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Abstract 
stock loan, or security lending, is currently a very popular financial service provided by 

many financial institutions. It is a collateral loan where stocks are used as collateral. 

The borrower may repay the principal with interest and regain the stock, or make 

no repayment and surrender the stock. This thesis is concerned with the stock loan 

valuation problem，in which the underlying stock price is modeled 朋 an exponential 

L � y Models of phase-type. The valuation problem can be formulated as an optimal 

stopping problem of a perpetual American option with a time varying exercise price. 

As the phase-type jump diffusion forms a dense class in Levy processes, our solution 

can approximate the solution under general Levy models arbitrarily close. 
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摘要 

股票抵押貸款(stock loans)是現今金融業界非常流行的投資産品。它是一種以股 

票作為抵押品的貸款。借貸人可以歸還本金及利息以續回股票，或可以放棄用以抵 

押的股票而不作還款。此論文是探討有關股票在指數性相位型L�y過程模型下股票 

抵押貸款的定價問題。此定價問題可視為有時變性履約價的永久美式期權之最優化 

停止問題。由於相位型跳躍擴散過程是所有L6vy過程中的稠密子集，因此我們的定 

價模型可以用作估算一般L&y模型所引伸之價格。 
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Chapter 1 

Introduction 

A stock loan is a loan issued by financial institutions (the lender) to its clients (the 

borrower) which is collateralized with stocks. Recently, stock loans become a very 

popular product in over-the-counter market. As reported by International Securities 

Lending Association, the global market size of these products exceeded £1 trillion i. 

Under the terms of the contract, the borrower has the right to repay the loan at 

anytime, or to simply default the loan with the loss of the collateral. With this in 

mind, the borrower's right can be regarded as a perpetual American option, which 

represents the right for the borrower to exercise the option at anytime, without a time 

limit. The value of this perpetual American option is therefore of central importance 

to the problem of stock loan valuation. 

The value of this perpetual American option can be expressed 朋 an ordinary per-

petual American call option with a possibly negative interest rate. This creates the 

major challenge of stock loan pricing. Consider the case of geometric Brownian motion 

(GBM) for the stock price. The optimal exercise rule of a perpetual American call 

option is to exercise at the first time that the stock price rises to cross a constant 

i T h j number is quoted from the article: An Introduction to Securities Lending, Executive Sum-
mary, Page 8，issued by Australian Securities Lending Association Limited at 1 August 2005. 
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level. This constant level is called the optimal exercise boundary. If interest rate is 

positive，the stock price will cross any fixed boundary almost surely. The perpetual 

American call option can then be valued directly with a variational inequality (VI). In 

contrast, when interest rate is negative, the problem becomes complicated. Given any 

fixed boundary level greater than the current stock price, there is a positive probability 

that the stock price will never cross this level. 

Xia and Zhou (2007) are pioneers of solving the stock loan problem. They value 

the stock loan under the classical GBM model using a purely probabilistic approach. 

Zhang and Zhou (2009) then extended the framework to a regime switching model 

and solved the problem using variational inequalities. Dai and Xu (2009) studied the 

optimal redeeming strategy of stock loans with finite maturity under GBM. Yam et al. 

(2010) considered the callable feature of the stock loans. 

Although most studies on stock loan adopt the GBM model for stock price em-

pirical evidences (e.g. Andersen et al. (2002), Pan (2002) and Eraker et al (2003)) 

show that jump diffusion model would be a better model for asset prices to capture 

the heavy tails of the empirical distribution. Therefore, a jump diffusion model with 

flexible jump distribution is worth considering for stock loan valuation. 

Merton (1976) is the first one to propose jump diffusion for asset price modeling 

using a Gaussian jump distribution. Another notable jump diffusion model is the 

double-exponential jump diffusion proposed by Kou (2002). The generalization of 

jump diffusion model is the exponential Levy model, such as the variance-gamma model 

(Madan et al., 1998), CGMY model (Carr et al., 1999) and normal inverse Gaussian 

model (Barndorff-Nielssen, 2000). 

Sun (2010) recently considered the stock loan valuation problem under the double-

exponential jump diffusion model in the first chapter of her thesis. While it is a good 

start, the asset return distribution is not flexible enough to capture the empirical 
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distribution implied by market data. For this reason, we incorporate the phase-type 

jump diffusion to stock loans valuation. 

The phase-type distribution is dense over the class of all positive valued distri-

butions. By making use of this fact, Asmussen et al. (2007) show that the class of 

phase-type jump diffusion model is dense over all exponential Levy model. In other 

words, the option price derived from phase-type jump diffusion models can be used 

to approximate the corresponding price under a general exponential Levy model. In 

particular，Asmussen et al. (2007) approximate the CGMY model by the phase-type 

jump diffusion. In fact, the phase-type jump diffusion model embraces the Kou (2002) 

model and the mixed-exponential jump diffusion model (Cai and Kou, 2011) as its 

special cases. 

Asmussen et al. (2004) solved the price of the perpetual American put option 

with positive interest rate under phase-type jump diffusion models. They used the 

technique of Wiener-Hopf factorization to derive the optimal exercise boundary. Then 

the pricing problem is reduced to the evaluation of the corresponding expectation at 

the given exercise boundary. 

While Wiener-Hopf factorization is useful to solve American option pricing problem 

involving Levy processes and, in particular, the phase-type Levy model, it relies heavily 

on the positive interest rate or, in the limiting case, zero interest rate. The method no 

longer works for a negative effective interest rate in the stock loan valuation problem. 

We take the variational inequality approach as in Zhang and Zhou (2009). 

Under the phase-type jump diffusion model, we show that the price of the perpetual 

American option satisfies an ordinary integro-differential equation (OIDE). The solu-

tion of this OIDE is closely linked to the root characteristics of a Cramer-Lundberg 

equation (C-L equation). The root characteristics of the C-L equation is first studied 

in a special case of the phase-type distribution, the hyperexponential distribution. By 
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making use of the properties of this special case, we extend our result to a fairly general 

class of phase-type models. 

The rest of the thesis is organized as follow. Chapter 2 introduces the elements of 

our problem. Chapter 3 presents some general properties of stock loans. Chapter 4 

presents the methodologies of valuation. Chapter 5 discusses a possible extension to 

incorporate stochastic volatility. Chapter 6 concludes. 
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Chapter 2 

Problem Formulation 

In this chapter, we describe the formulation of stock loan valuation under the pha^e-

type Levy model. We introduce the phase-type distribution, its use in the phase-type 

jump diffusion model, and the formulation of stock loan as a perpetual American call 

option pricing problem. 

2.1 Phase-type distribution 

2.1.1 A generalization of the exponential distribution 

Consider a continuous time Markov process with 1 transient state and 1 absorption 

state. The intensity matrix is given by 

丨-e Q � 

V 0 o j ' 

where 6> > 0. Let V be the absorption time of this Markov process. Then the dis-

tribution of V is the exponential distribution. The cumulative distribution function 

is 

5 



Fy{y) = l - e - ' y . (2.1) 

A finite mixture of the exponential distribution is called hyperexponential distri-

bution. This can be expressed as the absorption time of a continuous time Markov 

process with m transient state, 1 absorption state with an intensity matrix of the form 

^ • • • 0 沒1 、 

• • • • 
• • • . 
• • . , 

0 … 一 Q 0 

〈 0 … 0 0 J 

The cumulative distribution function is 

m 

= (2.2) 

where > 0 and YlT=i = 1 .叫 is the probability for the process to start at state i. 

It can also be expressed using matrix notation, 

M y ) = 1 - a:eT"l， （2.3) 

where a = ( ^ i , . . . , a j , T = d i a g ( — 6 > i， . . .， 1 二 (1 ’ . . .， 

A further generalization allows the transient states to be communicative. The 

resulting distribution becomes the phase-type distribution described in the next section. 

2.1.2 Properties of the phase-type distribution 

The phase-type distribution is the absorption time of a finite state continuous time 

Markov process with m transient states and 1 absorption state. 
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Let T be the intensity matrix of the transient states and ol = ( a i , . . . , a爪)be an 

initial probability vector. The ph朋e-type distribution is parameterized by (m，T,a). 

The full intensity matrix of the Markov process can be written as 

(T t\ 
S= ， 

乂 0 o j 

where t = —Tl. The cumulative distribution function is given by 

Fy � = 1 - oLe^yi. (2.4) 

The density function is given by 

fv iy) = ote^H, (2.5) 

Finally, the generating function is given by 

M�=E[e力y] = a(-tl - T ) - i t . (2.6) 

The class of phase-type distribution is very rich. When T is a diagonal matrix, 

the distribution reduces to a hyperexponential distribution. As shown in Johnson and 

Taafe (1988), the class of phase-type distribution is dense in the field of all distributions 

on (0, oo). 
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2.2 Phase-type jump diffusion model 

2.2.1 Jump diffusion model 

If the price of an asset St follows jump diffusion model, then the change in price consists 

of three components: drift, Brownian motion and a jump process. The stochastic 

dynamics can be expressed in the following stochastic differential equation: 

(^g / I \ / Nt \ 
i = ( y + 5 )汝 + ^dWt + c/ ^ (ê ^ - 1) , (2.7) 

t \ ) W / 
where {Wt}^^^ is the standard Brownian motion, {iVj^^g is a Poisson process with 

intensity A, 二！ is a sequence of independent and identically distributed random 

variables. 

For a Poisson process Nt, when h is small, we have: 

1. Pr {Nt+h -Nt = 0) = l-Xh + o{h); 

2. Fv{Nt+h-Nt = l) = \h + o{h); 

3. ？八Nt+h — Nt 2 2) = o[hY 

where o(h) is the asymptotic order symbol such that l im^^—� f = 0. Hence, (2.7) can 

be alternatively written as 

脊 = d t + adWt + (e” — 1) dNt, (2.8) 

An application of Ito's formula gives 

d\riSt = udt + adWt + Y^dNt, (2.9) 

which implies that 
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( Nt \ 
St = So exp i^t-j- aWt-^^Yi . (2.10) 

V i=i 
For r > 0, we have 

+ Ja2 + A ( E ( e ’ — 1 ) � . 
乂 2 / 

If we set V = r - —/2 —A ( E ( e � — 1), then { e — 付 i s a martingale. This motivates 

the definition in the next section. 

2.2.2 The stock price model 

The stock price process is defined on a risk-neutral probability space (Q, P, {J t̂}t>Q , • 

We write 

St = exp (Xt), (2.11) 
Nt 

Xt 二 X + ^it + aWt + ^ Y i , (2.12) 

i=l 

Where n = r - —/2 - A — 1). The distribution of z G N, is a two-sided 

phase-type distribution and the density function is given by 

ZrO/) = 浏 + (1 一 p ) a - e - T � - � , < o } . (2.13) 

Note that the financial market is incomplete under the jump diffusion setting. That 

means that not all contingent claims can be perfectly hedged and the martingale mea-

sure is not unique. In other words, there are infinitely many equivalent martingale 

measures. Our choice P is the one that preserves the phase-type structure of the 

log-price Xt as proposed by Assmusen et al. (2004). 
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2.3 Stock Loans 

Stock loan is a collateral loan where stocks are used as collateral. The borrower will 

receive the loan principle ⑷，pay the service charge (c) and have the right to repay the 

principal with interest (continuously compounded with rate 7) and regain the stock 

anytime in the future. The transactions can be summarized as follows: 

• The borrower receives money g — c as well as Vq, a perpetual American option 

with time varying strike price qe�t 

• The bank receives Sq (one unit of stock) as collateral. 

By equating the benefits of both parties, it is seen that the service charge is 

c = q + VQ-SQ. (2.14) 

We have the following representation of the value of the perpetual American option: 

= V^W = ess^s^upE [e—(民—沢，)+ = e^]， (2.15) 

where 7；, > 0, is the set of all stopping time taking values in the time interval (w, 00). 

By taking the transformation St 二 S^e—the value can be written as 

= ess^supE e - h 斤 (文 — + / { t < o o } | 5 o = e^]， （2.16) 

which is the value of a perpetual American option with constant strike price and a 

possibly negative effective interest rate r = r — j. 

From now on, we will stick with the transformed stock price process St as the 

underlying stock of the American option. We also define Xt to be the transformed 

log-price. Their dynamics are given by 
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St = exp {Xt), (2.17) 

Xt = x-^fit + crWt + ^ Y i , (2.18) 
i=l 

where = r — 7 - a卞-A ( E ( e � — l ) • 
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Chapter 3 

General Properties of Stock Loans 

3.1 Preliminary results 

We establish some properties of the perpetual American option as a function of the 

stock price value. Take = e^ and write v{S) = = V{x). 

Lemma 3.1 v{S), as a deterministic function of the initial stock price S, satisfies the 

following properties: 

1. {S - q)+ < v{S) < S for all S > 0; 

忍.v{S) is convex, continuous and nondecreasing in S on (0, oo). 

Proof For the first item, observe that 

二 ess supE [ e — ( 民 - / [ � � � | 5o = 5] . (3.1) 
tGTO 

By taking r = 0, we get (5 — < v{S). On the other hand, since (5 — ge))— ^ 乂 

we have 
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= e s s supE [e— (5 . - ^e^-)^ | 5o = 5] 
tGTo J 

< ess supE [e-''SrIir<oo} I 51 
reTo J 

< s. 

Next，it is obvious that is a nondecreasing function. Convexity of v{') is a 

direct consequence of the convexity of max{., 0} function and the essential supremum 

operator. As the function value is finite, convexity of v{-) implies its continuity. 

• 
The next lemma is an essential step to solve the optimal stopping problem. 

Lemma 3.2 Define k = inf { 5 > 0 : 5 - ^ > ^(5)} > q, where inf 0 二 oo. Then 

{S>Q:S-q>v{S)} = [k,oQ). 

Proof If A: - oo, the result is obvious. For the case that k e [g,oo), we have v ( k ) = 

/c - g by the continuity of i；. We claim that v(S) = S - g for S > k. Otherwise, there 

exists / c o>k such that v(/co) > h - q because of Lemma 3.1. By convexity, we have 

- v{k)�v{k^) - v { k ) � 1 
S -k 一 ko — k • 

for any S > ko‘ As a consequence > - k) + k - q which implies 

> S for su伍ciently large value of S. This is a contradiction to Lemma 3.1. 

• 
Using similar methods of Xia and Zhou (2007), we now prove that the optimal 

stopping time is a first hitting time. In other words, it is optimal to exercise the 
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perpetual American option at the first time when the transformed log-price exceeds a 

predetermined level. Such a level is called the optimal exercise boundary. 

Theorem 3.1 If Xt follows a Levy process, then the optimal stopping time is of the 

form 

n = m f [ t > 0 : X t > b ] , (3.2) 

where b is a constant. 

Proof The stock loan value at time t can be written as 

V； = v(St) 

= e s s supE 小 — qe飞+ j{T<oo} | Tt 

二 ess supE [e—巾—” Xt — ge论—£))+ / ( 《 ― | 

TeTt L _ 

= e ^ e s s supE [e—" (̂；已义了 - ge，)+ / (《―| ^o 

reTo L J x=e--ŷ St 
==e^'v(e-^'St). 

Hence, the optimal stopping time (cf. Karatzas and Shreve, 1998, Chapter 2.5) is 

= i n f { t > 0 ： St-qe'''^e^'vie-y'St)} 

=inf {t > 0 ： Ste-''' - q > v(e-^'St)} 

=inf {t > 0 : e-^'St > k} 

= i n f | ^ > l n A : j , 
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where k is the value defined in Lemma 3.2. 

• 
We denote the optimal exercise boundary by b* and the optimal stopping time by 

Tfe*. Theorem 3.1 greatly reduces the dimensionality of the optimization problem. The 

original optimization problem has to search over all possible stopping time. Yet, the 

optimal stopping time is in the form of a first hitting time and we only need to search 

for an optimal exercise boundary, which is a one-dimensional optimization problem. In 

other words, the value function is given by 

= sup Vh{x) = sup E e-所 (gXr, _ ^ Y j , - J H "̂ � 

3.2 Characterization of the function V{x) 

We want to show that V{x) is a solution of an integro-differential equation (OIDE) 

and derive its functional form. Before going into that, we first introduce the Cramer-

Lundberg equation (C-L equation) 

We use the symbol B^ to denote the collection of roots to the C-L equation with 

real part larger than or equal to 1 and 谷-to denote the collection of those roots with 

negative real part. The root characteristics of the C-L equation play a central role in 

our problem as we will see in later sections. As a starting point, observe the following 

properties regarding this equation: 
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1. = { e — i s a martingale implies that 1 G B^. 

2. The function G{f3) satisfies 

E 义 ] = e G _ (3.5) 

for f5 belongs to some bounded interval covering [0,1 . 

If > 0, it will be shown that V{x) = e^ and that q = c. That means that the 

bank has no intention to make such a stock loan contract with the given loan interest 

rate 7 and current stock price Sq. Therefore, we will focus on the more interesting case 

< 0. The case for G"(l) > 0 is postponed to section 4.3. 

It is worth noting that G乂 1) < 0 implies 7 � r . In other words, the effective 

interest rate f 二 r — y is indeed negative. To see this, recall 

C � = y + ( r - 7 - y - A (E [e^i] — 1 ) ) " + A (E 巧 — 1 ) . (3.6) 

Hence, 
2 

G乂 1 ) = — 7 + ^ + AE [yie^i - ê ^ + 1 ] • (3.7) 

Since ye^-ey-hi >0 for all y e R, G'(l) < 0 implies 

2 

7 > r + y + AE [Kiê ^ - ê ^ + l] > r. 

We are now ready to present the result which characterizes the function V(x), It 

is easy to see that this new result embraces the stock loan valuation under double-

exponential jump diffusion model (Sun, 2010) as its special case. 
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Theorem 3.2 V(x) satisfies the following integro-differential equation 

f - r) V(x) = 0 x<b* 
‘ , (3.8) 
� V(x) = e"^ -q x>b* 

where Ch{x) = f 0(a：) + A JT^ {h{x + y) - h{x)) fy{y)dy. Furthermore, the 

solution takes the form 

( 

E cjj.e如 X < b* 

V � - _ (3.9) 
€•工一q X >b* 

V 

/or some cjj, j G {i | 伐 G 5+} to be determined according to the model. 

Proof Consider the following function as a candidate solution: 

Yl, a: < 6* 

u [ x ) = } f^i印+ . 

e^ - g x>h* 
\ 

It is reasonable to assume that o;力 j € {z | A G B^} should be chosen such that 

satisfies the conditions described in Lemma 3.1. In particular, we should have 

( e 工 - q y < u{x) < e^ for all xeR. It also satisfies the OIDE 
f 

- r) u{x) = 0 X <b* 
< • (3.10) 

u(x) = e工一q x>h* 

However, it may not be continuously differentiate at b*. Hence, we construct a 

sequence of function such that 

1- Un(x) u(x) as n —̂  oo for all x; 

2. Un(x) is twice continuously differentiable for all n e N; 
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3. For a: < 6* or x > 6* + Un{x)三 u (x ) ; 

4. For 6* < X < 6* + 0 < Un(x) < Mi, where Mi is a positive constant. 

For any x < 6*, we have 

rb*-x+l/n 
(/： 一 f ) Un(x) = \ [Ur,{x + y) - u(x + y)] fY{y)dy, (3.11) 

J b* —X 

Note that 

'^n(x) - u{x)\ < max \un{x)\ + max uix) < Mo, 
xe(6*,6* + l/n xe{h\b* + l/n ~ 

where M2 = Mi + Then we have 

rb*-x-\-l/n 
\Cun{x) - run{x)\ < Apa+t+ / Kix + y) - u{x + y)] dy (3.12) 

z Apa+t+M2 
^ ^ 0 uniformly for all x <\f，as n — 00. 

71/ 

Next，by applying Ito's formula to we can obtain a sequence of 

local martingale for n G N as follows: 

M f ) = e - 一 * 、 ( 义 一 ) — — 一 广 * 一 — f ) 以“元 d s . (3.13) 
t/ 0 J 

We claim that it is a true martingale for any n e N. Note that for any t > 0, 
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- l e � 肉 〜 � “ + � “ � J l " 〜 无 一 + � n (元 J / “ 〜’ ; 

^ 〜 ( 文 + Mie—t + e - ’ ‘ 一 讽Th*〈补 (3.14) 

From the definition in (3.13) and noting (3.12) and (3.14), we establish the following 

inequality, 

nr 

(3.15) 
For the first term in the right hand side of (3.15)，we have for any fixed T>0 

Et sup e-^^u{Xt)I{t<r,.}\ 
__，71 

< fesup亡e[o’Tj 义t 
- _ 

= 2 H ( T V f ) exp (—fT + 0： + " T + 学 + pXT(x+ ( - 1 - T + ) t + � 

< oo, 

where $(.) is the cumulative distribution function of the standard normal distribution. 

It is now easy to see that 

Ex sup |M力⑷ I < oo, (3 16) 
te[o,T] 、.) 
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which guarantees that Mt� is a true martingale for all n. Then, we know that for 

x<b* 

u{x) = lim Un{x) 
n—>00 

厂 "I “ ptA.Ti)* -
= ( 叉 一 — 严一 JH^E, / e--^ \{C-f)uM] ds 

l J 0 L J 

- • 

with the last equality implied by the dominated convergence theorem (DCT). Now, let 

t ^ 00 and apply Fatou's lemma to get 

t—^00 L 

On the other hand, 

Ez [ e - 一 ) u ( 义 〜 ) ] [ e - 彻 ( e � * - 训 ] [ 一 一 ) 她 〜 ) / { 一 • . 

(3.17) 

Since 

and 

Ex [ e — “ 〜 元 A � * < 0 0 , 
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DCT implies that the first term on the right hand side of (3.17) converges to 

as t — oo. For the second term, we claim that 

Ex ( 元 〜 ) � � * � , } ] 4 � 

as 力—oo. This can be shown by considering the following two cases: 

C 隐 1: C � < 0, there exists Ko > 1 such that G(ko) - f < 0. In addition, there 

exists Co >0 such that u(x) < Qe'^o^ for all x < 6*. Hence, 

E + 一 ) 她 〜 ) / { 一 } ] < E 和 - 一 〜 

< E^Coe-附似义厂 

—> 0 as , — 00. 

Case 2: G'{1) > 0，as v{x) < e^ for all :r e R, we have 

Et < E. [e-附〜{、*〉,}] . (3.18) 

Consider the probability measure IP as follows: 

d p - ^ " • (3.19) 

It is shown in Appendix A of As画ssen et al. (2004) that {Xt}t>o is also a phase-type 

jump diffusion process and the corresponding Levy exponent is given by 
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6 ⑷ = + 一 G( l ) . (3.20) 

Define n* = inf{f > 0 : Xt > b*}. Then 

E 工 = E . [/(,,.>,}] — E . [l{n.=oo}] (3.21) 

as 亡 o o . Observe that G'{0) = G'{1) > 0 and 6 (0 ) - 0, under P measure 

< oo) = limE [e—,"^叫=1. (3.22) 

This proves the claim. 

Now, we can conclude that 

t z � = E t [ e — 咖 — g)/{.,.<oc}] = V{x). (3.23) 

That means the candidate solution u{') is indeed a solution. This completes the proof. 

• 
Using similar techniques presented by Zhang and Zhou (2009)，we can simplify our 

solution by dropping the term with 二 1: 

Proposition 3.3 Under the condition that G'{1) < 0，suppose jo is the index such 

•t pjo 二 1，then we have c j允=0. In other words, the value function takes the form 

f 

X] c j j . e知工 < b* 

V{x) = , 

e^ - x>h* V 

Proof For t <Tb., we have 
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E [e-行K(勾 I Xo = rr] = � + j : e-^ _ f) v(x,)ds = V(x). 

Hence, for any T > 0, 

� = E [ e 一 了 ) I 叉。=工 

^ E [ e - � = [e-汗 K ( 叉 浏 | Xo = x . 

It is clear that the first term converges to 

E 卜 ( e � * 1 ) / { 一 I 文。= 

as r oo. To complete the proof, we require the second term to converge to zero as 
T — oo. 

By Theorem 3.2, V{x) is a linear combination of e汰工 for x < we consider the 
validity of 

E (e-r了e-义力—0 as r — oo 

for different values of k. 

Note that E ( e — 灯 = � - ， F o r 片 二 1, the expectation becomes e � = 1 

and does not converge to zero. Hence the term uĵ ê̂  should be dropped from the linear 

combination by setting the coefficient to zero. 

On the other hand, since G"(l) < 0, there exists / ^ � > 1 such that G{ko) - f < 0. 

Furthemiore, for any A e 谷+\{1}, there exists K^ > 0 such that e风-< K.e^ox 

^ e We have E ( e — 斤了 ) < KiE ( e - " e « � � T ^ ) 一 • â  T — oo. 
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• 
We summarize our results in this chapter. For any given exponential phase-type 

Levy model, the stock loan valuation is divided into two cases. If G'{1) > 0，the stock 

loan is not reasonable to exist. Otherwise, if G'{1) < 0, we solve roots from the C-L 

equation (3.4). The valuation formula of stock loan is given by Proposition 3.3 in which 

the optimal exercise boundary 6* can be determined by setting a differential to zero. 

However, it is not an obvious task to study the root characteristics of the C-L 

equation (3.4) in general. The following chapter presents some important special cases 

for which the solutions are obtained in explicit form. 
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Chapter 4 

Valuation 

This chapter is devoted to the derivation of the valuation formula. We first solve 

the problem under hyperexponential jump diffusions, a special case of the phase-type 

jump diffusion. Although the hyperexponential jump diffusion model is studied by 

Cai (2009) for a first passage time problem and Cai and Kou (2011) for barrier and 

lookback option pricing, they only consider the ca^e of positive interest rate and the 

optimal exercise boundary is yet to be investigated. By making use of the solution 

of the hyperexponential case, we extend our result to a fairly general class of phase-

type jump diffusion models. Except the last section of this chapter, we assume that 

G'{1) < 0, where G(-) is defined in (3.4). 

4.1 Hyperexponential jumps 

Suppose T+ and T " take the following form 

( \ ( \ 
-V1 0 -$1 0 

T+ = : .. : T~ — . /A i\ 

. . • , 丄 - : .. : ， （ 4 . 1 ) 

I 0 • • • -Vm J y 0 … - e ” 
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where � 1 for i = 1 , . . . , m and � � 0 for /c = 1，...，n. 

Then the phase-type jump distribution is reduced to a hyperexponential class. The 

following proposition summarizes the root characteristics of the C-L equation (3.4). A 

similar result is obtained by Cai (2009) for the case of non-negative interest rate. 

Proposition 4.1 The Cramer-Lundherg equation G(J3�= r has exactly n distinct neg-

aZwe real roots andm-\-2 distinct real roots which are greater than or equal to 1. 

Proof Under hyperexponential jump diffusion, we have 

_ 々 + + X p j ： 》 M l — P) ± 為 — 、 ( 4 . 2 ) 

It is clear that: 

1. G{0) = 0; 

2. G(oo) = oc; 

3. G{—oo) = oo; 

4. G{rji-) = o o，G ( j ] i + � = - o o for z = 1 , . . . , m; 

5. G{-6j-) = - o o , G{-ej-{-) = oo for j = 1，...，n; 

6. G{/3) is continuous except the values rji, i = 1’ …，m and -Oj, j = 1,…，n, 

where = lim G{x). Then we know that G{[5) = f has at least one root in each 

of the intervals 

(—00，-^n),(—没n,-没 n-1),... ’（一沒 2’ —^)，（"l, "2)，...，(r?m-l, "m)，（"m，OO). 
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Moreover, G{(3) = f has the same number of roots as them + n + 2 degree polynomial 

m n 

( G � - — 灼 II(力 + 外 

Therefore it has at most m + n + 2 real roots. 

Also observe that G(/]) is decreasing on the interval (—仏，0) and (7(0) = 0, = 

oo，there is no root in the interval (一仏，0). Now recall that 1 is always a root and 

complex root always exists in pair, we deduce that there are two real roots in the 

interval (O/a^i). Our assumption < 0 implies that they are distinct and both of 

them greater than or equal to 1. 

• 
By Theorem 3.2, the solution is of the form 

’ m+l 
^ ujje^j工 X <b 

则 二 j 片 ， （4.3) 
e: - q X >b 

\ 

where 6 € R is a constant, G{P,) - f = 0 for alH and 1 < A < < ... < "爪+i. 

For x<b,we have (£ - f ) H � = 0 . Therefore, 
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0 = CVt{x) - fVb{x) 

(T^ cPVt,、 ^dVt,, r 
= � + � + A/ iVbix + y)- Vb{x)) fy{y)dy - rVb{x) 

J —OO 
二 广 m+1 

二 / Y^ujje从奸y�fY[y)dy 
POO 

+A / [e工士y — q) fY(y)dy 
J b-x 
m+1 m 饥 

U t t ” H ] 台 、 

m 

1=1 
爪 ( m+1 \ 

\ ”i — Pj ) 

It is clear that (c^i,. . . , cj爪+i) should be chosen such that all the values inside the 

brackets in the summand of (4.4) equal to zero. That is 

m+1 

办氣扣偏—一, (4.5) 

for i = l,...,m. Moreover, the function H(.) should also be continuous at b. This 

gives 

m+1 

Y ^ u ; Z � � e b — q. (4.6) 

Now we obtained a (m + 1) x (m + 1) system of linear equations 
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，m+1 

m+1 . ( 4 . 7 ) 

Z 呼日jb = eb-q 

4.1.1 Solution of the linear system 

We are intended to solve (4.7). Take cJ,- = ujje^^' for j = l , . . . , m + l , "爪+i = 0, 

丑i = for z 二 1, •.. ’ m and Rm+i = q - eK Then the linear system becomes 

口 P. 

^ ^ ^ r j i - f 5 j = Ri for 2 - l , . . . , m + L (4.8) 

Using partial fraction, we have 
m+1 „ ^ m+1 m+1 ^ m+1 

—约一 11 ； — , (4.9) 
户 1 M] i=l Pk 1=1,l^i 仏 ” I 

where Dj, j = + 1 are the partial fraction coefficients. Multiplying (4.9) by 

、工-Pk) on both sides and set x = /3k, we obtain 

m+1 ( m+1 m+1 \ 

E 私 n ("广/y n Iff 
风汰 (4.10) 

n (A - Pj) 
Hence, 

m+1 ( m+1 m+1 \ 

= ^ 丄、 (4.11) 

îk n (A-终） 

When x = r]i in (4.9), we have 
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爪+1 n fi rn+l ^ m+1 

Hence, u)j = Dj, j = 1,... ,m-h 1, and we conclude that 

m+1 ( m+1 m+1 ^ \ 

E n {v, - /?,) n 
� ] (4.12) n Wj - Pk) 

where = ^ for z = 1 , . . . , m and Rm+i = q - e\ 

4.1.2 Solution of the optimal exercise boundary 

After obtaining the coefficients in (4.3)，the remaining unknown is the optimal exercise 

boundary b\ Note that b* is the value which maximizes the candidate solution Vb{x). 

The following identity is useful for that purpose. 

Lemma 4.1 If {Pk}T=i and {"J二工 are all distinct, we have 

爪+1 m + 1 m+1 m+1 . . 

n n ûrrn) n (4.13) 
k=hk关j k=l k=l,k^j 1=1,l^i 

Proof Consider the following polynomial 

m+1 

Pj (工）=n ( A - l - � for j = l ’ . . .，m+l， （4.14) 

which are of degree m. Observe that 

m+1 

n 队 - n t ) , (4.15) 
k=l�k 灼 

By Lagrange interpolation, 

30 



m+1 . ^ \ 

丄 刺 = E ^ M - i ) n 
i=i V VI-Vi / 

m+1 m+1 m+1 , ^ . 

= E n 队-rn) n (4.16) 

is a polynomial of degree m which past through all the points in the set 

As Pj{x) is a polynomial of degree m and it matches the value of Lj{x) at m + 1 points， 

we have 

Pj{x) - Lj{x) \/x e R. 

By putting x = 0, the result follows. 

• 
Our objective is to maximize the function 

‘ m + 1 

YL約e知 X <h 
Vb{x) = 

e"" ~ q X >b 
、 
‘ m + 1 

Z 如胁—b) x<b 

- q x>h 

over b eR. It suffices to maximize the value function on the interval ( -00 ,6 ) . On 

(—00, b), we have 
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7 m+l . 

Some simple algebras show that 

, , 爪 , m + l m + l ^ m + l m ‘ 

db ‘約約 ^ — 
Pj n Wj - Pk) 

m + l m 

^ n A n ^ 
I k=l l=.l “ 

n iPj - 0k) 

Therefore 如j — oJj/Sj 二 0 if and only if 

m + l m 

el _ i n / s " ^ 

1=1,1^1 丨 I k=i 1=1 ” I 
m + l m 

1 n A n f = t k=i 1=1 “ 
3 、 — 1 爪+1 ~ m + l m + l / r 

E n ( “ ） n fe 
m + l ^ m 1 

二 T T _ A _ r r ^ 
rn， 

where the last equality is an application of Lemma 4.1. Hence f^Vb{x) = 0 at 6 = 6* 

where 

/ m + l .J m \ 

6 � 如 為 n 抖 (4.17) 

V k=i "知丄 1=1 ” I J 
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It is then easy to see that Vb{x) is maximized at h*. 

4.2 Phase-type jumps 

We are now ready to extend the previous results into phase-type jump diffusion mod-

els. Suppose T+ and T— are symmetric (and hence diagonalizable) matrix, and have 

distinct eigenvalues. Then, there exists orthogonal matrix Q+ and Q " such that 

T+==(Q+广 A+Q+ and T—= ( Q - 广 A - Q - , (4.18) 

where 

( n \ / \ 

A + = 丨 . • • 丨 ， A - = 丨 • . . 丨 . 

I � … 1 饥 ) V 0 … - e ” 

We have the following result regarding the roots of the Cramer-Lundberg equation (3.4). 

Theorem 4.2 The Cramer-Lundberg equation G{f3) = r has exactly m- f l roots in the 

瞧 d o m a i n V^ = {z e C\Re{z) > 1} and exactly n roots m the complex domain 

'D- = [ze C\Re{z) < m a x { - ^ j j . 

Proof 

Let fo(z) = + + 

+A(1 — p) ( a - {-zl — A - ) - i ( - A - ) l - 1) — f， 

/ i � = ( i z + ^z^ + \p {-zl - (-A+)Q+1 - l ) 

+A(1 - p) ( a - ( Q -广 (一之 I 一 A - ) - 1 ( - A - ) Q - l - 1) - f， 

/ i � = [ / o � ] ( 1 — � r for 力 e(0，l). 
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Note that ft{z) have m poles " i , … 爪 in for all t € [0,1]. Prom the hyperexpo-

nential case (Proposition 4.1), we know that / • � have m + 1 zeros in We want 

to construct a boundary strip C+ of V+ such that ft(z) have no zero on it. 

Since \ft{z)\ — oo as |2：| — oo for ^ = 0,1, there exists G R such that all roots of 

ft{z) = 0, te (0,1) are in the region 

T^R = {zeC: Re{z) > •，I之I < R} . (4.19) 

On the other hand, as < 0，there exists G R, > 1 (In fact, we can take Avi 

arbitrarily close to 1), such that f t � = R e ( J t � ) < 0. For ^ - 0 , 1 , " e R we have 

^ReiftiKi+w)) 二 

— £ 代 1 + 仏 尸 ) 

< 1. 

Hence, we have Re{ft{Ki + iu)) < 0 Vz/ G R. This gives the boundary strip 

C^ = {zeC:\z\ = R, Re{z) > Ki} U {z e C : Re{z) = k^ -R< Im{z) < R]. 

(4.20) 
By the continuity of ft{z) and the Argument Principle, we deduce that 

1 r f[{z), 
= (4.21) 
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is integer valued and continuous over t G [0,1]. Hence n � = ni，i.e. f,(z) have m + 1 
zeros in V+. This completes the proof of the first part of the statement. 

To show the second part of the statement, we repeat the above arguments with the 

following boundary strip, 

= {2： e C : 1̂ 1 = R, Re{z) <K2}U{zeC: Re{z) = - R < Im{z) < R}， 

(4.22) 
where Ks G M and K2 < m 严 { 一 久 } is chosen arbitrarily close to m a x { -没 ] . 

i 

• 
According to Theorem 3.2, if there are no multiple roots with positive real part in 

the C-L equation (3.4), then the solution is of the form 

‘ m + l 

J2約e如 X <b 
H ⑷ 叫 片 • （4.23) 

e工 1 X > b 
\ 

Using this solution form, we compute that 

Em+1 - V -

户 1 ( - A + - / ? � - V � ” （ ― A + ) Q + ] 1, (4.24) 

which is equal to 0 on ( - o o , b). Hence we obtain the system of linear equations 
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‘ m + 1 

f^i ^ Vi-I3j qe lor 2— 丄，•..，m 
^ m+1 ， （ 4 . 2 5 ) 

E c ^ Z , = eb — q 

which is the same as the linear system (4.7) in the hyperexponential case. Therefore, 

the coefficients are given by 

m+1 ( m+1 m+1 \ 

E 私 n (th—(h) n fq^ 
V 1 = 1 , ” I / 

約 ^ —、 (4.26) 

广 n Wj—0k) 
k 二 hkT^j 

and the optimal exercise boundary is given by 

/ n m \ 

小 n / M l 叫 . (4.27) 
V L “3k - 1 1 \ ” I J 

4.3 The case for G\l) > 0 

By substituting A = 1 into (4.27), we get 6* = oo. Again, by setting = 1 in (4.26), 

we observe that 

ujj —> 0 for j ^ 1 

and 
m+1 m+1 m+1 / \ 

E n n fe) 
k=l k=2 1=1,l^i ”' J 

的 一 = 1 n (A — 1) 
k=2 

as 6 — OO, where the last equality is a result of Lemma 4.1 when j = 1. Noting (4.23)， 
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we have 

> sup Vb{x) = e工. 
6>max{ lng , ln5} 

On the other hand, we know that V{x) < e^ from Lemma 3.1. As a result, we have 
V{x) = e^. 
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Chapter 5 

Future Research Direction 

This chapter discusses the possible generalization of the stock loan problem to stochas-

tic volatility. We adopt the approach in Fouque et al. (2003) and consider a fast 

mean-reverting stochastic volatility model. The stock loan pricing formula is derived 

in the form of asymptotic expansion. 

5.1 The fast mean-reverting stochastic volatility model 

Consider a pair of process {S^, F / ) which satisfies 

dSt = rStdt + f{Y,^)StdWt, (5.1) 

dYt' = d t ^ ' ^ d Z , , (5.2) 
I J 

where S^ is the stock price process, / ( K / ) is a positive valued function representing 

the volatility, >7 is a Ornstein-Uhlenbeck (OU) process with mean reverting speed 

£〉 0 is a small parameter, {Wt, Zt) are Brownian motions with correlation p e (-1，1) 

and 
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A(") 二 + (5.3) 

is the market price o f risk. Let Xf = In (e-^^S'f). Ito's formula gives 

dX: = ( r - j - d t + f{Y,^)dWt. (5.4) 

Although we do not introduce jumps in (5.1) and (5.2), the method used in this 

chapter is possible to generalize to phase-type Levy process with stochastic volatility 

in the future. 

5.2 Asymptotic expansion of stock loan 

We are interested in the stock loan on Sf defined in (5.1) and (5.2). As a starting point, 

we use y) to denote the price of the perpetual American option corresponding to 

the stock loan (see (2.16)), i.e. 

私 y) = esŝ ŝ upE (e^^ - q)^ = x, Y^ = y] • (5.5) 

Using similar arguments presented in previous chapters, is known to be a 
solution to the partial differential equation 

乙〒(工,y) = 0 f o r a: < b'(y) 

, (5.6) 

、V’(y),y) = eb'(y)-g for x > b^(y) 

where 6 % ) is the optimal exercise boundary, 

广 二 s^' + • 乙 1 + (5.7) 
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with 

A) = (rn — y)l + 峻 ( 5 . 8 ) 

二 - v /2^A(2 / ) - ; (5.9) 

(5.1。） 

Note that the operator Co is the infinitesimal generator of the OU process Yt defined 

by 

dYt = {m- Yt)dt + \/2udZt, (5.11) 

which has the invariant distribution M{m, z/^). 

Consider the following asymptotic expansions for V^{x,y) and 

y'i^^y) = Vo{x, y) + yfeVi{x, y) + eV2{x, y) + e'^V^ix, y) + . . . ， (5.12) 

b � y ) = ^oiy) + Vebiiy) + eb2{y) + eh^iy) + . . . . (5.13) 

We aim to compute the first two leading order terms of the above expansions, i.e. 

M^.y) + V^Vi{x,y) (5.14) 

and 

bo(y) + y M “ y ) . (5.15) 

Substituting (5.12) into (5.6) gives 

40 



/ ： 〒 = U o V o + ^ (£iVo + £oV0 -h (£2VO + CiV, + £oV2) 

{C2V1 + C1V2 + + o(\/i) 

= 0 - (5.16) 

This implies all the terms of the expansion in (5.16) should be equal to zero. 

We use (•) to denote the expectation with respect to the invariant distribution 

Af(m, 

勞 机 (5.17) 

In the following analysis, we have to solve the following Poisson equation: 

Cog + h = 0. (5.18) 

In order to admit a solution g(') with reasonable growth towards infinity, the equation 

requires the following Fredholm solvability condition 

� " � = 0 . (5.19) 

5.2.1 The zeroth order term 

Consider the zeroth order term in (5.16) 

^oVo = 0. (5.20) 

As Co is a differential operator with respect to y, (5.20) implies that Vo{x,y) is inde-

pendent of y. 
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For the first order term in (5.16) 

+ = 0, ( 5 . 2 1 ) 

since Vb is independent of y, the equation is reduced to 

= 0. (5.22) 

This implies, again, that Vi{x,y) is independent of y. 

For the second order term in (5.16): 

+ = (5.23) 

because £1^1 = 0’ (5.23) is reduced to the Poisson equation in V2 

A) + JO2VQ = 0’ (5.24) 

The solvability condition implies 

(^2Vo) = (£2) Vo = 0， (5.25) 

where (£2) is the operator £2 with replaced by a^ =〈尸〉，i.e. 

1 — 2沪V ^ o丄广歹 2 � a y 

Recall the expansion of the optimal exercise boundary: 

b'(y) = bo-h^/Ibl(y)-ho(y/I). (5.26) 

Expanding both sides of the boundary condition in (5.6) according to the exercise 
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boundary gives 

二 Vo{bo,y) + v^ (v,{bo + Vih{y),y) + 61(2/)^(60,2/)) 
V ox y 

(5.27) 

= e^�一 g + v Q > i ( 2 / ) e � + o U / i ) . (5.28) 

Equating the zeroth order terms, we have 

Vo{bo,y) = e^' - q. (5.29) 

This suggests that Kq is the solution under a constant volatility model. The solution 

is given in Xia and Zhou (2007): 

• If - 2 f / ^ 2 � 1 , 

则 叫 . （5.30) 
�e工一 q for x>hQ 

w h e r e 6 0 

• If - 2 f / a 2 < 1， 

恥 ) = e 工 . (5.31) 

For the purpose of illustrating asymptotic expansion, we focus on the more interesting 

case where > 1. 

5.2.2 The first order term 

The solution of the Poisson equation (5.24) can be written as 
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= ‘ ( A - Ko. (5.32) 

On the other hand, the third order term in (5.16) gives 

+ + = (5.33) 

which is a Poisson equation in Vg. Solvability condition implies that 

-〈乙(/("”-〈/”)〉*(盖-I) 
/ d^ 沪 d \ 

= + (W — 3巧）应 + ( 2 仍 - ( 5 . 3 4 ) 

where 

= i m - {A^') • (5.35) 

= (5.36) 

and is a solution to the Poisson following equation 

^om = f{y? — i f ) . (5.37) 

The boundary and smooth fit condition (cf. Villeneuve, 2007) of V^ are 

V ’ ( y )， v ) = e " y ) i (5.38) 
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and 

dV^ 
石 =e'、） (5.39) 

respectively. Expanding both sides of the boundary condition in (5.6) according to the 

exercise boundary gives 

V’(y),y) = yo(bo,y) + x/i (v,{bo + v^h{y),y) + 

e"")—g = ebo — q + 佩 ⑷ ebo + o � . 

Equating the terms in ^Jl order, we get 

+ x /^i � , 2 / ) + = (5.40) 

which implies 

+ ( ? / ) , ? / ) = 0. (5.41) 

Expanding both sides of the smooth fit condition according to the exercise boundary 

gives 

dV^ 
f 

= ^ ^(^0,2/) + y/i ( ^ ( 6 0 + + + if 61(2/) > 0 

. 2 / ) + V^ (^(bo + + y)) + if b,(p) < 0 

(5.42) 
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and 

= + + (5.43) 

Collecting terms of 0{y/e), 

dVi 
石 ( 知 + yfeh{y) ,y) = (5.44) 

Summarizing all these, we obtain the PDE of Vi： 

f 

〈乙2�"̂ i = ( 仍 备 + … 1 - 3 約 ) 备 + (2仍一”1)羞)Vb，for X < bo + 

yi{bo + V^h{y) ,y ) = 0; 
< 

(5.45) 

We solve this PDE by dividing it into two cases. 

Case 1: hi{y) < 0 . For a; < 6 � + y/ehi{y) 

( q 2 q \ 

〈乙 2�VS = + (t̂ l - + (2^2 - V, 

= a i " + {vi - 2>V2)(3 + {2v2 — i;i)) e彻， (5.46) 

where ai =(卢一召 To construct a particular solution for Vi, consider the solution 

form 

Vn^) = CiTe 办. (5.47) 
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By substituting this into the left hand side of (5.46), we get 

2 a工2 十 ( r 2 ) dx 

= 臺 斤 2 (2ci"e如 + 工 一 ) + ( 尸 一 专 ) 一 + c i " 议 ’ _ fcixe加 

V 2 J 

where the last equality holds with 

1 2 . ( 斤2、 

This implies 

^ 一 + (^1 — 3V2)/3 + (2V2 - Vi)) 
1 = 叫 . (5.48) 

It is clear that the homogeneous solution is of the form 

咖 = 卢 〜 ( 5 . 4 9 ) 

We claim that cg = 0. To see this, define 

五卞,x,y) = E [ e — | 5 f = x, y/ = y] (5.50) 

and consider the following expansion 

五力， :r, y) = Eo{t, X, y) + y/iE八t, x, y) + (5.51) 

As argued in Zhang and Zhou (2009), if cg + 0, we should have 
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X, y) + v^Ei(力’ - > O a s T ^ o o (5.52) 

for = 1. Following a similar analysis for y), we know that Eq is the expectation 

evaluated with Black-Scholes model and this is solved in Zhang and Zhou (2009) that 

Eo(t,x，y) = e ^ ( K — ” ( K - ^ " ^ . (5.53) 

El is given by 

帥 , x , y ) = - ( T — t) + {v, - 31；2)应 + {2v2 - z^i )—j Eo (5.54) 

= - { T — t)K + {V, - 3v2)k + {2V2 - Vi)) 

We refer to Fouque et al. (2003) for details. It is now easy to see that 

Eo{t,x,y) + y/iE八t,x,y�— 0 as T — oo 

does not hold for = 1. This implies C3 = 0 and proves the claim. 

For X < bo + y/ebiiy), a general solution of Vi is the sum of the homogeneous 

solution and the particular solution: 

Vi{x) = cixe^''+ . ( 5 . 5 5 ) 

Substituting this into the boundary condition of (5.45) yields 

0 = ^1(60 + 二 ci(6o + + (5.55) 
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and 

C2 = — Ci(6o + (5.57) 

Evaluating both sides using the smooth fit condition in (5.45) gives 

dVi 

+ y/ib她 y) = qe"(知+��v^) + [c,{bo + + C2] 

= c i e 购 

and 

Neglecting the o(v^) terms and equating both sides, we have 

Cie胸 

which is independent of y. To summarize, 

f 

� ci :re如+ C2e如 for x < 60 + 
则 二 ， (5.59) 

� 0 for x > h Q + 

where Ci is given in (5.48), C2 in (5.57) and 61 in (5.58). 

Case 2: bi{y) > 0. For x < b � 

〈 乙 2 〉 = a i / ? + (v^ 一 3V2)^ + (2V2 - v i ) ) e彻， （5.60) 
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and for 60 < a; < 60 + y/ehi{y) 

�乙2�Vi = + (^1 - 3^2)^ + - Vo 

= ( 5 . 6 1 ) 

By similar arguments in the previous case, we can write 

f 

cixe^^ + 彻 for x < bo 

� = I for bo <x<bo + V^bi{y) . (5.62) 
0 ioT X > bo + y/^bi{y) 

\ 

Continuity at 6 � + Vebiiy) implies d2 = 0. Continuity at bo implies 

ci6oe 仰 。 + d2e 陶 = 0 ， 

or 

C2 = -Cibo. (5.63) 

Since the optimal exercise boundary does not change in this case, we set bi = 0. Then, 

ciTe办—ci6oe彻 for x < bo 
^ i W 二 . (5.64) 

0 for X > bo 
\ 

In summary, if 

cie胸 

(1 一 /3)ebo — c i v ^ e胸〈 0’ （5.65) 
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then 

f 
cixe^- + C2e彻 for a; < 60 + 

= ， 

� 0 for 0； > 60 + Vsbi{y) 

where Ci is given in (5.48)，C2 in (5.57) and 61 in (5.58). Otherwise, 

f 

T , , � c 讽 相 - c i b o e 细 for x < bo 
⑷= , 

� 0 for x>bo 

where c： is given in (5.48), bi = 0. 
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Chapter 6 

Conclusion 

This thesis provides a theoretical treatment of stock loans valuation under exponential 

phase-type Levy models. Using the variational inequality approach, we characterized 

the value function of a stock loan under general exponential phase-type Levy models 

and derived an explicit solution of the stock loan value and optimal exercise policy for 

a fairly general class of phase-type jump diffusion models. We emphasis again that 

our result could be applied to approximate the corresponding price under a general 

exponential Levy model arbitrarily close. 

We also discussed a possible extension to stochastic volatility model for stock loans. 

We adopted a fast mean-reverting stochastic volatility model and analyzed the price 

behavior using the technique of asymptotic expansion. A possible future research 

direction is to prove the order of convergence of this approximation and to combine 

the phase-type Levy model with the stochastic volatility asymptotic analysis. 
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Abstract 
Stock loan, or security lending, is currently a very popular financial service provided by 

many financial institutions. It is a collateral loan where stocks are used as collateral. 

The borrower may repay the principal with interest and regain the stock, or make 

no repayment and surrender the stock. This thesis is concerned with the stock loan 

valuation problem, in which the underlying stock price is modeled a^ an exponential 

L〜y Models of phase-type. The valuation problem can be formulated as an optimal 

stopping problem of a perpetual American option with a time varying exercise price. 

As the phase-type jump diffusion forms a dense class in Levy processes, our solution 

can approximate the solution under general Levy models arbitrarily close. 
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摘要 

股票抵押貸款(Stock loans)是現今金融業界非常流行的投資産品。它是一種以股 

票作為抵押品的貸款。借貸人可以歸還本金及利息以續回股票，或可以放棄用以抵 

押的股票而不作還款。此論文是探討有關股票在指數性相位型L6vy過程模型下股票 

抵押貸款的定價問題。此定價問題可視為有時變性履約價的永久美式期權之最優化 

停止問題。由於相位型跳躍擴散過程是所有L6vy過程中的稠密子集，因此我們的定 

價模型可以用作估算一般L6vy模型所引伸之價格。 
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Chapter 1 

Introduction 

A stock loan is a loan issued by financial institutions (the lender) to its clients (the 

borrower) which is collateralized with stocks. Recently, stock loans become a very 

popular product in over-the-counter market. As reported by International Securities 

Lending Association, the global market size of these products exceeded £1 trillion 丄. 

Under the terms of the contract, the borrower has the right to repay the loan at 

anytime, or to simply default the loan with the loss of the collateral. With this in 

mind, the borrower's right can be regarded as a perpetual American option, which 

represents the right for the borrower to exercise the option at anytime, without a time 

limit. The value of this perpetual American option is therefore of central importance 

to the problem of stock loan valuation. 

The value of this perpetual American option can be expressed as an ordinary per-

petual American call option with a possibly negative interest rate. This creates the 

major challenge of stock loan pricing. Consider the case of geometric Brownian motion 

( G B M ) for the stock price. The optimal exercise rule of a perpetual American call 

option is to exercise at the first time that the stock price rises to cross a constant 

iThis number is quoted from the article: An Introduction to Securities Lending, Executive Sum-
mary, Page 8, issued by Australian Securities Lending Association Limited at 1 August 2005. 
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level. This constant level is called the optimal exercise boundary. If interest rate is 

positive, the stock price will cross any fixed boundary almost surely. The perpetual 

American call option can then be valued directly with a variational inequality (VI). In 

contrast, when interest rate is negative, the problem becomes complicated. Given any 

fixed boundary level greater than the current stock price, there is a positive probability 

that the stock price will never cross this level. 

Xia and Zhou (2007) are pioneers of solving the stock loan problem. They value 

the stock loan under the classical G B M model using a purely probabilistic approach. 

Zhang and Zhou (2009) then extended the framework to a regime switching model 

and solved the problem using variational inequalities. Dai and X u (2009) studied the 

optimal redeeming strategy of stock loans with finite maturity under G B M . Y a m et al. 

(2010) considered the callable feature of the stock loans. 

Although most studies on stock loan adopt the G B M model for stock price, em-

pirical evidences (e.g. Andersen et al. (2002), Pan (2002) and Eraker et al (2003)) 

show that jump diffusion model would be a better model for asset prices to capture 

the heavy tails of the empirical distribution. Therefore, a jump diffusion model with 

flexible jump distribution is worth considering for stock loan valuation. 

Merton (1976) is the first one to propose jump diffusion for asset price modeling 

using a Gaussian jump distribution. Another notable jump diffusion model is the 

double-exponential jump diffusion proposed by Kou (2002). The generalization of 

jump diffusion model is the exponential Levy model, such as the variance-gamma model 

(Madan et al, 1998), C G M Y model (Carr et al., 1999) and normal inverse Gaussian 

model (Barndorff-Nielssen, 2000). 

Sun (2010) recently considered the stock loan valuation problem under the double-

exponential jump diffusion model in the first chapter of her thesis. While it is a good 

start, the asset return distribution is not flexible enough to capture the empirical 
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distribution implied by market data. For this reason, we incorporate the phase-type 

jump diffusion to stock loans valuation. 

The phase-type distribution is dense over the class of all positive valued distri-

butions. By making use of this fact, Asmussen et al. (2007) show that the class of 

phase-type jump diffusion model is dense over all exponential Levy model. In other 

words, the option price derived from phase-type jump diffusion models can be used 

to approximate the corresponding price under a general exponential Levy model. In 

particular, Asmussen et al. (2007) approximate the C G M Y model by the phase-type 

jump diffusion. In fact, the phase-type jump diffusion model embraces the Kou (2002) 

model and the mixed-exponential jump diffusion model (Cai and Kou, 2011) as its 

special cases. 

Asmussen et al. (2004) solved the price of the perpetual American put option 

with positive interest rate under phase-type jump diffusion models. They used the 

technique of Wiener-Hopf factorization to derive the optimal exercise boundary. Then 

the pricing problem is reduced to the evaluation of the corresponding expectation at 

the given exercise boundary. 

While Wiener-Hopf factorization is useful to solve American option pricing problem 

involving Levy processes and, in particular, the phase-type Levy model, it relies heavily 

on the positive interest rate or, in the limiting case, zero interest rate. The method no 

longer works for a negative effective interest rate in the stock loan valuation problem. 

W e take the variational inequality approach as in Zhang and Zhou (2009). 

Under the phase-type jump diffusion model, we show that the price of the perpetual 

American option satisfies an ordinary integro-differential equation (〇IDE). The solu-

tion of this O I D E is closely linked to the root characteristics of a Cramer-Lundberg 

equation (C-L equation). The root characteristics of the C-L equation is first studied 

in a special case of the phase-type distribution, the hyperexponential distribution. B y 
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making use of the properties of this special case, we extend our result to a fairly general 

class of phase-type models. 

The rest of the thesis is organized as follow. Chapter 2 introduces the elements of 

our problem. Chapter 3 presents some general properties of stock loans. Chapter 4 

presents the methodologies of valuation. Chapter 5 discusses a possible extension to 

incorporate stochastic volatility. Chapter 6 concludes. 
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Chapter 2 

Problem Formulation 

In this chapter, we describe the formulation of stock loan valuation under the phase-

type Levy model. W e introduce the phase-type distribution, its use in the phase-type 

jump diffusion model, and the formulation of stock loan as a perpetual American call 

option pricing problem. 

2.1 Phase-type distribution 

2.1.1 A generalization of the exponential distribution 

Consider a continuous time Markov process with 1 transient state and 1 absorption 

state. The intensity matrix is given by 

/ \ 
^ ] 

V 0 
where 6> > 0. Let V be the absorption time of this Markov process. Then the dis-

tribution of V is the exponential distribution. The cumulative distribution function 

is 
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My) = l 一 e-ey. (2.1) 

A finite mixture of the exponential distribution is called hyperexponential distri-

bution. This can be expressed as the absorption time of a continuous time Markov 

process with m transient state, 1 absorption state with an intensity matrix of the form 

^ -Oi ... 0 Oi ^ 
• • • 

• • . . 
• • . . 

0 … 一 Q 0 

\ 0 0 0 y 

The cumulative distribution function is 

m 

= (2.2) 
i=l 

where a, > 0 and ai = 1. 

c^i is the probability for the process to start at state i. 

It can also be expressed using matrix notation, 

^Y(y) = l - a e T q ， (2.3) 

where a = (ai,..., am), T = diag(-6'i,...，一没爪)，1 = ( 1 , . . . , 1)了 

A further generalization allows the transient states to be communicative. The 

resulting distribution becomes the phase-type distribution described in the next section. 

2.1.2 Properties of the phase-type distribution 

The phase-type distribution is the absorption time of a finite state continuous time 

Markov process with m transient states and 1 absorption state. 
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Let T be the intensity matrix of the transient states and ol = (ai,..., a饥)be an 

initial probability vector. The phase-type distribution is parameterized by (m,T,a). 

The full intensity matrix of the Markov process can be written as 

(T t] 
S= , 

” oj 

where t 二 — Tl. The cumulative distribution function is given by 

Fv(y) = 1 - ae'^n. (2.4) 

The density function is given by 

fy(y) = (2.5) 

Finally, the generating function is given by 

Af ⑴ = 二 a(-tl - T ^ H . (2.6) 

The class of phase-type distribution is very rich. W h e n T is a diagonal matrix, 

the distribution reduces to a hyperexponential distribution. As shown in Johnson and 

Taafe (1988), the class of phase-type distribution is dense in the field of all distributions 

on (0, oo). 
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2.2 Phase-type jump diffusion model 

2.2.1 Jump diffusion model 

If the price of an asset St follows jump diffusion model, then the change in price consists 

of three components: drift, Brownian motion and a jump process. The stochastic 

dynamics can be expressed in the following stochastic differential equation: 

c/aS / 1 、 f Nt \ 

S = 卜 dt + + (ê ^ - 1 ) ， (2.7) 
V i=l / 

where is the standard Brownian motion, {iVf}位o is a Poisson process with 

intensity A, 二i is a sequence of independent and identically distributed random 

variables. 

For a Poisson process Nt, when h is small, we have: 

1. Pr {Nt+h -Nt = 0) = l-Xh^ 0(h)., 

2. Pr {Nt+h -Nt = l) = Xh-{- o{h); 

3. P T { N t + h - N t > 2 ) = o{h), 

where o{h) is the asymptotic order symbol such that lim/^^o ̂  = 0. Hence, (2.7) can 

be alternatively written as 

警 = + 臺一)dt + adWt + (ê ^ — 1) dNt. (2.8) 

A n application of Ito's formula gives 

d\nSt = iMt + adWt + YidNt, (2.9) 

which implies that 
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/ Nt \ 

St = So exp i/t + aWt + X I " (2.10) 

V i=i ) 
For r > 0, we have 

E [e-^'St] = So exp + A (E(e’ - 1)、. 
乂 2 J 

If we set V = r - c j ” 2 - \ — 1), then is a martingale. This motivates 

the definition in the next section. 

2.2.2 The stock price model 

The stock price process is defined on a risk-neutral probability space (Q, P, {Tt}t>o , • 

W e write 

St = exp {Xt), (2.11) 

Nt 

Xt = x-^iit + aWt^Y.^^^ (2.12) 

where /i = r - — / 2 - A — 1). The distribution of z e N, is a two-sided 

phase-type distribution and the density function is given by 

M y ) = + (1 一 (2.13) 

Note that the financial market is incomplete under the jump diffusion setting. That 

means that not all contingent claims can be perfectly hedged and the martingale mea-

sure is not unique. In other words, there are infinitely many equivalent martingale 

measures. Our choice P is the one that preserves the phase-type structure of the 

log-price X^ as proposed by Assmusen et al. (2004). 
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2.3 Stock Loans 

Stock loan is a collateral loan where stocks are used as collateral. The borrower will 

receive the loan principle (q), pay the service charge (c) and have the right to repay the 

principal with interest (continuously compounded with rate 7) and regain the stock 

anytime in the future. The transactions can be summarized as follows: 

• The borrower receives money q - c as well as Fq, a perpetual American option 

with time varying strike price ge)亡. 

• The bank receives Sq (one unit of stock) as collateral. 

By equating the benefits of both parties, it is seen that the service charge is 

c = g + V b - 5 o . (2.14) 

W e have the following representation of the value of the perpetual American option: 

Vb = = ess supE [ e — (5； — /(.<oo}|^o = ê ]， (2.15) 

tGTq 

where T u , u > 0 , is the set of all stopping time taking values in the time interval {u, 00). 

By taking the transformation St = the value can be written as 

V{x) = ess supE e - — � � � 烏 = e 工 " I ， (2.16) 
reTo L \ Z J 

which is the value of a perpetual American option with constant strike price and a 

possibly negative effective interest rate r = r — 7. 

From now on, we will stick with the transformed stock price process St as the 

underlying stock of the American option. W e also define Xt to be the transformed 

log-price. Their dynamics are given by 
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St = exp (Xt), (2.17) 

Nt 

文t = x + jlt + aWt^^Yi, (2.18) 

where /i = r - 7 - (7^/2 - A ( E ( e〜 1 ) . 
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Chapter 3 

General Properties of Stock Loans 

3.1 Preliminary results 

W e establish some properties of the perpetual American option as a function of the 

stock price value. Take S = e^ and write v{S) = V{\n S) = V{x). 

Lemma 3.1 v{S), as a deterministic function of the initial stock price S, satisfies the 

following properties: 

1. {S — qy < v{S) < S for all S > 0; 

2. v{S) is convex, continuous and nondecreasing in S on (0, oo). 

Proof For the first item, observe that 

v{S) 二 ess supE [ e — (5,-拆)『)+ 〜〈⑷} | 5<。=司. (3.1) 

B y taking r = 0, we get (5 - < v{S). O n the other hand, since {S - qe^^y < S, 

we have 
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viS) = ess supE [ e — 打 — /{『〈⑴}丨 5̂ 。= 
tETo 

< ess supE [e—『T 民 J | S。= 
r€To J 

< S. 

Next，it is obvious that v[-) is a nondecreasing function. Convexity of v{') is a 

direct consequence of the convexity of max{., 0} function and the essential supremum 

operator. As the function value is finite, convexity of ?;(.) implies its continuity. 

• 
The next lemma is an essential step to solve the optimal stopping problem. 

Lemma 3.2 Define k = inf {5 > 0 : 5 - g > > q, where inf 0 = oo. Then 

{ 5 ^〉 0 : 5 " - g、 ( S O } = [A:，oo). 

Proof If A: = oo, the result is obvious. For the case that k G [g, oo), we have v[k)= 

A: - g by the continuity of v. W e claim that v{S) = S - qior S >k. Otherwise, there 

exists ko>k such that u(ko) > ko - q because of L e m m a 3.1. B y convexity, we have 

- v{k)�vjko) - v{k)�, 1 
S - k — ko — k • 

for any S > k,. As a consequence v[S) > , 二 ⑷ - k) + k - q which implies 

〉S for sufficiently large value of S. This is a contradiction to L e m m a 3.1. 

• 
Using similar methods of Xia and Zhou (2007), we now prove that the optimal 

stopping time is a first hitting time. In other words, it is optimal to exercise the 
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perpetual American option at the first time when the transformed log-price exceeds a 

predetermined level. Such a level is called the optimal exercise boundary. 

Theorem 3.1 If X^ follows a Levy process, then the optimal stopping time is of the 

form 

n = inf > 0 : > 6} , (3.2) 

where b is a constant. 

Proof The stock loan value at time t can be written as 

= v(St) 

=ess supE fe—巾—0 (5；6义广_ 卯”+ / ( 《 — | 巧. 
tETi L . 

=e飞t ess supE [e—"卜《）(ei^e^T-不 _ 。)+ 々 《⑵} | jr/ 
reTt L . 

= e s s supE [e—" (xe^^ - 拆 | 
reTo L 」；x;=e”tSt 

= e ^ ' v ( e - ^ ' S t ) . 

Hence, the optimal stopping time (cf. Karatzas and Shreve, 1998, Chapter 2.5) is 

r* = inf{t 

= i n f > 0 : - qe^' > e 〜 e - 〜 J } 

= i n f { ^ > 0 : Ste-，t — q > 〜 } 

= i n f {t > 0 : e-'̂ 'St > A;} 

= i n f {力 2 0 : Ĵ t 2 lnA;j>， 
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where k is the value defined in L e m m a 3.2. 

• 
W e denote the optimal exercise boundary by 6* and the optimal stopping time by 

TV. Theorem 3.1 greatly reduces the dimensionality of the optimization problem. The 

original optimization problem has to search over all possible stopping time. Yet, the 

optimal stopping time is in the form of a first hitting time and we only need to search 

for an optimal exercise boundary, which is a one-dimensional optimization problem. In 

other words, the value function is given by 

V ⑷ 二 .. suf) H ⑷ = s u p E [e--^ (e义Tb 一 g) + 戈。=xl . (3.3) 
6>max{ln9,x} 6>max{ln g,cc} L 乂 / ^ ^ 、 ' 

3.2 Characterization of the function V{x) 

W e want to show that V{x) is a solution of an integro-differential equation (OIDE) 

and derive its functional form. Before going into that, we first introduce the Cramer-

Lundberg equation (C-L equation) 

2 

W e use the symbol to denote the collection of roots to the C-L equation with 

real part larger than or equal to 1 and to denote the collection of those roots with 

negative real part. The root characteristics of the C-L equation play a central role in 

our problem as we will see in later sections. As a starting point, observe the following 

properties regarding this equation: 
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1. = 艺总]̂t〉o is a martingale implies that 1 E B+. 

2. The function G{P) satisfies 

E [叫=e聯 （3.5) 

for P belongs to some bounded interval covering [0，1 • 

If G'{1) > 0，it will be shown that V{x) = e工 and that q = c. That means that the 

bank has no intention to make such a stock loan contract with the given loan interest 

rate 7 and current stock price Sq. Therefore, we will focus on the more interesting case 

< 0. The case for G'{1) > 0 is postponed to section 4.3. 

It is worth noting that G"(l) < 0 implies 7 〉 r . In other words, the effective 

interest rate f = r - 7 is indeed negative. To see this, recall 

G{P) = [ê ]̂ — 1)) " + A (E [ê ^̂ ] - l) . (3.6) 

Hence, 
2 

- r - 7 + y + AE [^e^^ - e^^ + 1] • (3.7) 

Since ？/ê  - e^ + 1 > 0 for all ̂  G R, G'(l) < 0 implies 

2 

7 > r + ^ + AE 一 e^^ + 1]〉r. 
2 L J — 

W e are now ready to present the result which characterizes the function V{x). It 

is easy to see that this new result embraces the stock loan valuation under double-

exponential jump diffusion model (Sun, 2010) as its special case. 
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Theorem 3.2 V{x) satisfies the following integro-differential equation 

f 

{C - f) V{x) = 0 x<h* 
‘ , (3.8) 

V{x) = e^ — q X >b* 

where Ch(x) = (x) + A J^^ {h(x ^ y) - h{x)) fY{y)dy. Furthermore, the 

solution takes the form 

< 

約 e如 X <h* 
y{x) = ！^ 浙 (3.9) 

e工一q X >b* 
V 

for some ujj, j e {i \ Pi e B+j to be determined according to the model. 

Proof Consider the following function as a candidate solution: 

Y^ cjj.e巧 T X < b* 
u{x) = 战+ . 

- q X >b* 
\ 

It is reasonable to assume that ujj, j ^ {i \ p. ^ B+} should be chosen such that 

satisfies the conditions described in L e m m a 3.1. In particular, we should have 

(e工-q)+ < u(x) < e^ for all a: G R . It also satisfies the O I D E 

f 

(r — f) u{x) = 0 x<h* 
‘ . (3.10) 
� u[x) = e工-q X >b* 

However, it m a y not be continuously differentiable at b\ Hence, we construct a 

sequence of function such that 

1. Un{x) u{x) as n oo for all x; 

2. Unix) is twice continuously differentiable for all n € N; 
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3. For a:<6* o r x > 6 * + i, Un{x)三 

4. For b* < X < b* + 0 < Ur,(x) < M：, where M, is a positive constant. 

For any x < b\ we have 

rb*-x+l/n 
(£ — f) Ur,{x) = X [Ur,{x + y) - u(x + y)] fY{y)dy. (3.11) 

Note that 

〜Or) — < m a x \un{x)\ + max uix) < Mo, 

where M s 二 M ! + Then we have 

|/:u。(:c)-f〜(a:)| S Xpa+t+ / [un{x ̂  y) - u{x ^ y)] dy (3.12) 

z Apa+t+M2 
< ^ 0 uniformly for all x <h* , as n 一 oo. 

f L 

Next, by applying Ito's formula to { e — 付 〜 ( 文 , we can obtain a sequence of 

local martingale I M 严 \ for n G N as follows: 
L J t>o 

M t ⑷ = e - • 〜 、 文 ) — uUx) - - f : e-r、[(£ — f) zz“元)]ds. (3.13) 

W e claim that it is a true martingale for any n G N. Note that for any ̂  > 0, 

18 



< \e-MXt)Iit<r,.}\ + Mie—t + — g)/}:,《⑷[ (3.14) 

Prom the definition in (3.13) and noting (3.12) and (3.14), we establish the following 

inequality, 

IM/Wl < 〜 (勾 / {咖 } | + |〜⑷ | + M i e - - + e -’‘ 广 — 工 ） . 
nr 

(3.15) 

For the first term in the right hand side of (3.15), we have for any fixed T〉 0 

- 1 

Ex sup e~^^u{Xt)I{t<r,.}\ 
te[o,T] 

< e_汗E工 |eSuPte[o’T]义t 

= e x p ( — f r + x + pXT(x+ ( - 1 — T+)—丄 t+ ) 

< oo, 

where <!>(.) is the cumulative distribution function of the standard normal distribution. 

It is now easy to see that 

Ex sup < o c , (3.16) 
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which guarantees that is a true martingale for all n. Then, we know that for 

X <b* 

u{x) = lim uJx) 
n —OO 

「 1 「 ptATfj* -

= i i m E . E^M^-) E . / e—^ [(£ — r~)〜(元)1 心 
Lt/ 0 L 」 

= E ^ - . T b * 、 ( 兄 〜 ) ] ， 

with the last equality implied by the dominated convergence theorem (DCT). Now, let 

t oo and apply Fatou's lemma to get 

u{x) = — l i m E T j e — ( 叉 队 t J 
i—oo L 

= [ e - 一 〜 ( 文 〜 《 ⑴ } ] + n m E . [e一(〜)u(元八tJ/[尸。0/ 

= E 工 [ e - 咖 * ) ( e 义 〜 《 ⑷ 卜 

O n the other hand, 

Ex [ e -咖、元〜 * ) ] [ e - 印 〜 1 ) / { 、 * 邻 ] [ e - " 一 ( 元 〜 ) 々 、 • 。 . 

(3.17) 

Since 

and 

E . [ e - 印 文 M T b * 一 … j 〈 ⑴ ， 
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D C T implies that the first term on the right hand side of (3.17) converges to 

Ex 叫 e 义 - q)Iir,.<oo} 

as t — oo. For the second term, we claim that 

[ e - 料 ) 喊 A r 具 * > 0 ] - 0 

as ̂  OO. This can be shown by considering the following two cases: 

Case 1: G'(l) < 0, there exists Kq > 1 such that - r < 0. In addition, there 

exists Co > 0 such that u{x) < Coe够 for all x < b*. Hence, 

E — - ( 一 ) 她 〜 ) / { 一 ] < E + o e - • 〜 6 * 〉 0 -

< lE：̂  |c。e—附灿义厂 

— 0 as t — oo. 

Case 2: G'{1) > 0, as v{x) < e工 for all x G M, we have 

Et [ e - 一 * ) 砍 〜 ) / { 一 ] < E . [ e -附、…} ] . (3.18) 

Consider the probability measure F as follows: 

dp ；•丄 f 

^ = (3-19) 

It is shown in Appendix A of Asmussen et al. (2004) that {Xt}t>o is also a phase-type 

jump diffusion process and the corresponding Levy exponent is given by 
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6 ⑷ 二 + 一 G(l). (3.20) 

Define n* = mf{t > 0 : > 6*}. Then 

E 工 = E . [/{〜〉,}] — E , [lif,.=oo}] (3.21) 

as t oo. Observe that G'{Q) = G ^ l ) > 0 and 6(0) = 0, under IP measure 

Pr(n* < o o ) = limE [e—汗叫=1. (3.22) 

This proves the claim. 

N o w , we can conclude that 

= [ e - 咖 — = ⑷ . （3.23) 

That means the candidate solution u(-) is indeed a solution. This completes the proof. 

• 

Using similar techniques presented by Zhang and Zhou (2009), we can simplify our 

solution by dropping the term with = 1: 

Proposition 3.3 Under the condition that G'{1) < 0，suppose jo is the index such 

that Pj^ = 1，then we have tUj^ = 0. In other words, the value function takes the form 

�jG^j工 X < b* 
V{x) = ^ . 

e工一q x>b* 
\ 

Proof For t < n*, we have 
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E \e-''V{Xt) I X o = xj - V{x) + [t e—s (乙 _ 尸 ) ” 元 ) 办 = v { x ) . 
」 Jo 

Hence, for any T > 0, 

V(x) = E [ e - 一 响 了 ) I X o = a;' 

It is clear that the first term converges to 

E[e-〜(e^^- <00} I Xo = x 

as r oo. To complete the proof, we require the second term to converge to zero as 

T — oo. 

By Theorem 3.2, V{x) is a linear combination of e汰$ for x < h\ we consider the 

validity of 

E ( V ' T e而） — 0 as T o o 

for different values of k. 

Note that E 二 ⑷ F o r /c = 1，the expectation becomes e。= 1 

and does not converge to zero. Hence the term uoj.e'' should be dropped from the linear 

combination by setting the coefficient to zero. 

O n the other hand, since G'(l) < 0, there exists /̂ o > 1 such that - f < 0. 

Furthermore, for any 伐 G 召+\ {1}, there exists Ki > 0 such that e风冗 < KiC"^^ for 

工 e (-00,6*). W e have E ( e — ^ e风知 ) < K,E (e-"e«G、) — 0 as T oo. 
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• 

W e summarize our results in this chapter. For any given exponential phase-type 

L谷vy model, the stock loan valuation is divided into two cases. If G'{1) > 0, the stock 

loan is not reasonable to exist. Otherwise, if G'{1) < 0, we solve roots from the C-L 

equation (3.4). The valuation formula of stock loan is given by Proposition 3.3 in which 

the optimal exercise boundary b* can be determined by setting a differential to zero. 

However, it is not an obvious task to study the root characteristics of the C-L 

equation (3.4) in general. The following chapter presents some important special cases 

for which the solutions are obtained in explicit form. 
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Chapter 4 

Valuation 

This chapter is devoted to the derivation of the valuation formula. W e first solve 

the problem under hyperexponential jump diffusions, a special case of the phase-type 

jump diffusion. Although the hyperexponential jump diffusion model is studied by 

Cai (2009) for a first passage time problem and Cai and Kou (2011) for barrier and 

lookback option pricing, they only consider the case of positive interest rate and the 

optimal exercise boundary is yet to be investigated. B y making use of the solution 

of the hyperexponential case, we extend our result to a fairly general class of phase-

type jump diffusion models. Except the last section of this chapter, we assume that 

G乂 1) < 0, where G{-) is defined in (3.4). 

4.1 Hyperexponential jumps 

Suppose T + and T " take the following form 

( \ ( \ 
— m •.. 0 {—6>i ... 0 

: ••• ：• ， : ••• ; ， (4.1) 

乂 。 … - ” m ) ( 0 … - e ” 
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where 〉1 for z. = 1,. •.，m and 沒知〉0 for /c 二 1，...，n. 

Then the phase-type jump distribution is reduced to a hyperexponential class. The 

following proposition summarizes the root characteristics of the C-L equation (3.4). A 

similar result is obtained by Cai (2009) for the case of non-negative interest rate. 

Proposition 4.1 The Cramer-Lundberg equation G{f5) 二 r has exactly n distinct neg-

at切e real roots and m + 2 distinct real roots which are greater than or equal to 1. 

Proof Under hyperexponential jump diffusion, we have 

2 m + n _ „ 

_ = 产 AV̂  + A;̂  E 器 + A(1 - P) E 煞 -A . (4.2) 
i—\ j—1 3 ‘ 

It is clear that: 

1. G(0) = 0; 

2. G'(oo) = oo; 

3. G(_oo) = oo; 

4. G(rji-) = oo, G(rji+、= -oo for z = 1,..., m; 

5. G{-Oj-) = -oo, G{-6j-^) - oo for j = 

6. G{P) is continuous except the values ”生，i 二 …，m and —dj, j = 1,...，n, 

where = lim G{x). Then we know that G{P) = f has at least one root in each 

of the intervals 

(—oo, -On), {-On,—没 n—1)，. • •，（一没 2,-没 1), ("1, "2)，. . .，(j]m-l, Vm), ("m，OO). 
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Moreover, G{f5) = r has the same number of roots as the m + n + 2 degree polynomial 

m n 

i=l j=l 

Therefore it has at most m + n + 2 real roots. 

Also observe that G(P) is decreasing on the interval (—仏,0) and G(0) = 0, 6>i+)= 

oo，there is no root in the interval (—6>i,0). N o w recall that 1 is always a root and 

complex root always exists in pair, we deduce that there are two real roots in the 

interval (0, '"i). Our assumption G'{1) < 0 implies that they are distinct and both of 

them greater than or equal to 1. 

• 
By Theorem 3.2, the solution is of the form 

‘ m + 1 

^ cjj.e 如 X <h 
H W = , (4.3) 

e工一q X > b 
V 

where 6 G R is a constant, G(A) - f = 0 for all z and 1 < A < < ... < /^rn+i-

For X <b, we have (£ — f) Vb(x) = 0. Therefore, 
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0 = CVk{x) -

— c P V b , 、 、 r 
二 j W � + " 石 ⑷ + A / (叫工 + — HW) fy{y)dy 一 TV,{X) 

J —oo 
！ 广 oo m + l 

- E 約 e � 厂 ( G脚 - r ) - X Y.呼从""竹�fy{y)dy 
j=l ^b-x 片 

poo 
+ A / {e^+y - q) fy[y)dy 

Jb-x 
m + l m 爪 

二 —A ujje曰3 工 pat -工、+ Ae^ f^ pa+^I^e 如 争 工 ) 

j=i 一外. - 1 

m 

i=l 
爪 ( „ m+l \ 

i=l \ “ j=i '仏—ft. / 

It is clear that (uJi,.. .,uJm+i) should be chosen such that all the values inside the 

brackets in the s u m m a n d of (4.4) equal to zero. That is 

m + l 

• 广 = —沢 16， （ 4 . 5 ) 

for z = 1,... ,m. Moreover, the function should also be continuous at b. This 

gives 

m + l 

= (4.6) 

i=i 

N o w we obtained a ( m + l ) x (m + l) system of linear equations 
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‘ m + l 

E 約 ; 广 凡 = A e 如 一 qe-rnb fon = l ’ . . . ， m 

^ 户 1 1+1 ^ • (4.7) 
E = eb - q 

4.1.1 Solution of the linear system 

W e are intended to solve (4.7). Take loj = cuje^^^ for j = 1,. •. + 1，rjm+i = 0, 

丑i = ： ^ for < 二 1，...，m and Rm+i = q - eK Then the linear system becomes 

X j ^ j 丄 A = for z = l,...,m+l. (4.8) 
j=i ” i — Pj 

Using partial fraction, we have 

爪+1 n /Q 爪+1 "2+1 o m + l 

V " J M L - ^ d 77 明一 Ac T-r x-r]i 

11 (4.9) 

•7 = 1 1=1 k=l MK 1^1,l^i “‘ 

where Dj, j = l,...,m+ 1 are the partial fraction coefficients. Multiplying (4.9) by 

(x - Pk) on both sides and set x = f5k, we obtain 
m + l ( m + l m + l \ 

D A = - (4.10) 

n if^k-pj) 

Hence, 

m+l ( m + l m + l \ 

E n 

风 (4.11) 
pk n (A - pj) 

W h e n X = r]i in (4.9), we have 
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Hence, cĴ  = = 1 ,…, m + 1, and we conclude that 

m+1 ( m+1 m+1 \ 

V &=1 1=1,1 卢”1 ” I 
約 L � (4.12) 

n {pj - f^k) 

where ^^ = for z = 1,..., m and R^+i = q - e\ 

4.1.2 Solution of the optimal exercise boundary 

After obtaining the coefficients in (4.3)，the remaining unknown is the optimal exercise 

boundary b*. Note that b* is the value which maximizes the candidate solution Vb{x). 

The following identity is useful for that purpose. 

Lemma 4.1 / / a n d {"̂ 二“^丄默 all distinct, we have 

m+1 m+1 , \ 

n n 队-rn) n ( 兒 . (4.i3) 
k=l k=l,k^j 1=1,1朽 \'丨1 ~ 'liy 

Proof Consider the following polynomial 

m+1 

= n (/̂fc - 1 - x) for j = l,...,m + l, (4.14) 

k=l,k关 j 

which are of degree m. Observe that 

m+1 

- 1 ) = n ( A - r/O . (4.15) 
k=l，k^j 

B y Lagrange interpolation, 
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m + l m + l / 1 \ 

丄 , ⑷ 二 E 尸 务 1 ) n 

m + l m + l m + l / . \ 

= E n 队-m) n (4.16) 

is a polynomial of degree m which past through all the points in the set 

As Pj{x) is a polynomial of degree m and it matches the value of Lj{x) at m + l points, 

we have 

Pj{x) = Lj{x) Vx G R . 

B y putting a: = 0, the result follows. 

• 
Our objective is to maximize the function 

‘ m + l 

2約e如 X < b 
Vb{x) = 

e^ - q X > b 
V 

‘ m + l 

E 协_b�X < b 

e工-q X >b 
V 

over 6 G R . It suffices to maximize the value function on the interval (一oo，6). O n 

(-00,6), we have 
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f1 财 1 / 1 \ 

3 = 1 \ / 

Some simple algebras show that 

, L 爪 , m+1 m + 1 ^ m + 1 m ‘ 

Pj n iPj - Pk) 

m+1 m 门 

^ n A n ^ 

I fc=i 1=1 'I 
n Wj - Pk) 

Therefore •^uJj 一 uJjpj = 0 if and only if 

m+1 m o 

— i 

•？=1 1=1,m 丨 I ” I 
m+1 m 

1 YlPkU^ 
= { k=i 1=1 11 

S, — 1 rn+l m+1 ~ : 7" 

E n ( “ 0 n fe 

j=i k=i,k灼 1=1,l^i v^'仏 / 
m+1 /o m 1 

二 T "fe f j V i - ^ 

二 M 口 t l " ^， 

where the last equality is an application of L e m m a 4.1. Hence 羞 H(工）=0 at 6 二 6* 

where 

(财1 n m \ 
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It is then easy to see that Vb{x) is maximized at b*. 

4.2 Phase-type jumps 

W e are now ready to extend the previous results into phase-type jump diffusion mod-

els. Suppose T+ and T— are symmetric (and hence diagonalizable) matrix, and have 

distinct eigenvalues. Then, there exists orthogonal matrix Q+ and Q" such that 

T + = ( Q + ) ^ A + Q + and T — = ( Q — f A — Q — , (4.18) 

where 

/ n \ / \ 

—'"1 … 0 -i9i • • • 0 

A + = 丨 . • . : , A - = 丨 . . . : • 

… - ” m ) y 0 … — Q n ) 

W e have the following result regarding the roots of the Cramer-Lundberg equation (3.4). 

Theorem 4.2 The Cramer-Lundberg equation G{/3) 二 r has exactly m^ I roots in the 

complex domain V^ = {z e C\Re{z) > 1} and exactly n roots in the complex domain 

= C\Re{z) < m a x { - ^ j | . 

Proof 

Let Mz) = jlz + ^z^ + Xp {-ZI - A+Y^ ( - A + ) l - l) 

+A(1 一 p) ( a - {-zl — A - ) - i ( - A - ) l - l ) - f, 

/ i � = j l z + ^z^ + \p {-zl - ( - A + ) Q + i _ 

+A(1 — p) ( a - ( Q - 广 一 A - ) - i ( - A - ) Q - l - l ) - f, 

/ i⑷ = [ / o⑷ ] ( H ) [ / i⑷ r for 
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Note that ftiz) have m poles . . . i n V^ for all t G [0，1]. Prom the hypcrexpo-

nential case (Proposition 4.1), we know that /。⑴ have m + 1 zeros in W c want 

to construct a boundary strip C+ of V+ such that 力⑷ have no zero on it. 

Since |/“2：)| — oo as |2：| — oo for 亡=0,1，there exists R e R such that all roots of 

ft(z) = 0, te (0，1) are in the region 

Vn={zeC: Re{z) > 0, \z\<R}. (4.19) 

O n the other hand, as < 0, there exists G R , > 1 (In fact, we can take 〜 

arbitrarily close to 1), such that = Re(ft(^'i)) < 0. For 力=0，1，" e 股 we have 

< 而—) 

< 1. 

Hence, we have Re{ft{ni + ii/j) < 0 Vi/ e R . This gives the boundary strip 

C+ = {zeC:\z\ = R, Re{z) >/^i} U {2： G C : Re{z) = / ^ i， - R < Im(z) < R). 

(4.20) 

B y the continuity of ft(z) and the Argument Principle, we deducc that 

1 f f[{z), 
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is integer valued and continuous over t G [0,1]. Hence n。= ni, i.e. f八z) have m + l 

zeros in V+. This completes the proof of the first part of the statement. 

To show the second part of the statement, we repeat the above arguments with the 

following boundary strip, 

C. = {zeC: H = R, Re{z) < U G C : Re{z) = acs, -R< Im{z) < R}, 

(4.22) 

where K2 e R and K2 < max{-6'J is chosen arbitrarily close to max{-6>J. 

^ i 

• 

According to Theorem 3.2, if there are no multiple roots with positive real part in 

the C-L equation (3.4), then the solution is of the form 

' m + l 

uJjePj工 X < b 
Vbix) = =1 . (4.23) 

e工-q X >b 
\ 

Using this solution form, we compute that 

m i x ) — m i x ) = [ ( Q + ) 了 工 ) ( ( — A + — I)-1 ê ^ + 

- E j . r 叫(-A+ - 响 — 1 讽)(―A+) Q + ] 1，（4.24) 

which is equal to 0 on (-oo, b). Hence we obtain the system of linear equations 
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，m+1 

= 如 如 ” b l e i b forz = l , . . .， m 

‘ J — m + 1 ， （4.25) 

E 約 e而 6 = eb - q 

which is the same as the linear system (4.7) in the hyperexponential case. Therefore, 

the coefficients are given by 

m+1 ( m + 1 m + 1 \ 

E [R^Y{{rl^-0k) n 
口 1 V k = l 1 = 1,”I ”L / 

約 一、 (4.26) 
n {Pj - Pk) 

k=l,k关 j 

and the optimal exercise boundary is given by 

( n rn \ 

6 、 如 A n 抖 (4.27) 

V k^i Pk 丄 1=1 / 

4.3 The case for G\l) > 0 

B y substituting Pi = 1 into (4.27), we get b* = oo. Again, by setting = 1 in (4.26)， 

we observe that 

ujj 0 for j 1 

and 
m + 1 m + 1 m + 1 / \ 

E n n fe) 
k=l k=2 1=1,l^i \ 

的 一 1 

n iPk - 1 ) 
k=2 

as 6 一 OO, where the last equality is a result of L e m m a 4.1 when j = 1. Noting (4.23), 
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we have 

V{x) > sup Vb{x) = e工. 
6>max{lng,ln S} 

O n the other hand, we know that V(x) < e^ from L e m m a 3.1. As a result, we have 

V{x) = e工. 
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Chapter 5 

Future Research Direction 

This chapter discusses the possible generalization of the stock loan problem to stochas-

tic volatility. W e adopt the approach in Fouque et al. (2003) and consider a fast 

mean-reverting stochastic volatility model. The stock loan pricing formula is derived 

in the form of asymptotic expansion. 

5.1 The fast mean-reverting stochastic volatility model 

Consider a pair of process Y^) which satisfies 

dSt = rS^,dt + f{YnStdW,, (5.1) 

dYf = d t + ^ d Z , ^ (5.2) 

where SI is the stock price process, f{Yf) is a positive valued function representing 

the volatility, Y^ is a Ornstein-Uhlenbeck (OU) process with mean reverting speed 

£ > 0 is a small parameter, {Wt, Zt) are Brownian motions with correlation p e (一1，1) 

and 

38 



A ⑷ 二 ⑷ / r ^ (5.3) 

is the market price of risk. Let X f = In (e'^^^f). Ito's formula gives 

dXt= r - 7 - ^ ^ dt + fiY^dWt. (5.4) 
\ ^ / 

Although we do not introduce jumps in (5.1) and (5.2), the method used in this 

chapter is possible to generalize to phase-type Levy process with stochastic volatility 

in the future. 

5.2 Asymptotic expansion of stock loan 

W e are interested in the stock loan on S^ defined in (5.1) and (5.2). As a starting point, 

we use y) to denote the price of the perpetual American option corresponding to 

the stock loan (see (2.16)), i.e. 

P(:r，y) = ess supE f e — _ /卜〈⑴̂丨；̂㊀̂  = x, Y,^ = J • (5.5) 
reTb L J 

Using similar arguments presented in previous chapters, V^(x,y) is known to be a 

solution to the partial differential equation 

f 

亡 〒 ( 工 = 0 for a; < b'{y) 
‘ ， (5.6) 
� y ) = e … ) - q for x > 6 % ) 

where lf(y) is the optimal exercise boundary, 

= + (5.7) 
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with 

乙 。 = + (5.8) 

= V 2 i . p f i y ) ^ — x/2^A(2/)-; (5.9) 

广 、2 淨 ( ~ f(yf\ d 
A = 2 (5.10) 

Note that the operator CQ is the infinitesimal generator of the 〇U process Yt defined 

by 

dYt = {m- Yt)dt + V2udZu (5.11) 

which has the invariant distribution J\f{m, z/̂ ). 

Consider the following asymptotic expansions for and lf(y): 

y'i^^y) = Vo{x, y) + y) + eV2{x, y) + y) + ... , (5.12) 

二 My) + Veh{y) + eb2{y) + shsiy) + ... . (5.13) 

W e aim to compute the first two leading order terms of the above expansions, i.e. 

yo{x,y) + VeVi(x,y) (5.14) 

and 

bo{y)-hy/ebi{y). (5.15) 

Substituting (5.12) into (5.6) gives 
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= + ^ ( A V b + CoVi) + (£2^) + LiVi + UV2) 

{C2V1 + C1V2 + + o ⑷ 

= 0 . (5.16) 

This implies all the terms of the expansion in (5.16) should be equal to zero. 

W e use (•> to denote the expectation with respect to the invariant distribution 

⑷二 釣 （ 5 . 1 7 ) 

In the following analysis, we have to solve the following Poisson equation: 

C Q g ^ h = 0. (5.18) 

In order to admit a solution g{') with reasonable growth towards infinity, the equation 

requires the following Fredholm solvability condition 

〈"〉=0. (5.19) 

5.2.1 The zeroth order term 

Consider the zeroth order term in (5.16) 

^oVb = 0. (5.20) 

As £0 is a differential operator with respect to y, (5.20) implies that Vo(x,y) is inde-

pendent of y. 
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For the first order term in (5.16) 

+ = 0， (5.21) 

since Fq is independent of y, the equation is reduced to 

^oVi = 0. (5.22) 

This implies, again, that Vi{x,y) is independent of 仏 

For the second order term in (5.16): 

jC2Vo^CiVi + CoV2 = 0, (5.23) 

because CiVi = 0, (5.23) is reduced to the Poisson equation in V2 

+ C2V0 二 0. (5.24) 

The solvability condition implies 

{^2Vo) =〈A〉Vb = 0， （5.25) 

where (£2) is the operator C2 with /(“尸 replaced by a^ =〈尸〉，i.e. 

〈乙 -。 = o . 

Recall the expansion of the optimal exercise boundary: 

= 知 + + (5.26) 

Expanding both sides of the boundary condition in (5.6) according to the exercise 
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boundary gives 

\ ox y 

(5.27) 

eb'、⑷-<i = + (5.28) 

Equating the zeroth order terms, we have 

Vo{bo,y) = e^' - q. (5.29) 

This suggests that Vq is the solution under a constant volatility model. The solution 

is given in Xia and Zhou (2007): 

• If -2r/a^ > 1, 

胁 ) = • (5.30) 
- q for x > bo 

\ 

w h e r e = 

• If < 1, 

y o { x ) = e 工 . ( 5 . 3 1 ) 

For the purpose of illustrating asymptotic expansion, we focus on the more interesting 

case where — > 1. 

5.2.2 The first order term 

The solution of the Poisson equation (5.24) can be written as 
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V2 = - C ^ \ C 2 - { C 2 ) ) V , . (5.32) 

O n the other hand, the third order term in (5.16) gives 

+ (5.33) 

which is a Poisson equation in V^. Solvability condition implies that 

( A ) 二 -〈 A松 

=〈A/:。-i(A —〈r2〉)〉Vo 

= 〈 仏 1 ( / ⑷ 2 - 〈 / 2 〉 ) 〉 • ( 盖 - 基 ) H 

= + — 3巧）应 + (2”2 — Vo, (5.34) 

where 

外 = ( 5 . 3 5 ) 

”2 = ^ (/</>'), (5.36) 

and 队y) is a solution to the Poisson following equation 

^om = f{y? - ( f ) • (5.37) 

The boundary and smooth fit condition (cf. Villeneuve, 2007) of V^ are 

(5.38) 

44 



and 

- t = (5.39) 

respectively. Expanding both sides of the boundary condition in (5.6) according to the 

exercise boundary gives 

剛 ， = V o { b o , y ) + (v^{bo + V^h{y),y) + 

+ 0 ⑷ ； 

Equating the terms in y/e order, we get 

+ + b,{y)^{bo,y) = (5.40) 

which implies 

Vi{bo + Vibi{y),y) = 0. (5.41) 

Expanding both sides of the smooth fit condition according to the exercise boundary 

gives 

dV^ 

= < ^(^0,2/) + v ^ + + 6i(2/)0(6o+, y)) + o(V^) if6,(y)>0 

、 + sfe + + 6 i ( 2 / ) 0 ( 6 o - , 2 / ) ) if 61(2/) < 0 

(5.42) 
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and 

= 一 + 刷 知 + 一 对 （5.43) 

Collecting terms of 0[y/e), 

dVi 

石 (知 + V~ehi{y),y) = ⑷ e知. (5.44) 

Summarizing all these, we obtain the P D E of Vi： 

〈广2〉"̂1 = + - ?>V2)£, + {2v2 - Ko, for x < 6o + V~shi{y)-

+ ⑷ = 0; ‘ 

� [ i f b,{y) < 0. 
(5.45) 

W e solve this P D E by dividing it into two cases. 

Case 1: hi{y) < 0. For x < 6o + 

〈乙2〉Vi = h 际 + (” i - 3⑷应 + ( 2 仍 - M 石 ) K ) 

=Clip + (外—3V2)P + {2V2 - Vi)) e如， (5.46) 

where ai = (”广 V -义 To construct a particular solution for V^ consider the solution 

form 

片 ⑷ = ( 5 . 4 7 ) 
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B y substituting this into the left hand side of (5.46), we get 

=臺斤2 卢工 + 工e彻）+ (尸 _ 旬 （ 。 一 + _ fc.xe^^ 

V 2 J 

where the last equality holds with 

+ (̂ r - y j - f = 0. 

This implies 

—(Hp (V2fp + (Vi - 3V2)/3 + (2V2 —例)) 

“^ ^^^^Ffl . (5, 
It is clear that the homogeneous solution is of the form 

= + (5.49) 

W e claim that C3 = 0. To see this, define 

x,y)=E [ e - 呼 - 财 ^ x, Y/ = y] (5.50) 

and consider the following expansion 

X, y) = Eo{t, X, y) + ^flE�t�x, y) + o{yfe). (5.51) 

As argued in Zhang and Zhou (2009), if C3 ̂  0, we should have 
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Eo(t, X, y) + y/£Ei{t, x, 2/) 0 as T oo (5.52) 

for n=l. Following a similar analysis for y), we know that Eq is the expectation 

evaluated with Black-Scholes model and this is solved in Zhang and Zhou (2009) that 

Eo(t,x,y) = e ^ ( K —” ( K — m " ^ . (5.53) 

El is given by 

E 八 t,工,y) = -{T — t) i^v,— + (例-3仍)应 + (2̂ 2 — Eo (5.54) 

= - { T — t)K + (vi - 3v2)k + {2v2 — Vi)) 

W e refer to Fouque et al. (2003) for details. It is 
now easy to see that 

Eo{t, X, y) + x, W — 0 as T — oo 

does not hold for k 二 1. This implies C3 = 0 and proves the claim. 

For X < ho + y/ehi[y), a general solution of V： is the sum of the homogeneous 

solution and the particular solution: 

Vi(x) = cixe^^ + (5.55) 

Substituting this into the boundary condition of (5.45) yields 

0 = ^1(60 + b 八 y)y/i) = ci(6o + 61 ⑷ 例知+61O/)而 + � 2 6 风 知 ⑷ v^), (5.56) 
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and 

C2 = -ci(6o + 6i(2/)Vi). (5.57) 

Evaluating both sides using the smooth fit condition in (5.45) gives 

+ yTsb她 y) = cie州。�+ [ci(6o + h{y)V~e) + C2] /?e帅。+〜⑷^/^) 

= c i e " (⑷ 1 ⑷ W ) 

and 

Q2y 

hivV' — y) = - a.P'e^'^) = b,{y){l -

Neglecting the o(v^) terms and equating both sides, we have 

, ( 、 cie邵。 

一。 (5.58) 

which is independent of y. To summarize, 

f 

… 、 ci:re如+ C2e彻 for x sjehi 
胁 ) = , (5.59) 

0 for a; > 60 + x^bi 

where ci is given in (5.48), C2 in (5.57) and b： in (5.58). 

Case 2: hi{y) > 0. For x < 60 

(^2> = ai/5 + 一 3V2)P + {2V2 - vi)) e彻， (5.60) 

49 



and for bo < x < ho + y/ib 八y) 

二 0. (5.61) 

B y similar arguments in the previous case, we can write 

f 

cixe^-''' + t2e如'for x < ho 

如 for 6o < X < 6o + ,feh{y) . (5.62) 

、0 for X > 6o + V^hi{y) 

Continuity at bo + implies = 0. Continuity at b�implies 

ciboe 陶 + die 陶 = 0， 

or 

C2 = 一 ci6o. (5.63) 

Since the optimal exercise boundary does not change in this case, we set hi = 0. Then, 

T,,、 Cixe^^ - for x Kh^ 
^ i W = . (5.64) 

、0 for x > h Q 

In summary, if 

cie 卵。 

(1 — jSyo _ ciy/Ee^bo < 0， （5.65) 
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then 

ci:re如 + for x < ho + \/ehi{y) 
胁 ) = , 

、0 for X > ho + ^fehi{y) 

where c： is given in (5.48), C2 in (5.57) and hi in (5.58). Otherwise, 

f 

ci^re如-Ci6oe彻 for x 
胁 ) = , 

0 for X > 60 
、 

where Ci is given in (5.48), hi == 0. 
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Chapter 6 

Conclusion 

This thesis provides a theoretical treatment of stock loans valuation under exponential 

phase-type Levy models. Using the variational inequality approach, we characterized 

the value function of a stock loan under general exponential phase-type Levy models 

and derived an explicit solution of the stock loan value and optimal exercise policy for 

a fairly general class of phase-type jump diffusion models. W e emphasis again that 

our result could be applied to approximate the corresponding price under a general 

exponential Levy model arbitrarily close. 

W e also discussed a possible extension to stochastic volatility model for stock loans. 

W e adopted a fast mean-reverting stochastic volatility model and analyzed the price 

behavior using the technique of asymptotic expansion. A possible future research 

direction is to prove the order of convergence of this approximation and to combine 

the phase-type Levy model with the stochastic volatility asymptotic analysis. 
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