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Abstract

Stock loan, or security lending, is currently a very popular financial service provided by
many financial institutions. It is a collateral loan where stocks are used as collateral.
The borrower may repay the principal with interest and regain the stock, or make
no repayment and surrender the stock. This thesis is concerned with the stock loan
valuation problem, in which the underlying stock price is modeled as an exponential
Lévy Models of phase-type. The valuation problem can be formulated as an optimal
stopping problem of a perpetual American option with a time varying exercise price.
As the phase-type jump diffusion forms a dense class in Lévy processes, our solution

can approximate the solution under general Lévy models arbitrarily close.
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Chapter 1

Introduction

A stock loan is a loan issued by financial institutions (the lender) to its clients (the
borrower) which is collateralized with stocks. Recently, stock loans become a very
popular product in over-the-counter market. As reported by International Securities
Lending Association, the global market size of these products exceeded £1 trillion !.

Under the terms of the contract, the borrower has the right to repay the loan at
anytime, or to simply default the loan with the loss of the collateral. With this in
mind, the borrower’s right can be regarded as a perpetual American option, which
represents the right for the borrower to exercise the option at anytime, without a time
limit. The value of this perpetual American option is therefore of central importance
to the problem of stock loan valuation.

The value of this perpetual American option can be expressed as an ordinary per-
petual American call option with a possibly negative interest rate. This creates the
major challenge of stock loan pricing. Consider the case of geometric Brownian motion
(GBM) for the stock price. The optimal exercise rule of a perpetual American call

option is to exercise at the first time that the stock price rises to cross a constant

1This number is quoted from the article: An Introduction to Securities Lending, Executive Sum-
mary, Page 8, issued by Australian Securities Lendin Association Limited at 1 August 2005.
Y. g Y g g



level. This constant level is called the optimal exercise boundary. If interest rate is
positive, the stock price will cross any fixed boundary almost surely. The perpetual
American call option can then be valued directly with a variational inequality (VI). In
contrast, when interest rate is negative, the problem becomes complicated. Given any
fixed boundary level greater than the current stock price, there is a positive probability
that the stock price will never cross this level.

Xia and Zhou (2007) are pioneers of solving the stock loan problem. They value
the stock loan under the classical GBM model using a purely probabilistic approach.
Zhang and Zhou (2009) then extended the framework to a regime switching model
and solved the problem using variational inequalities. Dai and Xu (2009) studied the
optimal redeeming strategy of stock loans with finite maturity under GBM. Yam et al.
(2010) considered the callable feature of the stock loans.

Although most studies on stock loan adopt the GBM model for stock price, em-
pirical evidences (e.g. Andersen et al. (2002), Pan (2002) and Eraker et al (2003))
show that jump diffusion model would be a better model for asset prices to capture
the heavy tails of the empirical distribution. Therefore, a jump diffusion model with
flexible jump distribution is worth considering for stock loan valuation.

Merton (1976) is the first one to propose jump diffusion for asset price modeling
using a Gaussian jump distribution. Another notable jump diffusion model is the
double-exponential jump diffusion proposed by Kou (2002). The generalization of
jump diffusion model is the exponential Lévy model, such as the variance-gamma model
(Madan et al., 1998), CGMY model (Carr et al., 1999) and normal inverse Gaussian
model (Barndorff-Nielssen, 2000).

Sun (2010) recently considered the stock loan valuation problem under the double-
exponential jump diffusion model in the first chapter of her thesis. While it is a good

start, the asset return distribution is not flexible enough to capture the empirical



distribution implied by market data. For this reason, we incorporate the phase-type
Jump diffusion to stock loans valuation.

The phase-type distribution is dense over the class of all positive valued distri-
butions. By making use of this fact, Asmussen et al. (2007) show that the class of
phase-type jump diffusion model is dense over all exponential Lévy model. In other
words, the option price derived from phase-type jump diffusion models can be used
to approximate the corresponding price under a general exponential Lévy model. In
particular, Asmussen et al. (2007) approximate the CGMY model by the phase-type
jump diffusion. In fact, the phase-type jump diffusion model embraces the Kou (2002)
model and the mixed-exponential jump diffusion model (Cai and Kou, 2011) as its
special cases.

Asmussen et al. (2004) solved the price of the perpetual American put option
with positive interest rate under phase-type jump diffusion models. They used the
technique of Wiener-Hopf factorization to derive the optimal exercise boundary. Then
the pricing problem is reduced to the evaluation of the corresponding expectation at
the given exercise boundary.

While Wiener-Hopf factorization is useful to solve American option pricing problem
involving Lévy processes and, in particular, the phase-type Lévy model, it relies heavily
on the positive interest rate or, in the limiting case, zero interest rate. The method no
longer works for a negative effective interest rate in the stock loan valuation problem.
We take the variational inequality approach as in Zhang and Zhou (2009).

Under the phase-type jump diffusion model, we show that the price of the perpetual
American option satisfies an ordinary integro-differential equation (OIDE). The solu-
tion of this OIDE is closely linked to the root characteristics of a Cramér-Lundberg
equation (C-L equation). The root characteristics of the C-L equation is first studied

in a special case of the phase-type distribution, the hyperexponential distribution. By



making use of the properties of this special case, we extend our result to a fairly general
class of phase-type models.

The rest of the thesis is organized as follow. Chapter 2 introduces the elements of
our problem. Chapter 3 presents some general properties of stock loans. Chapter 4
presents the methodologies of valuation. Chapter 5 discusses a possible extension to

incorporate stochastic volatility. Chapter 6 concludes.



Chapter 2

Problem Formulation

In this chapter, we describe the formulation of stock loan valuation under the phase-
type Lévy model. We introduce the phase-type distribution, its use in the phase-type
jump diffusion model, and the formulation of stock loan as a perpetual American call

option pricing problem.

2.1 Phase-type distribution

2.1.1 A generalization of the exponential distribution

Consider a continuous time Markov process with 1 transient state and 1 absorption

state. The intensity matrix is given by

-6 0
0 0

where 6 > 0. Let Y be the absorption time of this Markov process. Then the dis-

tribution of Y is the exponential distribution. The cumulative distribution function

is



Fy(y)=1—-e%, (2.1)

A finite mixture of the exponential distribution is called hyperexponential distri-
bution. This can be expressed as the absorption time of a continuous time Markov

process with m transient state, 1 absorption state with an intensity matrix of the form

(0, .. 0 & )

0 ses =8, @

\ 0 -~ 0 o

The cumulative distribution function is

m

Fy(y) =) oi(1—e®), (2.2)

i=1
where o; > 0 and }::’;1 a; = 1. a; is the probability for the process to start at state i.

It can also be expressed using matrix notation,

Fy(y) =1— ae™1, (2.3)

where a = (ay, ..., 0m), T = diag(-6,,...,-6,), 1 =(1,..., 4
A further gencralization allows the transient states to be communicative. The

resulting distribution becomes the phase-type distribution described in the next section.

2.1.2 Properties of the phase-type distribution

The phase-type distribution is the absorption time of a finite state continuous time

Markov process with m transient states and 1 absorption state.



Let T be the intensity matrix of the transient states and o — (01,...,0m) be an

initial probability vector. The phase-type distribution is parameterized by (m, T, o).

The full intensity matrix of the Markov process can be written as

T t
S = ;
0 0
where t = —T1. The cumulative distribution function is given by
Fy(y) =1— ae™1. (2.4)
The density function is given by
fr(y) = ae™it. (2.5)

Finally, the generating function is given by

M(t) = E[e”] = a(~tI — T)"'t. (2.6)

The class of phase-type distribution is very rich. When T is a diagonal matrix,
the distribution reduces to a hyperexponential distribution. As shown in Johnson and

Taafe (1988), the class of phase-type distribution is dense in the field of all distributions

on (0, c0).



2.2 Phase-type jump diffusion model

2.2.1 Jump diffusion model

If the price of an asset S, follows jump diffusion model, then the change in price consists
of three components: drift, Brownian motion and a jump process. The stochastic

dynamics can be expressed in the following stochastic differential equation:

ds, 1 A
t _ 2 Yi
S, - (u+§a>dt+odW¢+d<E (e —1)), (2.7)

i=1
where {W:},, is the standard Brownian motion, {Ni},50 is a Poisson process with
intensity A, {Y;};2, is a sequence of independent and identically distributed random
variables.

For a Poisson process N;, when h is small, we have:
1. Pr(Ngyn = Ny =0) =1 - \h + o(h);

2. Pr(Nygn — Ny =1) = MAh + o(h);

3. Pr(Negn — Ny > 2) = o(h),

where o(h) is the asymptotic order symbol such that limp_ %") = 0. Hence, (2.7) can

be alternatively written as

d?st - (u e ;-0‘2) dt + odW, + (¥ — 1) dN,. (2.8)
t

An application of 1td6’s formula gives

dIn Sg = vdt + 0'th + YidNt, (29)

which implies that



Ny
Sy = Spexp (ut + oW, + Z Yi) ) (2.10)

i=1

For r > 0, we have

E [e7S;] = Spexp (—r +v+ %az + A (E(e¥) — 1)) ;

Ifweset v =r—0?/2— ) (E(e¥) — 1), then {e75:},50 is a martingale. This motivates

the definition in the next section.

2.2.2 The stock price model

The stock price process is defined on a risk-neutral probability space (Q, P, {ft}zzo v, ) .

We write

St = exp(Xy), (2.11)

Nt
Xo = z+pt+oWi+ Y Y, (2.12)

i=1

where y1 = 7 — 6%/2 — A (E(e%*) — 1). The distribution of Y;, i € N, is a two-sided

phase-type distribution and the density function is given by

fr(y) = pa+6T+yt+1{yzo} + (L =p)e e M I (2.13)

Note that the financial market is incomplete under the jump diffusion setting. That
means that not all contingent claims can be perfectly hedged and the martingale mea-
sure is not unique. In other words, there are infinitely many equivalent martingale
measures. QOur choice P is the one that preserves the phase-type structure of the

log-price X, as proposed by Assmusen et al. (2004).
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2.3 Stock Loans

Stock loan is a collateral loan where stocks are used as collateral. The borrower will
receive the loan principle (g), pay the service charge (c) and have the right to repay the
principal with interest (continuously compounded with rate v) and regain the stock

anytime in the future. The transactions can be summarized as follows:

e The borrower receives money g — ¢ as well as Vo, a perpetual American option

with time varying strike price ge!.
e The bank receives Sy (one unit of stock) as collateral.

By equating the benefits of both parties, it is seen that the service charge is

c=q+Vy— S, (2.14)

We have the following representation of the value of the perpetual American option:

Vo =V(z) = ess supE [e7"" (S, — ge’")* Iir<o}|So = €7] , (2.15)
7€7o

where 7, u > 0, is the set of all stopping time taking values in the time interval (u, 00).

By taking the transformation S, = Sie™ ", the value can be written as

5 + ~
V(z) = ess supE l:e—(r—’y)-r (S‘r = Q) 1{T<oo}lSO = ex:, ) (2.16)

T€To
which is the value of a perpetual American option with constant strike price and a
possibly negative effective interest rate 7 = r — .
From now on, we will stick with the transformed stock price process S, as the
underlying stock of the American option. We also define X, to be the transformed

log-price. Their dynamics are given by

10



S = exp ()Zt),

N
Xt = $+ﬁt+UWt+ZYi’

i=1

where i =1 — v —0%/2 — X (E(e¥) - 1).

11

(2.17)

(2.18)



Chapter 3

General Properties of Stock Loans

3.1 Preliminary results

We establish some properties of the perpetual American option as a function of the

stock price value. Take S = e* and write v(S) = V(In S) = V(z).

Lemma 3.1 v(S), as a deterministic function of the initial stock price S, satisfies the

following properties:
1. (S—g)* <v(S)< S forallS>0;
2. v(S) is convez, continuous and nondecreasing in S on (0, 0).

Proof For the first item, observe that

v(S) = ess supE [e"" (S —qge™)* Itrcoo} | So = S] . (3.1)

7€To

By taking 7 = 0, we get (S — ¢)* < v(S). On the other hand, since (S—geMt < S,

we have

12



v(§) = ess supE [e7" (S, — qe")* Ijycony | So = S|

T7€TH

< esssupE [e“”STI(Koo} | So = S]
7€y

< 5

Next, it is obvious that v(-) is a nondecreasing function. Convexity of v(-) is a
direct consequence of the convexity of max{-,0} function and the essential supremum

operator. As the function value is finite, convexity of v(-) implies its continuity.

The next lemma is an essential step to solve the optimal stopping problem.

Lemma 3.2 Define k = inf{S>0:5—¢> v(S)} > g, where inf@ = co. Then
{§>0:8-¢>0v(5)} = [k, 00).

Proof If k = oo, the result is obvious. For the case that k € [g,00), we have v(k) =
k — q by the continuity of v. We claim that v(S) = 8 — ¢ for S > k. Otherwise, there

exists ko > k such that v(ky) > ko — g because of Lemma 3.1. By convexity, we have

v(S) = v(k) | v(ko) = v(k)
S—k T  ky—k

for any S > ky. As a consequence v(S) > g(k—,‘c’g%ﬂ(S — k) + k — g which implies

v(S) > S for sufficiently large value of S. This is a contradiction to Lemma 3.1.
a

Using similar methods of Xia and Zhou (2007), we now prove that the optimal

stopping time is a first hitting time. In other words, it is optimal to exercise the

13



perpetual American option at the first time when the transformed log-price exceeds a

predetermined level. Such a level is called the optimal exercise boundary.

Theorem 3.1 If X, follows a Lévy process, then the optimal stopping time is of the

form

szinf{tZO:thb}, (3.2)

where b is a constant.

Proof The stock loan value at time ¢ can be written as

Vi = v(S)
= esssupE [e—r(r't) (Sper =X — qevr)“L I{r<oo} | ft]
TET:
= e esssupE [e"(r-‘) (¢ T8l X (167(7"‘))+ o fz]
T€T:

= e"esssupE [e“” (:cex’ — qe“")+ Iircoy | fo]
7€Tp

= e"v(e™S,).

r=e~ S,

Hence, the optimal stopping time (cf. Karatzas and Shreve, 1998, Chapter 2.5) is

™ = inf{t>0:8, —qe" > v(Sy) }
= inf{t>0:8,—qge" > ev(eS,)}
= inf{t >0: 8™ — g > v(eS))}
= inf {t >0: eS8, > k)

= inf{tZO:X'tzlnk},

14



where £ is the value defined in Lemma 3.2.
O

We denote the optimal exercise boundary by b* and the optimal stopping time by
Tp=. Theorem 3.1 greatly reduces the dimensionality of the optimization problem. The
original optimization problem has to search over all possible stopping time. Yet, the
optimal stopping time is in the form of a first hitting time and we only need to search
for an optimal exercise boundary, which is a one-dimensional optimization problem. In

other words, the value function is given by

—FT, X Y %
Vi(z) = sup Vo(z) = sup E|e™ (6 = Q) I{-r,,<oo}|XO =z|. (3.3)

b>max{In q,z} b>max{In q,z}

3.2 Characterization of the function V(z)

We want to show that V(z) is a solution of an integro-differential equation (OIDE)
and derive its functional form. Before going into that, we first introduce the Cramér-

Lundberg equation (C-L equation)

G(B) = §ﬁ2+ﬁﬂ+/\pa+(—ﬁI—T+)‘1t++/\(1 —p)a”(BI-T" )"t~ —A =7 (3.4)

We use the symbol B* to denote the collection of roots to the C-L equation with
real part larger than or equal to 1 and B~ to denote the collection of those roots with
negative real part. The root characteristics of the C-L equation play a central role in
our problem as we will see in later sections. As a starting point, observe the following

properties regarding this equation:

15



1. {e™ 8 }isg = {e"':‘.S.’t} . is a martingale implies that 1 € B*.
> e

2. The function G(f3) satisfies

E [eﬂx‘] = G (3.5)
for 3 belongs to some bounded interval covering [0, 1].

If G'(1) > 0, it will be shown that V(z) = ¢* and that q = c¢. That means that the
bank has no intention to make such a stock loan contract with the given loan interest
rate v and current stock price Sp. Therefore, we will focus on the more interesting case
G'(1) < 0. The case for G'(1) > 0 is postponed to section 4.3.

It is worth noting that G’(1) < 0 implies v > r. In other words, the effective

interest rate 7 = r — +y is indeed negative. To see this, recall

cB) =Lp+ <r—7— T _A(E[M] - )>ﬁ+/\(IE 9] -1).  (36)

2

G'(1) =r—7+%+/\]E [Yie"i — % +1]. (3.7)

Since ye¥ —e¥ +1 > 0 for all y € R, G’(1) < 0 implies

2
7>r+%+x\1E[YIeY‘—eY‘+1]Zr.

We are now ready to present the result which characterizes the function V(z). It
is easy to see that this new result embraces the stock loan valuation under double-

exponential jump diffusion model (Sun, 2010) as its special case.

16



Theorem 3.2 V(z) satisfies the following integro-differential equation

(L-F)V(z) = 0 bt
) (3.8)
Viz) = e—q z>b*

where Lh(z) = %2%';(31:) + % (z) +A % (h(z +y) — h(z)) fy(y)dy. Furthermore, the

solution takes the form

Y wief® < b
V(z) = BieB* (3.9)

e —q z2>b

for some w;, j € {i | B; € B*} to be determined according to the model.

Proof Consider the following function as a candidate solution:

Y. wiefit x < b
u(z) = { BieBt

e =g z > b*

It is reasonable to assume that w;, j € {i | §; € B*} should be chosen such that
u(-) satisfies the conditions described in Lemma 3.1. In particular, we should have

(6" —q@)* <u(z) <e” for all z € R. It also satisfies the OIDE

(L—-Fu(z) = 0 b | (3.10)
u(z) = e*—q z>b*

However, it may not be continuously differentiable at b*. Hence, we construct a

sequence of function {un(z)}>2 | such that

1. un(z) — u(z) as n — oo for all z;

2. up(z) is twice continuously differentiable for all n € N;

17



3. Forz <b”orz>b* + 1 u,(z) = u(z);
4. Forb* <z <b* + %, 0 < up(z) < My, where M, is a positive constant.
For any z < b*, we have

b*—z+1/n
(£ =F)up(z) = A [un(z +y) — u(z + y)] fr(y)dy. (3.11)

b*—z

Note that

— < < M.
|un(z) — u(z)| < - |un(z)| + . lu(z)| < My,

where My = M, + ¢ *!. Then we have

b*—z+1/n
|[Lun(z) — Tu,(z)] < Apa*t*/ [un(z + y) — u(z + y)] dy (3.12)

b* -z
Apa"‘t*Mg
n

< — 0 uniformly for all z < b* |, as n — oo.

Next, by applying 1t6’s formula to {e‘”un(f{t)} ;> We can obtain a sequence of
t2

local martingale {Mt(")}po for n € N as follows:

) i ATy . o
Mt(n) - e—r(tl\Tb-)un(XtATb.) _ un(x) _ _/ e~ TS [(C = 77-') un(XS)J ds. (313)
0

We claim that it is a true martingale for any n € N. Note that for any t > 0,

18



le—r’-(t/\-rb. )un(xt/\'rb- )l
< Ie_Ftun(Xt)[{KTb-}, 4 le_ﬁun(f(n,- )I{tgr,,.,)?,b. <b+1/n}| ¥ |e_ﬂun()2n,- )1{:21,,. Kria zb+1/n}|

< e u(Xy) par,y| + Mie™ + e~ (X — D (7,0 <o0}- (3.14)

From the definition in (3.13) and noting (3.12) and (3.14), we establish the following

inequality,

Apattt M, (e7™ — 1)
nr '

(3.15)

ML < 1™ u( X L ryey [ n @)+ Mye™ e (X —g) I s

For the first term in the right hand side of (3.15), we have for any fixed T > 0

te(0,T)

IN

e "TE, [CSUP‘EIO-TI X t]

S _ N.
< e—rT]Ez [ex+uT+0 supsefo, ) Wet+ 3, 0 Y,-+]
o’T
2

2®(aV'T) exp (—FT +z+ aT + +pATot (-1 -T*)™" t+>

< 00,

where @(-) is the cumulative distribution function of the standard normal distribution.

It is now easy to see that

E, sup |M™| < o, (3.16)
te(0,T)

19



which guarantees that Mt(n) is a true martingale for all n. Then, we know that for

T<b

u(@) = lim u(a)

= s t/\‘rb. N -
lim E, [e ™%y, (Xnr.)| — lim E,M™ — lim E, e™™ (L = F) un(X,)| ds
b n—oo 0

n—oo n—oo

Il

E. [e‘”"”""u()?mr,,. )J ,

with the last equality implied by the dominated convergence theorem (DCT). Now, let

t — oo and apply Fatou’s lemma to get

t—o0

u(z) = limE, [e"F("‘Tb‘)u(XMTb.)]
— tll,rglo ]E:c [e—F(tl\Tb')u(Xt/\Tb. )I{Tb' <°°}] + tlLIE) Ew [e—F(tATb')u(Xt/\Tbu )I{Tb-=oo}:|
> E, [C_F(Tb.)U(-X.'Tb-)I{Tb-<00}]

s Ex [e—F(Tba)(e).(-rb. _ Q)[{Tb-<oo}] 3

On the other hand,

E, [e—F(tl\‘rb-)u(f(MTb_)] =E, [e—f(tmb.)(e)'(mb. _ Q)I{Tbost}]+]El‘ [e_f(t“"')u()zmrb.)f{r,,.>z}] )
(3.17)

Since

e~T(tAT) (Xenme — D inesty < M) (eXenns _ 0 (7,. <co)

and

IE:: l:e—‘r"(t/\'rb-)(e)?:/\rb. e Q)I{'r,,- <°°}] < 00,

20



DCT implies that the first term on the right hand side of (3.17) converges to

E, [e—r“-(‘rb- )(e)'(,,,. — Q)1 <°o}]

as t — oo. For the second term, we claim that

IE:C {e—f(tATb.)U(Xt/\Tb')I{Tb' >t}] —_ 0

as t — oo. This can be shown by considering the following two cases:

Case 1: G'(1) < 0, there exists ko > 1 such that G(ko) — 7 < 0. In addition, there

exists Cp > 0 such that u(z) < Cye ? for all z < b*. Hence,

E:c [e-—r“(t/\rb-)u(f(t,\rb_)I{Tb, >t}] < Ez [Coe"Ft+xo)?t[{Tb. >t}]
< IEz [Coe—ft+on¢]

— (Qast— oo.

Case 2: G'(1) > 0, as v(z) < e* for all z € R, we have

]Ez [e—F(t/\-rb-)u(XMTb_)I{Tb. >t}] S ]Ea: [C_Ft+)?tl{rb->t}} " (3.18)

Consider the probability measure P as follows:

—Ft+ X,

S5

=€

(3.19)

It is shown in Appendix A of Asmussen et al. (2004) that {X;}so is also a phase-type

jump diffusion process and the corresponding Lévy exponent is given by
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~

G(s) = G(1 + s) — G(1). (3.20)

Define 7. = inf{t > 0: > b*}. Then

E, [e-t+R] (ne>tt] = Be [Tge] = Bz [T mc0)] (3.21)

as t — oo. Observe that G'(0) = G'(1) > 0 and G(0) = 0, under P measure

Pr(fp < 00) = limE [e‘ﬁ"‘] — 4 (3.22)

7—0
This proves the claim.

Now, we can conclude that

u(z) = E, [e-f(n,.)(exf,,. _ Q)]{Tb~<°°}] = V(). (3.23)
That means the candidate solution u(-) is indeed a solution. This completes the proof.
O

Using similar techniques presented by Zhang and Zhou (2009), we can simplify our

solution by dropping the term with 3; = 1:

Proposition 3.3 Under the condition that G’ (1) < 0, suppose jo is the index such

that Bj, = 1, then we have w;, = 0. In other words, the value function takes the form

Y wief® oz < b
V(:I:) = B;eBF\({1}
et —gq z-> b

Proof For t < 74+, we have
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E [e"_‘V(f(t) | Xo = x] =V(z) + /Ote":s (L —7)V(X,)ds = V(z).

Hence, for any T' > 0,

Vie) = E[e™"V(Xnun) | Ko =a]

< E [e_ﬁ”'V(XT,,.)I{Tb«T} | Xo = x] +E [e‘FTV(XT)I{Tb. >1) | Xo = 33] :

It is clear that the first term converges to

E [e—h’” (ex’b‘ — q) It,. <o} | Xo = .’I:}

as T' — oco. To complete the proof, we require the second term to converge to zero as

T — oo.

By Theorem 3.2, V(z) is a linear combination of €% for z < b*, we consider the

validity of

E (e":Te"XT) —0 as T —

for different values of «.
Note that E (e"-Te"XT) = e(G(="T_ For k = 1, the expectation becomes € = 1
and does not converge to zero. Hence the term wj,e” should be dropped from the linear

combination by setting the coefficient to zero.

On the other hand, since G’(1) < 0, there exists ko > 1 such that G(kg) — 7 < 0.
Furthermore, for any 3; € B*\ {1}, there exists K; > 0 such that %< < K;e*? for

T € (—00,b*). We have E (e‘fTeﬁ‘xT) < K,E (e"’Te'%’.‘T) —0as T — oo.
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O

We summarize our results in this chapter. For any given exponential phase-type
Lévy model, the stock loan valuation is divided into two cases. If G (1) > 0, the stock
loan is not reasonable to exist. Otherwise, if G'(1) < 0, we solve roots from the C-L
equation (3.4). The valuation formula of stock loan is given by Proposition 3.3 in which
the optimal exercise boundary b* can be determined by setting a differential to zero.

However, it is not an obvious task to study the root characteristics of the C-L
equation (3.4) in general. The following chapter presents some important special cases

for which the solutions are obtained in explicit form.
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Chapter 4

Valuation

This chapter is devoted to the derivation of the valuation formula. We first solve
the problem under hyperexponential jump diffusions, a special case of the phase-type
jump diffusion. Although the hyperexponential jump diffusion model is studied by
Cai (2009) for a first passage time problem and Cai and Kou (2011) for barrier and
lookback option pricing, they only consider the case of positive interest rate and the
optimal exercise boundary is yet to be investigated. By making use of the solution
of the hyperexponential case, we extend our result to a fairly general class of phase-
type jump diffusion models. Except the last section of this chapter, we assume that

G'(1) < 0, where G(-) is defined in (3.4).

4.1 Hyperexponential jumps

Suppose T* and T~ take the following form

T+ = T , T = S W I (4.1)

l
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whcrem>1forz’=1,...,mand9k>0f0rk=1,...,n.

Then the phase-type jump distribution is reduced to a hyperexponential class. The
following proposition summarizes the root characteristics of the C-L equation (3.4). A

similar result is obtained by Cai (2009) for the case of non-negative interest rate.

Proposition 4.1 The Cramér-Lundberg equation G(B) = 7 has ezactly n distinct neg-

atwe real roots and m + 2 distinct real roots which are greater than or equal to 1.

Proof Under hyperexponential jump diffusion, we have

G(B) = %2[32+ﬁﬁ+/\pg%+/\(1—p)§£i% -\ (4.2)

It is clear that:

1. G(0) =0;

2. G(o0) = o0

3. G(—o00) = o0;

4. G(mi—) = 00, G(ni+) = —oco for i = 1,...,m;

5. G(—0;—) = —o00, G(—0;+) =00 for j =1,...,n;

6. G(B) is continuous except the values 7;, i = 1,...,m and =057 =14 s o570

where G(u£) = lim G(z). Then we know that G(8) = 7 has at least one root in each

T—ut

of the intervals

(—OO, _on)a (_ena —0n—l)’ sive 9y (—62) _01)’ (nls 772)7 ey (nm—lv nm)a (nm, OO)
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Moreover, G() = 7 has the same number of roots as the m + n+ 2 degree polynomial

(@) =) [T(n ~ ) [T(6; + 1.

i=1

Therefore it has at most m + n + 2 real roots.

Also observe that G(f3) is decreasing on the interval (=01,0) and G(0) = 0, G(—6,+)
0o, there is no root in the interval (=61,0). Now recall that 1 is always a root and
complex root always exists in pair, we deduce that there are two real roots in the
interval (0,7;). Our assumption G’ (1) < 0 implies that they are distinct and both of

them greater than or equal to 1.

O
By Theorem 3.2, the solution is of the form
m+1
Y wieli® z<b
Vo(z) = =1 ; (4.3)
et —q x>0

where b € R is a constant, G(f;))—7F=0foralliand 1< 01€ Bog o ©liaas
For z < b, we have (£ — ) Vj(z) = 0. Therefore,
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0 = LVi(z) - #Vy(x)

o2 2V dv; x ]
= T @R @+ [ (i) - @) fr )y - (a)

m+1 oo m+1
= 2O =0 A [ 3wy

b—z
+A e (€™ — q) fr(y)dy
m+1

—_ —)\Zw eﬁ] Zpa _(7’1 6J)b z)_l...Ae Zpa —(7’1 l)(b—l)

77-—1

_Aq Z paie—ﬂi(b‘l‘)

i=1

m+1
= /\Zpa en.sc( . 1 e—(mi— l)b_qe~m ij e~ (M-8, ) (4.4)

J

It is clear that (w,...,wm41) should be chosen such that all the values inside the

brackets in the summand of (4.4) equal to zero. That is

m+1

ij —(71, Bi)b _ i le —(mi—=1)b qe—n.b’ (45)
for ¢ = 1,...,m. Moreover, the function Vi(-) should also be continuous at b. This
gives

m+1
ij i =eb —q. (4.6)

Now we obtained a (m + 1) x (m + 1) system of linear equations
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m+1

wJ——’JTe (m=Pi)b  — Slre b _gemmb  fori=1,...,m
i=1 '
m+1 . (47)
S wiefit = eb—gq
=1

4.1.1 Solution of the linear system

We are intended to solve (4.7). Take Wi = wie?t for j =1,....m+1, gy = 0,

 =1,...,m and R,,4; = q — €. Then the linear system becomes
m+1 ,3
Y i—2— =R, fori=1,...,m+1. (4.8)
=1 W~ B;

Using partial fraction, we have

m+1 D. ﬁ m+1 m+177 m+1 z—
Jrg 1
§ﬁ R; 4.9)
x_ﬁj ; Icl_le—ﬂkll;l[¢ 771—771 (

where Dj, j = 1,...,m + 1 are the partial fraction coefficients. Multiplying (4.9) by

(z — Bk) on both sides and set z = Bk, we obtain

m+1 m+1 m+1
> (Ri Hl(ni—ﬂj)l [1 M)
j= =

Ni—m
=1 =1,l#1
Dy, = e s (4.10)
[T (Be—5;)
J=1,j#k

Hence,

Dy = -, . (4.11)
When z = 7, in (4.9), we have
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m+1

+1 m+1
Z 151 = R T i — ,Bk it Ni -771
ni —

k=1 i — l 1,14 i — M

7

Hence, w; = D;, j=1,...,m+ 1, and we conclude that

m+1 m+1 m+1 By
Z:l R; kI:[l (i — Br) I_H% ==

m+1 : ! (412)
Biefi® TI (B; — Br)

k=1,k#j

w; =

- & _ b
whereRi—m_1 yo-oymand R,y =q— e

4.1.2 Solution of the optimal exercise boundary

After obtaining the coefficients in (4.3), the remaining unknown is the optimal exercise
boundary b*. Note that b* is the value which maximizes the candidate solution Vi(2).

The following identity is uscful for that purpose.

Lemma 4.1 If {,Bk};cnjll and {ni}?zl are all distinct, we have

m+1 m+1 m+1 m+1 Tll—l
II G-v=3 T G-m [] ( ) (4.13)

k=1k#j k=1 k=1k#; 1=10i N T

Proof Consider the following polynomial

m+1

Pi(e)= J] B—1-2) forj=1,....m+1, (4.14)
k=1k#j

which are of degree m. Observe that

m+1

Pim—1)= J[ Be—m). (4.15)

k=1,k#j

By Lagrange interpolation,
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Li(z) = mZH (i — 1) "ﬁl <771—1—a:)

=1 I=1,l#1 i

= "i: f[ (B — ) ﬁl ("‘-1—z> (4.16)

i=1 =102 \

is a polynomial of degree m which past through all the points in the set

{(m — 1, Py(ms — 1))} 231,

As Pj(z) is a polynomial of degree m and it matches the value of L;(z) at m+1 points,

we have

By putting z = 0, the result follows.

Our objective is to maximize the function

( m+1
Y wiefi® z<b
Vo(z) = { =
e* —gq x>b
\
( m+1
J Z LJjeaf(’ b) z<b
— Jj=
e* —q z>b
\

over b € R. It suffices to maximize the value function on the interval (—oo0,b). On

(—00,b), we have
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b m 3 m+1 m+1 m i
(1-8y)e X =5 II (m ﬁk) H ;ﬂi+nﬂkﬂ~'—"‘
d . . =1 "7 k5 L i - L
d_wa wj’B] - m+1
Bi II (B;—Br)
k=1k#j
m+1 m Bi—n
q I B [T 4™
I
m+1
II (86— 6)
k=1,k#j
Therefore 4 #wW; — w;B; = 0 if and only if
m+1 m -
¢’ G kl;Il i H "‘
T Bi—1m m+1 m+1 . m+1 mo
! Y I =80 T 2224 1] 6 [] fon
F=1 o) =)k k=1 (=1
m+1'@ ﬁ m=1
e
k
_ 1 k=1 =1 ™
- 6 — 1m+l m+1 m+1
UL T Be-n) TT (222
J=1 k=1k#j I=1,j5 VO
m+1

- Tl z2;11%
=1

where the last equality is an application of Lemma 4.1. Hence %Vb(x) =0at b=b*

where

m+1 m— 1
=In|gq H B H : (4.17)
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It is then easy to see that V,(z) is maximized at b*.

4.2 Phase-type jumps

We are now ready to extend the previous results into phase-type jump diffusion mod-
els. Suppose T* and T~ are symmetric (and hence diagonalizable) matrix, and have

distinct eigenvalues. Then, there exists orthogonal matrix Q* and Q= such that

T* = (QY)"A*Q* and T~ =(Q")TA-Q-, (4.18)
where
it 0 —01 0
A o K s
0 ~Tim 0 -0,

We have the following result regarding the roots of the Cramér-Lundberg equation (3.4).

Theorem 4.2 The Cramér-Lundberg equation G(B) =7 has ezactly m+1 roots in the
complez domain Dy = {z € C|Re(z) > 1} and ezactly n roots in the complex domain

D= {z € C|Re(2) < mlax{—ﬁi}}.
Proof

Let fo(z) = fiz+ 222+ Ap (a+ (=L — A+)H (—AH)1 — 1)
+A(1 - p) (a- (=L - A-)H (=A-)1 — 1) — 7
&) = pet g2+ (a* (@4 (~A- A% (-A*)QH1 - 1)
A1 =) (@ (@) (=1 - A (-AT)Q 1-1) - 7,
fi2) = [fo(N"[A2)]"  for te(0,1).
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Note that fi(2) have m poles 7, ..., 7% in D, for all t ¢ [0,1]. From the hyperexpo-
nential case (Proposition 4.1), we know that fo(t) have m + 1 zeros in D,. We want
to construct a boundary strip C, of D, such that fi(2) have no zero on it.

Since |fy(z)| — oo as |z] — oo for t = 0, 1, there exists R € R such that all roots of

ft(2) =0, t € (0,1) are in the region

Dr={2€C: Re(z) >0, |z| <R}. (4.19)

On the other hand, as G'(1) < 0, there exists k; € R, &; > 1 (In fact, we can take &,

arbitrarily close to 1), such that fy(k;) = Re(f,(x,)) < 0. For t = 0,1, v € R we have

ele(fe(ritiv))  _ Iefz(m +iv) l

— IE (e(rc1+iu)X1—1")|
< IE (e(m)X,—f-)

—  eRelfexn))

< L

Hence, we have Re(fi(k1 +iv)) <0 Vv € R. This gives the boundary strip

C+={2€C:|z| =R, Re(2) > ki}U{z € C: Re(2) = K, — R<Im(z) <R}.
(4.20)
By the continuity of f;(z) and the Argument Principle, we deduce that

_ 1 S,

=5 . i) z (4.21)

t

34



is integer valued and continuous over ¢ € [0,1]. Hence ng = ny, i.e. fi(z) have m + 1
zeros in D,. This completes the proof of the first part of the statement.

To show the second part of the statement, we repeat the above arguments with the

following boundary strip,

C.={z€eC:|z| =R, Re(z) < kp} U{z € C : Re(z) = k,, — R < Im(z) < R},

(4.22)

where ky € R and k, < max{—6;} is chosen arbitrarily close to max{—6;}.
2 (]

a

According to Theorem 3.2, if there are no multiple roots with positive real part in

the C-L equation (3.4), then the solution is of the form

m+1
> wieli® g <p
i=1

Vi(z) = (4.23)

T

et —gq x>b

Using this solution form, we compute that

LVy(z) — 7Vo(z) = Ipat [(Q+)Te‘\+(b"x) ((—A+ - I)_1 el 4 gAt™!

. Z::;l wj (—A+ _ ﬁjI)_l eﬂjbl) (_A+) Q+:l 1’ (424)

which is equal to 0 on (—o0, b). Hence we obtain the system of linear equations
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m+1

'21 wylie~ kPt = Shre Db _ge=mb  fori=1,....m

]=
m+1 ) (425)
>, wiefit = b —gq
=1

which is the same as the lincar system (4.7) in the hyperexponential case. Therefore,

the coefficients are given by

4 ="M
i=1 k=1 1=1,l#
g = o , (4.26)
Bief® I1 (B; — Br)
k=1,k#j

and the optimal exercise boundary is given by

m+1 s
b* = In (q H 51 H i ) (4.27)
k=1

4.3 The case for G'(1) > 0

By substituting 81 = 1 into (4.27), we get b* = co. Again, by setting ;) = 1 in (4.26),

we observe that

wj — 0 for j #1

and
m+1m+1 m+1 e
> T (B-m) TI (2=2)
=1 k=2 1=1,1#i
W — tl =1
IT (B —1)
k=2

as b — oo, where the last equality is a result of Lemma 4.1 when J = 1. Noting (4.23),
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we have

Viz)>2  sup  Vj(z) =e
b>max{In g,In S}

On the other hand, we know that V(z) < €® from Lemma 3.1. As a result, we have

Vi) =€*.
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Chapter 5

Future Research Direction

This chapter discusses the possible generalization of the stock loan problem to stochas-
tic volatility. We adopt the approach in Fouque et al. (2003) and consider a fast
mean-reverting stochastic volatility model. The stock loan pricing formula is derived

in the form of asymptotic expansion.

5.1 The fast mean-reverting stochastic volatility model

Consider a pair of process (S, Y,?) which satisfies

dS; = rSidt+ f(Yy)Sedw,, (5.1)
1 V2 V2
€ _ A= —Y%) — ——A(YE — :
dy; Z(m —Y¢) \/EA( )| dt+ \/Ede, (5.2)

where S§ is the stock price process, f(Y/f) is a positive valued function representing
the volatility, ;¢ is a Ornstein-Uhlenbeck (OU) process with mean reverting speed %,
€ > 0 is a small parameter, (W;, Z;) are Brownian motions with correlation p € (-1,1)

and
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Ay) = % reli=p (5.3)

is the market price of risk. Let Xf = In (e77S5). 1td’s formula gives

dXf = (r -y — f(%t)z) dt + f(Y)dW,. (5.4)

Although we do not introduce jumps in (5.1) and (5.2), the method used in this
chapter is possible to generalize to phase-type Lévy process with stochastic volatility

in the future.

9.2 Asymptotic expansion of stock loan

We are interested in the stock loan on St defined in (5.1) and (5.2). As a starting point,
we use V*(z,y) to denote the price of the perpetual American option corresponding to

the stock loan (see (2.16)), i.e.

Ve(z,y) = ess supE [e'(’""’)'f (eX7 — q)+ Ieayl X =2, %5 = y] ; (5.5)
7€To

Using similar arguments presented in previous chapters, V*(z,y) is known to be a

solution to the partial differential equation

LVE(z,y) = 0 for z < b%(y
@ ; (5.6)
Ve (y),y) = "® —q  for z > be(y)
where b°(y) is the optimal exercise boundary,
T N N (5.7)
B e 0 \/E 1 2 .
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with

P o?
Ly = (m- y)é‘_y * Vza—yz; (5.8)
L = Vavpfly)sor M(y)§ (5.9)
2 2
L, = %f(y)z% + <7’- @) % — 7. (5.10)

Note that the operator L is the infinitesimal generator of the QU process Y; defined
by

dY; = (m — Y,)dt + V2vdZ,, (5.11)

which has the invariant distribution M (m, 1?).

Consider the following asymptotic expansions for V¢(z,y) and b*(y):

Vi(z,y) = Volz,y) + VEVi(z,y) +eValz,y) +e2Va(z,9) +... , (5.12)

b(y) = bo(y) + Vebi(y) +eba(y) + e2bs(y) + ... . (5.13)

We aim to compute the first two leading order terms of the above expansions. i.e.

Vo(z,y) + VeVi(z,y) (5.14)

and

bo(y) + Vebi(y). (5.15)

Substituting (5.12) into (5.6) gives
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1
LEVE = %AEOVO 4 % (£1V0 + £0V1) -+ (E2V0 + L,V + ['0V2)
+VE (LaVi + L1Va + LoVs) + o(v/E)
o (5.16)

This implies all the terms of the expansion in (5.16) should be equal to zero.

We use (-) to denote the expectation with respect to the invariant distribution

N (m, 1?):

(h) = - /—oo h(y)e“ﬁ%';)_zdy. (5.17)

vV 2r

In the following analysis, we have to solve the following Poisson equation:

Log+h = 0. (5.18)

In order to admit a solution g(+) with reasonable growth towards infinity, the equation

requires the following Fredholm solvability condition
(h) = 0. (5.19)

5.2.1 The zeroth order term

Consider the zeroth order term in (5.16)

LoV = 0. (5.20)

As L is a differential operator with respect to y, (5.20) implies that Vy(z,y) is inde-

pendent of y.

41



For the first order term in (5.16)

L1Vo + LWy =0,

since V; is independent of y, the equation is reduced to

LoVi = 0.

This implies, again, that V;(z,y) is independent of y.

For the second order term in (5.16):

LoVo + LV + LoVo = 0,

because £,V; = 0, (5.23) is reduced to the Poisson equation in V5

LoVo + L3Vy = 0.

The solvability condition implies

(L2Vo) = (L2) Vo =0,

where (L) is the operator £, with f(y)? replaced by 52 = (f2), i.e.

1.0V . ¥\ oV,
(.Cz)Vo=§&2a O+(T—%)8_;—TV°=O'

Recall the expansion of the optimal exercise boundary:

b*(y) = bo + Vebi(y) + o(VE).

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

Expanding both sides of the boundary condition in (5.6) according to the exercise
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boundary gives

oV,
+o(Ve); (5.27)
"W —q = €% — g+ \ab(y)e® + o(VE). (5.28)
Equating the zeroth order terms, we have
%(bO’y) — ebo —q. (529)

This suggests that Vj is the solution under a constant volatility model. The solution

is given in Xia and Zhou (2007):

o If —27/5% > 1,

(B-1)8-' 18 Bz £
q "e orz<b
Voz)={ 7 ° (5.30)
e —q for z > b,
where § = -2 by = ln(ﬁ%‘li).
o If —27/52 < 1,
Vo(z) = €*. (5.31)

For the purpose of illustrating asymptotic expansion, we focus on the more interesting

case where —27/52 > 1.

9.2.2 The first order term

The solution of the Poisson equation (5.24) can be written as
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Va = —L51 (Ly - (L2)) Vo (5.32)

On the other hand, the third order term in (5.16) gives

LoVi+ LiVa + LoV3 = 0, (5.33)

which is a Poisson equation in V. Solvability condition implies that

(L) Vi = —(LyVh)
= ( Lyl (Ep— (L2))) Vo
= (8L (10 - () 3 (- 2 ) W

3 2
= (Uz% + (’U] — 302)% + (2’02 — 'Ul)%) Vo, (534)
where
n = \/%mp (f¢) — (Ad'); (5.35)
by = % (1), (5.36)

and ¢(y) is a solution to the Poisson following equation

Log(y) = f(y)* — (f?). (5.37)

The boundary and smooth fit condition (cf. Villeneuve, 2007) of V¢ are

VE(b(y),y) = "W —¢g (5.38)
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and
ove
ox

=¥ (5.39)
(z,y)=(b%(y),y)

respectively. Expanding both sides of the boundary condition in (5.6) according to the

exercise boundary gives

VE(*(y),v)

Il

bt 1)+ V& (Villo + VEh),1) + 50) 20,0 )
+o(Ve);
W —g = eh — g+ \abi(y)e + o(vE).

Equating the terms in \/z order, we get

Vi(bo + Vebi(y), y) + bl(y)—(bo, y) = bi(y)e™, (5.40)

which implies

Vi(bo + vebi(y),y) = 0. (5.41)

Expanding both sides of the smooth fit condition according to the exercise boundary

gives

BV‘

(bf(y) Y)

B 00,) + VE (5 (b0 + VL (1), 0) + b 0) 5% (b0+,1)) +0(vB) i by(g) > 0

32 (bo,0) + VE (2(0-+ Vabi(y), 1) + b1 (1) 2 (bo—1)) +0(VE)  if by(y) < 0
(5.42)
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and

e W = M + \/eby (y)e? + o( V7). (5.43)

Collecting terms of O(/z) ,

%(bo + Vebi(), y) = bi(y)e™. (5.44)

Summarizing all these, we obtain the PDE of V;:

f (L2) = (vga%sg + (v — 3112);9"':%2 + (2vy — vl)%) Vo, for x < by + /2b (y);
J Vi(bo + veEbi(y),y) = O

bi(y)er — bi(y) 2 (bo+,y)  if by(y) > O;
P4 (by + /2bi (y),y) = i

\ bi(y)e — bi(y) 5% (bo—,y) if by(y) < 0.
(5.45)
We solve this PDE by dividing it into two cases.
Case 1: by(y) < 0. For z < by + /eb, (y)
o 02 0
(Ez) i = (’Uzﬁ + ('Ul = 3?)2)@ + (2’1)2 - ’Ul)a) Vo
= a0 (vzﬂz + (v1 — 3v2)B + (2v, — vl)) e’=, (5.46)
where a; = & ‘;)B_l q'~P. To construct a particular solution for Vi, consider the solution
form

VP (z) = c;zeP®. (5.47)
1
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By substituting this into the left hand side of (5.46), we get

2\1/P =2 oVP
52U +<f—%)a—l}—fv{’

5% (2c18e”® + clﬁzxeﬁ"') ) (r -

0| %

) (cleﬁx - clﬂxeﬁ"’) — Feyzel®

where the last equality holds with
=2
%&2ﬁ2+ (F—%)ﬂ—f=0.

This implies

ey = a1 (v23% + (v — 3U2)ﬁ-2+ (2v9 — vl)). (5.48)
520+ (7 - %)
It is clear that the homogeneous solution is of the form
‘/lh(.’L') = Cg@ﬂz + C3€$. (549)
We claim that ¢; = 0. To see this, define
Ef(t,2,y) =E [e7 9 (S5)"|Sf =, Y = y] (5.50)
and consider the following expansion

As argued in Zhang and Zhou (2009), if c3 # 0, we should have
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Eo(t,z,y) + VeEi(t,z,y) - 0as T — oo (5.52)

for £ = 1. Following a similar analysis for V¢ (z,y), we know that Ej is the expectation

evaluated with Black-Scholes model and this is solved in Zhang and Zhou (2009) that

Bslt, ) = s D05, (5.53)
E, is given by
Fo 2 0
El(t,l‘,y) = —(T = t) (Uz‘b? + ('U] = 31)2)@ + (2’02 = ’Ul)%> Eo (554)

2(T-
= —(T —t)k (v2k® + (v1 — Bva)k + (203 — vy)) eF=HF-Dx=A) ==

We refer to Fouque et al. (2003) for details. It is now casy to see that

Eo(t,z,y) + VeE(t,2,y) = 0 as T — oo

does not hold for x = 1. This implies c3 = 0 and proves the claim.
For z < by + /ebi(y), a general solution of V; is the sum of the homogeneous

solution and the particular solution:

Vi(z) = c1ze”® + cpe?. (5.55)

Substituting this into the boundary condition of (5.45) yields

0= Vi(bo + b1(y)vE) = c1(bo + b1 (y) ve)eCortrWVE) ¢, eBllothiw)ve) (5.56)
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and

Cy = —(C1 (bo + b1 (y)\/E) (557)

Evaluating both sides using the smooth fit condition in (5.45) gives

V;
%(bo 4 \/Ebl(y),y) - cleﬂ(bo-f-bl(y)\/é) + [Cl(bo + bl(y)\/g) +62] Igeﬁ(bo+b1(y)\/5)

= ¢;ePlotbi(y)Ve)

= 1”0 (14 by(y)BVE) + o(VE)

and

2

bi(y)e™ — bl(y)%(bo—,y) = bi(y)(e® — a18%P%) = by (y)(1 — B)e’.

Neglecting the o(y/€) terms and equating both sides, we have

by(y) = O (5.58)
N Gy Eppy = |
which is independent of y. To summarize,
c12eP® + cpeP*  for z < by + /Eb
Vi@)={ : e (5.59)
0 for z > by + \/2b;
where ¢; is given in (5.48), ¢, in (5.57) and b, in (5.58).
Case 2: bi(y) > 0. For z < b,
(L2) Vi = 018 (v28° + (v1 — 30)B + (2vy — v1)) e, (5.60)
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and for by < z < by + Vb (y)

3 2 o
<£2) V1 = ('UZT + (’Ul - 3’02)— + (2’02 = ’Ul)%> Vo

= 0. (5.61)

By similar arguments in the previous case, we can write

(
c12e 4 8,e5*  for z < by

‘/l(x) = < Jgeﬂ“ for bo <z < bo + \/Eb1(y) ¢ (562)

0 for x > by + /2b1(y)

\
Continuity at by + /b1 (y) implies dy = 0. Continuity at by implies
clboeﬁb" + ézeﬁbo = (),

or

62 = —Clbo. (563)

Since the optimal exercise boundary does not change in this case, we set by = 0. Then,

@) c1zeP® — ¢1bpef*  for z < by (5.64)
Vilz) = . .
0 for z > by

In summary, if

a1 eBbo

= Ben —cryeem <

50

(5.65)



then

c1zeP* + cpeP*  for z < bo + \/ébl(y)
Vi(z) =

)

0 for z > by + /b1 (y)

where ¢; is given in (5.48), ¢, in (5.57) and b, in (5.58). Otherwise,

c17€P? — c1bpeP*  for z < bo

b

0 for z > b,

Vi(z) =

where c; is given in (5.48), b, = 0.
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Chapter 6

Conclusion

This thesis provides a theoretical treatment of stock loans valuation under exponential
phase-type Lévy models. Using the variational inequality approach, we characterized
the value function of a stock loan under general exponential phase-type Lévy models
and derived an explicit solution of the stock loan value and optimal exercise policy for
a fairly general class of phase-type jump diffusion models. We emphasis again that
our result could be applied to approximate the corresponding price under a general
exponential Lévy model arbitrarily close.

We also discussed a possible extension to stochastic volatility model for stock loans.
We adopted a fast mean-reverting stochastic volatility model and analyzed the price
behavior using the technique of asymptotic expansion. A possible future research
direction is to prove the order of convergence of this approximation and to combine

the phase-type Lévy model with the stochastic volatility asymptotic analysis.
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Abstract

Stock loan, or security lending, is currently a very popular financial service provided by
many financial institutions. It is a collateral loan where stocks are used as collateral.
The borrower may repay the principal with interest and regain the stock, or make
no repayment and surrender the stock. This thesis is concerned with the stock loan
valuation problem, in which the underlying stock price is modeled as an exponential
Lévy Models of phase-type. The valuation problem can be formulated as an optimal
stopping problem of a perpetual American option with a time varying exercise price.
As the phase-type jump diffusion forms a dense class in Lévy processes, our solution

can approximate the solution under general Lévy models arbitrarily close.
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Chapter 1

Introduction

A stock loan is a loan issued by financial institutions (the lender) to its clients (the
borrower) which is collateralized with stocks. Recently, stock loans become a very
popular product in over-the-counter market. As reported by International Securities
Lending Association, the global market size of these products exceeded £1 trillion !.

Under the terms of the contract, the borrower has the right to repay the loan at
anytime, or to simply default the loan with the loss of the collateral. With this in
mind, the borrower’s right can be regarded as a perpetual American option, which
represents the right for the borrower to exercise the option at anytime, without a time
limit. The value of this perpetual American option is therefore of central importance
to the problem of stock loan valuation.

The value of this perpetual American option can be expressed as an ordinary per-
petual American call option with a possibly negative interest rate. This creates the
major challenge of stock loan pricing. Consider the case of geometric Brownian motion
(GBM) for the stock price. The optimal exercise rule of a perpetual American call

option is to exercise at the first time that the stock price rises to cross a constant

'This number is quoted from the article: An Introduction to Securities Lending, Executive Sum-
mary, Page 8, issued by Australian Securities Lending Association Limited at 1 August 2005.



level. This constant level is called the optimal exercise boundary. If interest rate is
positive, the stock price will cross any fixed boundary almost surely. The perpetual
American call option can then be valued directly with a variational inequality (VI). In
contrast, when interest rate is negative, the problem becomes complicated. Given any
fixed boundary level greater than the current stock price, there is a positive probability
that the stock price will never cross this level.

Xia and Zhou (2007) are pioneers of solving the stock loan problem. They value
the stock loan under the classical GBM model using a purely probabilistic approach.
Zhang and Zhou (2009) then extended the framework to a regime switching model
and solved the problem using variational inequalities. Dai and Xu (2009) studied the
optimal redeeming strategy of stock loans with finite maturity under GBM. Yam et al.
(2010) considered the callable feature of the stock loans.

Although most studies on stock loan adopt the GBM model for stock price, em-
pirical evidences (e.g. Andersen et al. (2002), Pan (2002) and Eraker et al (2003))
show that jump diffusion model would be a better model for asset prices to capture
the heavy tails of the empirical distribution. Therefore, a jump diffusion model with
flexible jump distribution is worth considering for stock loan valuation.

Merton (1976) is the first one to propose jump diffusion for asset price modeling
using a Gaussian jump distribution. Another notable jump diffusion model is the
double-exponential jump diffusion proposed by Kou (2002). The generalization of
jump diffusion model is the exponential Lévy model, such as the variance-gamma model
(Madan et al., 1998), CGMY model (Carr et al., 1999) and normal inverse Gaussian
model (Barndorfl-Nielssen, 2000).

Sun (2010) recently considered the stock loan valuation problem under the double-
exponential jump diffusion model in the first chapter of her thesis. While it is a good

start, the asset return distribution is not flexible enough to capture the empirical



distribution implied by market data. For this reason, we incorporate the phase-type
jump diffusion to stock loans valuation.

The phase-type distribution is dense over the class of all positive valued distri-
butions. By making use of this fact, Asmussen et al. (2007) show that the class of
phase-type jump diffusion model is dense over all exponential Lévy model. In other
words, the option price derived from phase-type jump diffusion models can be used
to approximate the corresponding price under a general exponential Lévy model. In
particular, Asmussen et al. (2007) approximate the CGMY model by the phase-type
jump diffusion. In fact, the phase-type jump diffusion model embraces the Kou (2002)
model and the mixed-exponential jump diffusion model (Cai and Kou, 2011) as its
special cases.

Asmussen et al. (2004) solved the price of the perpetual American put option
with positive interest rate under phase-type jump diffusion models. They used the
technique of Wiener-Hopf factorization to derive the optimal exercise boundary. Then
the pricing problem is reduced to the evaluation of the corresponding expectation at
the given exercise boundary.

While Wiener-Hopf factorization is useful to solve American option pricing problem
involving Lévy processes and, in particular, the phase-type Lévy model, it relies heavily
on the positive interest rate or, in the limiting case, zero interest rate. The method no
longer works for a negative effective interest rate in the stock loan valuation problem.
We take the variational inequality approach as in Zhang and Zhou (2009).

Under the phase-type jump diffusion model, we show that the price of the perpetual
American option satisfies an ordinary integro-differential equation (OIDE). The solu-
tion of this OIDE is closely linked to the root characteristics of a Cramér-Lundberg
equation (C-L equation). The root characteristics of the C-L equation is first studied

in a special case of the phase-type distribution, the hyperexponential distribution. By



making use of the properties of this special case, we extend our result to a fairly general
class of phase-type models.

The rest of the thesis is organized as follow. Chapter 2 introduces the elements of
our problem. Chapter 3 presents some general properties of stock loans. Chapter 4
presents the methodologies of valuation. Chapter 5 discusses a possible extension to

incorporate stochastic volatility. Chapter 6 concludes.



Chapter 2

Problem Formulation

In this chapter, we describe the formulation of stock loan valuation under the phase-
type Lévy model. We introduce the phase-type distribution, its use in the phase-type

jump diffusion model, and the formulation of stock loan as a perpetual American call

option pricing problem.

2.1 Phase-type distribution

2.1.1 A generalization of the exponential distribution

Consider a continuous time Markov process with 1 transient state and 1 absorption

state. The intensity matrix is given by

-0 0
0 0

where & > 0. Let Y be the absorption time of this Markov process. Then the dis-

tribution of Y is the exponential distribution. The cumulative distribution function

is



Fy(y)=1-e%. (2.1)

A finite mixture of the exponential distribution is called hyperexponential distri-
bution. This can be expressed as the absorption time of a continuous time Markov

process with m transient state, 1 absorption state with an intensity matrix of the form

\ 0o ... 0 0 /
The cumulative distribution function is

m

Fy(y) =Y a;(1—e%), (2.2)

i=1
where o; > 0 and )", ; = 1. @; is the probability for the process to start at state 7.

It can also be expressed using matrix notation,

Fy(y) =1— ae™1, (2.3)

where a = (04, ...,0m), T = diag(—61,...,-0,), 1 = (1,...,1)T.
A further generalization allows the transient states to be communicative. The

resulting distribution becomes the phase-type distribution described in the next section.

2.1.2 Properties of the phase-type distribution

The phase-type distribution is the absorption time of a finite state continuous time

Markov process with m transient states and 1 absorption state.



Let T be the intensity matrix of the transient states and a = (ay, ..., am) be an
initial probability vector. The phase-type distribution is parameterized by (m, T, ).

The full intensity matrix of the Markov process can be written as

T t
S = ,
0 0
where t = —T1. The cumulative distribution function is given by
Fy(y) =1— ae™1. (2.4)
The density function is given by
fr(y) = ae™t. (2.5)

Finally, the generating function is given by

M(t) = E[e?] = a(—tI — T) t. (2.6)

The class of phase-type distribution is very rich. When T is a diagonal matrix,
the distribution reduces to a hyperexponential distribution. As shown in Johnson and

Taafe (1988), the class of phase-type distribution is dense in the field of all distributions

on (0, 00).



2.2 Phase-type jump diffusion model

2.2.1 Jump diffusion model

If the price of an asset S, follows jump diffusion model, then the change in price consists
of three components: drift, Brownian motion and a jump process. The stochastic

dynamics can be expressed in the following stochastic differential equation:

N

ds, 1 .
= (,, + 502) dt + ocdW, + d (Z (e~ 1)) , (2.7)

i=1
where {W,},., is the standard Brownian motion, {Ni}4>o is a Poisson process with
intensity A, {Y;}:°, is a sequence of independent and identically distributed random
variables.

For a Poisson process Ny, when h is small, we have:
1. Pr(Nyn — Ny =0) =1— Aa+o(h);
2. Pr(Nggn — Ny = 1) = MAh+ o(h);
3. Pr(Niyn — Nt > 2) = o(h),
where o(h) is the asymptotic order symbol such that lim,_,, ﬂ:—) = 0. Hence, (2.7) can

be alternatively written as

%gi = (u + %a2> dt + odW; + (e¥ — 1) dN,. (2.8)
t

An application of It6’s formula gives

dIn S, = vdt + odW, + Y;dN,, (2.9)

which implies that



N
S; = Spexp (ut + oW, + Z Yi> . (2.10)

i=1

For r > 0, we have
1 :
E [e_”St] = Spexp (—7‘ +v+ 502 + A (IE(eY‘) - 1)) .

If we set v = r—0%/2— X (E(e¥) — 1), then {e7™5St},50 is a martingale. This motivates

the definition in the next section.

2.2.2 The stock price model

The stock price process is defined on a risk-neutral probability space (Q, P {.7-'t}t20 o )

We write

S: = exp(Xy), (2.11)
Nt

Xy = x+ut+aWt+ZK, (2.12)
i=1

where p = 1 — 0%/2 — A (E(e¥) — 1). The distribution of ¥, i N, is a two-sided

phase-type distribution and the density function is given by

fr(y) = pate™ Y H [0y + (1 — p)a—e T 91 {y<0}- (2.13)

Note that the financial market is incomplete under the jump diffusion setting. That
means that not all contingent claims can be perfectly hedged and the martingale mea-
sure is not unique. In other words, there are infinitely many equivalent martingale
measures. QOur choice P is the one that preserves the phase-type structure of the

log-price X, as proposed by Assmusen et al. (2004).

9



2.3 Stock Loans

Stock loan is a collateral loan where stocks are used as collateral. The borrower will
receive the loan principle (g), pay the service charge (c) and have the right to repay the
principal with interest (continuously compounded with rate 7v) and regain the stock

anytime in the future. The transactions can be summarized as follows:

e The borrower receives money g — ¢ as well as V;, a perpetual American option

with time varying strike price get.
e The bank receives Sy (one unit of stock) as collateral.

By equating the benefits of both parties, it is seen that the service charge is

C=q+1/0—50. (214)

We have the following representation of the value of the perpetual American option:

Vo =V(z) =ess supE [e7"" (S, — ge’")* I(r<0}|So = €7] , (2.15)

T€7o
where 7, u > 0, is the set of all stopping time taking values in the time interval (u, co).

By taking the transformation S’t = S;e™ ", the value can be written as

= + >
V(z) = ess supE [e_(r_7)f (ST — (I) I{r<o0}|So = ezJ , (2.16)

7€Tp
which is the value of a perpetual American option with constant strike price and a

possibly negative effective interest rate 7 = r — 1.
From now on, we will stick with the transformed stock price process S’t as the

underlying stock of the American option. We also define X, to be the transformed

log-price. Their dynamics are given by

10



S: = exp (Xt),

Nt
Xt = x+ﬁt+0Wt+ZYz,

i=1

where i =1 — v —0%/2 = X (E(e¥) — 1).

11
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Chapter 3

General Properties of Stock Loans

3.1 Preliminary results

We establish some properties of the perpetual American option as a function of the

stock price value. Take S = e* and write v(S) = V(InS) = V(z).

Lemma 3.1 v(S), as a deterministic function of the initial stock price S, satisfies the

following properties:
1. (S—q)t <v(S) < S forall S > 0;
2. v(S) is convez, continuous and nondecreasing in S on (0, 00).

Proof For the first item, observe that

v(S) =ess supE [e—" (Sy —qe) " Itr<oo} | So = S] : (3.1)

T€TH
By taking 7 = 0, we get (S — ¢)* < v(S). On the other hand, since (S — gem)t < S,

we have

12



v(S) = esssupE [e™™ (S, — ge™)* Itr<oo) | So= 5]
7€To

< esssupE [e“"STI{KOO} | So = S]
T7€To

< S

Next, it is obvious that v(-) is a nondecreasing function. Convexity of v(-) is a
direct consequence of the convexity of max{-, 0} function and the essential supremum

operator. As the function value is finite, convexity of v(-) implies its continuity.

The next lemma is an essential step to solve the optimal stopping problem.

Lemma 3.2 Define k = inf{S>0:S5—q>v(S)} > q, where inf@ = co. Then
{§>0:5-¢>v(9)} = [k, 0).

Proof If k = oo, the result is obvious. For the case that k € [q,0), we have v(k) =
k — g by the continuity of v. We claim that v(S) = S — g for S > k. Otherwise, there

exists ko > k such that v(ky) > ko — q because of Lemma 3.1. By convexity, we have

v(S) — v(k)
S—k

v(ko) — v(k)

1.
ik

>

for any S > ky. As a consequence v(S) > %ﬂ(s — k) + k — ¢ which implies

v(S) > S for sufficiently large value of S. This is a contradiction to Lemma 3.1,
O

Using similar methods of Xia and Zhou (2007), we now prove that the optimal

stopping time is a first hitting time. In other words, it is optimal to exercise the

13



perpetual American option at the first time when the transformed log-price exceeds a

predetermined level. Such a level is called the optimal exercise boundary.

Theorem 3.1 If X, follows a Lévy process, then the optimal stopping time is of the

form

Tb=inf{t20:)~(¢2b}, (3.2)

where b is a constant.

Proof The stock loan value at time ¢ can be written as

‘/t = 'U(St)

= esssupE [e'r(T-t) (SpeXr=Xe - qe'")+ Iircooy | -7'—:}
TET;

= eesssupE [e"r(“t) (e~ 78Xt qe"(T"))+ Tivcooy | fz]
T€T:

= e essesTupIE [e“" (zeX — qe"")+ Iircooy | -7:0]
TE Lo

= erv(e™S,).

a:=e"7'-S¢

Hence, the optimal stopping time (cf. Karatzas and Shreve, 1998, Chapter 2.5) is

™ = inf{t>0:8, —qe" > v(Se) }
= inf{t>0:5 —qe" > e"v(e™S,)}
= inf{t>0:Se™™ — g >v(e™S,)}
= inf{t > 0:e™"S, > k}

- inf{tZO:f(chnk},
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where £ is the value defined in Lemma 3.2.

a

We denote the optimal exercise boundary by b* and the optimal stopping time by
Ty-- Theorem 3.1 greatly reduces the dimensionality of the optimization problem. The
original optimization problem has to search over all possible stopping time. Yet, the
optimal stopping time is in the form of a first hitting time and we only need to search
for an optimal exercise boundary, which is a one-dimensional optimization problem. In

other words, the value function is given by

i . § -
V(z) = sup Vi(z) = sup E [e'"” (ex’b — q) I(r,<o0}| Xo = x] . (3.3)

b>max{ln q,z} b>max{lngq,z}

3.2 Characterization of the function V(z)

We want to show that V(z) is a solution of an integro-differential equation (OIDE)
and derive its functional form. Before going into that, we first introduce the Cramér-

Lundberg equation (C-L equation)

2
G(B) = %,32+ﬁ,3+Apa+(—ﬂI—T+)'lt++A(l—p)a"(,BI—T‘)‘lt' =A=7r. (34)

We use the symbol B* to denote the collection of roots to the C-L equation with
real part larger than or equal to 1 and B~ to denote the collection of those roots with
negative real part. The root characteristics of the C-L equation play a central role in
our problem as we will see in later sections. As a starting point, observe the following

properties regarding this equation:
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L. e ™Sk = {e‘”gt} . is a martingale implies that 1 € B*.
> -

2. The function G(f3) satisfies

E [eﬁx‘] = eCB) (3.5)
for 8 belongs to some bounded interval covering [0,1].

If G'(1) > 0, it will be shown that V(z) = e and that ¢ = ¢. That means that the
bank has no intention to make such a stock loan contract with the given loan interest
rate v and current stock price Sy. Therefore, we will focus on the more interesting case
G'(1) < 0. The case for G’(1) > 0 is postponed to section 4.3.

It is worth noting that G'(1) < 0 implies ¥ > r. In other words, the effective

interest rate 7 = r — « is indeed negative. To see this, recall

g2 o Yi BY:
G(ﬁ)=?ﬁ +<r—7—?—/\(IE[e ] -1) B+ (E[e ] 1) (3.6)
Hence,
2
Gl)=r—v+ % + AE [Yie" —e¥t + 1]. (3.7)

Since ye¥ —e¥ +1 > 0 for all y € R, G'(1) < 0 implies

2
7>r+%+/\lE[YleY‘—eY‘+1] > 7.

We are now ready to present the result which characterizes the function V(z). It
is easy to see that this new result embraces the stock loan valuation under double-

exponential jump diffusion model (Sun, 2010) as its special case.
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Theorem 3.2 V/(z) satisfies the following integro-differential equation

(L-F)V(z) = 0 z b
) (3.8)
V(iz) = e—q z>b*

where Lh(z) = ”—222—'2‘(32) + a2 (z) +A [ (h(z +y) — h(z)) fy(y)dy. Furthermore, the

V(z) = PieB* (3.9)

for some wj, j € {i | B; € Bt} to be determined according to the model.

Proof Consider the following function as a candidate solution:

Y wiefi® x < b
u(z) = { BiEB*

e*—q d:> B

It is reasonable to assume that w;, j € {i | B; € B*} should be chosen such that
u(-) satisfies the conditions described in Lemma 3.1. In particular, we should have

(e* —g)* < u(z) < e® for all z € R. It also satisfies the OIDE

(L-Pu(z) = 0 &< b | (3.10)
u(x) = e*—q z>b*

However, it may not be continuously differentiable at b*. Hence, we construct a

sequence of function {u,(x)}>>, such that

L. un(z) — u(z) as n — oo for all z;

2. u,(7) is twice continuously differentiable for all n € N;

17



3. Forz <b*orz>b*+ 1 u, ()= u(a)

4. For b* <z < b* + %, 0 < un(z) < M, where M, is a positive constant.

For any = < b*, we have

b*—z+1/n

(£~ Fula=h / n(z +1) - u@+v)] frw)dy.  (3.11)

b*—z

Note that

- < ax < M,,
un(e) ~u(e)| S max (o) +_max (o)) < My

where My = M; + e*"*!. Then we have

b* —z+1/n
|Lun(z) — Fua(z)] < /\pa+t+/b [un(z +y) — u(z + y)] dy (3.12)

it
Apattt M,
n

< — 0 uniformly for all z < b* |, as n — 0.

Next, by applying It6’s formula to { e‘“un(Xt)} Lo We can obtain a sequence of
2>

local martingale { Mt(")}po for n € N as follows:

't/\Tbt

M = e~ T )y (Xinrys ) — Un(z) — —/0 e’ [(E —7) un()-(s)] ds.  (3.13)

We claim that it is a true martingale for any n € N. Note that for any ¢ > 0,
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Ie—i(t/\r,,. )un()zmn_ )l
< |e—ﬂun()~(t)1{t<r,,-}l T Ie'ﬂun(X.,b. )I{tzr,,.,)"(,b. <b+l/n}l =i Ie—Ftun(XTb‘ )I{tZ'rb- Xrys Zb-!-l/n}'

< e ™u(Xe) [jt<rey| + Mie™™ + e~ (eXmee — 7y - (3.14)

From the definition in (3.13) and noting (3.12) and (3.14), we establish the following

inequality,

Apattt M, (e7™ — 1)
nr '
(3.15)

|M™) < e~ u(Xe) Lpcryey 14 [un () [+ My~ e~ (eXroe — ), <0} —

For the first term in the right hand side of (3.15), we have for any fixed "> 0

E, {Sup e_ﬂu()?t)—’{t<rw}|]
te[0,7]

< ¢ 7TE, [epeon ]
i i N
£ e—TT]EI [e“+#T+UsuPze[o.T1 Wt Yi+J

o?’T

5+ pATat (-1 - TJ")_1 t+>

= 2®(oVT)exp (—FT +z+ 4T +

< o0,

where ®(-) is the cumulative distribution function of the standard normal distribution.

It is now easy to see that

E, sup |[M™| < o, (3.16)
te[0,7)
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which guarantees that Mt(") is a true martingale for all n. Then, we know that for

T <b*
u(z) = lim u,(z)
~ - tAT, ) .
— limE, [e_r(t'\f”')un(XMTb.)] — lim E,M™ — lim E, [ / e~ [(c —F) un(Xs)J dsJ
n—oo n—oo n—oo 0

)

- E, [e—i(tArb. )u(j(mr,,. )]

with the last equality implied by the dominated convergence theorem (DCT). Now, let

t — oo and apply Fatou’s lemma to get

u(z) = limE, [e":(""b‘)u()?tmb.)]

t—o0
= zli,r& E, [e—f(t/\n,-)u(f(t,\rb.)I{Tb,«x,}] + tllrg E, [e_F(t"T"')U(XtAr,,-)-’{r,,.=oo}J
2 E; [e‘”"’"u(ffrb-)I{n-<oo}]

On the other hand,

E,; [e—f(t/w”')u()zt/\rb-)] =E, [e_i(t/\rb.)(exmr"' - Q)[{rb-st}J +E, [e_i(mn')u()zt/\n,-)I{Tb->t}] .
(3.17)
e—f(tATb‘)(eX“\"b‘ _ Q)I{‘rb» <t) S e—f‘(!/\fb-)(e)?m-rb. - q)]{Tb‘ <od)

and

E, [e—i(tAn,c)(e)-(mrb' ez Q)I{’r,,o<oo}] < 00,
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DCT implies that the first term on the right hand side of (3.17) converges to

E, [e-f(rb-)(efrfb. _ Q)I{‘rb-<oo}]

as t — oo. For the second term, we claim that

IE:,_- ,:e—r"(t/\Tbt)u(XtATb, )I{Tb' >t}] —0

as t — 0o. This can be shown by considering the following two cases:
Case 1: G'(1) < 0, there exists ko > 1 such that G(ko) — 7 < 0. In addition, there

exists Co > 0 such that u(z) < Coe™* for all z < b*. Hence,

E, [3_;(MT".)U(XMT,,*)I(r,,.>t}] < E, [Coe_Ft+~°th{Tb->t}]
< E, [coe-““f’”“]

— Qast — oo.

Case 2: G'(1) > 0, as v(z) < e® for all z € R, we have

IE:c [e—i(tATb')u(Xt/\rbt )I{'rb- >t}] < Ez [e_ﬂ-*-)hl{'rb- >t}J . (318)

Consider the probability measure P as follows:

=g T, (3.19)

S5

It is shown in Appendix A of Asmussen et al. (2004) that {X;}sso is also a phase-type

jump diffusion process and the corresponding Lévy exponent is given by
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A

G(s) = G+ s) — G(1). (3.20)

Define 7. = inf{t >0: X, > b*}. Then

E, [e"mx‘f{n-»}] =E: [I,.50] = Eq [I(5,.=00)] (3.21)

as t — oo. Observe that G'(0) = G/(1) > 0 and G(0) = 0, under P measure

Pr(f- < 00) = lim E[e ™) = 1. (3.22)

This proves the claim.

Now, we can conclude that
U(l') =E, [e—'r‘(‘l’b-)(e)?rb- = Q)I{-rb-<oo}] = V(J;) (323)
That means the candidate solution u(-) is indeed a solution. This completes the proof.

O

Using similar techniques presented by Zhang and Zhou (2009), we can simplify our

solution by dropping the term with §; = 1:

Proposition 3.3 Under the condition that G'(1) < 0, suppose jy is the index such

that Bj, = 1, then we have wj, = 0. In other words, the value function takes the form

> welit g <
V(z)={ AEBH\(1}
e* —q x> b*

Proof For t < 7+, we have
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E [e"ﬂV(f(t) | Xo = a:] =V(z) + /ote‘is (L -7)V(Xs)ds =V (z).

Hence, for any T > 0,

V@) = E[e™ "V (Xnnr) | Xo = 2]

< E [e":T"‘V(XTb_)I{Tb«T} | Xo = x] +E [e‘fTV(f(T)I{Tb.ZT} | Xo = .'1:] :

It is clear that the first term converges to

E [e-fr,,. (e)'(T,,. _ q) Lerea) |X0 _ x]

as T' — co. To complete the proof, we require the second term to converge to zero as

T — oo.

By Theorem 3.2, V() is a linear combination of e%% for z < b*, we consider the

validity of

E (e’FTe"XT) —0 as T —

for different values of «.
Note that E (e"’Te"XT) = el6(W-NT_ For k = 1, the expectation becomes ¢® = 1
and does not converge to zero. Hence the term wj,e” should be dropped from the linear

combination by setting the coefficient to zero.

On the other hand, since G'(1) < 0, there exists ko > 1 such that G(ko) =7 < 0.
Furthermore, for any §; € B\ {1}, there exists K; > 0 such that %< < K;e** for

z € (—o0,b*). We have E (e"’Teﬁ‘XT) < K.E (e":Te'wXT) —0as T — oo.
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a

We summarize our results in this chapter. For any given exponential phase-type
Lévy model, the stock loan valuation is divided into two cases. If G'(1) > 0, the stock
loan is not reasonable to exist. Otherwise, if G’ (1) < 0, we solve roots from the C-L
equation (3.4). The valuation formula of stock loan is given by Proposition 3.3 in which
the optimal exercise boundary b* can be determined by setting a differential to zero.

However, it is not an obvious task to study the root characteristics of the C-L
equation (3.4) in general. The following chapter presents some important special cases

for which the solutions are obtained in explicit form.
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Chapter 4

Valuation

This chapter is devoted to the derivation of the valuation formula. We first solve
the problem under hyperexponential jump diffusions, a special case of the phase-type
jump diffusion. Although the hyperexponential jump diffusion model is studied by
Cai (2009) for a first passage time problem and Cai and Kou (2011) for barrier and
lookback option pricing, they only consider the case of positive interest rate and the
optimal exercise boundary is yet to be investigated. By making use of the solution
of the hyperexponential case, we extend our result to a fairly general class of phase-
type jump diffusion models. Except the last section of this chapter, we assume that

G'(1) <0, where G(-) is defined in (3.4).

4.1 Hyperexponential jumps

Suppose T* and T~ take the following form
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where 7; > 1 for i = 1,...,m and O >0fork=1,...,n
Then the phase-type jump distribution is reduced to a hyperexponential class. The
following proposition summarizes the root characteristics of the C-L equation (3.4). A

similar result is obtained by Cai (2009) for the case of non-negative interest rate.

Proposition 4.1 The Cramér-Lundberg equation G() = 7 has exactly n distinct neg-

ative real roots and m + 2 distinct real roots which are greater than or equal to 1.

Proof Under hyperexponential jump diffusion, we have

m

G = T8 +iip+ w3 Sl A1) 2 poa )

It is clear that:

1. G(0) =0;

2. iG(o0) = 65;

3. G(—0o0) = oc;

4. G(ni—) =00, G(mi+) = —occo fori=1,...,m;

5. G(—0;—) = —00, G(—b;+) =0 for j=1,...,n;

6. G(0) is continuous except the values n;, i =1,...,m and =057 = 1500040,

where G(utx) = lim G(z). Then we know that G(3) = 7 has at least one root in each

z—uxt

of the intervals

(—OO, —Hn), ('—0", —01;—1), vy (_021 _91), (nla 772), ey (n‘m—la nm); (77m, OO)
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Moreover, G(f) = 7 has the same number of roots as the m + n + 2 degree polynomial
(GB) =7 [T - 8) [T 65 + ).
i=1 j=1

Therefore it has at most m + n + 2 real roots.

Also observe that G(f3) is decreasing on the interval (—6;,0) and G(0) = 0, G (—61+) =
00, there is no root in the interval (—#;,0). Now recall that 1 is always a root and
complex root always exists in pair, we deduce that there are two real roots in the
interval (0,7:). Our assumption G'(1) < 0 implies that they are distinct and both of

them greater than or equal to 1.

O
By Theorem 3.2, the solution is of the form
m+1
> wiefit x<b
Vo(z) = { =1 , (4.3)
e —q % >.b

where b € R is a constant, G(3;) —7 =0 for all i and 1 < B < B <. € By

For z < b, we have (L — 7) V,(z) = 0. Therefore,
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0 = LVi(z) - V()

2 42y, dV, .
= @) + A% (g 4 » / (Va(z +1) — Va(2)) fy (v)dy — 7Vh(z)
m+1 oo m+1

= Zweﬂ’x G(B;) —7) / Zwe @+9) £y (y)dy
bz

+/\/b°°("+y—q)fy( )dy

T
m+1

= —,\ w eﬁJ a —(m—ﬁ;)(b x) + )\e a n —(U,—l)(b -z)
Z ZP ZP — o

=1 v

_Aq Z pale—nt(b_z)

1=1

m+1
= ,\Zpa T (;7 _1 e~ (mi—1)b qe"” ij e~ (Mi—B; ) (4.4)

s —

It is clear that (wi,...,wm+1) should be chosen such that all the values inside the

brackets in the summand of (4.4) equal to zero. That is

m-+1 ;
Z w] _(Th ﬁ])b L _(711 l)b _ qe_"ib, (4.5)
7 — 1
for i = 1,...,m. Moreover, the function V,(-) should also be continuous at b. This
gives
m+1
Z w;el® = eb — q. (4.6)
j=1

Now we obtained a (m + 1) x (m + 1) system of linear equations
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m+1

wJ—”Te (k=B)b  — e (i-16 _ ge=mb  fori=1,...,m
.=1 T
J i (4.7)
> wiefi® = et —q

4.1.1 Solution of the linear system

We are intended to solve (4.7). Take w; = w;jefi® for j = 1,...,m+ 1, fpny1 = O,

R; = -

.ym and R,,41 = ¢ — €. Then the linear system becomes

m+1 ,B
Y G—L— =R, fori=1,...,m+1. (4.8)
= ni — B,

Using partial fraction, we have

m+1 ,8 m+1 m+1 n m+1 e 7'][
J J 1
Y g =2 ]l 2of T 2ot ws)

j=1 J =

where Dj, j = 1,...,m + 1 are the partial fraction coefficients. Multiplying (4.9) by
(z — Bx) on both sides and set z = [, we obtain
m+1 m+1 m+1 3
p k=M
Z E; l_‘[ ) H ; T

l=1,l#

Dy = = ; (4.10)

Hence,

=1 1=1,li
Dy = = . (4.11)
Be II (Bx—B;)
J=1,j#k

When z = n; in (4.9), we have
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m+1 m+1 m+1

ZDﬁJ: Hrh = 771=

j=1 'k k=1 T tlt;én‘

Hence, u; = Dj,j=1,...,m+1, and we conclude that

mtl [ m4l mil o
> (B Il (mni—6) ] 252
=1 k=1 '

i 1=1 0%
Biefi® ] (B; — Br)
k=1,k#j

. =1,...,mand Rp,; = q— €.

4.1.2 Solution of the optimal exercise boundary

After obtaining the coefficients in (4.3), the remaining unknown is the optimal exercise
boundary b*. Note that b* is the value which maximizes the candidate solution Vi(z).

The following identity is useful for that purpose.

Lemma 4.1 If {ﬁk}zljll and {771}'"“ are all distinct, we have

I[I G-1=> TI G-m ] ("‘”). (4.13)

k=1,k#j k=1 k=1,k#j I=1,l#1

Proof Consider the following polynomial

m-+1

Pz)= J] (B—-1-2z) forj=1,...,m+1, (4.14)
k=1,k#j

which are of degree m. Observe that

m+1

Pm—-1)= [ Bc—m). (4.15)

k=1k#j

By Lagrange interpolation,
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Liz) = glpj(m—l) ﬁ (QH——x)

m+1 m+1 m+1 s 1— 1;
= Z H (Be = m:) H <f> (4.16)
=1 k=1k#j =1 N T TH

is a polynomial of degree m which past through all the points in the set

{(ni — 1, Py(m — 1))} ™41

As Pj(z) is a polynomial of degree m and it matches the value of L;(z) at m+1 points,

we have

By putting z = 0, the result follows.

Our objective is to maximize the function

> wiefi® r <b
W@ = { -
e —q & =b

over b € R. It suffices to maximize the value function on the interval (—o0,b). On

(—o0,b), we have
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m m+1 m+1
(1-8))e {Zlﬁk 1 (mi—B) TI 22+ H B H-’;mjl

- s = = =1,

B Tl = — B
51 H (ﬁ] - ﬂk)
k=1,k#j
m+1 m
q kH B H d
+ m:-l
I[I B- ,Bk)
k=1,k#j
Therefore — w;f; = 0 if and only if
m+1 m
e? gj H B I:I T
? = B;i—1m m+1 m+1 N -
STl -0 T 822+ T 6 ff 2
m+1 m _—
s
_ 1 kl;Il ﬁkzg o
B; — 1mtl mil m+1

B~ L=

=1 k—ﬂc;éj( * n)t=g¢z‘ ("‘_”")
m+1

- 2510
k=1 =1

where the last equality is an application of Lemma 4.1. Hence 4 +Vo(z) =0 at b = b

where

—In (qH = H”’—l) (4.17)
=1
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It is then easy to see that Vj(z) is maximized at b*.

4.2 Phase-type jumps

We are now ready to extend the previous results into phase-type jump diffusion mod-
els. Suppose T* and T~ are symmetric (and hence diagonalizable) matrix, and have

distinct eigenvalues. Then, there exists orthogonal matrix Q*+ and Q™ such that

*=(Q"HTA*Q* and T-=(Q")TAQ-, (4.18)
where
—M 0 —b, 0
A+: ) A—:
0 o =N 0 - —b,

We have the following result regarding the roots of the Cramér-Lundberg equation (3.4).

Theorem 4.2 The Cramér-Lundberg equation G(8) = 7 has ezactly m+1 roots in the

complez domain Dy = {z € C|Re(z) > 1} and ezactly n roots in the complex domain

o I {z € C|Re(z) < max{—e,-}}.
Proof

Let fo(z) = fiz+ %2>+ \p(at (-2 - AN (= A+)1—1)
A1 =p) (@ (=21 - A7) (~AT)1 - 1) - 7
fiz) = fz+ 22+ M (at (QF)T (=21 — A+)" (—A+)Q+1—1)
AL =p) (@ (@) (=1 - A7) (-A7)Q 1 -1) - 7,
fi2) = [f@)"?A@E]  for te(0,1).
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Note that f,(2) have m poles M- NMm in Dy for all ¢ € [0,1]. From the hyperexpo-
nential case (Proposition 4.1), we know that fo(t) have m + 1 zeros in D,. We want
to construct a boundary strip C, of D, such that f,(z) have no zero on it.

Since | fi(2)| — oo as |z| — oo for t = 0,1, there exists R € R such that all roots of

fi(z) =0, t € (0,1) are in the region

Dr={2€C: Re(z) >0, |z| <R}. (4.19)

On the other hand, as G’(1) < 0, there exists &, € R, 1 > 1 (In fact, we can take &,

arbitrarily close to 1), such that f;(k;) = Re(fi(k1)) < 0. For t =0,1, v € R we have

eRelilutio)) . |efuluativ)
- ']E (e(m+iu)X1 —F) I

< E (e(Kl)Xl—f)

= cRelfim)

< 1L

Hence, we have Re(f;(k1 +iv)) <0 Vv € R. This gives the boundary strip

Cr={2€C:|z[=R, Re(2) 2k} U{2€C: Re(z) = k1, — R <Im(z) <R}.

(4.20)
By the continuity of f;(2) and the Argument Principle, we deduce that
1 fi(2)
= — dz 4.21
¢ 27mi Cy ft(z) ( )
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is integer valued and continuous over ¢ € [0,1]. Hence ny = ny, i.e. fi(2) have m + 1
zeros in D,. This completes the proof of the first part of the statement.

To show the second part of the statement, we repeat the above arguments with the

following boundary strip,

C-={2z€C:|2| =R, Re(z) <k} U{z € C: Re(z) = k3, — R < Im(z) < R}

)

(4.22)

where k3 € R and k2 < max{—6;} is chosen arbitrarily close to max{—6;}.
2 2

a

According to Theorem 3.2, if there are no multiple roots with positive real part in

the C-L equation (3.4), then the solution is of the form

m+1
> wiefi® z<b
J=1

Vi(z) = (4.23)

e —q x>b

Using this solution form, we compute that

LVi(z) — FVp(z) = Ipat [(Q*)Te”("‘z) ((—A+ D) et 4 gAt!

S o) )], a0

which is equal to 0 on (—o0,b). Hence we obtain the system of linear equations
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m+1

'21 e b = Thre Db _ge=mb  fori=1,...,m

J=
o ' (4.25)
2, wief® = e —gq
i=1

which is the same as the linear system (4.7) in the hyperexponential case. Therefore,

the coefficients are given by

m+1 m+1 m+1 By
> | R ) (mi—B) Il 5+
=1

=1 I=1,l#i

wj:

. (4.26)
Bie?i® TI (B; — Br)

and the optimal exercise boundary is given by

b* = In qﬁ e ﬁ"‘_l . (4.27)
e el m

4.3 The case for G'(1) > 0

By substituting #; = 1 into (4.27), we get b* = co. Again, by setting 3, = 1 in (4.26),

we observe that

wj —0forj#1

and m+1m+1 m+1 i
> I (B-n) T1 (222)
k=1 k=2 1=1,l#i &
w; — =1

I (6 - 1)
k=2

as b — oo, where the last equality is a result of Lemma 4.1 when j = 1. Noting (4.23),
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we have

V(z) > sup Vi(z) =:€".

b>max{lngq,ln S}
On the other hand, we know that V(z) < e* from Lemma 3.1. As a result, we have

Viz) = é*.
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Chapter 5

Future Research Direction

This chapter discusses the possible generalization of the stock loan problem to stochas-
tic volatility. We adopt the approach in Fouque et al. (2003) and consider a fast
mean-reverting stochastic volatility model. The stock loan pricing formula is derived

in the form of asymptotic expansion.

5.1 The fast mean-reverting stochastic volatility model

Consider a pair of process (S;,Y,®) which satisfies

dSE = rSedt + f(YE)SdW,, (5.1)
. 1 . - vV/2
daYy = ;(m -Y, ) = W/\()ft ) dt + WdZt, (52)

where S is the stock price process, f(Y) is a positive valued function representing
the volatility, Y;¢ is a Ornstein-Uhlenbeck (OU) process with mean reverting speed %,

g > 0 is a small parameter, (W, Z;) are Brownian motions with correlation p € (-1,1)

and
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Ay) = ”(jf(;)") +eVI=P (5.3)

is the market price of risk. Let X = In (e™S%). Ito’s formula gives

dXf = (r -y = f(%‘)z) dt + f(Y)dW,. (5.4)

Although we do not introduce jumps in (5.1) and (5.2), the method used in this
chapter is possible to generalize to phase-type Lévy process with stochastic volatility

in the future.

9.2 Asymptotic expansion of stock loan

We are interested in the stock loan on S¢ defined in (5.1) and (5.2). As a starting point,
we use V*¢(z,y) to denote the price of the perpetual American option corresponding to

the stock loan (see (2.16)), i.e.

VE(z,y) = ess supE [e"(’"“’)T (e*7 — q)+ syl X5 =8, Y = y] . (5.5)
€T

Using similar arguments presented in previous chapters, V¢(z,y) is known to be a

solution to the partial differential equation

LVe(z,y) = 0 for z < b%(y)
; (5.6)
VE@E(y),y) = €W —q for 2 > b(y)
where b°(y) is the optimal exercise boundary,
Pyt 4 5.7
= £ 0 \/E 1 2, ( . )
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with

0 0?
Ly = (m-— y)B_y + u2—ay2; (5.8)
0? 0
L, = ﬁl/ﬁf(?!)m - ﬁvl\(y)a—y; (5.9)
5? 2\ 9
Ly = %f(y)2w+ (f—f(;/) )a—x—f-. (5.10)

Note that the operator £, is the infinitesimal generator of the OU process Y; defined
by

dY, = (m = Y,)dt + V2vdZ,, (5.11)

which has the invariant distribution N (m, v2).

Consider the following asymptotic expansions for Ve(z,y) and b°(y):

Ve(z,y) = Vo(z,y) + VeVi(z,y) +eVa(z,y) + E%V3(:C,y) +oie 5 (912

(y) = bo(y) + Vebi(y) +eba(y) +e2bs(y) + ... . (5.13)
We aim to compute the first two leading order terms of the above expansions. i.e.

Vo(z,y) + VeVi(z, y) (5.14)

and

bo(y) + Vebi (y). (5.15)

Substituting (5.12) into (5.6) gives
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LVE = %Lo% - % (L1Vo + LoV1) + (L2Vo + L1Vi + LoVa)
+VE LoV + L1Va + LoV3) + o(VE)

- 0. (5.16)

This implies all the terms of the expansion in (5.16) should be equal to zero.

We use (-) to denote the expectation with respect to the invariant distribution

N(m, v?):

T o /w Ae~ %y, (5.17)

V2T J -

In the following analysis, we have to solve the following Poisson equation:

Log+h = 0. (5.18)

In order to admit a solution g(-) with reasonable growth towards infinity, the equation

requires the following Fredholm solvability condition
(h) = 0. (5.19)

5.2.1 The zeroth order term

Consider the zeroth order term in (5.16)

LoVp = 0. (5.20)

As Lo is a differential operator with respect to y, (5.20) implies that Vy(z,y) is inde-

pendent of y.
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For the first order term in (5.16)

L;iVo + LoV1 =0,

since Vj is independent of y, the equation is reduced to

[«0‘/1 _ 0

This implies, again, that V;(z,y) is independent of y.

For the second order term in (5.16):

LoVo+ LiVi + LoV, = 0,

because £,V; = 0, (5.23) is reduced to the Poisson equation in V;

LoVa + LoV = 0.

The solvability condition implies

(L2Vo) = (L) Vo =0,

where (L,) is the operator £, with f(y)? replaced by 32 = (f2), i.e.

1_,0%V, . a2\ oV,
<‘2>%=§&2%§+<”‘%>a_;"’%=0'

Recall the expansion of the optimal exercise boundary:

b*(y) = bo + Vebi(y) + o(VVE).

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

Expanding both sides of the boundary condition in (5.6) according to the exercise
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boundary gives

oV,
VEO (y),y) = Volbo,y) + Ve (Vl(bo + Vebi(y),y) + bl(y)a—;(bo, y))
+o(Ve); (5.27)
"W —q = & — g+ ebi(y)e® +o(VE). (5.28)
Equating the zeroth order terms, we have
Vo(bo,y) = e —q. (5.29)

This suggests that V} is the solution under a constant volatility model. The solution

is given in Xia and Zhou (2007):

o If —27/5% > 1,

(B-1)F"1 1-8_Bz
qg e forx <b
Vox)={ 7 ° (5.30)

et —q for x > by

where § = —%, by = In(£%).

p—

o If —27/5%2 < 1,

Vo(z) = €”. (5.31)

For the purpose of illustrating asymptotic expansion, we focus on the more interesting

case where —27/5% > 1.

5.2.2 The first order term

The solution of the Poisson equation (5.24) can be written as
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Vo = —L5' (L3 = (L2)) Vo

On the other hand, the third order term in (5.16) gives

LoVi+ L1V + LoV =0,

which is a Poisson equation in Vj. Solvability condition implies that

(LYW = — (L1 V)
= (L:iL5" (L2 — (L2))) Vo
2 2 o g
= (LiL3" (Fw)? - (f >)>% (ﬁ - %) Yo

03 02 0
= <vzﬁ + (v, — 302)@ + (2v, — Ul)£> Vo,

where

v = E(%(M')—(Afﬁ’);
= PY s
Vo = \/§(f¢>,

and ¢(y) is a solution to the Poisson following equation

Lod(y) = f(y)? - (f?).

The boundary and smooth fit condition (cf. Villeneuve, 2007) of V¢ are

Vb (y),y) =@ — g
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(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)



and
ove
ox

= bW (5.39)
(z,y)=(b%(y),v)

respectively. Expanding both sides of the boundary condition in (5.6) according to the

exercise boundary gives

oV,
VEO (y),y) = Volbo,y) + Ve <V1(bo +Vebi(y),y) + bl(y)a—;(bo,y)>
+o(Ve);
"W —q = &% — g+ ebi(y)e® + o( VE).
Equating the terms in 1/ order, we get
Vo s
Vi(bo + Vebi(y), y) + bi(y) 5 (bo,y) = bi(y)e™, (5.40)
which implies
Vi(bo + Vebi(y),y) = 0. (5.41)

Expanding both sides of the smooth fit condition according to the exercise boundary

gives

),

52 (b0,0) + VE (B2 00+ VEb(0),9) + bi(0) 5 G0, 0)) +0(VE) it by(y) > 0

T (b0,9) + V& (52 (b0 + VEBI(9), 1) + ba(1) 24 (b0, 1)) + 0(v) i by(y) < 0
(5.42)
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and

e’ W) = gbo 4 Vebi(y)e® + o(\/E). (5.43)

Collecting terms of O(v/E) ,

Vi

E(bo + Vebi(y), y) = bi(y)e™. (5.44)

Summarizing all these, we obtain the PDE of V4:

/

(L) Vh = (v + 0 = 3u) s + 20— ) 2) Vo, for @ < by + vEBL(y);
) Vit + vEbiw)y) = o

bi(y)e® — by (y) % (bo+,y)  if bi(y) > O;
Wi (b + VEbi(y),y) = %

: bi(y)e™ — bi(y) 54 (bo—,y) if by(y) < 0.
(5.45)
We solve this PDE by dividing it into two cases.
Case 1: bi(y) < 0. For z < by + /eb; (y)
3 02 0
(L) V1 = <Uzﬁ g = 3’02)5; + (2v; — Ul)a_x) Vo
= a1f (v26° + (v1 — 3v5)B + (2vp — v1)) €72, (5.46)
where a; = (‘Gﬁ_ﬂl),ﬂql’ﬂ. To construct a particular solution for V1, consider the solution
form

VP (z) = cyzeP?. (5.47)
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By substituting this into the left hand side of (5.46), we get

1_,0%°VP ;. Ny
2" ' 77) 3 T
1
2

5.2
= ¢1520eP* + ¢ (f - 7) e

where the last equality holds with

This implies

_ a18 (V282 + (v1 — 3vy) B + (2uy — V1))

20 + (f - 5’2—)

C1

It is clear that the homogeneous solution is of the form
Vi (z) = c€P® + c3e®.
We claim that ¢; = 0. To see this, define

Ee(t7 Z, y) =E [e_F(T—t) (S’z})n IStE =z, Yt€ = y]

and consider the following expansion

Ee(tsx,y) = Eﬂ(ta$> y) + \/EEl(t,x, y) i 0(\/5)

As argued in Zhang and Zhou (2009), if ¢, # 0, we should have
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5 (2¢18e”" + c18%zel*) + (7"' — —) (c1€”® + c18zel*) — fe zeP?

(5.48)

(5.49)

(5.50)

(5.51)



Eo(t,2,y) + VeEr(t,z,y) - 0as T — oo (5.52)

for K = 1. Following a similar analysis for V¢ (z,y), we know that Ej is the expectation

evaluated with Black-Scholes model and this is solved in Zhang and Zhou (2009) that

F2(T—t
Eo(t, z,y) = em=tr-Dx-p=G= (5.53)
E, is given by
Ey(t ) = —(T-1) 63-*—( 3 )82—+—(2v v)a E, (5.54)
1t z,y) = U28x3 U1 U2 Y 2 e 0 .

52(T-t)
= —(T-1t)k (0252 + (v1 — 3v)k + (2ug — vl)) ere+(r-1)(k=B) =G

We refer to Fouque et al. (2003) for details. It is now easy to see that

Eo(t,z,y) + VEE1(t,z,y) > 0as T — oo

does not hold for x = 1. This implies c3 = 0 and proves the claim.
For < by + v/ebi(y), a general solution of V; is the sum of the homogeneous

solution and the particular solution:

Vi(z) = c12eP® + cpe?~. (5.55)

Substituting this into the boundary condition of (5.45) yields

0= Vi(bo + b1 (y) V) = c1(bo + b1(y)vE)ePLotiIVE) | o, Blbo+bri()VE) (5.56)
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and

¢z = —c1(bo + b1(y)Ve). (5.57)
Evaluating both sides using the smooth fit condition in (5.45) gives

%(bo 4 \/Ebl(y), y) = cleﬁ(bo+bl(y)\/5) . [Cl(bo + bl(y)\/;?) e C2] Igeﬁ(bo+b1(y)\/5)

ox
= ¢ ePbo+b1(y)Ve)

= ce®(1+b(y)BVE) + o(VE)

and

2
bi(y)e® — bl(y)%(bo—, y) = bi(y)(e™ — a18%e"™) = by (y)(1 — B)e™.

Neglecting the o(y/¢) terms and equating both sides, we have

c e

b = 5.58
l(y) (1 - ,B)Bbo _ cl\/EeﬂbO ( ) )
which is independent of y. To summarize,
c1weP® + cpeP*  for z < by + \/Eb
Vi) =4 2 i (5.59)
0 for x > by + /b,
where ¢, is given in (5.48), ¢; in (5.57) and b; in (5.58).
Case 2: by(y) > 0. For z < b
(ﬁg) Vl = alﬁ (7)2,32 + ('U1 - 3’02)ﬂ + (2’02 - ’Ul)) eﬁ”‘, (560)

49



and for by < z < by + /2b; (y)

N3 ,)2 0
(L)1 = <U27 + (v1 — 3v2) 7= + (202 — v1)£> Vo

= 0. (5.61)

By similar arguments in the previous case, we can write

{
c1zeP” + 6eP*  for z < by

1/1(1‘) = < Jgeﬂz for bo S r < bo o \/Ebl(y) . (562)

0 for x > by + /by (y)

\
Continuity at by + +/gb; (y) implies dy = 0. Continuity at by implies
c1boeP’ + gyeflo — 0,

or

62 = —Clbo. (563)

Since the optimal exercise boundary does not change in this case, we set b; = 0. Then,

c1zeP® — c1bgef*  for z < by
0 for z > by

In summary, if

(8] eﬂb°

A= D) —crveems <O

(5.65)
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then

c1zeP® + cef®  for x < by + 1/Eby(y)
Vi(z) =

)

0 for z > by + /b1 (y)

where ¢; is given in (5.48), c; in (5.57) and b; in (5.58). Otherwise,

c1zeP® — c1bgeP*  for z < by
b

0 for z > by

Vi(z) =

where ¢, is given in (5.48), b; = 0.
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Chapter 6

Conclusion

This thesis provides a theoretical treatment of stock loans valuation under exponential
phase-type Lévy models. Using the variational inequality approach, we characterized
the value function of a stock loan under general exponential phase-type Lévy models
and derived an explicit solution of the stock loan value and optimal exercise policy for
a fairly general class of phase-type jump diffusion models. We emphasis again that
our result could be applied to approximate the corresponding price under a general
exponential Lévy model arbitrarily close.

We also discussed a possible extension to stochastic volatility model for stock loans.
We adopted a fast mean-reverting stochastic volatility model and analyzed the price
behavior using the technique of asymptotic expansion. A possible future research
direction is to prove the order of convergence of this approximation and to combine

the phase-type Lévy model with the stochastic volatility asymptotic analysis.
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