population at time ¢
TP: Transient population

t —0;
Initialize Pj;
Evaluate P;;
while not termination condition do
TP « 0;
for Vindiv; € P, do
Offspring «— TRIALVECTORGENERATION(indiv;);
Evaluate Offspring;
if Offspring is fitter than indiv; then
Put Offspring into T'P;
else
Put Parent into T'P;
end if
end for
t=t+1;
Pg — TP,
end while

For each individual indiv; in a generation, the algorithm randomly selects three indi-
viduals to form a trial vector. One individual forms a base vector, whereas the value
difference between the other two individuals forms a difference vector. The sum of these
two vector forms a trial vector, which recombines with indiv; to form an offspring. Re-
placing the typical crossover and mutation operation by this trial vector generation,
manual parameter tuning of crossover and mutation is no longer needed. It can pro-
vide differential evolution a self-organizing ability and high adaptability for choosing
suitable step sizes which demonstrated its potential for continuous optimization in the
past contests [64]. A self-organizing ability is granted for moving toward the optima.
A high adaptability is achieved for optimizing different landscapes [66]. With such self-
adaptability, differential evolution is considered as one of the most powerful evolutionary
algorithms for real function optimization. It is still a hot research field in which schol-
ars are exploring for its power in different fields. For example, mechanical engineering
design [25] and nuclear reactor core design [31].

2.2.8.4 Evolution Strategy

Evolution Strategy was proposed in 1968 (67]. It was even older than genetic algorithm.
Schwefel and Klockgether originally used evolution strategy as a heuristic to perform

several experimental optimizations in air flow. They found that evolution strategy was
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better than other discrete gradient-oriented strategy, which raised people’s interests in
evolution strategy.

Comparing to the previous evolutionary algorithms, evolution strategy draws less in-
spiration from the nature. Instead, it was artificially created as a numerical tool for
optimization. Thus the structure of evolution strategy is quite different from the other
evolutionary algorithms. For example, the mutation step size and probability. Evolution
strategy calls them as endogenous parameters encoded in the genome of an individual.
Thus, besides the gene values, a genome is also composed of the parameter settings
which control the convergence progress of the whole algorithm. The notation evolution
strategy uses is quite interesting. (u/p*A) — ES denotes an evolution strategy with a
specific parameter setting. p denotes parent population size, p denotes the breeding
size, + denotes the algorithm is overlapping, , denotes the algorithm is not overlapping,
A denotes the offspring population size.

2.2.8.5 Swarm Intelligence

Ant Colony Optimization [68], Particle Swarm Optimization [69], and Bee Colony Op-
timization [70] ...etc are collectively known as Swarm Intelligence. Swarm intelligence
is a special class of evolutionary algorithm. It does not involve any selection, birth, or
death. Instead, it maintains a fixed-size population of individuals to search in a parame-
ter space in each generation. After each generation, the individuals report their findings
which are recorded and used to adjust the search strategy in the next generation. Thus,
some of the algorithms were originally designed for shortest path finding. Nevertheless,
people have further generalized them for other applications. For instance, Bi-Criterion
Opitmization [71], Load Balancing in Telecommunication Network [72], Protein Folding
Problem (73], and Power System [74].
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2.3 Association Rule Mining

Association rule mining is one of the hot topics in data mining. It has become pop-
ular since 1990s. It not only helps in analyzing the relationship between different at-
tributes/items, but also providing valuable information for people to make a right de-
cision. This section briefly reviews the methods for association rule mining. Interested
parties may find it useful in reading the general survey by Hipp et al. [75].

2.3.1 Objective

Association rule mining aims at finding association rules with minimal values in support
and confidence from a database:

e Database: A set of transactions.
e Transaction: A binary vector with t[k|=1 if the item I is bought.

e Association rule: An expression of the form X => I where X and I are two

non-overlapping sets of items. Semantically, given X in some transactions, I is
likely to be found in those transactions.

— Support: The fraction of transactions which have the union of X and I.

— Confidence: Among the transactions which have X, the fraction of those
transactions which also have I.

2.3.2 Apriori Algorithm

Apriori algorithm proposed by Agrawal et al. [76, 77] is a classical approach to find
out frequent itemsets (sets of items), outlined in Algorithm 2. It is a branch and bound
algorithm for discovering association rules in a database. With its downward closure
property, an optimal performance is gnaranteed. In other words, given a pair of values
of confidences and support, all the related association rules must be found by the algo-
rithm. The algorithm first obtains frequent 1-itemsets. Iteratively, it uses the frequent
n-itemsets (itemsets with n items) to generate all possible candidate (n+1)-itemsets.
They are then evaluated for their supports [75]. If the support of an (n+1)-itemset is
lower than a threshold, the (n+1)-itemset is removed. After the removal, the resultant

(n+1)-itemsets are the frequent (n+1)-itemsets. The above procedure is repeated until
an empty set is found.
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Algorithm 3 Pseudocode of Apriori algorithm (76, 77]
data : A dataset of itemsets
L,: Frequent n-itemsets
Cp: Candidate n-itemsets
z : An itemset
minsupport: Minimum Support
1+ 1;
Scan data to get L;
while L; # 0 do
Ci+1 +— EXTEND(L;);
Liyy < 0;
for x € C;;; do
if support(z) > minsupport then
Liyy — LinaNz;
end if
end for
te—1+1;
end while

Notes:

EXTEND(L;) is the function ”Candidate itemset generation procedure” stated in [76].
Support(z) returns the support [75] of the itemset x.

A frequent n-itemset is the n-itemset which support is higher than minsupport.

2.3.3 Partition Algorithm

Savasere et al. has proposed Partition Algorithm (78], which logically divides the
database into several non-overlapping partitions in main memory to generate a set of
potentially large itemsets, which is a superset of the large itemsets, in the first scan. In
the second scan, it calculates the actual supports of the potentially large itemsets to dig
out the large itemsets. Thus only two scans on the database are needed.

2.3.4 DHP

In view of the expensive computation costs in candidate itemset generation, Park et al.

[79] has proposed an algorithm DHP, which is especially effective in filtering unnecessary
candidates by hashing techniques.

2.3.5 Sampling

Since most databases are quite large, it is trivial that sampling can come into play. Thus
Toivonen [80] has proposed a sampling technique to mine association rules from a large
database in a single pass. Though sampling, the technique can be remedied by a second
pass to provide the exact performance.
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2.3.6 Frequent Pattern Tree

To avoid repeated scanning on the database to check candidate items (or patterns),
Frequent Pattern Tree (FP-tree) was proposed by Han et al. [81]. By two scans on a
database, each transaction is mapped to one path in the FP-tree of the database. The
transactions with the same items are mapped into a single path. Thus the frequent
itemset information in each transaction is compactly and completely stored in the FP-
tree. By keep tracking the nodes for each item in a header table, it can thus help us find

out frequent itemsets, and thus association rules, from a database without scanning on

the database repeatedly.
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Chapter 3

Discovering Protein-DNA
Binding Sequence Patterns Using

Association Rule Mining

Protein-DNA bindings between transcription factors (TFs) and transcription factor
binding sites (TFBSs) play an essential role in transcriptional regulation. Over the
past decades, significant efforts have been made to study the principles for protein-DNA
bindings. However, it is considered that there are no simple one-to-one rules between
amino acids and nucleotides. Many methods impose complicated features beyond se-
quence patterns. Protein-DNA bindings are formed from associated amino acid and
nucleotide sequence pairs which determine many functional characteristics. Therefore it

is desirable to investigate associated sequence patterns between TFs and TFBSs.

With increasing computational power, availability of massive databases on DNA and
protein data, and mature data mining techniques, we propose a framework to discover
associated TF-TFBS binding sequence patterns in the most explicit and interpretable
form from TRANSFAC. The framework is based on association rule mining with Apriori
Algorithm. The patterns found are evaluated by quantitative measurements at several
levels on TRANSFAC. With further independent verifications from literatures, Protein
Data Bank (PDB), and homology modeling, there are strong evidences that the patterns
discovered reveal real TF-TFBS bindings across different TFs and TFBSs, which can
drive for further knowledge to better understand TF-TFBS bindings.

The chapter layout is as follows: the problem definition and proposed framework is pre-
sented in the section: Materials and Methods; experimental results and verifications
are reported in the sections Results and Analysis and Verifications respectively;
and finally we have the Discussion section for the approach. In addition, all the math-

ematical problem definitions are stated again in the appendix.

27
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3.1 Materials and Methods

In this section, we propose a framework for mining, discovering, and verifying binding
sequence patterns between TFs and TFBSs on TRANSFAC. The framework starts from
data cleansing and transformation on TRANSFAC, and then applies association rule
mining to discover TF-TFBS binding sequence patterns. Comprehensive 3D verifications
and evaluations are carried out on PDB. Detailed bonding analysis is performed to

provide strong supports to the discovered rules.

TF and TFBS data were downloaded and extracted from the flat files of TRANSFAC
2008.3 (a free public (older) version is also available '). The entries without sequence
data were discarded. Since a TF can bind to one or more TFBSs, TFBS data were
grouped by TF. TFBS sequences were extracted for each TF to form a TF dataset - a
TF sequence and the corresponding TFBS sequences. Formally, m transcription factors
{TF',TF?,..,TF™} are concerned. Each transcription factor TF" chemically binds
to several binding sites, which are collectively called transcription factor binding sites.
Each of them is denoted by TFBS, the j-th transcription factor binding site which
chemically binds to TF*. For example, TFBS? denotes the 5-th transcription factor
binding site which chemically binds to TF?. Since different transcription factors can
bind to different number of transcription factor binding sites, N* denotes the number of
the transcription factor binding sites which can chemically bind to TF'. For example,
we have the following transcription factor binding sites {TFBS}, TFBS3,.... TFBS}3}
which can chemically bind to TF?%. They are formally defined as follows:

Definition 3.1 T'F* denotes the i-th transcription factor where 1 < i < m.

Definition 3.2 TFBS} denotes the j-th transcription factor binding site which chemi-
cally binds to TF* where 1 <i<mand 1 <j < N'.

To discover the binding sequence patterns between m transcription factors and their
transcription factor binding sites. Sequence data is introduced. But, before doing so.
some basic notations needs to be defined: AAseq denotes a string with the amino acid
alphabet, DN Aseq denotes a string with the DNA alphabet, and kmer denotes a string
with length = k. Thus AAseq' denotes the AAseq of TF', whereas DN Aseq;- denotes
the DN Aseq of TFBS;.

The following sequence dataset is given for each transcription factor : the amino acid
sequence of the transcription factor and the DNA sequences of the transcription factor
binding sites which can chemically bind to the transcription factor. The dataset for
TF" is thus denoted by T'Fdataset': {AAscq",DNAseqj- IVj € N,j < N;}. In total,
{TFdataset', T Fdataset?, ..., T Fdataset™} is given in this problem.

'http://www.gene-regulation.com/pub/databases.html
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In the following subsections, Apriori algorithm for association rule mining is first intro-
duced. We then elaborate how the algorithm is applied to protein-DNA binding pattern
discovery. Finally we present how the data are preprocessed for the task with a running
example.

3.1.1 Association Rule Mining and Apriori Algorithm

Association rule mining [76] aims at discovering frequently co-occurring items, called
frequent itemsets, from a large number of data samples above a certain count threshold
(minimum support) [75]. The support of an itemset is defined as the number of data
samples where all the items in the itemset co-occur. In the case of protein-DNA bind-
ing, the binding domains of TFs can recognize and form strong bondings with certain
sequence-specific patterns of the TFBSs. Therefore they are likely to co-occur frequently
among the combinations between all possible TF and TFBS subsequences, and can be
thus identified by association rule mining. In this study, we use the notation of k-mer (a
subsequence with k amino acid or nucleotide residues) to represent a candidate item. A
frequent TF-TFBS itemset is a TF k-mer and TFBS k-mer (the two k’s can be different)
pair, or simply a pair, co-occurring with a frequency no less than the minimum support
in the TF-TFBS sequence records (TRANSFAC database).

Apriori algorithm proposed by Agrawal et al. [76] is a classical approach to find out
frequent itemsets. It is a branch and bound algorithm for discovering association rules
in a database. With its downward closure property, an optimal performance is guaran-
teed. The algorithm first obtains frequent 1-itemsets. Iteratively, it uses the frequent
n-itemsets (itemsets with n items) to generate all possible candidate (n+1)-itemsets.
They are then evaluated for their supports [75]. If the support of an (n+1)-itemset is
lower than a threshold, the (n+1)-itemset is removed. After the removal, the resultant

(n+1)-itemsets are the frequent (n+1)-itemsets. The above procedure is repeated until
an empty set is found.

3.1.2 Discovering associated TF-TFBS sequence patterns

To formulate the TF-TFBS sequence pattern discovery problem into association rule
mining, we have to transform the protein-DNA binding records into the formats of item-
sets (k-mers). An illustrative example for the TF-TFBS binding records from TRANS-
FAC 2008.3 is shown in Fig.3.1. The TF (e.g. T01333 RXR-gamma) can bind to several
TFBS DNA sequences. The DNA sequences may be different in lengths due to ex-
perimental methods and noises. Both the TF and TFBS sequences are chopped into
overlapping short k-mers, as illustrated in Fig.3.2 (first part). They together with the
corresponding reverse complements (e.g. GACCT and reverse complement: AGGTC)

form one data sample. To generate the itemsets, all the k-mers are recorded in a binary
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a TF (TRANSFAC 2008.3 ID: T01333)

RXR-gamma
TF
- aggGTTCACCcgasaGTTCACtcgea: TFBS
- gotgTGACCTeTGCCCTictageste GTTCA

~ tccccAGTTCACCAGGTCAggget TFBS k-mer #1

- cgAGGTCAQacAGGCTGgaggagtaga
. geatttGGGTCAAGGTGAIccat AGGTC

TFBSs of the TF TFBS k-mer #2

FIGURE 3.1: TFBS sequences of a TF (TRANSFAC 2008.3 ID: T01333)

array where appearing k-mers are marked 1; and 0 otherwise. Formally, a function F
(Found) is defined:

Definition 3.3 If the kmer A is a substring of the string S, F(A,S) = 1. Other-
wise, FI(A,S) =0.

Thus, the length of the array depends on the number of all possible TF k-mers and
TFBS k-mers (Fig.3.2, second part). Since k is usually short (4-6), all the possible 4*
combinations of TFBS DNA k-mers can be adopted. However, it is computationally
infeasible to obtain all the possible 20F combinations of TF k-mers. Thus a data-driven

approach is employed by scanning the whole TRANSFAC to obtain frequent TF amino
acid k-mers.

Since there are multiple TFBSs for each TF (e.g. Fig.3.1), a question arises : How to
define the “commonly found” TFBS k-mers of a TF. Without loss of generality, the ma-
jority rule [83] is applied. If the majority of a TF’s TFBS sequences contains a certain
DNA residue k-mer, then the k-mer is considered “commonly found”. We set the major-
ity to be 50% for TFBS k-mers. We only count the number of TFBS sequences in which
a certain k-mer appears, in order not to be biased by multiple occurrences of the k-mer
appearing in only a few TFBS sequences. Fig.3.1 illustrates an example where there
are 5 TFBS sequences. The TFBS DNA k-mer AGGTC (or its reverse complement:
GACCT) can be found in three of the TFBS sequences. The k-mer appears in 60% (%)
of the TFBS sequences of the TF, and thus is considered “commonly found”. On the
other hand, GTTCA is not considered “commonly found” because it only appears in 2

out of the 5 (40%) TFBS sequences of the TF. Formally, a function CF* (Commonly
Found) is defined:

Definition 3.4 Let Thresholdcp € [0,1], and DN Aseq} be the DN Aseq of TF BS;. If

Nt i 3 .
Lo F(':},DNAseq") > Thresholdcr, CF*(A) = 1. Otherwise, CF'(A) = 0.




Chapter 3. Discovering Protein-DNA Binding Sequence Patterns 31

After all valid TF data samples are transformed into itemsets, Apriori algorithm is
applied to generate frequent TF-TFBS k-mer sequence patterns (the links in Fig.3.2,
second part). The special feature in this study is that the co-occurring pairs should
contain both TF and TFBS k-mer items, as illustrated in the third part of Fig.3.2. In
the current study, we only consider 1 TF k-mer with 1 TFBS k-mer in the frequent
itemsets, but it is straightforward to generalize it to be multiple TF and TFBS k-mers
in principle. The huge computational intensity for the generalization, when applied on
the large TRANSFAC database, prevents us from doing so at this time. Finally the
association rules are computed based on the confidence measurements for the frequent
itemsets, which are defined as follows:

support(kmerpya N kmeraa)

conf(kmerpya = kmeraa) = peyssre T

support(kmerpya N kmeraa)

conf(kmerpna < kmeraa) = Py

where conf(kmerpya = kmera,) is called forward confidence, conf(kmerpna <
kmeraa) is called backward confidence, and support(X) is the support of itemset X.
For each association rule, its forward confidence measures the posterior probability that
the corresponding amino acid k-mer can be found in a TF’s sequence if the DNA k-mer
is commonly found in the TF’s TFBS sequences. Its backward confidence measures
the posterior probability that the corresponding DNA k-mer can be commonly found
in a TF’s TFBS sequences if the amino acid k-mer is found in the TF’s sequence. The
minimum of them is taken as confidence. The higher the confidence, the better the
association rule is (Fig.3.2, fourth part). The whole proposed approach is summarized
in Fig.3.2.

3.1.3 Data Preparation

To apply the methodology on TRANSFAC, TF and TFBS data were downloaded and
extracted from the flat files of TRANSFAC 2008.3 (a free public (older) version is also
available 2). The entries without sequence data were discarded. Since a TF can bind to
one or more TFBSs, TFBS data were grouped by TF. TFBS sequences were extracted for
each TF to form a TF dataset - a TF sequence and the corresponding TFBS sequences.
and finally to be transformed into itemsets. To avoid sampling error, TF datasets with
less than five TFBS seduences were discarded. Furthermore, the redundancy of TF
sequences was removed by BLASTClust using 90% TF sequence identity [17]. Only
one TF dataset was selected for each cluster. Note that we only used sequence data in
TRANSFAC. None of the prior information (e.g. the binding domains of TFs) other
than sequences was used. Importantly, it turns out that the results of the proposed

http://www.gene-regulation.com/pub/databases.html
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FIGURE 3.2: Flowchart of the proposed framework to discover association rules from
TRANSFAC

approach can be verified by annotations, 3D structures from PDB, and even homology
modeling as described in the subsequent sections.

After data preparation, the 631 TF datasets (listed in Table A.25 in the Appendix) were
selected. The minimum support [75] was set to 7 TF datasets to avoid sampling error.
For the values of k, we try 4-6 for both TF k-mers and TFBS k-mers, resulting in 9 (3
by 3) different combinations. In particular 256 DNA 4mers, 1024 DNA 5mers, and 4096
DNA 6mers were adopted for TFBS, whereas 99621 amino acid 4mers, 82561 amino acid
5mers, and 39320 amino acid 6mers were adopted for TF, as the frequent 1-itemsets.
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Apriori algorithm was then applied to discover frequently co-occurring TF-TFBS k-
mer pairs (2-itemsets). Finally, the resultant pairs were re-scanned in TRANSFAC to
measure their forward and backward confidences [84]. Formally speaking, we are inter-
ested in the pairs of kmers in which one is found in the amino acid sequences of some
transcription factors while the other is commonly found in the DNA sequences of their
transcription factor binding sites. Such pairs are then called 'frequently co-occurring’
defined as follows:

Definition 3.5 Let Thresholdsupport € N*, ky € NT, and ko € NT. A pair of kmers

. ..o 3™ CFi(A)xF(B,AAseq')
(A-B) is frequently co-occurring if <=4 =

> Thresholdsypport Where A
is a kymer and B is a komer.

We assume that the pairs of kmers frequently co-occurring are the binding sequence
patterns which we aims to find. Thus the problem definition is summarized as follows:
Given Thresholdcr € (0,1], Thresholdsypport € NT, ky € NT| ky € NT, we would like
to find all pairs (A-B) frequently co-occurring where A is a kymer and B is a kymer.
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3.2 Results and Analysis

In this section, the discovered rules are reported, followed by analysis with different
measurements.

3.2.1 Rules Discovered

Varying k from 4 to 6 for both TF k-mers and TFBS k-mers, we have obtained 9 sets
of associated pairs. For each set of pairs, the forward and backward confidences of each
pair were calculated. Then, the pairs in the same set were sorted by the minima of
their forward and backward confidences in descending order. The 9 sets of rules (pairs)
exhibit a similar trend that the number of rules decreases as the association criterion
becomes more stringent (with higher confidence levels). The TFBS5mers settings in
general show the most available rules when the confidence level is high (> 0.5), indicating
more conserved and significant results. Therefore we focus on them and use TFBS5mer-
TF5mer as the representative example throughout the paper. The results for all other
settings are available in the Supplementary Data.

Without confidence pruning (confidence level = 0.0), the longer associated pattern pairs
are the supersets of the shorter pairs according to the downward closure property. For
instance, if the pair AAACA-HNLSL is found in the set of TFBS5mer-TF5mer pairs,
then the two sub-pairs AAACA-HNLS and AAACA-NLSL must also be found in the set
of TFBS5mer-TF4mer pairs. Note that such property is only applied when there is no

confidence pruning. In other words, it is only applied to the second row of Supplementary
Table 1 where confidence level = 0.0.

With confidence pruning (confidence level > 0.0), it can be observed that the degree
of overlapping between different sets of pairs is decreased when the confidence level is
increased. For instance, at the confidence level=0.1, 86.3% of the TFBS5mer-TF5mer
pairs have all of their sub-pairs in the set of TFBS4mer-TF4mer pairs. At the confidence
level=0.3, only 11.1% of the TFBS5mer-TF5mer pairs have all of their sub-pairs in the
set of TFBS4mer-TF4mer pairs. Besides, it is interesting that the degree of overlap-
ping is significantly decreased when TFBS k-mers are elongated. For example, at the
confidence level=0.1, 92.6% of the TFBS4mer-TF5mer pairs (detailed in Supplemen-
tary Table 1) have all of their sub-pairs in the set of TFBS4mer-TF4mer pairs, whereas
only 9.09% of the TFBS5mer-TF4mer pairs (Supplementary Table 1) have all of their
sub-pairs in the set of TFBS4mer-TF4mer pairs.

The number of rules (pairs) discovered is summarized in Table 3.1. For instance, there
are 70 TF5mer-TFBS5mer pairs without any further removal (in the N column) with
both forward and backward confidences greater than or equal to 0.5. Considering direct
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TABLE 3.1: Number of the TFBS5mer-TF5mer pairs across different confidence levels.
(N: Number Of Pairs, N': Number of Pairs (duplicated pairs removed), Nyp: Number
of Merged Pairs, S: Mean & SD of the support of the pairs in N')

Confidence N N N, S
0.0 262 131 29  9.88+3.68
0.1 262 131 29  9.88+3.68
0.2 240 120 24 10.14+3.73
0.3 180 90 23 10.63+4.11
0.4 126 63 21 11.4044.59
0.5 70 35 11 13.63+£5.05
0.6 24 12 8  15.084+5.28
0.7 6 3 2 10.334+2.36
0.8 0 0 0 N/A
0.9 0 0 0 N/A
1.0 0 0 0 N/A

TABLE 3.2: Quantitative Measurements for the TFBS5mer-TF5mer pairs across dif-
ferent confidence levels. (¢: Mean & SD of ¢-coefficient, L: Mean & SD of Lift, FC:
Mean & SD of Forward Conviction, BC: Mean & SD of Backward Conviction)

Confidence ¢ L FC BC
0.0 0.49+0.11 17.92+7.34 1.89+0.67 3.50+2.29
0.1 0.494+0.11 17.924+7.34 1.89+0.67 3.5042.29
0.2 0.51£0.11 18.32£7.46 1.94+0.68 3.514+2.30
0.3 0.544+0.10 19.81+7.79 2.02+0.64 3.46+2.31
0.4 0.58+0.09 21.41+8.53 2.23+0.66 3.61+2.40
0.5 0.64+0.07 22.57£10.46 2.494+0.70 4.35+2.65
0.6 0.71+£0.06 25.80£13.76 3.33+0.57 4.21+2.55
0.7 0.79+£0.03 42.07+14.87 3.70+0.29 4.87+0.00
0.8 N/A N/A N/A N/A
0.9 N/A N/A N/A N/A
1.0 N/A N/A N/A N/A

and reverse complement TFBS DNA k-mers as equivalent, we further removed the du-
plicated pairs (e.g. leaving AGGTC-CEGCK and removing GACCT-CEGCK because
AGGTC and GACCT are reverse complements). The results are shown in the N’ col-
umn in Table 3.1. For instance, the 70 TF5mer-TFBS5mer pairs were reduced to 35 at
confidence level = 0.5. Furthermore we found that most pairs could be merged together
to form a longer pair. For instance, GGTCA-SGYHY and GGTCA-GYHYG could be
merged to form a pair GGTCA-SGYHYG. Thus the pairs have been merged and the rule
numbers are shown in the Nm column in Table 3.1. For instance, 35 TF5mer-TFBS5mer
pairs are merged to form 11 merged pairs when the confidence level = 0.5.
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3.2.2 Quantitative Analysis

To evaluate the number of TF datasets supporting each pair (support), the support
for each pair was counted. In general, more supports are found when the confidence
level is increased. For instance, the average support of the TFBS5mer-TF5mer pairs is
generally increased when the confidence level is increased in the S column of Table 3.1.
The overall results are summarized in Supplementary Table 4.

Support is considered the degree of co-occurring between a TF amino acid k-mer and a
TFBS DNA k-mer. Forward and backward confidences consider the cases when either
one of them is absent. Some may have questions about the remaining case. How about
the case when both of them are absent? To take the case into account, ¢-coefficients [85)
was measured for each pair, as shown in the ¢ column in Table 3.2. The overall results
are summarized in Supplementary Table 5. Most values are larger than 0.4, indicating
that positive correlations exist among pairs.

Consider the following scenario: If a TFBS DNA k-mer and a TF amino acid k-mer are
frequently co-occurring in the datasets, it will be very likely that they co-occur frequently
merely by chance. To tackle such scenario, forward and backward confidences do play
their important roles in pruning them. But for clarity, lift [86] which estimates the ratio
of the actual support to the expected support was measured for each pair, where the
expected support was calculated from the random model that the TFBS DNA k-mer is
independent of the TF amino acid k-mer for each pair. For instance, the average lift
for the TFBS5mer-TF5mer pairs are shown in the L column in Table 3.2. The overall
results are summarized in Supplementary Table 6. Most values of the lift are larger
than 5. Thus the DNA residue k-mer and the amino acid residue k-mer of most pairs
co-occur at least 5 times more frequently than the prediction based on the independent
assumption made by the lift measurement.

To estimate the validity of the pairs, both forward and backward convictions (the same
directions as the forward and backward confidences respectively) [86] were measured
for each pair. The measurements were averaged for each set of pairs. For instance,
the average forward and backward convictions for the TFBS5mer-TF5mer pairs are
shown in the FC and BC columns in Table 3.2. The overall results are summarized in
Supplementary Tables 7 and 8. Most values are larger than one. The pairs commit fewer
errors than the prediction based on the statistically independent assumption made by
the measurements: forward and backward convictions. In other words, the pairs would
have committed more errors if the association between its TFBS k-mer and TF k-mer
had happened purely by chance.
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TABLE 3.3: The set of TFBS 5mer-TF 5mer pairs (duplicated pairs removed and sorted
in alphabetical order)

Confidence  Forward  Backward Pairs Confidence  Forward  Backward Pair Confidence  Forward  Backward Pairs

Confid Confid Coniid Confid Confid Coukd
0.7 07 [ AAACA-TINLSI, [X] [X] 07 AGGTCCQYCR K} 05 (K} GCCAC-ARRSR
0.5 [ 07 AAACA-IRIINL 02 02 06 AGGTC-CVVCG K] [ [X] GCCAC-ESARR |
0.5 0.5 0.6 AAACA-KPPYS 0.6 0.6 07 AGGTC-EGORG 04 04 0.6 GOCAC-RQSNR
[IX] [ 07 AAACA-NLSLN 2 02 07 AGGTC-FFRRT [X] 06 X GCCAC NRESA
0.6 [ 0.6 AAACA-NSIRI 0.2 02 ) AGGTC-FRRTT 04 04 6 GCCAC-QSNRE
0.5 1.6 0.6 AAACA-PPYSY 0.6 0.6 0.6 AGGTC-GORGE 0.4 05 04 GOCAC-RESAR
K] 2] 0.6 AAACAPYSYI 03 K] [ AGGTC-GFFKR [IX] K] 06 GOCAC-RKQSN
[IX] 01 06 AAACA-QNSIR 0.0 04 0.5 AGGTC-GFFRR [IX] [IX] 05 GCCAC-RLRRQ |
0.7 0.7 0.5 AAACA-RHNLS 0.3 0.3 0.6 A(‘(‘Tt‘ KG H?R 0.4 04 0.5 GCCAC-RRSRIL
0.5 0.5 [0} AAACA-SIRITN 14 0.4 05 04 04 [0 t:('(‘A('-ﬁS‘RER_
04 [X) 06 AAACA-WQNSI 04 00 [ [X) 05 04 GCCAC-SARRS
K] [IX] 06 AACAA-TINLST, K] [} [0 AGGTC-TCORGC [} 05 [} GCCAC-SNRES
5} 1] 06 AACAA-TRIINL (X K] 5 AGGTC-VCGDK K] 5] [X) GCCAC-SRLRK
03 0.3 [ AACAA-NSIRI 02 0.2 B AGGTC-VVCGD 06 06 [ GGTCA-CEGCR
0.3 0.3 07 AACAA-PMNAF 0.2 0.7 02 ATTAA-FQNRR 0.2 02 [0 GGTCA-CGDKA |
[IX) [ 0.6 AACAA-RINIS 0.2 [ 0.2 ATTAA-TWFQN 05 05 [ GGTCA-CRGFF
03 0.3 0.7 AACAA-RIMNA 0.2 [ 02 ATTAAKIWFQ 0.3 03 (K] GGTCA-CQYCR
0.3 0.3 0.7 AACAA-SIRITN [X] 15 1K) ATTAA-NRRMK 0.2 ¥ [ GGTCA-CVVOG
0.2 00 0.2 AAGGT-CRGFF (K] 05 K} ATTAA-QNRRM 0.1 (] T GGTCA-DLVLD
0.2 0.5 0.2 AATTA-FQNRR 0.2 07 02 ATTAA-WFQNR 0.5 05 53 GGTCA-EGURG
0.3 0.3 03 AATTA-NRRAR 0.2 05 02 CACCC-GEKPY 02 02 [ GOTCAFFRRS |
X} [ 5 AATTA-QNRRA [N 05 ] CACCCHTGER 02 02 [ GGTCA-FFRRT
03 (] 0.7 AATTA-QVWFQ [N] 05 ) CACCC-TGERP [¥] 0.2 1 GGTCA-FRRTT
0.5 5 05 AATTA-VWFQN [ 05 [ CCACG-ARRSR [ 05 07 GGTCA GCKGF
02 0.5 0.2 AATTA-WFQNR 0.5 0.5 0.6 CCACG-ESARR 1.2 02 0.5 GGTCA-GFFKR
0.5 05 0.7 ACGTG-ARRS (K] 5] 07 CCACG-KQSNR 03 03 06 GGTCA-GFFRR
[} [01] 07 ACGTG-ERELK 02 02 3 CCACG-LRRQA ] 01 06 GGTCA-GYIYG
0.5 05 [ ACGTG-ESARR 0 3 [0 CCACG-NRESA [N ) 1 GGTCAITCEG
0.2 0.2 [ K] 03 06 CCACG-QSNRE 0.2 02 3 GGTCA-RGFFK |
0.2 0.2 0.7 0.0 0.5 (X3 0.3 03 0.6 GGTCA-KGFFR
0.0 [0 [0 02 02 07 G thu [N (K] T GGTCA-NROQY
0.2 0.2 0.7 0.5 0.3 0.7 01 0.1 1 GGTCA-RCQYC
05 0.5 K] K} 0.3 05 [ ] 08
0.1 [} 0.7 ACGTG- ﬁKQM-‘ 0.4 0.3 (3 03 03 1
0.2 0.2 08 ACGTGRKQSN [E] K] [0 02 0.2 T
0.2 0.2 0.6 - 0.5 0.5 0.6 0.1 0.1 0.5
0.2 0.2 0.7 [ [ [ CCACG-SNRES 0.3 [E] 06 GGICA: T( EGC
0.2 0.2 08 (X %] K] CCACG-SRLRK [E] [ [ GGTCA-VCGDK
0.5 0.5 0.9 0.5 05 0.5 CGGAA-LRYYY 0.2 0.2 0.7 GGTCA-VVCGD
0.5 0.5 (X 0.6 0.5 08 CTTCC-LRYYY 0.5 [ 07 GTCAA-KYGQK
0.3 0.3 05 X} X} 07 CTTCC-IWQFL 05 [ 07 GTCAA-RRYGQ
0.6 0.7 (G [IX] 07 [IX] GATAA-CNACG 05 05 0.7 GTCAA-WRKYG
03 03 [} GGTC-CGDRA [IX] 07 [IX] GATAALUNAC (%4 07 T TGACA-NWFEIN
0.6 0.7 0.6 AGGTC-CKGFF [0 07 [0 GATAANACGL

3.2.3 Annotation Analysis

If the pairs in our results are the actual binding cores between TFs and TFBSs, most
of their TF amino acid k-mers should be inside DNA binding domains. Thus the TF
amino acid k-mers were scanned in TRANSFAC to check whether they were within
the annotated DNA binding domains. As stated in the previous section, the set of
TFBS4mer-TF4mer pairs constituting all the pairs in the other sets by the downward
closure property. Thus only the TF amino acid 4-mers of the set of TFBS4mer-TF4mer
pairs were needed for the checking: Of the 792 TF amino acid 4-mers, 92.2% of them
were found within the DNA binding domains listed in the ‘PFAM 18’ list downloaded
from DBD [87] on 25-JAN-2010.

3.2.4 Empirical Analysis

Since the numbers of results are quite large, they are tabulated in a statistical perspective
in the previous sections. This section provides readers with empirical insights into the
results obtained. Comparing to the other sets, the set of TFBS5mer-TF5mer pairs shows
its relative invariability to confidence level pruning. Thus it motivates us to have an
in-depth empirical analysis on them. They are listed in Table 3.3.
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Among the 131 pairs in Table 3.3, the TFBS DNA k-mers are quite conserved. There
are only 15 distinct TFBS DNA k-mers. Each TFBS DNA k-mer forms pairs with 8.73
TF amino acid k-mers on average. One of the reasons may be the specificity of DNA
residue is lower in view of its alphabet size (4) as compared to the amino acid alphabet
size (20).

To act as a DNA binding protein, a TF needs to provide a basic interacting surface
for the recognition of major/minor grooves as well as the phosphate backbone of DNA.
Therefore, we searched through the set of pairs in Table 3.3 to count the occurring
frequency for each residue. Interestingly, we found that the basic residues, Lysine (50
times) and Arginine (131 times), occur at the highest frequency among 131 pairs of
TFBS-TF. On the other hands, the hydrophobic residues [88] such as Isoleucine (15) and
Valine (13) occur at the lowest frequency. These results suggest the potential of the TF
sequences for being the binding sequences between TFs and TFBSs. On the other hand,
as the nucleotides of TFBSs are somehow negatively charged, it can be deduced that their
binding amino acid residues of TFs should be positively charged. Thus the occurring
frequencies were further examined. Among the 131 pairs, the positively charged residues:
Arginine (R) and Lysine (K) occur 131 and 50 times respectively. In contrast, the
negatively charged residues Aspartic Acid (D) and Glutamic Acid (E) occur 8 and 30
times respectively. Such discrepancy supports their potential for being the binding
sequences between TFs and TFBSs.

3.2.5 Experimental Analysis

This section follows the same approach in empirical analysis. The set of TFBS5mer-
TF5mer pairs in Table 3.3 is selected for experimental analysis. Out of the 131 pairs, 5
of them were selected and analyzed. The first pair is GGTCA-CEGCK, which have been
experimentally proved as binding sequences in [89]. The TF amino acid k-mer (CEGCK)
is considered part of P-box (CEGCKG) within the DNA-binding domain of Bp-nhr-2,
which is believed to bind the DNA k-mer (GGTCA). The second pair is AAACA-IRHNL
mentioned in [90]. Based on the corresponding PDB entry 3CO6, it is believed that the
pair was a binding pair between a TF and a TFBS as shown in Fig.3.3a. Similarly, the
remaining pairs are GATAA-NACGL, GGTCA-GFFRR, and CTTCC-LRYYY. They
are found as binding pairs in PDB entries 3DFV [91], 3DZY [92], and 2NNY [93] as
shown in Fig.3.3b, Fig.3.3¢c, and Fig.3.3d respectively. The above 5 pairs reveal that the
pairs generated from the proposed approach have biological evidences in literatures.

Among the previous figures, two of them (3CO6 and 2NNY) were further analyzed in
terms of hydrogen bonding, which also means the specificity of the interaction between
amino acids and the bases, as shown in Figures 3.4a and 3.4b. We have also highlighted
the hydrogen bonds as black lines as well as the residues that make contact with the

base (only predicted residues), which are the evidence of the significance and accuracy of
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TFBS:AAACA TFBS:GATAA

(A) AAACA-IRHNL pair in 3CO6

TFBS:GGTCA

TF:GFFRR

(c) GGTCA-GFFRR pair in 3DZY (p) CTTCC-LRYYY pair in 2NNY

FIGURE 3.3: Four representative TF-TFBS pairs are shown in ribbon diagram. The

TF amino acids and TFBS nucleotides are highlighted in ball and stick format. The

sequences of the TF-TFBS pairs are also labeled in the figures. The figures are generated
using Protein Workshop [1]

the prediction of the TF-TFBS pairs. Nevertheless, as the proposed approach is applied
on a large-scale database, such extensive and detailed analysis of all the binding core
pairs discovered are not practical. Therefore, a scalable verification approach will be
presented in the next section to verify the massive results generated.
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TF:IRHNL

(A) AAACA-IRHNL in 3CO6

TFBS:CTTCC

TFLRYYY

(B) CTTCC-LRYYY in 2NNY

FIGURE 3.4: The interactions between the TF and TFBS of two representative pairs

(a) 3CO6 and (b) 2NNY are shown. The proteins are shown in ribbon diagram with

the highlighted TF amino acids in ball and stick format. The helices and strands are

colored in red and cyan respectively. The amino acids that interact with the nucleotides

are labeled. The hydrogen bonds are shown in dark line. The figures are generated
using DS visualizer, Accelrys.
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3.3 Verifications

In this section, we try to verify the discovered pairs with external data sources, in
particular the 3D protein-DNA complex structures experimentally determined from PDB
(Protein Data Bank). Homology modeling has also been done for further verifications.

3.3.1 Verification by PDB

PDB is selected for providing 3D Protein-DNA complex data for 3D structural verifica-
tion. The PDB data were downloaded from RCSB PDB (http://www.pdb.org) from
16-SEP-2009 to 22-SEP-2009, where the protein-DNA complexes were selected based on
the entry type list provided in ftp://ftp.wwpdb.org/.

A set of pairs /

TFBSkmer-TFkmer Pair 1 E==a
TFBSkmer-TFkmer Pair2 D EEmEmm
TFBSkmer-TFkmer Pair 3

TFBSkmer-TFkmer Pair n

Query by TFkmer,

Resultant PDB
BLASTClust [—"%ea® "0

Whether the pair is a core contact in binding Legends

SRR

TF k-mer

i

TFBS k-mer

FIGURE 3.5: Flowchart of 3D Verification for each set of pairs

For each set of pairs in Supplementary Table 2, each pair is independently evaluated
as shown in Fig.3.5. For each pair, its TF k-mer is used to query which PDB chain


http://www.pdb.org
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has the TF k-mer. Once the corresponding set of PDB chains has been identified and
returned, its redundancy is removed by BLASTClust using 90% sequence identity [17].
The removal is to ensure that redundant PDB chains are not double-counted. After the

removal, the pair is evaluated for binding in the 3D space:

For each PDB chain queried by the TF k-mer, its protein sequence must have the TF
k-mer. Thus its protein sequence is scanned to locate the sequence position of the TF k-
mer. Once located, the sequence position is applied to get the corresponding 3D atomic
coordinates of the TF k-mer in the PDB entry in which the PDB chain is. On the other
hand, the TFBS k-mer of the pair is also scanned in the DNA sequences in the PDB
entry. If the TFBS k-mer cannot be found in the DNA sequences, the PDB chain will
be classified into the first category (a). Otherwise, the sequence location of the TFBS
k-mer will be further applied to obtain the corresponding 3D atomic coordinates of the
TFBS k-mer. As a result, the 3D atomic coordinates of the TF k-mer and the TFSB
k-mer are found for the PDB chain. The following measurement is proposed to classify
the PDB chain into the remaining categories (b) and (c):

e A TFBS k-mer - TF k-mer pair is considered binding for a PDB chain if and only
if an atom of the TFBS k-mer and an atom of the TF k-mer are close to each

other. Two atoms are considered close if and only if their distance is smaller than
3.5 angstrom. [34, 37

With the pair evaluated in its PDB chains, its PDB chains can be classified into the
following three categories:

e PDB chains only having the TF k-mer (a)
e PDB chains having both TF k-mer and TFBS k-mer

— The pair binds together (b)

— The pair does not bind together (c)

Thus the number of chains in each category is counted and converted into the following
performance metrics:

e TFBS Prediction Score= (b+ ¢)/(a+ b+ ¢)
e TFBS Binding Prediction Score = b/(a + b+ ¢)
e Binding Prediction Score= b/(b+ ¢)

Given the resultant PDB chains queried by a TF k-mer, TFBS Prediction Score measures
the proportion of PDB chains which contain the corresponding TFBS k-mer. In other
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words, it measures the backward confidence of a pair in PDB. TFBS Binding Prediction
Score is a more stringent metric. It measures the proportion of PDB chains which have
the corresponding TFBS k-mer binding with the queried TF k-mer. Lastly, Binding
Prediction Score is the most important metric. It measures the proportion of PDB
chains in which the pair is really binding. To verify the cases when (b+ ¢) = 0 (i.e. the

pairs do not appear in PDB), homology modeling is also performed.

For each setting, we have a set of pairs. For each pair, the above performance metrics are
calculated. The overall results are averaged and summarized in Supplementary Tables
9 - 11. For each setting, we also have a set of merged pairs. For each merged pair,
the above performance metrics are also calculated. The overall results are averaged
and summarized in Supplementary Tables 12 - 14. Note that the most conservative
calculation has been used for each performance metric for each pair. If a performance
metric of a pair does not have enough PDB data for calculation, a value of zero will be
given to the performance metric of the pair. For instance, the cases when (b+¢) = 0 or
(a+b+c) = 0. Despite the above setting, the performance metrics of the pairs still have
reasonable performances. They are shown to be significant better than the maximal
performance of 50 random runs in a later section.

Nevertheless, although the above metrics can capture the performance of a pair quantita-
tively, the most important point is to know how many generated pairs could be verified
(with at least one binding evidence in PDB data (b > 0)). To gain more insights,
the number of pairs with at least one related PDB chain ((b+ ¢) > 0) are tabulated
in Supplementary Tables 15 and 16. Correspondingly, the percentage of verified pairs
( Nﬁ:;’:f";j",{ af;‘:rii;‘ﬁt?bi%) are calculated and tabulated in Supplementary Tables 17
and 18. In the tables, the percentage of verified pairs is high enough to justify that the
proposed approach has produced pairs proven to be binding in PDB. For instance, the
statistics for the TFBS5mer-TF5mer pairs is extracted in Table 3.4 and Fig.3.6. Among
the 80 TFBS5mer-TF5mer pairs with at least one related PDB chain ((b+¢) > 0) when

the confidence level = 0.0, more than 81% of them have at least one binding evidence
(b>0).

The TFBS-TF pairs that we found to have binding evidences in the PDB show typical
structural features of DNA-protein interactions. Such features include the “recognition
helix” of the DNA-binding protein making base contacts in the major groove and direct
hydrogen bonds between the side chains and the bases. These interactions play the cru-
cial role in the DNA recognition and site specific binding respectively [94]. Interestingly,
the nucleotides of TFBS are located in the major groove of the DNA, which are close
to, and make contacts with the amino acids of the “recognition helix” of the TF (as for
example shown in Figure 3.3).
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TABLE 3.4: Number of the TFBS5mer-TF5mer pairs verified across different confidence

levels. (Nyetatea: Number of the TFBS5mer-TF5mer pairs with at least one related PDB

chain ((b+ ¢) > 0), Nyerifiea: Number of the TFBS5mer-TF5mer pairs with at least

one PDB chain as a binding evidence ((b) > 0), Myciatea: Number of the TFBS5mer-

TF5mer merged pairs with at least one related PDB chain ((b + ¢) > 0), Myerified:

Number of the TFBS5mer-TF5mer merged pairs with at least one PDB chain as a
binding evidence ((b) > 0))

Confidence  Nyelated Nvert‘fied Melated Mverified

0.0 80 65 19 16
0.1 80 65 19 16
0.2 71 59 15 13
0.3 50 44 15 13
0.4 32 28 12 11
0.5 19 17 7 6
0.6 9 9 5 5
0.7 2 2 1 1
0.8 0 0 0 0
0.9 0 0 0 0
1.0 0 0 0 0
100.00%
B Pairs
9000% [l Merged pairs
80.00%
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FIGURE 3.6: Percentage of the TFBS5mer-TFbmer pairs verified across different con-
fidence levels
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The verification is considered satisfactory since those pairs not found in PDB ((b+¢) =
0) may be un-annotated discovery as shown in the following verification by homology
modeling.

3.3.2 Verification by Homology Modeling

Regarding the pairs without any related PDB chain ((b+ ¢) = 0), there is no PDB data
for us to verify them. Thus we have taken the most conservative approach to assign zero
to their performance metrics in the aforementioned evaluations. Nevertheless, we believe
that most of those pairs are true and our approach can be used as an effective protein-
DNA binding discovery tool. Thus 6 TFBS5mer-TF5mer pairs were taken and merged.
The resultant pair ACGTG-SNRESARRSR was analyzed by homology modeling as
follows:

The model of DNA-protein complex was built by homology modeling (INSIGHT 11, MSI)
based on the structure of the GCN4-DNA complex (1YSA) [95]. Briefly, three amino
acids (R234S, T236R, and A238S) and two nucleotides (T29C and A31T) were mutated
in the original structure. The side chains of the mutated amino acids were chosen from
the rotamer database and examined using the Ramachandran plots to prevent any steric
effect. The interactions between the amino acids and the nucleotides were searched based
on the distance of the hydrogen bond.

As shown in Fig.3.7, we found that the pair ACGTG-SNRESARRSR exists in plant as
the basic leucine-zipper (bZIP) transcription factor which binds to G-box binding factors
(GBF) of DNA [96]. Moreover, the ACGTG sequence is the consensus sequence which is
defined as G-box core and locates at the major groove of the double strands DNA. It is
believed that the G-box core is the DNA sequence of GBF that provides the specificity of
the binding to bZIP proteins. In order to further understand the interactions between
the TF-TFBS, we built a model by using homology modeling based on the structure
of GCN4-DNA (1YSA) complex [95]. As shown in the model, the protein helix fits
into the major groove of the DNA very well and forms extensive interactions (black
lines) between the amino acids and the nucleotides. Interestingly, the mutations of the
protein (R234S, T236R, and A238S) as well as nucleotides (T29C and A31T) increases
the number of hydrogen bonds compared with the original structure (1YSA), suggesting
the binding specificity between this pair of TF-TFBS. In conclusion, we believe that
the protein-DNA binding sequence patterns found using association rule mining on the
large-scale database reveal real TF-TFBS pairs in physiological relevant situation and

this method could guide us to discover new and undescribed TF-TFBS pairs in the
future.
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SNRESARRSR

FIGURE 3.7: The pair ACGTG-SNRESARRSR using homology modeling

3.3.3 Verification by Random Analysis

For each set of pairs in Supplementary Table 1, we use a random process to generate a
random set with the same number of pairs. Within a random set, its pairs were randomly
sampled from all the combinations of the k-mers used in the proposed approach. 50
random runs were performed. The maximal performance metrics of the 50 random runs
are summarized in Supplementary Tables 19 - 21. In a comparison to the proposed
approach, their performance has been depicted in Figure 3.8 and Figure 3.9. It can
be observed that the performance of the proposed approach is significantly better than
the best one of the 50 random runs. For instance, the Binding Prediction Score of the
131 TFBS 5mer-TF 5mer pairs generated is 0.36+0.39 on average whereas the maximal
Binding Prediction Score over 50 random runs is only 0.00509+0.06492 on average.
Similar observation can also be drawn for their merged pairs in Supplementary Tables
22 - 24. 1t can be concluded that the performance of the proposed approach is very
unlikely to happen purely by chance in PDB.
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3.4 Discussion

We have proposed a framework based on association rule mining with Apriori algorithm
to discover associated TF-TFBS binding sequence patterns in the most explicit and
interpretable form from TRANSFAC. With downward closure property, the algorithm
guarantees the exact and optimal performance to generate all frequent TFBS k-mer
TF k-mer pairs from TRANSFAC. The approach relies merely on sequence information
without any prior knowledge in TF binding domains nor protein-DNA 3D structure data.
From comprehensive evaluations, statistics of the discovered patterns are shown to reflect
meaningful binding characteristics. According to external literatures, PDB data, and
homology modeling, a good number of TF-TFBS binding patterns discovered have been
verified by experiments and annotations. They exhibit atomic-level bindings between the
respective TF binding domains and specific nucleotides of the TFBS from experimentally
determined protein-DNA 3D structures. In fact, most of the pairs discovered are actually
the binding cores from the TF binding domains and TFBS respectively.

The proposed approach has great potential for discovering intuitive and interpretable
rules of TF-TFBS binding mechanisms. Such rules are able to reveal TF binding do-
mains, detailed interactions between amino acids and nucleotides, accurate TFBS se-
quence motifs, and help better understanding and deciphering of protein-DNA inter-
actions. It also offers strategic help to reduce the labor and costs involved in wet-
lab experiments. With increasing computational power and more sophisticated mining
approaches, the proposed methodology can be further improved for discovering more
intriguing TF-TFBS binding patterns and rules.



Chapter 4

Designing Evolutionary
Algorithms for Multimodal

Optimization

4.1 Introduction

Since genetic algorithm was proposed by John Holland [24] in the early 1970s, evolution-
ary algorithm has emerged as a popular research field. Researchers around the world
have been digging into this field and exploring the power of evolutionary algorithms.
In particular, its function optimization capability was highlighted [32] because of its

high adaptability to different function landscapes, to which we cannot apply traditional
optimization techniques.

Real world problems always have different solutions. For instance, in the varied-line-
spacing holographic grating design problem, optical engineers need to tune the recording
parameters to get as many optimal solutions as possible for multiple trials in the design
problem. Because the design constraints are too difficult to be expressed and solved in
mathematical forms [97]. Unfortunately, most traditional optimization techniques focus
on solving for a single optimal solution. They needs to be applied several times: yet all
solutions are not guaranteed to be found. Thus multimodal optimization problem was
proposed. In this problem, we are interested in not only a single optimal point, but also
the others. Given an objective function, an algorithm is expected to find all optimal
points in a single run. With strongly parallel search capability, evolutionary algorithms
are shown to be particularly effective in solving this type of problems (32].

The work by De Jong (98] is one of the first known attempts to solve multimodal opti-

mization problems by an evolutionary algorithm. He introduced the crowding technique
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to increase the chance for locating multiple optima. In the crowding technique, an off-
spring replaces the parent which is most similar to the offspring itself. Such a strategy
can preserve the diversity and maintain different types of individuals in a run. Twelve
years later, Goldberg and Richardson [60] proposed a fitness-sharing niching technique
as a diversity preserving strategy to solve multimodal optimization problems. He pro-
posed a shared fitness function, instead of an absolute fitness function, to evaluate the
fitness of an individual in order to favor the growth of the individuals which are distinct
to others. With this technique, a population can be prevented from the domination of a
particular type of individuals. Since then, many researchers started to explore different
ways to deal with the problems. These methods include: species conserving [99], crowd-
ing [98, 100, elitism [101], differential evolution [102], clearing [103|, repeated iterations
[104] and island model [105]. Though different methods were proposed in the past, they
were all based on the same fundamental idea. It is to strike an optimal balance between
convergence and diversity of evolutionary algorithm in order to locate all optima (global
and local), as defined as follows:

4.2 Problem Definition

The problem definition depends on the type of optimization (minimization or maximiza-
tion). They are similar in principle and defined as follows:

4.2.1 Minimization

In this problem, given f:X — R, we would like to find all global and local minimums of
f in a single run.

Definition 4.1 Local Minimum [106]: A (local) minimum #; € X of one (objective)
function £:X — R is an input element with f(#,) < f(z) for all z neighboring #,. If

X € RV, we can write: V#; 3¢ > 0 : J@) L flz)VzeX, |z -3 <e.

Definition 4.2 Global Minimum [106]: A global minimum # € X of one (objective)
function f:X — R is an input element with f(#;) < f(z) Vx € X.

4.2.2 Maximization

In this problem, given f:X — R, we would like to find all global and local maximums of
f in a single run.

Definition 4.3 Local Maximum [106]: A (local) maximum # € X of one (objective)



Chapter 4. Designing Evolutionary Algorithms for Multimodal Optimization 52

function f:X — R is an input element with f(z;) > f(z) for all z neighboring z;. If

X € RV, we can write: V& 3e > 0: f(#) > f(z) Ve € X, |z — 4| < €.

Definition 4.4 Global Maximum [106]: A global maximum #; € X of one (objective)
function f:X — R is an input element with f(#) > f(z) Vo € X.

4.3 An Evolutionary Algorithm with Species-specific Ex-

plosion for Multimodal Optimization

The species conserving technique for multimodal optimization was proposed by Li et
al. [99]. It was claimed that the technique was considered as an effective and efficient
method for inducing niching behavior into GAs. However, in our experiments, we find
that the performance of the technique still has space for improvement. It always suffers
from genetic drifts though each species is conserved with one individual. The result
of the comparison test conducted by Singh et al. [107] also reveals that the species
conserving technique performs the worst among the algorithms tested. As a result, we

propose a novel algorithm to remedy the species conserving technique in this section.

The novel algorithm is called Evolutionary Algorithm with Species-specific Explosion
(EASE) for multimodal optimization. EASE is built on the Species Conserving Genetic
Algorithm (SCGA), and the design is improved in several ways. In particular, it not only
identifies species seeds, but also exploits the species seeds to create multiple mutated
copies in order to further converge to the respective optimum for each species. Experi-
ments were conducted to compare EASE and SCGA on eight benchmark functions.

4.3.1 Background
4.3.1.1 Species Conserving Genetic Algorithm

Species conserving genetic algorithm (SCGA) [99] is a technique for evolving parallel
subpopulations for multimodal optimization. Before each generation starts, the algo-
rithm selects a set of species seeds which can bypass the subsequent procedures and be
saved into the next generation. The algorithm then divides a population into several
species based on a dissimilarity measure. The fittest individual is selected as the species
seed for each species. After the identification of species seeds, the population undergoes
the usual genetic algorithm operations: selection, crossover and mutation. As the op-
erations may remove the survival of less fit species, the saved species seeds are copied
back to the population at the end of each generation. The whole structure of SCGA is
outlined in Appendix.
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To determine the species seeds in a population, the algorithm first sorts the population
in a decreasing fitness order. Once sorted, it picks up the fittest individual as the first
species seed and forms a species region around it. The next fittest individual is tested
whether it is located in a species region. If not, it is selected as a species seed and another
species region is created around it. Otherwise, it is not selected. Similar operations are

applied to the remaining individuals, which are subsequently checked against all existing
species seeds.

To copy the species seeds back to the population after the genetic operations have been
executed, the algorithms need to scan all the individuals in the current population and
identify to which species they belong. Once it is identified, the algorithm replaces the
worst individual (lowest fitness) with the species seed in a species. If no individuals can
be found in a species for replacement, the algorithm replaces the worst and un-replaced
individual in the whole population. In short, the main idea is to preserve the population
diversity by preserving the fittest individual for each species.

4.3.2 Evolutionary Algorithm with Species-specific Explosion

Evolutionary Algorithm with Species-specific Explosion (EASE) is an evolutionary algo-
rithm which identifies and exploits species seeds to locate global and local optima. There
are two stages in the algorithm: Exploration Stage and Species-specific Stage. The
exploration stage targets for roughly locating all global and local optima. It not only un-
dergoes normal genetic operations: selection and crossover, but also involves the addition
of randomly generated individuals for preserving the diversity. On the other hand, the
species-specific stage targets for gently locating the optimum for each species. Species-
specific genetic operations are applied. Only the individuals within the same species are
allowed to perform selection and crossover to each other. No inter-species selection and
crossover are allowed. Such a strategy is to provide more chances for each species to con-
verge to its respective optimum, with the trade-off that diversity is no longer preserved.
To have a better global picture for locating optima, EASE starts with the exploration
stage. It will switch to the species-specific stage only after the stage switching condition
is satisfied. No matter in which stage, a local operation called Species-specific Explo-
sion is always executed so as to help species to climb and converge to its corresponding
optimum. The whole structure of EASE is shown in Algorithm 4.

4.3.2.1 Species Identification

To determine species in a population, we adopt the dissimilarity measurement proposed
in Goldberg and Richardson [60] and Li et al. [99]. The dissimilarity between two

31t involves Survival Selection if the generation is overlapping.
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Algorithm 4 Evolutionary Algorithm with Species-specific Explosion
G(t): Generation at time ¢
X: A set storing species seeds
Es: A set storing species-specific exploded individuals
pop-size: Initial population size
K: A real number over the interval [0, 1]
SS: Species Specific stage switching parameter
EMSS: Expected Mutation Step Size

1« 0;
SS « false;
EMSS « mutation probability x mutation step size;
pastIndividuals — 0;
Initialize G(t);
Evaluate G(t);
while not termination condition do
if SS = false then
Select G(t + 1);
Crossover G(t + 1);
else
Species-specific Select G(t + 1);
Species-specific Crossover G(t + 1);
end if
Mutate G(t + 1);
Evaluate G(t + 1)*;
X « IDENTIFYSPECIESSEEDS(G(t + 1));
DELTAEVAL( X, pastIndividuals);
if SS = false then
SS « 1SSPECIESSPECIFIC( X, EM SS);
end if
Es «— SPECIESSPECIFICEXPLOSION(G (t + 1), X, K, SS);
pastIndividuals «— XU Eg;
G(t+1) — X,;UE;;
if SS = false then
Fills G(t + 1) with randomly generated individuals
to reach pop_size;
end if
t—t+1;
end while
Identify species seeds Xg;
Identify global optima;

individuals are based on their Euclidean distance. The smaller the distance, the more
similar they are:

d(xs; 25) = JZ(%‘A- - zji)?

k=1
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where z; and z; are two individuals, which are n-dimensional vectors [z;9, i1, ..., Zin)

and [z, &1, ..., Tjn] respectively.

Each species is a subset of population. The fittest individual within a species is chosen
as the species seed. The region around a species seed forms its corresponding species
region. All individuals are classified as the same species if it is within the species distance
(rs) from the species seed. Petrowski [103] and Li et al. [99] proposed an algorithm to
identify species seeds. The algorithm first sorts the population in a decreasing fitness
order. Then it picks up the individual with the highest fitness as the first species seed
and forms a species region around it. All individuals within ry distance from the species
seed are classified as the same species as that of the seed. For the next individual, it is
checked whether it is within ry distance from the species seed. If not, it is selected as
another species seed. Similar operations are applied to the remaining individuals. Each
individual is tested on whether it lies in others’ species regions. If not, it is selected
as a species seed. Otherwise, it is not selected. The main idea is to pick up the fittest
individuals as the species seed for each species. The algorithm is shown in Algorithm 5.

Algorithm 5 Identify Species Seeds
procedure IDENTIFYSPECIESSEEDS(G)
Sort G in decreasing fitness values;
Xy = 0;
while not reaching the end of G' do
Get best un-scanned individual iy from G;
found «— false;
for Vo € X, do
if d(z,i5) < rg then
found « true;
break;
end if
end for
if not found then
X — Xs Ui,
end if
end while
return Xj;
end procedure

4.3.2.2 Species Seed Delta Evaluation

After we have identified all species seeds in the population, we perform delta evaluation
to record the recent step changes that can increase fitness for each species seed. For
each species seed, we pick up the fittest individual of the same species in the previous
generation, under the constraint that its fitness is lower than that of the species seed
itself. By doing so, we can select the individual which is most likely the ancestor of

a species seed in the previous generation. We call this individual as the Likelihood
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Ancestor(LA). If we can pick up the corresponding LA for a species seed, we store
the value difference between the genome of LA and the genome of the species seed into
the array delta of the species seed. Thus the array delta of a species seed serves as a
memory recording the last known step sizes, which improved the species seed itself. The
algorithm is shown in Algorithm 6. (All elements of delta are initialized to the mutation
step size at the beginning)

Algorithm 6 Species Seed Delta Evaluation
dim: The maximum dimension
x.value [i]: The genome value of z at dimension i
LA.value [i]: The genome value of LA at dimension i

procedure DELTAEVAL( X, pastIndividuals)
for Vz € X do
LA « the individual € pastIndividuals
with the highest fitness in the same species
where its fitness is lower than that of  and = # LA;
if LA # null then
for i from 1 to dim do
x.delta [i] « z.value [i| — LA.value [i];
end for
end if
end for
end procedure

4.3.2.3 Stage Switching Condition

To ensure a proper condition for switching from the exploration stage to the species-
specific stage, we propose using the expected mutation step size (EM SS) as a measure
for controlling the switching:

EMSS =pm X T

where p,, is the mutation probability and 7, is the mutation step size.

For each species seed, we scan its array delta to check whether its element exceeds
EMSS. If there does not exist an element which exceeds EMSS, the switching condi-
tion is satisfied. The algorithm will switch to the species-specific stage. Otherwise, the
algorithm will remain in the exploration stage. The rationale behind the checking con-
dition is that EMSS can give us an expected value for measuring the mutation ability
of the algorithm. It can serve as a measurement to assess the ability of the algorithm to
jump from one region to another region by just using mutation. Thus if all the elements
of the arrays delta of all species seeds do not exceed the EMSS, it is reasonable to de-
duce that the fitness improvement steps for all species in the subsequent generations are
most likely smaller than the EM SS. All fitness improvement steps can be completed by

merely using mutations, but not inter-species crossovers. Hence inter-species crossovers
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are no longer needed. Species-specific stage should be launched. The algorithm is shown
in Algorithm 7.

Algorithm 7 Stage Switching Condition
dim: The maximum dimension

procedure ISSPECIESSPECIFIC(X, EMSS)
SS « true;
for Vz € X do
for i from 1 to dim do
if z.deltali] > EMSS then
SS « false;
end if
end for
end for
return SS;
end procedure

4.3.2.4 Species-specific Explosion

In SCGA, Li et al. [99] proposed conserving one individual for each species. However,
just one individual for each species is not enough for the algorithm to well-conserve and
nurture the species. In a run of SCGA, it is often the case that the algorithm does
conserve species with low fitness values, but they are present in a small proportion.
Once they form new offspring, their offspring are often removed quickly in subsequent
generations due to their low fitness values. Thus most individuals are always of the
species with high fitness values. An example is depicted in Figure 4.1. In the example,
we can observe that the individuals gradually converge to the three optima fitness-
proportionally. Though different species are preserved with an individual as the species
seed, it cannot converge to the local optimum located at the left-bottom corner due to the
relatively low fitness values there. Merely SCGA itself actually cannot provide enough
indiscriminate condition for species to evolve and converge to its respective optimum in

each run. Hence we propose a local operation called Species-specific Explosion to
remedy the convergences in this paper.

Species-specific explosion is the local operation in which we create multiple copies for
each species seed and mutate them. To start this local operation, the algorithm needs
to determine two parameters:

1. How many copies should be created for each species seed?

2. What is the mutation step size for each species seed?

For the first question, we propose using the ratio of individuals in the same species to

the current population to determine the number of copies to be created. The details are
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FIGURE 4.1: A snapshot of SCGA in a run on Problem Peaksl - generation 1,2,4,10.

given in the section 4.3.2.5. For the second question, we propose using the array delta
of species seed as the corresponding mutation step size. Recall that the array delta of
species seed saves the step size values which were known to improve the species seed itself
in the previous generation, it can be used for approximating how far the species seed
should mutate to have a better fitness in the current generation. Hence we choose to use
the array delta as the mutation step size of the species-specific explosion operation. Once
the two parameters are calculated, the algorithm starts to check whether the species seed
is present in the previous generation. If it is present, the algorithm will “explode” it,
which means creating multiple copies and mutating them. Otherwise, no actions will
be executed. The rationale behind the checking is to ensure that the species seed to
be exploded is a stable species seed. Hence we require the species seed at least survive
through one generation to be eligible for the explosion. Alternatively, if the current
stage is species-specific stage, the above checking is overridden. All species seeds are
eligible for the explosions, in order to provide all species an indiscriminate condition to
evolve in this stage. The algorithm is shown in Algorithm 8.
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Algorithm 8 Species Specific Explosion
procedure SPECIESSPECIFICEXPLOSION(G, X, K,SS)
Es = 0;
WEIGHTSEVAL(X}, G);
for Vz € X do
if « is present in previous generation
or SS = true then
size «— z.weight x K X pop-size;
Ey «— EU EXPLODE(z, size);
end if
end for
return E;;
end procedure

procedure EXPLODE(z, size)
Ezplodeds «— 0;
for i from 1 to size do
temp «— Copy of x;
Mutate temp with step size z.delta;
Ezxplodeds — Explodeds U temp;
end for
return Explodedy;
end procedure

4.3.2.5 Calculate Explosion Weights

Before an explosion, we need to determine the explosion weight for each species seed.
The explosion weight is defined over [0,1]. It is a scaling factor to determine the num-
ber of mutated copies that a species seed can create during the species-specific explosion
process. In EASE, the rationale behind is to encourage a species to create more mutated
copies if the species has less individuals in the current population. Hence the explosion
weight of a species seed is derived from the ratio of individuals in the same species to the
current population. The larger the ratio, the smaller is the explosion weight and vice
versa. The algorithm is shown in Algorithm 9. Each explosion weight is normalized at
the end so that the sum of all the explosion weights is limited to 1, in order to avoid the

total number of the mutated copies of all species seeds exceeding the predefined value
K X pop_size.

4.3.3 Experiments

We implemented EASE and SCGA using Sun’s Java programming language. Its de-
velopment is based on the EC4 framework provided in Kenneth De Jong's book [57].

Experiments to compare the performance between EASE and SCGA were conducted on
eight benchmark functions as shown below:
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Algorithm 9 Calculate the explosion weight for each species seed

procedure WEIGHTSEVAL(X;, G)
total «— 0;
for Vz € X, do
x.weight «— population size - number of individuals
in the same species in the current population;
total « total + x.weight;
end for
for Vz € X, do
z.weight «— x.weight/total;
end for
end procedure

e F1: Deb’s 1st function [108]

e ['2: Himmelblau function [104]

e F3: Six-hump Camel Back function [109)
e F4: Branin function [109]

e F5: Rosenbrock function [110]

e F6: PP1 [111]

e F7: PP3 [111]

o F8: PP4 [111]

4.3.3.1 Performance measurement

For multimodal optimization, there are several performance metrics proposed previously
(112]. The focuses of this paper are on (1) the ability of the algorithms to locate the
optima and (2) the accuracy of the optima found by the algorithms. Hence we use the

peak ratio and the average minimum distance to the real optima [111] as the performance
metrics.

¢ A peak is considered found when there exists an individual which is within 0.5
Euclidean distance to the peak in the last population. Thus the peak ratio is
calculated using the following formula:

Number of peaks found

PeakRatio =
cakhioito Total number of peaks

e The average minimum distance to the real optima is calculated using the following

formula:
n

min  d(peak,indiv)
indivEpop

n
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TABLE 4.1: Parameter setting of EASE for all benchmarks

Parameter Setting
Mutation Type Gaussian [57)
Mutation Formula in explosion NewValue = OldValue + 2 x StepSize x U

where U is a normally distributed real value with mean 0.0 and standard deviation 1.0
K 0.4

TABLE 4.2: Common parameter setting of EASE and SCGA for all benchmarks

Parameter Setting

Population Initialization Random

Generation Type Overlapping [57)

Parent Selection Fitness Proportional

Survival Selection Truncation [57

Representation Sun’s Java Double (double-precision 64-bit IEEE 754 floating point)
Mutation Type Gaussian [57]

Mutation Formula NewValue = OldValue + 1.3 x StepSize x U

where U is a normally distributed real value with mean 0.0 and standard deviation 1.0
Mutation Probability 0.2

Mutation Step Size 0.1

Crossover Type Intermediate Recombination [99)]
Crossover Formula Offspring = LerentizPorent
Crossover Probability 1

Random Seed 12345

Implementation Sun’s Java programming language

where n is the number of peaks, indiv denotes an individual and pop denotes a
population of individuals.

In the following sections, all algorithms were run up to maximum 40000 fitness function
evaluations. The above performance metrics were obtained by taking the average and
standard deviation of 50 runs.

4.3.3.2 Parameter settings

The parameter setting of EASE for all benchmarks is shown in Table 4.1. The common
parameter setting of EASE and SCGA for all benchmarks is shown in Table 4.2. The
common parameter setting of EASE and SCGA for different benchmarks is shown in
Table 4.3. All the common parameter settings of EASE are exactly the same as SCGA
for fair comparisons. The selection method of the species distance parameters is based
on the suggestions in [99)].

4.3.3.3 Results

Table 4.4 shows the experimental results for the comparison of EASE and SCGA. It can
be observed that EASE outperformed SCGA in all the benchmark functions. EASE does
improve SCGA's performance no matter in the ability to locate optima or the accuracy

Using the terms in [99], the species distance (ry) = 04/2
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TABLE 4.3: Common parameter setting of EASE and SCGA for different benchmarks

Benchmark  Population Size Species Distance?

F1 100 0.01
F2 100 3
F3 100 0.5
4 100 6
IS5 100 10
F6 200 50
F7 200 3
F8 200 3

of the optima found. Besides, UN is a canonical evolutionary algorithm in the EC4
framework. Its results can be regarded as the baseline results without any multimodal
optimization techniques.

4.3.4 Conclusion

A new evolutionary algorithm for multimodal optimization called Evolutionary Algo-
rithm with Species-specific Explosion(EASE) is proposed. EASE is an algorithm to
remedy SCGA by exploding species seeds for locating optima.

EASE is divided into two stages: Exploration Stage and Species-specific Stage.
EASE starts with the exploration stage. Once the stage switching condition is satisfied, it
will be changed to species-specific stage. Throughout the two stages, a local operation:
Species-specific Explosion is applied so as to help each species to converge to its
respective optimum.

The experimental results show that EASE improves SCGA for locating optima (global
and local), in terms of peak ratio and accuracy.
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TABLE 4.4: Experimental Results for the comparison of EASE and SCGA

Benchmark Measurement SCGA EASE UN
Mean of D 1.09E-03 2.00E-05 2.53E-01
StDev of D 1.16E-03 1.41E-05 1.88E-02
F1 Mean of Peak Ratio 1.00 1.00 0.20
StDev of Peak Ratio 0.00 0.00 0.00
Mean of D 2.59E-01 2.21E-12 4.86E+00
StDev of D 1.17E-01 1.49E-11 3.17E-01
F2 Mean of Peak Ratio 0.44 1.00 0.25
StDev of Peak Ratio 0.18 0.00 0.00
Mean of D 2.03E-02 2.25E-05 7.18E-01
StDev of D 2.22E-02 1.13E-04 2.09E-06
F3 Mean of Peak Ratio 0.95 1.00 0.50
StDev of Peak Ratio 0.15 0.00 0.00
Mean of D 6.63E-01 9.78E-06 6.90E+00
StDev of D 5.91E-01 4.91E-05 1.33E+4-00
F4 Mean of Peak Ratio 0.41 1.00 0.33
StDev of Peak Ratio 0.14 0.00 0.00
Mean of D 8.76E-03 1.15E-14 1.71E-02
StDev of D 1.11E-02 3.00E-14 1.65E-02
F5 Mean of Peak Ratio 1.00 1.00 1.00
StDev of Peak Ratio 0.00 0.00 0.00
Mean of D 2.11E4+00 1.59E-06 7.53E+01
StDev of D 9.10E-01 1.12E-05 1.09E-05
F6 Mean of Peak Ratio 0.34 1.00 0.33
StDev of Peak Ratio 0.05 0.00 0.00
Mean of D 4.07E-01  2.47E-07 8.04E+00
StDev of D 1.09E-01 1.28E-06 8.20E-01
F7 Mean of Peak Ratio 0.27 1.00 0.07
StDev of Peak Ratio 0.08 0.00 0.00
Mean of D 5.20E-01 2.01E-05 7.81E+00
StDev of D 1.19E-01 5.43E-05 6.01E-01
F8 Mean of Peak Ratio 0.20 1.00 0.07
StDev of Peak Ratio 0.06 0.00 0.00
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4.4 A Crowding Genetic Algorithm with Spatial Locality
for Multimodal Optimization

Nevertheless, as EASE is built on SCGA, it also inherits the defects from SCGA. The
parameter, species distance, needs to be tuned well before applying it to a problem.
In other words, if the fitness landscape of a problem is not well understood, then it is
very likely that EASE will fail in the problem. Thus we propose another evolutionary
algorithm for multimodal optimization in order to mitigate the parameter problem in
this section. The algorithm is called Crowding Genetic Algorithm with Spatial Local-
ity (CrowdingGA-L), which is built on CrowdingGA and does not require any extra
parameter other than the conventional genetic parameters.

4.4.1 Background
4.4.1.1 Crowding Genetic Algorithm

To extend the capability of genetic algorithm, De Jong incorporates the crowding tech-
nique [98] into genetic algorithm (CrowdingGA) for multimodal optimization. Although
an intense computation is accompanied, it can effectively transform genetic algorithm
into an algorithm specialized for multimodal optimization. To determine the dissim-
ilarity (or distance) between two individuals, the dissimilarity measurement proposed
in Goldberg et al. [60] and Li et al. [99] is adopted. The dissimilarity between two
individuals is based on their Euclidean distance. The smaller the distance. the more
similar they are and vice versa.

4.4.1.2 Locality of Reference

Locality of Reference [113] (or The Locality Principle [114]), is one of the most
fundamental principles widely used in computing. The principle was originated from
memory management methods in order to predict which memory entries would be refer-
enced soon. The main idea is to make use of neighborhood relationships for prediction,
optimizing the throughput. To define the neighborhood relationship, time and space
are typically taken as the proximity measures. If time is taken. it is called temporal
locality. If space is taken, it is called spatial locality.
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4.4.2 Crowding Genetic Algorithm with Spatial Locality

4.4.2.1 Motivation

If we do not apply any specific technique to maintain diversity, most evolutionary algo-
rithms will prematurely converge and get stuck in a local optimum. To cope with the
problem, the algorithms for multimodal optimization are usually equipped with their
own local operations for diversity maintenance. In CorwdingGA, its local operation is
the crowding technique. Thinking this technique more deeply, it is to propose a restric-
tion on the individual replacement policy such that an individual gets replaced only when
a fitter offspring is generated within the same niche. Thus the choice of the offspring
generation method becomes a critical performance factor. Especially, in multimodal
optimization, it is intuitive to choose close parent individuals to crossover, instead of
distinct parent individuals because two individuals within the same niche is more likely
to generate a better individual for convergence than the opposite case. Unfortunately,
the offspring generations in CrowdingGA mainly relies on fitness-based measurements.
Some offspring useless for multimodal optimization may be generated by two distinct
parents with high fitness. They are not suitable to offer enough feasible replacement
schemes for all individuals. Thus we propose a new method for offspring generation, in
order to increase the chances for successful replacements.

4.4.2.2 Offspring generation with spatial locality

Close individuals tend to have similar characteristics. For each generation, the pop-
ulation can be seen to be divided into different niches (See the population snapshot
example in Figure 4.2). Within each niche, the individuals exhibit similar positions and
step-sizes for improvement. After several generations, the difference between niches may
be even larger. It will be a disaster if a single evolutionary strategy is applied to all of
them regardless of their niches. Luckily, it is a two-edged sword. Such property also

gives us spatial locality: crossovers between close individuals can have higher chances
to generate better offsprings.

p o 3 o
X . X o
]
o ® |ndividual
5 .'X. X Optimum

FIGURE 4.2: A Population Snapshot Example (for illustrative purpose only)
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Thus a local operation is proposed to take advantage of it: the individuals which are close
together should be given more chances to crossover with each other. In other words,
to bring such neighborhood idea into the offspring generation, the distances between
an individual and its candidate individuals are first computed. Then the distances are
transformed into the proportions of a roulette-wheel [57]. Within the roulette-wheel,
larger proportions of the roulette-wheel are given to closer candidate individuals. It
follows that closer individuals are given higher chances for offspring generations. For
the sake of clarity, the local operation is outlined in Algorithm 10.

Combined with the local operation, Crowding Genetic Algorthtm (CrowdingGA) is re-
formulated as a hybrid algorithm which takes advantages of spatial locality. Thus it is
named Crowding Genetic Algorithm using Spatial Locality (CrowdingGA-L). Off-
spring generations can be tailor-made for each individual. Fitter offsprings are more
likely to be generated. More feasible replacement schemes can thus be provided.

Algorithm 10 Offspring Generation Using Spatial Locality
P;: First Parent individual
Ps: Second Parent individual
O: Offspring individual

procedure NEWOFFSPRINGGENERATION(P))

1. Transform the distances between P; and all candidate individuals
to proportions using a transformation function;

2. Prepare a roulette-wheel based on the transformed proportions;

3. Use the roulette-wheel to pick an individuals Ps;

O = Crossover(Py, Py);
return O;

end procedure

Mathematically, a function is needed to transform distances to proportions of a roulette-
wheel. Thus two transformation functions are proposed: Since closer individuals are
given higher values (proportions), the transformation function must be a monotoni-
cally decreasing function over the interval [0,MaxDistance|, where MaxDistance is the
maximum distance between a parent and all of its candidate individuals. Thus a sim-
ple function and Gaussian function are proposed for the transformation. The simple
function is based on the formula: Proportion = (MaxRistancedistance)a yhere g is a
scaling constant. On the other hand, the Gaussian function is based on the formula:
Proportion = exp(—(%ﬁz)) where SD = w Since spatial locality is nor-
mal in nature [114], the Gaussian function is adopted in CrowdingDE-L for the trans-
formation if not specified explicitly.
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FIGURE 4.3: Transformation Functions for Spatial Locality

4.4.3 Experiments

We implemented all the algorithms using Sun’s Java programming language. The devel-
opment was based on the EC4 framework [57]. Experiments to compare the performance
among CrowdingGA-L and other algorithms were conducted on eight benchmark func-
tions. The other algorithms include: Crowding Genetic Algorithm (CrowdingGA) [98],
Fitness Sharing Genetic Algorithm (SharingGA) [60], SharingDE [102], Species Conserv-
ing Genetic Algorithm (SCGA) [99], and SDE [115]. The first five benchmark functions
are widely adopted in literatures: F1 is Deb’s 1st function [116], F2 is Himmelblau func-
tion [104], F3 is Six-hump Camel Back function [109], F4 is Branin function [109] and

F5 is Rosenbrock function [110]. F6, F7, and F8 are PP1, PP3, and PP4 which were
derived from [116, 117].

4.4.3.1 Performance measurements

For multimodal optimization, there are several performance metrics proposed [99, 102,
115, 117]. Our focuses are on the ability of the algorithms to locate the optima and the
accuracy of the optima found by the algorithms. Hence we adopted the Peak Ratio (PR)

and Average Minimum Distance to the Real Optima (D) [116, 117] as the performance
metrics.

As different algorithms perform different operations in one generation, it is unfair to set
the termination condition as the number of generations. Alternatively, it is also unfair
to adopt CPU time, since it substantially depends on the implementation techniques
for different algorithms. For instance, the sorting techniques and the programming
languages used. In contrast, fitness function evaluation is always the performance bot-
tleneck. Thus the number of fitness function evaluations was set as the termination
condition in the following experiments. All algorithms were run up to a maximum of
40000 fitness function evaluations. The above performance metrics were obtained by
taking the average and standard deviation of 50 runs.
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4.4.3.2 Parameter setting

Sun’s Java Double (double-precision 64-bit IEEE 754 floating point) was used as the real
number representation for all algorithms. All populations were initialized randomly. The
random seed was 12345. For all DE algorithms, the crossover probability (CR) was 0.9
and F was 0.5. The common GA parameter settings of CrowdingGA, SharingGA and
SCGA for all benchmarks were the same as Table 4.2. For all crowding algorithms,
population size was set to 100 for F7 and F8. 50 was set for the remaining benchmark
functions. The parameter settings of SharingDE, SharingGA, SCGA, and SDE for
different benchmarks are tabulated in Table 4.5. For SharingDE and SharingGA, ¢ and
a denote the niche radius and scaling factor respectively. The parameters have been

tuned in a few preliminary runs with manual inspections for all algorithms.

TABLE 4.5: Parameter setting of SharingDE, SharingGA, SCGA and SDE for different

benchmarks
SharingDE [102] | SharingGA [60] | SCGA [99] and SDE [115]

Benchmark | Population Size | a o a o Species Distance
F1 100 1 0.001 1 0.001 0.01

F2 100 1 0.03 5 0.1 3

F3 100 1 0.01 2 40 0.5

F4 100 1 0.01 1 0.1 6

F5 100 3 30 3 30 10
Peaks1 200 1 100 1 50 50
Peaks2 200 1 100 2 50 25

Peaks3 200 1 5 1 0.5 3
Peaks4 200 1 5 1 0.5 3
Peaksb 200 1 300 1 300 150

4.4.3.3 Results

Table 4.6 shows the experimental results for the comparison of CrowdingGA-L and the
other algorithms. It can be observed that CrowdingGA-L outperformed the others in
all the benchmark functions. It also improves CrowdingGA’s performance no matter
in the ability to locate optima or the accuracy of the optima found. Besides, UN is a
canonical evolutionary algorithm in the EC4 framework. Its results can be regarded as

the baseline results without any multimodal optimization techniques.

4.4.4 Conclusion

CrowdingGA-L is highlighted with its ability for effectively generating fitter offsprings.
Extensive experiments have been conducted. The results indicate that CrowdingGA-L

has its own competitive edge over the other algorithms tested, in terms of the perfor-
mance metrics.
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TABLE 4.6: Experimental Results for all algorithms tested (averaged over 50 runs)

Benchmark  Measurement CrowdingGA-L  CrowdingGA  SharingGA lS=luu'inng:‘. SDE SCGA UN
Mean of D 9.5&-07 2.24l=§-()(i 4.08E-03 1.14E-03 1.59E-03  LOYE-03  2.53E-01
StDev of D 3.46E-06 4.81E-06 1.21E-02 4.53E-04 T87E-03  L16E-03  1.88E-02
Fl1 Mean of Peak Ratio 1.00 1.00 0.98 1.00 0.99 1.00 0.20
StDev of Peak Ratio 0.00 0.00 0.06 0.00 0.04 0.00 0.00
Mean of D 9.30E-05 4.93E-04 2.06E400 4.92E-01 1.20E+00  2.59E-01 4.86E+00
StDev of D 8.28E-05 549E-04 1LOSE+00 7.97E-01 6.36E-01 1.17E-01 3.17E-01
F2 Mean of Peak Ratio 1.00 1.00 0.66 0.91 0.78 0.44 0.25
StDev of Peak Ratio 0.00 0.00 017 0.14 0.11 0.18 0.00
Mean of D 1.90E-05 2.21E-05 1.44E-01 1.50E-02  6.22E-03  2.03E-02  T.I8E-01
StDev of D 2.91E-05 3.38E-05 2.89E-01 4.96E-03  2.26E-03  2.22E-02  2.09E-06
F3 Mean of Peak Ratio 1.00 1.00 0.90 1.00 1.00 0.95 0.50
StDev of Peak Ratio 0.00 0.00 0.20 0.00 0.00 0.15 0.00
Mean of D 1.10E-03 5.96E-02 3.39E+00 L3SE+00  2.61E-01 6.63E-01  6.90E+00
StDev of D 1.25E-03 1.14E-01 1.99E+-00 1.85E+400 7.81E-01 3.91E-01  1.33E+00
F4 Mean of Peak Ratio 1.00 0.89 0.61 0.88 0.97 0.41 0.33
StDev of Peak Ratio 0.00 0.16 0.21 0.16 0.10 0.14 0.00
Mean of D 6.73E-04 1.22E-02 8.59E-03 4.14E-02 4.23E-02 S8.76E-03 1.71E-02
StDev of D 1.3GE-03 2.84E-02 1.83E-02 1.40E-01 3.07E-02  L11E-02 1.65E-02
F5 Mean of Peak Ratio 1.00 0.96 1.00 0.92 0.94 1.00 1.00
StDev of Peak Ratio 0.00 0.20 0.00 0.27 0.24 0.00 0.00
Mean of D 5.09E-01 6.36E-01 4.84E+00 2.67E+01  5.00E+01 2.11E+00 7.53E+01
StDev of D 1.61IE+00 1ISE+00 T.78E+00 3.12E+401  7.71E+00 9.10E-01 1.09E-05
F6 Mean of Peak Ratio 0.93 0.86 0.01 0.37 0.21 0.34 0.33
StDev of Peak Ratio 0.13 0.17 0.05 0.10 0.16 0.05 0.00
Mean of D 3.47TE-02 9.15E-02 1LS9E+00 2.24E-01 3.69E+00  4.07E-01  B.O4E+00
StDev of D 5.20E-02 8.21E-02 3.66E-01 1.28E-01 G.48E-01  1.09E-01  8.20E-01
F7 Mean of Peak Ratio 0.95 0.84 0.61 0.55 0.34 0.27 0.07
StDev of Peak Ratio 0.05 0.09 0.07 0.12 0.05 0.08 0.00
Mean of D 2.04E-01 2.69E-01 2.49E+00 4.90E-01 3.36E+00  5.20E-01 7.81E+00
StDev of D 1.69E-01 1.75E-01 4.32E-01 1.81E-01 6.96E-01 LL19E-01  6.01E-01
F8 Mean of Peak Ratio 0.87 0.69 0.24 0.33 0.33 0.20 0.07
StDev of Peak Ratio 0.06 0.08 0.09 0.12 0.04 0.06 0.00

The locality principle is proven simple and useful in computing [114]. In a macro-view,
the work in this section can be regarded as a case study for integrating the locality
principle into an evolutionary algorithm. The numerical results can also be viewed as
a valuable resource for comparing the state-of-the-art algorithms for multimodal opti-
mization.



Chapter 5

Generalizing Protein-DNA
Binding Sequence
Representations and Learning
using an Evolutionary Algorithm

for Multimodal Optimization

In Chapter 3, we have described a set of discovered TF-TFBS sequence pairs which have
been verified by PDB. In Chapter 4, we have described two evolutionary algorithms
designed for multimodal optimization. In particular, Crowding Genetic Algorithm with
Spatial Locality (CrowdingGA-L) is found to be effective and easy to be used, in terms
of the parameter settings. In this chapter, we describe how CrowdingGA-L is applied
and customized as CrowdingGP-L to generalize the sequence pairs discovered such that

more information and insights can be provided for biochemists.

5.1 Introduction and Background

In Chapter 3, we have described several sequence pairs discovered by a data mining
framework. In the verification process, it is found that the sequence pairs reveal some
true binding core contacts between TFs and TFBSs, which can drive for further knowl-
edge in deciphering the TF-TFBS binding.

Nevertheless, the sequence pairs discovered are in one-to-one format. One TF amino
acid sequence is coupled with one TFBS DNA sequence. In the biological world, a TF
may bind to their promoter using several contact surface subsequences. Some surfaces of

the TF may also be interacting surfaces to recruit another TF as a performing complex

70
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[118]. For instance, McGuire et al [119] found that there were two conserved parts for
the ArcA-P recognition motif in E.coli. Kato et al. proposed a novel method to identify
combinatorial regulation of transcription factors and binding motifs using chromatin
immunoprecipitation (ChIP) data with microarray expression data. A case study in the
evolution of combinatorial gene regulation in Fungi has also been carried out by Tuch et
al. [120]. Many experimental evidences can also be found in TransCompel [121] which is
a comprehensive database on the composite interactions between TFs binding to their
TFBSs, experimentally proved in literature. Thus several TF amino acid sequences
may be coupled with several TFBS DNA sequence, instead of just one-to-one mapping.
Considering the available resources and huge search space, we propose applying an evo-
lutionary algorithm to learn generalized representations of sequence pairs. In particular,

the pairs are evolved to pairs of boolean expressions of kmers by CrowdingGP-L.

Since tree structures (boolean expressions of kmers) are described in this chapter, some
related reviews are conducted:

Evolving trees by evolutionary algorithms are well studied in the genetic programming
[2] field. Many design issues have also been reviewed. In particular, some researchers
are especially concerned about the roles of crossover and mutation. Some of them argue
that crossovers are not beneficial to the evolution, whereas the others hold the opposite
view [122]. Some of them also argue that mutations are not needed, whereas the others
hold the opposite view [123]. Even Sean et al. and White et al. have done an extensive
experiments on comparing crossovers and mutations on a series of well known problems.
They can only conclude that the benefit of crossovers is problem-dependent [124, 125].
The debate is still continuing. Thus, as a compromising solution, both crossover and
mutation operators are adopted in this chapter. Another important topic in genetic pro-
gramming is to control the “bloat” property. In a run of genetic programming, it is often
found that some unnecessary components (called “introns”) are formed. It is trivial for
us to think that they are not necessary, and thus not good. However some researchers
suggest that the presence of the introns can deviate the crossover operators, protecting
the good components [2]. Terence et al. suggested using a fitness function which pe-
nalizes trees with many introns. Rosca also suggested providing parsimony pressure on
selecting trees were beneficial to grow toward the optimal structures. Nevertheless, the
bloat property is a double-edged sword. Hilimi et al. made use of the bloat property
to evolve some buffer overflow attack codes which can successfully hide themselves from
intrusion detectors.

With a large research community studying and analysing genetic programming, genetic
programming has proved successes in many applications, for instance, data mining [126],

image enhancement [127], technical trading rule finding [128], and 3-D Character Ani-
mation [129].
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5.2 Problem Definition

In this problem, the 131 TFBS5mer-TF5mer pairs mentioned in Chapter 3 are trans-
formed from one-to-one mappings into many-to-many mappings, which are the pairs of
boolean expressions of Smers with the (locally) highest lift.

Definition 5.1 A boolean expression of kmers is a tree in which its parent nodes are
boolean operators AND/OR and its leaf nodes are kmers

Definition 5.2 A pair of boolean expressions of kmers has two boolean expressions
of kmers. One is only composed of amino acid kmers and evaluated in the amino acid
sequences of transcription factors, the other is only composed of DNA kmers and eval-

uated in the DNA sequences of transcription factor binding sites.

5.3 Crowding Genetic Algorithm with Spatial Locality

To apply CrowdingGA-L and customized as CrowdingGP-L to learn the generalized
pairs, several customizations are needed. Pairs are represented as pairs of boolean
expressions of kmers in two tress so that some hierarchical information can be stored
and exchanged during the evolution process. Several crossover operators and mutation
operators are also proposed to evolve the pairs.

5.3.1 Representation

For each pair, we have two parts - amino acid sequence and DNA sequence. Thus
we should also have such two parts in our individuals. Each individual is a pair of
boolean expressions of kmers, which is modeled as two trees - an amino acid tree in
TFs and a DNA tree in TFBSs. The functional nodes are some logical operators (AND,
OR), whereas the terminal nodes are the kmers found in the pairs discovered in the
previous chapter. Figure 5.1 shows an example. The example represents a boolean
expression which the amino acid sequences RKQAE and (CEGCK or NRESA) are found
in one or more TF sequences, whereas the respective DNA sequences AAACA and
(CCACG or GATAA) are commonly found to co-exist with the TF tree in the respective
TFBS sequences. If a TF sequence has the kmers RKQAE and CEGCK and the TF’s

TFBS sequences have the kmers AAACA and CCACG commonly found, then the TF
is considered true for the boolean expression.
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FIGURE 5.1: A individual example - a pair of boolean expressions of kmers
5.3.2 Crossover Operators

Similar to genetic programming, we adopt subtree crossover as the crossover operators.
Given two trees, we randomly pick a node in each tree. Then we swap the picked
nodes and its children between the two trees. Figure 5.2 depicts an example. In this
example, we randomly pick the terminal node RKQAE in the left tree whereas we pick
the functional node AND in the right tree as the crossover points. Then, based on the
two nodes, we swap the respective subtrees rooted at the crossover points. Two new
offspring trees are thus formed. But, of course, this example only shows the crossover
between the trees on the TF side. It is trivial to be applied on the trees on the TFBS
side. Such subtree crossover may thus be applied to the two types of trees once during
each crossover operation in the evolution process.

5.3.3 Mutation Operators

Besides the crossover operators, mutation operators also play a key role in an evolution
process. They can help us balance the convergence power of crossovers such that pre-

mature convergence can be avoided. Thus we propose several mutation operators in this
section.

Basically, like the crossover operator, we also need to pick a random node to initiate a
mutation on a tree. Based on the type of the node picked (functional node or terminal

node), given the corresponding set of mutation operators, we probabilistically apply one
of them on the node.

Figure 5.3 depicts the set of mutation operators on functional nodes. In particular,
it shows an example on the functional node OR. If we apply insertion, then a random
functional node (OR node in the example) will be inserted as the parent of the functional
node. A random terminal node (RKQAE in the example) will also be inserted as a child
of the functional node inserted. If we apply change, the functional node will be randomly
changed to a random functional node (AND node in the example) in the same place. If
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FIGURE 5.2: A crossover example on the TF side - subtree crossover

we apply deletion, the functional node and one of its child will be deleted as shown in

5.3(c).

Figure 5.4 depicts the set of mutation operators on terminal nodes. In particular, it
shows an example on the terminal node CEGCK. If we apply insertion, then a random
functional node (AND node in the example) will be inserted as the parent of the terminal
node. A random terminal node (NRRAK in the example) will also be inserted as a child
of the functional node inserted. If we apply change, the terminal node will be randomly
changed to a random terminal node (NRRAK in the example) in the same place. If we
apply deletion, the terminal node will be deleted as shown in 5.4(c).

5.3.4 Fitness Function

Fitness function (or objective function) is one of the most important designs in an
evolutionary algorithm. It not enly provides a landscape for an evolutionary algorithm,

but also the direction in selecting individuals. Every individual is evaluated based on
the fitness function designed.

Considering the current problem, it is trivial to adopt support as the fitness function.

Nevertheless, it will encourage the evolution process to have more null terminal nodes
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and OR functional nodes. All individuals will just strive for more and more obscure
condition to satisfy all the sequence data to maximize its support. Thus, obscure pairs
will be generated, providing useless information for us. In contrast, lift [86] does not
suffer from the issue because it estimates the ratio of the actual occurrence probability
to the expected occurrence probability for a pair (A-B). The support is normalized by

the background frequency:
P(A, B)
P(A) x P(B)

where P(A,B) is the occurrence probability of A and B, P(A) is the occurrence prob-

lift =

ability of A, and P(B) is the occurrence probability of B. Assume the total number of
data samples is N. Then P(A, B) = Support(A, B)/N, P(A) = Support(A)/N, and
P(B) = Support(B)/N. Thus

P(A,B) Support(A, B)/N __ Support(A, B) o
(A) x P(B)  Support(A)/N x Support(B)/N ~ Support(A) x Support(B)

lift = P

Thus we use it as the fitness function:

Support(A, B) G
Support(A) x Support(B)

Fitness Function =

To be comparable to the previous pairs generated, lift is measured only when the sup-

port is larger than or equal to seven. Otherwise, the corresponding individual will be
discarded.

5.3.5 Distance Metric

In evolutionary algorithm, a distance metric can be classified as genotype, phenotype
or functional distance. As their names stand, genotype, phenotype, and functional dis-
tances measure the distance between individuals in genotype, phenotype and functional
spaces respectively. In this work, functional distance is adopted. The distance between
two individuals is measured based on their functions, the TF sequences and the cor-
responding TFBS sequences where they can satisfy. The cardinality of the symmetric
difference of them for each side is calculated. The value for the TF side and that for the
TFBS side are combined into the formula of Euclidean distance. Square root is removed
for computational efficiency. Mathematically, the distance between individual A and
individual B is calculated as follows:

_ |TF,©TFg|

di -

|TFBS, & TFBSy|
|TFBS,| + [TFBSp|

distance = (dif frp(A, B))? + (dif frrps(A, B))?

dif frrps(A, B) =
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TABLE 5.1: EC parameter setting

Parameter

Setting

Functional Nodes
Terminal Nodes

AND, OR
kmers in Table 3.3

Population Initialization
Population Size
Generation Type
Parent Selection
Survival Selection
Representation

TFBS5mer-TF5mer pairs in Table 3.3
262

Overlapping [57]

Binary Tournament [57]

Truncation [57]

Two Trees of kmers

Mutation Type

Mixed use of the mutations mentioned

Mutation Probability 0.4

Crossover Type Subtree Crossover [2]
Crossover Probability 0.2

Random Seed 5616516

Implementation EC4 framework (Sun’s Java programming language)

TABLE 5.2: Mutation Probability

Functional Node Terminal Node

Insertion 0.6 Insertion 0.6
Change 0.2 Change 0.2
Deletion 0.2 Deletion 0.2

where T'Fx is the set of the TF sequences which individual X satisfies and TF BSy
is the set of the TF sequences which individual X satisfies their TFBS sequences as
commonly found.

5.4 Experiments

5.4.1 Parameter Setting

Table 5.1 shows the EC parameter setting for the experiments. In particular, motivated
by Kraft et al., a mixed use of mutations is adopted. Given an individual, we have two
trees. One tree is on the TF side, whereas the other tree is on the TFBS side. For
each tree, it has a fixed and pre-defined mutation probability (0.4 in this chapter) to be
mutated. If mutated, the algorithm will randomly selects a node in the tree. Based on
the type of the node (functional or temrminal), the node will probabilistically undergo
one of the mutations mentioned in Figures 5.3 and 5.4. These probabilities are pre-

defined in Table 5.2. To control the bloat property, individuals having a tree with more
than eight terminal nodes will be discarded.
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5.4.2 Search Space Estimation

Totally, we have 78 terminal nodes on the TF side [< null >, HNLSL, IRHNL, KP-
PYS, NLSLN, NSIRH, PPYSY, PYSYI, QNSIR, RHNLS, SIRHN, WQNSI, PMNAF,
RPMNA, CKGFF, FQNRR, NRRAK, QNRRA, QVWFQ, VWFQN, WFQNR, ARRSR,
ERELK, ESARR, KQSNR, LRKQA, NRESA, QSNRE, RESAR, RKQAE, RKQSN,
RLRKQ, RRSRL, RSRLR, SARRS, SNRES, SRLRK, CEGCK, CGDKA, CQYCR,
CVVCG, EGCKG, FFRRT, FRRTI, GCKGF, GFFKR, GFFRR, KGFFK, KGFFR,
RNRCQ, TCEGC, VCGDK, VVCGD, IWFQN, KIWFQ, NRRMK, QNRRM, GEKPY,
HTGEK, TGEKP, LRYYY, LWQFL, CNACG, LCNAC, NACGL, DLVLD, FFKRS,
GYHYG, ITCEG, NRCQY, RCQYC, RNQCQ, SCEGC, SGYHY, KYGQK. RKYGQ,
WRKYG, NWFIN], 17 terminal nodes on the TFBS side [< null >, AAACA, AACAA,
AAGGT, AATTA, ACGTG, AGGTC, ATTAA, CACCC, CCACG, CGGAA, CTTCC,
GATAA, GCCAC, GGTCA, GTCAA, TGACA], and 2 functional nodes [AND, OR].

Let the notation N(hpp, hrrps) be the number of possible combinations of individuals
with a full tree with height hrp on the TF side and with a full tree with height hrrps
on the TFBS side, which is calculated as follows:

Assume hrp > 1 and hppps > 1.

hope hpp—1 hop R s
N(hrp, hrpps) = 182 7F x 22'TF™" x 172'TFBS  92'TFBS

Based on this equation, a rough estimation of the number of possible combinations with
different values of hppr and hpppg is shown in Table 5.3. We can observe that the search

space is quite large even when hpp and hpppg are small, which motivates us to apply
an evolutionary algorithm to search the space.

TABLE 5.3: Number of possible combinations of individuals with different heights

hrr _hrrps  N(hrr,hress) | hre hrees  N(hrr,hrrps)

1 1 7.03E+4-06 3 1 1.267E+19
1 2 4.065E+09 3 2 7.324E+21
1 3 1.358E+15 3 3 2.44TE+27
1 1 1.516E+26 3 1 2.731E+38
2 1 8.558E+10 4 1 2.778E+35
2 2 4.946E+13 4 2 1.605E+-38
2 3 1.653E+19 4 3 5.364E+43
2 4 1.844E+30 4 4 5.987TE+54

5.4.3 Experimental Procedure

With the parameter setting, we ran CrowdingGP-L on the TRANSFAC dataset de-

scribed in Chapter 3 up to a maximum of one million fitness function evaluations for 50
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TF TFBS

FIGURE 5.5: Generalized Example 1

runs. After each run, we picked 131 fittest pairs (the same number as the pairs in Table
3.3) out of the 262 pairs in the final population. Thus, in total, we had 6550 pairs after
the 50 runs. The distribution of the pairs are tabulated in Table 5.4. For instance, 351
pairs with support>15 and lift>25 are found. Some pairs are also shown in Figure A.1.

5.4.4 Results and Analysis
5.4.4.1 Generalization Analysis

Our goal is to generalize the pairs obtained in Chapter 3. This section provides empirical

analysis on three generalized examples obtained in this experiment.

The first example is depicted in Fig. 5.5. Clearly, there is only one 5mer, AAACA,
on the TFBS side. This pair is, in effect, a generalized one-to-many mapping from the
TFBS side to the TF side. The 5mer AAACA on the TFBS side binds to several 5mers
on the TF side.

To analyze its generalization ability, we have searched through the original pairs and
found that four of them were involved in this generalized pair. The four original pairs
are AAACA-PPYSY, AAACA-RHNLS, AAACA-NLSLN, and AAACA-NSIRH. Each

of them and the generalized pair were searched and recorded for their occurrences in the
dataset as shown in Fig. 5.6.

There are four blocks divided by stars (). The first block (top) denotes to which pair
each column belongs (except the first column which denotes the generalized example).
The second block (second from the top) provides the TF IDs which each pair (X) can
satisfy on both TFBS and TF sides (I'Fx N TFBSx). The third block (third from
the top) provides the TF IDs which each pair (X) can satisfy only on the TFBS side
(-TFx NTFBSx). The forth block (bottom) provides the TF IDs which each pair (X)
can satisfy only on the TF side (T'Fx N ~T'FBSx). The black TF IDs denote the TF
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TABLE 5.4: Number of pairs learned after 50 runs across different minimal levels of
support and lift. For instance, 351 pairs with support>15 and lift>25 are found

Lift/Support 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 6550 4555 3861 3087 2301 1781 1169 741 435 223 149 116 29 0
1 6550 4555 3861 3087 2301 1781 1169 741 435 223 149 116 29 0
2 6550 4555 3861 3087 2301 1781 1169 741 435 223 149 116 29 0
3 6550 4555 3861 3087 2301 1781 1169 741 435 223 149 116 29 0
4 6550 4555 3861 3087 2301 1781 1169 741 435 223 149 116 29 0
5 6550 4555 3861 3087 2301 1781 1169 741 435 223 149 116 29 0
6 6550 4555 3861 3087 2301 1781 1169 741 435 223 149 116 29 0
7 6550 4555 3861 3087 2301 1781 1169 741 435 223 149 116 29 0
8 6550 4555 3861 3087 2301 1781 1169 741 435 223 149 116 29 0
9 6550 4555 3861 3087 2301 1781 1169 741 435 223 149 116 29 0
10 6550 4555 38G1 3087 2301 1781 1169 741 435 223 149 116 29 0
11 6550 4555 3861 3087 2301 1781 1169 741 435 223 149 116 29 0
12 6550 4555 3861 3087 2301 1781 1169 741 435 223 149 116 29 0
13 6550 4555 3861 3087 2301 1781 1169 741 435 223 149 116 29 0
14 6550 4555 3861 3087 2301 1781 1169 741 435 223 149 116 29 0
15 6550 4555 3861 3087 2301 1781 1169 741 435 223 149 116 29 0
16 6550 4555 3861 3087 2301 1781 1169 741 435 223 149 116 29 0
17 6550 4555 3861 3087 2301 1781 1169 741 435 223 149 116 29 0
18 6550 4555 3861 3087 2301 1781 1169 741 435 223 149 116 29 0
19 6550 4555 3861 3087 2301 1781 1169 741 435 223 149 116 29 0
20 6550 4555 3861 3087 2301 1781 1169 741 435 223 149 116 29 0
21 6546 4551 3857 3083 2298 1779 1168 741 435 223 149 116 29 0
22 6509 4517 3832 3064 2285 1767 1161 735 431 220 148 115 20 0
23 6433 4452 3774 3035 2264 1753 1151 729 430 220 148 115 29 0
24 6323 4343 3679 2946 2205 1706 1111 701 407 203 131 101 21 O
25 6058 4107 3459 2773 2060 1594 1035 643 3851 147 78 61 3 0
26 5448 3667 3055 2450 1818 1371 816 427 171 26 0 0o 0 0
27 3926 2183 1643 1046 588 365 180 77 22 0 0 0 0 0
28 3591 1998 1470 1003 565 352 174 73 22 0 0 0 0 0
29 2555 1535 1182 830 474 336 1656 73 22 0 0 0 0 0
30 2368 1406 1090 789 437 302 156 G5 15 0 0 0 0 0
31 2040 1157 872 577 386 277 132 56 15 0 0 0 0 0
32 1881 1008 752 516 328 222 122 46 5 0 0 3¢ Yy
33 1529 687 511 346 244 138 38 7 0 0 0 0O 0 0
34 1009 515 352 201 100 65 38 4 0 0 0 0O 0 0
35 884 424 261 162 63 28 1 0 0 0 0 0 0 0
36 675 224 143 T4 49 28 1 0 0 0 0 0O 0 0
37 533 145 66 34 9 1 0 0 0 0 0 0 0 0
38 494 122 47 20 9 1 0 0 0 0 0 0 0 0
39 461 89 41 14 5 0 0 0 0 0 0 0 0 0
40 379 58 16 10 5 0 0 0 0 0 0 0 0 0
41 246 54 15 9 5 0 0 0 0 0 0 0 0 0
42 241 49 12 6 2 0 0 0 0 0 0 0O 0 0
43 210 43 11 5 1 0 0 0 0 0 0 0O 0 0
44 182 15 4 4 1 0 0 0 0 0 0 0 0 0
45 153 11 0- 0 0 0 0 0 0 0 0 0 0 0
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FIGURE 5.6: Generalization analysis on Generalized Example 1. There are four blocks
divided by stars (*). The first block (top) denotes to which pair each column belongs
(except the first column which denotes the generalized example). The second block
(second from the top) provides the TF IDs which each pair (X) can satisfy on both
TFBS and TF sides (I'"Fx NTFBSx). The third block (third from the top) provides the
TF IDs which each pair (X) can satisfy only on the TFBS side (-T'Fx N'TFBSx). The
forth block (bottom) provides the TF IDs which each pair (X) can satisfy only on the
TF side (T'"Fx N—-TFBSx). The black TF IDs denote the TF IDs which the generalized
example (E) cannot fully satisfy and generalize ((-TFgNTFBSg)U(TFgN-TFBSE)),
whereas the non-black TF IDs denote the TF IDs which the generalized example (E)
can satisfy and generalize (T'Fxy NTFBSy).
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FIGURE 5.7: Generalized Example 2

IDs which the generalized example (E) cannot fully satisfy and generalize ((-T'Fg N
TFBSE)U(TFgN-TFBSE)), whereas the non-black TF IDs denote the TF IDs which
the generalized example (E) can satisfy and generalize (T'Fx N TFBSx).

From Fig.5.6, we can observe that the proposed method can indeed integrate the four
pairs to become a single and informative pair (Generalized Example 1). For instance, let
us imagine a scenario that we only have two pairs AAACA-RHNLS and AAACA-NLSLN
in mind. When we find the 5mer AAACA as commonly found in T01053 (red colour in
Fig. 5.6), it is easy to deduce that we should find the two corresponding 5mers RHNLS
and NLSLN in the TF sequence of T01053. However, it turns out that we cannot find
any of them. By looking at Example 1, we realize the reason behind it: The Smer
AAACA can actually bind to several 5mers besides RHNLS and NLSLN. It can also
bind to PPYSY and NSIRH, which can finally be found in T01053. Hence we can see
that the generalized Example 1 can help us integrate and explain some datasets which
the standalone one-to-one mapping pairs cannot explain. (It has also been observed that
there are many movements of the non-black TF IDs not covered by the four pairs from
the third block into the second block covered by the generalized pair in Fig. 5.6)

The second example is depicted in Fig.5.7. There are two similar 5mers, AGGTC and
GGTCA, connected by the AND logical operator on the TFBS side. This pair is, in
effect, a generalized one-to-many mapping from the TFBS side to the TF side. The 5mers
AGGTC and GGTCA on the TFBS side bind to several 5mers on the TF side. Indeed,
it is not hard to expect that they are most likely found as a single 6mer AGGTCA in

the dataset. But, of course, it is also possible that it is not a 6mer but two very similar
Hmers.

To analyze its generalization ability, we have searched through the original pairs and
found that eight of them were involved in this generalized pair. The eight original pairs
are AGGTC-RNRCQ, AGGTC-FRRTI, AGGTC-CVVCG, GGTCA-RNRCQ, GGTCA-
FRRTI, GGTCA-CVVCG, GGTCA-FFKRS, and GGTCA-GYHYG. Each of them and
the generalized pair were searched and recorded for their occurrences in the dataset as
shown in Fig. 5.8.
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FIGURE 5.8: Generalization analysis on Generalized Example 2. There are four blocks
divided by stars (). The first block (top) denotes to which pair each column belongs
(except the first column which denotes the generalized example). The second block
(second from the top) provides the TF IDs which each pair (X) can satisfy on both
TFBS and TF sides (T'Fx N"'T'FBSx ). The third block (third from the top) provides the
TF IDs which each pair (X) can satisfy only on the TFBS side (-TFx N"TFBSx). The
forth block (bottom) provides the TF IDs which each pair (X) can satisfy only on the
TF side (T'Fx N—~TFBSx). The black TF IDs denote the TF IDs which the generalized
example (E) cannot fully satisfy and generalize ((-TFgNTFBSg)U(T FpN-TFBSE)),
whereas the non-black TF IDs denote the TF IDs which the generalized example (E)
can satisfy and generalize (T'Fx NTFBSx).
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FIGURE 5.9: Generalized Example 3

There are four blocks divided by stars (). The first block (top) denotes to which pair
each column belongs (except the first column which denotes the generalized example).
The second block (second from the top) provides the TF IDs which each pair (X') can
satisfy on both TFBS and TF sides (T'"Fx N TFBSx). The third block (third from
the top) provides the TF IDs which each pair (X) can satisfy only on the TFBS side
(-TFx NTFBSx). The forth block (bottom) provides the TF IDs which each pair (X)
can satisfy only on the TF side (I'Fx N -T'FBSx). The black TF IDs denote the TF
IDs which the generalized example (E) cannot fully satisfy and generalize ((-T'Fg N
TFBSEg)U(TFgN-TFBSE)), whereas the non-black TF IDs denote the TF IDs which
the generalized example (F) can satisfy and generalize (T'"Fx NTFBSx).

From Fig.5.8, we can observe that the generalized Example 2 can indeed integrate the
eight pairs to become a single and informative pair. Similar to Example 1, we can also see
that the generalized Example 2 can help us integrate and explain some datasets which
the standalone one-to-one mapping pairs cannot explain. (It has also been observed that
there are many movements of the non-black TF IDs not covered by the eight pairs from
the third block into the second block covered by the generalized pair in Fig. 5.8)

The third example is depicted in Fig.5.9. On the TF side, the sub-tree rooted at the
topmost AND operator is, in effect, a single terminal node for the 5mer NRESA. Thus
there are three inter-changeable Smers, RKQAE, KQSNR, and NRESA. On the TFBS
side, there are multiple combinations of 5mers. This pair is a generalized many-to-many
mapping from the TFBS side to the TF side.

To analyze its generalization ability, we have searched through the original pairs and
found that eight of them were involved in this generalized pair. The eight original pairs
are CCACG-RKQAE, CCACG-KQSNR, CCACG-NRESA, GCCAC-KQSNR, GCCAC-
NRESA, ACGTG-RKQAE, ACGTG-KQSNR and ACGTG-NRESA. Each of them and

the generalized pair were searched and recorded for their occurrences in the dataset as
shown in Fig. 5.8.
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FIGURE 5.10: Generalization analysis on Generalized Example 3. There are four blocks
divided by stars (*). The first block (top) denotes to which pair each column belongs
(except the first column which denotes the generalized example). The second block
(second from the top) provides the TF IDs which each pair (X) can satisfy on both
TFBS and TF sides (T'Fx NT'FBSx). The third block (third from the top) provides the
TF IDs which each pair (X) can satisfy only on the TFBS side (-T'Fx N'TFBSx). The
forth block (bottom) provides the TF IDs which each pair (X) can satisfy only on the
TF side (TFxN-TFBSx). The black TF IDs denote the TF IDs which the generalized
example (E) cannot fully satisfy and generalize ((-T FpNTFBSg)U(T FeN-TFBSE)),
whereas the non-black TF IDs denote the TF IDs which the generalized example (E)
can satisfy and generalize (T'Fx NTFBSy).
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There are four blocks divided by stars (x). The first block (top) denotes to which pair
each column belongs (except the first column which denotes the generalized example).
The second block (second from the top) provides the TF IDs which each pair (X) can
satisfy on both TFBS and TF sides (T'Fx N TFBSx). The third block (third from
the top) provides the TF IDs which each pair (X) can satisfy only on the TFBS side
(-TFx NTFBSx). The forth block (bottom) provides the TF IDs which each pair (X)
can satisfy only on the TF side (T'Fx N —=TFBSx). The black TF IDs denote the TF
IDs which the generalized example (E) cannot fully satisfy and generalize ((—=TFg N
TFBSE)U(TFeN-TFBSE)). whereas the non-black TF IDs denote the TF IDs which
the generalized example (E) can satisfy and generalize (I'Fx NTFBSy).

From Fig.5.10, we can observe that the generalized Example 3 can indeed integrate the
eight pairs to become a single and informative pair. Similar to Example 1, we can also see
that the generalized Example 3 can help us integrate and explain some datasets which
the standalone one-to-one mapping pairs cannot explain. (It has also been observed that
there are many movements of the non-black TF IDs not covered by the eight pairs from
the third and forth block into the second block covered by the generalized pair in Fig.
5.10)

5.4.4.2 Verification By PDB

Example 2 has been picked up for in-depth 3D binding analysis. Figure 5.11 depicts three
respective TF-TFBS pairs, AGGTCA-RNRCQ, AGGTCA-FRRTI, and AGGTCA-GYHYG,
constituting Example 2. From these figures, it can be observed that there are binding
evidences for Example 2. In particular, the 6mer AGGTCA can bind to three different
5mers RNRCQ, FRRTI. and GYHYG in different situations.

TF:RNRCQ

P 27

———

- & e gl e
TFBS:AGGTCA TFBS:AGGTCA TFBS:AGGTCA
(A) AGGTCA- ()  AGGTCA- (¢) AGGTCA-
RNRCQ pair in GYHYG pair in FRRTI pair in
1BY4 1LO1 3E00

FIGURE 5.11: Three representative TF-TFBS pairs for Example 2 are shown in ribbon

diagram. The TF amino acids and TFBS nucleotides are highlighted in ball and stick

format. The sequences of the TF-TFBS pairs are also labeled in the figures. The figures
are generated using Protein Workshop (1]
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Quantitatively, Table 5.5 shows the performance results obtained by the 6550 pairs in a
comparison to the original 131 TFBS5mer-TF5mer pairs in Table 3.3. It can be observed
that CrowdingGP-L improves the pairs in terms of the performance metrics. For the
average TFBS Prediction Score, their difference is considered statistical significance
with two-tailed P value = 0.002. For the average TFBS Binding Prediction Score,
their difference is considered statistical significance with two-tailed P value = 0.0007.
For the average Binding Prediction Score, their difference is not considered statistical
significance with two-tailed P value = 0.3325.

TABLE 5.5: Performance comparison between the original pairs and generalized pairs

Original ~ Generalized by CrowdingGP-L

Average TFBS Prediction Score 0.41%0.41 0.5340.44

Average TFBS Binding Prediction Score 0.2440.30 0.33+0.30

Average Binding Prediction Score 0.360.39 0.39+£0.35
Percentage of verified pairs 81% 99%

5.5 Conclusion

In this chapter, we have described how CrowdingGP-L is applied to generalize the
TFBS5mer-TF5mer pairs from one-to-one mappings into many-to-many mappings. It
has demonstrated its potential in post-processing and generalizing the pairs. The per-
formance measurements suggests that CrowdingGP-L can discover pairs with more gen-
eralized relationships verifiable in PDB.



Chapter 6

Predicting Protein Structures on
a Lattice Model using an
Evolutionary Algorithm for
Multimodal Optimization

This chapter considers protein structure prediction as a multimodal optimization prob-
lem. In particular, de novo protein structure prediction problems on 3D Hydrophobic-
Polar (HP) lattice model are tackled by Crowding Genetic Algorithm with Spatial Lo-
cality (CrowdingGA-L) which has been designed and applied in the previous chapters.
The experimental results indicate that the proposed algorithm can be applied and shown
comparable results with the state-of-the-arts algorithms in terms of the performance

metrics used, even though it is relatively simple.

6.1 Introduction

A polypeptide is a chain of amino acid residues. Once folded into its native state. it
is called protein. Proteins plays vital roles in living organisms. They perform different
tasks to maintain a body’s life. For instance, material transportations across cells, cat-
alyzing metabolic reactions and body defenses against viruses. Nevertheless, functions
of proteins substantially depend on their structural features. In other words, researchers
need to know a protein’s native structure before its function can be completely deduced.

It gives rises to the protein structure prediction problem.

The protein structure prediction problem is often referred as the “holy grail” of biology.
In particular, Anfinsen’s dogma [130] and Levinthal’s paradox [131] play important roles

in this problem. Anfinsen’s dogma postulates that a protein’s native structure (tertiary
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structure) only depends on its amino acid residue sequence (primary structure). On the
other hand, Levinthal’s paradox postulates that it is too time-consuming for a protein
to randomly sample all the feasible confirmation regions for its native structure. But,
on the other hand, the proteins in nature can still spontaneously fold into its native
structures in about several milliseconds.

Based on the above ideas, researchers have explored the problem throughout several
years. In particular, the designability of a structure and the degeneracy of a sequence
have been studied by Li et. al. [132]. The computational complexity has also been
examined by Hart et. al. [133].

Numerous prediction approaches have been proposed. In general, they can be classified
into two categories, depending on whether any prior knowledge other than sequence
data has been incorporated [134]. This paper focuses on De novo (or Ab initio) protein
structure prediction on 3D Hydrophobic-Polar (HP) lattice model using evolutionary
algorithms [58]. In other words, only sequence data is considered.

Different protein structure models have been proposed in the past [135]. Their differ-
ences mainly lies in their resolution levels and search space freedom. For the highest
resolution levels, all the atoms and bond angles can be simulated using molecular dy-
namics. Nevertheless, there is no free lunch. The simulation is hard to be completed
by the current computational power. On the other hand, a study indicated that protein
folding mechanisms might be simpler than previously thought [136]. Simplified mod-
els are enough. Thus this paper focuses on HP lattice model to capture the physical
principles of protein folding process [137, 138].

6.2 Problem Definition

In this problem, it assumes that the main driving forces are the interactions among the
hydrophobic amino acid residues. The twenty types of amino acids are experimentally
classified as either hydrophobic (H) or polar (P). An amino acid sequence is thus rep-
resented as a string {H, P}*. Each residue is represented as a non-overlapping bead in
a cubic lattice L. Each peptide bond in the main chain is represented as a connecting
line. A protein is thus represented as a non-overlapping chain in L.

Based on the above model, the objective of the protein structure prediction problem is
to find the conformation with the minimal energy for each protein. Mathematically, it
is to minimize the following function [132]:

H= " Euo(ri—r1;)

i+1<j
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where r; and r; are amino acid residues at sequence position i and j. The constraint
i+ 1 < j is to ensure that r; and r; are not next to each other in their sequence and
they are examined together once only. A(r; —r;) = 1 when r; and r; are adjacent in L,
otherwise A(r; — r;) = 0. As stated in the previous section, each residue is represented
as either H or P. Thus E,, could be Eyy, Exp, Epn, or Epp. For their values,
three schemes have been proposed. The most widely used scheme is Eyy = =1, Eyp =
0,Epy = 0, Epp = 0. The second scheme Eyy = —2.3, Eyp = =1, Epy = =1, Epp =
0 was proposed by [132]. The last scheme Eyy = =2, Eyp = 1, Epy = 1,Epp = 1is
called functional model protein (or “shifted” HP model) [139]. As mentioned in [135],
the results are insensitive to the value of Eypy as long as the physical constraints [132]
are satisfied. Thus we have chosen the first scheme in the following sections.

6.3 Representation

For the representation of an amino acid residue sequence, there are two conditions to be
satisfied: [58]

1. Sequence connectivity

2. Self-avoidance

Among the representations proposed [139], Internal Coordinate should be a favorable
choice since it can handle the first condition implicitly. Internal coordinate is a repre-
sentation system which residue positions depend on their sequence-predecessor residues.
There are two types of internal coordinate representation: Absolute Encoding and Rel-
ative Encoding. Absolute encoding represents each residue position as the absolute
direction from the previous residue. A sequence is represented as {U, D, L, R, F, B}"~!
(Up, Down, Left, Right, Forward, Backward) [140]. On the other hand, relative encod-
ing represents those as relatively directional changes based on the directions of the two
predecessor residues. Backward direction is omitted for one-step self-avoiding. Thus a
sequence is represented as {F, R, L,U, D}"~? [141]. Except the forward move, a cyclic
conformation is formed if a move is repeated four times. Krasnogor et al. [58] have
examined both representations on square lattices. Their results showed that relative
encoding had better performance than absolute encoding on square lattices. Our pre-
liminary results also indicates that the performance of absolute encoding degrades as a
sequence gets longer on cubic lattices. Thus we have chosen relative encoding as the
representation in the following sections. For this representation, different orientations
can be taken. Nevertheless, few explicitly stated their representations in a pictorial way.
Thus the representation we have adopted is depicted in Fig.6.1 for the sake of clarity.
The most left sub-figure denotes the absolute direction axis, whereas the remaining sub-

figures denotes the relative encoding representations for all the six directions in cubic
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)l

F

FIGURE 6.1: Relative encoding used

lattices. For instance, the second left sub-figure denotes the relative encoding repre-
sentation the subsequent move should use when the current move is in the positive X
direction. In particular, the subsequent move is called forward move if it is still in the
positive X direction.

6.4 Related Works

Although the 3D HP model seems relatively simple among other models, it has been
proved that the protein structure prediction problem on the model is NP-Complete [142].
Thus researchers propose heuristics as compromising solutions. In particular, the semi-
nal work by Unger et al. [140] experimentally showed that genetic algorithm approaches
were better than Monte Carlos simulations. Thus many researchers tried genetic algo-
rithm as one of the heuristics to solve the problem. Nevertheless, the genetic algorithm
approach by Unger et al. [140] was actually hybridized with Monte Carlo moves. Hence
Patton et al. [141] further generalized it into a standard genetic algorithm approach,
which search space included infeasible regions penalized by a penalty function. Fur-
thermore, they proposed “relative encoding” so that one-step self-avoiding constraints
could be implicitly incorporated in the genome representation. Few years later, Krasno-
gor et al. [58] published a work discussing the basic algorithmic factors affecting the
problem. Since then, researchers explored different ways to tackle the problem. For
instance, Krasnogor et al. further applied a multimeme algorithm, which adaptively
chose multiple local searchers to reach optimal structures [143]. Cox et al. [144] and
Hoque et al. [145] utilized heavy machinery of specific genetic operators and techniques.
Ant colony algorithm [146], differential evolution [147], immune algorithm [139] and esti-
mation of distribution algorithm [138] were also customized and reported in literatures.
In particular, diversity preserving techniques were often incorporated in them. For in-
stance, Duplicate Predator [144], Aging Operator [139], and additional renormalization
of the pheromone [146]. They can be deemed as the signs of the multimodality in the
problem. However, to the authors’ knowledge, the necessity of multimodal optimization
techniques has not been emphasised.
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6.5 Crowding Genetic Algorithm with Spatial Locality

6.5.1 Motivation

For the protein structure prediction problem, it is generally believed that the native state
of a protein should be in the conformation with the lowest energy. Thus previous works
mainly focus on the minimal energy they could achieve: the minimal energy ever found

(H(z)) and the average and standard deviation of the minimal energy across several
runs (mean £ o).

Nevertheless, Jahn et al. [148] has shown that the native state is not necessarily a single
global optimum. It may also be a local optimum in Fig.1 of [148]. For the HP lattice
model, Unger et al. [149] have observed that there can be multiple conformations for
each energy value. A recent fitness landscape study also indicated that HP landscapes
were highly multimodal [150].

Thus we propose applying Crowding Genetic Algorithm with Spatial Locality (CrowdingGA-
L) presented in Chapter 4 to the problem for multimodal optimization explicitly, in order
to preserve diversity. In other words, building blocks and optima can be preserved. A
more effective search is guaranteed throughout each run. Both global and local optima

are more likely to be found. The native state information is less likely to be lost.

6.5.2 Customization

As CrowdingGA-L was originally designed for real number optimization, careful modifi-
cations are needed before applying them to protein structure prediction. In particular,
there are two critical factors to be considered: Distance metrics and Handling infeasible

conformations.

6.5.2.1 Distance metrics

The most widely used distance measure should be the root mean square deviation
(RMSD) [151]. RMSD calculates the average absolute distances between two super-
imposed conformations’ points. Nevertheless, if two conformations differ by only one
point direction in relative encoding, their RMSD cannot reflect such small change. For
instance, some conformations of the benchmark UM20 [152] are visualized in Fig.6.2.

Fig.6.2a depicts one of the optimal conformations. The other sub-figures depict two
candidate conformations:

e Optimal : LDLDFLUFDDFRFRDDFD

e Example A: LDLDFLUFDDFRFFDDFD
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FIGURE 6.2: Some conformations of UM20

e Example B: LDLDDLLRLLDRFRDDFD

To be mutated to the optimal conformation, Example A is only needed to change its
move between al and a2 to R whereas example b is needed to change nearly all of
its moves between bl and b8. However, the RMSD of Example A with the optimal
conformation (5 diagonal point changes a2 to a6) is larger than that of example B (4
diagonal point changes b2,b3,b5,b6). RMSD cannot capture the move information in

relative encoding,.

Furthermore, if RMSD is applied in our algorithms, it will be quite computationally in-
tensive. To calculate the RMSD between two conformations, the corresponding relative
encoding genomes are converted to absolute 3D coordinates. Once converted, one of
them is then translated and rotated to be optimally superimposed on the other. RMSD
is then calculated which involves multiplications and square root calculations. In con-
trast, Hamming distance calculates the move differences between two relative encoding
genomes. It is relatively computational tractable. Thus Hamming distance is adopted

as the distance metric in this chapter. '

6.5.2.2 Handling infeasible conformations

Basically there are two approaches:

e Delete infeasible conformations

e Tolerate infeasible conformations by adjusting their energy values by a penalty

score (either constant or -adaptive)

INote that we have implicitly handled rotational symmetry by omitting the first move in the relative
encoding representation. That’s why a confirmation is represented as {F, R, L,U, D}"2, instead of
{F\,R,L,U, D}™' in the previous sections. In other words, a single sequence in relative encoding
representation actually represents the confirmations for all the six rotational directions in cubic lattices.
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Both approaches were thought beneficial in different view angles [58. 135, 140, 150].
For the first approach, it is conjectured that search space can be smaller if infeasible
conformations are deleted. For the second approach, it is conjectured that the paths
to optimal conformations are shorter if infeasible conformations exist. Nevertheless, the
study in [150] had a detailed analysis supporting the first approach. Furthermore, our
problem is a discrete optimization problem. Unlike continuous optimization, its gene
can easily flip between different values. There may be alternative paths to optimal
conformations even if infeasible conformations are disallowed. Thus the first approach
is taken.

Having decided the distance and infeasible confirmation handling methods, CrowdingGA-
L is applied to the protein structure prediction problem on several benchmark sequences
in the following sections.

6.6 Experiments

6.6.1 Performance Metrics

The widely used performance metrics are adopted [138, 139, 152]. The energy of the
best conformation found (H (z)) indicates the best convergence an algorithm can achieve
across several runs, whereas the mean and standard deviation of the minimal energy
across several runs (mean + o) report the stochastic convergence behavior of an algo-
rithm.

6.6.2 Parameter Settings

The parameter settings for CrowdingGA-L in all benchmarks are tabulated in Table 6.1.
CrowdingGA-L has been implemented in the EC4 framework [57] for this problem. With
overlapping generation type and high selection pressure imposed in survival selection,
mutation probability was set to a high value for achieving global search capability. Thus
0.8 was adopted. Crowding factor was set to population size to avoid replacement error.
To be comparable to the state-of-the-art algorithms [138, 139, 152], CrowdingGA-L was
run 50 times up to 10° and 5 x 10° energy evaluations respectively. The benchmarks
were taken from [138, 139, 152].

6.6.3 Results

Table 6.2 and Table 6.3 show the experimental results which were run up to 10° and
5 x 108 energy evaluations respectively. For each benchmark, the performance metrics
discussed have been calculated. For instance, looking at Table 6.2 and sequence sl,
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TABLE 6.1: Parameter Setting for CrowdingGA-L

Parameter Setting

Population Initialization Straight line (FFFF....FF)
Population Size 100

Generation Type Overlapping

Parent Selection Uniform Deterministic
Survival Selection Truncation/Crowding
Mutation Type Bit Flip

Mutation Probability 0.8

Crossover Type Two Point Crossover
Crossover Probability 1

Random Seed 123

Implementation EC4 framework [57]

TABLE 6.2: Experimental Results of the state-of-the-art algorithms (10° energy eval-

uations)
. .
Tiybrul GA 1152 1A [180]  MK-EDA2 [135] TreeEDA 1138) MT-EDAY [139] CrowdingGA-L
sl H(x) «11 -11 =11 =11 -11 ~11 =11 -11 -11
meanto -9.84:£0.86 =10.90£0.32 -11.00£0.00 =11.00£0.00 -11.001£0.00 -10.96£0.01 «11.00£0.00 -11.0020.00 <10.6820.47
2 H{x) =11 -13 =13 -13 -13 -13 -13 -13 -13
moeanto =100 87 -12.22%0.65 -12.940.00 -13.00£0,00 12862016 <12 96201 =12 702050 -13.004£0.00 11162081
= X 0 K] =) K] K} K} K] K )
meanto -8.640.69 ~8.88:40.18 K.9140 06 S O064004 8902009 A O8+0.02 5084002 SBO80.02 -0.00+0.00
s Hix) -18 -18 -18 -18 -18 -17 -18 -18 -18
meanto 18724041 ~16.0841.02 <16.6641.51 <15.4840.83 ~16.31£0.51 <15.0040,86 ~16.3240.10 ~156,0240 88 -16.504£0.95
5 H(x) -28 -28 =22 -2 =27 =21 =23 -2 -28
menndo ~18.90£2.08 <24.8240.71 1966147 20524115 ~2462£1 583 <20.68£1.05 18 112160 <2002242 30 -26.44%1.36
w0 H(x) -22 -23 =30 <26 -30 <20 -28 =29 <27
meanta -19.06£1.46 ~22.0841 .43 <206.3042.26 -24.3841.30 <206.00£2.82 22082248 -26.70=1.97 S225421.27 ~24.804£1.21
a7 H(x) -38 -11 -37 -35 -37 -38 -35 R C) -47
meinto -42.284+3.00 ~49.0240.50 -42.6043.13 -33.81£2 91 -32.941 .58 ~35.1048.11 -31.7242.08 ~42.46%3.04 -40.98£1.96
88 H(x) -36 -12 -42 -10 -1 - -37 37 -47
mennto -30.844£2.65 ~30.0741.20 -36,6641.02 ~30.6642.60 ~31.7026.87 -30.8242.97 ~32.214247 <30 9642 4T -41.064£2.40

CGA-mixed has ever achieved -11 as its minimal energy across 50 runs. On average,
CGA-mixed has also achieved -10.68 as its minimal energy with standard deviation 0.47.

Interestingly, although CrowdingGA-L is a relatively simple algorithm, it can still show
comparable results with the state-of-the-art algorithms when the termination condition
is set to 10° energy evaluations and 5 x 10° energy evaluations.

Its effectiveness is largely due to their individual replacement technique: crowding. In
this technique, a conformation cannot replace a dissimilar conformation. It gives free-
dom for all niches to evolve to their respective optima. Diversity is adaptively pre-
served. In particular, such diversity prevent a population from genetic drift. Useful
sub-conformations (like secondary structures [134]) can be preserved, providing the al-
gorithm a long-term sustainability for finding multiple optima at the same time.

6.7 Conclusion

In this paper, we have modeled protein structure prediction as a multimodal optimization
problem. To foster its development, CrowdingGA-L has been implemented and tested. It
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TABLE 6.3: Experimental Results of the state-of-the-art algorithms (5 x 10° energy
evaluations)

Hybrid GA [152] MK-EDA2 [138] TrccEDA [138] MT-EDA4 [138] CrowdingGA-L

sl H(x) 11 11 11 11 11
meanto -10.52+0.54 -10.82+0.38 -10.68+0.51 -10.84+0.37 -11.00+0.00
s2  H(x) -13 -13 -13 -13 -13
meanto -11.2840.90 -12.024+0.94 -11.304+0.85 -11.88+0.93 -12.86+0.40
s3  H(x) -9 -9 -9 -9 -9
meanto -8.5440.64 -8.96+0.19 -8.92+0.27 -9.00+0.00 -9.00+0.00
s4  H(x) -18 -18 -18 -18 -18
meanto -15.76+1.05 -16.4040.80 -16.24+0.83 -16.50+0.96 -17.94+0.31
s5  H(x) -28 -29 -29 -29 -29
meanto -24.60+1.57 -27.24+0.92 -26.88+0.93 -27.06+1.08 -28.30+0.71
56 H(x) 26 29 31 28 28
meanto -23.02+1.48 -25.70£1.26 -25.94+1.58 -25.74+1.22 -26.58+0.88
s7  H(x) -49 -49 -49 -48 -49
meanto -41.18+2.75 -46.30+2.04 -43.78+3.10 -42.00£6.76 -46.1241.39
s8  H(x) -46 =52 -49 =50 -50
meanto -40.40+£2.50 -46.78+2.28 -43.7242.43 -45.64£2.03 -46.36£1.95

is observed that CrowdingGA-L is applied and shown experimental results with the other
state-of-the-art algorithms, although it is a relatively simple technique. Such interesting
results may also provide some biological implications for scientists. For instance, the
importance of the existences of intermediate sub-conformations could be examined in
the multimodal optimization pathways provided by CrowdingGA-L.



Chapter 7

Conclusion and Future Work

7.1 Thesis Contribution

In this thesis, a framework has been proposed to discover associated TF-TFBS binding
sequence patterns from TRANSFAC. To further analyze the discovered sequence pat-

terns in the huge search space, two evolutionary algorithms have been proposed. In
particular, the evolutionary algorithms are specially designed for multimodal optimiza-
tion to avoid premature convergence and genetic drift. The one with less number of
parameters (CrowdingGA-L) has been selected and applied to generalize the sequence
representations. Some promising results have been obtained. As a further application,
CrowdingGA-L has also been applied to predict protein structures on a lattice model.
Some experimental results comparable with the other state-of-the-art algorithms have
been obtained by applying it, although it is a relatively simple technique. In summary,
the author has made the following contributions:

e Propose a novel data mining framework to discover and validate Protein-DNA
Binding sequence patterns. Due to the simplicity of the framework, it can be

widely applied to similar problems, such as Protein-Protein interaction.

e Propose two novel versions of evolutionary algorithms for multimodal optimization.
In particular, the author extends Species-Conserving Genetic Algoritlim (SCGA)
and proposes Evolutionary Algorithm with Species-Specific Explosion (EASE).
The author also extends Crowding Genetic Algorithm and proposes Crowding
Genetic Algorithm with Spatial Locality (CrowdingGA-L).

o Apply CrowdingGA-L to generalize the pairs discovered. Its generalization ability

has been empirically analyzed by some case studies. In the PDB verification
process, some promising results have been obtained.

e Apply CrowdingGA-L to predict protein structures on a lattice model. Compara-

ble results with the state-of-the-art algorithms have been obtained.

97
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7.2 Future Work

In the future, several future works could be investigated.

The data mining framework described in Chapter 3 can be extended for mining ap-
proximate associations. Such an extension can handle the experimental and biological
noises, although the inevitable computational burden needs to be carefully handled, and
much more efforts are needed to distinguish real signals from the large number of false
positives introduced by loosening the pattern matching and clustering. Combinatorial
associations between multiple TF and TFBS k-mers will also be another challenging

topic. We will also seek further real applications of the approach on experimentally
verifiable TF-TFBS bindings.

For the design of the evolutionary algorithms for multimodal optimization in Chapter
4, we will focus on experiments with real world multimodal optimization problems.
High dimensional problems will also be considered. Species-specific Explosion will be
investigated to improve other evolutionary algorithms. Besides spatial locality, temporal
locality will also be considered in different evolutionary algorithms.

Besides, we suspect that most of the evolutionary algorithms applied to bioinformatics
are always stuck in local optima. People are either not aware of the issue, or too
lazy to study and handle it as long as the local optima found are good enough in
practice. Thus we can foresee, if we further apply some evolutionary algorithms for

multimodal optimization to the bioinformatics problems other than those in Chapter 5
and 6, promising results will be probably obtained.



Appendix A

Appendix

Algorithm 11 Species Conserving Genetic Algorithm

G(t): Generation at time ¢
X,: A set storing species seeds

t 0

Initialize G(t);

Evaluate G(t);

while not termination condition do
Identify Species Seeds Xg;
Select G(t + 1);
Crossover G(t + 1);
Mutate G(t + 1);
Evaluate G(t +1)3;
Conserve species from X in G(t + 1);
t—1t+1;

end while

Identify species seeds Xj;:

Identify global optima;
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TABLE A.1l: Number Of Pairs Discovered. Each integer denotes the number of pairs
for each setting. The first row denotes the different settings for the value of k, whereas
the first column denotes the minimal confidence (confidence level).
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TABLE A.2: Number Of Pairs (duplicated pairs removed). Each integer denotes the

number of pairs for each setting. The first row denotes the different settings for the

value of k, whereas the first column denotes the minimal confidence (confidence level).

Since some DNA k-mers are the reverse complements of themselves, the number of pairs
are not necessary to be half of the corresponding number in Table A.1
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TABLE A.3: Number Of Merged Pairs. Each integer denotes the number of merged

pairs for each setting. The first row denotes the different settings for the value of

k, whereas the first column denotes the minimal confidence (confidence level). The
number is significantly reduced as compared to that in Table A.2.
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TABLE A.4: Mean and SD of Support. Each block denotes the mean and SD of support
of the pairs under different settings. The first row denotes the different settings for the
value of k, whereas the first column denotes the minimal confidence (confidence level).
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TABLE A.5: Mean and SD of ¢-coefficient. Each block denotes the mean and SD of

¢-coefficient of the pairs under different settings. The first row denotes the different

settings for the value of k, whereas the first column denotes the minimal confidence
(confidence level).
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TABLE A.6: Mean and SD of Lift. Each block denotes the mean and SD of lift of the
pairs under different settings. The first row denotes the different settings for the value
of k, whereas the first column denotes the minimal confidence (confidence level).
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TABLE A.7: Mean and SD of Forward Conviction. Each block denotes the mean and

SD of forward conviction of the pairs under different settings. The first row denotes

the different settings for the value of k, whereas the first column denotes the minimal
confidence (confidence level).
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TABLE A.8: Mean and SD of Backward Conviction. Each block denotes the mean and

SD of backward conviction of the pairs under different settings. The first row denotes

the different settings for the value of k, whereas the first column denotes the minimal
confidence (confidence level).
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TABLE A.9: Mean and SD of TFBS Prediction Score. Each block denotes the mean

and SD of TFBS Prediction Score of the pairs under different settings. The first row

denotes the different settings for the value of k, whereas the first column denotes the
minimal confidence (confidence level).
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TABLE A.10: Mean and SD of TFBS Binding Prediction Score. Each block denotes the

mean and SD of TFBS Binding Prediction Score of the pairs under different settings.

The first row denotes the different settings for the value of k, whereas the first column
denotes the minimal confidence (confidence level).
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TABLE A.11: Mean and SD of Binding Prediction Score. Each block denotes the mean

and SD of Binding Prediction Score of the pairs under different settings. The first row

denotes the different settings for the value of k, whereas the first column denotes the
minimal confidence (confidence level).
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TABLE A.12: Mean and SD of TFBS Prediction Score (Merged Pairs). Each block

denotes the mean and SD of TFBS Prediction Score of the merged pairs under different

settings. The first row denotes the different settings for the value of k, whereas the first
column denotes the minimal confidence (confidence level).
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TABLE A.13: Mean and SD of TFBS Binding Prediction Score (Merged Pairs). Each

block denotes the mean and SD of TFBS Binding Prediction Score of the merged pairs

under different settings. The first row denotes the different settings for the value of k,
whereas the first column denotes the minimal confidence (confidence level).
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TABLE A.14: Mean and SD of Binding Prediction Score (Merged Pairs). Each block

denotes the mean and SD of Binding Prediction Score of the merged pairs under different

settings. The first row denotes the different settings for the value of k, whereas the first
column denotes the minimal confidence (confidence level).
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TABLE A.15: Number of Pairs with at least one related PDB chain. Each integer

denotes the number of pairs with at least one related PDB chain for each setting. The

first row denotes the different settings for the value of k, whereas the first column
denotes the minimal confidence (confidence level)
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TABLE A.16: Number of Pairs with at least one related PDB chain (Merged Pairs).
Each integer denotes the number of merged pairs with at least one related PDB chain
for each setting. The first row denotes the different settings for the value of k, whereas

the first column denotes the minimal confidence (confidence level)
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TABLE A.17: Fraction of Verified Pairs. Each fraction denotes the fraction of verified
pairs for each setting. The first row denotes the different settings for the value of k,
whereas the first column denotes the minimal confidence (confidence level)
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TABLE A.18: Fraction of Verified Pairs (Merged Pairs). Each fraction denotes the
fraction of merged pairs verified for each setting. The first row denotes the different
settings for the value of k, whereas the first column denotes the minimal confidence
(confidence level)
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TABLE A.19: Maximal TFBS Prediction Score over 50 runs. Each block denotes the
maximal performance of TFBS Prediction Score of the pairs over 50 random runs under
different settings. The first row denotes the different settings for the value of k, whereas
the first column denotes the minimal confidence (confidence level).
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TABLE A.20: Maximal TFBS Binding Prediction Score over 50 runs. Each block
denotes the maximal performance of TFBS Binding Prediction Score of the pairs over
50 random runs under different settings. The first row denotes the different settings
for the value of k, whereas the first column denotes the minimal confidence (confidence

level).
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TABLE A.21: Maximal Binding Prediction Score over 50 runs. Each block denotes the
maximal performance of Binding Prediction Score of the pairs over 50 random runs
under different settings. The first row denotes the different settings for the value of k,

whereas the first column denotes the minimal confidence (confidence level).
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TABLE A.22: Maximal TFBS Prediction Score over 50 runs (Merged Pairs). Each
block denotes the maximal performance of TFBS Prediction Score of the merged pairs
over 50 random runs under different settings. The first row denotes the different settings
for the value of k, whereas the first column denotes the minimal confidence (confidence
level).
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TABLE A.23: Maximal TFBS Binding Prediction Score over 50 runs (Merged Pairs).
Each block denotes the maximal performance of TFBS Binding Prediction Score of
the merged pairs over 50 random runs under different settings. The first row denotes
the different settings for the value of k, whereas the first column denotes the minimal
confidence (confidence level).
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TABLE A.24: Maximal Binding Prediction Score over 50 runs (Merged Pairs). Each
block denotes the maximal performance of Binding Prediction Score of the merged
pairs over 50 random runs under different settings. The first row denotes the different
settings for the value of k, whereas the first column denotes the minimal confidence
(confidence level).
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TABLE A.25: 631 TRANSFAC 2008.3 IDs and Factor Names used
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A.1 Problem Definition in Chapter 3

m transcription factors {TF1, TF?,...,TF™} are concerned. Each transcription factor
TF' chemically binds to several binding sites, which are collectively called transcrip-
tion factor binding sites. Each of them is denoted by TFBS!, the j-th transcription
factor binding site which chemically binds to TF*. For example, TFBS? denotes the
5-th transcription factor binding site which chemically binds to TF?. Since different
transcription factors can bind to different number of transcription factor binding sites,
N denotes the number of the transcription factor binding sites which can chemically
bind to TF'. For example, we have the following transcription factor binding sites
{TFBS},TFBS;,...,TFBS};} which can chemically bind to TF3. They are formally
defined as follows:

Definition 3.1 TF* denotes the i-th transcription factor where 1 < i < m.

Definition 3.2 TF BS; denotes the j-th transcription factor binding site which chemi-
cally binds to TF* where 1 <i<mand 1 <j < N'.

To discover the binding sequence patterns between m transcription factors and their
transcription factor binding sites. Sequence data is introduced. But, before doing so,
some basic notations needs to be defined: AAseq denotes a string with the amino acid
alphabet, DN Aseq denotes a string with the DNA alphabet, and kmer denotes a string

with length = k. Thus AAseq' denotes the AAseq of TF', whereas DN Aseq} denotes
the DN Aseq of TFBS;.

The following sequence dataset is given for each transcription factor : the amino acid
sequence of the transcription factor and the DNA sequences of the transcription factor
binding sites which can chemically bind to the transcription factor. The dataset for
TF" is thus denoted by T Fdataset': {AAseq', DN Aseqj|Vj € N,j < Ni}. In total,
{TFdataset', T Fdataset?, ..., TF dataset™} is given in this problem. To dig out binding
sequence patterns from them, we would like to know which kmers are found in the amino
acid sequence AAseq’. Thus a function F (Found) is defined:

Definition 3.3 If the kmer A is a substring of the string S, F(A,S) = 1. Other-
wise, F'(A,S) = 0.

In each T Fdataset', we would also like to know which kimers are commonly found in the

DNA sequences {DN Aseq}|Vj € N, j < N;}. Thus a function CF* (Commonly Found)
is defined:

Definition 3.4 Let Thresholdcr € [0,1], and DNAseq§ be the DN Aseq of TFBS;-. If
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N 1 : ¢
L= PEDNAG) > Thresholder, CFi(A) = 1. Otherwise, CF'(A) = 0.

In particular, we are interested in the pairs of kmers in which one is found in the
amino acid sequences of some transcription factors while the other is commonly found
in the DNA sequences of their transcription factor binding sites. Such pairs are then
called ’frequently co-occurring’ defined as follows:

Definition 3.5 Let Thresholdsypport € N, ky € N*, and ko € N*. A pair of kmers
f YL, CF'(A)XF(B,AAseq')

m

(A-B) is frequently co-occurring i

> Thresholdsypport Where A
is a kymer and B is a komer.

We assume that the pairs of kmers frequently co-occurring are the binding sequence
patterns which we aims to find. Thus the problem definition is summarized as follows:
Given Thresholdcp € (0,1], Thresholdsupport € N*, ky € N*, ks € N7, we would like
to find all pairs (A-B) frequently co-occurring where A is a kymer and B is a komer.
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